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Abstract

Scientists are deluged with information with more than 1,000,000 scientific 

articles being published a year. Almost half of them are biomedical in nature. 

Not only is there an overwhelming abundance of scientific articles, there is an 

overwhelming abundance of biomedical information in electronic database such 

as OMIM, SwissProt, DrugBank and others.

One way to address this “information overload” is to develop 

computational tools to extract relevant information. In this thesis, we present a 

web-based biomedical text mining system named Poly Search, that has been 

designed to extract relationships between human diseases, genes, mutations, 

drugs, and metabolites, from a variety of text sources and electronic databases. 

PolySearch allows diverse search and text ranking possibilities not found in most 

other biomedical text mining tools. We also demonstrate that PolySearch is able 

to achieve a high level of performance in comparison to other biomedical text 

mining tools. The server is freely available at

http://wishart.biology.ualberta.ca/polvsearch.
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Chapter 1

1. Introduction

Today’s scientists are deluged with information. Currently there are more than 

8000 scientific, technical and medical journals publishing more than 1,000,000 

articles a year. Nearly 50% of these articles are biomedical in nature. Indeed, it 

has been estimated that in order for a scientist to stay current for a single high- 

priority disease (say breast cancer), they would have to scan 130 different 

journals and read 27 papers each week [1]. Given that most journal articles are 

not exactly “light” reading, this task of staying current with the literature could 

easily occupy 75% of a scientist’s working day.

The problem with information overload is not restricted to scientific 

papers. Electronic databases are equally culpable. Thousands of web-accessible 

text, image and sequence databases now exist [2]. These contain terabytes of 

data and are expanding in both number and size far faster than the rate of 

scientific publishing. For instance, GenBank, which doubles in size every 12 

months, contains 60 million sequences occupying 250 Gigabytes 

(www.ncbi.nlm.nih.gov/Genbank/index.htmll. Just tracking the appearance and 

content of new databases, let alone using the information in them, can prove to 

be a full time challenge. Equally problematic is the task of checking that the 

data in the sequence, structure, drug and gene expression databases is current 

with the information in the literature (and vice versa).

1
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Clearly, the quantity of information generated by the scientific 

community is far too great for any human to efficiently process or assimilate. 

Too much fragmentary information and non-contextual data exists in too many 

places. This makes the task of finding relevant information on a specialized 

topic somewhat like finding a proverbial needle in the haystack. It is now 

obvious that a key challenge, especially in the field of bioinformatics, is to 

develop methods that allow this information to be easily found and readily 

exploited by human users.

An important advance in this area has come with the development of 

NCBI’s new Entrez Cross-Database search system [3]. This information 

retrieval system brings the hunt for new and useful biomedical data to a new 

level by integrating PubMed (i.e. biomedical abstract data) with NCBI’s 

multitude of sequence, structure and chemical databases. Now users can enter a 

term, such as “breast cancer” and almost instantly see a hyperlinked list of 

journal abstracts (162,000) containing the term, genes and proteins associated 

with breast cancer (courtesy of GenBank), 3D structures of proteins associated 

with the disease (from Entrez Structure and MMDB), drugs or drug candidates 

used to treat breast cancer (from PubChem) along with microarray data (from 

GEO), SNP information (from Entrez SNP) as well as links to another 10 NCBI 

database resources (GENSAT, STS, UniGene, OMIM, etc.). Entrez is a superb 

resource that greatly improves the speed and precision with which researchers 

can find relevant data on a given gene, disease, mutation, drug or microarray 

experiment.

2
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However, Entrez is still somewhat limited because it is restricted to 

searching its abstract and molecular database resources through MeSH (Medical 

Subject Heading) terms, MeSA (Medical Subject Annotation) terms and 

keywords in database titles or database names. In other words, Entrez doesn’t 

look through the text of all 162,000 abstracts on breast cancer, nor can it find a 

list of genes that are mentioned in those abstracts, extract key sentences for those 

genes, count the frequency of appearance of those genes and provide a frequency 

or relevancy ranking for them. Likewise, Entrez does not link its results to many 

equally useful external databases such as SwissProt [4], Human Gene Mutation 

Database (HGMD) [5], DrugBank [6] or the Human Metabolome Database 

(HMDB) [7]. Another unfortunate limitation is that Entrez does not contain 

disease, gene/protein, drug or metabolite thesauruses. For instance, if  one 

wanted to find all the drugs that could be used to treat cancer, one would have to 

repeatedly enter “breast cancer AND Y” where Y is the name of each of the 

25,000 known drugs, brand names and their synonyms. In other words, Entrez 

does not have a pre-assembled list of all 25,000 known drug names/synonyms 

and it does not search for co-occurrences of those drugs with the words “breast 

cancer” in PubMed abstracts.

These kinds of sophisticated text searching tasks are more suited to a 

different class of programs called medical text mining systems. Several 

excellent biomedical text mining tools now exist such as MedMiner [8], 

MedGene [9], LitMiner [10], iHOP [11], ALIBABA [12] and EBIMed [13], 

These tools exploit the explicit textual information contained within the PubMed

3
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database by selecting or highlighting key sentences or terms within the abstracts 

and then summarizing or presenting the results in some form. The text mining 

capabilities of MedMiner, MedGene, LitMiner, iHOP, ALIBABA and EBIMed 

greatly exceed what one can do or view with Entrez/PubMed. However, these 

text mining tools were designed specifically to extract information only from 

PubMed abstracts and no other databases (i.e. OMIM, DrugBank). Ideally what 

is needed is something that combines the text mining capabilities found in 

MedMinder, MedGene, LitMiner, iHOP, ALIBABA and EBIMed with some of 

the database integration found in Entrez. What’s more, one would like to see 

some analytical capabilities built into such a system so that users could 

manipulate, view, or archive the resulting information (text or sequence) in a 

convenient, web-accessible format. These requirements motivated us to develop 

just such a resource -  called PolySearch.

PolySearch is a web-accessible tool that is designed specifically for 

extracting and analyzing the relationship between human diseases, 

genes/proteins, mutations (SNPs), drugs, metabolites, tissues, organs, and 

subcellular localizations. It extracts and analyzes not only PubMed data, but also 

data from multiple databases (OMIM, DrugBank, SwissProt, HGMD, Entrez 

SNP, etc.) using sophisticated data mining tools. It also displays, links and ranks 

text, as well as sequence data in multiple forms and formats. PolySearch differs 

from other tools in the number of search possibilities, its general search 

strategies, its support for data analysis (relevance ranking based on frequency, 

co-occurrence, association words and pattern recognition, SNP analysis and

4
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primer design), its large collection of customized thesauruses and its extensive 

integration with other databases. In other words PolySearch tries to combine the 

best of Entrez with the best of MedMiner, MedGene, LitMiner, iHOP, 

ALIBABA and EBIMed. By comparing PolySearch to other biomedical text 

mining tools, we will also demonstrate that it is one of the more effective tools in 

extracting relevant sentences to facilitate extraction of meaningful biological 

associations. PolySearch allows users to read a set of organized relevant 

sentences for each association rather than reading the abstracts themselves. In 

particular, users also have direct control over what PolySearch considers as 

relevant. Through the use of a unique scoring scheme, “the PolySearch 

Relevancy Index”, PolySearch provides visual cues to facilitate rapid 

assimilation of association strength, as well as a means for automatic information 

extraction. Overall PolySearch is a novel biomedical text mining system that, 

with its diverse search and text ranking possibilities, provides new and more 

effective biomedical text mining capabilities.

This thesis describes the design, implementation and testing of 

PolySearch. Specifically, chapter 2 provides a brief background on biomedical 

text mining and describes some of the challenges that are faced in the field of 

biomedical text mining. This chapter also gives an overview on related 

biomedical text mining tools available for extracting information from 

biomedical text abstracts. In chapters 3 and 4, we present details on how the 

system was designed and its proposed methods for extracting information. 

Chapter 5 describes a range of assessments that were carried out to evaluate and

5
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demonstrate the capabilities of PolySearch's different search possibilities. In 

Chapter 6 the thesis ends with a brief conclusion and a description of possible 

future work. The primary approach taken in constructing the PolySearch system 

is a manually crafted rule-based methodology. In the future, PolySearch can 

benefit from incorporating systematic artificial intelligence or machine learning 

approaches.

Thesis statement: We demonstrate that it is possible to use a sentence- 

based approach in combination with manually curated thesauruses and a 4-state 

information content measure for informative sentences, to improve the quality 

and scope of biomedical information retrieval. It is also hypothesized that by 

integrating high quality, curated biomedical databases with journal abstract 

information that it is possible to improve the coverage and precision of data 

retrieval over what is currently achieved by other methods or tools.

6
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Chapter 2

2. Background and Related Work

2.1 Background

The language of biology, like natural languages, is often unstructured. However 

biological or biomedical text can be particularly difficult to understand as many 

specialized terms (i.e. jargon) are commonly used throughout the existing 

literature. The following is an example of an abstract [14] in PubMed about 

colon cancer:

Loss o f AP-2alpha results in deregulation o f E-cadherin and MMP-9 and an increase in 
tumorigenicity o f  colon cancer cells in vivo. Activator protein-2 (AP-2) is a transcription factor 
that regulates proliferation and differentiation in mammalian cells and has been implicated in the 
acquisition o f the metastatic phenotype in several types o f cancer. Herein, we examine the role o f  
AP-2alpha in colon cancer progression. We provide evidence for the lack o f AP-2alpha 
expression in the late stages o f colon cancer cells. Re-expression of the AP-2alpha gene in the 
AP-2alpha-negative SW480 colon cancer cells suppressed their tumorigenicity following 
orthotopic injection into the cecal wall o f nude mice. The inhibition o f tumor growth could be 
attributed to the increased expression o f E-cadherin and decreased expression and activity of  
matrix-metalloproteinase-9 (MMP-9) in the transfected cells, as well as a substantial loss o f their 
in vitro invasive properties. Conversely, targeting constitutive expression o f AP-2alpha in AP-2- 
positive KM12C colon cancer cells with small interfering RNA resulted in an increase in their 
invasive potential, downregulation o f E-cadherin and increased expression o f MMP-9. In SW480 
cells, re-expression o f AP-2alpha resulted in a fourfold increase in the activity o f  E-cadherin 
promoter, and a 5-14-fold decrease in the activity o f MMP-9 promoter, indicating transcriptional 
regulation o f these genes by AP-2alpha. Chromatin immunoprecipitation assay showed that re
expressed AP-2alpha directly binds to the promoter o f E-cadherin, where it has been previously 
reported to act as a transcriptional activator. Furthermore, chromatin immunoprecipitation assay 
revealed AP-2alpha binding to the MMP-9 promoter, which ensued by decreased binding of 
transcription factor Sp-1 and changes in the recruitment o f transcription factors to a distal AP-1 
element, thus, contributing to the overall downregulation o f MMP-9 promoter activity. 
Collectively, our data provide evidence that AP-2alpha acts as a tumor suppressor gene in colon 
cancer.

7
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To capture relevant information from this abstract, one first has to have a 

sufficient background in biology to know that the terms “AP-2alpha”, “E- 

cadherin” and “MMP-9” are names of genes or proteins. Further, one needs a 

good knowledge of molecular biology to understand that “AP-2alpha” is a 

transcription factor that regulates the expression of “E-cadherin” and “MMP-9” 

thereby playing a role in suppressing colon cancer. Upon reading through the 

abstract, the reader may realize that “AP-2alpha”, “Activator protein-2”, and 

“AP-2” are in fact the same gene/protein, meaning that three different synonyms 

were used in this abstract alone. This demonstrates one of the challenges in 

understanding biomedical literature as many of the specialized terms also have a 

large number of synonyms. For instance a gene and the proteins coded by this 

gene often have different names, yet they are synonymous to each other. In 

addition, a given gene may have multiple synonyms while the protein coded by 

this gene may have a different set of synonyms that are, in turn, all synonyms of 

each other. As we have seen in this example, three different names of the 

protein AP-2alpha have been used. In fact TFAP2A, which is the official gene 

symbol for AP-2alpha recommended by the Human Genome Organisation Gene 

Nomenclature Committee (HGNC [15]), is nowhere to be found in the abstract. 

So if one restricts the search to finding the official gene symbol, TFAP2A, one 

would miss the important associations between AP2-alpha and E-cadherin and 

MMP-9. Alternately, if another abstract only uses TFAP2A and it further shows 

evidence of association between TFAP2A and MMP-9, without data indicating 

that TFAP2A, AP-2alpha, Activator protein-2 and AP-2 are synonyms then

8
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instead of two abstracts showing associations between TFAP2A and MMP-9, 

only one abstract would appear to state this relationship.

Another challenge in understanding biomedical text lies in the inherent 

complexity of biological systems. Living systems are composed of tens of 

thousands of genes, tens of thousands of proteins, thousands of metabolites, 

hundreds of different types of cells/tissues and dozens of different cell types. All 

of these components interact in innumerable ways that cannot easily be 

described in one or two-word phrases. Similarly the diseases and disorders that 

arise when these components are broken or missing also cannot be described 

with simple words or descriptions. Indeed, physicians, pharmacists, and 

biologists spend a significant portion of their formal education on learning or 

memorizing the terminology and phrases used to describe what they are seeing, 

measuring or diagnosing.

The primary goal of biomedical text mining is to provide computational 

tools that make the understanding of biomedical texts easier. More specifically, 

text mining must: 1) support human experts in extracting relevant information 

and 2) facilitate automatic information extraction such as “given X find all 

associated Ys”. Building biomedical text mining tools cannot be done in a 

vacuum. Indeed, inputs from biological experts are essential in making a proper 

tool since computing scientists generally lack the knowledge needed to 

understand the complex information we find in biomedical texts. In cases where 

the text mining tool is drawing conclusions or making assertions, it is important 

to properly convey how and why the tool is asserting that X is associated with Y.

9
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Properly conveying how and why serves three purposes. First of all, exactly 

how or why X is associated with Y is what biologists really want to know in the 

first place, not just the fact that X is associated with Y. Second, the provision of 

explanations gamers the trust of biologists in using the tool by supporting 

assertions with the reasoning or evidence behind them. Third, the presentation of 

both facts and explanations provides a means for biologists to give feedback to 

the computing scientists to make the text mining tool better and more relevant. 

These are the key issues to keep in mind when developing and evaluating a 

biomedical text mining tool. Many of today’s better text mining tools take these 

three issues into account in some way or another.

2.2 Nature Language Processing

Natural Language Processing (NLP) is an area of research that combines 

natural language linguistics and computing science in an effort to ultimately 

allow computers to understand languages as humans do. There are many 

applications in NLP including speech recognition, machine translation, question- 

answering, semantic web applications, document summarization, and 

information retrieval. A large number of NLP applications share the same 

challenges in evaluating the performance of different systems and in developing 

methods to achieve their goals. As a result, the lessons learned in NLP can 

potentially benefit many research efforts in biomedical text mining. For 

example, “name entity recognition” is a term used in NLP to denote finding 

person names, location names, organization names, and other proper names in

10
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newswire articles. The techniques developed in name entity recognition could 

potentially be applied to finding disease/gene/drug/metabolite names in 

biomedical texts. This section takes a closer look at a field of NLP that most 

applies to biomedical text mining, namely, information retrieval.

Information Retrieval

A simple information retrieval system is a system that retrieves a ranked 

set of relevant documents related to a given query from a document collection. 

For example, PubMed is an information retrieval system such that when given a 

query like “Colon Cancer”, it will return a list of abstracts mentioning “Colon 

Cancer” ranked by the date of publication. As the amount of information 

continues to grow, retrieving only relevant documents becomes insufficient as 

users want and expect more of a text mining system. For instance, many of 

today’s users want their text mining systems to process document text and 

retrieve relevant passages (phrases, sentences, paragraphs, etc.) thereby directly 

“answering” the query. The distinction between information retrieval systems 

and text mining systems continues to blur as modem information retrieval 

systems often contain text mining components. In addition, text mining systems 

can often be used as information retrieval systems since documents that contain 

relevant passages should be more relevant. Therefore, the evaluation 

methodologies developed for information retrieval systems can easily be applied 

to evaluate the performance of text mining systems. To this end, there is a well 

known initiative, TREC (Text REtrieval Conference), which is designed to foster

11
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research on technologies for information retrieval. TREC has four main goals 

[16]:

• to encourage retrieval research based on large test collections;

• to increase communication among industry, academia, and government 

by creating an open forum for the exchange of research ideas;

• to speed the transfer of technology from research labs into commercial 

products by demonstrating substantial improvements in retrieval 

methodologies on real-world problems; and

• to increase the availability of appropriate evaluation techniques for use 

by industry and academia including development of new evaluation 

techniques more applicable to current systems.

TREC provides large test collections for several different information retrieval 

tasks in different fields and allows groups and individuals from all over the 

world to participate in the tasks. Each test collection contains three components: 

1) documents, 2) topics for the documents, and 3) relevancy judgments where 

each document is indicated to be either relevant to the document’s topic or 

irrelevant to the document’s topic. The relevancy judgments were completed by 

a team of assessors who are experts in the field in which the documents belong. 

When a collection of documents is too large for complete manual relevancy 

judgments of all the documents in the collection, pooling is done first and then 

all the pooled documents are judged to be relevant or irrelevant. Pooling is a 

technique where the top X documents from each participant’s results are pooled 

together forming a subset of the original collection that is easier to manage [17].
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The use of pooling to produce a test collection has been questioned and it has

been noted that for pooling to be valid, there needs to be enough relevant

documents in the pool and the relevant documents must be unbiased [16]. Once

a proper test collection is constructed with relevancy judgment, several

performance measures are used to evaluate a system’s performance including

precision, recall and f-measure. Precision is a measure of the accuracy of the

system, i.e. how many of the system’s extracted results are true.

. . true positiveprecision = ------------------------------------
true positive + false positive

Recall is a measure of the coverage of the system (i.e. did the system miss any 

meaningful results?)

true positive
recall = ------------------------------------

true positive + false negative

F-measure (f) is a combination score of precision and recall.

j .  _  2 x precision x recall 
precision + recall

The maximum of all three measures is 1 (i.e. 100%), which is the ideal situation. 

However, there is typically a trade off between precision and recall. One can 

achieve 100% recall by predicting that, for instance, one gene interacts with all 

the genes in the human body. However, such a prediction would have very low 

precision. One can also try to be very precise and then miss many possible true 

associations. Therefore, f-measure is used as a composite score between 

precision and recall in order to achieve fair comparison of systems with different 

precisions and recalls.
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Average precision is another single-valued measure that has both 

precision and recall components. Average precision (AP) favors systems that 

rank relevant results higher and it can be calculated using the following formula:

^ P r  (R)*rel(R)
AP = — ------------------

true positive

where R is the rank, N is the number of results retrieved, Pr(R) is the precision of 

the Rth result and rel(R) is 1 if the Rth result is true, 0 if  the Rth result is false. 

For example, if there are a total of 3 true positives and a system retrieves them as 

the first 3 results, then AP is

3

However, if a system’s third result is false and the fourth result is true, then AP 

is

3

When there are multiple queries, with systems returning a ranked list of results 

for each query, then mean average precision (the mean of the average precisions 

of different queries) is often used as the single-valued performance measure to 

compare different systems.

Relevance Feedback/Query Refinement

While the previous section described how one evaluates information retrieval 

systems when relevancy judgments have already been done for each document in
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the test collection, one detail not mentioned is how to determine whether a 

document is relevant or not. When building an information retrieval/text mining 

system, one has to anticipate what is relevant to the users and then build a system 

that can distinguish between what is relevant and what is irrelevant in order to be 

effective. However, anticipating what is relevant to the users is often hard to do 

as different users are interested in different things and sometimes even the users 

do not know what is relevant to them until they see the available results returned 

by a system. This has led to the development of relevance feedback techniques 

in information retrieval/text mining systems. Relevance feedback occurs after 

the system displays its initial results, particularly when a user is asked to identify 

the relevant documents/keywords in the initial result set. These relevant 

documents/keywords identified by the user are then used to refine the query (or 

refine the system’s relevancy ranking) leading to a second result set where 

relevance results should be ranked higher compared to the initial result set. The 

general strategy for query refinement through relevance feedback is to add more 

relevant keywords to the query such that the new expanded query can be 

matched better to relevant documents through some similarity measures. There 

are many similarity measure models that can be used. For example, a pure 

occurrence model is one where the occurrence of a query term in a document 

makes the document match to the query. A vector space model is one where the 

query term and document are represented as vectors of “term-frequency 

weighting scores” and then the vectors can be used to calculate the similarity 

between the query and a document.
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In general, relevance feedback techniques can be divided into two main 

approaches: automatic or manually interactive. For automatic query refinement, 

the relevance feedback system automatically generates the list of relevant 

keywords to be appended to the query for the next iteration of relevance 

feedback. On the other hand, for manual interactive query refinement, the 

relevance feedback system asks users to provide relevant keywords to expand 

the query. There are advantages and disadvantages to both approaches. It has 

been reported that automatic query refinement can improve overall performance 

of an information retrieval system; however, the magnitude of improvement 

varies from different queries and different document collections [18]. Manual 

interactive query refinement from an expert can achieve even greater (and more 

consistent) improvement compared to automatic query refinement. However, 

the performance improvement generated from manual interactive query 

refinement of a novice relevance feedback user is generally inferior to the 

improvement provided by automatic query refinement [18]. Overall, relevance 

feedback can improve the performance of an information retrieval/text mining 

system. Therefore providing some form of relevance feedback mechanism in an 

information retrieval/text mining system would be very useful.

The main objective for a text mining system is to identify or extract 

relevant information in order to save time that would otherwise be spent reading 

abstracts one at a time. Different tools provide different ways of achieving this 

goal. The next section provides a more detailed look into some of the better 

known biomedical text mining tools.
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2.3 Related Work

MedMiner was one of the earliest web-based biomedical text mining tools to be 

developed [8]. It provides support for “Gene only” searches, “Gene to Gene” 

searches, “Gene to Drug” searches and “General Query” searches. The “Gene to 

Gene” search and the “Gene to Drug” search allow only single component 

queries (one gene to one gene search and one gene to one drug search 

respectively), as opposed to one to many kinds of queries. For a given query, 

MedMiner allows the users to send the query first to GeneCards [19] returning a 

list of genes that users can choose before proceeding to querying PubMed. This 

GeneCards filter step can be bypassed for non-gene queries. In addition, once 

the query gene or query drug is chosen, MedMiner allows users to select gene 

synonyms or drug synonyms to make a combined gene synonym or drug 

synonym query to PubMed. Once the abstracts are retrieved from PubMed, 

MedMiner tries to highlight the relevant sentences within the abstracts that 

contain the name of the query gene or the query drug plus a keyword from a pre

defined list of keywords such as: inhibit, block, report, tumor, result, etc. The 

results are organized into twelve general categories followed by the relevant 

sentences (Figure 2.1).
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Figure 2.1: The results of using COX2 (and its synonyms) and Paclitaxel 
(and its synonyms) as the query for MedMiner’s Gene-Drug search.

Evaluating a biomedical text mining tool can be difficult as it is hard to measure 

the most important question: “how much time does using a biomedical text 

mining tool save?” However, through thorough analysis of several queries, the 

authors of MedMiner did show that this relevant sentence highlighting approach 

properly identifies relevant abstracts without omitting abstracts that have 

relevant information. Furthermore, the investigators within MedMiner's group
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have largely opted to use MedMiner instead of PubMed as they felt that using 

MedMiner offers a greater time saving and that it is easier to digest the results by 

reading structured set of sentences rather than full abstracts [8].

In MedMiner, because a relevant sentence is defined as a sentence that 

contains at least one gene or one drug plus a keyword, the relevant sentences 

may not show any association between the gene and the drug since the relevant 

sentences may mention only the gene or the drug. There is no preference or 

added score for a relevant sentence mentioning both the gene and the drug in the 

same sentence. As a result, to find relevant sentences containing both terms, 

users must perform a manual search. The major limitation of MedMiner is that it 

only supports single component queries making it a somewhat more specialized 

tool for biologists knowing what they want to study and less of an automatic 

information extraction tool.

MedGene provides disease-gene (given a disease, find all associated genes) and 

gene-gene (given a gene, find all associated genes) searches [9], MedGene 

works on finding word co-occurrences at the abstract level. For each disease- 

gene pair, MedGene first defines a contingency table of four numbers including: 

1) the number of abstracts with both disease X and gene Y (disease/gene double 

hits), 2) the number of abstracts with disease X (disease single hits), 3) the 

number of abstracts with gene Y (gene single hits) and 4) the number of abstracts 

with neither disease X nor gene Y. Using the four numbers in this contingency 

table, MedGene provides several statistical options (product of frequency,
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probability, chi square analysis, Fischer exact test, relative risk of gene, relative 

risk of disease) to estimate the strength of the association between disease X and 

gene Y. The term “product of frequency” for example, is the product of the 

proportion of disease/gene double hits to disease single hits and the proportion of 

disease/gene double hits to gene single hits. An example output from MedGene 

is shown in Figure 2.2.
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Figure 2.2: The list of genes returned by MedGene for the disease query 
“Colonic Neoplasms” and choosing product of frequency as the statistical 
method.
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In evaluating MedGene’s performance, the authors took a closer look at a single 

disease, prostate cancer. For this particular condition, they electronically 

retrieved and manually analyzed the abstracts for the highest ranked 100 genes 

and the lowest ranked 200 genes related to prostate cancer from MedGene. 

Their analysis showed that 77.5% of the highest ranked 100 genes fell into one 

of the five categories reflecting meaningful gene-disease relationships [20], In 

the same analysis, the authors also reported that 67.4% of the lowest ranked 200 

prostate cancer genes from MedGene reflected true relationships. In another 

analysis, MedGene’s output for a breast cancer query was compared with 

microarray gene expression data for breast cancer and normal breast tissue 

samples. The analysis suggested that genes with a more substantial expression 

level in microarray data were more likely to have a stronger breast cancer 

association in the literature. The textual analysis of disease-gene associations 

could potentially complement microarray gene expression analysis by suggesting 

which genes are more important. It may also allow researchers to better 

understand why gene expression changes occur under different conditions.

While MedGene does provide statistical rankings for disease/gene 

associations and while it does provide hyperlinks to PubMed abstracts of 

interest, MedGene offers no text or sentence highlighting capabilities. As can be 

seen in Figure 2.2, the hyperlinks under the column heading “Papers” (the eighth 

column) link back to PubMed where it lists unprocessed abstracts. In other 

words, unlike MedMiner, MedGene does not highlight key words or select 

informative sentences. So, for example, if  one wished to understand how and
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why colonic neoplasms are associated with the DLD gene, a user would have to 

manually select and read through all 210 abstracts themselves to obtain the 

information they wanted. The only evidence that MedGene provides for its 

associations is a statistical score. This statistical score may not represent a true 

biological relationship and to use MedGene as an automatic information 

extraction tool requires a clear understanding of what is statistically significant 

and what isn't. Unfortunately there is no clear or recommended threshold (as is 

often used in BLAST scores), so it would be difficult to use MedGene as an 

automatic information extraction tool.

LitMiner is another example of a biomedical text mining system that uses the 

word co-occurrence approach [10]. LitMiner predicts relationships between 

genes, chemical compounds, diseases and tissues. LitMiner calculates what is 

called an over-representation score based on: 1) the total number of abstracts 

examined (TNA); 2) the number of abstracts with both disease X and gene Y 

(NCO(KTl-KT2); 3) the number of abstracts with disease X (NA(KTl)), and 4) 

the number of abstracts with gene Y (NA(KT2)). The over-representation score 

is calculated using the following equation.

TNA x NCO{KT\ -  KT2)over -  representation = --------------------------------
NA{KT\) x NA(KT2)

To overcome some of the limitations of the co-occurrence approach, WikiGene 

is also used to complement LitMiner. WikiGene is a Wiki-based curation tool 

for expert users to verify and improve gene annotation data. Figure 2.3 shows 

the output from LitMiner using “colon cancer” as the query.
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Figure 2.3: LitMiner’s Disease -  Gene output for colon cancer.

As seen in Figure 2.3, LitMiner returns a list of genes for colon cancer ranked by 

the over-representation score. Users can also select filters to limit the number of 

results displayed by choosing minimum a number of articles, co-annotated 

articles or a specific over-representation score. As with MedGene, the only 

evidence that LitMiner provides for associations is a statistical score (the over

representation score). No other supporting sentences or “facts” are provided. 

Furthermore, LitMiner does not provide any hyperlinks to the abstracts used to 

calculate the over-representation score. This makes it very difficult for users to 

determine how and why disease X is associated with gene Y. Unless the users 

go back to PubMed and search for disease X and gene Y explicitly, there is no 

effective way of determining whether the associations provided by LitMiner are
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true or not. One might ask if an overrepresentation score of 160 is high enough 

to be a true association. Is an overrepresentation score of 50 too low to be a true 

association? No evaluation of LitMiner’s performance was reported; however, 

LitMiner has been used by others for a pathway-oriented analysis of multiple 

gene lists [21].

ALIBABA is a text mining tool that extracts associations between cells, 

diseases, drugs, proteins, species and tissues [12]. ALIBABA provides a 

graphical interface in an attempt to represent the extracted information as a 

graph. Figure 2.4 shows an example output from ALIBABA with the query 

“colon cancer”.

; AlMed ; Late* saw#

']  talon cancer
: I T * w -  baivatar tiremir
■ > co-e«um»ftC*
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j:iT.wset synonyms: activator protain-S, op '2

; :  CnwftrtelY, tarontmg rxmstifcrtive
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Figure 2.4: Output from ALIBABA using colon cancer as the query and 
maximum number of abstracts is set as 100.
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When ALIBABA is queried with a subject yielding a large number of 

associations (such as colon cancer), the graphical clustering becomes a poor 

method for visualizing or navigating data due to an over-abundance of 

overlapping information. Figure 2.4 shows the query result of only 100 

abstracts. Currently there are more than 55,000 “colon cancer” abstracts in 

PubMed. It is difficult enough to find just the “colon cancer” entity in Figure 2.4 

considering we are ultimately interested in the other bio-entities (cells, diseases, 

drugs, proteins, species and tissues) that colon cancer is related to. This defeats 

the purpose of using a visualization tool to abstract away details into a more 

understandable form. Visualizing and navigating a biological network typically 

requires concrete biological knowledge and an ability to recognize the linkages 

between bio-entities through careful examination of the data. But with 

ALIBABA, the process of visualizing a biological network becomes almost 

impossible as the tightly clustered graphical representation overburdens the user. 

Furthermore, the highly variable accuracy of the linkages between bio-entities 

provided by ALIBABA could leave users with an inaccurate impression of a 

biological network. With a smaller number of abstracts, ALIBABA is more 

effective (the default maximum number of abstracts is 20). However, with the 

amount of information available in PubMed, the presentation of results in the 

form of hyperlinked texts or tables is generally more effective.

ALIBABA uses a dictionary-based approach for recognizing biomedical 

objects in abstracts and uses a language pattern matching system to help the 

association extraction process. ALIBABA’s pattern matching algorithm also
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provides a confidence score for each association indicating the quality of the 

match between the sentence and a pattern. ALIBABA’s protein-protein 

interaction extraction module achieves an Fl-measure of 61% (precision 75% 

and recall 52%), as evaluated on the SPIES corpus of protein-protein interaction 

[22]. In addition to the pattern matching algorithm, ALIBABA also uses the co

occurrence approach to ensure higher recall. As opposed to the abstract level co

occurrence approach seen in MedGene and LitMiner, ALIBABA uses word co

occurrence at the sentence level. In general, ALIBABA is better than MedGene 

and LitMiner at conveying how and why it is asserting that X is associated with 

Y by providing a limited number of key sentences in addition to a confidence 

score. While the confidence score is another means of showing the strength of 

associations between X and Y, it still lacks biological meaning. Likewise 

choosing the right cut-off confidence score for automatic information extraction 

remains an open question for this particular tool.

IHOP stands for Information Hyperlinked Over Proteins [11]. This biomedical 

text mining system, as its name suggests, is designed to support only 

gene/protein associations and interactions. Unlike most other tools, IHOP allows 

searches for genes of multiple organisms including Homo sapiens. As with 

ALIBABA, IHOP uses a dictionary-based approach for identifying the 

genes/proteins in the abstract text. The strength of IHOP is that it applies a list 

of heuristics to rank the gene synonyms and the key sentences to ensure that the 

extracted information is of high quality. For example, a short gene name is
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ranked lower than a longer gene name and a short sentence is ranked higher than 

a longer sentence. In addition, IHOP also searches for MeSH (Medical Subject 

Heading) terms and gene-verb-gene patterns inside sentences to provide 

information on the genes as well as further improve the quality of extracted 

information. Figure 2.5 shows an example output from IHOP with the query 

gene “COX-2”.
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Figure 2.5: Output from IHOP using COX-2 as the query.
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Figure 2.6: An IHOP abstract used to find COX-2 gene interactions.

IHOP displays all the key sentences (sentences that mention two or more genes 

or sentences that mention a single gene together with one or more MeSH terms) 

that it found for a given query. This allows users to read all the key sentences 

themselves. The abstracts that IHOP used to extract information are also 

available for users to read (as shown in Figure 2.6). This makes IHOP an 

excellent example of a tool that provides the information needed by biologists to 

understand the “how” and “why” of an association between X and Y.

The authors of IHOP evaluated IHOP’s ability to identify the proper 

gene/protein names (gene synonym identification) inside abstract texts. For gene 

synonym identification, IHOP’s performance in terms of f-measure range from 

70% to 91% depending on the organism. The variation in performance comes 

from the fact that in organisms such as yeast and C. elegans, the gene naming
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convention and gene name usage in the literature is well structured whereas for 

organisms such as mouse and human, the gene naming conventions and gene 

name usage in the literature are far more varied. No evaluations of the 

performance of IHOP’s protein-protein interaction extraction were available. 

The authors of IHOP describe it as a system that allows researchers to easily 

move or “hop” between sentences taken directly from their source abstracts. 

This allows users to retain control over the reliability of the information they 

obtain. IHOP focuses on allowing human experts to navigate through the 

scientific literature and to gather relevant information themselves. This is 

because no automatic information extraction system can achieve a comparable 

level of precision without a significant loss of recall. The primary limitations of 

IHOP lie in the fact that it is designed only to support gene/protein interaction 

searches and the fact that it provides a relatively limited overview of all the 

possible gene interactions. For example, it is hard to tell in Figure 2.5 how many 

gene interaction partners COX-2 has. It is also difficult to assess the strength of 

association between COX-2 and its gene interaction partners. In particular, 

IHOP does not explicitly specify a score for association strength to support the 

association of X with Y.

EBIMed is the latest text mining tool from the European Bioinformatics 

Institute [13]. EBIMed searches for protein/gene, cellular compartment, 

biological process, molecular function, drug, and species names inside abstracts. 

Like ALIBABA and IHOP, EBIMed uses a dictionary-based approach for
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identifying the biomedical objects in PubMed abstracts. EBIMed also uses 

sentence-level word co-occurrence to evaluate sentence information. For 

example, if  protein X and protein Y co-occur in one sentence, the score of 

protein X increases by one. If protein X and drug W co-occur in one sentence, 

the score for protein X increases by one again. The total score of protein X 

depends on the number of sentences in which protein X co-occurs with another 

key term. The initial keyword query is independent of EBIMed’s analysis. This 

means that the query can be anything (i.e. not a gene) as opposed to IHOP, 

which limits the initial keyword query to gene names only. To evaluate 

EBIMed’s performance, the authors carried out four different analyses using the 

gene Wnt as the initial keyword query. In one analysis, where EBIMed’s ability 

to identify protein names in abstract texts was evaluated, they reported >90% 

precision. In another analysis, the authors selected the first 20 proteins in 

alphabetical order identified by EBIMed using the query Wnt and evaluated all 

94 extracted sentences for the 20 proteins that contained protein pairs. This 

analysis was aimed at evaluating EBIMed’s ability to identify protein-protein 

interaction. This assessment showed that 40% of the sentences were reporting 

on valid protein-protein interactions. In a similar analysis for the same query but 

for drug-protein relations, they reported 50% of the 118 sentences containing 

drug-protein pairs were reporting meaningful drug-protein relations. In the final 

analysis, the authors evaluated EBIMed’s “coverage of relation identification”. 

For this assessment, they retrieved all sentences that contained protein pairs in 

the Wnt query and compared these results to the protein pairs found in the Wnt
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pathway as described in the Kyoto Encyclopedia of Genes and Genomes 

[(KEGG) (www. genome.ip/keggll and in the Signal Transduction Knowledge 

Environment [(STKE) (stke.sciencemag.org)l. In total, EBIMed identified 74 

protein-protein pairs out of the total of 108 pairs described either in the KEGG or 

the STKE Wnt pathway. Using a gold standard set of data from manually 

curated databases as a basis for comparison is a means to test the recall of a text 

mining system. The assessment showed that EBIMed retrieved 68.5% of the 

protein-protein pairs in the Wnt pathway. If data from manually curated 

databases were integrated into EBIMed, then EBIMed’s recall would obviously 

be better. Text mining systems and manually curated databases can complement 

each other to ensure higher precision and recall. However, EBIMed lacks the 

feature of integrating manually curated databases into its text mining system.

In summary, the authors of EBIMed described their system as a tool that 

leads to better access to key statements in biomedical text than PubMed because 

the user generally reads relevant sentences rather than complete abstracts. In 

addition, EBIMed’s results tables allows users to get an overview on a multitude 

of relations spread over many abstracts, thereby supporting a wide variety of use 

scenarios. Figure 2.7 shows an example output from an EBIMed query where 

colon cancer was used as the query. It is useful to examine this output in more 

detail to appreciate the strengths and weaknesses of EBIMed.
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Figure 2.7: Output from EBIMed using “colon cancer” as the query, 
searching for human genes and maximum number of abstracts is set to 2000.
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Figure 2.8: Key sentences found by EBIMed for associations between colon 
cancer and COX-2.

As seen in Figure 2.7, COX-2 has a EBIMed score of 102 which may be of some 

biological significance. The score means that in the abstracts that mention colon 

cancer, COX-2 is an important gene since it co-occurs with other key terms most 

frequently (102 abstracts mention COX-2 plus its synonyms along with one or 

more key terms from protein/gene, cellular compartment, biological process, 

molecular function, drug or species). However, EBIMed seems to have 

relatively loose definitions for some of their key terms. In Figure 2.7, for
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example, one can ask if “luciferase” is a function or not. Furthermore, under the 

Drug column, “aspirin” and “caffeine” are grouped together suggesting that they 

are related but the relationship is not obvious. Also, “Cancer” and “beta” are 

identified as a species and obviously this is not true. EBIMed’s somewhat 

questionable definitions of key terms can obviously affect its scores and what 

EBIMed considers to be relevant sentences. Looking at Figure 2.8, one can see 

that many of the key sentences do provide explanations of how colon cancer and 

COX-2 are associated. However, the sentence “Rats fed bilberry and grape ARE 

diets had lower COX-2 mRNA expression of gene“ (*) is also considered as a 

relevant sentence because COX-2 co-occurred with the key species terms “Rats” 

and “bilberry”. Since the initial keyword query was “colon cancer”, the sentence 

(*) should be irrelevant because the sentence offers no evidence of association 

between colon cancer and COX-2. This sentence is included because the initial 

keyword query is independent of EBIMed’s textual analysis. Therefore key 

sentences such as this one may or may not provide evidence of association 

between colon cancer and COX-2. In other words, the keyword query “colon 

cancer” is only used to retrieve abstracts from PubMed and is not considered in 

the key sentence and relevant scoring analysis of the abstracts. As a result of 

EBIMed’s relaxed definitions of key terms and the questionable method used in 

determining sentence relevancy, using EBIMed as an automatic information 

extraction tool can be challenging. In particular EBIMed’s score may or may not 

indicate the biological significance of an association between the initial keyword 

query and EBIMed's final results.
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Chapter 3 

3. PolySearch System Overview

3.1 Overview

PolySearch, as the name suggests, is a tool that supports multiple (“poly”) types 

of biomedical text searches from multiple (“poly”) types of databases. It is also 

designed to facilitate the search, retrieval and compilation of disease-associated 

human “poly”morphisms (SNPs). PolySearch exploits recent advances in text 

mining along with the ready availability of diverse biomedical databases and 

biomedical thesauruses to permit a wide variety of complex or expansive text 

searches over many biomedical domains. PolySearch consists of seven basic 

components: 1) a web-based user interface for constructing queries; 2) a 

collection of internal and external biomedical databases; 3) a collection of 

biomedical synonyms (custom thesauruses); 4) a general text search engine for 

extracting data from heterogeneous databases; 5) a schema for selecting, ranking 

and integrating content; 6) a display tool for displaying and synopsizing results 

and 7) a PCR primer designing tool to facilitate SNP and mutation studies. An 

outline of PolySearch’s general design is given in Figure 3.1.
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Figure 3.1: PolySearch system overview showing the resources that 
PolySearch uses and the features found in PolySearch.
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3.2 Query Interface

PolySearch’s query interface was written in Perl and uses a series of text boxes 

and pull-down menus to facilitate query construction. A Screen shot of the

query interface is shown in Figure 3.2.

iln rm *  C h o c k  R e s u lt

P o ly S earch  (flo /ym orph ism  S e a r c h )  is a  pow erfu l s e a r c h  tool d ev e lo p ed  a t  PoiyomX th a t  allow s u s e r s  t o  perfo rm  
multiple ty p e s  o f  g en o m e-w id e  s e a r c h e s ,  w ith  a  sp ec ia l ( b u t  n o t  ex c lu siv e) em p h as is  o n  hum an  d is e a se . P o ly S earc h  
s u p p o r ts  PubM ed L ite ra tu re  d is e a se , g e n e , d rug  an d  m e ta b o lite  s e a r c h e s  a s  well a s  SNP s e a r c h e s ,  m u ta tio n  
s e a r c h e s  a n d  PCR-prim er s e a r c h e s .  E ach  ty p e  o f  s e a r c h  m ay  b e  p erfo rm ed  in d e p en d en tly  ( i.e . find all g e n e s  
a s s o c i ta te d  w ith  d is e a se  X; find all polym orphism s a n d  m u ta tio n s  a s s o c ia te d  w ith  g e n e s  W, Y a n d  2 ;  find PCR 
prim ers to r  g e n e  s e q u e n c e s  A, B a n d  C ) o r  in a  com bined  fash io n  (find  all SNPs fo r all g e n e s  a s s o c ia te d  w ith  d is e a se  
Q a n d  d es ig n  all n e c e s s a ry  prim ers to r  s u b s e q u e n t  SNP an a ly s is ) . P o ly S earc h  u s e s  a  v a r ie ty  o f  te c h n iq u e s  including 
tex t-m in in g , w e b -b a s e d  s c re e n -s c ra p in g , a n d  prim er d e s ig n  to  g e n e ra te  i t s  r e s u lts ,  w h ich  c a n  b e  s e n t  a s  a n  HTML 
hyp er-lin k ed  ta b le . P o ly S earch  a c c e s s e s  o r  allow s u s e r s  to  a c c e s s  a  v a r ie ty  o f  public genom ic d a t a b a s e s  in an  
in d e p e n d e n t o r  in te g ra te d  fash ion .

To use this server;

1) D ecide w h ich  ty p e  o f  s e a rc h  y o u  w ish to  do
2 )  S e le c t  s e a r c h  re s tr a in ts  from th e  pu ll-dow n m enus (G iven X, Find Y)
3 )  P re s s  Go
4 )  Follow th e  in s tru c tio n s  o n  th e  in p u t p a g e  to  fine tu n e  y o u r s e a rc h
5 )  I f  y o u  n e e d  m ore help  o r  d e ta ile d  e x p lan a tio n s  o f  th e  m e th o d s  o r  d a t a b a s e s ,  click HERE.

C h o o s e  y o u r  s e a r c h  t y p e :  G iv e n  I D ise a se  v  ,  H od  associated [ QenefProtem v  | GO |

Figure 3.2: PolySearch’s homepage where users can select the different 
“given X find associated Y’s” queries.

The basic structure of almost every PolySearch query is “given a single X find

all associated Y’s”, where X can be any human disease name, gene/protein

name, drug name, metabolite name, SNP, gene/protein sequence or user-

provided text word and Y can be any one of all human diseases, genes/proteins,

drugs, metabolites, tissues, organs, subcellular localizations, SNPs, PCR primers

or user supplied text words. In each case the “X” and “Y” words can correspond
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to either a common name or synonyms. Table 3.1 provides a more detailed 

listing of all allowed “basic” queries in PolySearch. Once the general query is 

constructed and submitted the user is presented with a second page (the query 

refinement page, Figure 3.3) that allows further refinement of the query, 

including the selection of association words, databases, query-word synonyms 

and display options.

Given

Disease Gene/
Protein Drug Metabolite Text

word
SNP 

(RS #)

Gene/
Protein

Sequence

Disease V V V

Gclic/
Protein N IK B U S llllil MjBjjljjBJ l B l m u •/

Drug ■/ ✓ V s •/

Metabolite liiiil!!! .m m M B ■MMM ✓'

Tissue
Find

■/ ✓ V

Organ — H I M ✓

Subcellular
Localization

✓ V .✓ ✓ •/

Text word M il

SNP V S

PCR
Primers

iiHli S

Table 3.1: A detailed listing of all allowed “basic” queries in PolySearch.
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Figure 3.3: The query refinement page for “Given Disease Find Associated 
Gene”.

The majority of PolySearch’s queries depend on text searches through 

PubMed abstracts. To facilitate PubMed searching we use the E-utilities 

application programming interface (API) from NCBI that allows abstracts to be 

batch-downloaded from the PubMed website [23]. The downloaded abstracts 

are then searched on the PolySearch server (i.e. locally) for key sentences 

through PolySearch’s own text mining tools. By default, PolySearch uses a set 

of pre-defined association words to make its searches through the extracted 

abstracts more specific. To understand the need for these association words,
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consider the type and quantity of information that is available for a well-studied 

disease such as “breast cancer”. The 162,000 abstracts in PubMed containing 

the words “breast cancer” include genetic information about breast cancer, 

clinical symptoms of breast cancer, surgical procedures about breast cancer, 

socio-economic data about breast cancer, psycho-social data about breast cancer 

along with many other aspects concerning this disease. Searching through such 

a large collection of heterogeneous abstracts would obviously lead to 

heterogeneous results concerning the molecular etiology of the disease. Limiting 

the results to include only sentences that contain association words that are 

concerned with the molecular or genetic aspects of breast cancer would likely 

return a more properly ranked homogenous result. Obviously not all users are 

interested in molecular or genetic aspects of certain conditions so PolySearch 

also allows users to enter their own association words in order to customize the 

scope or extent of their queries. This customizable word association is a 

particularly unique feature for PolySearch. The association words also play a 

key role in ranking the results. An illustration of how to choose the association 

words is shown in the next chapter.

Through its query refinement page (Figure 3.3), PolySearch also allows 

users to add or include synonyms to their original query words (i.e. query 

synonym expansion). Normally, PubMed, through its large collection of MeSH 

terms and cross-indexing, automatically generates synonyms prior to performing 

its searches. For instance, any query to PubMed that includes the word “yeast” 

is automatically modified to include “saccharomyces” in the search term.
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However, not all MeSH terms have synonyms nor are these synonyms very 

complete. Therefore, PolySearch uses its own thesauruses to automatically 

append synonyms to a query word (by clicking on the option for “automated 

synonym list”). If the computer-generated synonyms appear inadequate, the user 

may further edit or add to this list. The intelligent use of synonyms (for a 

disease, gene name, protein name, drug or metabolite) for a query word can 

greatly improve the specificity and sensitivity of a given search.

From the query refinement interface users can also choose to limit their 

search to PubMed only, or to perform their search on some of PolySearch’s other 

reference databases (i.e. OMIM, SwissProt, DrugBank, HMDB, etc.). Limiting 

PolySearch searches to the PubMed database (the default configuration) is faster 

and it allows users to quickly assess what may be necessary to refine their 

queries for better results. Once the queries are refined, users may then expand 

their search to include the other databases by clicking on the appropriate 

database checkboxes. Additionally, through the query refinement interface users 

can also specify: 1) how far back in time the PubMed records should be 

searched, 3) the number of abstracts to be searched and 3) the minimum number 

of PubMed citations required to be considered as a hit.

PolySearch is not limited to basic queries such as “given a single X find 

all associated Y’s”. More complex queries can be assembled using different 

combinations of PolySearch’s basic queries. For example, if a user wanted to 

find a list of SNPs associated with a disease they would first find the genes 

associated with the disease using the “Given Disease-Find Gene” query and then
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from the resulting list of genes, perform multiple “Given Gene-Find SNP” 

queries to get the complete list of SNPs.

Once a query is submitted, PolySearch will retrieve PubMed abstracts 

and fields from the appropriate databases relevant to the query (see below for 

more details). From these abstracts or database synopses/descriptions, 

PolySearch further parses them into their component sentences. This sentence 

parsing improves the automated extraction of the most informative phrases or 

facts [24]. PolySearch also uses a variety of ad hoc rules to search for the query 

words, association words and words from PolySearch’s thesauruses in order to 

rank the sentences in terms of relevancy.

3.3 PolySearch’s Databases

One of the more unique features of PolySearch is its integration of multiple 

databases containing both text and sequence data. Currently PolySearch can 

search and extract data from more than a dozen biomedical databases including 

PubMed, OMIM [25], SwissProt [4], DrugBank [6], the Human Metabolome 

Database (HMDB) [7] the Human Protein Reference Database (HPRD) [26], the 

Genetic Association Database (GAD) [27], HapMap [28], Entrez SNP (dbSNP) 

[3], CGAP SNP500cancer Database [29], and the Human Genome Mutation 

Database (HGMD) [5]. Many of these databases (PubMed, OMIM, etc.) are 

housed externally and queried through various custom CGI tools written in Perl, 

while others (DrugBank, HMDB and the SNP databases) are housed internally to
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accelerate PolySearch’s query process. Below is a short description of each 

database.

• PubMed: A service of the U.S. National Library of Medicine that

includes over 16 million abstracts and paper titles from life science

journals dating back to the 1950s.

(http ://www.ncbi .nlm.nih. gov/ entrez/querv. fcgi?DB=pubmed)

• OMIM (Online Mendelian Inheritance in Man): A catalog of human

genes and genetic disorders authored and edited by Dr. Victor A.

McKusick and his colleagues at Johns Hopkins University, and 

developed for the World Wide Web by the NCBI (the National Center for 

Biotechnology Information).

(http://www.ncbi.nlm.mh.gov/entrez/query.fcgi?db=OMIM)

• GAD (Genetic Association Database): An archive of human genetic 

association studies of complex diseases and disorders.

(http: / / geneticasso ciationdb .nih. go v A

• SwissProt: A curated protein sequence database that strives to provide a 

high level of annotation (such as the description of the function of a 

protein, its domains structure, post-translational modifications, variants, 

etc.), a minimal level of redundancy and high level of integration with 

other databases.

(http://www.expasy.org/sprot/)

• HPRD (Human Protein Reference Database): A centralized platform to 

visually depict and integrate information pertaining to domain
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architecture, post-translational modifications, interaction networks and 

disease association for each protein in the human proteome.

(http ://www.hprd. or ef)

• DrugBank: A unique bioinformatics and cheminformatics resource that 

combines detailed drug (i.e. chemical, pharmacological and 

pharmaceutical) data with comprehensive drug target (i.e. sequence, 

structure, and pathway) information.

(http://redpoll .pharmacy. ualberta.ca/drugbank/)

• HMDB: A freely available electronic database containing detailed 

information about small molecule metabolites found in the human body.

(http://www.hmdb.ca/)

• HapMap: A freely available resource that contains information pertaining 

to haplotype map of the human genome. The HapMap database 

describes the common patterns of human DNA sequence variation.

(http://www.hapmap.org/')

• Entrez SNP (dbSNP): A central repository for both single base nucleotide 

substitutions (SNPs) and short deletion and insertion polymorphisms in 

the human genome.

(http://www.ncbi.nlm.nih.gov/entrez/querv.fcgi?db-Snp')

• CGAP SNP500cancer Database: A part of the Cancer Genome Anatomy 

Project and is specifically designed to contain data on the genetic 

variation in genes important in cancer.

(http://snp500cancer.nci.nih.gov/home 1 .cfm')
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• Human Genome Mutation Database: A database comprises various types 

of mutation within the coding regions, splicing and regulatory regions of 

human nuclear genes causing inherited disease. 

(http://www.hgmd.cf.ac.uk/ac/index.phr>)

A key challenge in working with so many databases lies with the 

heterogeneity of the data and the diversity of data formats. Specifically, each of 

PolySearch’s reference databases contains information in different formats 

requiring customized querying and formatting tools. For instance, PubMed and 

OMIM contain data in the form of paragraphs and complex English sentences. 

On the other hand, SwissProt, DrugBank, HMDB and many of the SNP/mutation 

databases contain numeric data and synoptic sentences associated with various 

labeled fields. All of these databases have their own unique formats and 

peculiarities. Nevertheless, the inclusion of any of these databases in a 

PolySearch query can greatly add to the richness or information content of a 

given result. This is because not all information about a gene, disease, protein, 

drug or metabolite is necessarily contained in a PubMed abstract. Indeed most 

of this kind of information is in the body of scientific papers and in textbooks. 

Since many databases contain information derived from these sources, it is often 

true that some databases contain much more valid information than can be found 

in abstracts alone. As will be shown later, the inclusion of additional databases 

can significantly improve PolySearch’s performance.
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3.4 Custom Thesauruses

In addition to its own unique collection of databases and database searching 

tools, PolySearch also has its own very extensive lists of manually curated 

synonyms for human genes, human proteins, diseases, drugs, metabolites, 

tissues, organs and subcellular localizations. These synonym lists or custom 

thesauruses are critical for many of the expansive queries (“given one, find 

many”) supported by PolySearch. They are also critical for providing the 

sensitivity and specificity for many single word queries (i.e. the implementation 

of the automated synonym feature in the query refinement page). For example, 

PolySearch’s human gene/protein thesaurus is compiled and updated from latest 

releases of SwissProt [4], Entrez Gene [3], the Human Genome Organisation 

Gene Nomenclature Committee (HGNC) [15] and the Human Protein Reference 

Database (HPRD) [26]. Two of the databases (Entrez Gene and HGNC) 

specialize in gene names while the other two databases (Swiss-Prot and HPRD) 

specialize in protein names. PolySearch’s gene/protein thesaurus includes both 

gene and protein names, gene symbols, gene/protein abbreviations as well as 

their known synonyms. However these integrated lists still require considerable 

human editing. Specifically, the list must be filtered to exclude names, symbols 

or synonyms that are nonsensical or less meaningful such as DKFZp686F0970, 

MGC20392, Hypothetical protein FLJ37794, or Clorf60. Additionally a 

number of gene name expansions are also preferred to improve performance. 

For example, IGLC1 is expanded to IGLC-1 (also vice versa) while TNF alpha is 

expanded to TNFalpha and TNFa. In some cases gene names or gene/protein
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abbreviations are not sufficiently unique or can be easily confused with common 

English words (e.g. TH1 like, ARE, hole) and so these are removed. Other 

proteins or genes appear to be absent from these lists (cyclooxygenase 1, SCPX 

thiolase) or they are referred to as a single entity (ribosome, alcohol 

dehydrogenase) even though they are composed of multiple subunits. Therefore, 

a list of protein complexes or protein family names was created via manual 

curation to ensure PolySearch is not missing common protein complex or protein 

family names.

PolySearch’s disease thesaurus is derived from the Unified Medical 

Language System (UMLS) [30] which is further supplemented with manual 

curation. PolySearch’s drug thesaurus consists of a list of drug names and 

synonyms from DrugBank’s list of FDA approved drugs, while its metabolite 

thesaurus consists of a list of metabolite names and synonyms from all entries in 

the HMDB. To create the tissue and organ thesauruses, the tissue and organ list 

from LitMiner was first combined with a tissue and organ list manually derived 

from the tissue specificity field in Swiss-Prot. This combined tissue and organ 

list was parsed and edited manually to create a separate tissue thesaurus and a 

separate organ thesaurus. Finally, the subcellular localization thesaurus was 

created from the list of all possible subcellular localizations listed in HPRD. 

Table 3.2 shows a summary of number of names and synonyms each thesaurus 

has in PolySearch. Users may also provide their own thesauruses to permit more 

specialized searches. Details for constructing and using these custom
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thesauruses are provided on the PolySearch help page.

(http://wishart.biologv.ualberta.ca/polvsearch/help/PolvSearchHeln.htm').

Number of Unique Entries Number of 
Names/Synonyms

Disease 26625 75154
Gene/Protein 26388 179320
Drug 1566 24013
Metabolite 2753 28887
Tissue 955 985
Organ 104 201
Subcellular Localization 74 175

Table 3.2: Statistics for PolySearch’s thesauruses.
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Chapter 4 

4. PolySearch Data Mining

4.1 PolySearch’s Text Mining System

The goal of a text mining system is to extract meaningful information from 

textual data. To achieve this goal, PolySearch’s text mining system brings 

together a collection of tools including its own extensive lists of thesauruses, 

access to textual data of different databases, a unique scoring scheme, and a 

results display that aids the data mining process. The following sections 

describe each component of PolySearch’s text mining system in depth, 

beginning with the first step in the text mining process: retrieving textual data 

from databases and identifying the different thesaurus terms within the retrieved 

texts.

The database or databases that PolySearch should search depends on the 

type of query the user chooses to carry out, as different databases offer different 

specialized data. For text mining of PubMed, OMIM, DrugBank, SwissProt, 

HMDB, HPRD and GAD, all textual content is treated as an abstract or “pseudo

abstract”. To handle these databases, the search functionality of the respective 

databases is used to retrieve records relevant to the query. For PubMed, the 

records are already in a suitable abstract form. With OMIM the fields text,
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description, gene function, molecular genetics, clinical features, clinical 

management, and biochemical features are used to identify and extract as the 

“pseudo-abstracts” within each OMIM entry. With SwissProt the reference and 

comment fields are used as the pseudo-abstracts for text processing. In 

particular, the comment field contains sub-fields such as function, catalytic 

activity, subcellular location, tissue specificity, etc. For DrugBank, the fields 

Indication, Pharmacology, Mechanism Of Action, Phase 1 Metabolizing 

Enzyme, Drug Target Names, Drug Target Gene Names, and Drug Target 

Synonyms are used to parse out the relevant abstracts. For HMDB, the fields 

Description, Associated Disorders, Metabolic Enzyme Names, Metabolic 

Enzyme Synonyms, and Metabolic Enzyme Gene Names are used for abstract 

identification. For HPRD, the fields Interactions, Diseases, Localization, and 

Expressions are used to construct the pseudo-abstracts. Finally, for GAD, we 

use the fields Gene Symbol, Gene Name, Reference Title, and Study Conclusion 

to parse out the relevant pseudo-abstracts.

Once the appropriate abstracts, pseudo-abstracts or paragraphs have been 

identified and downloaded from the relevant databases, PolySearch then 

proceeds to analyze them using its own text mining utilities. PolySearch begins 

the text mining process by parsing each abstract into individual sentences. 

Negative sentences such as “Experimental results have shown that disease A is 

not associated to gene Y.” are first removed from consideration. PolySearch 

identifies negative or negative-result sentences by searching for one of the 

following negative keywords or phrases: “not observed”, “no evidence”, “not
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present”, “invalid”, “not validated”, “not proven”, “no proof’, “insufficient 

evidence”, “doubtful”, “not show(n)”, “unproven”, “unlikely”, “not likely”, “not 

associate(d)”, “unassociated”, “not see(n)”, “not linked”, “unsupported”, 

“exclude(d)”, “not include”, “negative”, and “exclusion”. After the removal of 

negative sentences, the remaining sentences are tokenized into individual words 

or word clusters and so-called “stop words” are removed. Stop words are very 

commonly used words such as conjunctions, prepositions and articles that 

contribute little to relevancy or content. The stop-word list for PolySearch also 

contains some medical stop words such as “cell”, “clinical”, “effect”, “growth”, 

“health”, “human”, “medical”, “medicine”, “patient”, etc. After the removal of 

the stop words, the remaining words or tokens are used to check against the 

query words (and their corresponding synonyms) to identify and rank relevant 

sentences. In general if  an abstract or a sentence in the abstract contains the 

query word(s) along with one or more matching words to the appropriate 

disease, gene/protein, drug or metabolite then the abstract or sentence is marked 

for further processing. Once an abstract or pseudo abstract is identified as being 

relevant, PolySearch also keeps a record of which database they were derived 

from. In the case of PubMed abstracts, information about their PubMed IDs, the 

journals that they were published in, the time of publication and the publication 

type are recorded.

Before trying to find possible associations in the text, it is important first 

to have consistent and correct identification of appropriate query/thesaurus terms 

and synonyms within different sentences or abstracts. One common challenge,
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especially for biomedical terminology, is the so-called word-within-a-word 

problem. In particular, many gene, protein and metabolite names contain 

multiple words that also contain within them other gene, protein or metabolite 

names. For instance the protein name “Fibroblast growth factor receptor” 

contains another protein name “Fibroblast growth factor”. Likewise the protein 

name “Glucose-6-phosphate isomerase” contains three metabolite names 

“Glucose”, “phosphate” and “Glucose-6-phosphate”. To avoid name mis- 

identification PolySearch uses the longest-matching phrase approach to screen 

“overmatched” words and phrases. This involves creating a list of all words and 

names in the PolySearch thesauruses that contain other PolySearch words and 

names within them. This list is then used to mask words and/or phrases from the 

sentences that are longer than the intended (i.e. query/thesaurus) word or phrase. 

Because of this feature PolySearch can correctly identify the protein “Glucose-6- 

phosphate isomerase” instead of identifying the metabolite “Glucose-6- 

phosphate”.

PolySearch uses a number of other ad hoc rules to avoid mismatches and 

to improve its sensitivity and specificity. For instance all names (gene, 

metabolite, disease or drug) that are less than 3 characters long are excluded 

from its thesaurus lists. Likewise for any word less than 6 characters long, 

PolySearch uses a case-sensitive exact match system in order to better identify 

possible abbreviations. PolySearch also makes intelligent use of dashes and 

hyphens to help differentiate names within names and avoid the problems arising 

from different “-“ usage.
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4.2 PolySearch Sentence Scoring, Ranking and Integration

A central premise to PolySearch is the assumption that the greater the frequency 

with which an X and Y association occurs within a collection of abstracts or 

databases, the more significant the association is likely to be. For instance, if 

COX2 is mentioned as being associated with colon cancer 510 times in PubMed 

but thioredoxin is associated with colon cancer only once, then one is more 

likely to have more confidence in the COX2-colon cancer association. This is 

similar to the concept of ranking papers in terms of their significance by using 

citation data (as done by ISI) or ranking web pages by their link frequencies (as 

done by Google [31]). However, citation frequency or link frequency alone is 

not always the best way to rate a paper or a website for its relevancy. Therefore, 

in addition to counting the frequency of apparent associations, PolySearch also 

employs a text ranking scheme to score the most relevant sentences and abstracts 

that associate both query and words with each other. This is done by assigning a 

relevancy score to each abstract or pseudo-abstract. As mentioned earlier, each 

abstract is first divided into individual sentences. Using these individual 

sentences, PolySearch tries to find query words, association words and thesaurus 

words in order to classify what we call R l, R2, R3, and R4 sentences (R stands 

for relevancy). An R4 sentence is a sentence that contains just one of the 

thesaurus words. The purpose of counting R4 sentence is to provide a measure 

of the frequency of appearances for the thesaurus words in abstracts mentioning 

the query word. An R3 sentence is a sentence that has one of the thesaurus 

words as well as the query word. Compared to an R4 sentence, an R3 sentence
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is obviously a stronger evidence for association between the query and the 

thesaurus words. However, R3 sentences alone can still lead to inaccurate 

associations and R3 sentences do not tell us the type of association. For 

example, among protein-protein interactions, there can be many types of 

association words such as “binding”, “interacting”, “inhibiting”, “catalyzing”, 

etc. This is where R2 and R1 sentences come in. An R2 sentence is a sentence 

that has one of the thesaurus words, one of the query words, as well as one of the 

association words. An R1 sentence is the same as an R2 sentence but in 

addition, an R1 sentence has to pass PolySearch's pattern recognition criteria. 

This kind of pattern recognition has been widely used in other text mining 

systems (such as ALIBABA) to extract protein-protein interactions [12, 22, 32]. 

PolySearch's pattern recognition system is rule based. It attempts to capture 

three main types of patterns: 1) “Query Word-Association Word-Thesaurus 

Word” (or “Thesaurus Word-Association Word-Query Word”), e.g. A 

phosphorylates B. 2) “Association Word-Query Word-Thesaurus Word” (or 

“Association Word-Thesaurus Word-Query Word”), e.g. Interaction of A and B. 

3) “Query Word-Thesaurus Word-Association Word” (or “Thesaurus Word- 

Query Word-Association Word”), e.g. A B complex. It has been reported that 

for active relations between proteins in the literature, 90% are expressed 

syntactically as “protein-verb-protein” (i.e. a subset of the “Query Word- 

Association Word-Thesaurus Word” pattern) [33]. Some of the more important 

rules in PolySearch's pattern recognition system are as follows:
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• For the main pattern “Query Word-Association Word-Thesaurus Word”, 

PolySearch searches for compact patterns first. If a compact pattern 

cannot be found, then PolySearch searches for general patterns. If a 

general pattern cannot be found, then PolySearch searches for relaxed 

patterns.

• Compact patterns:

o The query word and the association word must be within 5 words 

(tokens) of each other, 

o A “Query Word-Association Word-Thesaurus Word” pattern 

must be established (i.e. all three types of words are present) 

within 10 words (tokens) of the query word, 

o A stop word such as “that”, “which”, “whereas” or “no” cannot 

be in a “Query Word-Association Word-Thesaurus Word” 

pattern.

o Once a “Query Word-Association Word-Thesaurus Word” pattern 

is established, any thesaurus words that come after that phrase can 

also meet the pattern recognition criteria, 

o Once a “Query Word-Association Word-Thesaurus Word” pattern 

is established, if  another association word or stop word is seen, 

the pattern resets.

• General patterns:

o All relevant words must be within 40 words (tokens) of each 

other.
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o A “Query Word-Association Word-Thesaurus Word” pattern 

must be established (i.e. all three types of words are present) 

within 15 words (tokens) of the query word, 

o A stop word such as “that”, “which”, “whereas” or “no” cannot 

be in a “Query Word-Association Word-Thesaurus Word” 

pattern.

o Once a “Query Word-Association Word-Thesaurus Word” pattern 

is established, any thesaurus words that come after that phrase can 

also meet the pattern recognition criteria, 

o Once a “Query Word-Association Word-Thesaurus Word” pattern 

is established, if another association word or stop word is seen, 

the pattern resets.

• Relaxed patterns:

o All relevant words must be within 45 words (tokens) of each 

other.

o The query word and the association word must be within 30 

words (tokens) of each other, 

o A “Query Word-Association Word-Thesaurus Word” pattern 

must be established (i.e. all three types of words are present) 

within 40 words (tokens) of the query word, 

o Once a “Query Word-Association Word-Thesaurus Word” pattern 

is established, any thesaurus words that come after that phrase can 

also meet the pattern recognition criteria.
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o Once a “Query Word-Association Word-Thesaurus Word” pattern 

is established, if another association word is seen, the pattern 

resets.

• For the “Association Word-Query Word-Thesaurus Word” pattern 

(mainly for Gene/Protein searches), the association word must have a 

suffix of -ate, -fer, -ment, -ing, -ion, -lex, -es, or -ions. In addition, all 

three words must be within 10 words (tokens) of each other.

• For the “Query Word-Thesaurus Word-Association Word” pattern 

(mainly for Gene/Protein searches), the association word must be one of 

“complex”, “complexes”, “inhibitor”, “inhibitors”, “interaction”, or 

“interactions”. In addition, all three words must be within 8 words 

(tokens) of each other.

The purpose of R1 sentences is to try to capture direct evidence of association 

between the query word and the thesaurus word, as an R1 sentence provides 

even stronger evidence of association than an R2 sentence. R1 sentences help 

ensure that what PolySearch found is correct and R2 sentences ensure that the 

R1 sentences did not miss anything important. R1 and R2 sentences 

complement each other to improve the performance of PolySearch. Figure 4.1 

shows an example of each type of R (relevancy) sentence where the query is 

colon cancer.
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Figure 4.1: An example of each of the R sentence. The query is colon cancer, 
the association words are coloured in fuchsia, and p53 is the protein of 
interest.

The total relevancy score is calculated according to the following scoring 

scheme. For PubMed abstracts, an R4 sentence (weakly relevant) is worth 1

point, an R3 sentence is worth 5 points, an R2 sentence is worth 25 points, and

an R1 sentence (strongly relevant) is worth 50 points. For texts from other 

databases, an R4 sentence is worth 5 points, an R3 sentence is worth 25 points, 

an R2 sentence is worth 50 points, and an R1 sentence is worth 100 points. The 

total number of R l, R2, R3, R4 sentences found in both PubMed and each of the 

other databases are tabulated and a final relevancy score is calculated using the 

above scoring scheme. Collectively, we call the R l, R2, R3, and R4 sentence 

counts the PolySearch Relevancy Index (PRI). In the following sections, we will 

discuss how the PRI can be used like a visual cue as well as a scoring cut-off for 

indicating and extracting relevant associations.

If the query and/or thesaurus words exist in multiple sentences within the 

abstract or paragraph the sentence relevancy scores are added together. In this 

way, an abstract that repeats a given query/thesaurus word association in

multiple sentences is given a higher score than an abstract that lists this
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association only once. Each abstract or paragraph that PolySearch identifies is 

assigned with this relevancy score. Typically, PolySearch identifies hundreds of 

different query word associations from its abstract searches. Therefore, if  a 

given gene/drug/disease/metabolite association is mentioned in fifty abstracts 

then the total relevancy score is the sum of the individual relevancy scores of 

each of the fifty abstracts.
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4.3 PolySearch Results

When a PolySearch query is completed, the results are displayed in an HTML 

table (see Figure 4.2).

Query Keyword: colon-cancer
Query Type: Disease-Gene/Protein Association
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iiCOCA 2; COCA2; Coca2; DNA mismatch repair protein 
IMIhl; FCC 2; FCC2; Fcc2; HNPCC. . . ______
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(2,16,24,168) Not

Figure 4.2: An example of the output for PolySearch’s main results display.

As seen from this figure the top of the table typically summarizes the query 

word(s), the type of search, the association words used, and the databases used to 

construct the search. Below the summary is a small table that allows users to
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filter the results by entering minimum number of PubMed citations, a Z score (a 

normalized score calculated from the average relevancy score of all hits the 

query returned), the relevancy score, total Rl count (RS-R1), total R2 count (RS- 

R2), total R3 count (RS-R3) and total R4 count (RS-R4). Below the filtering 

options table is the results table (Figure 4.2). The first column in this table 

indicates the number of hits, while the second column lists each hit's Z score. 

The results are ranked according to their total relevancy score (by default) which 

is shown in the third column along with the PolySearch Relevancy Index for 

total R l, R2, R3, and R4 counts. The fourth column displays the matching 

thesaurus words while the fifth column displays the corresponding thesaurus 

synonyms or aliases. The sixth column displays the number of PubMed citations 

and the PRI for the R l, R2, R3, and R4 counts from PubMed citations. Matches 

to additional databases (OMIM, HMDB, DrugBank, etc.) are displayed in the 

remaining columns. Figure 4.2 shows a PolySearch result where both PubMed 

and OMIM were searched. The results table may be re-sorted by clicking on the 

column headings or by clicking on the link to sort by the date of the most recent 

PubMed citation. Clicking the links under the PubMed column (or the other 

database columns) generates a second HTML table that displays the key 

sentences found in each database abstract or pseudo abstract along with 

hyperlinks to the full database record. Data are also provided for the associated 

PubMed IDs or database accession numbers. For example if 72 PubMed 

abstracts were identified for a particular drug-gene association, each of the most 

relevant sentences from every one of the identified abstracts would be displayed
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in this table. As seen in Figure 4.3, the extracted sentences are colour-coded to 

facilitate rapid visual scanning. Words marked in red correspond to the query 

word(s), blue to human genes, green to diseases, brown to drugs, magenta to 

metabolites and fuchsia to association words (dark yellow is reserved for the 

other word types such as tissue, organ, subcellular localization and user provided 

text words).
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Q uery  K eyw ord: c o lo n -c a n c e r
Q uery  T ype : D is e a s e -G e n e /P ro te in  A ssocia tion
A ssocia tion  W ords: g e n e ;  g e n e s ;  s n p ; s n p s ;  p ro te in s ;  p ro te in ; p o ly m o rp h ism ; p o ly m o rp h ism s; e x p re s s io n ; e x p r e s s e d  ...
Complete List
D a ta b a se s  U sed : PubM ed + OMIM 
G e n e /P ro te in : co x  2
A liases: COX2; Cax2; Cyclooxygenase 2; Cyclaoxygenase 2b; Cyclaxygenase 2; PGG/HS; PGH synthase 2; PGHS 2; PGHS2; PHS II;
PHS 2; PHS2; PTGS 2; PTGS2; Pghs2; Prostaglandin G/H syn thase 2; Prostaglandin G/H synthase 2 precursor; Prostaglandin H2 
synthase 2; Prostaglandin endoperoxide synthase 2; Ptgs2; Putative cyclooxygenase 2; hCox 2; prostaglandin endoperoxide syn thase  2 
(prostaglandin G/H syn thase  and cyclooxygenase)
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4 < " r  •• ■ and in colon cancer cell lines.
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1(113
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K onson A, M ahajna  3A, D anon A, Rim on G, A gbaria  R: T he in v o lv em e n t of n u c le a r  fa c to r -k a p p a  
B in c v d o o x v a e n a s e -2  o v e re x p re ss io n  in m u rin e  co lon  c a n c e r  ce lls  tr a n s d u c e d  w ith  herpes 
simplex v iru s  th y m id in e  k in a se  g e n e . C a n c e r  G ene T her. 200 6  D e c ;1 3 (1 2 ):1 0 9 3 -1 0 4 . Epub 
200 6  Ju l 14.

We have previously reported th a t transduction of murine colon cancer cells (MC38) with heroes 
iisimpiex virus thymidine kmase (HSV-tk) gene results in a significant enhancem ent of tumor growth rate; 
;in vivo and overexpression of c v c lo o x y g e n a s e -2  (CO X -2).
[Calviello G, R esci F, Serini S, P iccioni E, T o e sc a  A, B o n in seg n a  A, M onego G, R ane lle tti FO, 
P a lo zza  P: D o c o sa h e x a e n o ic  Acid In d u c e s  P ro te a s o m e -d e p e n d e n t  D eg rad a tio n  of 
f b e t a l - c a te n i n ,  D ow n -reg u la tio n  of Surviv in  a n d  A pop tosis  in H um an C o lo recta l Cancer Cells 
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iSince dysregulation of be ta-ca ten in  expression is frequently found a t early s tage  o f colorectal 
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jib e ta-ca ten in  in colon cancer cells (SW48D and HCT116) overexpressing this protein, but lacking 
COX-2.
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In  addition, it was found th a t 1) down-regulation o f SKI in HT-29 human colon cancer cells by small 
^interfering RNA (siRNA) decreases COX-2 expression and PGE2 production; 2) overexpression of SKI in 
;RIE-1 ra t intestinal epithelial cells induces COX-2 expression; and 3) SIP stimulates COX-2 expression! 
;and PGE2 production in HT-29 cells.

Color
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Figure 4.3: An example of the key sentences that are extracted and 
evaluated from a standard PolySearch run.

If a query word happens to be a gene, drug, disease or metabolite, the red colour 

of the query word takes precedence. Words highlighted with a light yellow 

background are the current thesaurus words that the user is viewing. This 

highlighting is used to facilitate rapid visual cueing of the association between
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the query word and the thesaurus word. The same colour coding scheme is used 

in PolySearch’s fully annotated abstract view.

Perhaps the most useful feature displayed in PolySearch's results page is 

the PolySearch Relevancy Index which displays the R l, R2, R3, R4 sentence 

counts. This scoring scheme provides immediate visual cues regarding the 

quality of association and biological significance. It is the type of information 

that users most often want but which is not available for most other text mining 

systems. As a rule of thumb, any association that has an R2 score of at least 1 

(meaning one R2 sentence was found which mentions the query word, a 

association word and a thesaurus word) is worth further investigation. As the Rl 

and R2 scores get higher, it is more likely that the association found by 

PolySearch has biological or biomedical significance. In PolySearch’s overview 

page (Figure 4.2), the PRI scoring display serves as a simple cue for the quality 

of association and biological significance without requiring users to look at the 

key sentences. In the key sentences page (Figure 4.3), the PRI scoring display 

provides information about how much more information the abstract has to offer. 

The key sentences page only displays a single key sentence if  any of the R l, R2, 

or R3 sentences is available (ranked in that order) or two key sentences, with one 

sentence mentioning the query word and one sentence mentioning the thesaurus 

word. In other words, if  one abstract has more than one Rl or R2 sentence, then 

it may worth further reading.

As a demonstration of the effectiveness of using this kind of relevancy 

scoring, here is a brief sentence comparison between EBIMed and PolySearch
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with the same query, same gene of interest and same abstracts. The query is “N- 

acetyl-D-glucosamine” and the gene of interest is “NDST-1” plus its synonyms. 

Figure 4.4 shows what EBIMed found.

• : i2 5 9 0 5 »

Bmjtsson

W e have introduced point m utations into NDST-1 cDNA, which selectively  destroy the N -d eacety lase  
or N*su!ttra:nsferas8 activity of the: en zy m e [W ei, I . and Swiedler, S .

Jenny otai. 
(2003) Transfection o f mutant NDST-1 lacking N -d eassfla s®  aetMN had' no effect on heparan sulfate  

sulfation, while c e lls  ex p r ess in g  wild-type e n z y m e  or HOST-1 lacking ^ su lfo tr sn sfo rase  aeiMft? both 
resulted in the production of oversulfated heparan s u lfa te .

*12692154

J m tk k m s

Here, w e report on th e  effects o f HOST deficiency on C a2+ k inetics in m yotubes from ND8T-1- and 
ND8T-2-deftcient mice, indicating a  novel role for heparan sulfate in sk eleta l m u sc le  p h y s io lo g y .

Guido J M ai
(2003) Immunostaining for sp ecific  heparan sulfate ep itopes sh ow ed  major ch a n g es  in th e  heparan sulfate 

com position  in sk eleta l m u sc le  t is su e  derived from ND8T-W* mice and NDST-/- cultured m y o tu b e s .

U sing h igh-speed UV confocal laser scann ing  m icroscop y , aberrant C a2+ kinetics w ere observed in 
NDST-1-/- m yotub es, but not in NDST-2-/- or h eterozygous m y o tu b e s .

HitPair 1** half N D ST -f (Protein/Gene):

Figure 4.4: The key sentences EBIMed found for the query N-acetyl-D- 
glucosamine and gene of interest is NDST-1.

The EBIMed score for the results shown in Figure 4.4 is 5, which is quite low. 

Looking at the key sentences, the word N-acetyl-D-glucosamine cannot even be 

found so it is likely the reader is would think that there is no association between 

N-acetyl-D-glucosamine and NDST-1. In contrast, Figure 4.5 shows what 

PolySearch found using the exact same two abstracts.
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m u ta tio n s  in N DST-1. B io c h e m istry . 2 0 0 3  F eb  2 5 ; 4 2 (7 ) :2 1 1 0 -5 . Color 1
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The modification reactions are initiated by q lu co sa m in y l N’-d e a c e tv la s e /N -s u lfo tr a n s fe r a s e  (NDST), a 
bifunctional enzym e that rem oves N -acetyl groups from se lec ted  N -acetyl-d-glucosam ine units followed by 
N-sulfation o f th e  generated free amino groups,

Coded
Text

Figure 4.5: The key sentences PolySearch found for the query N-acetyl-D- 
glucosamine and gene of interest is NDST-1.

The PolySearch score for the result shown in Figure 4.5 is 123 with a PRI of 

(1,2,2,13) (Rl = 1, R2 = 2, R3 = 3, R4 = 13). By reading the key sentences that 

PolySearch found, the reader is more likely to ascertain that there is an 

association between N-acetyl-D-glucosamine and NDST-1 or at the very least, 

that this association is worth further investigation. As this example has shown, 

identifying the query words and the association words inside sentences is key to 

extracting meaningful information.

4.4 Improve Association Word Selections/Relevance Feedback

One of the unique features in PolySearch is its flexible association-word ranking 

(relevance feedback) system. A list of association words can be used in a 

PolySearch query in order to determine how the results returned by PolySearch
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are to be ranked. Different types of searches require different sets of association 

words and a default set of association words is embedded in PolySearch to assist 

users for each of the different types of searches that PolySearch supports. Users 

can also edit the list of association words to suit their needs and further refine the 

search. Choosing the proper association words is essential in PolySearch’s 

ranking algorithm. Here we will use a relatively uncommon search, “Given 

cerebrospinal fluid or CSF Find Metabolites”, to demonstrate how to improve 

the association word selection to refine a given search. To begin, one can simply 

guess some common some association words on their own such as “metabolite, 

metabolites, compound, compounds” or alternately one can choose to use no 

association words. Figure 4.6 shows the results that PolySearch returned using 

cerebrospinal fluid as the query and “metabolite, metabolites, compound, 

compounds” as the association words.
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Q uery Keyword: cerebrospinal-flu id  
Query Type: T ext W ord-M etabolite A ssociation
A ssocia tion  W ords: m eta b o lite ; m eta b o lites ; com pound; co m p o u n d s ... Complete List 
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jMononitrogen monoxide; Nitrogen monoxide; Nitrogen oxide; Nitrosyl hydnde;
jNitrosyl radical; Nitroxide radical; Nitroxyl; nitrogen p ro to x id e ... x— . . . . . . . .  ' . ■
j3 (2 Ammoethyl) IN mdol 5 ol; 3 (2 Ammoethyl)indoi 5 ol; 3 (b Aminoethyl) 5 :i 
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: (S) 1H Indole 3 alanine: (S) 2 Amino 3 (3 indolyl)propionic acid; (S) a Amino 
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iiSM ir

Figure 4.6: Results from a “Given Text Word Find Metabolites” query 
where the query is cerebrospinal fluid, the association words are metabolite, 
metabolites, compound and compounds, and the maximum number of 
abstracts is set to 2000.

Examining the results in Figure 4.6, we can see that in the rightmost column that 

there are number of hits that has R l, R2 scores ranging from O to 2 and R3 

scores ranging from 4 to 23. The goal here is try to make an R3 sentence 

becomes an Rl or an R2 sentence. So, one can try to examine the key sentences
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of a hit that has high R3 score and low Rl or R2 score such as the one shown in

Figure 4.7 (the key sentences for lactate).

Query Keyword: cerebrospinal-fluid
Query Type: Text Word-Metabolite Association
Association Words: metabolite; metabolites; compound; compounds ... Complete List 
Databases Used: PubMed 
Metabolite: lactate
Aliases: L Lactic acid; (+) L actate; (+) Lactic acid; (S) (+) 2 Hydroxypropanoate; (S) (+) 2 Hydroxypropanoic acid; (S) 2 
Hydroxypropanoic acid; (S ) 2 Hydroxypropionate; (S ) 2 Hydraxyprapionic acid; (S ) 2 hydroxy Propanoate; (S ) 2 hydroxy Propanoic 
acid; (S ) Lactate; (S ) Lactic acid; (alpha) Lactate; (alpha) Lactic acid; 1 Hydroxyethane 1 carboxylate; 1 Hydroxyethane 1 carboxylic 
acid; 1 Hydroxyethanecarboxylate; 1 Hydroxyethanecarboxylic acid; 2 Hydroxypropanoate; 2 Hydroxypropionate; L 2 
Hydroxypropanoate; L 2 Hydroxypropanoic acid; Milk acid; Sarcolactic acid; a Hydroxypropanoate; a Hydroxypropionate; a 
Hydraxyprapionic acid; alpha Hydroxypropanoate; alpha Hydroxypropionate; alpha Hydraxyprapionic acid; I (+) lactic acid 
Total Relevancy Score: 160
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Color Code

3sei|Drug|Metabolitei|Association Word;
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Harris-White ME, Koistinaho M, Frautschy SA, Bures J, Koistinaho J: beta-Amyloid infusion 
results in delayed and age-dependent learning deficits without role of inflammation or 

jbeta-amyloid deposits. Proc Natl Acad Sd U 8 A. 2006 Tun 6;103(23):B852-7. Epub 2006 May 
24.

NMR spectrum  analysis of the animals cerebrospinal fluid revealed a strong reduction trend in several 
metabolites in Abeta-infused rats, including la c ta te  and mvo-inositol, supporting the idea of 
dysfunctional astrocy tes.
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erythrocytes and air exposure. Crit Care Resusc. 2003 Sep;5(3):177-81.

OBJECTIVE; Elevated cerebrospinal fluid (CSF) la c ta te  concentrations in neurotrauma and 
su b -arachno id s  > >t >.  are associa ted  with a poor prognosis.
iHagiwara N, Ooboshi H, Ishibashi M, Kurushima H, Kitazono T, Ibayashi S, Iida M: Elevated

FuN
details

Color I 
Coded : 
Text 1

Color : 
Coded 
Text

Eur J Neurol. 2006 May;13(5):539-43.
Darbin 0 , Carre E, Naritoku D, Risso JJ, Lonjon M, Patrylo PR: Glucose metabolites in the 
striatum of freely behaving rats following infusion of elevated potassium. Brain Res. 2006 Oct

Coded

Applying artificial cerebrospinal fluid (ACSF) enriched with  120 mM potassium by reverse microdialysis 
leads to  an increase in l a c ta te  and reduction in bIucosb and pyruvate.

Strassburg HM, Koch J, MayrJ, Speri W, Boltshauser E: Acute flaccid paralysis as initial 
symptom in 4 patients with novel Elalpha mutations of the pyruvate dehydrogenase

Color ; 
Coded I 
Text 1

6 (0,0,1,1) 17109792

iHowever, the cerehrospinal fluid (CSF) protein was normal, while serum and CSF la c ta te  were 
ielevated.
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Useful diagnostic te s ts  include liver function te s ts , la c tic  a d d  levels in the blood and cerebrospinal 
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Figure 4.7: The key sentences for lactate for the “Given Cerebrospinal Fluid 
Find Metabolites” search.

Looking at the key sentences, one can quickly note that the word 

“concentrations” could be a good association word (from the key sentence of
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PMID 16573479), “levels” could be another good association word (from the 

key sentence of PMID 16722983) and “elevated” could be another useful 

association word (from the key sentence of PMID 16967364). Repeating this 

process for other metabolites and repeating a PolySearch query using a different 

set of association words will allow the list of association words to start to build 

up with the more relevant metabolites in cerebrospinal fluid start to move up in 

PolySearch’s ranking. After 3~4 iterations of this association word 

selection/refinement, the following association words were found to be effective: 

“accumulate”, “amount”, “analysis”, “analyse”, “analyze”, “assay”, 

“component”, “compound”, “concentration”, “contain”, “decline”, “decrease”, 

“detect”, “determine”, “elevate”, “exceed”, “extract”, “excrete”, “find”, “higher”, 

“increase”, “identify”, “level”, “localize”, “lower”, “measure”, “metabolite”, 

“presence”, “purify”, “quantitate”, and “quantify”. Figure 4.8 shows some 

examples of the results that PolySearch found using this new set of association 

words.

R a sm u sso n  AM, P in n a  G, P allw al P , W eism a n  D, G o ttsch a ik  C, C h a rn ey  0 ,  K rystal J , C u id otti A: D e c r e a s e d  ce r e b r o sp in a l flu id  a llo p r e g n a n o lo n e  le v e ls  in 
w o m e n  w ith  p o s t t r a u w t f e  s t r e s s  d iso r d e r , B iol P sy c h ia tr y . 2 0 0 6  O ct l ; 6 f l ( 7 ) ; 7 0 4 - 1 3 .  E pub 2 0 0 6  A ug 2 4 .

jO rm azabal A, G a rd a -C a zo r la  A, P e r e z -D u e n a s  B , G o n za lez  V, F e m a n d e z -A lv a r e z  E, P in ed a  M, G am p isto l J ,  A rtuch R: D eterm in a tio n  o f  
5 -m e tb v ite tr a h v d r o fo la te  in c e r e b r o sp in a l flu id  o f  p a e d ia tr ic  p a t ie n ts :  r e fe r e n c e  v a lu e s  fo r  a  p a e d ia tr ic  p o p u l a t e ,  Glin Chlm  A cta , 2 0 0 6  
S e p ; 3 ? l ( H ) ; 1 5 9 - 6 2 .  E pub 2 0 0 6  Apr 19 ,

RESULTS Cerebrospinal f e d  p r o sta g la n d in  E2 correrstratsor; w ere increased during and a fter  surgery,

L eon i V, S h a fa a ti M, S a lo m o n  A, K iv ipelto  M, B jork h em  I, Waited 1 0 :  A re t h e  CSF le v e ls  o f  2 4 S -h y d r o x y c h o le s te fo l  a  s e n s i t iv e  b io m a rk er  fo r  m ild  c o g n it iv e  
im p a irm en t? . N e u r o s d  L ett, 2 0 0 6  A pr 1 0 - l ? ; 3 9 ? ( l - 2 ) : 8 3 - 7 .  Epub 2 0 0 6  J a n  6 ,

CSF concentration o f  S -hydroxyindoteaceticacid  fs-HIAA), h o m o v a n ill ic a c id  {H ¥A ), and 3 - r a e t e y - - t - h y t a p e n y i g i y t o l  j f f K )  were available to m  200  
participants,

Figure 4.8: Some example Rl or R2 sentences that PolySearch found for the 
“Given Cerebrospinal Fluid Find Metabolites” search. These examples 
were found while briefly browsing through the results.
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This example demonstrates that PolySearch can be used as a text mining tool to 

identify optimal association words too. Once an association word list is 

compiled, one can reuse the association words for similar searches. This 

flexibility of allowing users to decide what is more relevant along with tools to 

help create the association word list are examples of features that are unique to 

PolySearch.

4.5 SNPs

One of the original motivations in developing PolySearch was to facilitate the 

identification of disease-associated polymorphisms (SNPs) and disease- 

associated mutations in humans. Discussions with users and SNP researchers 

provided directions on what SNP or mutation data would be most relevant, what 

SNP databases would contain the most relevant data and what interface features 

would be most useful. The results of these discussions led to the design of 

several data viewing tables which can be seen in Figures 4.9 and 4.10. Figure 

4.9 shows the results of a “Given SNP Find Associated Gene” query and the list 

of SNP features that PolySearch returned. These include: 1) the RS (reference 

SNP) number, 2) chromosome number, 3) chromosome position, 4) 

polymorphism (e.g. A to G), 5) strand orientation, 6) gene symbol, 7) gene 

name, 8) SNP function (synonymous, nonsynonymous, deleterious, etc), 9) 

amino acid position, 10) amino acid and 11) allele frequencies (total or 

Caucasian). The SNP data is gathered using web mining techniques similar to
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those used by BioSpider [34] and the data is derived from the following 

databases: HapMap [28], Entrez SNP (db SNP) [3], CGAP [29], and HGMD 

[5]. Users can enter a gene name, gene symbol, gene sequence, or an RS number 

to retrieve the SNP data and view them in an HTML table (Figure 4.9) or

download these data into a MS Excel file for further analysis.
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Figure 4.9: The output for a “SNP to Gene” search using rs2234953, 
rs2266633, rs2266636, and rs2266637 as input. PolySearch collects 
important information about SNP such as: position, type of polymorphism, 
gene symbol/name, function and allelic frequency.

4.6 Primer Design

In many cases the identification of a SNP or a mutation of interest requires 

further sequence analysis in order to design the experiments needed to detect and 

confirm these SNPs. Specifically, the capacity to design PCR primers for gene 

cloning or SNP/mutation detection is particularly important. Users can design 

PCR primers through PolySearch either by entering a SNP ID (i.e. a RS #) or a 

gene sequence. Figure 4.10 shows an example of how a PCR primer was
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designed by PolySearch using only the RS #. One feature that is particularly 

unique to PolySearch’s primer design is that it implements proximity SNP 

checking. This ensures that the 5’ primer and the 3’ primer do not overlap with 

any neighbouring SNPs as primers. This proximity SNP checking ensures that 

the 5’ primer and the 3’ primer excludes regions that would affect annealing of 

primers due to embedded SNPs on the target sequence for which the primers 

bind. Lack of this information and attention may result in poor performance of 

PCR primers in the amplification of target sequences. The primer3 program 

(release 1.0) from the Whitehead Institute for Biomedical Research [35] is used 

to facilitate PolySearch’s PCR primer design. PCR primer design can either be 

fully automated or semi-automated. In the semi-automatic mode users can 

choose to enter their own amplicon sequence length, primer length, melting 

temperature and salt concentration. In the automated mode, gene sequences (+/- 

200 bp of the query polymorphism site) are identified by PolySearch using the 

RS #. The “TARGET” tag for the primer3 program is used to ensure that the 

single nucleotide polymorphism site is in the amplicon sequence and the 

“EXCLUDEDREGION” tag is used to ensure there are no other polymorphism 

sites in the 3' and 5' primers. As can be seen in Figure 4.10, PolySearch’s output 

format is very informative. Potential primer sequences are identified in bold, the 

SNP position and polymorphism is clearly identified in square brackets, and the 

neighbouring SNPs within the amplicon are also identified by differently 

coloured letters. The amplicon size and the start and end positions of the target 

sequence are also indicated.
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Figure 4.10: An illustration of the PCR Primer Design feature in 
PolySearch.
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Chapter 5 

5. Evaluation

5.1 Results

A text mining tool is only useful if it gives accurate results and extensive 

coverage in less time than what could be performed using alternative (i.e. non- 

computational) or competing computational methods. To evaluate PolySearch’s 

performance, we assessed it using eight different tests or methods. These 

included 1) a comparison of features and capabilities between PolySearch and 

other biomedical text mining tools; 2) a comparative evaluation of gene 

synonym identification; 3) an evaluation of PolySearch’s ability to identify 

protein-protein interactions; 4) an evaluation of PolySearch’s ability to identify 

drug/gene associations; 5) an evaluation of PolySearch’s ability to identify 

metabolite/gene associations; 6) an evaluation of PolySearch’s ability to identify 

disease/gene associations; 7) a comparison of speed and coverage between 

PolySearch and a senior undergraduate student using literature and computer aid 

queries for a defined search problem; 8) an assessment of PolySearch’s ability to 

perform an integrated disease to PCR primer design search.
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5.1.1 Feature Comparison

In the first assessment, PolySearch was compared to seven other well known 

biomedical text mining tools, namely Entrez [3], MedMiner [8], MedGene [9], 

LitMiner [10], ALIBABA [12], IHOP [11] and EBIMed [13]. Comparisons 

included the types of searches supported, the extent of hyperlinking, the presence 

of access restrictions, the capacity for text and sentence highlighting, the use of 

word co-occurrence for scoring, support for keywords/association words or 

pattern recognition, and the number of database integrations for each tool. As 

seen in Table 5.1, Entrez offers the most extensive database and search coverage 

as well as the broadest hyperlinking capabilities. However, Entrez is more of an 

information retrieval system rather than a text mining system and so it lacks the 

ranking, scoring and sentence highlighting capabilities of other text mining tools. 

In contrast, MedMiner provides key sentence highlighting capability and 

organizes these sentences into twelve general categories, which shorten the time 

required to gather relevant information from the selected texts. However, 

MedMiner searches are mainly limited to one-to-one searches (e.g. “one gene” to 

“one drug” search) and this limits the general utility of MedMiner. Both 

MedGene and LitMiner provide the capability to perform “given X find all Y” 

types of searches and both of them provide statistical rankings for the 

associations they found. Nevertheless, both MedGene and LitMiner lack the 

ability to perform text and sentence highlighting, making it difficult to verify the 

associations that MedGene and LitMiner found. ALIBABA, IHOP, EBIMed,
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and PolySearch all have the ability to rank the associations they found and 

supply both text and sentence highlighting for quick verification of the 

associations. ALIBABA treats PubMed abstracts and associations as a graph 

and provides a graphical interface to display the associations it found. While this 

approach may be useful for a small number of abstracts, for larger numbers of 

abstracts, the graph becomes almost unusable due to the over-abundance of 

information. IHOP, while great for identifying Gene/Protein to Gene/Protein 

interactions, lacks support for many other search types and this limits IHOP’s 

usefulness in other areas of biomedical research. Unlike IHOP, EBIMed 

provides a means of an analysis that is independent of the initial keyword query 

and is more flexible with the types of searchers it allows. However, EBIMed 

uses a pure word co-occurrence approach to assess associations and so it tends to 

lack the accuracy of systems that use both keywords and pattern matching (such 

as ALIBABA, IHOP and PolySearch). PolySearch, being the most recent 

addition, combines some of the best features from each of the other tools. In 

addition, PolySearch appears to be unique in terms of the diversity of its search 

and text ranking possibilities, its ability to perform extensive query synonym 

expansion using its different thesauruses, its PolySearch Relevancy Index (PRI) 

scoring display for immediate visual indications on the strength of association, 

its SNP search functionalities, and its ability to text mine additional databases 

such as OMIM, SwissProt, DrugBank, HMDB, HPRD and GAD.
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Entrez MedMiner MedGene LitMiner Alibaba IHOP EBIMed PolySearch

Type of Search 
supported

Literature, 
Disease, Gene, 
Structure, 
Taxonomy, 
SNP,
Compound, etc.

Gene, 
Drug, Text 
Word

Gene, Disease Gene, Disease,
Compounds,
Tissues/Organs

Gene, Disease, 
Drug,
Tissues/Organs, 
Cells, Species

Gene Gene, Cellular 
Compartment, 
Biological Process, 
Molecular Function, 
Drug, Species

Gene, Disease, Drug, 
Metabolite, 
Tissues/Organs, 
Subcellular Localization, 
Text Word

Extensive
hyperlinking

Most Extensive Less
extensive

Less
extensive

Less extensive Less extensive More
Extensive

More Extensive More Extensive

Access restrictions None None Registration None None None None None

Text and sentence 
highlighting

No Yes No No Yes Yes Yes Yes

Co-occurrence 
scoring scheme

None None Abstract level Abstract level Sentence level Sentence
level

Sentence level Sentence level

Use of keywords or 
association words

None Predefined
keywords

None None Predefined
keywords

Predefined
keywords

None Predefined & custom 
association words

Sentence pattern 
recognition

No No No No Yes Yes No Yes

Thesaurus query 
synonym expansion

Yes, limited Yes,
limited

Yes, limited None None Yes, for 
genes only

None Yes, extensive

Databases PubMed, 
OMIM, Gene, 
MMDB, 
Taxonomy, 
dbSNP, 
PubChem, etc.

PubMed,
GeneCards

PubMed PubMed PubMed PubMed,
HPRD,
IntAct

PubMed PubMed, OMIM, 
Swissprot, DrugBank, 
HMDB, HPRD, GAD, 
HapMap, dbSNP, CGAP, 
HGMD

Table 5.1: Feature comparison of various )iomedical text mining too S.



5.1.2 Evaluation of Gene/Protein Synonym Identification

For the second assessment, we tested PolySearch’s ability to identify genes and 

protein names within different sentences or abstracts. To do this, we use the 

dataset that IHOP used for evaluating their gene synonym identification for 

human genes [36]. The dataset contains 181 sentences from various PubMed 

abstracts with an average of about 2-3 gene names per sentence (the names 

include symbols, standard names, abbreviations and synonyms). We manually 

identified the correct gene and protein names from the dataset and used this 

collection as our gold standard to compare to PolySearch's gene synonym 

identification for the dataset. Table 5.2 shows PolySearch's precision, recall and 

f-measure in this evaluation as compared to IHOP.

IHOP PolySearch
Precision (%) 87.1 90.1
Recall (%) 81.8 85.3
F-measure (%) 84.4 87.6

Table 5.2: Precision, recall and f-measure on gene synonym identification 
for PolySearch and IHOP.

As Table 5.2 shows, PolySearch's performance on gene/protein identification is 

comparable to that of IHOP, which is generally regarded as one of the better 

available tools for identifying genes and gene-gene associations [11]. This 

assessment shows that PolySearch is capable of identifying gene/protein terms 

with a high level of accuracy, the first important step before trying to extract 

associations.
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5.1.3 Evaluation of Protein-Protein Interactions

In the third assessment, we looked at the performance of PolySearch on protein- 

protein interaction extraction. This assessment was divided into two parts. First, 

we evaluated the efficacy of PolySearch’s association words and pattern 

recognition system by using a protein-protein interaction corpus. The protein- 

protein interaction corpus consisted of the data used in developing PolySearch's 

rule based pattern recognition system. For the second part, we compared the 

performance of PolySearch on protein-protein interaction extraction with actual 

abstracts against two other text mining systems (EBIMed and IHOP), and a 

manually curated database (HPRD) that covers protein-protein interaction. 

Protein-Protein Interaction Corpus

The dataset used here is the SPIES corpus for protein-protein interaction [22] 

which contains 963 sentences and 1436 interactions. Some examples of 

interactions from the dataset include (each interaction has tab-delimited four 

parts: the type of interaction, the first participant, the second participant and the 

sentence itself):

• interaction Skpl Fwd2 A coimmunoprecipitation assay has 

revealed the in vivo interaction between Skpl and Fwd2 through the F- 

box domain.

• interact Apg3p Agp5p A cross-linking experiment revealed that

Apg3p interacts with the endogenous Apgl2p/Apg5p conjugate.

• interact Apg3p Apgl2p A cross-linking experiment revealed that

Apg3p interacts with the endogenous Apgl2p/Apg5p conjugate.
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Since PolySearch queries are “Given X Find Associated Y”, the first participant 

is used as the value for X. Additionally, in order to develop and test 

PolySearch’s rule based pattern recognition system independently of the order of 

the participants, we expanded the corpus such that for each given pair of 

interactions and sentences, each participant can be used as the given X. For 

example:

• interaction Skpl Fwd2 A coimmunoprecipitation assay has

revealed the in vivo interaction between Skpl and Fwd2 through the F- 

box domain.

becomes:

• interaction Skpl Fwd2 A coimmunoprecipitation assay has

revealed the in vivo interaction between Skpl and Fwd2 through the F- 

box domain.

• interaction Fwd2 Skpl A coimmunoprecipitation assay has

revealed the in vivo interaction between Skpl and Fwd2 through the F- 

box domain.

With the corpus expanded, the first 200 sentences of the corpus were used as a 

training set and the rest of the sentences were used as the test set. For 

association words, we first manually compiled a list of most likely protein- 

protein interaction words and then assembled a complete list using sentence 

analysis from unrelated protein-protein interaction texts. One method for the 

sentence analysis and extraction of association words was described in the 

previous chapter. The default association word list for all possible PolySearch
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queries can be found at

http://wishart.biologv.ualberta.ca/polysearch/help/association word list.htm. 

When given a protein X and a sentence, PolySeach attempts to find the protein- 

protein interaction(s) described in the sentence for the given protein X. Table 

5.3 shows the performances of PolySearch’s rule based pattern recognition 

system on the expanded corpus (i.e. the cut-off score is Rl >= 1).

PolySearch 
R l >= 1 

(training set)

PolySearch 
Rl >= 1 
(test set)

PolySearch 
R2, R3 >= 1 

Baseline 
(test set)

Naive Bayes 
(test set)

Precision (%) 70.0 71.1 49.1 49.4

Recall (%) 75.7 71.8 84.4 84.4

F-measure
(%)

72.7 (±5.2) 71.5 (±6.5) 62.1 (±4.8) 62.3 (±4.6)

Table 5.3: Precision, recall and f-measure on a corpus of protein-protein 
interaction using PolySearch’s rule based pattern recognition system (when 
X is given) and using a Naive Bayes classifier available from Weka.

This evaluation shows that the Rl sentence and the pattern recognition approach 

has better performance than the baseline co-occurrence approach (i.e. a sentence 

that mentions two genes without an association word and without a pattern, 

which is what we call an R3 sentence). In this case, since each sentence in the 

corpus has at least one positive protein-protein interaction, each sentence also 

has an association word; therefore, a co-occurrence sentence with a association 

word (or an R2 sentence) has the same performance. In practice, not all co

occurrence sentences are R2 sentences. Therefore, the performance of a simple 

word co-occurrence approach could be worse with actual abstracts. Nonetheless, 

the word co-occurrence approach is part of most text mining systems. As shown
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in Table 5.3, the co-occurrence approach is a low precision approach and 

because of that, a co-occurrence sentence is generally less relevant. In 

comparison, PolySearch’s combined approach has higher precision and 

sufficiently high recall such that the f-measure value for PolySearch is better 

than a simple word co-occurrence approach. The numbers in Table 5.3 mean 

that the sentences that PolySearch extracts will generally be more relevant while 

maintaining sufficient coverage.

The motivation behinds PolySearch’s pattern recognition system can be 

seen in the following example. The sentence “Apgl2p is then transferred to 

ApglOp, an E2-like enzyme, and conjugated with Apg5p, whereas Apg8p is 

transferred to Apg3p, another E2-like enzyme, followed by conjugation with 

phosphatidylethanolamine” has five genes mentioned: Apg3p, Apg5p, Apg8p, 

ApglOp, and Apgl2p. Using the word co-occurrence approach, 10 possible 

protein-protein interactions would be predicted, when in fact the sentence only 

provides evidence for 3 protein-protein interactions: Apg3p-Apg8p, Apg5p- 

Apgl2p, and Apgl0p-Apgl2p. A good rule to prevent overzealous predictions 

by the co-occurrence approach is to break the sentence into two subclauses at the 

word “whereas”. This would eliminate six of the possible incorrect predictions 

resulting in a significant increase in precision. In this case, the recall would not 

be affected. However, not all cases are this simple and not all rules work for 

every single case especially when trying to further improve the precision by 

predicting two out of the three possible protein-protein interactions in “Apgl2p 

is then transferred to ApglOp, an E2-like enzyme, and conjugated with Apg5p.”
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As Table 5.3 shows, PolySearch’s Rl approach improves precision but 

diminishes recall in comparison to the co-occurrence approach. Nonetheless, it 

is also worth mentioning that a simple co-occurrence sentence (or an R3 

sentence) is still scored by PolySearch and if  there are no Rl and R2 sentences 

then PolySearch will still use R3 sentences as the key sentences to ensure proper 

coverage. Table 5.3 also shows the performance of an approach that used a 

Naive Bayes classifier available from Weka. Weka is a data mining application 

written in Java [37]. The features used to build the classifier were the distances 

between the positions of the two genes and the association word. As seen from 

the numbers in this table, PolySearch’s heuristic Rl association word pattern 

recognition system still performed better than this particular machine learning 

method on this data. ANOVA test showed that the performance gain from 

PolySearch’s Rl system compared to the co-occurrence baseline approach or the 

Naive Bayes approach is statistically significant.

Protein-Protein Interaction Tools Comparison

For this particular assessment, we compared PolySearch against EBIMed, IHOP, 

and HPRD. The goal of this assessment was to see how well each of the text 

mining systems could assist in the manual extraction of relevant protein-protein 

interaction information. This is essentially an attempt to evaluate how each of 

the text mining systems carries out its key/relevance sentences extraction and 

how the key/relevance sentences are presented to their users. The other goal of 

this assessment was to see how each of the text mining systems performed 

compared to a manually curated database. There are some advantages and
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disadvantages a text mining system has over a manually curated database and 

these will be discussed later on. For this assessment, we randomly chose five 

proteins (Table 5.4) and used them as input to different text mining systems to

extract protein-protein interaction information.

SwissProt ID Gene Symbol Gene Name
Q9Y6F9 WNT6 wingless-type MMTV integration 

site family, member 6
Q9BZ72 PITPNM2 phosphatidylinositol transfer 

protein, membrane-associated 2
060282 KIF5C kinesin family member 5C
060749 SNX2 sorting nexin 2
075618 DEDD death effector domain containing 

protein

Table 5.4: The five SwissProt IDs, gene symbols, and gene names randomly 
chosen as input to evaluate how different tools perform for protein-protein 
interaction.

To construct a gold standard set of protein-protein interactions for the five 

proteins, we looked at all the results that each of EBIMed, IHOP, and 

PolySearch Rl pattern recognition system returned (for EBIMed and IHOP, the 

species category was set to Homo sapiens) and used the key sentences that each 

of them extracted to determine whether the results returned by the text mining 

systems were false positives or true positives. If the key sentences that a text 

mining system returned did not satisfactorily convince us that such a protein- 

protein interaction existed, then it was considered a false positive. After this 

process, the true associations found using EBIMed, IHOP, and PolySearch were 

manually merged together and then combined with the list of protein-protein 

interactions found in HPRD for the five proteins. This “gold standard” set of
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protein-protein interactions was then used to evaluate the different tools in terms 

of precision, recall, and f-measure as shown in Table 5.5.

HPRD EBIMed IHOP PolySearch 
Rl >=1

PolySearch
+

HPRD 
R l >=1

Precision 31/31 = 100% 23/83 = 27.7% 39/80 = 48.8% 64/86 = 74.4% 82/104 = 78.8%

Recall 31/99 = 31.3% 23/99 = 23.2% 39/99 = 39.4% 64/99 = 69.2 82/99 = 82.8%

F-measure 47.7 (±25.7)% 25.3 (±22.4)% 43.6 (±11.6)% 69.2 (±10.0)% 80.8 (±6.8)%

Table 5.5: Precision, recall, and f-measure for protein-protein interaction 
evaluation among the different tools.

For this assessment, the average number of abstracts extracted for each of the 

five proteins was around 90. As seen in Table 5.5, PolySearch appears to be the 

best tool for the extraction of protein-protein interaction information as it 

achieves the highest f-measure among the four different tools. PolySearch also 

attains the highest precision and recall among the three text mining tools with 

only HPRD’s precision being higher than PolySearch. The advantage of using a 

manually curated database over a text mining tool is that the data in the manually 

curated database is usually of very high quality and therefore its precision is high. 

However, manual curation takes time and this time factor tends to limit the 

coverage (or recall) for many databases. In contrast to a high precision, low 

recall system like a manually curated database, text mining systems tend to have 

lower precision but higher recall. Therefore, the best approach to find the most 

information from a text mining tool is to allow human experts to read through 

the results and to extract the relevant information themselves. Indeed, one of the 

main goals for text mining systems such as EBIMed, IHOP, and PolySearch is to
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support human experts in extracting relevant information. Based on the data 

presented here PolySearch appears to perform the best with regard to this goal. 

The higher precision and recall for PolySearch shown in Table 5.5 means that 

users of PolySearch can find relevant information faster as the key sentences that 

PolySearch extracted are generally more accurate. Users can also find more 

information in less time because PolySearch’s results (as seen in this example) 

covered a greater number of protein-protein interactions.

Evidently, one of the reasons why EBIMed performed poorly was that 

EBIMed lacks a feature for query synonym expansion to search for genes. For 

example, the gene “KIF5C” is also known as “KINN”, “NKHC”, and “NKHC2” 

(among other names). Both PolySearch and IHOP can carry out an automatic 

query synonym expansion search (i.e. querying “KIF5C”, “KINN”, “NKHC”, 

“NKHC2” and other synonyms of “KIF5C” simultaneously). EBIMed cannot 

do this, i.e. querying “KIF5C” without its synonyms. During our evaluations, 

we found that EBIMed generally returned the fewest results with its lack of 

query synonym expansion search being one of the main reasons. In addition, 

one of the reasons for EBIMed’s lower precision was that many of the key 

sentences that EBIMed returned were essentially irrelevant and did not 

satisfactorily convey any evidence for protein-protein interactions. For IHOP, 

one of the reasons contributing to its limited performance arose from the fact that 

IHOP’s display lacks a clear organization. Furthermore, IHOP limits the number 

of sentences that it displays. For instance, IHOP can report that one gene co

occurs with the query gene in twelve sentences and yet only one sentence is
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displayed to the user. It seems that IHOP only displays sentences that meet a 

certain criteria. While this may be a way to limit the number of sentences and to 

reduce the amount of information that a user has to read, if the sentences that 

IHOP chooses not to display offer better evidence of an association, then this 

likely limits IHOP’s effectiveness.

Table 5.5 also shows the performance of PolySearch with both PubMed 

and HPRD access turned on. One of our hypotheses is that by integrating high 

quality, curated biomedical databases, we can improve the coverage and 

precision of data retrieval. Indeed as Table 5.5 shows, both precision and recall 

of PolySearch improves with the inclusion of the HPRD. Mining the data in 

high quality, manually curated databases such as HPRD does not suffer from the 

difficulty of parsing free form texts and the complexity of interpreting 

biomedical language that makes text mining abstracts such a difficult task. As a 

result, mining high quality, manually curated databases is easier and more 

effective in retrieving correct or relevant associations.

Overall, PolySearch returns far more sentences than either IHOP or 

EBIMed. Furthermore, the sentences that PolySearch returns are more relevant 

and are ranked and displayed using the PolySearch Relevancy Index (PRI) 

system. PolySearch’s R l and R2 sentences generally provide more relevant 

information and make manual validation much easier. In summary, the use of an 

extensive thesaurus, in combination with association words and a sentence 

pattern recognition system allowed PolySearch to significantly outperform both 

EBIMed and IHOP in this assessment. With the integration of HPRD data into
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PolySearch’s text mining system, the performance advantage was even greater. 

Using ANOVA test, we found that the difference in f-measure between 

PolySearch + HPRD Rl and the other tools (IHOP, EBIMed, and HPRD) is 

statistically significant.

5.1.4 Evaluation o f Drug/Gene Associations

For the fourth assessment, we evaluated “Given Drug Find Associated Gene” 

queries. The intent of this query is to find all genes that are affected or acted on 

by a drug. This assessment differs from the last assessment in that the queries 

for this assessment returned an average of 1,400 abstracts per query instead of 90 

abstracts per query in the last assessment. For a text mining system to be useful, 

it must perform well with large amounts of data such as that used in this 

assessment. For this assessment, we compared PolySearch’s results to EBIMed, 

LitMiner, and a manually curated database on drug - protein interactions, called 

DrugBank. DrugBank is one of the largest and most comprehensive drug and 

drug target databases available [6]. In particular, it contains extensive 

information about drug and gene/protein associations (i.e. drug metabolizing 

enzymes and drug targets). For this assessment, the following ten drugs were 

randomly chosen from DrugBank for analysis and the results are shown in Table 

5.7:
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DrugBank ID Common Name
APRD00028 Tramadol
APRD00108 Pefloxacin
APRD00128 Tizanidine
APRD00136 Quinidine
APRD00294 Bumetanide
APRD00319 Fenfluramine
APRD00454 Cisapride
APRD00600 Famciclovir
APRD00706 Nizatidine
APRD00761 Dicumarol

Table 5.6: The DrugBank IDs and common names for the ten drugs 
randomly chosen from DrugBank for evaluating “Given Drug Find 
Associated Gene” queries.

DrugBank LitMiner EBIMed PolySearch 
R l >= 1

PolySearch 
+ DrugBank 

R l >= 1

Precision 19/19 = 100% 24/41 = 58.5% 118/186 = 
63.4%

220/358 = 
61.5%

223/363 = 
61.4%

Recall 19/227 = 7.9% 24/227 = 
10.6%

118/227 = 
52.0%

220/227 = 
96.9%

223/227 = 
98.2%

F-measure 15.4 (±13.7)% 17.9 (±11.8)% 57.1 (±17.7)% 75.2 (±9.5)% 75.6 (±9.2)%

Table 5.7: “Given Drug Find Associated Gene”: comparing DrugBank, 
LitMiner, EBIMed, PolySearch with PubMed, and PolySearch with 
PubMed + DrugBank.

To assess PolySearch’s performance, PolySearch’s “Given Drug Find 

Associated Gene” query was run for each of the ten drugs using their common 

names as well as their synonyms (which were automatically generated by 

PolySearch). We used PolySearch in two modes. In one mode, the search was 

limited to PubMed abstracts only and in the second mode, we turned on 

PolySearch’s access to DrugBank to see if  this would help to improve 

performance. The default PolySearch settings were used in this assessment. The
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association word list used in this assessment contains a list consisting of most 

likely protein interaction words (similar to the list described in the third 

assessment). We only looked at the results that PolySearch’s R l system 

returned and then tried to map the results that EBIMed and LitMiner returned to 

the results that PolySearch’s Rl system returned or the results derived from 

DrugBank. Also, based on previous observations, we chose to ignore gene 

names that were three letters or less. All the PolySearch extracted drug-gene 

associations that satisfied the previously mentioned criteria were manually 

verified by reading the abstracts and checking appropriate databases. All 

manually verified drug-gene associations including the pre-existing drug-gene 

associations in DrugBank were combined to derive a list of gold standard drug- 

gene associations. This list was used to tabulate the performance measures seen 

in Table 5.7.

As Table 5.7 shows, PolySearch was able to identify significantly more 

drug-gene interactions (and potential gene targets) than what is provided by 

DrugBank. On average, PolySearch found 20.9 new drug-gene associations for 

each of the ten drugs. The reason for this discrepancy lies in the fact that the 

drug targets in DrugBank are typically primary drug targets, meaning they are 

responsible for the therapeutic effects of many drugs, while PolySearch 

identified secondary drug targets in addition to primary drug targets. These 

secondary drug targets, which could be responsible of the side effects of drugs, 

can be just as important as the primary drug targets. Inclusion of these
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secondary drug targets into DrugBank would likely improve the coverage and 

utility of this database.

Table 5.7 also shows that PolySearch outperformed both EBIMed and 

LitMiner in this task. ANOVA test showed that the difference between 

PolySearch and the other tools is statistically significant. It is worth mentioning 

that LitMiner precomputes its results and even though this has the advantage of 

providing the results almost instantaneously, the precomputed results contain a 

shorter list of genes. Furthermore, precomputed results for some of the drugs 

were not available. As a result, LitMiner’s performance suffered. However, 

even if  we only looked at the set of drugs for which LitMiner’s precomputed 

results were available, LitMiner would still perform the worst. For PolySearch 

with access to DrugBank turned on, the performance improved slightly over 

PolySearch with PubMed only and Rl >= 1. In this case, we were able to extract 

most of the drug-gene associations with PubMed alone. As a result, the recall 

improved only slightly with the DrugBank integration turned on. Nonetheless, it 

was still an improvement and the results from the DrugBank integration 

reaffirmed the results found from PubMed. Looking at the recall score of 

PolySearch + DrugBank R l >= 1, we missed four drug-gene associations. This 

was due to the fact that those drug-gene associations were derived from 

DrugBank drug targets where the targets were bacterial and viral proteins.

While PolySearch did find more drug-gene interactions, higher precision 

is still desirable. Below we took a closer look at the precision scores for
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different R1 cut-off values and the precision scores for all R1 sentences found in 

the ten queries.

''V'::Rl'!;.>= F'' R l > = 2 R l > = 3 All R1 sentences

Precision 220/358 = 61.4% 120/164 = 73.2% 90/105 = 85.7% 1148/1283 = 89.5%

Table 5.8: Precision for drug-gene associations of the ten “Given Drug Find 
Associated Gene” queries at different R1 scores and precision for all R1 
sentences of the ten queries.

Table 5.8 shows that with an R1 score >= 1, 61.4% of the extracted associations 

are accurate, with an R1 score >= 2, 73.2% of the extracted associations are 

accurate, and with an R1 score >= 3, 85.7% of the extracted associations are 

accurate. It is interesting to see that R1 >= 3 achieved high precision while still 

finding new drug-gene associations (~ 7 new associations per drug). It seems 

that an R1 >= 3 can be used as a reasonable cut-off score for automatic 

information extraction as it achieves high precision while maintaining good 

coverage. With larger amounts of data, there will inevitably be more noise and 

therefore, the false positive rate will tend to increase. Each R1 sentence usually 

represents strong biomedical evidence of an association and the values of R1 >= 

2 or R1 >= 3 essentially mean that repeated evidence of an association has been 

found, thus ensuring higher precision. While recall suffers with R1 >= 2 or R3 

>= 3, the use of higher R1 cut-off scores provides a means to ensure high 

precision while maintaining good coverage. This kind of performance is often 

difficult to achieve with text mining systems employing a statistical scoring 

scheme. This is because a strong statistical score may or may not correlate with
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biomedical significance. We believe the flexibility and ease of use of the 

PolySearch scoring system is one of its stronger and more unique features.

In total, there were 1283 R1 sentences found in the ten “Given Drug Find 

Associated Gene” queries. Assuming that all R1 sentences for true associations 

are relevant, then the R1 sentences achieved a precision of 89.5% as 1148 of the 

1283 R1 sentences were judged to be relevant. To compare this to a baseline 

consider this: if a user had to read all 9816 sentences in the 954 abstracts that 

mention the 1148 relevant R1 sentences, this would equate to a baseline 

precision of 11.7%. Furthermore, assuming it takes 30 seconds for a skilled 

individual to process an abstract this would translate to 8 hours (954 * 30 

seconds) of continuous reading. The time taken by PolySearch for not only 

identifying the 1283 R1 sentences in the 954 abstracts but also searching through 

the 14,000 total extracted abstracts was about 20 minutes. This shows that using 

PolySearch is significantly faster than using PubMed and manually reading 

abstracts. A similar type of analysis, with different queries, was done by the 

authors of EBIMed when they evaluated their system [13]. These authors 

reported that EBIMed achieved 39% precision in extracting relevant sentences 

compared to a baseline precision of 13%. Though not a direct comparison, 

PolySearch still appears to be a better system in extracting relevant sentences 

(89.5% precision versus 39% precision).

Overall with this assessment we demonstrated that PolySearch can serve 

as an automatic information extraction system for large amounts of biomedical 

data. We also demonstrated that PolySearch outperformed other text mining
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tools and that it can extract more data than is contained in a manually curated 

database. The precision that PolySearch achieved is significantly better than 

using PubMed and manually reading abstracts. By varying the R1 cut-off 

scores, PolySearch can be an information extraction system with high recall and 

moderate precision (R1 >= 1) or a system with high precision and moderate 

recall (R1 >= 3) that is still capable of finding new associations not found in a 

high quality manually curated database.

5.1.5 Evaluation of Metabolite/Gene Associations

In the fifth assessment, we evaluated “Given Metabolite Find Associated Gene” 

queries. With this assessment, we investigated how PolySearch performs with 

another type of automatic information extraction task. For this assessment, we 

compared PolySearch, EBIMed, and LitMiner to the Human Metabolome 

Database (HMDB). The HMDB is a database containing detailed chemical, 

biological and clinical information about small molecule metabolites found in 

the human body [7]. The HMDB also contains metabolic enzyme data for each 

of the metabolites. These metabolite/metabolic enzyme associations are the ones 

that we are interested in and what we wish to compare to PolySearch’s results 

for its “Given Metabolite Find Associated Gene” queries. To make this 

assessment, the following ten metabolites were randomly chosen from the 

HMDB:

95

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



HMDB ID Common Name
HMDB00210 Pantothenic acid
HMDB00721 Glycyl-L-proline
HMDB00835 N-Acetyl-a-D-galactosamine
HMDB01059 lD-Myo-inositol 1,3,4,5-tetrakisphosphate
HMDB01175 Malonyl-CoA
HMDB01381 Prostaglandin H2
HMDB01413 Citicoline
HMDB01489 Ribose 1-phosphate
HMDB01550 S-Formylglutathione
HMDB02037 12-Hydroxyeicosatetraenoic acid

Table 5.9: The HMDB IDs and common names for the ten metabolites 
randomly chosen from HMDB for evaluating Given Metabolite Find 
Associated Gene queries.

PolySearch’s “Given Metabolite Find Associated Gene” query was run for each 

of the ten metabolites using their common names as well as their synonyms. 

This time PubMed, OMIM, and HMDB were used as data sources for the search. 

Other search settings were the same as mentioned in the Drug-Gene assessment. 

The average number of abstracts identified per query was 880. A list of gold 

standard metabolite-gene associations for these ten metabolites was compiled by 

manually verifying PolySearch metabolite-gene associations for R1 >= 1 and by 

manually compiling data from the HMDB. Table 5.10 shows a comparison 

between HMDB, EBIMed, LitMiner, PolySearch with PubMed alone, 

PolySearch with PubMed and OMIM, and PolySearch with PubMed, OMIM and 

HMDB.
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HMDB LitMiner EBIMed PolvSearch 
R1 >= 1

PolySearch 
+ OMIM 
Rl

PolySearch 
+ OMIM 
+ HMDB 

Rl >=1

Precision 26/26 = 
100% 5/5 = 100% 83/111 = 

74.8%
166/263 = 

63.1%
170/267 = 

63.7%
183/284 = 

64.4%

Recall 26/183 = 
14.2%

5/183 = 
2.7%

83/183 = 
45.4%

166/183 = 
90.7%

170/183 = 
92.9%

183/183 = 
100%

F-measure 24.9
(±17.6)%

5.3
(±9.3)%

56.5
(±28.4)%

74.4
(±8.7)%

75.6
(±8.1)%

78.4
(±7.6)%

Table 5.10: “Given Metabolite Find Associated Gene”: precision, recall and 
f-measure for HMDB, LitMiner, EBIMed, PolySearch with PubMed, 
PolySearch with PubMed + OMIM, and PolySearch with PubMed + OMIM 
+ HMDB.

Overall, PolySearch appears to be just as effective in automatic information 

extraction for metabolite-gene associations as it is for drug-gene associations. 

On average, PolySearch found 15.7 new metabolite-gene associations for each of 

the ten metabolites. Table 5.10 also shows that the performance of PolySearch 

using PubMed + OMIM + HMDB is the best. This assessment demonstrates 

again that mining of high quality, manually curated databases can help improve 

both the sensitivity and specificity of biomedical information extraction. 

ANOVA test showed that PolySearch is statistically significantly better than the 

other tools.

Next, we took a closer look at the precision scores for different R1 score 

cut-offs and the precision scores for all R1 sentences to see if  high precision with 

moderate recall could be achieved.
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R l >= 1 Rl >=2

: '■#
 

; 
' -

H* 
"

V II w All R l sentences

Precision 166/263 = 63.1% 85/105 = 81.0% 54/60 = 90.0% 828/926 = 89.4%

Table 5.11: Precision for metabolite-gene associations of the ten “Given 
Metabolite Find Associated Gene” queries at different R l scores and 
precision for all R l sentences of the ten queries.

An Rl cut-off score of >= 3 achieved a precision of 90% while still finding new 

metabolite-gene associations (~ 4 new associations per metabolite). This 

suggests that PolySearch can be tuned to achieve high precision and moderate 

recall which means that it could be used for automated text mining. As noted on 

Table 5.11, PolySearch achieved 89.4% precision using Rl sentences. 

Compared to the PubMed baseline, to manually retrieve the 828 relevant Rl 

sentences from the 740 abstracts (7287 sentences) equates to an 11.4% precision. 

Again, if we assume that it takes an individual -30 seconds to process an 

abstract, this manual search would take around 6 hours. The time taken by 

PolySearch to search through the 8800 total extracted abstracts and identify the 

926 R l sentences in the 740 abstracts was about 15 minutes. Clearly PolySearch 

is significantly faster than manually reading PubMed abstracts alone.

5.1.6 Evaluation of Disease/Gene Associations

For the sixth assessment, we evaluated “Given Disease Find Associated Gene” 

queries. This is a relatively common query supported by a number of text 

mining tools. For this assessment, we compared PolySearch, EBIMed, and 

LitMiner to the Genetic Association Database (GAD). GAD is a manually 

curated archive of human genetic association studies of complex diseases and
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disorders [27] and it is also one of the databases that has been integrated into 

PolySearch. The ten diseases shown in Table 5.12 were chosen as queries since 

they represent a mixture of monogenetic diseases and complex genetic disorders.

Disease Name
Alkaptonuria
Cylindromatosis
Gilbert syndrome
McLeod syndrome
Motor neuron disease
Omphalocele
Onchocerciasis
Orofacial cleft
Synpolydactyly
Vitelliform macular dystrophy

Table 5.12: The disease names for the ten diseases randomly chosen for 
evaluating Given Disease Find Associated Gene queries

For this assessment, we carried out a complete evaluation using various 

PolySearch options. We looked at a PolySearch cut-off score of R2 >= 1 and a 

cut-off score of Rl >= 1 to see if PolySearch’s R l pattern recognition system 

could improve performance. We also looked at the results with access to the 

OMIM and GAD database turned on, as both of these databases contain a good 

deal of disease-gene information. The average number of abstracts available per 

disease query was 733. The list of gold standard disease-gene associations was 

compiled using the disease-gene associations listed in GAD as well as manually 

verified true disease-gene associations of R l >= 1 or R2 >= 1. Table 5.13 shows 

the performance of the different text mining tools.
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GAD LitMiner EBIMed PolySearch 
R2 >= 1

PolySearch 
Rl >=1

PolySearch 
+ OMIM 
Rl >=1

PolySearch 
+ OMIM 
± GAD 
R l >= 1

Precision 21/21 = 
100%

4/5 = 
80%

102/177 = 
57.8%

119/251 = 
47.4%

93/133 = 
69.9%

101/143 = 
70.6%

113/156 = 
72.4%

Recall 21/132 = 
15.9%

4/132 = 
3.0%

102/132 = 
77.3%

119/132 = 
90.2%

93/132 = 
70.4%

101/132 = 
76.5%

113/132 = 
85.6%

F-measure 27.5
(±23.0)%

5.8
(±13.5)%

66.0
(±10.3)%

62.1
(±16.6)%

70.2
(±17.5)%

73.5
(±9.3)%

78.5
(±10.3)%

Table 5.13: “Given Disease Find Associated Gene”: precision, recall and f- 
measure for GAD, LitMiner, EBIMed, PolySearch R2 >= 1, PolySearch Rl 
>= 1, PolySearch with PubMed + OMIM, and PolySearch with PubMed + 
OMIM + GAD.

Generally speaking, PolySearch alone performed the best among the tools in this 

assessment while PolySearch + OMIM + GAD achieved the best f-measure 

value. PolySearch R l >= 1 performed better than PolySearch R2 >= 1 and we 

also observed a steady increase in performance with PolySearch OMIM 

integration turned on and PolySearch OMIM + GAD integrations turned on. 

Taken together, these findings confirm our hypotheses that PolySearch’s Rl 

pattern recognition schema and PolySearch’s integration of manually curated 

databases into its search protocol can improve a text mining system’s ability to 

extract associations. This assessment also showed that PolySearch outperformed 

both LitMiner and EBIMed in extracting disease-gene associations. ANOVA 

showed that both PolySearch and EBIMed are statistically significantly better 

than LitMiner and GAD; however, there is no statistically significant difference 

between PolySearch and EBIMed. In this assessment, PolySearch found an 

average of 11.1 new disease-gene associations (not listed in GAD) for each of 

the ten diseases.
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R l >=1 Rl >= 2 R l > = 3 All R l sentences

Precision 93/133 = 69.9% 39/45 = 86.7% 27/28 = 96.4% 394/430 = 91.6%

Table 5.14: Precision for disease-gene associations of the ten “Given Disease 
Find Associated Gene” queries at different R l scores and precision for all 
R l sentences of the ten queries

As shown in Table 5.14, an R l cut-off score >= 1 achieved a moderate precision 

of around 70%. An Rl cut-off score >= 2 allowed PolySearch to achieve a 

precision of 86.7% while still finding approximately 2 new disease-gene 

associations per disease. With regard to all Rl sentences, 394 out of 430 Rl 

sentences were deemed relevant, resulting in a 91.6% precision for Rl sentences. 

Compared to the PubMed baseline, manually retrieving the 394 Rl sentences out 

from the 352 abstracts (3163 sentences) equates to a 12.5% precision. Again, if 

we assume that it takes an individual -30 seconds to process an abstract, this 

manual search would take around 3 hours. The time taken by PolySearch to 

search through the 7300 total extracted abstracts and identify the 430 Rl 

sentences in the 352 abstracts was about 10 minutes. Once again, this 

demonstrates how PolySearch provides a significant time savings compared to 

using PubMed and manually reading abstracts alone.

5.1.7 Manual versus Automated

For the seventh assessment, PolySearch was compared with the speed/coverage 

performance of a researcher tasked with finding all metabolites known to be in 

human cerebrospinal fluid and obtaining their concentration values. The
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individual (a senior undergraduate, now in medical school) was given 6 weeks 

and several primary references (PubMed, the Merck Manual [38], Google 

Scholar [39], Wikipedia [40]) to assist with his search. The student was 

encouraged to access and read through abstracts, complete journal articles and 

clinical chemistry reference books to obtain the necessary data. Additionally the 

student’s progress (i.e. metabolite list) was tracked on a weekly basis and 

continuous suggestions were provided to improve his search methodology. 

After the student had completed his 6 week search project, the number of 

metabolite concentration values identified by the student using manual methods 

was just 47 (in 42 days). PolySearch then was run using the “Given Text Word 

Find Metabolites” query, with the text words being “CSF” and “cerebrospinal 

fluid” and the resulting list was given to the student to help his search. At the 

end of the student’s search project (roughly 9 weeks later), a total of 308 

concentration values were reported by the student with 70% of these being 

obtained through PolySearch. The student indicated that he considered 

PolySearch to be far a better search tool than his manual approach and that 

PolySearch had helped him tremendously. While it may be argued that such an 

assessment lacks the scientific rigour found in our other evaluations, we believe 

these results are perhaps the most realistic in terms of demonstrating the 

potential time-savings and the breadth of coverage that are possible with a robust 

text-mining system.
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5.1.8 Final Example

For our last example, we will illustrate how all of PolySearch’s functionalities 

can be used to go from a given disease to identify specific SNPs associated with 

the disease gene to the design of specific PCR primers.

SNPs or single nucleotide polymorphisms account for about 90% of all 

human genetic variation. They occur every 100 to 300 bases along the 3-billion- 

base human genome. It is generally believed that a better understanding of SNPs 

could lead to better approaches to treating or diagnosing diseases [41]. To use 

PolySearch to study SNPs, one can just use “SNP, SNPs, Polymorphism, 

Polymorphisms” as the association words. Figure 5.1 shows a “Disease-to- 

Gene” query where the query is “colon cancer”, the association words are 

“SNP”, “SNPs”, “Polymorphism” and “Polymorphisms” and the minimum R2 

filter is set to 1 leaving only the results that are highly relevant to the association 

words associated with SNPs.
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Query Keyword; co lo n -ca n cer
Query Type: D isea se-C en e /P ro te ln  A ssociation
A ssociation  W ords: SNP; SNPs; polym orphism ; p o ly m o rp h ism s... Complete list
D a ta b a ses  U sed: PubMed
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>= ;i Z Score >* p £ m y  Score >= i RS-R1 >= RS-R2 >= its*ra>= RS*R4 >=

Currently sort by: Relevancy Score, (Click on the column header for other sorting options or sort by Most Recent PubMed)
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ICycteygenase 2; PGG/HS; PGH synthase 2: PGHS 2... 1 J

2(17 12283 (0,6,77,328)
„  Antigen NY GO 13; Cellular tumor antigen p53; LFS1; IFS1; Lfsl; .. .  m ,  „ . . . .  

piJ IPhosphoprotein pS3; TP53; TRP53 ,„  1 U f c l a & t M f f l

3 4,5 635 (0,1)22,80)
. . . .. . . . . . . . . . . . .

4 3,4 488 (0,1,17,58)

5 :;2,4 s363 (0,4,12,43)

6 2 f  315 (0,3,10,50)”  ™~

m , iHUMPPARG; NR1C3; PAX8/PPARG fusion gene; PPAR gamma; PPAR1 ... 
PPARga"  gammaZ; PPARG; PPARG l; PPARG 2

E ca^ efin iiArc l; CAM 120/80; CD324; CD324 antigen; C0H1; CDH1; CDHE; ii ({) {1? ;8« 
iiCadhenn i ... ...i„xj—i—i

C K RAS; Calu 1; Cellular c Ki ras2 proto oncogene; GTPase KRas; . , ... 
b IRAS2A; If RA52B; I ras p21 protein; K RAS4A „

insulin INS; Insuin precursor; Promsuin t 25 (0,3,10,501

7 1.7 .264(1,6,7,9)
GST class thsta; GST class thsta l; GSTT1; GSTT1; GSTT1 

alutathione S transferase T1 orotem; Glutathione S transferase theta 1; Glutathione ;i 2 (1,6,7,91 
transferase Tl 1; Gsttl ,„

8 1 5 237(0,4,7,42)

9 1,3 212 (0,1,7,32)

10 1,2 195 (0,2,6,35)

5,10 methylenetetrahydrofolate reductase; MTHFR; MTHFR 
methylenetetrahydrofolate ..protein, Methylenetetrahydrofolate reductase intermediate feim; n
reductase nMethylenetetrahydrofblate reductase long isoform; ;i . . . . . . . ‘

M̂ethylenetetrahydrofolate reductase short isoform; NAOPH

AsT422; TS! TSa5®l TYMS; Thymidylate synthetase; i| thymidylate synthase mMm mm, lm > mm.
. iiApoptotic cysteine protease; Apoptotic protease Mch 5; CAP 4; I , ,  ... 

p8 i;CAP4; CASP 8; CA5P8; CASP8 protein; Cap4,., |  • • 1 j

Figure 5.1: Results from a “Disease to Gene” query where the query is colon 
cancer, the filter words are SNP, SNPs, Polymorphism and Polymorphisms, 
the minimum R2 filter is set to 1, and the maximum number of abstracts is 
set to 2000.

COX-2 is a well known gene associated with colon cancer so it is not surprising 

to see that some SNP studies have been done in relation to colon cancer and 

COX-2. By briefly scanning through the results, we see that glutathione S
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transferase T1 (GSTT1) stands out as having only two abstracts but GSTT1 has 

the highest Rl and R2 scores. Looking at the key sentences for GSTT1 (Figure 

5.2), it seems that the SNP/polymorphism association of colon cancer and 

GSTT1 is quite strong and maybe worth further investigation. By looking at the 

relevancy score and the PRI (without even looking at the key sentences), one can

quickly gain insight on the strength of this association.

Q uery K eyw ord: c o lo n -c a n c e r
Q uery T yp e: D is e a s e -G e n e /P r o te in  A sso c ia tio n
A sso c ia tio n  W ords: S N P ;S N P s ;p o ly m o r p h is m ;p o ly m o r p h is m s ... Complete List
D a ta b a s e s  U se d : PubM ed
G e n e /P r o te in :  g lu ta th io n e  S t r a n s fe r a s e  T1
A lia se s:  GST class theta; GST class th eta  1; G ST T 1; GSTT1; GSTT1 protein; Glutathione S transferase theta  1; Glutathione transferase T 1 1; G sttl  
T otal R e le v a n c y  S co re : 244

f  Color Code :

Query Gene/Protein r  <" L, jo Metabolite Association Word

Relevancy
Score r -
150
(1 ,3 ,4 ,5 )

H
d

16596290

:iw
ar

9 4 (0 ,3 ,3 ,4 )

G
let

1 621776?!p[

Pr
he

'Key Sentences I FJ
petals

Color
Coded

Text

Color
Coded
Text

Figure 5.2: The key sentences for SNP/polymorphism association between 
colon cancer and GSTTl.
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To further study GSTT1, one can use PolySearch’s “Gene to SNP” search by 

entering GSTT1 as the input gene symbol. Figure 5.3 shows the PolySearch’s

output for “Gene-to-SNP” using GSTT1 as the input.

........................ ■ .............. . .......................... SNPs for CSTT1 ___  ■ ________  ; __ ________

Chromosome p0iYmorpt]jsm Cene Symbol Position 
dbSNPID Chromosome „  Funaion ,  Allelic (Total) Allelic (Caucasian) 

Position Orientation Cene Name Ammo

r s l 130990
22

22714217

C/C

forward

c s n i

glutathione 
5-transferase theta 1

coding-synonymous
5

L/L
C 1 6 2 /1 6 2  1.000 C 5 6 /5 6  1.000:

22 A/C CSTTl

glutathione 
S-transferase theta  1

reference
104

A 1 6 2 /1 6 2  1.000 A 5 6 /5 6 1 .0 0 0
22709402 forward T/T

rsT 1550606
22

22714143

C/7

forward

CSTTl

glutathione 
S-transferase theta  l

coding-nonsynonymbus
30

P/L
Not Available Not Available

22 C/T CSTTl

glutathione 
S-transferase theta  1

co d in g -syn o n p ou s
228

Not Available Not Available
22706462 forward K/K

rsl 7656199
22

22711766

A/C

forward

CSTTl :

glutathione 
S-transferase the ta  1

cod ing-nonsynonpous
*5.

C/F
T 1 6 4 /1 6 4 1 .0 0 0 T 5 8 /5 8  1.000

rs2234953
22

22706833

A/C

forward

CSTTl

glutathione 
S-transferase theta 1

coding-nonsynonpous
173

K/E
C 1 6 6 /1 6 6 1 .0 0 0 C 5 8 /5 8 1 .0 0 0

rs2266633
22

22706929 !

A/C

forward

GSTTl

glutathione 
S-transferase thfeta 1

cod ing-nonsynonpous
141

N/D
C 1 6 6 /1 6 6  1.000 G 5 6 /5 6 1 .0 0 0

22 A/C CSTTl

glutathione 
S-transferase theta  1

cod ing-nonsynonpous
21

C 1 6 6 /1 6 6 1 .0 0 0 C 5 6 /5 6  1.000
22714171 forward T/A

rs2Z66636
22

22706996

A/C

forward :

GSTT1

glutathione 
5-transferase theta l

co d in g -syn o n p ou s
118

V/V
C l  7 0 /1 7 0  1.000 C 5 6 /5 6  1.000

rs2266637
22

22706845

C/T

reverse

g st ti

glutathione 
S-transferase theta 1

cod ing-nonsynonpous
169

l/V

C 1 1 /1 7 0
11/170

T 1 5 9 /1 7 0  
0.935

C 0 /5 8
0.000

T 5 8 /5 8
1.000

Figure 5.3: The output for a “Gene to SNP” search using GSTT1 as input. 
PolySearch collects important information about SNP such as: position, 
type of polymorphism, gene symbol/name, function and allelic frequency.

Once the “Gene-to-SNP” query has been completed, then the “SNP to PCR 

Primer Design” search can be used to design PCR primers for the relevant SNPs.
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Figure 5.4 shows the PolySearch’s output for “SNP to PCR Primer Design” 

using rs2234953, rs2266633, rs2266636 and rs2266637 as input.

„ „  S e q u in ie  M oiling 
ID Tem p 

C O

1 (S2234953 59.298

V  p rim ei 
Penalty  
(Lower 

15
b i-tie ij

1.701644

P osition
(S tart,

Length)
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M elting
Tem p

CC)

59.685

3 ' prim ei 
Penalty  
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IS
b e tte r)

1.314764

P osition
(S tart,

Length)

244,19

A llelic (Total)

C 1 6 6 /1 6 6 1 .0 0 0

Aiieiic 
( r  tu ru s .an )

1.000

A m plicon
Length

85 TCCTCCTCAC

2  ;s2266633 59.679 0.320904 153,20 59.27? 1.723003 219,19 C l  6 6 /1 6 6  1.000 C 5 6 /5 6
1.000 67 Cl

3 52266636 59.734 0.265715 166,20 55.369 6,631201 237,18 C l 7 0 /1 7 0  1.000 C $ 6 /5 6
1.000 72 CTAA

4 :s226663? 59.576 0.423908 15820 59.685 1.314764 256,13
A

1 1 /1 7 0
0.065

C
IS 9 /1 7 0

0,935

«
0 /5 8
0.000

c
5 8 /5 8
1.000

99 AACCCCTTCCTTACrC-

Figure 5.4: An illustration of the PCR Primer Design feature in PolySearch.

The “SNP to PCR Primer Design” search returns: 1)5’ primer information, 2) 3’ 

primer information, 3) allele frequencies and 4) a colour coded amplicon 

sequence. The primer design results can be downloaded in tab delimited format 

which can be opened in MS Excel. This example illustrates some of the 

integrated search functionalities in PolySearch. It is just one example of many 

possible integrated searches that PolySearch supports.

5.2 Discussion

One of the most common queries (and among the most common experiments) in 

biomedical research is “Given X, find all associated Y’s”. Examples of such 

queries might be “find all polymorphisms associated with breast cancer” or “find 

all metabolites associated with kidney transplant rejections”. With the growing 

volume of data from genomic, metabolomic and proteomic experiments these 

types of queries are becoming increasingly common. However, with most
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existing database search tools these queries are not so easily answered. 

PolySearch was specifically designed to answer these kinds of associative 

questions. Through its use of customized thesauruses PolySearch allows users to 

query eight of the most common multi-component biological concepts including: 

diseases, genes/proteins, SNPs, drugs, metabolites, tissues, organs, and 

subcellular localization. In addition, users may also provide their own 

thesauruses to permit any types of specialized text searches.

PolySearch brings a number of useful innovations to the area of 

biomedical text mining. First, it expands the breadth of query possibilities by 

including a much more diverse set of thesauruses or synonym dictionaries. 

Second, it incorporates the very useful textual data found in many other 

biological databases (OMIM, DrugBank, SwissProt, HMDB, HPRD, GAD) and 

integrates this into its text mining and text scoring processes. As the evaluations 

show, integrating these manually curated databases improves the performance of 

PolySearch’s text mining system by increasing both precision and recall. Third, 

PolySearch employs a scoring scheme that combines both word co-occurrence 

and sentence patterns. This leads to a relevancy score ranking that is aided by 

the PolySearch Relevancy Index (PRI) to help users immediately grasp the 

quality of any association. The PRI (in particular R l and R2 scores) is also used 

to as an innovative scoring cut-off for automatic information extraction as shown 

in the “Given Drug Find Associated Gene”, the “Given Metabolite Find 

Associated Gene”, and the “Given Disease Find Associated Gene” assessments 

(sections 5.1.4, 5.1.5 and 5.1.6). In general, PolySearch exhibits the best overall
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performance of the text mining tools that we assessed. Furthermore, PolySearch 

is significantly faster than using PubMed and manually reading abstracts. 

Fourth, the use of customizable association words and R l, R2 sentences 

provides users with useful information and direct control over how to rank or 

assess the text-derived associations. Instead of giving users a ranking system 

that is pre-defined, PolySearch gives the control back to the user, allowing a user 

to use any association words they choose. In addition to these innovations, 

PolySearch also borrows a number of excellent ideas from existing text mining 

systems. These include the use of colour-coded word highlighting schemes (as 

found in MedMiner, iHOP, ALIBABA and EBIMed), the selection and display 

of key sentences (as found in MedMiner, iHOP, ALIBABA and EBIMed), the 

extensive use of hyperlinks (as found in Entrez, iHOP and EBIMed) and the 

connectivity to multiple databases (as found in iHOP and Entrez).

Relative to other biomedical text mining systems PolySearch appears to 

be unique in its ability to link text mining with SNP analyses. With the 

completion of the HapMap project [42] and the growing importance of 

pharmacogenomics and SNP profiling [43] we believe this capacity will be 

particularly important to many biomedical and pharmaceutical researchers. 

PolySearch gathers data from a wide variety of SNP and mutation databases and 

integrates this data to provide critical information about the potential importance 

of a SNP or mutation. The mutation data from HGMD [5] links mutation 

information to specific diseases, providing a valuable resource for disease- 

mutation associations. For SNP analyses, PolySearch assembles data on a
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variety of SNP features including: SNP function (eg: synonymous,

nonsynonymous, coding, non-coding), level of validation, allele name, allele 

position, allele frequencies, amino acid change, and amino acid position. Based 

on these features, researchers can quickly select SNPs of interest for further 

study. For example, a SNP that is nonsynonymous, validated, and has varying 

allele frequencies among different ethnic populations will generally be more 

useful than a SNP that is synonymous and not validated.

Because of its SNP data mining capacity PolySearch can be used purely 

as a SNP analysis tool. For instance, users can retrieve SNP data such as 

function and allele frequencies and use them to determine which SNPs need 

specially designed primers using PolySearch's primer design tool. Alternatively, 

PolySearch can be used to study disease-SNP, gene-SNP, drug-SNP and 

metabolite-SNP associations. For example, one can use PolySearch to construct 

a query such as “Given drug find gene(s)” to generate a list of genes that have 

possible associations to the query drug. Once a gene or set of interesting genes is 

identified, users may then employ the “Given gene find SNP” query to find 

SNPs that are associated with the gene or genes of interest. Once the SNPs are 

identified, users may continue to use PolySearch to help carry on with SNP 

analysis. The example given in section 5.1.8 demonstrates how this can be done 

for disease-SNP associations. Similar methods can be applied to other types of 

SNP analyses.

PolySearch can also be used as a tool to facilitate database annotation 

and database curation. Similar efforts have been undertaken with LitMiner and
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WikiGene. In our case we have used PolySearch to annotate the Human 

Metabolite Database (HMDB) [7] and DrugBank [6]. For instance, the “Given 

text word find metabolites” has been used to determine the presence and 

concentrations of metabolites in a number of biofluids. Likewise, the “Given 

metabolite-Find Diseases” search has been used to help identify particular 

metabolites or metabolite profiles associated with a variety of diseases. The 

feedback from annotators has been very positive, suggesting that PolySearch is a 

particularly useful tool for database annotation. This feedback has also helped to 

improve PolySearch’s user interface and to expand its capabilities.

Text mining is still an imperfect science and so the results of any 

PolySearch query should always be treated with some prudence. Therefore users 

are always advised to take some time to read and analyze any PolySearch results. 

Indeed PolySearch is really designed to facilitate user validation. As with any 

text mining tool, PolySearch’s results should be considered as fragmentary 

pieces of evidence or potential hypotheses that require some degree of intelligent 

scrutiny before a solid link or a definitive association can be made. Typically 

the most frequently cited associations or those with the highest relevancy scores 

can be assumed to have solid supporting evidence. Therefore whenever a R l, 

R2, or R3 hit to a non-PubMed database occurs, one should consider that 

association to be generally well-supported. When relevancy scores are low and 

there are no R l, R2 or R3 hits, then the validity of the association is probably 

dubious. With most areas concerning textual analysis, there are no hard and fast 

rules; however, with PolySearch we believe that we have made some important
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progress in terms of automatic information extraction as shown with a number of 

our evaluations.
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Chapter 6 

6. Conclusion and Future Work

6.1 Conclusion

In this thesis, we presented a brief survey of existing biomedical text mining 

systems and introduced a new tool, PolySearch, which offers diverse biomedical 

search and text ranking possibilities. As seen from the descriptions given in 

Chapters 4 and 5, PolySearch is a collection of tools designed for flexible and 

diverse text mining applications. In particular, it supports the mining and 

discovery of associations between diseases, genes, drugs, metabolites and SNPs. 

PolySearch provides a ranking scheme to assess the strength of these 

associations and displays its results in a transparent manner. Users can also use 

PolySearch to gather SNP data concerning a variety of SNP features including: 

SNP function, validation, allele, allele position, amino acid, amino acid position, 

and allele frequencies. The functionalities in PolySearch can be used 

independently or in an integrated manner. PolySearch thus represents a novel 

attempt to deal with the fragmentary, non-contextual nature of most biomedical 

data.
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6.2 Future Work

PolySearch is not without some limitations. As a text mining tool, PolySearch 

uses a relatively simple dictionary approach to identify biological or biomedical 

entities. This means PolySearch cannot identify novel or newly named diseases, 

genes, cell types, drugs or metabolites. Another limitation lies in its inability to 

extract context or meaning from sentences or terms. Indeed, the majority of 

PolySearch’s errors come from incorrect term identification (the identified term 

has a different meaning) or incorrect word associations such as “Drug X and 

Protein Y were used together to improve Process Z” or “Drug X and Drug W 

inhibit Protein Y and Protein Z respectively” (in this case the association 

between X and Z and the association between W and Y would be incorrect). 

Methods that use artificial intelligence (AI), word context or machine learning 

(ML) methods could potentially improve the current term identification system 

[44], Likewise, AI or ML methods could potentially decipher the context or 

meaning of the biological/biomedical associations they find. These technologies 

could be used in the future to further complement PolySearch’s dictionary 

approach and its relatively simple sentence pattern recognition system. No 

doubt as the individual components in PolySearch improve, the overall 

effectiveness of PolySearch would become better.

Currently, PolySearch employs a manual interactive relevancy feedback 

mechanism. While we used this manual approach to improve the selection of 

association words for PolySearch’s default searches (thus improving 

PolySearch’s performance), it is unknown how well novice users can take

114

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



advantage this feature for more customized searches. In addition, for the “Given 

Text Word Find Associated Text Word” search, it is impossible for us to provide 

a default association word list. In the future, we would like to incorporate an 

automatic relevancy feedback mechanism in PolySearch such that PolySearch 

can automatically provide suggestions for relevant association words.

PolySearch is also somewhat limited in its information display 

capabilities. Currently for each query, PolySearch returns a list of results ranked 

by a relevancy score. For each possible association, PolySearch displays key 

sentences and a hyperlinked “details” view. For queries with relatively few 

associations, this presentation is still quite effective. However for queries with 

many associations an automatically generated summary would be more useful. 

The next step for PolySearch is to possibly organize key sentences into different 

categories, or to use only short and conclusive sentences similar to Chilibot [45], 

or possibly to use sentence clustering method similar to CIDR [46]. These auto

generated summaries would ideally display short search synopses that would 

link back to PolySearch’s results. The auto-generated summaries could also be 

used as short stubs for new entries into manually curated databases.

While PolySearch provides an impressive array of tools for SNP 

analyses, there are a number of new and sophisticated SNP tools available such 

as: flanking SNP query [47], SNP flanking sequence [47], SNP cutter [47], and 

Pyro primer [47] that offer very useful SNP annotation features that could 

complement what PolySearch generate. We hope to integrate one or more these
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tools into PolySearch in the future as a way to further enhance PolySearch and 

its data mining/analysis capabilities.
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