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ABSTRACT 
A system dynamics (SD) model was developed in the Tailings Management Simulator (TMSim) to simulate consolidation 
processes under quiescent conditions. A top-down iterative approach guides the overall philosophy of the modelling 
process. The GoldSim software was used as the main simulation environment to implement various stock-flow 
relationships and causal loop diagrams. For quiescent consolidation, an explicit finite difference scheme was used to solve 
the governing equation for one-dimensional large-strain consolidation process. The SD consolidation model was calibrated 
with a commercial software FSCA under a variety of tailings parameter input and deposit geometry. The model was also 
validated against past case histories and experimental data. Simulation results demonstrated that the SD model is capable 
of preserving key physics of the large-strain consolidation process while exposing important variables in a simplified and 
transparent manner. Once the deterministic base case is successfully simulated, stochastic processes are incorporated. 
Uncertainties are addressed by assigning probability distributions to selected input parameters. Nested Monte Carlo 
techniques will be used to explicitly model the two types of uncertainties: those due to inherent randomness (i.e. fines 
content) and those due to lack of knowledge (i.e. insufficient data collection or ignorance).  
 
Un modèle de dynamique des systèmes (SD) a été développé dans le simulateur de gestion des résidus (TMSim) pour 
simuler les processus de consolidation des résidus dans des conditions de repos. Une approche itérative descendante 
guide la philosophie globale du processus de modélisation. Le logiciel GoldSim a été utilisé comme l’ environnement 
principal de simulation pour implémenter différentes relations stock-flux et diagrammes de boucles simples. Pour la 
consolidation au repos, un schéma de différences finies explicite a été utilisé pour résoudre l'équation régissant le 
processus de consolidation unidimensionnel à grande contrainte. Le modèle de consolidation SD a été calibré avec un 
logiciel commercial FSCA sous une variété de paramètres d'entrée des résidus et de géométrie de dépôt. Le modèle a 
également été validé par rapport aux antécédents de cas et aux données expérimentales. Les résultats de la simulation 
ont démontré que le modèle SD est capable de préserver les principales caractéristiques du processus de consolidation 
à grandes contraintes tout en exposant les variables importantes de manière simplifiée et transparente. Une fois le cas de 
base déterministe simulé avec succès, les processus stochastiques sont incorporés. Les incertitudes sont adressées en 
affectant des distributions de probabilité aux paramètres d'entrée sélectionnés. Les techniques de mise à jour de Monte 
Carlo imbriquées seront utilisées pour modéliser explicitement les deux types d'incertitudes: celles dues au caractère 
aléatoire inhérent et celles dues au manque de connaissance. 
 
 
1 INTRODUCTION 
 
 
In the oil sands mining industry, the Tailings Management 
System (TMS) is a complex process that involves dynamic 
interaction among distinct but inter-related sub-systems. 
Various research has focused, in isolation, on the individual 
components of TMS at a micro scale (Beier et al, 2014). 
Therefore, a system dynamic simulation tool, TMSim, was 
developed to address this lack of integration and bring 
together different disciplines on a common platform. 
GoldSim software was chosen as the primary simulation 
engine for its graphical user-friendly interface, object-
oriented programming environment and ability to provide 
insights in system behavior under data-poor scenarios 
frequently encountered in mining operations. 
 

Current tailings regulatory framework (Directive 085) in 
Alberta emphasizes the importance of fluid tailings 
management through volumetric reduction of both legacy 
Mature Fine Tailings (MFT) and future growth of fluid fine 
tailings. The implementation of new dewatering 
technologies, some borrowed from metals mining industry 
while others still in the pilot stage, poses significant risks 

when the extended mine life of oil sands mines is taken into 
account. To effectively communicate risks, it is useful to 
first classify uncertainties into two separate categories: 
those due to lack of knowledge or ignorance (epistemic) 
and those due to inherent variabilities (aleatory).  
 

For the deterministic model, a simplified quiescent or 
self-weight consolidation module was created in TMSim 
based on the causal loop diagram in Figure 1 and an 
explicit finite difference numerical scheme described in 
Section 3.3.2. For the Monte Carlo simulation, 
compressibility (e-𝜎′) and permeability (e-k) relationships 
are assigned probabilistic distributions. Nested Monte 
Carlo technique is used to explicitly model epistemic and 
aleatory uncertainties. A simple case study based on 
deposition of Thickened Tailings (TT) is demonstrated 
here. 
 
 
 
 
 



 

2 OBJECTIVES 
 

The objectives of this paper are developed sequentially 
during the modelling process and are summarized below:  
 

a) Implement a consolidation module based on 
large-strain consolidation theory in a SD-based 
environment. 

b) Using the base case model developed above, 
explicitly model uncertainties due to lack of 
knowledge and those due to inherent variabilities 
using nested Monte Carlo techniques.  

c) Demonstrate the value of probabilistic approach 
in communicating uncertainties to regulators and 
internal stakeholders. 

 
 
 
3 DETERMINISTIC MODEL  
 
3.1 Causal Loop Diagram 
 
The first step in SD-based model formulation is to identify 
feedback loop structures by creating a causal loop 
diagram. Causal loop diagram is an effective tool of 
communication during early conceptual development stage 
(Richardson, 1986). In this modelling exercise, causal loop 
diagram is used for conceptualization purposes only.  
 

The dynamics of consolidation process is 
conceptualized as a causal loop diagram drawn in the 
Vensim software (Figure 1). Stock variables are 
represented by labels inside a rectangle. Flow rate and 
converters that explain the flow rates are simply labelled in 
plain text. The positive sign at the arrow head indicates a 
positive relationship, that is an increase in one variable will 
cause increases in another. The negative sign denotes a 
negative or inverse relationship, that is an increase in one 
variable will cause decreases in another. In a closed loop, 

odd number of negative signs indicate negative feedback 
structure while even number of negative signs indicate 
positive feedback structure. Negative feedback brings the 
system to equilibrium state while positive feedback 
amplifies growth and cause run-away behaviors (Ford, 
2010). 

 
In Figure 1, excess pore pressure is modelled as a 

stock element with construction rate as inflow and 
dissipation rate as outflow. Assuming that the Darcy’s Law 
is valid and that the principle stress in the foundation soil 
can be approximated by the vertical stress (i.e. no principle 
stress rotation), an increase in construction rate will trigger 
a series of chain reactions and lead to a negative feedback 
structure, which makes sense since the consolidation 
process brings the system back into balance. The counter-
clockwise loop symbol is also given a name to 
communicate the major theme of the feedback structure. 

 
This paper will focus on modelling the consolidation 

feedback loop in Figure 1.    
 
 
3.2 Hydraulic Conductivity and Compressibility 

Constitutive Relationships 
 
To solve the governing equation of large-strain 
consolidation, two key relationships are required: 
compressibility or effective stress-void ratio and saturated 
hydraulic conductivity-void ratio (Jeerivalpoolvarn, 2010). 
Constitutive relationships are derived from experimental 
data and most commonly curve-fitted to a power law 
function below: 
 
 

                                     𝑒 = 𝐴𝜎′𝐵
                  [1] 

 

  𝑘 = 𝐶𝑒𝐷                     [2] 
 

Figure 1: Conceptual causal loop diagram prior to detailed model development 

 



 

 

Where 𝑒 is the average void ratio of the soil layer and 𝑘 
is the hydraulic conductivity in m/day; A, B, C and D are 
curve-fitting coefficients. 
 

Other forms of equations, such as Weibull functions for 
hydraulic conductivity, have been proposed to handle 
different types of tailings and deposition conditions. For 
demonstration purposes and simplicity, the power law 
functions are used in the TMSim module.  If required, users 
can easily define customary constitutive relationships in 
TMSim. 
 
 
3.3 Model Formulation  
 
3.3.1 Governing Equation 

 
The one-dimensional finite strain consolidation theory 
(Gibson et al, 1967) has been the theoretical basis for 
modelling consolidation behavior of soft soil and tailing 
slurry. The theory assumes that Darcy’s Law is valid, 
properties of soil skeleton is not time-dependent and there 
is no lateral consolidation strain. The governing equation is 
derived from satisfying both material equilibrium and fluid 
continuity equations and expressed in terms of void ratio 
below:  
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Where 𝜌𝑠 is the solids density; 𝜌𝑓 is the fluid density; 𝑒 

is the void ratio; 𝑘 is the hydraulic conductivity expressed 

as function of void ratio; 𝜎′  is the effective stress also 

expressed as function of void ratio; 𝑡 is the time step; and 

𝑧 is the material coordinate. 
 
 
3.3.2 Numerical Solution 

 
An analytical solution to equation [3] is not possible due to 
non-linearity of its coefficients. Finite difference methods 
based on either explicit or implicit scheme are used to solve 
equation [1]. Bromwell (1984) and Pollock (1988) showed 
that explicit scheme produced similar and sometimes 
better results than the implicit scheme provided that 
stability and convergence issues are properly addressed.  
Additionally, the ability to reduce spatial discretization in 
the implicit scheme is difficult to achieve in SD-based 
software. Implicit scheme also involves solving systems of 
equations at each time step, requiring external solvers to 
be linked to the SD platform. 
 

Therefore, an explicit numerical scheme is chosen for 
its simplicity, non-iterative nature and ease of 
implementation in a SD environment. For the TMSim 
module, an explicit backward time and central difference 
space numerical scheme formulated by Cargill (1982) is 
used to solve the governing equation [3]. The solution is 
written as: 
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Where 𝛾𝑤 is the unit weight of water; 𝛾𝑏 is the buoyant 

unit weight of solids; 𝛾𝑠 is the unit weight of solids; 𝑖 is the 

spatial increment and 𝑗  is the time increment; ∆𝑧 is the 

mesh discretization in material coordinate and ∆𝑡  is the 

time discretization. 𝑎(𝑒𝑖,𝑗) and 𝛽(𝑒𝑖,𝑗) are re-formulated in 

terms of void ratio and power law curve-fitting coefficients: 
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𝛾𝑏 = 𝛾𝑠 − 𝛾𝑤                                          [7] 

 
 

For impermeable boundaries, an imaginary mesh point 
below the bottom boundary is used: 
 
 

𝑒0,𝑗 = 𝑒2,𝑗 + 2∆𝑧 (
𝑑𝑒

𝑑𝜎′)
𝑒𝑖,𝑗

∗ 𝛾𝑏                           [8] 

 
 

Where 
𝑑𝑒

𝑑𝜎′  is determined from compressibility 

relationship at 𝑒1,𝑗. Once the fictitious 𝑒0,𝑗 is calculated at 

time step 𝑗 , 𝑒1,𝑗+1  can be determined from equation [4]. 

Then the entire process is repeated at each time step. 
 
 
3.3.3 Model Calibration  
 
Calibration of the model involves optimization of spatial 
discretization and time stepping at the bottom boundary. 
The SD module was initially developed with only three 
layers of spatial discretization. Once the simulated 
behaviors qualitatively matched the expected behaviors, 
the number of discretization was increased and kept at ten 
layers as a compromise between numerical accuracy and 
ease of model maintenance and communication. 
 

Further discretization of spatial and time step variable, 
denoted by an integer value of 𝑁, is required for equation 
[4] and [8] since void ratio is highly sensitive to changes in 
effective stress at the initial stage of consolidation. For 
example, to model a deposit thickness of 1.5 m, a time step 
of 1 second and spatial discretization of 100 at the bottom 
boundary are required. However, as general rule of thumb, 
the value of 𝑁 shall be kept as small as possible to avoid 
truncation errors due to abrupt transition from finer mesh to 
coarser mesh. Very fine mesh also requires ∆𝑡  to be 
extremely small, significantly increasing computing time. 
This manipulation of ∆𝑧  and ∆𝑡  is only applied at the 



 

bottom boundary whenever large values of 
𝑑𝑒

𝑑𝜎′  are 

expected. The rest of spatial and time discretization 
scheme remains the same during simulation.  
 
 
3.3.4 Model Visibility and Scalability  
 
Model organization takes advantage of the object-oriented 
programming environment in GoldSim. In the model, each 
discretized layer is organized in containers (Figure 2). All 
elements and relationships of the numerical solution are 
exposed and visible to the user (Figure 3), facilitating 
communication of the numerical process. With the 
exception of the bottom layer where special manipulation 
in spatial discretization and time step is required, elements 
in all other containers share the same functional 
relationships and naming conventions. Therefore, by 
making the model scalable and repeatable, additional layer 
discretization can be easily added or removed with 
minimum amount of work. The benefit of this modelling 
best practice cannot be under-estimated when SD model 
becomes large and complex.  
 
 

 
Figure 2. Layer setup using containers  
 
 

 
 
Figure 3: Exposed elements of the numerical solution 
inside each container 

4 VALIDATION OF DETERMINISTIC MODEL 
 
Three sets of scenarios were executed to simulate the 
quiescent consolidation of tailings with different 
compressibility and permeability constitutive relationships. 
Single drainage condition is assumed for all three 
scenarios. Three types of tailings were used in the 
validation runs: un-treated raw Mature Fine Tailings (MFT), 
Thickened Tailings (TT) and Phosphate Tailings (PT). A 
wide range of initial deposit heights and solids content were 
used to test the robustness of the model, particularly under 
extreme input parameters such as small initial deposit 
thickness and low initial solids content. Settlement over 
time, effective stress and void ratio profile are the primary 
performance indicators used to validate the model.  
 

Table 1 and Table 2 listed input parameters and initial 
boundary conditions for various validation runs 
respectively. Only single drainage conditions are shown 
since bottom drainage is typically less than 10% of the total 
drainage for most deep cohesive low-permeability tailings 
(Jeeravipoolvarn et al, 2014). In all three validation 
scenarios, a uniform initial solids content profile is assumed 
for the entire depth of the deposit. Unit for compressibility 
parameter A is in kPa. Unit for hydraulic conductivity 
parameter C is in m/day. It should be noted that for 
thickened tailings, key performance indicators were 
validated against results from a commercial software FSCA 
developed by Dr Jeeravipoolvarn. Results from the 
validation runs are shown in Figure 4 to 6. 
 
 
 Table 1. Input parameters for validation runs 

Deposit Type A B C D 
Height 

(m) 

MFT1 3.40 -0.31 7.0E-06 3.82 10 

TT2 1.62 -0.26 3.5E-04 3.45 70 

PT3 7.72 -0.22 2.5E-07 4.65   9.6 

1From Pollock, 1988 
2 Total TT laboratory data from COSIA, 2012  
3 Phosphate Tailings from Townsend and McVay, 1990 

 
 
Table 2. Boundary conditions for validation runs 

Deposit Type Drainage 
Initial Solids 
Content (%) 

Gs 

MFT Single 32      2.27 

TT Single 60 2.441 

PT Single 16      2.82 

1From Scott et al, 2008b 

   
 
 
 
 
 
 
 
 



 

5 DISCUSSION 
 
Scenarios with varying deposit thickness, tailings 
properties and consolidation duration were conducted to 
calibrate and validate the model against a commercial finite 
strain consolidation analysis software FSCA.  
 

For the un-treated MFT material in the 10 m column 
settling test, TMSim consolidation model showed 
agreement with the settlement output from numerical 
model based on the implicit scheme. In his thesis, Pollock 
(1988) attributed the discrepancy between settlement 
predicted by the numerical model and measured data to 
thixotropy and sensitivity of settlement output to minor 
changes in hydraulic conductivity. Figure 4a indicated that 
consolidation occurred throughout the entire depth of the 
column while numerical results showed no consolidation 
above 5 m depth. Differences in solids content may be due 
to errors in sampling and thixotropy not being modelled.  
 

Similar to the model validation done by Jeeravipolvarn 
(2010), benchmark cases from Townsend and McVay 
(1990) were used to assess the performance of TMSim 
consolidation module. TMSim under-estimated the 
percentage of settlement in terms of the initial thickness by 
approximately 11% at the end of the analysis period 
(Figure 5a). The difference between predicted and 
measured data gradually increased starting from the one-
year mark of consolidation and became greater at the end 
of the analysis period. Figure 5b indicated good agreement 
in terms of void ratio profile except at the very top where 
such difference may be due to the spill-over effect of 
differences in settlement prediction. 
 
 
 

 

 
 
 

Results based on a TT deposit thickness of 70 m and 
initial solids content of 60% indicated that TMSim is in good 
agreement with FSCA in terms of interface height and void 
ratio profile as shown in Figure 6a and 6b.  
 

For deposit thickness less than 10 m and initial solids 
content less than 20%, TMSim may not be a suitable tool if 
greater accuracy at this data range is required. Predictions 
of void ratio profiles by TMSim near the surface of the 
deposit are poor based on results from Figure 4b and 
Figure 5b. However, the model performance near the 
surface may be attributed to the spill-over effect of 
differences in settlement prediction. 
 

For deep deposits with thickness greater than 20 m, 
TMSim consolidation module is a screening-level tool for 
basic prediction of consolidation behavior. It should be 
noted that the sedimentation process is assumed to have 
been completed in TMSim thus is not explicitly modelled. It 
is also worth noting is that spatial variability of consolidation 
behavior in three dimensions is not captured by TMSim as 
the numerical model is one-dimensional. Settlement 
prediction and void ratio profiles are assumed to be 
representative of the entire deposit area. These 
assumptions do not reflect the reality. Therefore, the SD-
based consolidation module is only suitable as a high-level 
screening tool. Finite strain analysis based on more 
rigorous numerical scheme such as the implicit method or 
finite element is required for detailed evaluations.  
 

 
Figure 4a. Settlement of raw MFT during 10 m 
column test 
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Figure 4b.  Void ratio profile for raw MFT during 10 m 
column settling test 
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6 STOCHASTIC MODEL FORMULATION 
 
One of the main advantages in adopting SD-based 
approach is the ability to simulate multiple scenarios using 
Monte Carlo techniques. Once the deterministic model has 
been calibrated and validated, stochastic simulation can be 
easily set up by assigning probabilistic distributions to 
controlling parameters and slightly modifying the model 
structure. In stochastic simulation models, it is useful to 
separately model uncertain or epistemic parameters as 
well as variable or aleatory parameters (Baecher, 2016). 
Uncertainty in epistemic parameters represents lack of 
knowledge that can be reduced through additional 
investigation or research. This lack of knowledge can come 
from insufficient laboratory and field investigation, 
theoretical simplifications and assumptions. On the other 
hand, aleatory parameters represent inherent randomness 
or uncertainties that cannot be reduced or eliminated.  
 

A simple case study involving quiescent consolidation 
of a 75 m thick Thickened Tailings (TT) deposit is 
demonstrated below. The main objective of the case study 
is for demonstration purposes. Therefore,  
   

Input parameters controlling the quiescent 
consolidation process can be divided into epistemic and 
aleatory category. This is accomplished by using a nested 
Monte Carlo technique. In a nested or two-dimensional 
Monte Carlo set-up, probabilistic input in the outer model 
represents epistemic uncertainty due to lack of knowledge 
while those in the inner model represents aleatory 
uncertainty due to inherent uncertainties in the system.  

 
In the simulation, the inner model represents variation 

of compressibility (A2 and B2) and permeability (C2 and 
D2) due to aleatory uncertainty which, by definition, cannot 
be reduced or eliminated. The outer model represents lack 
of experimental and field data. Since both the inner and 
outer model carry out Monte Carlo simulation, running the 
outer model multiple times creates a distribution of 
distribution for any output from the inner model.  

 
Figure 5a. Interface height for Phosphate Tailings 
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Figure 5b. End-of-consolidation void ratio profile for 
Phosphate Tailings 
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Figure 6a. Interface height for Thickened Tailings 
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Figure 6b. End-of-consolidation void ratio profile for 
Thickened Tailings 
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For aleatory uncertainties, it is important to distinguish 

between natural randomness and inherent uncertainties. 
There is no natural randomness in the tailings deposit since 
the deposition process, which is within operator’s control, 
has already taken place. Thus, the aleatory uncertainty in 
this case is assumed to arise from the limitation of site 
characterization. In reality, financial and logistical 
limitations restrict minimum borehole spacing and 
maximum coverage of the testing program. The 
probabilistic input for the inner model captures the inherent 
uncertainty, not the natural randomness.  
 

TT from Total’s experimental program is used as a 
simple case study to demonstrate the stochastic approach. 
Table 3 shows the probabilistic distribution input assigned 
to the curve fitting parameters in the outer model. Table 4 
shows the probabilistic distribution input assigned to curve 
fitting parameters in the inner model. Beta-PERT 
distribution is used for compressibility parameter A and 
permeability parameter C since there is lack of statistical 
data and insufficient sample size from which statistically 
significant inference can be drawn. Uniform distribution is 
used for compressibility parameter B and permeability 
parameter D since there is no significant variation in B and 
D based on large strain consolidation test data conducted 
on different types of TT (COSIA, 2012). Assignment of 
probabilistic distributions to each input can be data-driven 
or subjective based on expert opinions (Vick, 2002). In this 
case, epistemic uncertainty is assumed to deviate 30% 
from the most likely value. As mentioned before, aleatory 
or inherent uncertainty is assumed to be based on 
limitation of site characterization of the tailings deposit. 
Therefore, parameters in the inner model are assumed to 
deviate only 10% from values sampled from the outer 
distribution (Table 4). This is a reasonable assumption 
since variation in tailings properties is well delineated 
during the operational phase (CNRL, 2016 and Kearl, 
2013).  
 

In the nested Monte Carlo simulation, the outer model 
is set up as a static model without incorporating time 
duration and time stepping while the deterministic model is 
converted to a stochastic inner model. As a simple 
demonstration, a total of 50 realizations for both inner and 
outer model were run using Latin Hypercube Sampling 
method due to its balanced sampling of probability space. 
(McKay et al, 1979). 
 
 
Table 3. Probabilistic input for the outer model (epistemic 
uncertainty) 
 

Parameter Distribution 
Most 
Likely 

Minimum Maximum 

A1 Beta-PERT 1.62 1.14 2.11 

B1 Uniform N/A -0.29 -0.24 

C1 Beta-PERT 3.46E-04 2.42E-04 4.50E-04 

D1 Uniform N/A 3.11 3.69 

 

Table 4. Probabilistic input for the inner model (aleatory 
uncertainty) 
 

Parameter Distribution 
Most 
Likely 

Minimum Maximum 

A2 Beta-PERT A1 0.9*A1 1.1*A1 

B2 Beta-PERT B1 0.9*B1 1.1*B1 

C2 Beta-PERT C1 0.9*C1 1.1*C1 

D2 Beta-PERT D1 0.9*D1 1.1*D1 

 
 
 
7 RESULTS AND DISCUSSION 
 
By creating a distribution result element in the outer model, 
the probability of not exceeding certain magnitude of 
settlement is known. A probability-based settlement 
prediction will provide further input to future risk 
assessment exercises. Figure 7 shows multiple 
Complementary Cumulative Distribution Functions (CCDF) 
in the outer model as the result of epistemic uncertainty 
due to lack of knowledge. The most useful output is the 
CCDF in Figure 8, which considers both epistemic and 
aleatory uncertainty. In this case, the CCDF was 
constructed from aggregating a total of 2500 Monte Carlo 
runs which consisted of 50 realizations in the inner model 
and 50 realizations in the outer model. The total model run-
time was approximately four hours.  

Based on the CCDF in Figure 8, there is a 30% 
probability that the total settlement will exceed 18 m. 
Alternatively, the probability of total settlement not 
exceeding 18 m is 70% based on the Cumulative 
Distribution Function (CDF) instead.  
        
 
 

 
 
 
Figure 7. CCDFs from inner and outer model. 
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Figure 8. Combined CCDF incorporating both epistemic 
and aleatory uncertainties. 
 
 
8 CONCLUSIONS 
 
Consolidation of tailings deposit plays an important role in 
closure planning. A system-dynamics based model is 
developed and tested in this paper as the foundation for 
further stochastic simulation of tailings consolidation 
process. SD-based methods made all components of the 
numerical solution visible and easy to modify. This 
transparency also makes SD-based tools an ideal platform 
for communication and education. The developed model 
shows that system-dynamics is a viable approach provided 
that spatial variability and constitutive relationship can be 
reasonably simplified. The SD-based consolidation module 
in TMSim demonstrated successful simulation of deep 
cohesive tailings deposit. However, the model is still in its 
early stage of development. Therefore, the TMSim 
consolidation module should only be used as a high-level 
screening tool due to simplification of spatial variability in 
the model. Any detailed design or further analyses should 
be handled by more rigorous tools based on the large strain 
consolidation theory. Additional modification is required to 
extend TMSim’s applicability in partially-drained and un-
saturated conditions. The calibration process can also be 
automated to reduce computing time and increase 
numerical stability. 
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