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ABSTRACT 

Phase retrieval in the transmission electron microscope offers the unique potential 

to collect quantitative data regarding the electric and magnetic properties of 

materials at the nanoscale. Substantial progress in the field of quantitative phase 

imaging was made by improvements to the technique of off-axis electron holography. 

In this thesis, several breakthroughs have been achieved that improve the 

quantitative analysis of phase retrieval. An accurate means of measuring the electron 

wavefront coherence in two-dimensions was developed and pratical applications 

demonstrated.  The detector modulation-transfer function (MTF) was assessed by 

slanted-edge, noise, and the novel holographic techniques.  It was shown the 

traditional slanted-edge technique underestimates the MTF.  In addition, progress 

was made in dark and gain reference normalization of images, and it was shown that 

incomplete read-out is a concern for slow-scan CCD detectors.  Last, the phase error 

due to electron shot noise was reduced by the technique of summation of hologram 

series. The phase error, which limits the finest electric and magnetic phenomena 

which can be investigated, was reduced by over 900 % with no loss of spatial 

resolution. Quantitative agreement between the experimental root-mean-square 

phase error and the analytical prediction of phase error was achieved.   
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1 INTRODUCTION 
This thesis concerns progress towards quantitative phase retrieval of specimens in 

the transmission electron microscope (TEM).  To provide broad context for the thesis, 

the introduction will first define the phase as it relates to an electron wavefront in 

section 1.1. In section 1.2 a historical overview of the field of electron holography is 

provided. In section 1.3, an overview of the phase retrieval method of choice, off-

axis electron holography, is provided.  In section 1.4, requirements for electron 

microscopy in general and electron holography in particular to be considered 

quantitative is discussed.   

In Chapter 2, a third component signal in electron holography, the visibility or 

contrast of the interference fringes is examined.  The visibility is related to the 

coherence of the electron wavefront. Historically, coherence has been evaluated by 

measurement based on the minimum and maximum intensity values. A new method 

is presented, based on statistical moments that allow the visibility to be measured in 

a deterministic and reproducible fashion suitable for quantitative analysis. An 

algorithm that allows the visibility to be resolved in two-dimensions is provided, 

which is termed the local visibility. Thus the local visibility may be used to evaluate 

the loss of coherence due to electron scattering within a specimen, or as an aid in 

image analysis and processing. All visibility metrics are biased at low-dose 

conditions by the presence of shot-noise, which can be empirically normalized to 

achieve linear response.   

In Chapter 3, a new method for characterization of detector performance in the TEM 

is developed, based on the measured contrast of holographic fringes. The new 

method changes spatial frequency of the measured holographic fringes, generated 

by an electrostatic biprism and Schottky or cold field-emission gun, to sample the 

modulation-transfer function (MTF) of the detector. The MTF of a Gatan Ultrascan 

1000 charged-coupled detector (CCD) is evaluated using the new method and the 

results are compared to the established noise and slanted-edge method results. 

Requirements for accuracy of the edge and noise MTF methods are discussed.  We 

consider issues surrounding incomplete read-out and how it affects the gain 

reference normalization of the detector. We evaluate how the MTF affects 

optimization of experimental parameters in the TEM. 

In Chapter 4, the concept of improving the phase resolution by summation of 

hologram series is introduced.  Optimization of the double biprism holography 

configuration is provided.  An analytical model of image and phase drift, composed 

of a combination of linear drift and Brownian random-walk, is derived and 

experimentally verified. The accuracy of image registration via cross-correlation 

and phase registration is characterized by simulated hologram series. The model of 

series summation errors allows the optimization of phase error as a function of 
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exposure time and fringe carrier frequency for a target spatial resolution.  An 

experimental example of hologram series summation is provided on WS2 fullerenes. 

A metric is provided to characterize the object phase error from experimental 

results. The ultimate object root-mean-square phase error is 0.0085 rad (2π/740) at 

a spatial resolution less than 0.615 nm and a total exposure time of 900 s. The 

ultimate vacuum phase error is 0.0052 rad (2π/1200). The analytical prediction of 

phase error agrees with the experimental metric to +6.2 % inside the object and -2.1 

% in the vacuum.  

In Chapter 5, how the three topics in Chapters 2-4 interrelate are discussed.  The 

contributions towards the topic of quantitative phase retrieval are outlined and 

conclusions and directions for future work are offered.   

1.1 PHASE IN THE TEM  
Typically in the TEM one uses illumination that may be approximated as a plane 

wave. For the sake of discussion the electron wavefunction at the exiting surface of 

the specimen 𝜓(𝐫), known as the exit wavefunction, will also be assumed to be a 

plane-wave, 

 𝜓(𝐫) = 𝐴(𝐫)𝑒𝑖𝜙(𝐫) (1.1) 
where 𝐴(𝐫) is the amplitude modulation and 𝜙(𝐫) the phase modulation of the 

electron wavefront as a function of position 𝐫. The phase represents the sum 

contributions from a number of physical phenomena [1]. 

 𝜙(𝐫) = 𝜙𝐸(𝐫) + 𝜙𝑀(𝐫) (1.2) 
where E denotes the phase shift arising from electric fields, and M the phase shift 

arising from magnetic fields.  The electrostatic phase shift is, 

 𝜙𝐸(𝐫) = 2𝜋
𝑒

ℎ𝑣
∫ 𝑈(𝐫)𝑑𝑧 (1.3) 

where v is the electron velocity, e is the electron charge, h is Planck’s constant, and U 

is the electrostatic potential integrated along the electron path z.  The magnetic-

vector potential 𝜙𝑀 is, 

 𝜙𝑀(𝐫) = −
𝑒

ℏ
∫ 𝐀(𝐫)𝑑𝐳 (1.4) 

where 𝐀 is the magnetic potential in the plane defined by the position vector r.  

Electron holography has been applied to many material science applications [1-4].  

A motivation that is germane to Alberta, Canada is the study of charge-transfer from 

a substrate to a catalyst nanoparticle [5].  In such a case, the goal is to assess the 

total charge on the nanoparticle from the strength of the fringe field in vacuum. 

There are numerous issues that this simple electromagnetic model for phase shift, 

as outlined by Eqn. 1.3 and 1.4, does not address. The model for the phase does not 

address cross-talk between the amplitude and phase caused by the contrast-transfer 
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function of the objective lens [6]. Nor does it incorporate dynamic diffraction [7]. 

When Bragg diffraction is included in the analysis, the electric phase shift 𝜙𝐸  is 

further sub-divided to include crystal and geometric phase shift [8].   

1.2 HISTORICAL INTRODUCTION TO ELECTRON HOLOGRAPHY 
The technique of electron holography was originally envisioned by Denis Gabor in 

1947 as a means to correct the wavefront aberration of the electron microscope 

[8,9].  The magnetic lenses typically used in electron microscopy are all optically 

convex.  Therefore the means of correcting wavefront aberration used in photon 

optics, by mixing convex and concave optical elements, is not available in electron 

microscopy.  Gabor’s scheme involved recording an electron interference pattern in 

a film emulsion.  The hologram could then be reconstructed optically, by 

illuminating the emulsion and using optical components to correct the wavefront 

aberration.  Gabor was awarded the Nobel Prize in Physics 1971 for his work in 

holography [10].   

Electron holography did not enjoy initial success due to the limited coherence of 

Tungsten hairpin electron sources available at the time. Holography was first 

demonstrated in 1962 in photon optics, with the development of the laser [11].  

Progress towards electron holography was made throughout the 1960s and 1970s. 

The electron biprism was invented by Mollenstedt in 1956 [12]. This enabled 

electron interference to be demonstrated for the first time. Cylindrical lenses were 

used to create highly elliptical illumination, which in turn extended the source 

transverse to the hologram enough to detect faint interference fringes.   

The preferred method of holography in transmission electron microscopy is the off-

axis method.  In the off-axis method, the Mollenstedt biprism deflects two halves of 

the electron wavefront together.  The degree and angle of overlap is determined by 

the electrical bias on the biprism.  For rotationally symmetrical illumination, the 

shadow of the limiting aperture is bisected into two ‘D’-shaped illumination patterns 

which slightly overlap.  The specimen (or object) is placed within one of the ‘D’s, 

which forms the object wave, while the other wave passes through the adjacent 

vacuum. Within the overlap region of the two ‘D’s the two waves form a sinusoidal 

interferogram on the detector. The phase difference between the object and 

reference waves is encoded in the periodicity (or frequency) of the fringe pattern. 

Thus off-axis holography is essentially an interferometry method that is called 

‘holography’ for historical reasons.   

The practical employment of off-axis electron holography had to await the 

introduction of the Schottky and field-effect source [13,14].  This early work was 

reconstructed optically with a Mach-Zender interferometer, as originally envisioned 

by Gabor. Tonomura et al. focused on the fact that electron’s are phase shifted by 

passing through electrostatic and magnetic fields.  An example of early work in 
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electron holography was reconstructing the magnetic field in triangular Cobalt 

particles [15].   

A particularly famous experiment conducted by the Tonomura wavefront project 

was the direct observation of the Aharonov-Bohm effect [16-18]. Aharonov and 

Bohm claimed that as a consequence of gauge-theory, with relevance to the 

standard quantum physics model, that electron phase should be retarded in the 

presence of electrostatic and magnetic vector potentials.  A microscopic 

superconducting toroid was fabricated to create a pure magnetic potential in the 

bore, with the magnetic field completely expelled by the superconducting coating. 

Off-axis electron holography was used to show both that there was little leakage of 

magnetic field outside of the superconducting coating.  The result showed a clear 

phase shift of the holographic fringes inside the bore relative to outside the bore.   

The other primary line of research, first employed by Lichte in 1985, was the use of 

sub-Angstrom fringes for atomic-scale electron holography [19]. In this case, 

Lichte’s goal was the original proposal of Gabor to correct the lens aberrations post-

collection of the hologram [20], which continues to be an ongoing challenge.   

Lichte performed the first numerical reconstruction of an electron hologram (i.e. 

with Fourier transforms in a computer).  The photographic emulsion was scanned 

into a computer at a resolution of 2048 x 2048 pixels.  With the advent of greater 

computer memory, the large area of the film plates allowed 4096 x 4096 pixel 

holograms to be reconstructed. The later introduction of the CCD detector to 

electron microscopy allowed holograms to be recorded electronically without the 

need for scanning. Lichte has also made many important contributions by defining 

the theoretical limits of off-axis electron holography, for example the phase error 

equation [21]. Another example is optimization of the TEM for holography such as 

optimum focus to minimize cross-talk between amplitude at phase [22].   

Off-axis electron holography has found numerous applications in the 

characterization of nanoscale electric and magnetic behaviour of materials.  For a 

complete introduction, the reader is referred to the reviews by Lichte et al. [1][2].  

Examples of electron holography electric applications include: dopant profiling in 

semiconductors, measurement of electric dipoles and polarization in ferroelectric 

materials, measurement of strain in crystalline materials, and measurement of field 

around field-effect tips.  Magnetic applications include domain mapping, 

magnetization of thin-film, and measurement of magnetic moments in 

ferromagnetic nanoparticles. Electron holography has also been used to measure 

the mean inner potential of materials, for composition mapping, and for thickness 

mapping.   

1.3 OVERVIEW OF OFF-AXIS ELECTRON HOLOGRAPHY 
Off-axis electron holography is an interferometric method known as ‘wavefront-

splitting’ in the literature, whereby a Fresnel biprism splits the source into two 
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virtual sources. The electro-optical configuration uses an electrostatic biprism to 

separate the electron wavefront into an object and reference half.  The object wave 

passes through a specimen, while the reference passes through vacuum adjacent to 

the specimen, as shown in Figure 1.1.  

 

Figure 1.1 (reprinted from Chapter 2): Schematic representation of off-axis electron 
holography.  The electron wavefront is divided into two halves: the object wave 
(blue) passes through the specimen (orange spheres) while the reference wave 
(yellow) passes through adjacent vacuum.  The two plane waves converge on the 
detector, producing a parallel interference pattern known as an off-axis hologram. 

The biprism is typically a fine silica filament coated with a layer gold to make it 

electrically conductive.  When biased, it creates an electrostatic field between it and 

grounding plates (not shown) which deflects the two halves of the electron 

wavefront.  The result is periodic plane-wave interference pattern known as a 

hologram which is observed on a suitable detector.  An example hologram of Iridium 

nanoparticles on a carbon substrate is shown in Figure 1.2.   

The wavefront deflection induced by the biprism creates two virtual sources, 

denoted S1 and S2 in Figure 1.1. As biprism bias increases, the separation between 

the virtual sources increases. For the single biprism configuration shown in Fig. 1.1, 

both the hologram width and carrier frequency increase with increasing biprism 

bias. However, the separation of virtual sources puts strong requirements on the 

coherence of the source. The complex degree of coherence of the source, 𝛾(𝑞), 

describes the maximum fringe contrast that can be observed at the carrier 

frequency 𝑞𝑐 [23]. In electron microscopy, it is often more convenient to describe 

functions in terms of the spatial frequency q instead of position r, to be discussed 

further in section 1.3.1. The function  𝛾(𝑞) can be conceptually approximated as 

‘Gaussian-like’ [24]. For low carrier frequency there is little loss of coherence but 

then a rapid fall-off with higher carrier frequencies. As a result, the contrast of the 
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holographic fringes, which is known as the holographic visibility V, decreases with 

increasing carrier frequency.  

 

Figure 1.2: An example hologram of Ir nanoparticles (center) on an amorphous 
carbon substrate (bottom). The interference fringes can be observed as the fine 
vertical lines, with the image of the specimen superposed.  The upper half of the 
image is vacuum. 

Electron holography is well-described by two-beam interference. The hologram is 

modelled as two plane waves, the object wave 𝜓1 and reference wave 𝜓2, 

converging at a semi-angle 𝜃,  

 𝜓1(𝐫) = 𝐴1(𝐫)exp (𝑖(2𝜋𝐪𝒄 ∙ 𝐫 + 𝜙1(𝐫))) (1.5.a) 

 𝜓2(𝐫) = 𝐴2(𝐫)exp (𝑖(2𝜋𝐪𝒄 ∙ 𝒓 + 𝜙2(𝐫))) (1.5.b) 

Here 𝐴1 is the object wave amplitude, 𝐴2 is the reference wave amplitude, 𝜙1 and 𝜙2 

are the object and reference wave phase shift respectively.  The carrier frequency is 

𝐪𝑐 = 2sin(𝜃) 𝜆𝑒⁄ where 𝜆𝑒 is the de Broglie wavelength of the primary electron. The 

interference of the object and reference wave produces the intensity pattern  

 
𝜓12

2(𝐫) = 𝐴1
2(𝐫) + 𝐴2

2(𝐫)

+ 2𝑉(𝐫, 𝐪𝐜, 𝛼𝑜)𝐴1(𝐫)𝐴2(𝐫)cos(2𝜋𝐪𝒄 ∙ 𝐫+𝜙1(𝐫) − 𝜙2(𝐫)) 
(1.6) 

where 𝑉 is the holographic visibility and reflects the partial coherence of the 

electron wavefront. The visibility varies across the field of view, due to source 

properties, optical aberrations of the TEM lenses, and incoherent scattering within 

the specimen. The visibility is discussed further in section 1.3.1 and in depth in 

chapter 2.  

The primary advantage of off-axis holography, as compared to in-line holography, is 

that interpretation is straightforward. In off-axis holography, the phase shift of the 

electron wavefront is encoded at the carrier fringe frequency q𝒄. In addition, a 
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complex conjugate is found at the negative pole, −q𝒄. In-line holography has no such 

separation of the image from its complex conjugate which compromises 

reconstruction of the complex wave.  

The complex wave amplitude and phase is retrieved from the hologram intensity 

pattern by means of a digital Fourier reconstruction algorithm [25,26]. After post-

processing to remove detector artifacts, a fast-Fourier transform is applied to the 

hologram.  In Fourier-space, it is straight-forward to separate the centerband CB 

(about 𝑞 = 0) from the sideband SB (about 𝑞 = 𝑞𝑐) by an apodization function. The 

Fourier transform of Figure 1.2 is shown in Figure 1.3 with the centerband and 

sideband highlighted. An apodization function acts as a digital window (or low-pass 

spatial filter), that allows the sideband (or centerband) signal to pass through. 

Generally the maximum observed spatial frequency in the reconstructed is half the 

carrier frequency.  Apodization functions are typically based on cosine or Gaussian 

functions to minimize Fourier ringing artifacts. Spatial frequencies outside the 

apodization are forced to zero. After apodization, the sideband is digitally shifted 

from being centered at 𝑞 = 𝑞𝑐 to being centered at 𝑞 = 0. The sideband and 

centerband are then inverse Fourier transformed to give the complex sideband 

amplitude and phase and the centerband amplitude in real-space. After inverse 

Fourier transformation, the centerband and sideband have the analytic form, 

 𝐶𝐵 = 𝐴1
2 + 𝐴2

2 (1.7.a) 
and 

 𝑆𝐵 = 2𝐴1𝐴2𝑉𝑒𝑖(𝜙1−𝜙2) (1.7.b) 

From Eqn.s (1.7.a) and (1.7.b) we can solve for the object amplitude 𝐴1, the visibility 

𝑉, and the phase difference between the object and reference wave, 𝜙1 − 𝜙2.  As 

such, the phase shift is always a relative measure.  The reconstruction of the object 

wave amplitude and phase shift is shown in Figure 1.4 

All experiments in this thesis were performed on the Hitachi HF-3300 TEM located 

at the National Institute for Nanotechnology (NINT).  The Hitachi TEM is equipped 

with a double biprism configuration [27]. In the double biprism configuration, the 

upper biprism 𝐵𝑃1 is placed at an image plane (i.e. the selected area aperture plane) 

between the objective lens and first intermediate lens. As BP1 is at an image plane, 

the electric field creates a pure wavefront tilt with no shift. The second biprism 𝐵𝑃2 

is placed near the cross-over between the first and second intermediate lenses. In 

practice, the lower biprism is not directly at a cross-over as the focused beam could 

damage it so it contributes both wavefront tilt and shift. As the upper biprism 

shadows the lower one, the characteristic Fresnel fringes that superpose on the 

interference fringes are almost entirely absent in double biprism electron 

holography.  In Figure 1.2, the upper biprism bias is low, so the lower biprism is not 

completely occluded.  As such, faint Frensel fringes are barely visible.   
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Figure 1.3: Fourier transform of the hologram with the sideband SB and centerband 
CB indicated.  Vertical and horizontal streaks are due to the finite size of the fast-
Fourier transform. The right-hand peak is the complex conjugate of the sideband. 

At the image-plane, the upper biprism bias primarily controls the beam tilt which 

determines the carrier frequency of the fringes, 𝑞𝑐, while the lower biprism bias 

controls the width of the hologram fringe field of view, 𝑤. For the single biprism 

case, the carrier frequency is optimized at one-third the maximum frequency that 

observed in the specimen at high spatial resolution [28]. For the double biprism 

configuration, the decoupling of carrier frequency and hologram width relaxes this 

relationship as discussed in Chapter 4. Furthermore, single biprism configurations 

often have difficulty generating very fine fringes (𝜆𝑐 < 50 𝑝𝑚) as the biprism is not 

stable at the required bias of > 1000 𝑉 [29]. With the double biprism configuration, 

such fringes can be obtained at 450 V bias on 𝐵𝑃1 at 300 keV and considerably less 

at lower primary electron energies.   

Off-axis electron holography suffers from a number of drawbacks which will be 

outlined as follows: (1.) The principle figure of merit for electron holograms is the 

phase error, sometimes referred to as the phase resolution. The phase error was 

derived by Lenz using a method analogous to the formalism of complex circular 

random variables [21,30,31].  The standard deviation of the phase has the form, 

 𝜎𝜙 = √
2

𝜇𝑉2
 (1.8) 

where 𝜇 is the mean dose per reconstructed pixel and 𝑉is the holographic visibility.   

SB CB
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(a) 

 
(b) 

Figure 1.4: Holographic reconstruction of the (a) intensity (amplitude squared), and 
(b) phase.  The intensity and phase are from a 50-hologram series that was summed 
using the technique described in chapter 4. Due to the low bias on the upper biprism 
𝐵𝑃1, Fresnel fringes are evident in the intensity.  They were removed from the phase 
by means of a reference hologram series. Color bars give the dose in (a) electrons 
per reconstructed pixel and (b) phase shift in radians. 

From Eqn. 1.8 it can be seen that the phase error is minimized by maximizing the 

current density and the visibility. In order to improve the effective coherence of the 

source, the image of the source on the specimen plane is typically highly magnified 

(i.e. defocused).  The source is magnified by widely-spreading the illumination with 

the condenser lenses. Widely-spread illumination has reasonable spatial coherence, 

in that the trajectories of the population of electrons that compose the ‘beam’ are 

reasonably parallel.  However, spreading the illumination results in a corresponding 
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reduction in the beam current density, lowering 𝜇. At high magnification 

(𝑞𝑐 = 10 𝑛𝑚−1) the typical phase error on the order of 0.06 rad (2/100) is 

achieved [29]. As discussed in section 5.1, this phase error is often insufficient to 

sample electric and magnetic phase shift on the nanometer scale. In chapter 4 we 

show that summation of hologram series may be used to improve the phase error by 

an order of magnitude.  

(2.) The sampling requirement for holographic fringes and finite number of detector 

pixels limits the field of view that may be surveyed. Based on the detector 

modulation-transfer function results discussed in chapter 3, we generally aim for 10 

pixels per fringe to avoid excessive damping of fringe contrast. In turn if atomic 

resolution is desired, that implies that approximately 30 pixels per inter-atomic 

distance are required. On a 2048 × 2048 pixel detector, that implies a field of view 

only 70 inter-atomic distances across. In medium-resolution holography, spatial 

resolution is traded for a larger field of view.   

(3.) The reference wave requires a field-free vacuum region adjacent to the 

specimen.  This often makes specimen preparation challenging and laborious. The 

problem is illustrated with focused ion beam (FIB) prepared cross-sections.  The 

portion of the specimen adjacent to vacuum typically suffers from radiation damage 

and Ga implantation.  The separation between the object and reference waves can 

be increased by higher biprism bias, but this negatively impacts the visibility. The 

limitation may be overcome by using a flat and featureless portion of the specimen 

for the reference wave [8,32], at the expense of loss of coherence due to incoherent 

scattering within the reference area of the specimen. 

1.4 QUANTITATIVE ELECTRON PHASE MICROSCOPY  
Transmission electron microscopy suffers from the fact that many, often unknown, 

factors contribute to the formation of the electro-optical image on the detector 

plane. A discussion of some of the challenges of quantitative electron microscopy 

can be found in [20] and references therein.  Quantitative phase microscopy, in the 

form of off-axis holography, has its own particular challenges as discussed in [2-

4,33,34] and references therein.  

Rotational symmetric illumination was used in this thesis rather than the typical 

elliptical illumination of electron holography to ensure isoplanar illumination [35]. 

Rotational symmetric illumination has a significant performance penalty in terms of 

electron beam current density and a small penalty in terms of holographic visibility 

compared to elliptical illumination.  When aberration-corrected electron 

microscopy and electron holography are combined reasonable isoplanicity may be 

obtained with elliptical illumination [28,36]. 

When discussing quantitative measures, we are generally concerned with its 

precision, repeatability, and accuracy. Precision is typically the easiest criteria to 

satisfy by accumulating sufficient statistics.  An appropriate example is the 
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measurement of hologram visibility.  The standard deviation of the visibility was 

derived by Lenz [21,31], and has the form, 

 𝜎𝑉 = √
2 − 𝑉2

𝜇
 (1.9) 

where 𝜇 is the electron dose. A typical electron hologram may have 𝑉 = 0.25 and 

𝜇 = 150 𝑒− 𝑝𝑖𝑥⁄ . If we want to compute the average visibility across the entire 

hologram, then the dose is integrated across 2048 × 2048 𝑝𝑖𝑥, so the precision of 

the visibility is 𝜎𝑉~0.001.  In this sense, we are referring to the precision as the 

resolution of the standard error of an individual measurement.   

Accuracy is harder to ascertain because of the potential for unaccounted biases to 

act upon the measurement [38]. Holographic visibility is biased towards higher 

values in the presence of shot noise. In the case of computing the average visibility 

across the hologram, the impact of shot noise should be minimal, but if it is 

experimentally desirable to measure it over a smaller area, an empirical correction 

should be made. Assessment of accuracy in science is often done by comparing the 

consistency of results from different methods. In TEM, there is often the difficulty 

that other nanoscale characterization tools, such as atom probe and x-ray 

microscopy, may not collect equivalent information.  

Repeatability is the variation in measured values for the same specimen under the 

same microscope parameters [39]. For example, in chapter 3 the visibility of 

reference holograms is used to sample the detector MTF over a range of 

magnifications. Several holograms are taken at each spatial frequency to sample the 

repeatability of the holographic visibility.  We find the repeatability is 

approximately ∆𝑉~0.025, which is an order of magnitude higher than the precision 

of the visibility measurement.  The reason for the discrepancy is that the TEM drifts 

out of alignment over time, and individual holograms are disturbed by transient 

events.   

A common approach to verification in electron microscopy is to match experiment 

with simulation (i.e. computational microscopy).  An outstanding accuracy problem 

in the computational microscopy counterpart to high-resolution imaging is the 

Stobb’s factor [40,41].  The Stobb’s factor is a long-standing discrepancy between 

the observed contrast of crystal lattice fringes and the simulated contrast. As is 

discussed in section 1.3.1, the large number of factors that make TEM a complicated 

problem which is prohibitively difficult to match experiment with simulation.  

In electron holography, the visibility and phase shift of holographic fringes in 

vacuum may be measured.  This implies that the bias from all environmental and 

instrument effects can be measured from the vacuum reference. The ratio for 

visibility of a vacuum reference hologram to an object hologram gives the loss of 

visibility (or coherence) due to the specimen alone, within the repeatability of the 
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measurement.  In this sense, it is often more straight-forward to achieve 

quantitative results for electron holography compared to high-resolution imaging. 

Continuing with the example case, as Eqn. 1.9 is overprecise, it should be corrected.  

We expect that if enough of the environmental factors that affect the repeatability 

were included in the expression we would find agreement between experiment and 

analysis. This is the approach taken in chapter 4, where the analytical and 

experimental phase error are compared and reasonable agreement is found.    

1.4.1 OPTICAL-TRANSFER FUNCTION CASCADE 
In an optical system, it is often helpful to utilize the formalization of linear transfer 

theory to model the transfer of spatial frequencies for each component of the TEM.  

The optical transfer function is defined as  

 OTF(𝑞) = MTF(𝑞)𝑒𝑖PTF(𝑞) (1.10) 
Often the OTF of each component in the TEM has different names in the literature.  

Zernike terms the OTF of the source the complex degree of coherence while Frank 

combines it with the illumination lenses to create the phase-coherence transfer 

function (PCTF) [9, 42]. For the objective lens alone, the MTF is the Airy function of 

the limiting aperture, i.e. the bore of the lens, while the PTF is the contrast-transfer 

function (CTF).  For the projector lenses, the OTF is expressed by the barrel and 

pincushion distortion of each lens [43]. In electron holography, each OTF may be 

called a visibility 𝑉𝑥 whereas in high-resolution imaging simulation the OTFs may be 

represented as loss of contrast 𝐶𝑥. 

Modeling the microscope as a cascade of transfer functions is an approach to 

achieve quantitative results from electron holography that has been taken in this 

thesis.  The frequency-space representation of OTF is chosen over the image-space 

representation of point-spread function (PSF) to render analysis straight-forward.  If 

the overall PSF of the TEM is broken-down into its constituents, it becomes a 

convolution cascade.  If the OTF of the TEM is broken-down into its constituents, it 

becomes a multiplicative cascade, which is both simpler to conceptualize and 

calculate.  I.e., 

 
PSF𝑇𝐸𝑀 = PSF1⨂PSF2⨂ ⋯
OTF𝑇𝐸𝑀 = OTF1 ∙ OTF2 ∙ ⋯

 (1.11) 

In this thesis portions of the TEM have been modeled as an OTF cascade as a means 

to achieve quantitative results. The approach was inspired by the description of 

holographic visibility by Lehmann [12],  

 
 

𝑉 = 𝛾𝑠𝑜𝑢𝑟𝑐𝑒𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑉𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑀𝑇𝐹𝑐𝑐𝑑 
(1.12) 

Each individual OTF in Eqn. 1.11 reflects numerous individual components and/or 

physical phenomena.  As such, the OTF can be thought of as not just a cascade, but 

also a hierarchy.  An example OTF hierarchy is shown in Figure 1.5, based on the 

Hitachi HF-3300 located at the National Institute for Nanotechnology.  Groups of 
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OTFs are usually organized by how they are experimentally measured. In many 

cases, the individual OTFs cannot be separated experimentally, but the conceptual 

distinction can be valuable to understand the behavior of the microscope.   

 

Figure 1.5: An example model of Hitachi HF-3300 TEM for electron holography 
mode.  Experimental conditions can be varied to measure individual optical-transfer 
functions, but more often the functions are grouped, as shown by the hierarchical 
structure of the cascades. The figure is not intended to be exhaustive, but rather 
illustrate the complexity of quantitative experiments in transmission electron 
microscopy. 

Experimentally, it is often possible, with careful consideration, to vary one 

parameter of the microscope and record a series of measurements.  In this way, 

individual OTFs can often be examined. Electron holography is invaluable for 

experimental determination of OTFs because of the ability to create sinusoidal 

patterns, i.e. reference holograms where there is no specimen in the field of view.  

For example, in section 4.2 the biprism bias is adjusted over a wide range for 

reference holograms. The experiment samples the product of the source OTF, the 

detector OTF, and the instabilities of the biprisms themselves.  The detector MTF is 

deconvolved using the holographic MTF found in section 3.2.3, leaving the product 

of the complex degree of coherence of the source and source and biprism 

instabilities.   

1.4.2 AUTOMATED TEM CONTROL AND PROCESSING 
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One of the major themes in the research content of this thesis is the use of 

automated control of the instrument and its peripherals. Historically, electron 

microscopy has been manpower-intensive, with human inputs at every step of the 

experiment and the processing of data afterwards.  Automation of the TEM is hardly 

new [44] but it has been applied herein in a systemic fashion.   

Here we use automation in the sense that it applies to the expert user.  The expert 

not only uses automation but develops it and adjusts it to the particular experiment.  

Essentially then, the software is just another peripheral device of the instrument. 

There are numerous examples of the efficiency of the automated approach in 

collecting and analyzing data throughout this thesis.  In chapter 2 the Fourier-ratio 

algorithm is developed to calculate the holographic visibility automatically.  In 

addition, the bias in visibility due to shot noise was also evaluated with autonomous 

Matlab scripts.  In chapter 3, long series of holograms at varied magnification were 

used as a stand-alone method to characterize the MTF of the detector.  In chapter 4, 

extensive use of automated reconstruction and registration techniques are applied 

to successfully sum hologram series.  Additionally, many of the techniques used to 

characterize drift in the TEM were performed with both automated experiments as 

well as post-experiment processing. 
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2 DETERMINATION OF LOCALIZED VISIBILITY IN OFF-

AXIS ELECTRON HOLOGRAPHY 
The contents of Chapter 2 were submitted for publication to Ultramicroscopy by 

R.A. McLeod and M. Malac on December 17th, 2013.  Contributing author M. Malac 

edited the paper and provided valuable discussion throughout the development 

process. 

ABSTRACT 

Off-axis electron holography is an interferometric method known as ‘wavefront-

splitting’ in the literature, whereby a Fresnel biprism splits the source into two 

virtual sources. Electron holography allows the phase shift and amplitude of the 

electron wavefront to be separated and quantitatively measured. An additional 

component of the holographic signal is the coherence of the electron wavefront.  

Historically, coherence has been evaluated by measurement of the holographic 

fringe visibility (or contrast) based on the minimum and maximum intensity values. 

A new method is presented here, based on statistical moments that allow the 

visibility to be measured in a deterministic and reproducible fashion suitable for 

quantitative analysis. An algorithm that allows the visibility to be resolved in two-

dimensions is provided, which we term the local visibility. Thus the local visibility 

constitutes a previously unused third component signal in an electron hologram, 

which may be used to evaluate the loss of coherence due to electron scattering 

within a specimen, or as an aid in image analysis and processing. All visibility 

metrics are biased at low-dose conditions by the presence of shot-noise, which can 

be empirically normalized to achieve linear response.   

2.1 INTRODUCTION AND MOTIVATION 
We introduce a new method to evaluate the visibility (or contrast) of holographic 

fringes in the transmission electron microscope (TEM), which represents the 

coherence of the electron wavefront.  The method uses statistical moments to 

generate a two-dimensional (2-D) map of the local visibility. The existing visibility 

measure uses minimum and maximum values which, as explained in Section 2.2, 

does not have an associated statistical uncertainty and cannot be used to map the 

visibility in 2-D.  In Section 2.2 the new statistical method is introduced. In Section 

2.3 we provide an algorithm to compute the localized visibility in 2-D. In Section 2.4 

we compare the performance of the visibility metrics in the presence of shot noise 

in low dose conditions and explain how to empirically correct for the bias from 
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noise. In Section 2.5 we provide examples for how the localized visibility may be 

applied for experimental characterization with an example specimen of Ni-NiO core-

shell particles. 

High-resolution electron microscopy (HRTEM) is a conventional TEM technique that 

is sometimes considered qualitative because the amplitude and phase shift of the 

electron wavefront is convolved with the contrast transfer function of the optics and 

contrast reversal makes the amplitude and phase inseparable [1]. Electron 

holography (EH), and in particular the off-axis method, has been used by the 

electron microscopy community to quantitatively measure electron phase shift in 

TEM for characterization of sample properties [2]. In addition, the degree of partial 

coherence, known as holographic visibility, can be measured from an electron 

hologram but is not typically utilized. The coherence of an electron wavefront is a 

function of the ensemble electron population, [3,4], that is, the electron population’s 

angular and energy distributions. An interference pattern is typically recorded from 

many millions of electrons, so the visibility is a stochastic metric which provides 

insight on electron scattering in materials [5,6]. 

In the off-axis method, one or two electrostatic biprisms separates the electron 

wavefront into two halves [7]. The biprism, which is directly analogous to a Fresnel 

biprism in light optics, is a very thin conducting wire that is electrically biased [8]. 

As shown in Figure 2.1, one half of the wavefront passes through the specimen, 

known as the object wave while the other half-wavefront passes through vacuum 

adjacent to the specimen, known as the reference wave. The potential on the 

biprism deflects the two halves of the wavefront together at a fixed angle such that 

the two waves overlap on a detector where a hologram (i.e. interference pattern) is 

recorded. When there is no specimen in the beam, both the object and references 

waves pass through vacuum and the interference generates a regular set of periodic 

sinusoidal interference fringes.  When a specimen is introduced, fringe modulus 

represents the wavefront amplitude and the deviation of the fringes from their 

expected periodicity encodes the wavefront phase shift, while the fringe visibility 

(or contrast) represents the wavefront coherence. The electron wavefront is phased 

shifted by the scalar electric and magnetic vector potentials of the specimen, known 

as the Aharonov-Bohm effect [9-11].  This implies that the electron wavefront phase 

shift is a quantitative measure of the electric and magnetic fields/potentials of a 

specimen integrated along the path of the beam. 
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Figure 2.1: A schematic representation of off-axis electron holography configuration.  
The object wavefront (blue) travels through the specimen and the reference 
wavefront (yellow) through the adjacent vacuum, providing a phase reference. An 
electrostatic biprism below the specimen deflects the two half-beams together, 
which generates two virtual sources 𝑠1 and 𝑠2that are separated by a distance 2𝑟𝑥, at 
a height 𝑟𝑧 from the detector.  The vector 𝑥 indicates the pixel position on the 
detector. For purposes of this paper we will assume that the virtual sources produce 
planar waves, such that 𝑟𝑧 ≫ 𝑟𝑥. 

The general form of a planar-wave hologram, not including the envelope function 

that determines the extent of the interference region and Fresnel fringes, is 

represented as two planar waves 𝜓1 and 𝜓2 that converge at an semi-angle 𝜃, 

𝜓1(𝐱) = 𝐴1(𝐱)exp (𝑖(𝐤 ∙ 𝐫𝟏 + 𝜔𝑡 + 𝜙1(𝐱))) 

𝜓2(𝐱) = 𝐴2(𝐱)exp (𝑖(𝐤 ∙ 𝐫𝟐 + 𝜔𝑡 + 𝜙2(𝐱))) 

where 𝐫 is the displacement from the virtual source as a function of pixel position on 

the detector 𝐱, 𝐴 is the wavefront amplitude, 𝐤 is the electron wavevector, 𝜔 is the 

relativistic electron frequency, 𝑡 is time, and 𝜙 is the wavefront phase shift. For the 

steady-state (time integrated) equation the time-variable term 𝜔𝑡 is omitted. The 

object and reference halves of the electron wavefront are denoted by subscript 1 

and 2, respectively. Often a reference hologram is recorded with the specimen 

removed from the field of view to normalize the phase-shift of the electron optics, in 

which case the object and reference holograms are denoted by o and r subscripts 

respectively.   
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Plane waves with a small convergence angle 𝜃, typically a few microradians in EH, 

interfere on the detector to generate plane-parallel fringes with carrier frequency 

𝐪𝐜 = 2𝐤sin(𝜃), 

 

𝜓12
2(𝐱) = 𝐴1

2(𝐱) + 𝐴2
2(𝐱)

+ 2𝑉(𝐱, 𝐪𝐜, 𝛼𝑜)𝐴1(𝐱)𝐴2(𝐱)cos(2𝑘sin(𝜃)𝐱+𝜙1(𝐱)

− 𝜙2(𝐱)) 

(2.1) 

where 𝑉(𝐱, 𝐪𝐜, 𝛼𝑜) is the holographic visibility, which is a function of position 𝐱, the 

separation of the virtual sources as determined by the carrier frequency qc, and the 

half-angle of the illumination o. 

2.1.1 MEASUREMENT AND PHYSICAL ORIGIN OF THE VISIBILITY 
Visibility measures the degree of coherence of an interference condition and is a 

measure of practical hologram quality. The visibility impacts the signal-to-noise 

ratio and achievable phase resolution [12-14]. The concept of visibility was first 

discussed by Michelson [15], who calculated the visibility in terms of the observed 

intensities of interference fringes, 

 𝑉 =
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛
 (2.2) 

with V being the visibility and 𝐼𝑚𝑎𝑥 and 𝐼𝑚𝑖𝑛  the measured maximum and minimum 

intensity, respectively. Visibility spans the range [0,1] with the limits being perfectly 

incoherent and perfectly coherent conditions, respectively. Zernike later developed 

a more rigorous formalism for partial coherence, called the complex degree of 

coherence [16].   

In a TEM, low beam current and high electron velocity ensures that interference is a 

single-particle phenomenon; that is, each electron interferes with itself.  Over the 

ensemble of many electrons, the electron probability density functions (PDFs) 

overlap stochastically, which produces interference pattern [17]. Coherence in TEM 

is a measure of how similar the PDFs of the ensemble electron population are to 

each other [3]. The ensemble PDF is determined by the distribution in momentum 

𝐤, corresponding to spatial coherence, and energy E, corresponding to temporal 

coherence, of the electron population.   

The coherence is modeled in optics in terms of spatial frequency using optical-

transfer functions, OTF(𝐪) = MTF(𝐪)exp(−𝑖 ∙ PTF(𝐪)), where PTF is the phase-

transfer function and 𝐪 is the spatial frequency coordinate.  Each component 

involved in image formation in the TEM has an associated OTF, and by linear 

systems theory [18], functions are cascaded, such that 

 
𝑉(𝐪, 𝑞𝑐 , 𝛼𝑜) = |𝛾𝑠𝑜𝑢𝑟𝑐𝑒(𝐪)OTF𝑜𝑝𝑡𝑖𝑐𝑠(𝐪, 𝛼𝑜)OTF𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛(𝐪, 𝛼𝑜)|

∙ MTF𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐪)MTF𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟(𝐪) 
(2.3) 

where 𝛾 is the complex degree of coherence of the source and 𝛼𝑜 is the half-angle of 

illumination [3,19].  The dependence of visibility on spatial frequency implicitly 
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includes the separation of virtual sources seen in off-axis holography, making the 

substitution𝐪 → 𝐪𝑐 + 𝐪, where 𝐪𝑐 is the carrier frequency of the fringe pattern into 

source. The complex degree of coherence of the source can be measured by different 

means [20,21], and has been modeled as a phase-coherence transfer function (PCTF) 

[22,23].  The OTF of the optics is termed the contrast-transfer function (CTF) and/or 

its damping envelope [22,24]. The MTF due to instabilities can in principle be 

calculated from the measured resonances affecting the TEM [25].  Long-period 

transient events and drift of the specimen are more problematic as they are not 

deterministic. The detector MTF is measured by a variety of means [26-28].  

The goal is to isolate OTF of the specimen in Eqn. 2.3 from the other terms to 

retrieve the coherence of electron scattering information from a specimen.  The 

uncertainties in each OTF in the cascade make measurement of the relative visibility 

a more practical goal. The visibility of holographic fringes inside a specimen 

compared to those in vacuum (such as in a reference hologram) represents the 

relative loss of coherence due to scattering in the specimen.  In relative measure the 

complex component of the OTF is lost, giving the specimen MTF.   

2.2 STATISTICAL HOLOGRAPHIC VISIBILITY METRIC 
The standard min-max metric for visibility devised by Michelson (Eqn. 2.2) has 

several practical problems. The use of maximum and minimum implies that the 

visibility covers the entire sampled range of intensity values, and hence is not robust 

in the presence of noise, as discussed in Section 2.4. Furthermore, the metric 

inherently cannot quantify the uncertainty in the visibility measurement. In 

addition, the min-max metric is not typically applied in a deterministic fashion but 

rather evaluated manually with an intensity profile tool in image processing 

software to generate a cross-section of the holographic fringes before application of 

Eqn. 2.2. The human input, i.e. pointing and clicking with a mouse, has the potential 

to introduce experimenter’s bias [29]. 

A metric which addresses the drawbacks of the min-max method will improve 

quantitative measurements by electron holography. We propose the following 

criteria for a new visibility metric: 

1. It should be statistically quantifiable, such that statements may be made 

with regards to the significance of the visibility measurement. 

2. It should be deterministic and reproducible. 

3. It should be capable of determining the visibility and its variance for an 

individual hologram at an arbitrary position within the interference region 

(i.e. localized in 2-D). 

 The simplest analysis is to apply the substitutions 𝐼𝑚𝑎𝑥 =  + 𝑐 and 𝐼𝑚𝑖𝑛 =  − 𝑐 

to Eqn. 2.2, 
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𝑉 = 𝑐
𝜎

𝜇
 

where   is the analytic mean and   the standard derivation of the intensity, and c is 

a confidence interval [30-33]. The confidence interval that most accurately 

determines the visibility is found from the statistical moments of Eqn. 2.1, 

𝜇(𝐫) =
∫ 𝜓12

2 (𝐱)𝑑𝐱
𝐤

𝜋⁄
−𝐤

𝜋⁄

∫ 𝑑𝐱
𝐤

𝜋⁄
−𝐤

𝜋⁄

= 𝐴1(𝐱)2 + 𝐴2(𝐱)2 

𝜎2(𝐱) =

∫ (𝜓12
2 (𝐱) − 𝜇(𝐱))

2
𝑑𝐱

𝐤
𝜋⁄

−𝐤
𝜋⁄

∫ 𝑑𝐱
𝐤

𝜋⁄
−𝐤

𝜋⁄

= 2𝑉(𝐱)2𝐴1(𝐱)2𝐴2(𝐱)2 

Here we find the analytic statistical moments; in practice the sample mean and 

variance are substituted. The integration requires that the mean and variance be 

calculated over an integer number of fringe periods, but this requirement is relaxed 

when several fringe periods are averaged. 

To derive analytical expressions for object and reference hologram visibility, one 

makes the approximation that the object-hologram reference-wave amplitude, 

reference-hologram ‘object’-wave amplitude, and reference-hologram reference-

wave amplitude are all equivalent, i.e. 𝐴𝑜2 = 𝐴𝑟1 = 𝐴𝑟2. Equating the object- and 

reference-hologram reference-wave amplitude are equivalent is reasonable. 

Notwithstanding electron source drift between acquisition of the object and 

reference hologram, both waves pass through vacuum and identical microscope 

optics. The equivalence approximation between the reference-hologram, object-

wave (𝑟1) and the reference-wave (𝑟2), amplitude assumes that the illumination is 

flat-field and has uniform intensity which is very reasonable for typical spread-

illumination conditions used in EH. With these approximations, object visibility for 

flat-field illumination has the form, 

 𝑉𝑜
2(𝐱) =

𝜎𝑜
2(𝐱)

𝜇𝑟(𝐱) (𝜇𝑜(𝐱) −
𝜇𝑟(𝐱)

2 )
 (2.4.a) 

For a reference hologram, with no specimen and hence no amplitude scattering, 

 𝑉𝑟
2(𝐱) = 2

𝜎𝑟
2(𝐱)

𝜇𝑟
2(𝐱)

 (2.4.b) 

 

Eqn.s  2.4.a and 2.4.b are the equations that fulfill the three criteria for a new 

visibility metric presented in this paper. The standard error of the visibility can be 
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estimated from the statistical moments [12-14,34], 𝜎𝑉 = √(2 − 𝑉2) 𝜇⁄ , which gives 

the relations for the object and reference visibility variance as  

𝜎𝑉𝑜

2 =  
2

𝜇𝑜(𝐱)
−

𝜎𝑜
2(𝐱)

𝜇𝑟(𝐱)𝜇𝑜(𝐱) (𝜇𝑜(𝐱) −
𝜇𝑟(𝐱)

2 )
 

and 

𝜎𝑉𝑟

2 =  
2

𝜇𝑟(𝐱)
− 2

𝜎𝑟
2(𝐱)

𝜇𝑟
3(𝐱)

 

Thus we have expressions for both the visibility and its variance in terms of the 

sample mean and variance of an area of pixels, for both object holograms and 

reference holograms. 

2.2.1  AMPLITUDE IN OFF-AXIS ELECTRON HOLOGRAPHY 
In EH, the ratio of the magnitude of the object hologram sideband over the reference 

hologram sideband is considered to be the amplitude signal.  However, analytically 

the sideband represents product of the visibility and amplitude and hence is a 

product of the two different modes of electron scattering. 

ℎ𝑜𝑙𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =
𝑉𝑜𝐴𝑜1𝐴𝑜2

𝑉𝑟𝐴𝑟1𝐴𝑟2
≅

𝑉𝑜𝐴𝑜1

𝑉𝑟𝐴𝑟1
 

If the amplitude represents angular-transfer-of-momentum scattering and the 

visibility loss-of-coherence scattering, then for quantitative measurement of either, 

the two signals must be deconvolved.  The amplitude can be isolated in a similar 

manner to the visibility, 

 𝐴𝑜
2 = 𝜇𝑜 −

𝜇𝑟

2
 (2.5.a) 

 𝐴𝑟
2 =

𝜇𝑟

2
 (2.5.b) 

The centerband signal is stronger than the sideband, as shown in Figure 2.2, because 

the visibility is always less than one and the DQE of the detector decreases with 

increasing spatial frequency.  
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(a) 

 
(b) 

Figure 2.2: The intensity (amplitude squared) signal computed from the (a) 
centerband as compared to the (b) sideband for Ni-NiO core-shell particles. 
Experimental details discussed in Section 2.5. 

2.3 AN ALGORITHM FOR LOCAL VISIBILITY MAP GENERATION 
We previously reported on a method where the statistical moments sampled over 

small sub-areas and image transforms were used to generate a two-dimensional 

map of the local visibility using Eqn. 2.4.a and 2.4.b [35]. Here we present an 

alternative method based on the 2-D Fourier ratio of sideband-to-centerband signal 

and show that it is mathematically equivalent to the statistical metrics (Eqn. 2.4.a 

and 2.4.b). The centerband-to-sideband Fourier ratio method, presented below, is 

more intuitive, easier to implement, and less prone to generate image artifacts than 

directly using the statistical moments.   
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When a 2-D discrete Fourier transform is applied to a hologram, there are two 

obvious peaks, 1.) a centerband (or autocorrelation) at the origin, and 2.) a sideband 

and conjugate sideband, located at the spatial carrier frequency qc of the 

holographic fringes, as shown in Figure 2.3. The ratio of the sideband maximal pixel 

over the centerband maximal pixel provides the mean visibility over the entire field 

of view [19,36]. Often the hologram does not extend over the entire field of view, so 

the region without interference fringes contributes to the average visibility with a 

value of approximately zero when evaluated with the maximal pixel method. A 2-D 

map of the visibility is required to compute the average visibility in most cases. 

Analytic representations of the centerband (CB) and sideband (SB) are based on 

Eqn. 2.1, 

𝐶𝐵(𝐱) = 𝐴1(𝐱)2 + 𝐴2(𝐱)2 = 𝜇 

𝑆𝐵(𝐱) = 2V(𝐱)𝐴1(𝐱)𝐴2(𝐱) cos(2𝑘𝑥sin() + 𝜙1(𝐱) − 𝜙2(𝐱)) 

The sideband term is averaged over an integer number of fringe periods such that 

the cosine term vanishes, 

〈𝑆𝐵(𝐱)〉 = 2V(𝐱)𝐴1(𝐱)𝐴2(𝐱) = √2σ 

The sideband is averaged by isolation with an apodization function and shifting it to 

zero-frequency in exactly the same manner as hologram reconstruction [37]. Thus 

the sideband and centerband are equivalent to the above results derived through 

the statistical moments. The formulas for the object and reference hologram 

visibility then are, 

 
𝑉𝑜

2(𝐱) =
〈𝑆𝐵𝑜(𝐱)〉2

2 ∙ 𝐶𝐵𝑟(𝐱) (𝐶𝐵𝑜(𝐱) −
1
2 𝐶𝐵𝑟(𝐱))

 
(2.6.a) 

 𝑉𝑟
2(𝐱) =

〈𝑆𝐵𝑟(𝐱)〉2

𝐶𝐵𝑟(𝐱)2
 (2.6.b) 

An algorithm to compute the results from Eqn.s 2.6.a and 2.6.b was developed in 

MATLAB. Holograms are first imported into MATLAB from Gatan Digital Micrograph 

[38]. The steps are illustrated in Figure 2.3 by means of a reference hologram taken 

on a Hitachi HF3300 TEM at 100 keV equipped with the double biprism electron 

holography configuration [7]. The algorithm has also been tested on single biprism 

holograms and works as expected.  

The acquired data are processed by application of the following steps: 

1. Pre-process the image by application of high-quality dark and gain 

references. Remove artifacts, such as saturated pixels generated by x-rays, 

by application of a confidence interval median filter, as shown in Figure 

2.3(a). 



26 
 

2. Determine the sideband wavevector by application of a 2-D discrete 

Fourier transform to the hologram (typically the reference hologram if one 

is available).  Then, 

a. Fit and subtract the centerband background by taking the rotational 

average of the Fourier amplitude and fitting a power-law. 

b. Sub-divide the Fourier transform into quadrants, which isolates the 

sideband from its complex conjugate. 

c. Pick the maximum values as the pixel position corresponding to the 

sideband wave-vector in each quadrant.  

With the sideband position determined, we return to the original hologram. 

3. Apply a rectangular Hamming window over the entire hologram, as 

shown in Figure 2.3(b), and then take the Fourier transform.  This reduces 

the streaking normally seen in reciprocal-space due to the finite image size 

so that the counts from the sideband and centerband do not cross-

contaminate. The Hamming window has the form, 

𝐴𝐻𝑎𝑚𝑚𝑖𝑛𝑔 = (
27

50
+

23

50
cos (

2𝜋𝑥

𝑎
)) ∙ (

27

50
+

23

50
cos (

2𝜋𝑦

𝑎
)) 

where 𝑥 and 𝑦 are the associated pixel coordinates and 𝑎 is the length of the 

detector in pixels. This step is essential for consistent results as otherwise 

counts are lost to the streak artifacts. The Hamming window is the best 

choice for apodization as it does not force the edges to zero, and hence can 

be deconvolved after band separation. 

4. Isolate the sideband and centerband separately through the use of 

apodization functions applied in the reciprocal-space representation of the 

hologram computed in step 2, as shown in Figure 2.3(c).  A truncated 

Gaussian apodization function provides good performance tests of simulated 

holograms [35],  

𝐴𝐺𝑎𝑢𝑠𝑠 = (𝐪(𝑢, 𝑣) < 𝑎)exp(−(𝐪(𝑢, 𝑣) 𝑎⁄ )2) 

where 𝐪 is the reciprocal position vector formed by the pixel coordinates 𝑢 

and 𝑣 and 𝑎 is the radius of the window in pixels. The von Hann window is 

also popular and has similar performance. An apodization down-samples the 

hologram considerably, since the maximum radius 𝑎 is half the sideband 

wavevector. 

5.  Apply an inverse 2-D discrete Fourier transform to the filtered sideband 

and center-band, separately.  Both should have dimensions of (2𝑎, 2𝑎).   

6. Calculate the visibility per pixel using the appropriate ratio Eqn. 2.6.a or 

2.6.b. This step also deconvolves the Hamming window applied in step 3, 

resulting in a 2-D map of the visibility, as shown in Figure 2.3.d.   
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(e) 
Figure 2.3: (a) An example reference hologram. The visibility was manually 

evaluated as 𝑉𝑚𝑖𝑛−𝑚𝑎𝑥 = 0.58. (b) The reference hologram with a rectangular 

Hamming window applied. (c) The Fourier representation of the Hamming-

apodized hologram, with the centerband (CB) and sideband (SB) indicated. Note the 

absence of vertical and horizontal streaks due to the application of the Hamming 

apodization in the previous step. (d) The resulting visibility map for a reference 

hologram, showing the visibility across the field of view, with the interference 

region having nearly constant visibility and the region outside of it nearly zero 

visibility (~ 0.02), as expected. (e) A histogram of the visibility map in Fig. 3.4. From 

the histogram, the mean visibility inside the interference region is 0.569  0.018. 

The visibility outside the interference pattern is not zero due to standard deviation 

from shot noise and faint fringes in the dark-field. 

2.4 BIAS IN VISIBILITY METRICS 
Here we examine the experimental factors that bias visibility measurements 

described in Sections 2.2 and 2.3.  In Section 2.2, the sample mean 𝜇 and variance 𝜎2 

are substituted for the analytic mean and variance. In practice, the substitution 

implies the metric is biased by shot noise and by detector noise such as dark counts. 

The bias may be estimated and removed from the visibility metric [30,31], 

 𝑉𝑜
2(𝐱) =

𝜎𝑜
2(𝐱)−𝜎𝑁

2

(𝜇𝑟(𝐱) − 𝜇𝑑) (𝜇𝑜(𝐱) −
𝜇𝑟(𝐱)

2 −
3𝜇𝑑

2 )
 (2.7.a) 

 𝑉𝑟
2(𝐱) = 2

𝜎2(𝐱) − 𝜎𝑁
2

(𝜇(𝐱) − 𝜇𝑑)2
 (2.7.b) 
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where 𝜎𝑁
2 is the variance due to shot noise and dark current, and 𝜇𝑑  the background 

due to dark counts.  The dark noise includes both thermal noise and detector 

artifacts.  A GATAN Ultrascan 1000 detector operating at -25.4 °C has a mean dark 

current of 5.6 counts and dark variance of ± 6.9 counts2 for 1 s exposures. The bulk 

of the dark variance does not result from thermal noise but from an exponential 

drop-off at the edges of the detector, orthogonal to the read-out axis, from ~993 

counts at the edge to ~1001 counts in the center of the detector (the default pixel 

register for a Gatan Ultrascan CCD detector is 1000) [28].   

Normalizing for low-dose using Eqn.s 2.7.a and 2.7.b requires characterizing the 

shot noise, which is complicated by the detector quantum efficiency (DQE).  The 

DQE characterizes the damping of signal and noise as a function of spatial frequency, 

DQE(𝑞, 𝑁) =
𝑆𝑁𝑅𝑜𝑢𝑡

2

𝑆𝑁𝑅𝑖𝑛
2 = 𝑁

MTF2(𝑞)

NPS(𝑞, 𝑁)
 

where, N is the mean dose per pixel, MTF is the detector modulation transfer 

function, and NPS is the noise-power spectrum (which is the square of the noise-

transfer function) [26-28].  

The complication of the DQE makes empirical normalization of shot noise bias 

preferable. A large series of holograms (~ 800) was acquired over a range of 

exposure times designed to give mean counts in the range of 10-500 counts/pix. To 

minimize the addition of noise from reference images, we made use of high quality 

reference images, consisting of a 105-frame dark reference (with each frame passed 

through a 10- median filter to filter x-rays) and a 300-frame low-mean-dose gain 

reference. Adjustment of exposure time was judged to be the best way of holding 

visibility constant [28].   

When the statistical moments, are used over a fixed area (Eqn. 2.4.b, Figure 2.4.a red 

triangles), the standard deviation from shot noise dominates the standard deviation 

from interference fringes at lower counts, resulting in a power-law increase. In 

contrast, the sideband-to-centerband Fourier ratio algorithm (Eqn. 2.6.b, Figure 

2.4.a blue squares) is largely self-correcting but does break down at very low 

counts. The Fourier-ratio is self-correcting because the shot-noise in each band is 

proportional to the signal in each band. The Michelson min-max metric using cross-

sectional averaging (Eqn. 2.2, Figure 2.4.a black circles), shows that it is a more 

heavily biased and less precise version of the statistical method when applied over 

an identical number of pixels. At typical hologram dose levels (200-500 counts/pix) 

the statistical and Fourier-ratio methods converge to the same ultimate visibility, 

but the min-max method overestimates the visibility. The min-max method 

naturally overestimates the visibility because it considers the visibility to span the 

entire sampled range, and hence is not robust in the presence of noise. Simulated 

holograms with shot noise but no dark counts have similar characteristic curves, as 

shown in Figure 2.4.b.  
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The Fourier-ratio metric can be corrected by use of a scale reference that 

normalizes the visibility as a function of dose, similar to gain linearization 

references used by CCD detectors, shown in Figure 2.5.  The visibility-dose 

relationship is a function of DQE and must be done separately for each accelerating 

voltage, acquired with the same methodology described above. The visibility-dose 

reference is fit using a 3rd-order rational function by least squares, 

𝑉𝑓𝑖𝑡(𝜇) =
𝑝1𝜇3 + 𝑝2𝜇3 + 𝑝2𝜇 + 𝑝4

𝜇3 + 𝑞3𝜇3 + 𝑞3𝜇 + 𝑞3
 

where 𝑝𝑚 and𝑞𝑛 are the fit parameters. The fit is asymptotic, such that an ultimate 

visibility can be defined as  𝑉𝑢𝑙𝑡 = 𝑉𝑓𝑖𝑡(𝜇 → ∞).  The corrected visibility is then given 

by, 

𝑉𝑐𝑜𝑟𝑟(𝜇) =  𝑉𝑟𝑎𝑤 𝑉𝑢𝑙𝑡 𝑉𝑓𝑖𝑡(𝜇)⁄  
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(b) 
Figure 2.4: (a) Scatter plot of measured visibility by all three metrics as a function of 
dose for a series of 810 holograms  at 200 keV. The ultimate visibility was found to 
be 𝑉𝑢𝑙𝑡 = 0.569 ± 0.003. (b) An equivalent scatter plot of visibility metrics for 
simulated holograms, 𝑉 = 0.569, with per-pixel computed Poisson shot noise 
applied and no dark noise or detector DQE applied. 

 

Figure 2.5: The visibility-dose scale references for the Fourier-ratio metric at 100, 
200, and 300 keV for the GATAN USC1000 detector on a Hitachi HF3300 TEM (data 
– shaded dots, best fits – solid lines).  There are clear characteristics that change 
with the accelerating voltage, which indicates signal- and noise-transfer properties 
of the detector as the source. 

0 50 100 150 200 250 300 350 400
0.4

0.5

0.6

0.7

0.8

0.9

1

Mean dose,  (counts/pix)

V
is

ib
il

it
y

, 
V

 

 

V
min-max

V
s tat

V
Fourier-ratio

0 100 200 300 400 500
-0.2

-0.15

-0.1

-0.05

0

0.05

Mean dose,  (counts/pix)

V
fi

t -
 V

u
lt

 

 

100 keV

200 keV

300 keV



33 
 

2.5 EXAMPLE EXPERIMENTAL RESULTS 
Many TEM methods are an under-constrained problem, i.e. there are too many 

unknowns and too few signals for quantitative interpretation. The local visibility is 

valuable in itself as a third signal in electron holography, but also presents unique 

opportunities to explore the physics and coherence of inelastic scattering. In this 

section potential applications of the coherence signal obtained from localized 

visibility are explored for segmenting chemically different areas of a Ni-NiO core-

shell nanoparticles, sourced from Quantum Sphere Inc. (qsinano.com), on a lacey 

Carbon support. All experiments were conducted on a Hitachi HF-3300 which is 

equipped with a cold-field electron gun, operated at 300 keV, and the double bi-

prism configuration, which suppresses the Fresnel fringes seen in single bi-prism 

holograms [7].  

For batch acquisitions, for example for the purpose of summing reconstructed 

holograms [39,40], the visibility of a hologram is an effective method for quality 

control. In most experimental holograms the interference fringes do not fill the 

entire camera, leaving a dark zone of lower counts and very low calculated visibility 

(typically ~ 0.02).  The interference and dark regions may be easily identified via 

segmentation by thresholding a histogram of the hologram. The visibility histogram 

of object holograms may also be used for segmentation of specimens that consist of 

distinct compositions, for example locating a metal nanoparticle on a carbon 

substrate. We start with the visibility map of Ni-NiO core-shell nanoparticles, as 

shown in Figure 2.6.a.  The metallic Nickel cores (dark blue intensity) exhibit large 

loss of visibility due to strong incoherent scattering.  The outer Nickel Oxide and 

Carbon contamination layers (cyan and green intensity) reduce the measured 

visibility (i.e. coherence) of the electron wavefront less than the Ni core.  The 

vacuum around the particles (yellow intensity) has nearly constant visibility, within 

the limits determined by shot noise. The mottling seen in the vacuum visibility at 

the corners are Fourier ringing artifacts. 

Segmentation is accomplished by fitting a sum of Gaussian functions to the visibility 

histogram, as shown in Figure 2.6.b. One Gaussian function is used each for the 

vacuum and dark portions of the image, and one for each expected region of 

constant composition and thickness. This method does not account for variation in 

mass thickness, but still achieves reasonable segmentation of the regions into the 

metallic Ni cores (blue line), the oxide shell (green line), and the oxide and carbon 

contamination layer (yellow line).  Vacuum is indicated by the major peak (red line) 

while the region outside of the holographic fringes has nearly zero visibility (black 

line). Segmentation is accomplished by thresholding at the intersections of the 

Gaussian functions.  In order to smooth the interfaces, we apply a standard image 

opening (dilation followed by erosion) to eliminate small features and variations in 

the segmentation maps. For the segmentation of the histogram to be successful, the 

overlap of the peaks must be reasonably low such that separation by least square fit 
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is manageable. Segmentation is accomplished more easily with the visibility than for 

the amplitude because the darkfield region is well-separated in the histogram.  

The resulting segmentation contours, shown in Figure 2.6.c with the unwrapped 

phase intensity value, does not separate mass thickness and composition.  To 

separate thickness and composition would require additional information, generally 

in the form of energy filtered images or a priori information such as the 

characteristic scattering length of the material [41].  The segmentation map can 

then be applied to calculate average values for the amplitude, visibility, and phase 

shift for each region, as detailed in Table 2.1. Some anomalous phase holes are 

observed where the visibility (and amplitude) indicates no local variation in 

thickness or composition, as indicated by red arrows. The estimated deviation is 

approximately -1 radian, a possible indication of local electric (i.e. electrostatic 

charging) or magnetic potential centers. 
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(b) 

 

(c) 
Figure 2.6: (a) A holographic visibility map of core-shell, Ni-NiO nanoparticles. (b) A 
histogram of the visibility map in (a). The histogram may be segmented by a least 
squares fit of a series of Gaussian functions. (c) Segmentation applied to the 
unwrapped phase shift of the hologram.  The area outside of the holographic fringes 
(top right and bottom left) has been masked. 
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Table 2.1: Results for the mean phase shift within the contours of Figure 2.6(c) and 
the associated mean amplitude and visibility. 

Region Mean 
Phase 
Shift 
relative 
to vacuum 
(rad) 

Mean 
Amplitude  
(counts) 

Scattering 
Factor 
(A/Avacuum) 

Mean 
Visibility 
(V) 

Specimen 
MTF 
(V/Vvacuum) 

Metallic Ni  
(blue contours) 

1.45 2470 0.879 0.208 0.812 

NiO  
(green contours) 

0.87 2600 0.925 0.226 0.883 

NiO and carbon 
contamination 
(yellow 
contours) 

0.22 2750 0.978 0.243 0.948 

Vacuum - 2810 - 0.256 - 

2.6 CONCLUSIONS 
Holographic visibility is a measure of the ensemble coherence of electrons. Partial 

decoherence of the electrons is affected by the components of the TEM, including 

the specimen.  Thus the visibility is of potential interest for characterization of 

materials. The original metric for fringe visibility defined by Michelson over a 

century ago is not suitable for quantitative analysis as it lacks a defined variance. 

The Michelson metric is a 100 % confidence interval that overestimates the 

visibility in the presence of noise. Its lack of precision also makes it impractical for 

evaluating the visibility over a small area, which is necessary if generating a 2-D 

localized visibility map is desired. 

We propose a new statistical metric based on the mean and variance that is 

statistically quantifiable, deterministic, and reproducible. We also developed an 

algorithm based on the Fourier ratio of the sideband to the centerband (or 

autocorrelation), based on the statistical metric, that calculates the local visibility in 

2-D, thus making the visibility a third signal in electron holography. The application 

of a real-space Hamming apodization to the hologram before application of the 

Fourier transform is critical to suppress Fourier artifacts and accurately measure 

the visibility.  

The visibility may also be used as a component that is independent of the amplitude 

and phase shift, for the purpose of image analysis. The visibility finds application in 

hologram segmentation and separating the interference region from the non-

interference region in off-axis holograms. Initial experiments indicate that the 

visibility is more sensitive to changes in thickness or composition than the 

amplitude signal (Table 1). The visibility varies with specimen mass thickness and 

composition, similar to amplitude. 
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The main source of experimental error in evaluating the visibility comes from shot 

noise when the dose is < 200 counts/pix.  The detector DQE renders the noise 

spectrum non-uniform, so empirical corrections are the most effective means to 

remove the influence of shot noise. It is possible to remove the influence of shot 

noise from visibility measurement even at extremely low counts (< 20) for both the 

statistical and Fourier-ratio methods. 

2.7 REFERENCES 
[1] L. Reimer, H. Kohl, Transmission Electron Microscopy, 5th ed., Springer 

Science, New York, 2008. 
[2] E. Voelkl, L.F. Allard, D.C. Joy, Introduction to Electron Holography, in, 

Kluwer Academic, New York, 1999. 
[3] D. Geiger, H. Lichte, M. Linck, M. Lehmann, Electron Holography with a Cs-

Corrected Transmission Electron Microscope, Microscopy and 
Microanalysis, 14 (2008) 68-81. 

[4] P.L. Potapov, H. Lichte, J. Verbeeck, D. van Dyck, Experiments on inelastic 
electron holography, Ultramicroscopy, 106 (2006) 1012-1018. 

[5] P.L. Potapov, J. Verbeeck, P. Schattschneider, H. Lichte, D. van Dyck, Inelastic 
electron holography as a variant of the Feynman thought experiment, 
Ultramicroscopy, 107 (2007) 559-567. 

[6] F. Roder, H. Lichte, Inelastic electron holography - first results with surface 
plasmons, Eur. Phys. J.-Appl. Phys, 54 (2011). 

[7] K. Harada, A. Tonomura, Y. Togawa, T. Akashi, T. Matsuda, Double-biprism 
electron interferometry, Applied Physics Letters, 84 (2004) 3229-3231. 

[8] G. Mollenstedt, The History of the Electron Biprism, in: E. Voelkl, L.F. Allard, 
D.C. Joy (Eds.) Introduction to Electron Holography, Kluwer Academic, New 
York, 1999. 

[9] Y. Aharonov, D. Bohm, Significance of Electromagnetic Potentials in the 
Quantum Theory, Physical Review, 115 (1959) 485-491. 

[10] T. Boyer, Semiclassical Explanation of the Matteuccia-Pozzi and Aharonov-
Bohm Phase Shifts, Foundations of Physics, 32 (2002) 41-49. 

[11] A. Caprez, B. Barwick, H. Batelaan, Macroscopic test of the Aharonov-Bohm 
effect, Phys. Rev. Lett., 99 (2007). 

[12] H. Lichte, K.-H. Herrmann, F. Lenz, Electron noise in off-axis image plane 
holography, Optik, 77 (1987) 135-140. 

[13] F. Lenz, Statistics of phase and contrast determination in electron 
holograms, Optik, 79 (1988) 13-14. 

[14] A. Harscher, H. Lichte, Experimental study of amplitude and phase detection 
limits in electron holography, Ultramicroscopy, 64 (1996) 57-66. 

[15] A.A. Michelson, I. On the application of interference methods to astronomical 
measurements, Philosophical Magazine Series 5, 30 (1890) 1-21. 

[16] F. Zernike, The concept of degree of coherence and its application to optical 
problems, Physica V, 8 (1938) 785-795. 

[17] A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, H. Ezawa, Demonstration of 
single-electron buildup of an interference pattern, American Journal of 
Physics, 57 (1989) 117-120. 

[18] J. Gaskill, Linear Systems, Fourier Transforms, and Optics, John Wiley & Sons, 
New York, 1978. 



38 
 

[19] F. Zernike, Phase Contrast, a New Method for the Microscopic Observation of 
Transparent Objects, Physica IX, 7 (1942) 686-698. 

[20] J. Carrasquilla-Alvarez, R. Castaneda, J. Garcia-Sucerquia, M.A. Schofield, M. 
Beleggia, Y. Zhu, G. Matteucci, Retrieving the complex degree of spatial 
coherence of electron beams, Optik - International Journal for Light and 
Electron Optics, 119 (2008) 127-133. 

[21] C. Maunders, C. Dwyer, P.C. Tiemeijer, J. Etheridge, Practical methods for the 
measurement of spatial coherence: A comparative study, Ultramicroscopy, 
111 (2011) 1437-1446. 

[22] J. Frank, The Envelope of Electron Microscopic Transfer Functions for 
Partially Coherent Illumination, Optik, 38 (1973) 519-536. 

[23] F. Hosokawa, M. Suzuki, K. Ibe, Determination of the effective source from its 
image in the backfocal plane of the objective lens, Ultramicroscopy, 36 
(1991) 367-373. 

[24] J.-J. Fernandez, J. Sanjurjo, J.-M. Carazo, A spectral estimation approach to 
contrast transfer function detection in electron microscopy, 
Ultramicroscopy, 68 (1997) 267-295. 

[25] O. Hadar, I. Dror, N.S. Kopeika, Image resolution limits resulting from 
mechanical vibrations. Part IV: real-time numerical calculation of optical 
transfer functions and experimental verification, Optical Engineering, 33 
(1994) 566-578. 

[26] R.R. Meyer, A.I. Kirkland, Characterisation of the signal and noise transfer of 
CCD cameras for electron detection, Microscopy Research and Technique, 49 
(2000) 269-280. 

[27] M. Vulovic, B. Rieger, L.J. van Vliet, A.J. Koster, R.B.G. Ravelli, A toolkit for the 
characterization of CCD cameras for transmission electron microscopy, Acta 
Crystallographica Section D, 66 (2010) 97-109. 

[28] R.A. McLeod, M. Malac, Characterization of Detector Modulation-transfer 
Function with Noise, Edge, and Holographic Methods, Submitted, (2012). 

[29] D.L. Sackett, Bias in analytic research, Journal of Chronic Diseases, 32 (1979) 
51-63. 

[30] M. Shao, M.M. Colavita, B.E. Hines, D.H. Staelin, D.J. Hutter, K.J. Johnston, D. 
Mozurkewich, R.S. Simon, J.L. Hershey, J.A. Hughes, G.H. Kaplan, The Mark-Iii 
Stellar Interferometer, Astron. Astrophys., 193 (1988) 357-371. 

[31] J.A. Benson, D. Mozurkewich, S.M. Jefferies, Active optical fringe tracking at 
the NPOI, in:  Astronomical Interferometry, SPIE, Kona, HI, USA, 1998, pp. 
493-496. 

[32] M.M. Colavita, Fringe visibility estimators for the palomar testbed 
interferometer, Publ. Astron. Soc. Pac., 111 (1999) 111-117. 

[33] M.M. Colavita, A.J. Booth, J.I. Garcia-Gathright, G. Vasisht, R.L. Johnson, K.R. 
Summers, Fringe Measurement and Control for the Keck Interferometer, 
Publ. Astron. Soc. Pac., 122 (2010) 795-807. 

[34] A. Stuart, K.J. Ord, Kendall's Advanced Theory of Statistics, 6th ed., Hodder 
Education, London, 1994. 

[35] R.A. McLeod, M. Malac, Evaluating Visibility and Spatial Resolution in 
Electron Holography, Microscopy and Microanalysis, 14 (2008) 854-855. 

[36] E. Voelkl, L.F. Allard, A. Datye, B. Frost, Advanced electron holography: a new 
algorithm for image processing and a standardized quality test for the FEG 
electron microscope, Ultramicroscopy, 58 (1995) 97-103. 



39 
 

[37] P.A. Midgley, An introduction to off-axis electron holography, Micron, 32 
(2001) 167-184. 

[38] R.A. McLeod, DM3 Import for Gatan Digital Micrograph, in, 
http://www.mathworks.com/matlabcentral/fileexchange/29351, 2010. 

[39] E. Voelkl, D. Tang, Approaching routine pi/1000 phase resolution for off-axis 
type holography, Ultramicroscopy, 110 (2010) 447-459. 

[40] R.A. McLeod, M. Bergen, M. Malac, Technique for Complex Averaging of 
Electron Holograms, Microscopy and Microanalysis, 17 (2011) 918-919. 

[41] M.R. McCartney, M. Gajdardziska-Josifovska, Absolute measurement of 
normalized thickness, t/i, from off-axis electron holography, 
Ultramicroscopy, 53 (1994) 283-289. 

 
  



40 
 

 
 

 

3 CHARACTERIZATION OF DETECTOR MODULATION-

TRANSFER FUNCTION WITH NOISE, EDGE, AND 

HOLOGRAPHIC METHODS 
The contents Chapter 3 were accepted for publication in the journal 

Ultramicroscopy by R.A. McLeod and M. Malac on February 22nd, 2013.  Contributing 

author M. Malac edited the paper and provided valuable discussion throughout the 

development process. 

ABSTRACT 

We developed a new method for characterization of detector performance used in 

the transmission electron microscope (TEM) based on the measured contrast of 

holographic fringes.  The new method changes spatial frequency of the measured 

holographic fringes, generated by an electrostatic biprism and Schottky or cold 

field-emission gun, to sample the modulation-transfer function (MTF) of the 

detector. The MTF of a Gatan Ultrascan 1000 charged-coupled detector (CCD) is 

evaluated using the new method and the results are compared to the established 

noise and slanted-edge method results. Requirements for accuracy of the edge and 

noise MTF methods are discussed.  We consider issues surrounding incomplete 

read-out and how it affects the gain reference normalization of the detector. We 

evaluate how the MTF affects optimization of experimental parameters in the TEM. 

3.1 INTRODUCTION 
We present a new method that employs holographic fringes to accurately and 

reliably characterize the modulation-transfer function (MTF) of charge-coupled 

detectors (CCDs) used in the transmission electron microscope (TEM).  Off-axis 

electron holography is typically used to investigate electric and magnetic properties 

of specimens in TEM [1]. The method uses a deterministic algorithm to evaluate the 

contrast, or visibility, of the holographic fringes. The measured contrast of 

holographic fringes at constant illumination conditions but varied magnification 

samples the detector response as a function of spatial frequency, i.e. the MTF.  The 

holographic method complements the existing noise and edge MTF methods. 

Although the noise and edge methods are reproducible, i.e. precise, they are not 

necessarily accurate measure of the true detector MTF.  The holographic method 

does not introduce obvious biases that distort the measured MTF. 
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Two-dimensional (2-D) image recording in transmission electron microscopy (TEM) 

traditionally used film.  In the 1990s there was a shift towards the use of CCDs to 

record electron intensity [2-4]. Slow-scan CCDs suffer radiation damage if exposed 

to electrons at typical TEM energies [5]. A scintillator, composed of a doped single-

crystal YAG or a powder phosphor, acts as a radiation shield and generates optical 

photons from the incident high-energy electrons by photoluminescence. Photons 

are coupled from the scintillator with a bundled fiber-optic waveguide, or an optical 

lens, to the CCD which detects the photons. 

The objective in characterization of CCDs is to find the signal transfer from the 

distribution of electrons impinging on the scintillator to the distribution of digital 

counts in the electronic read-outs. In TEM, each primary electron that impacts the 

scintillator can be regarded as a signal impulse. CCD/scintillator (and film) broadens 

the signal impulse because high-energy electrons have a stopping range on the 

order of 100 m in scintillator materials which is an order of magnitude higher than 

typical pixel dimensions (5-15 m) [6]. Consequently, the detector heavily 

oversamples the image. The stochastic average energy deposition as a function of 

position for a single incident electron is known as the impulse response or the point-

spread function (PSF). In TEM, it is usually preferred to characterize the detector 

response in terms of spatial frequency, 𝑞 = (𝑢, 𝑣), rather than spatial position, 𝑟 =

(𝑥, 𝑦). The Fourier transform of the PSF is the MTF, and gives the image contrast as a 

function of spatial frequency [7,8].   

The standard approach to measure the MTF is the slanted-edge method, discussed 

in section 3.2.2.  In addition to the signal-transfer, we also characterize the noise-

transfer, which is characterized by the noise-power spectrum (NPS) or similarly the 

noise-based MTF, known as the noise-transfer function (NTF), described in section 

3.2.1. Both the MTF and NPS are used to calculate the detector quantum efficiency 

(DQE), which relates the signal input to output ratio of the detector as a function of 

spatial frequency and dose. We devised a new method to measure the MTF that uses 

off-axis holographic fringes [9], as discussed in section 3.2.3.  We discuss the 

experimental results from a Gatan Ultrascan 1000 CCD detector system for all 

three methods in section 3.3 and practical guidelines for microscope conditions in 

section 3.3.3. 

3.1.1 OPTICAL TRANSFER FUNCTION AND DETECTOR QUANTUM EFFICIENCY 
The performance of an (electro-)optical system is described using two-dimensional 

linear system theory [10]. Transfer functions known as the optical-transfer function 

(OTF) are used to describe the relationship of the complex input to output signal, 

with the form, OTF(𝑞) = MTF(𝑞)exp(−𝑖 ∙ PTF(𝑞)) where PTF is the phase-transfer 

function, and reflects the phase shift of the wavefront. The OTF is presented in terms 

of spatial frequency so the overall OTF of the microscope and detector is the 

multiplicative cascade of the individual subsystem OTFs. The entire instrument OTF 

cascade includes the coherence of the source, the electron-optics (referred to as the 
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contrast-transfer function (CTF)), the specimen itself, and the detector. The 

spectrum of spatial frequencies that falls on the detector is magnification dependent 

and dampened by the microscope source and electro-optical OTFs. The preceding 

OTFs in the cascade affect how the detector fits into the overall optimization of the 

microscope. For example, if the CTF limits the incident spatial frequencies to low 

frequencies, then the high-frequency damping of the detector is not observed. A 

different example is parallel-beam diffraction where the high-frequency damping of 

the detector broadens the sharp diffraction peaks. 

The detector system consists of a series of amplification and scattering subsystems 

[11,12], shown in Figure 3.1, that are represented by a single MTF. The scintillator 

integrates incident electron intensity and hence is incoherent and is represented by 

an MTF and not an OTF.  The detector gain amplifies the signal but also injects 

additional noise into the spectrum which renders the MTF and NTF non-equivalent 

[13-15]. The addition of noise from the amplification steps is characterized by the 

detector quantum efficiency (DQE) [11,16-18],   

 DQE(𝑞, 𝐺, 𝑁) =
𝑆𝑁𝑅𝑜𝑢𝑡

2

𝑆𝑁𝑅𝑖𝑛
2 = 𝑁

MTF2(𝑞)

NPS(𝑞, 𝑁)
 (3.1) 

where 𝑁 is the dose in counts per pixel, and 𝑁𝑃𝑆 is the output noise power spectrum. 

Note that we do not include the factor of gain-squared in front of the MTF2 found in 

some references as we present the MTF as normalized to unity at zero-frequency. 
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Figure 3.1: A flow chart of the scattering (square boxes) and amplification (arrow 
boxes) processes in a typical TEM detector stack.  In practice the individual 
components cannot be separated, with the exception of dark current and gain 
normalization, so the entire system is modeled by a single MTF. 

3.1.2 ANALYTICAL FORM OF THE MTF AND NORMALIZATION 
A primary electron interacts with the scintillator through a combination of Gaussian 

and Lorentzian broadening processes. The general form of the convolution of 

Lorentzian and Gaussian processes is known as a Voight profile [19]. For example, 

photon-scattering is a result of random thermal motion of atoms and is Gaussian 

whereas the double differential scattering cross-section of core electrons has a 
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Lorentzian distribution [6,20,21]. Note this implies that the PSF has the form of a 

Gaussian and Laplacian product. 

The Voight profile is challenging to fit by least squares, but it can be approximated 

by a sum of Lorentzian and Gaussian profiles [22]. The form of the least squares 

function fit to the rotational average of the MTF is 

 
MTF(𝑞) = ∑ 𝑎𝑖exp (− (

q − b

ci
)

2

)

𝑖

+  ∑
aj

1 + (
q − b

cj
)

2

j

 
(3.2) 

where 𝑎𝑖 , 𝑏𝑖, and 𝑐𝑖 are best-fit parameters and 𝑞 is pixel frequency. For most cases a 

single Gaussian and double Lorentzian sum obtains a satisfactory correlation to the 

data with no discernible residual pattern, as is the case for all results presented in 

this paper. 

A key challenge to accurately determine the MTF is normalization. The true zero-

frequency response of the detector cannot be measured and an error in the 

normalization will bias the result for all spatial frequencies.  When the MTF is 

measured near zero frequency it may be erroneous due to poor signal-to-noise ratio 

or low-frequency artifacts, as is the case for both the noise and slanted-edge 

methods. We argue that the MTF should have mirror symmetry about 𝑞 = 0 as a 

consequence of the symmetry of the Fourier transform. If the MTF slope is non-zero 

at 𝑞 = 0, the derivative would have discontinuity not readily explained by the 

physics of electron scattering in the scintillator or photon propagation through the 

detector stack.  A homogenous material will result in a radially symmetric scattering 

profile but NTF measurements show an anisotropic artifact peak that appears along 

read-out axis of the detector and is absent in the orthogonal direction, as discussed 

in section 3.2.1.2.  Low frequency peaks are not found in the MTF of theoretical 

models of CCD sensors [23,24].  Therefore we conclude that the Voight-style least-

squares best-fit is the most practical solution for determination of the zero-

frequency response and hence normalization of the MTF for all methods. 

3.1.3 IMPACT OF THE DETECTOR ON MICROSCOPE PERFORMANCE 
The detector directly impacts the overall TEM instrument performance in three 

ways: 1.) signal and shot noise are both dampened by the detector, but noise is 

injected at high frequencies, which worsens the signal-to-noise ratio (DQE); 2.) the 

information limit of the instrument is reduced by the detector MTF through its 

contribution to the instrument OTF cascade that gives the ultimate information 

resolution.  However, the detector MTF has the distinction that its effect varies with 

TEM magnification.  Hence, there is an optimization between the field of view and 

the information limit discussed further in Section 3.3.3, and; 3.) the decrease in 

contrast due to the detector MTF requires increased electron irradiation dose to 

achieve a desired signal level.  For radiation sensitive specimens this causes 

difficulties [25,26].  Even for radiation-stable specimens, the increased dose 
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requires longer exposures and introduces additional motion blur from drift. 

Accurate characterization of detector performance is important for optimization of 

the overall performance of the transmission electron microscope and provides 

directions in which future high-energy electron detection technology may be 

improved. 

3.2 METHODS FOR CHARACTERIZATION OF MODULATION-TRANSFER 

FUNCTION 
For microscope optimization, image processing, and comparison of simulation to 

data, the MTF of a detector must be accurately measured. There are two well-

established methods used in transmission electron microscopy to determine the 

MTF: the noise method, which determines the NTF, and the slanted-edge method, 

which is historically thought to represent the true detector MTF [13,14,27]. In 

addition there also exists methods that use amorphous thin films [28], and subpixel 

sampling of a finely focused diffraction-mode spot [29,30].  In this section we review 

the noise and edge methods and introduce a new method where the visibility, or 

contrast, of off-axis holographic fringes at variable magnification is used to measure 

the MTF.   

3.2.1 THE NOISE TRANSFER FUNCTION 
For the noise method, the MTF is derived from the input and output power spectral 

density (PSD) obtained by uniformly illuminating the detector and acquiring noise 

images. In the electron microscopy and optics communities the noise-transfer is 

referred to as the noise-based MTF or NTF, a convention we will follow here 

[13,27,31,32], 

 𝑃𝑆𝐷𝑜𝑢𝑡(𝐪) = 𝑁𝑇𝐹2(𝐪)𝑃𝑆𝐷𝑖𝑛(𝐪) = 〈|ℱ(𝐼(𝐫) − 𝐼)̅|2〉𝑃𝑆𝐷𝑖𝑛(𝐪) (3.3) 
In the astronomy and medical imaging communities the noise transfer of the 

detector is more commonly known as the noise power spectrum (NPS) [33,34] which 

is defined as, 

𝑁𝑃𝑆(𝐪) = 〈|ℱ(𝐼(𝐫) − 𝐼)̅|2〉 

The actual methods used to calculate the NPS vary from that of the NTF and often 

use a moving synthetic aperture or other sampling method [34], which produce 

marginally different results. Despite the different methods used for calculation, 

analytically the NPS = NTF2. 

There are a number of artifacts which can potentially make the NTF different from 

the signal MTF including but not limited to: the input power spectral density of the 

illumination, aliasing of high-frequency noise above the Nyquist limit into lower 

frequencies, electronics noise injected by analog-to-digital conversion and 

amplification of the signal, incomplete read-out amongst adjacent rows, afterglow of 

the scintillator, and convolved artifacts and correlated noise introduced by the use 

of reference images.  
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Modern large format CCD detectors are segmented into quadrants, each with its 

own readout electronics such that a noise image has discontinuities at the quadrant 

borders. In order to calculate the NTF correctly, each quadrant’s NTF must be 

calculated separately and then the quadrants may be averaged to estimate the 

detector-wide NTF. Failure to separate the quadrants introduces box-car functions 

into the NTF, producing a strong low-frequency peak near 0.0 pix-1.  

3.2.1.1 Aliasing of noise above Nyquist limit in noise Transfer 

Function 
A noise image will contain spatial frequencies above the Nyquist limit which is 

imposed by the finite number of detector pixels [35]. As the 2-D FFT used to 

calculate the NTF conserves the total electron counts, the counts associated with 

these frequencies will then alias back into lower frequencies with the relation, 

qnyquist + ∆q → qnyquist − ∆q. 

This implies that high frequencies (near to the Nyquist limit) will have a larger 

proportion of extraneous counts from aliasing than near zero-frequency. As such, 

the NTF typically overestimates high-frequency detector performance. The effect of 

aliasing may be estimated by fitting a twin Voight curve, one centered at zero-

frequency and the other at twice the Nyquist limit  (i.e. 1.0 pix-1), and subtracting the 

post-Nyquist peak from the results. This is a first-order correction that does not 

remove the next-nearest-neighbor peak, but is sufficient for most purposes. 

3.2.1.2 Detector Read-Out Errors 
Read-out errors are artifacts associated with the camera either while the shutter is 

in the process of closing or when the charge on the CCD detector is read-out. These 

artifacts are notable because they are anisotropic, present along the axis the CCD 

detector is read-out (vertical, Y-axis) and absent in the orthogonal direction 

(horizontal, X-axis).  There are three potential sources of read-out error: 1.) 

incomplete read-out, caused by the CCD wells being read-out too quickly; 2.) 

afterglow, caused by long-time-constant-decay states in the scintillator, and; 3.) 

motion-blur caused by slow shutter close times. We only see evidence of incomplete 

read-out, as explained below. These artifacts are different from the residual images 

(ghosting) sometimes seen in the dark reference after a high-dose exposure, which 

is thought to be due to long-lifetime defect states in the CCD detector [36]. 

The typical algorithm to calculate the NTF can be modified to investigate read-out 

artifacts.  1-D Fourier transforms of each individual row or column of noise images 

are applied and summed accordingly. The resulting singleton dimensional noise 

transfer function is not comparable to the 2-D NTF as it is heavily affected by the 

finite size of the FFT, but it allows for convenient comparison between the read-out 

and orthogonal axes. Our results for the NTF and slanted-edge MTF both exhibit a 

low frequency artifact. We argue in Section 3.1.2 that this was likely non-physical 

and should not influence MTF normalization. Here we show conclusively in Figure 
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3.2 that the low-frequency artifact appears exclusively in the read-out axis, NTF𝑦, 

and is absent in the orthogonal direction, NTF𝑥. The effect worsens with total dose 

(percent saturation) on the detector, as expected for incomplete read-out. Afterglow 

is discounted as introducing a one-second delay between shutter closure and CCD 

read-out has no effect. Shutter motion blur is also disregarded as the artifact 

worsens with increased exposure time/dose. Shutter artifacts are eliminated by 

installing an ultra-fast mechanical shutter driven by a stepper motor that operates 

on a millisecond time scale, used for all our measurements [37], or a fast 

electrostatic shutter [38]. 

 

Figure 3.2: The 1-D noise transfer function at 300 keV in the read-out (Y, blue solid) 
axis, 𝑁𝑇𝐹 𝑦, and orthogonal (X, red dashed) axis, 𝑁𝑇𝐹𝑥 for a mean dose of 

2500 𝑐𝑜𝑢𝑛𝑡𝑠 𝑝𝑖𝑥𝑒𝑙⁄ . The strong low-frequency read-out error peak has a maximum 
value of approximately 13.0 at the lowest measured frequency and extends out to 
0.01 pix-1, compared to a maximum of only 1.03 for 𝑁𝑇𝐹𝑥. 

Incomplete read-out is well-known issue with CCD detectors [39, 40]. The charge on 

a CCD is read-out along its edge, and each subsequent row is shifted towards to the 

edge. If the CCD is read-out too quickly, residual charge may remain in the well and 

contribute to subsequent rows.  The read-out period of our GATAN Ultrascan is 

approximately 1 s, whereas a more typical slow-scan CCD read-out period for noise 

sensitive applications is 20-45 s [41]. The slower the read-out time of a CCD device, 

the less noise is injected by the analog-to-digital convertor and the better the DQE. 

With regards to normalization of the MTF curve, it is clear that read-out error 

represents amplification or transfer of low-frequency noise and not dampening of 

the observed signal.  Experiments show that the read-out error increases 

substantially as the detector approaches saturation, but measurements of the 

contrast of off-axis holograms and lattice fringes show only trivial saturation 
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dependence. Consequently, the slanted-edge MTF or NTF cannot be normalized by 

the lowest-observed frequency raw data, and normalization by a best-fit Voight 

profile is required. 

3.2.1.3 Power Spectral Density and reference normalization 
Both gain references and NTF are acquired under parallel, uniform illumination 

with the assumption that the input noise is uniform across all frequencies, i.e. white, 

which may not be the case [31]. By the Wiener-Khinchin theorem the input power 

spectral density (𝑃𝑆𝐷𝑖𝑛) of Eqn. 3.3 is given by the autocorrelation function of the 

limiting aperture [42], which for a circular aperture is similar to a triangle function 

(also known as a Bartlett window) and has the analytic form, 

𝑃𝑆𝐷𝑖𝑛(𝑞) =
2

𝜋
𝑎2cos−1 (

𝑞

2𝑎
) −

𝑞

2𝜋
√4𝑎2 − 𝑞2 

where 𝑞 is spatial frequency and 𝑎 is the radius of the aperture. Given the small 

numerical aperture values used in TEM, assuming the input noise spectrum is white 

is not valid and can bias results for the NTF. For a magnified aperture diameter of ×

8 the detector width, 𝑃𝑆𝐷𝑖𝑛(𝑞 = 0.5 pix−1) = 0.92, and for × 16, 𝑃𝑆𝐷𝑖𝑛(𝑞 =

0.5 pix−1) = 0.96. Also, the illumination should be incoherent, such that diffraction 

(Fresnel fringes) does not influence the result. In practice, the 𝑃𝑆𝐷𝑖𝑛 has a limited 

impact on the measured NTF. This is because the 𝑃𝑆𝐷𝑖𝑛 is a function of the angular-

distribution of electrons onto the detector, and the thick scintillator found on fiber-

optic coupled CCD systems acts as an angle-diffusing, intensity-integrating device 

similar to an integrating sphere in photon optics.  The 𝑃𝑆𝐷𝑖𝑛 may be significant for 

thinner scintillator devices that are not as heavily oversampled, such as lens-

coupled and direct-exposure detector systems.  

Even the most basic image processing makes use of gain and dark reference images 

to remove artifacts such as the periodicity introduced by the fiber-optic coupling, 

non-uniform thickness of the scintillator, and bad pixels on the CCD detector.  The 

normalization has the form, 𝐼𝑝𝑟𝑜𝑐(𝐫) = (𝐼𝑟𝑎𝑤(𝐫) − 𝐼𝑑𝑎𝑟𝑘(𝐫)) 𝐼𝑔𝑎𝑖𝑛(𝐫)⁄ . The use of 

references and the noise in the reference images can bias the resulting images, and 

it is important to be aware of how those biases may lead to erroneous results [43]. 

Furthermore, the gain reference alters the apparent 𝑃𝑆𝐷𝑖𝑛 as a function of percent 

saturation and illumination angle. 

Normally a single frame with the shutter closed is used as a dark reference. This is a 

sub-optimal approach, as the standard deviation of a dark reference is higher than 

the mean, measured at 0.6 ± 4 𝑐𝑜𝑢𝑛𝑡𝑠 at −25.4 ℃ for our Gatan US 1000 detector. 

The dark current varies exponentially with temperature T, in Celsius, 𝜇𝑑𝑎𝑟𝑘 = 4.24 ∙

exp(0.106𝑇) and 𝜎𝑑𝑎𝑟𝑘 = 17.25 ∙ exp(0.077𝑇) + 0.288. The dark reference does 

vary with exposure time, as thermally-generated electron-hole pairs are generated, 

but is insignificant at exposure times less than a minute and concentrated at the 
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corners of the detector for our Gatan US 1000.  The long-period temperature 

stability of detectors from other manufacturers is expected to vary. 

 When the same dark reference is subtracted from every image in a series, it 

introduces correlated noise which can affect frame-averaging techniques where the 

median counts is near the dark counts, such as core-loss EELS [43].  We have taken 

the approach that the dark reference remains constant as long as the CCD remains at 

constant temperature, and average > 10000 dark references to remove the systemic 

dark current. Comparison of two 17000-frame dark references, acquired sixteen 

months apart, shows that 4084 (0.1 %) pixels differ by more than one count, 

illustrating excellent long-term temperature stability. In comparison, in single frame 

dark references ~70 % of pixels will vary by more than one count due to non-

systemic, thermal dark noise. Our Hitachi HF-3300 is baked weekly to maintain high 

vacuum (1.8 ∙ 10−8 𝑇𝑜𝑟𝑟), during which the Pelletier coolers on the detectors are 

switched off. Hence an overnight acquisition of a dark reference once per year is 

generally sufficient for the Gatan US 1000. Further discussion and acquisition script 

are found in appendix A1. 

Averaging many dark frames encounters problems with so-called zingers, typically 

cosmic ray events that saturate pixels [44]. Zingers accumulate relatively quickly 

because saturated pixel in a single frame (65000 counts) is equivalent to ~12000 

dark reference frames. A solution is to apply a median-threshold filter to dark 

references so that only pixels above a threshold of 50 counts are modified. Pixels 

that exceed a 10-sigma filter are median filtered which effectively strips out zingers 

from a long-run dark reference.  

The gain normalization successfully removes gain-related artifacts because they 

have fixed positions on the camera, i.e. they have fixed phase in frequency space. 

Normalization of the gain reference itself is challenging to do accurately and avoid 

bias in the output dose. We take a histogram of the intensity values in the gain 

reference, fit a sum of 3 to 4 Gaussian functions, and normalize by the centroid of 

the Gaussian sum. As the NTF depends on primary electron energy, separate gain 

references must be prepared for each accelerating voltage used.   

The gain reference is typically recorded by summing many frames with uniform 

illumination to a significant fraction of saturation [45]. Gain references 

normalization is known to be not wholly satisfactory [46]. For quantitative 

purposes, the gain reference changes with dose per frame (i.e. saturation fraction) 

and illumination convergence angle. The application of a gain reference can 

potentially modify the spatial frequency distribution of an image, which is clear in 

the frequency-space representation, 𝐼𝑟𝑎𝑤 = ℱ−1
{𝑁𝑇𝐹2𝑃𝑆𝐷𝑟𝑎𝑤𝐴𝑔𝑟𝑎𝑑𝐴𝑓𝑜𝑐𝐴𝑟−𝑜(𝑁)}, 

where 𝐴𝑔𝑟𝑎𝑑  is the low-frequency Fourier peak from non-uniform thickness of the 

scintillator and/or non-uniform illumination,  𝐴𝑓𝑜𝑐  is periodic artifacts from the 

fiber-optic coupling, and 𝐴𝑟−𝑜 is the artifact due to incomplete read-out, which is a 
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function of dose per frame. Then the Fourier representation of the gain-normalized 

image, if we omit the dark reference for simplicity, is, 

ℱ {𝐼𝑟𝑎𝑤 ∙
1

𝐼𝑔𝑎𝑖𝑛
}

= NTF2PSD𝑟𝑎𝑤𝐴𝑔𝑟𝑎𝑑𝐴𝑓𝑜𝑐(𝑁𝑟𝑎𝑤)𝐴
𝑟−𝑜

(𝑁𝑟𝑎𝑤)

⊗−1 NTF2PSD𝑔𝑎𝑖𝑛𝐴𝑔𝑟𝑎𝑑𝐴𝑓𝑜𝑐(𝑁𝑟𝑎𝑤)𝐴𝑟−𝑜(𝑁𝑔𝑎𝑖𝑛)

≅ NTF2 (PSD𝑟𝑎𝑤𝐴𝑟−𝑜(𝑁𝑟𝑎𝑤) ⊗−1 PSD𝑔𝑎𝑖𝑛𝐴𝑟−𝑜(𝑁𝑔𝑎𝑖𝑛)) 

The effect is seen clearly from the ratio of a high-dose gain reference to a low-dose 

gain reference, which produces a ramp due to incomplete read-out, as shown in 

Figure 3.3.a. To understand the relation among NTF, saturation fraction, and 

illumination angle we acquired a series of noise images taken at variable 

illumination angle but constant dose obtained by adjustment of exposure time. We 

found that when normalized by a gain reference of higher dose, as shown in Figure 

3.3.b, some of the periodic artifacts are not completely removed. For the converse 

case, as shown in Figure 3.3.c, the incomplete read-out, which is partially 

deconvolved, is more apparent than usual but there are no periodic artifacts 

injected into the image. The change in the periodic fiber-optic coupling artifacts with 

illumination angle may reflect a shift in the fiber cross-talk [47].  
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(b) 

 
(c) 

Figure 3.3: (a) The effect of incomplete read-out can be observed by taking the ratio 
of two gain references taken at different average electron dose.  Here the deviation 
is approximately 5 % over the field of view for gain references at 10000 counts pix⁄  
and 500 counts pix⁄ . (b) Consequences of using a high-dose, well-spread gain 
reference (10000 counts pix⁄  and 𝑎 = 16 𝑝𝑖𝑥−1) to normalize a moderate-dose 
image (500 counts pix⁄ ) as shown by the ratio of the NTF under the two conditions. 
The fiber-optic coupling and incomplete read-out artifacts are not properly removed 
when the dose and illumination angle of the gain reference are significantly different 
from those used for acquisition. (c) The converse case of using a low-dose gain 
reference (2500 counts/pix and 𝑎 =  20 pix−1) to normalize a high-dose image 
(10000 counts/pix).  This effect is anisotropic (not  shown) and dominated by the 
read-out axis, so likely arises from  the partial deconvolution of incomplete read-out. 
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The results indicate is that it is preferable to acquire a gain reference at the expected 

experimental dose with a well-spread beam. When that is not practical, we suggest 

gain references should be composed of low saturation fraction images, such that 

periodic artifacts, which can disrupt the success of cross-correlation alignment 

methods, are minimized.  The potential error introduced by incorrect-dose gain 

normalization is small and should not affect qualitative imaging applications. 

3.2.2 THE SLANTED-EDGE MODULATION TRANSFER FUNCTION 
In this section we review the established method of MTF measurement that places a 

electron-opaque knife-edge over the detector to measure the broadening of the 

edge, known as the edge-spread function (ESF) [7,48]. An ideal step-function 

contains all spatial frequencies and as such can be used to sample the detector MTF. 

Unless the edge is moved across the detector, the slanted-edge MTF samples only a 

limited number of pixels in one direction. In the resulting 2-D image of the knife-

edge, the position of the edge in each row or column is registered with subpixel 

accuracy. The edge profiles are then aligned and averaged, to find the ESF of the 

detector. Approximately fifty images are summed to reduce shot noise in the bright-

field half of the detector and dark variance in the dark-field half.   

A step function contains all spatial frequencies; therefore the spatial frequencies 

above the Nyquist limit (> 0.5 pix-1) can alias into the lower frequencies due to the 

finite sampling of the CCD pixels. This is a serious problem in photon optics where 

detector systems are designed to slightly undersample each incident photon. The 

solution is to oversample the line profile two or four-fold and create a subpixel 

offset in each row by setting the edge at a slant angle (<10) [49]. This mitigates the 

insufficient sampling and anisotropic sampling of pixels when a straight edge is 

used. However, TEM detector systems are typically already heavily oversampled, 

such that the MTF is typically approximately 0.1 at the Nyquist frequency, so digital 

oversampling is not necessary. 

The measured ESF is transformed to a line-spread function (LSF) via a numerical 

derivative.  The LSF is in turn a slice through the two-dimensional PSF, 

perpendicular to the knife-edge. Numerical differentiation uses 25-points to 

estimate the derivative. The choice of numerical derivative (typically 2-point 

difference or 3-point derivative formulae) method introduces a low-pass filter of the 

form [50]: 

 𝑀𝑇𝐹𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒(𝑞) = sinc(𝜋 𝛿⁄ (𝑘 − 1)𝑞) (3.4) 
where 𝛿 is the oversampling rate, and 𝑘 is the number of points in the numerical 

derivative. The numerical derivative also worsens the signal-to-noise ratio of the 

data, countered by averaging numerous images of the edge. 

The slanted edge method suffers from several sources of systemic error as the 

experimental knife-edge used is not an ideal sharp and smooth edge [51,52]. The 

potential sources of systemic error are: 1.) defocus between the edge-plane and the 
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detector-plane which results in blurring of the edge and potentially Fresnel fringes; 

2.) surface roughness of the edge on the order of pixel lateral dimension (15 m); 3.) 

translucency and diffraction at the edge; 4.) uncertainty in edge position and angle 

registration in the oversampling calculation, and; 5.) uneven illumination of the 

detector between bright and dark portions; the character of the bright-field noise is 

dominated by shot noise, and the dark-field noise by read-out noise. Each of these 

potential errors broadens the measured ESF, hence the slanted-edge MTF will trend 

towards being an underestimate of the true MTF in TEM. 

The edge method is not affected by many of the difficulties encountered with the 

NTF.  For example, using a gain reference compared to unprocessed images does not 

change the overall line-spread function but does make it less noisy. Similarly, 

alignment of the slanted--edge with the read-out or orthogonal axes of the detector 

does not change the shape of the low-frequency peak. This is likely because 

incomplete read-out should effectively act upon the edge as a sub-pixel shift, rather 

than blurring it. 

3.2.3 THE HOLOGRAPHIC MODULATION TRANSFER FUNCTION 
Historically, one of the first techniques for evaluation of MTF in photon optics was 

the contrast (or visibility) of a target composed of sinusoidal fringes, with each 

fringe frequency sampling the MTF at one point [53]. In TEM, lattice fringes are a 

common source of sinusoidal fringes and unlike photon optics, the magnification of 

magnetic lenses in TEM are easily altered, allowing many spatial frequencies to be 

measured using a single sinusoidal target. Electromagnetic lenses rotate the image 

with increasing optical power, so the sinusoidal fringes produce a rotational average 

of the 2-D MTF. Measurement of MTF from sinusoidal fringes is a relative 

measurement. Therefore, most of the artifacts that affect the edge and noise 

methods discussed above have no impact.  

In principle, lattice fringes from a crystalline sample can produce sinusoidal fringes 

but we have chosen to use an off-axis holography configuration with an electrostatic 

bi-prism to generate a holographic sinusoidal target [1]. This technique was 

previously used to support the NTF, but without any means of determining the zero-

frequency visibility of the holograms so the method was only relative [45]. We show 

in section 3.2.3 that the holographic method with a sufficiency high number of 

sampled fringe frequencies reliably determines the MTF via a fit to a Voight profile 

[9]. Normalization of the holographic-derived MTF is done via extrapolation, using 

the zero of the best-fit Voight profile, as is the case with the NTF and slanted-edge 

MTF. 

The advantages of using an electrostatic bi-prism compared to crystal lattice fringes 

are: 1.) the lower magnification of the biprism compared to the specimen on the 

detector plane, so the impact of mechanical drift and vibration of the biprism is 

reduced; 2.) there are no sample interactions that reduce the observed contrast, 
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such as inelastic scattering, variations in thickness, contamination layers, or 

generation of charge defects (known as the ‘bee-swarm’ effect [54]), and; 3.) there is 

only one set of parallel fringes, which provides the best possible signal-to-noise 

ratio and simplifies data processing. A similar condition can be obtained with lattice 

fringes in the two-beam condition. 

The holographic method does have drawbacks compared to the edge method. First 

is the scale and complexity of the experiments required to collect the data. Large 

data sets are required to achieve consistent Voight profile least-squares fits. With 

long experiments, instrument drift causes misalignments that gradually reduce the 

observed contrast.  We address this issue in section 3.2.3. Another potential 

drawback is the absence of very low frequency data. However, the holographic MTF 

does provide data up to the limit where the NTF and edge MTF become 

contaminated by read-out error. The quality of the Voight profile best-fit is very 

reliable; we have conducted holographic MTF experiments 46 times and found 

repeatable results. Last, the holographic MTF implicitly measures the product of the 

detector system MTF with the OTF of the instrument. If the OTF changed with 

magnification, the result could be biased.  We discount this as microscope OTF is 

dominated by the objective lens, which is held constant. Projector lens distortion is 

significant only at very low excitation, which we avoid in our experimental 

configuration. Furthermore, distortion results in a phase shift of the fringes, and not 

a change in observed contrast [55]. 

3.3 EXPERIMENTAL METHODS AND RESULTS 

3.3.1 EXPERIMENTAL METHODS TO MEASURE MTF 
The experiments were performed at 100, 200, and 300 keV on a Hitachi HF-3300 

TEM equipped with a cold field electron gun (CFEG) and the double bi-prism off-axis 

electron holography configuration [56]. We present results for a GATAN Ultrascan™ 

1000 detector system (2048 x 2048 pixels) but the methods presented here are 

general for other slow-scan CCD detectors or film.  Automation of the acquisition 

process is required to reduce the total experiment time and limit the impact of any 

long-period instrument instabilities so the HF3300 was controlled via MATLAB 

scripts over TCP/IP. Similarly, a plug-in was written for Gatan Digital Micrograph to 

allow control of the CCD acquisition over TCP/IP1. 

First a 120,000 frame dark reference was acquired as described in section 3.2.1.3. 

Then the instrument was placed in low-magnification mode, with the objective lens 

turned-off, and the illumination well-spread and uniform, 𝑎 ≈ 30 pix−1. A gain 

reference was acquired for each accelerating voltage, each composed of 500 frames 

with a mean electron dose of ~350 counts pixel⁄ . For the NTF, one-hundred noise 

images were acquired. After reference normalization the Fourier transform of each 

                                                             
1 To be released by Hitachi as the MAESTRO package.   
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quadrant was applied at the magnitude summed.  A 2-D rotational average was 

applied to each individual quadrant NTF, and the four NTFs were then averaged. 

Then dealiasing, as described in section 3.2.1.1, was applied to arrive at a detector 

NTF estimate. 

For the edge MTF the same optical configuration is used as for the NTF, but a 

carefully polished copper plate was placed over the detector in the film chamber, at 

a slant angle measured as 1.2, such that the edge was over the two right-most 

detector quadrants. Fifty images were taken at each accelerating voltage, reference 

normalized, and then summed to reduce shot and dark noise in the bright and dark 

fields respectively. Each row was normalized and fitted with a sum of error function 

and arctangent functions to locate the edge position that provides subpixel accuracy 

in the registration of each row without needing interpolation. The ensemble of edge 

positions was then fitted to find the slant-edge angle and position across the field of 

view.  Each row was then bicubically sampled and shifted by the slant-edge function 

so that each row could be summed to calculate the overall ESF.  We use the slant-

edge function rather than each individual row fit so that detector artifacts do not 

randomly displace rows. A 5-point numerical derivative was then applied, and the 

expected damping function, Eqn. 3.4., due to the derivative, was deconvolved.   

For the holographic MTF with the double bi-prism setup, the lower bi-prism is 

shadowed by the upper which suppresses the Fresnel fringes seen in single bi-prism 

off-axis holograms [56]. This renders evaluation of mean fringe visibility simple 

[57,58]. Typical experimental conditions cover the range from 0.025 to 0.3 pix-1, 

with approximately 30-35 spatial frequencies chosen and 8 holograms taken at each 

spatial frequency of holographic fringes to establish reasonable statistics. The entire 

series of ~250 holograms requires ~90 minutes to acquire. Holographic fringe 

spatial frequency is adjusted by changing the projector lens excitation which sets 

the hologram magnification at the CCD plane.  All other parameters that would affect 

the measured coherence at the detector plane, such as biprism bias, objective and 

condenser lens excitation, are fixed. Electron intensity on the detector is targeted to 

be approximately 300 counts/pix and the appropriate exposure time is estimated by 

short control exposures. Fringe spacing should be sufficiently large (> 0.5 nm) such 

that fringe-walk does not decrease the observed visibility as a function of exposure 

time.  The acquisition order for each spatial frequency is randomized so that there is 

no systemic error introduced as the instrument is affected by environmental 

instabilities over the course of the experiment.  

To avoid potential bias introduced by manual determination of fringe contrast, the 

data was processed in MATLAB via the method of the sideband to centerband ratio 

to find the average visibility inside the hologram region [57-59]. Individual 

holograms may be affected by transients, such as doors being opened in other parts 

of the laboratory, which produces an outlier datum. Analysis of holographic 

visibility measurements finds heavy skew of outliers below the mean. Outliers more 
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than 2.0 standard deviations outside the mean are discarded. From the data, a 

Voight profile is generated by least-squares best-fit, and the normalized best-fit is 

the holographic MTF. 

3.3.2 MTF RESULTS AND DISCUSSION 
Here we compare the results obtained from all three methods. Best-fit parameters 

for the Voight profile defined by Eqn. 3.2, may be found in Table A1.1 in the 

appendices. The variation with primary electron energy is shown in Figure 3.4 for 

the holographic MTF, slanted-edge MTF and NTF. Lower accelerating voltage results 

in improved detector performance, but the MTF at 200 keV at spatial frequencies >

 0.17 pix−1 is comparable to 300 keV. In real-space, this implies the waist of the 200 

and 300 keV point spread functions are similar, but the 300 keV PSF has longer tails.  

This occurs because 300 keV electron has a higher probability to penetrate the 

bottom face of the scintillator, thereby reducing the interaction volume of the most 

forwardly-scattered electrons [60]. Electrons exiting the bottom surface of the 

scintillator would have a cone-like interaction volume, as opposed to the more 

spherical volume seen from Monte Carlo simulations for infinitely thick targets. 

Higher energy electrons that undergo high-angle scattering and do not exit the 

bottom face of the scintillator could travel very long transverse distances, and 

contribute to the 200 and 300 keV interaction volumes having longer tails than at 

100 keV.  Additionally, higher energy electrons may also backscatter back into the 

scintillator from the fiber-optic coupling, further increasing the interaction volume. 

Figure 3.5 compares the three methods at each primary electron energy. The NTF is 

consistently an overestimate of the MTF, and the slanted-edge MTF is consistently 

an underestimate compared to the holographic MTF. Since the holographic method 

is directly analogous to lattice fringes, and the sources of error for the edge MTF 

bias it to underestimate, this suggests the holographic MTF is a more accurate 

estimate of the detector MTF. The relationship among the NTF, slanted-edge MTF, 

and holographic MTF is consistent at all measured primary electron energies. The 

consistency supports the conclusion that the slanted-edge MTF is an underestimate 

compared to the holographic MTF, and reinforces that the NTF is not a measure of 

signal MTF. 

As shown by Figure 3.6, the detector DQE sharply reduces the improvement in 

signal-to-noise ratio arising from increased source brightness at 300 keV as 

opposed to 100 keV. The DQE for 100 keV decreases with a monotonic character. In 

comparison, both the 200 keV and 300 keV DQE show a strong shoulder, with an 

onset at about 0.22 pix-1 for 200 keV and 0.12 pix-1 for 300 keV. It is conceivable that 

the shoulders arise from the primary electrons having a greater penetration range 

in the scintillator than the scintillator thickness, as the shoulder originates from the 

MTF part of the ratio in Eqn. 3.1.   
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(c) 

Figure 3.4: (a) NTF for 100, 200 and 300 keV primary electrons for a Gatan 
Ultrascan 1000.  Note that the data (shaded dots) is aliased, with frequencies above 
0.5 pix-1 contributing to frequencies below 0.5 pix-1. Dealiasing of fit curves (100 keV 
– solid red, 200 keV – dashed blue, 300 keV – dotted green) is accomplished as 
outlined in section 3.2.1.1. (b) Slanted-edge MTF for 100, 200, and 300 keV primary 
electrons. The 200 keV curve has superior performance to the 300 keV curve up to 
0.16 pix-1, in agreement with the holographic results. The low frequency peaks are 
artifacts due to camera read-out, as described in Section 3.2.1.2. (c) Holographic 
MTF for 100, 200, and 300 keV primary electrons.  The data in (c) has been used to 
generate least-squares best fits. Each curve is composed from over 240 holograms 
with outliers at each pixel frequency deweighted from the fit. The inset shows an 
example of holographic fringes (40 x 40 pixel sample) at 0.19 pix−1 taken at 100 
keV. 
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(c) 

Figure 3.5: Comparison of the best-fit results for noise, holographic, and slanted-
edge methods at (a) 100 keV, (b) 200 keV, and (c) at 300 keV primary electron 
energy for a Gatan Ultrascan 1000 detector system. All three accelerating voltages 
show similar results: the noise power spectrum indicates that noise is transferred at 
a higher efficiency than signal, with obvious consequences for the DQE.  The 
holographic MTF is consistently higher than the slanted-edge MTF at all frequencies. 
Best-fits for the holographic method were not extrapolated beyond frequencies than 
were measured. 
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Figure 3.6: Comparison of the DQE normalized by gain and dose for both the edge 
method (dashed lines) and holographic method (solid lines) at 100 (red), 200 
(blue), and 300 (green) keV. This plot is derived by Eqn. 3.1, using the best-fit Voight 
profiles for the appropriate MTF and the NPS/NTF2. 

3.3.3 PRACTICAL EXPERIMENTAL TECHNIQUE 
 In this section we briefly summarize how to optimize the experimental parameters 

in TEM to account for detector characteristics. Source brightness improves at higher 

accelerating voltages [61], but as shown in Figure 3.4, the higher the primary 

electron energy, the worse the detector MTF, and in Figure 3.6, the worse the DQE. 

Lower energies are valuable if an increase in the elastic interaction constant is 

required, or if radiation damage is a concern [25,26,62]. 

The slope of the DQE shown in Figure 3.6 is relevant to the trade-off between 

contrast and field of view in HRTEM, as determined by microscope magnification. At 

300 keV, the DQE shoulder extends from approximately 0.08 –  0.35 pix−1, so there 

is little to no advantage to operating the instrument at 12.5 pix/fringe as opposed to 

3 pix/fringe. For the example of crystalline Si 110 with 𝑑 =  0.313 nm, this implies 

performance at a magnification of x135k will be identical to x560k.  However, 

magnification higher than x560k where the DQE slope steepens (below 0.08 pix−1) 

will markedly improve the observed contrast and the resultant signal-to-noise ratio.  

For the inter-dumbbell spacing of 𝑑 = 0.136 nm, the contrast will not start to 

improve until above x1300k magnification, which is higher than typically used in 

TEM. 

For electron energy-loss spectroscopy (EELS) and diffraction, which have peak and 

edge-type features, the dynamic range of the detector is often the limiting factor. For 

EELS, there is no hard-and-fast rule on which dispersion to employ because 

different EELS features have varying degrees of sharpness. In the low-loss, high 
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dispersion (i.e. small eV/pix) is often used to resolve weak transitions near the 

strong zero-loss peak, which minimizes the impact of the detector MTF. In the core-

loss region a similar argument applies to the near edge fine structure, although the 

dynamic range typically not a concern. For diffraction, oversaturation and 

incomplete read-out are typically the main concern, and can result in peak shifting 

in the direction of detector read-out. The MTF will significantly broaden diffraction 

peaks at typical camera lengths (30-200 cm), and especially so the diffraction tails at 

higher accelerating voltages. 

Post-processing of images may be applied with characterization of the detector. 

Proper use of dark and gain references is discussed in section 3.2.1.3. The detector 

MTF may also be deconvolved from the final image, which increases the sharpness 

of the image but not the signal-to-noise ratio [40].  Also, deconvolution methods are 

known to introduce ringing artifacts (a.k.a. Gibb’s phenomenon).  A solution is to 

under-deconvolve by the noise floor of the image, i.e. the NTF, which makes the 

noise in an image ‘white’ and is less likely to generate ringing artifacts. 

3.4 CONCLUSIONS 
Complete characterization of the instrument is an important aspect for quantitative 

imaging, such that experiment and simulation are comparable and for optimization 

of experimental parameters.  The long-standing discrepancy between high-

resolution TEM simulations and experiments, known as the Stobb’s factor [63], is 

thought to be partially due to the detector MTF [64]. However, precise measurement 

of the MTF does not ensure accurate measure of the MTF. 

We have examined the three MTF measurement methods and refined the details of 

their implementation. We have expanded the holographic MTF to be a valid method. 

The slanted-edge MTF suffers from several systematic errors that bias it to 

underestimate the true MTF. In comparison, the holographic method is directly 

analogous to imaging (sinusoidal) lattice fringes which suggests that it is an 

accurate estimate of MTF in a TEM.  The slanted-edge method is the standard in 

photon optics, but nature of high-energy electrons renders it difficult to fabricate a 

perfect knife-edge for a TEM.   In comparison, the fixed magnification of photon 

optics makes the holographic method experimentally prohibitive, a problem not 

encountered in TEM. Further work is needed to elucidate whether the discrepancy 

between the observed contrast of lattice and holographic fringes and the slanted 

edge MTF at high spatial frequency (> 0.2 pix-1) is a result of shortcomings of the 

edge method with high energy electrons or due to higher order transfer effects, as 

discussed by Niermann et al. [29]. The NTF measures noise-transfer, not signal-

transfer, and hence is not equivalent to the MTF but is required to calculate the DQE.  

The holographic method as presented struggles to characterize the MTF up to and 

past the Nyquist limit due to frequency aliasing, which is not in general a limitation 

of the oversampled slanted edge method [45]. In the future, systemic subpixel 
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displacements by computer-controlled projector shifts could mitigate this 

limitation, in the same manner that the slant of the edge does. 

For all three methods, accurate normalization of the MTF by the response at zero 

frequency is critical to obtain an accurate result.  Both the slanted-edge and noise 

methods are affected by read-out artifacts at very low-frequencies, and it is 

impractical to collect holographic data at very low-frequencies.  We have shown that 

an approximation to a Voight-profile fit by least-squares provides a reliable estimate 

of the zero-frequency response. The MTF of thick-scintillator detectors strongly 

depends on the accelerating voltage. Incomplete read-out of the CCD caused by the 

short read-out period is potential problem, especially in concert with gain 

references. In general, restricting the dose to < 20 % of saturation limits incomplete 

read-out. Gain references should be recorded at the same expected dose to minimize 

the impact of incomplete read-out on results. Manufacturers could provide the 

option of different amplification circuits with longer read-out times for users that 

desire quantitative results.    

There are several implications for detector development. The optimal pixel size is 

determined by the interaction volume of the fast electron in the scintillator: the 

higher the kinetic energy of the electron, the larger the required pixel size. The DQE 

results suggest that the pixel size on modern CCD detectors for 300 keV instruments 

is too small and would benefit from a pixel length on the order of approximately 4x 

larger than is typical, corresponding to a pixel size of 60 m. Such large-format 

scintillators could require an additional projector lens to achieve the desired 

magnification. Binning large format detectors (> 4x4k) is a potential solution 

although hardware binning does worsen the MTF due to increased pixelization 

error, and decreases the detector’s dynamic range. 

Alternatively, the scintillator may be made thinner as electron scattering is highly 

anisotropic, so that the interaction volume resembles a narrow cone. This is the 

approach of direct exposure [65,66] and by lens-coupled detectors [60,67]. Based on 

published specifications, direct-direction detectors significantly outperform fiber-

optic coupled CCDs for low-dose applications [68]. Lens-coupled systems generally 

have lower collection efficiency than fiber-optic coupled systems. Lens-coupled 

systems can be designed to demagnify the scintillator image, thereby reducing the 

oversampling problem, at the cost of further reduced collection efficiency [67]. 
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4 PHASE MEASUREMENT ERROR IN SUMMATION OF 

ELECTRON HOLOGRAPHY SERIES 
The contents of Chapter 4 were submitted for publication to Ultramicroscopy by 

R.A. McLeod, M. Bergen, and M. Malac on March 26th, 2013. Contributing author M. 

Bergen wrote the original version of the hologram series summation software, 

provided valuable insight on how to average complex images, and provided valuable 

feedback throughout the development process. M. Malac edited the paper and 

provided valuable discussion throughout the development process. 

ABSTRACT 

Off-axis electron holography is a method for the transmission electron microscope 

(TEM) that measures the electric and magnetic properties of a specimen. The 

electrostatic and magnetic potentials modulate the electron wavefront phase. The 

error in measurement of the phase therefore determines the smallest observable 

changes in electric and magnetic properties. Here we explore the summation of a 

hologram series to reduce the phase error and thereby improve the sensitivity of 

electron holography.  Summation of hologram series requires independent 

registration and correction of image drift and phase wavefront drift, the 

consequences of which are discussed.  Optimization of the electro-optical 

configuration of the TEM for the double biprism configuration is examined.  An 

analytical model of image and phase drift, composed of a combination of linear drift 

and Brownian random-walk, is derived and experimentally verified. The accuracy of 

image registration via cross-correlation and phase registration is characterized by 

simulated hologram series. The model of series summation errors allows the 

optimization of phase error as a function of exposure time and fringe carrier 

frequency for a target spatial resolution.  An experimental example of hologram 

series summation is provided on WS2 fullerenes. A metric is provided to measure 

the object phase error from experimental results and compared to analytical 

predictions. The ultimate experimental object root-mean-square phase error is 

0.006 rad (2π/1050) at a spatial resolution less than 0.615 nm and a total exposure 

time of 900 s. The ultimate phase error in vacuum adjacent to the specimen is 

0.0037 rad (2π/1700). The analytical prediction of phase error differs with the 

experimental metrics by +7 % inside the object and -5 % in the vacuum, indicating 

that the model can provide reliable quantitative predictions.   

4.1 INTRODUCTION 
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Off-axis electron holography (EH) in the transmission electron microscope (TEM) is a 

technique for the characterization of electrostatic and magnetic properties of a 

specimen [1][2]. A population of electrons, each being a wave-particle, has a 

distribution of amplitude and phase shift in both time and space. The electron is 

phase shifted by the electric and magnetic potentials integrated along its path [3]. 

The most principal electromagnetic phase shift is that of the object/specimen, 

analogous to the index of refraction of a material phase shifting a photon.  

An attractive strategy for improving the signal-to-noise ratio (SNR) of electron 

holograms is summation of a hologram series [4][5][6][7][8][9]. An image series can 

be used to break a long exposure into frames with the image drift for each frame 

corrected by cross correlation. In an electron hologram the strongest feature is the 

fringes of the interference pattern, which shift with drift of the electron phase.  As a 

result, application of cross-correlation alignment cannot be applied to electron 

holograms directly to correct the image drift. Registration of the image and phase 

drift must be performed separately, which requires operating on the complex data 

of the reconstructed hologram.  In this paper we provide methods to optimize the 

phase error of hologram series as a function of the targeted spatial resolution.    

In Section 4.2, we introduce the dependence of phase error on spatial resolution and 

how to optimize the microscope column. In Section 4.3 we extend the optimization 

for a hologram series, taking into account image and wavefront phase drift.  In 

Section 4.4 we provide examples of high-resolution hologram series results on a 

specimen of inorganic fullerene WS2.  In Section 4.4.2 we develop a metric to 

measure phase error experimentally and compare it to the estimates derived in 

Section 4.3.4.  A description of the algorithm used to align and sum a hologram 

series is found in appendix A2.  

4.2 OPTIMIZATION OF ELECTRO-OPTICAL CONFIGURATION 
In off-axis electron holography, the electron wavefront is split by an electrostatic 

biprism. The object wave (subscript 1) passes through the specimen, while the 

reference wave (subscript 2) passes through vacuum adjacent to the specimen. The 

two waves converge on a detector at semi-angle 𝜃, forming an interference fringe 

pattern, or hologram. The interference pattern intensity, 𝜓12
2(𝐫), as a function of 

position r, is given by, 

 
𝜓12

2(𝐫) = 𝐴1
2(𝐫) + 𝐴2

2(𝐫)

+ 2𝑉(𝐫, 𝑞𝑐 , 𝛼𝑜)𝐴1(𝐫)𝐴2(𝐫)cos(2π𝐪𝐜𝐫+𝜙1(𝐫) − 𝜙2(𝐫)) 

 

(4.1) 

where 𝐴1 and 𝐴2 are the object and reference wave amplitude, respectively, 𝜙1 and 

𝜙2 are the object and reference wave phase shift, respectively, 𝐪𝑐 = 2sin(𝜃) 𝜆⁄ , is 

the carrier frequency of the fringe pattern, 𝑉 is the holographic visibility (or fringe 

contrast) which depends on the illumination angle 𝛼𝑜 and the separation of virtual 

sources determined by 𝑞𝑐. 
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The path length, i.e. phase, difference between the reference and object waves 

measures both the electrostatic potential background of the object, and the 

electrostatic and magnetic potentials/fields [10][11][12]. As with all measurements, 

there is an associated error that limits the minimum variation in specimen 

thickness, compositional variation, and electric and magnetic field that may be 

measured [13]. The standard error of the phase has historically been expressed by 

the estimate of its variance [14][15][16][17], 

 𝜎𝜙
2(𝜇, 𝑉) = 2 𝜇𝑉2⁄  (4.2) 

where, 𝜇 is the number of electrons per reconstructed pixel and V is the holographic 

visibility, which may be calculated by various means [18]. Minimization of phase 

error requires maximization of both current density and holographic visibility.  

Holographic visibility is largely dependent on the high wavefront coherence which 

results from parallel, widely-spread illumination.  However, the more widely spread 

the illumination, the lower the current density incident on the specimen.  Long 

exposure times may be used to increase the electron dose, but image drift, shifts in 

specimen position, and phase drift, changes in the electron path-length, blur the 

hologram in space and phase. Thus it is necessary to optimize the electro-optical 

configuration in order to minimize the phase error [19]. 

The estimator of Eqn. 4.2 is limited in that it does not relate the spatial resolution to 

the phase error, although the two are linked [20]. Phase error is related to spatial 

resolution, both due to the optical-transfer function (OTF) of the TEM [21] and 

modulation-transfer function (MTF) of the detector [22]. The effective binning of the 

detector from the holographic reconstruction process also has a major impact on 

the mean dose per pixel. For example, an estimated phase error of 0.001 rad 

(2/6300) with a measured phase noise of 0.02 rad (2/300) has been 

demonstrated at 12 nm spatial resolution [23], compared to an estimated phase 

error of ~0.06 (2/100) at 0.1 nm spatial resolution [24]. As we show in Section 4.3, 

the drift of the image and holographic fringes also affects the phase error, especially 

for prolonged exposures at high spatial resolutions. 

Reconstruction of electron holograms is typically done using the Fourier method 

[2][20]. In Fourier-space, a hologram consists of a central band at zero frequency 

(i.e. the autocorrelation) and two sidebands, one at the spatial frequency of the 

fringe pattern and the other at its complex conjugate. The phase shift is encoded in 

the positions of the fringe pattern, therefore reconstruction of the complex 

(amplitude and phase) electron wave-function is achieved by isolating the sideband 

with an apodization function, such as a von Hann window, translation to zero-

frequency, and then an inverse Fourier transform is applied.  

To introduce the spatial frequency dependence, the electron counts is defined as 

[20], 

 𝜇 = 𝑡𝑥𝐼𝑒𝑅 ∙ DQE𝑐𝑐𝑑(𝐪) (4.3) 
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where 𝑡𝑥 is exposure time, 𝐼𝑒 is the electron flux at the object plane, 𝑞𝑐 is the carrier 

frequency of the fringes, and R is the resampling factor of the apodization, which 

represents the pixel binning that occurs during the Fourier reconstruction [25][26].  

For a circular ‘hard’ von Hann apodization, used throughout this paper,  

𝑅 = (2√2 𝑎⁄ )
2

 

where a is the radius of the  von Hann window (in reciprocal space units) and the 

additional factor of √2 is the Ishizuka resampling factor, due to the apodization 

being circular and the detector is assumed to be square. In general, the apodization 

radius is substituted by half the carrier frequency 𝑎 = 𝑞𝑐 2⁄ .  In some cases, a more 

restrictive apodization is necessary to prevent cross-talk between the centerband 

(autocorrelation) and sideband, but for the remainder of the paper we will use the 

substitution. The effective dose is reduced by the detector quantum efficiency (DQE) 

[27]. We use a simplified version of the DQE𝑐𝑐𝑑(𝐪) = MTF𝑐𝑐𝑑
2 (𝐪) NTF𝑐𝑐𝑑

2 (𝐪)⁄ , where 

MTF𝑐𝑐𝑑 is the holographic MTF and NTF𝑐𝑐𝑑 is the noise-transfer function [22]. This is 

not a complete treatment of the DQE as it does not account for the variation in DQE 

with dose, but it does effectively estimate the increase in shot noise over the 

expected Poisson value. 

The observed visibility a combination of many factors [20], 

 𝑉 = 𝛾(𝑞𝑐 , 𝛼𝑜)MTF𝑜𝑠𝑐𝑉𝑜𝑏𝑗MTF𝑑𝑟𝑖𝑓𝑡(𝑞𝑐 , 𝑡𝑥)MTF𝑐𝑐𝑑(𝑞𝑐−𝑝𝑖𝑥) (4.4) 

where 𝛾 is the complex degree of coherence of the source which is demagnified by 

the illumination optics 𝛼𝑜, MTF𝑜𝑠𝑐 represents the loss of contrast from high-

frequency oscillations (both of the source and biprisms), 𝑉𝑜𝑏𝑗 is the loss of contrast 

from incoherent scattering in the object, MTF𝑑𝑟𝑖𝑓𝑡 is the visibility loss due to drift of 

the holographic fringes over the exposure time, and MTF𝑐𝑐𝑑 is the holographic-

based detector MTF [22]. The complex degree of coherence [28][29] and high-

frequency oscillation MTF are combined into 𝑉𝑛(𝑞𝑐, 𝛼𝑜) = 𝛾(𝑞𝑐 , 𝛼𝑜)MTF𝑜𝑠𝑐 as shown 

in Figure 4.1. For the moment, we will omit the visibility of the object/specimen, 

which must be measured experimentally [18], and the MTF due to fringe drift, which 

we address in section 4.3. Then substituting into Eqn. 4.3 and 4.4 into 4.2 yields, 

 𝜎𝜙(𝐪, 𝑡𝑥 , 𝐼𝑒 , 𝑞𝑐 , 𝛼𝑜) = √
𝑞𝑐

2

𝑡𝑥𝐼𝑒𝑉𝑛(𝑞𝑐 , 𝛼𝑜)2
∙ MTF𝑐𝑐𝑑

−1 (𝑞𝑐−𝑝𝑖𝑥)DQE𝑐𝑐𝑑
−0.5(𝐪𝑝𝑖𝑥) (4.5) 

The detector DQE and MTF are explicitly separated because they depend on TEM 

magnification (i.e. they are functions of pixel spatial frequency). The impact of Eqn. 

4.5 on optimization can be best understood in terms of operational parameters of 

the microscope: 1.) for the illumination, increased condenser excitation spreads the 

beam and makes the illumination more parallel. Visibility is increased but current 

density is decreased; 2.) for the biprism, the carrier frequency 𝑞𝑐 and interference-

field width increase with bias; 3.) the measured visibility of fine fringes is decreased 

by the detector MTF and the effective shot noise increased due to DQE.  
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Furthermore, detector MTF and DQE are a function of primary electron energy. 

Lower primary electron energy improves the detector MTF and DQE for slow-scan 

CCD detectors, increases the interaction constant with electrostatic fields [30], but 

decreases brightness [31] and penetration range.  

The choice of specimen determines the desired field of view (FoV) which in turn 

determines the hologram width and magnification. The specimen also determines 

the target spatial frequency 𝑞𝑡, in the holographic reconstruction, which could be 

lattice fringes or some other feature to be investigated.  The carrier frequency of the 

holographic fringes must be 𝑞𝑐 ≥ 𝑞𝑡 2⁄  due to the Fourier reconstruction process, 

and for the single biprism configuration is optimally 𝑞𝑐 = 𝑞𝑡 3⁄  [21].  

For the double biprism configuration [32], the hologram width is controlled by the 

bias of the lower biprism, BP2.  As such, BP2 is fixed based on the size of the object.  

Then the relationship between visibility V and carrier frequency qc may be defined 

in terms of the upper biprism bias, BP1. The relationship is affected both by source 

coherence and detector MTF. As such, the detector MTF should be measured and an 

analytic best-fit calculated [22], such that the visibility may be calculated 

independent of magnification (denoted Vn for normalized by detector MTF). The 𝑉𝑛 

for our TEM at 200 keV is shown in Figure 4.1.  

 𝑞𝑐 = 0.060 𝐵𝑃1 + 0.045𝐵𝑃2 − 0.038 [𝑛𝑚−1] (4.6) 

 
𝑉𝑛 = 0.94 − 0.0023 𝐵𝑃1 − 0.0065 𝐵𝑃2 −  6.8 ∙ 10−6𝐵𝑃2

2 
+2.7 ∙ 10−5𝐵𝑃1𝐵𝑃2 

 
(4.7) 

Then we can fix BP2 to generate the desired hologram width 𝑤 and find an 

expression for 𝑉𝑛(𝑞𝑐 , 𝑤). We omit this step to be concise; it is accomplished by 

solving Eqn. 4.6 and 4.7. Extrapolation of Eqn. 4.7 to zero biprism bias, 𝑉00 = 0.94 ±

0.025, provides an estimate for the loss of visibility due to instrument instabilities 

that are fast relative to the exposure time. This is expected to be oscillations of 

biprisms and potentially the electron gun by 60 Hz disturbances as well as higher 

frequency components such as vibrations arising from turbomolecular pumps.   
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Figure 4.1: Visibility as a function of upper biprism bias 𝐵𝑃1 and lower biprism bias 
𝐵𝑃2 at 200 keV at an optimized condenser lens C1 excitation. Blue dots are data and 
the colored surface is a polynomial fit of with a correlation coefficient 𝑅2 = 0.97. 
The MTF of the detector has been removed, so the visibility is independent of 
magnification.  The carrier frequency 𝑞𝑐 covers the range 2.6-10 nm-1 (0.1 – 0.38 nm 
wavelength). The fringe frequency increases with biprism bias. 

The illumination convergence, 𝛼𝑜, is optimized based on a series of reference 

holograms of over a range of condenser lens excitations and plotting the phase error 

estimated by Eqn. 1.  As shown in Figure 4.2, there is a minimum phase error at 

specific condenser excitation.  A condenser excitation optimized to minimize the 

phase error effectively fixes the electron current density 𝐼𝑒, and removes a degree of 

freedom from the optimization.  
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Figure 4.2: Phase error as a function of condenser excitation, normalized to an 
exposure time of 1 s for BP1 = 40 V, BP2 = 30V.  The condenser excitation that 
corresponds to the minimum phase error is easily selected. The image-plane cross-
over is located at 36.97 % excitation. 

4.3 SOURCES OF ERROR IN HOLOGRAM SERIES SUMMATION 
In section 4.2, we described how to optimize the microscope configuration ignoring 

sample and wavefront phase drift, the later originating from biprism and 

illumination tilt drift. In this section, we expand our optimization to practical 

holographic series on the parameters of m frames each with an exposure time of 𝑡𝑥 

and carrier frequency 𝑞𝑐. Ideally, the addition of m frames should result in a linear 

increase in the counts, such that the sum phase error would be  

 𝜎Σ−𝜙 = 𝑚−0.5𝜎𝜙(𝐪, 𝑡𝑥 , 𝐼𝑒 , 𝑞𝑐 , 𝛼𝑜) (4.8) 
Each pixel in a hologram reconstruction may be considered to be a complex circular 

random variables (CCRV) [33][34]. As with normally distributed random variables, 

the mean and variances of CCRVs sum along the real and imaginary axes.  As such, 

the phase of CCRVs may be averaged by summing their real and imaginary 

components, forming the basis for improved phase resolution through hologram 

series [7].  First image drift is registered via cross-correlation [35].  The 

reconstructed holograms are then shifted.  With the two holograms aligned in space, 

the mean phase difference [36] between the two reconstructed holograms is 

estimated and subtracted to remove wavefront phase drift. Extended discussion of 

the algorithm details is provided in appendix A2. 

In practice the summation of a series of holograms suffers from drift of the image 

(object) and phase (fringes). Drift causes both shifts in mean position, which can be 

estimated with some uncertainty and removed, and motion blur integrated over the 

duration of the exposure, which acts as a MTF in frequency space or point-spread 
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function (PSF) in image space. To gain insight into the effect of drift on holograms, 

drift is modeled as a linear combination of linear, constant velocity drift and 

Brownian motion random-walk.  

We take this approach because while techniques have been developed  to extract the 

complete drift kernel they generally require a high signal-to-noise ratio beyond 

what is achieved in electron holography due to the use of blind deconvolution 

methods [37][38][39] or use a sensor to track and estimate the motion [40]. A third 

component of motion in the TEM is oscillations with high-frequency relative to the 

exposure time, such as the ubiquitous 60 Hz disturbance [41][42]. We do not 

account for the high-frequency MTF because it does not worsen with increasing 

exposure time.  

Gaussian random walks are those where a particle have a normal probability of 

moving in any direction. For the TEM, we generalize this to the motion of the 

specimen observed at an image plane. In general, for a Gaussian random walk the 

total displacement scales with the square root of the number of steps. For Brownian 

motion, which is a Gaussian random walk with an infinitesimal step size, the mean 

square displacement, 〈𝑟2〉, as a function of time is  

 〈𝑟2〉 = 2𝑛𝐷𝑡𝑥 (4.9) 
where 𝑛 is the number of dimensions, 𝐷 is the diffusivity constant, and 𝑡𝑥is the 

exposure time [43][44]. 

Thus there are six sources of error that impact the phase error of hologram series: 

1. Image drift velocity, 𝑣𝑖: constant velocity image drift, typically caused by 

environmental gradients, such as temperature or pressure, acting on the 

TEM. 

2. Phase drift velocity, 𝑣𝜙: constant velocity phase drift, typically caused by 

gradients acting on the biprism holders or tilt of the beam by lens and 

deflector drift.  

3. Image diffusivity, 𝐷𝑖: random-walk of the object. 

4. Phase diffusivity, 𝐷𝜙: random-walk of the fringes from the biprism. 

5. Image registration error, i: the accuracy of the cross-correlation based 

registration is limited by shot noise, which is modulated by the detector.   

6. Phase registration error, : the accuracy of the scalar phase drift 

registration is limited by shot noise, image drift, and potentially specimen 

charging during acquisition of the series. 

The first four errors affect individual holograms while the registration errors, 5 and 

6, are particular to the summation of hologram series.  

4.3.1 IMAGE DRIFT 
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Image drift acts upon the image as a motion blur that is modeled as an MTF.  

Conceptually if one breaks down the image drift over the course of the exposure 

time into infinitesimal velocity slices dv and time slices dt, the resulting MTF is [45], 

MTF𝑖(𝑞, d𝑣, d𝑡) = ∫ sinc(𝜋 d𝑣 d𝑡 𝑞)d𝑡 

Constant-direction linear drift is typically caused by thermal gradients affecting the 

TEM. The MTF due to linear drift component is the Fourier transform of a 

rectangular PSF, sometimes referred to as a Heaviside- function, which has a 

cardinal sine form, 

 MTF𝒗𝑖
(𝑞, 𝑡𝑥) =  |sinc(𝜋𝐯𝑖𝑡𝑥𝑞)| (4.10) 

Theoretically the linear component of the image drift can be deconvolved after vi is 

estimated by cross-correlation. However, the cardinal sine function has zeros if the 

drift exceeds two pixels, so the deconvolution is ill-defined due to division by zero.  

The probability-distribution function (PDF) of a Gaussian random-walk for 2-D 

isotropic diffusion with diffusion coefficient 𝐷𝑖 at time t is [46][47], 

 PDF𝐷𝑖
(r, 𝑡) =

1

4𝜋𝐷𝑖𝑡
exp (

−𝑟2

4𝐷𝑖𝑡
) (4.11) 

where r is the spatial image coordinate. Then the PSF is the PDF integrated over 

[0, 𝑡𝑥], 

PSF𝐷𝑖
(𝐫, 𝑡𝑥) =

1

𝑡𝑥
∫

1

4𝜋𝐷𝑖𝑡
exp (

−𝑟2

4𝐷𝑖𝑡
) 𝑑𝑡 =

𝑡𝑥

0

1

4𝜋𝐷𝑖𝑡𝑥
Γ (0,

−𝑟2

4𝐷𝑖𝑡𝑥
) 

where Γ is the Euler gamma function. Then the MTF is the Hankel transform 𝑟 →

2𝜋𝑞, 

 MTF𝐷𝑖
(𝑞, 𝑚, 𝑡𝑥) = 2𝜋 ∫ PSF𝐷𝑖

 𝐽0(2𝜋𝑞𝑟)𝑟𝑑𝑟

∞

0

=
(1 − exp(−4𝜋2𝐷𝑖𝑡𝑥𝑞2))

4𝜋2𝐷𝑖𝑡𝑥𝑞2
 (4.12) 

where  𝐽0 is a Bessel function of the first kind. Eqn. 4.12 is plotted in Figure 4.3 and 

compared to Monte Carlo simulation of the MTF. Discretization error in the Monte 

Carlo simulation was minimized by interpolating the pixel position. The analytical 

solution to Eqn. 4.12 (solid blue line) matches the Monte Carlo simulation well, 

although residual discretization error is observed. In Figure 4.4 an estimate of the 

random-walk MTF𝐷𝑖
 for a range of exposure times is provided.  The damping from 

the random-walk blur is very significant at high spatial resolutions and long 

exposure times. The linear combination of constant-velocity and random-walk drift 

MTFi has the form, 

 MTF𝑖(𝑞, 𝑚, 𝑡𝑥) = |sinc(𝜋𝐯𝑖𝑡𝑥𝑞)|
1 − exp(−4𝜋2𝐷𝑖𝑡𝑥𝑞2)

4𝜋2𝐷𝑖𝑡𝑥𝑞2
 (4.13) 
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Figure 4.3: (a) Example of modulation-transfer function MTF𝐷𝑖

 from Gaussian 

random-walk in 2-D when simulated by Monte Carlo (black dots) for 𝐷𝑖 =
0.8 𝑝𝑖𝑥2/𝑠 and 𝑡𝑥 = 5 𝑠. The exposure time was broken up into 100 000 steps and 
the MTF was then averaged over 2000 Monte Carlo runs. The analytical prediction 
from Eqn. 4.12 is presented as the solid blue line. For comparison, best-fits of a 
Gaussian (dotted red) and Lorentzian (green dot-dash) to the Monte Carlo results 
are shown.  

 
Figure 4.4: Examples of random-walk MTF𝐷𝑖

 from Eqn. 4.12 for an image diffusivity 

of 𝐷𝑖 = 395 𝑝𝑚2 𝑠⁄  for selected exposure times. 

Accurate optimization requires extensive characterization of the drift instability of 

the TEM in its quiescent laboratory environment. To establish that the object drift in 

our Hitachi HF-3300 TEM can be expressed as a superposition of constant-velocity 

drift and a random walk, a 1500-image drift series at x560k was acquired over ~6.5 

hours. Each frame was cross-correlated to the previous frame to measure the 
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displacement 𝐫 with the time between frames 𝑑𝑡 = 15.07 𝑠. Then the constant-

velocity drift component can be found from the mean, 〈𝐫〉 = 𝐯𝑖𝑑𝑡, and the random-

walk component from the variance 〈(𝐫 − 〈𝐫〉)𝟐〉 = 4𝐷𝑖𝑑𝑡. The histogram shown in 

Figure 4.5, shows the drift velocity has a Gaussian distribution. The mean of the 

histogram corresponds to an image drift velocity of 𝐯𝑖 = −20 𝐱̂ − 41 𝐲̂ =

45 𝑝𝑚 𝑚𝑖𝑛⁄ .  The diffusivity coefficient is 𝐷𝑖 = 385 𝐱̂ + 405 𝐲̂ = 395 𝑝𝑚2 𝑠⁄  or 

~0.8 𝑝𝑖𝑥2 𝑠⁄  at typical holography magnification (~ x600𝑘). Based on the data, 

random-walk is the dominate component of image drift in our HF-3300 TEM. If the 

random-walk drift is not isotropic, then Eqn. 4.15 derived for 1-D random-walks in 

Section 4.3.1 may be applied independently for each axis.  

 

 
(a) 

 

 
(b) 

Figure 4.5: Histogram of the image drift registered by cross-correlation for 1500 
successive images along the (a) x-axis and (b) y-axis. The specimen was Au 
nanoparticles on amorphous Ge substrate at a magnification of x560k.  Average time 
between exposures was 15.07 s. This shows that the image drift is a Gaussian 
distribution, as expected from the probability distribution function of Eqn . 4.10. 

The object drift characterization is dependent on the composition and morphology 

of the specimen.  The reference sample for this case was Au nanoparticles (3-5 nm 

diameter) on amorphous Ge substrate.  It is evident that the Au nanoparticles move 

relative to each other as well as moving as an ensemble from video of the drift 

series. There are a number of potential causes of specimen random-walk in the TEM 

including thermal forces, secondary electron emission charge forces, and plasmonic 

forces [48]. The analysis does not separate the motion of the nanoparticles from that 

of the entire sample at present. 

4.3.2 PHASE DRIFT 
In this subsection we discuss wavefront drift, which is observed as the holographic 

fringes walking back-and-forth on the detector.  Phase drift arises due to a 
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combination of biprism drift and tilt of the beam through the column changing the 

relative path length of the object and reference wavefronts. We conducted 

experiments with artificially induced beam tilt that showed only a scalar phase shift. 

Consequently we conclude the phase drift can be modeled as a scalar. This implies 

that the mean phase shift can be subtracted from each frame in a series so that only 

the phase drift that occurs during an exposure impacts the phase error. 

Phase drift causes motion blur of the sinusoidal interference fringes which worsens 

the observed visibility and consequently the phase error.  The random-walk MTF of 

the phase is found analogous to that of the image, except in 1-D. The PDF is defined 

as 

 PDF𝐷𝜙
(𝑥, 𝑡) =

1

√2𝜋𝐷𝜙𝑡
exp (

−𝑥2

2𝐷𝜙𝑡
) (4.14) 

where 𝐷𝜙 the phase diffusivity in 𝑝𝑚2/𝑠. Then integrating 𝑡 over [0, 𝑡𝑥], 

𝑃𝑆𝐹𝐷𝜙
(𝑥, 𝑡𝑥) = √

2𝑡𝑥

𝜋𝐷𝜙
exp (

−𝑥2

2𝐷𝜙𝑡𝑥
) −

|𝑥|

𝐷𝜙
[1 − erf (

|𝑥|

√2𝐷𝜙𝑡𝑥

)] 

The MTF is found by taking the Fourier transform 𝑥 → 2𝜋𝑞 and normalizing by the 

limit 𝑡𝑥 as 𝑞 → 0, 

 
𝑀𝑇𝐹𝐷𝜙

(𝑞, 𝑡𝑥) =
1 − exp(−2𝜋2𝐷𝜙𝑡𝑥𝑞2)

2𝜋2𝐷𝜙𝑡𝑥𝑞2
 

(4.15) 

Thus MTF for a random-walk in 1-D is the same as 2-D except for the change in 

dimension in Eqn. 4.9.  On the basis of 1-D diffusive motion of the fringes, the 

visibility as a function of exposure time, 𝑉∗, can be found from associated MTFs at 

the carrier frequency 𝑞𝑐, 

 
𝑉∗(𝑞𝑐 , 𝑣𝜙, 𝐷𝜙, 𝑡𝑥) = |sinc(𝜋𝑞𝑐𝑣𝜙𝑡𝑥 )|

1 − exp(−2𝜋2𝐷𝜙𝑡𝑥𝑞𝑐
2)

2𝜋2𝐷𝜙𝑡𝑥𝑞𝑐
2  𝑉𝑛 

 

(4.16) 

where qc the fringe frequency in 𝑝𝑚−1.   

Similar to image drift, the phase drift was characterized by a 1500 hologram series 

with a fringe carrier wavelength, 𝜆𝑐 = 336 𝑝𝑚 and a mean time between exposures 

of 4.0 s. Based on the histogram of the phase drift, shown in Figure 4.6, the fringe 

drift velocity is 𝑣𝜙 = −0.0005 𝑟𝑎𝑑/𝑠 = −0.025 𝑝𝑚/𝑠, which is negligible. The phase 

diffusivity coefficient is 𝐷𝜙 = 0.003 𝑟𝑎𝑑2/𝑠 = 9.6 𝑝𝑚2 𝑠⁄  at the specimen plane. The 

histogram should not be significantly broadened from the measurement error of the 

average phase, which is estimated at 0.005 𝑟𝑎𝑑 from Eqn. 4.2. 

In order to verify the behavior of fringe drift, a second experiment was performed of 

holograms recorded at different exposure times. Experimental results are shown in 

Figure 4.7 for 0.1 nm fringe spacing holograms taken at exposure times ranging 
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from 1 to 45 s, alongside analytical predictions for 𝐷𝜙 = 10 𝑝𝑚2 𝑠⁄ . The results 

show that there is excellent agreement between the predicted and measured 

visibility 𝑉∗. Data for Figure 4.6 and Figure 4.7 were taken ten months apart, so we 

consider the characterization of 𝐷𝜙 quite stable for a TEM in its quiescent 

laboratory environment. We cannot experimentally measure a loss of visibility for 

broad fringes (0.5 nm) with exposure times up to 120 s. 

It is necessary to state the phase drift in terms of picometers of fringe displacement 

relative to the object plane because the loss of visibility changes with fringe carrier 

frequency. For the double biprism configuration [32] the demagnification relative to 

the object plane is fixed in order to place the top biprism at as image plane. 

However, for single biprism configurations, where changing the defocus of the 

biprism to alter relationship between carrier frequency and hologram width also 

changes the demagnification of the biprism relative to the object plane, 

characterization of phase drift is more onerous.   

 
Figure 4.6: Histogram of phase drift for 0.336 nm fringes the Hitachi HF-3300 TEM 
for a 1500 hologram series, with an average time between exposures of 4.0 s. The 
histogram shows that the drift follows the probability distribution function defined 
by Eqn. 4.14. 
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Figure 4.7: Visibility loss (normalized to 1 at 0 s by the linear best fit to the data) as 
a function of exposure time for selected fringe wavelengths. Twelve holograms were 
taken at each exposure time (black dots with error bars). The analytical solution to 
Eqn. 4.16 (dashed cyan line) shows good agreement to a linear best-fit (dark blue 
line) of the experimental 0.1 nm holographic fringes. The analytical solution shows 
that for large fringe spacing (green and red dashed), the effect of phase random-
walk is minimal.  

4.3.3 REGISTRATION ERRORS 
In this subsection the errors specific to the summation of hologram series are 

investigated. In the presence of noise and other image artifacts such as motion blur, 

the cross-correlation of the image drift and of the estimation of the mean phase drift 

are not exact. This results in both a drift registration error and phase registration 

error. 

The drift registration error is composed of a sum of m Dirac functions with standard 

deviation 𝛿𝑖 .  As 𝑚 → ∞, the PSF becomes a  Gaussian function with standard 

deviation 𝛿𝑖 .   

 PSF𝛿𝑖
(𝜇, 𝑉, 𝑟) = exp (− 𝑟2 2𝛿𝑖

2⁄ (𝜇, 𝑉)) (4.17) 

and 

 MTF𝛿𝑖
(𝜇, 𝑉, 𝑞) = exp(−2𝜋2𝛿𝑖

2(𝜇, 𝑉)𝑞2) (4.18) 

The phase registration error is the error in estimating the mean over the region-of-

interest (RoI), which ideally is 

 𝛿𝜙 = √2 ℎ𝑤𝜇𝑉2⁄  (4.19) 

where ℎ is the height and 𝑤 the width of the RoI. If the pixels of reconstructed 

holograms are treated as complex circular random variables (CCRVs) [33][34], then 
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total phase variance is 𝜎𝜙
2 + 𝛿𝜙

2 . As discussed below in the results for simulated 

holograms, the phase registration error is much higher in the presence of image 

drift. As such, Eqn. 4.19 is in general only valid for reference holograms.  

The primary challenge for estimation of registration errors is that the true drift 

must be known.  As the large number of practical factors renders analytic 

approaches intractable, we have resorted to simulations to estimate the registration 

errors. The process is outlined as follows: a hologram object is generated. For m = 

25 hologram series, random object drift and phase drift are generated and applied 

to each frame. Motion blur is applied to each frame.  The carrier frequency is applied 

to form a hologram and Poisson shot noise is individually calculated for each pixel 

based on expected dose.  Detector MTF is applied to the image. The resulting 

holograms and resulting references are then processed by our hologram averaging 

algorithm identically to experimental data.  This process was repeated ~3 ∙ 104 

times to generate reasonable statistics. The resulting empirical relationships are, 

 
𝛿𝑖 = 8.3𝜇−1 + 0.3 𝑝𝑖𝑥 = 0.34𝑡𝑥

−1 + 0.3 𝑝𝑖𝑥 
 

(4.20) 

 
𝛿𝜙 = 1.6 ∙ 10−3√𝜇 + 2 ∙ 10−3 𝑟𝑎𝑑 = 7.9 ∙ 10−3√𝑡𝑥 + 2 ∙ 10−3 𝑟𝑎𝑑 

 
(4.21) 

Essentially no dependence of registration errors on holographic visibility is found. 

This is expected for cross-correlation performed on the centerband as it does not 

vary with visibility. The phase registration error is an order of magnitude higher 

than expected by Eqn. 4.19, and appears to be governed by the motion blur from 

image drift, MTFi.  High phase registration error is not observed with simulated 

reference holograms, for which 𝛿𝜙−𝑟𝑒𝑓~0.001 𝑟𝑎𝑑.   

 
Figure 4.8: Image registration error for simulated holograms, qc = 0.1 pix-1. 
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Figure 4.9: Phase registration error for simulated holograms, qc = 0.1 pix-1. 

4.3.4 COMBINED PHASE ERROR AND SPATIAL RESOLUTION FOR HOLOGRAM 

SERIES 
With expressions for the drift and registration errors derived above, the phase 

resolution for a hologram series may be defined as, 

 

 

𝜎Σ−𝜙(𝐪, 𝑚, 𝑡𝑥 , 𝑞𝑐) =
1

√𝑚
(𝜎𝜙(𝐪, 𝑞𝑐 , 𝑡𝑥) + 𝛿𝜙(𝐪, 𝑞𝑐 , 𝑡𝑥)) 

 

(4.22) 

where 

𝜎𝜙 = √
𝑞𝑐

2

𝑡𝑥𝐼𝑒𝑉∗(𝑞𝑐 , 𝑤, 𝑣𝜙, 𝐷𝜙, 𝑡𝑥)
2

∙ MTF𝑐𝑐𝑑
−1 (𝑞𝑐)DQE𝑐𝑐𝑑

−0.5(q)MTF𝛿𝑖

−1(q, 𝑡𝑥)MTF𝑖
−1(q, 𝐯𝑖, 𝐷𝑖, 𝑡𝑥) 

This equation includes terms from Eqns. 4.13, 4.16, 4.18, 4.20, and 4.21. The phase 

registration error, presented in section 4.3.3, includes the inverse MTF terms in the 

simulation.   The main factors to optimize for any given spatial frequency q is the 

exposure time 𝑡𝑥, and carrier frequency 𝑞𝑐 < qmax 2⁄ . Other parameters, such as the 

drift, are characteristic of the instrument whereas illumination and biprism bias 

optimization was previously discussed in section 4.2.  A surface plot of sum phase 

error versus exposure time and carrier frequency for the target frequency, 𝑞 =

 1.62 𝑛𝑚−1 is shown in Figure 4.10.a.  The components of the phase error are well-

behaved and generally change monotonically, so no local minima are observed. A 

cross-section through 𝑞𝑐 = 10 𝑛𝑚−1 is provided in Figure 4.10.b which provides 
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also the components of the phase error to show how they inter-relate with exposure 

time.   

 
(a) 

 
(b) 

Figure 4.10: (a) Optimization of phase error 𝜎Σ−𝜙 for exposure time and carrier 

frequency. (b) A cross-section through 𝑞𝑐 = 0.1 𝑝𝑖𝑥−1, components of the phase 
error. In (b) we use experimentally observed (see section 4.4) 𝑉 = 0.163 for 𝜎𝜙 

inside the object and 𝑉 = 0.224 for 𝜎𝑖𝑑𝑒𝑎𝑙, which  forms the estimate for the vacuum 
phase error. 

For most experiments it is desirable to optimize for the total exposure time, 𝑡𝑡𝑜𝑡 =

𝑚𝑡𝑥, which is equivalent to finding the minimum of 𝜎Σ−𝜙√𝑡𝑥. Optimizing for 𝑡𝑡𝑜𝑡 
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leads to short exposure times, 𝑡𝑥~0.5 𝑠. Based on practical experience, the image 

registration error can be considerably worse at low doses compared to what is 

predicted in Figure 4.8, possibly due to correlated noise from detector artifacts or 

another factor unaccounted for in the hologram simulation. It is generally advisable 

to operate in regimes where the slope of the image registration error flattens, >

100 𝑒− 𝑝𝑖𝑥⁄  from Figure 4.8.  This corresponds to a threshold of ~10 000 𝑒− 𝑝𝑖𝑥⁄  in 

the reconstruction for the example case of 𝑞𝑐 = 0.1 𝑝𝑖𝑥−1. Care should be taken to 

acquire high-quality dark and gain references for the detector to avoid the build-up 

of correlated artifacts [22].  

To predict 𝜎Σ−𝜙 for an experiment, the distribution of spatial frequencies in a 

hologram must be known.  The spatial frequency distribution in an object hologram 

is given by the rotational average of the power spectral density (PSD), such that the 

average phase error is, 

 〈𝜎Σ−𝜙〉 =
2

𝑞𝑐
∫ 𝑃𝑆𝐷ℎ𝑜𝑙𝑜(𝑞)

𝑞𝑐 2⁄

0

𝜎Σ−𝜙(𝑞, 𝑚, 𝑡𝑥 , 𝑞𝑐)𝑑𝑞 

 

(4.23) 

where 〈𝜎Σ−𝜙〉 is the average phase error over the entire hologram. The measured 

𝑃𝑆𝐷ℎ𝑜𝑙𝑜 includes the detector MTF, and we explicitly include the detector MTF in 

𝜎Σ−𝜙.  As such, this estimate is biased towards lower spatial frequency response. We 

justify this as 𝜎Σ−𝜙 varies slowly with 𝑞. 

4.4 EXPERIMENTAL HOLOGRAM SERIES 
In order to establish the quantitative nature of the phase error derived in section 

4.3, it is desirable to compare it to results from an experimental hologram series. 

The experiment was performed on a Hitachi HF-3300 TEM equipped with a cold-

field emission gun, double biprism configuration [32], and Gatan US1000 detector.  

The biprisms were biased to generate fringes of 𝜆𝑐 = 0.16 𝑛𝑚 = 9.8 𝑝𝑖𝑥 and a 

hologram width of 30.6 𝑛𝑚.  The magnification of the object was x860k, 

corresponding to a detector pixel size of 16 pm.  The object was inorganic-fullerene 

Tungsten Disulphide (WS2) from Nanomaterials (apnano.com) [49], which has an 

SWS—SWS interlayer spacing of 0.615 nm, suspended on holey Carbon film.  A total 

of 150 object holograms were recorded with an exposure time of 5 s each and 

readout time of 0.8 s each using MATLAB control software. Although the Hitachi HF-

3300 TEM normally operates at 300 keV, the experiment was performed at 200 keV 

to reduce the damping of holographic visibility by the detector and limit radiation 

damage via sputtering of Sulfur atoms [50]. At a carrier frequency qc = 0.1 pix-1, the 

detector MTF is 0.42 at 300 keV and 0.54 at 200 keV [22]. Similarly, at a lattice 

frequency of q = 0.03 pix-1, the detector DQE is 0.87 at 300 keV and 0.98 at 200 keV. 

Spherical rather than elliptical illumination was used for this experiment to ensure 

isoplanicity of the electron wavefront [51]. 
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4.4.1 EXPERIMENTAL RESULTS 
An example experimental hologram is shown in Figure 4.11(a) beside the (b) 

reconstructed cumulative centerband. The layers of W atoms are evident as dark 

bands. In the central portion of the image is a WS2 fullerene, while a second 

fullerene is superposed on the bottom quarter of the image.  The local visibility is 

shown in Figure 4.12, from which the mean visibility in the vacuum region is 𝑉𝑣𝑎𝑐 =

0.224 ± 0.003 while  𝑉𝑜𝑏𝑗 = 0.163 ± 0.014 was observed inside the central WS2 

fullerene.   

A side-by-side comparison of the unregistered cumulative phase and the registered 

cumulative phase is shown in Figure 4.13.  Both phase maps have been unwrapped 

using Schofield’s Laplacian method [52], but the unregistered phase features 

numerous unwrapping errors that originate on the interior surface and kinks of the 

WS2 fullerene. Strong interlayer contrast is not observed in the phase, compared to 

the amplitude or visibility.  Instead, object thickness dominates. This implies the 

difference in mean inner potential between the tungsten and sulfur layers is smaller 

than the effect of channeling from the high-Z tungsten layers [24].   

The experimental values for drift is shown in Figure 4.14 for (a) image and (b) 

phase.  Mean values for image drift are 𝑣𝑖 = −4 𝐱̂ + 1 𝐲̂  𝑝𝑚 𝑠⁄  and 𝐷𝑖 = 160 𝑝𝑚 𝑠2⁄ , 

and the phase drift is 𝑣𝜙 = −0.02 𝑝𝑚 𝑠⁄  and 𝐷𝜙 = 65 𝑝𝑚 𝑠2⁄ .   

Appendix Video A2.1 shows the unregistered centerband and registered and 

centerband side-by-side. From the absence of observed motion in the registered 

centerband, we can infer the success of the image cross-correlation technique. 

Appendix Video A2.2 shows the cumulative phase and a cross-section the across the 

WS2 lattice.  It can be seen in the cross-section of the registered phase that there is 

no loss of contrast in the lattice fringes with frame number. As such, we have not 

significantly worsened the spatial resolution.  The holograms were apodized to 2𝑎 ×

2𝑎 =  210 × 210 𝑝𝑖𝑥  in the Fourier reconstruction series, but the reconstructions 

are zero-padded to 1024 × 1024 𝑝𝑖𝑥. The combination of subpixel registration and 

shifting and zero-padding reduces aliasing concerns for lattice fringes.  
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(a) 

 
(b) 

Figure 4.11: An (a) experimental hologram. Shown alongside is (b) the registered 
cumulative centerband, the signal used for image correlation.  The blue box 
indicates the region of interest used for image and phase registration. Color bars 
give electron dose per pixel. The counts per pixel in (b) is much higher than (a) due 
to both the summation of 150 holograms and effective binning in the reconstruction 
process. 
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Figure 4.12: Registered cumulative visibility map [18]. Color bar gives measured 
visibility obtained by the Fourier-ratio method. 

 
(a) 

 
(b) 

 
Figure 4.13: (a) Unregistered, unwrapped cumulative phase compared to (b) 
registered, unwrapped cumulative phase of the hologram series. Color bars give 
phase shift in radians. 
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(a) 

 
(b) 

 
Figure 4.14: Estimated drift path of the object in nanometers and (b) estimated 
phase shift of the electron-optics, as a function of frame number.  The time between 
frames was 5.8 s. 

4.4.2 EXPERIMENTAL PHASE ERROR METRIC 
Previous hologram series methods have provided phase error estimates based on 

the standard deviation of phase in vacuum [7][9].  To track the success of image and 

phase registration, it is necessary to define the phase error within the object of an 

object hologram. For this, we have developed a metric based on the work of Fienup 

in optical diffractive imaging [53]. For two images with wavefront phase 𝜙1(𝐫) ± 𝜎𝜙 

and 𝜙2(𝐫) ± 𝜎𝜙, then from the root-mean-squared difference, 

 ∆𝜙𝑟𝑚𝑠 = √
1

2
〈angle(exp(𝑖𝜙1(𝐫) ± 𝑖𝜎𝜙) exp(𝑖𝜙2(𝐫) ± 𝑖𝜎𝜙)⁄ )

2
〉 ≈ 𝜎𝜙(𝑛) (4.24) 

where diagonal brackets indicate the mean over all pixels r in the region of interest, 

and angle computes the phase of a complex number. Essentially Eqn. 4.24 uses two 

object holograms as references for each other. This metric averages over all 

component spatial frequencies, and does not measure loss of spatial resolution.  

A simple and robust means to evaluate the experimental phase error is to 

reconstruct two sub-series, composed of even-numbered and odd-numbered frames 

respectively. The difference of the two sub-series registered cumulative phase gives 

the RMS even-odd phase error, 

 

∆𝜙𝑒−𝑜(𝑚) =
1

2
√〈angle (∑

exp (𝑖𝜙2𝑗(𝐫))

exp (𝑖𝜙2𝑗+1(𝐫))

𝑚 2⁄

𝑗=1

)

2

〉 

 

(4.25) 
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where m is the number of frames to average over. A 2-D map of the phase error can 

be generated by omitting the mean over all pixels 〈… 〉. An example 2-D phase error 

map is shown for ∆𝜙𝑒−𝑜(𝑚 = 150) in Figure 4.15. As the sub-series are composed of 

completely different data,  ∆𝜙𝑒−𝑜 measures the repeatability of the phase error and 

should be considered more robust then pure precision estimates such as Eqn. 4.2. 

 
Figure 4.15: 2-D mapping of the RMS phase difference between even and odd-frame 
series. It can be observed that phase error scales with object visibility from the 
grayscale values. The areas chosen to calculate vacuum and object phase error are 
indicated with the respectively labeled boxes. 

The convergence of the phase error is shown in Figure 4.16. The mean phase error 

between individual holograms without summation (red) is 0.056 rad (2/110). This 

provides a baseline for the improvement offered by summation.  The averaged data 

without the benefit of image or drift registration (green) shows improvement over 

the first 50 frames but then diverges. The phase error is plotted for the registered 

series in both the object (purple) and vacuum (black) regions (as indicated in Figure 

4.15). The associated analytical prediction for object phase error (Eqn. 4.23, blue 

dot-dashed), and the analytic vacuum phase error (Eqn. 4.22 with object terms 

omitted, gray dot-dashed) both agree well with the experimental metric. The mean 

phase error after summation inside the object is 0.0060 rad (2/1050). The mean 

phase error after summation in the vacuum region adjacent to the specimen is 

0.0037 rad (2/1700). The difference between the analytical predication and 

experimental result is +6.9 % for the object and −4.5 % for the vacuum.  The object 

phase error improved by 930 % compared to the individual hologram average; the 

theoretical improvement for a 150-hologram series is √150 = 1220 %. 
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Figure 4.16: Phase error as a function of frame number, with phase error indicated 
by dots and a 10-frame moving average by solid lines.  Lower values of RMS phase 
difference reflect the ability to more precisely detect smaller variations in the phase 
shift. 

4.4.3 RADIATION DAMAGE CONCERNS 

The cumulative radiation dose is considerable, being 2200 𝑒− Å2⁄  or 3.5 𝐶/𝑐𝑚2 per 

frame (325 000 𝑒− Å2⁄  or 520 𝐶/𝑐𝑚2 total in the series) from the object wave.  

However, as can be seen from Figure 4.16, the scaling with √𝑚 limits the value of 

very high frame counts.  While the specimen may suffer considerable damage during 

acquisition of the hologram series, it is possible to cut-off the radiation damage 

effects in the data by discarding all frames past an arbitrary dose limit. Last, if phase 

resolution per unit dose is the target goal, the illumination should be further spread 

to enhance the visibility at the cost of reduced dose rate.   

4.5 CONCLUSIONS 
Electron holography is a TEM technique that has long held promise to conduct novel 

characterization of materials.  However, historically the relatively high phase error 

has limited electron holography to within the constraints of shot noise and 

holographic visibility.  Therefore, applications requiring high sensitivity have been 

inaccessible. Here we demonstrate that it is practical to achieve an order of 

magnitude improvement in the precision of the phase error by the method of 

summation of hologram series. The summation of hologram series to achieve 

improved phase error was demonstrated experimentally on WS2 nanofullerenes. 

The experimental phase error inside the WS2 nanofullerene object was found to be 

0.0060 rad (2/1050) after summation of 150 holograms. In comparison, individual 
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holograms were found to have an object phase error of 0.056 rad (2/110). The 

RMS phase error metric developed in section 4.4.2 is, to our knowledge, the first 

method for experimental verification of phase error in electron holography.   

The analytical prediction for the phase error is in quantitative agreement with the 

analytical prediction derived in section 4.3.4, with a difference of 7 % after 

summation of 150 holograms.  Thus it is practical to estimate the phase error in 

electron holograms for a given carrier frequency and exposure time if the instability 

of the TEM is adequately characterized. The only source of a priori information used 

for the analysis is the loss of visibility due to incoherent scattering within the 

specimen, which is a characteristic of the specimen. 

The order of magnitude improvement in phase error between the sum and 

individual holograms (930 %) has important consequences for the scale of physical 

phenomena which may be investigated by electron holography. For example, Lichte 

calculates that a phase shift of 2/50 is produced by the magnetization of a cluster 

of 420 Cobalt unit cells (or 1680 Co atoms) [13]. A linear improvement in phase 

error results in a corresponding reduction in the cluster size within which 

magnetization observed.  As such, at a 𝑆𝑁𝑅 = 2, the hologram series results 

presented here are equivalent to resolving about 40 unit cells (or 160 Co atoms). 

This is insufficient to detect a single Bohr magneton, but is of practical interest for 

the study of magnetism in small particles or grains [54][55]. The improvement in 

phase error is achieved without a corresponding loss of spatial resolution, due to 

the success of the experimental technique. 

The results presented for high-resolution hologram series on WS2 do not represent 

the ultimate limits of our instrument, a Hitachi HF-3300 with a cold field-emission 

gun but no aberration correction. Instruments equipped with the latest generation 

of higher-brightness cold field-emission gun, aberration correction with isoplanar 

elliptical illumination, and direct detection devices will see further improved 

performance.   

Adapted techniques for optimization of the electro-optical configuration were 

presented for the double biprism electron holography configuration. The analytical 

estimate for phase error has been improved by modeling the instabilities of the 

TEM.  The presence of these instabilities has long been known but not previously 

characterized in a systemic way that permits predictions.  A new model for drift in 

the TEM has been introduced that includes a random-walk component.  It was 

shown experimentally that the random-walk component of the drift dominates over 

the gradient-driven linear velocity component for both the image drift and 

wavefront phase drift in a Hitachi HF-3300. The provided model for drift due to 

Gaussian random walk and the associated MTF is potentially valuable for other 

microscopy modalities where long exposure times are common, such as core-loss 

EELS.  The image drift MTF also will affect the information limit of a TEM and is 

especially significant for corrected TEMs with 100 – 50 pm spatial resolution.  The 
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results show that the double biprism configuration is very stable and shows 

minimal loss of visibility with exposure time.   
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5 GENERAL DISCUSSION AND CONCLUSIONS 
In this section we discuss how the novel results in chapters 2-4 inter-relate and the 

conclusions that can be drawn from the body of research in the thesis. The local 

visibility and detector characterization methods described in chapters 2 and 3 were 

developed in parallel and results from each influenced the development of the other. 

In particular, the holographic MTF was dependant on the Fourier-ratio method for 

measurement of holographic visibility. The holographic MTF at each accelerating 

voltage was composed of several hundred holograms.  Measurement of the visibility 

by hand would have been onerous and fraught with the potential for human error.   

In turn, difficulties encountered in measurement of the holographic MTF illustrated 

short-comings of the visibility metrics. For example, the initial results for the 

holographic MTF were clearly biased due to uneven dose at the different spatial 

frequencies sampled. The holographic MTF method relies on changing the 

magnification by changing the excitation of the projector lenses. Beam current 

density decreases with increasing magnification, so this lead to the high-spatial 

frequency (low-magnification) holograms having much higher dose than those at 

low frequency. As a result, low-spatial frequency results were biased and the MTF in 

that regime was overestimated. Two corrections were employed to remove the bias: 

first, empirical corrections for the bias in the visibility due to shot noise were 

developed as discussed in section 2.4.  Second, the exposure time for each spatial 

frequency was adjusted (via the Matlab control system) to try and collect uniform 

dose so that the bias due to shot noise would be weak. 

Both the local visibility and the holographic MTF were required to achieve 

quantitative agreement between the experimental and analytic phase error 

estimates for the method of hologram series. The ability to measure contrast 

accurately is invaluable for determining the numerous OTFs that affect TEM 

micrographs.  Both the detector MTF and DQE are factors in predicting the phase 

error, as discussed in chapter 4. The high-quality dark and gain reference developed 

in chapter 3 were invaluable for suppressing detector artifacts that can break the 

registration of image drift by cross-correlation. As a result reference holograms do 

not show the build-up of the honeycomb fibre-optical coupling seen in other 

publications [1].   

Similarly, the solitary piece of a priori information included in the analytical 

prediction for phase error in hologram series is the loss of visibility caused by 

incoherent scattering in the specimen.  The object wave visibility changes 
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significantly across the field of view, and rapidly in the presence of lattice fringes. 

Therefore, it is not clear how the historical Michelson min-max metric can be used 

to robustly and reliably measure the visibility inside the specimen.  The Fourier-

ratio visibility metric bypasses the problem by measurement of the phase error at 

any position in the holographic reconstruction. Essentially, by localizing the 

visibility to 2-D, the phase error can also be localized to 2-D.   

In conclusion, substantial progress on quantitative phase imaging in the form of off-

axis electron holography has been made.  The methods presented herein should 

provide opportunities to conduct novel electron holography measurements in the 

future.  The understanding of a number of effects, such as coherence of the electron 

wavefront and the nature of drift in the transmission electron microscope, have 

been improved.   

5.1 FUTURE WORK 
The most obvious research direction to take in the future is to apply both the local 

visibility and hologram series techniques to traditional electron holography 

applications. For the case of local visibility, it is not clear where the differences 

between the amplitude and coherence (visibility) signals originate. At present there 

is not a strong intuitive understanding of the difference between amplitude and 

visibility. Future work should examine the correlation among the amplitude, 

visibility, and phase shift for a variety of material compositions and morphologies.   

The visibility is also invaluable for quantitatively assessing loss of coherence.  In the 

future, the local visibility can be used to further understanding of the OTF hierarchy, 

both of instrument parameters and the nature of incoherent scattering in materials. 

For example, the local visibility can establish the loss of coherence due to relatively 

high-frequency oscillations.  Examples include the 60 Hz from electrical mains and 

vibrations from turbomolecular pumps.   

High phase error has been historically the limiting factor in electron holography 

[2][3].  As discussed in the conclusion of chapter 4, the smallest magnetization that 

could previously be resolved was a cluster on the order of ~10 nm in diameter 

(1700 atoms). The limitation is not from the spatial resolution of the Lorentz lens, 

but rather the weak magnetic phase shift requires averaging over a large volume.  

Lichte provides the following estimate for magnetic phase shift, 

 
𝜙𝑚 = 𝑛𝑎𝑡𝑜𝑚𝑛𝐵𝜇𝑜

𝑒2

2𝑚𝑜𝑎
 

 

(5.1) 

where 𝑛𝑎𝑡𝑜𝑚 is the number of atoms per unit cell (= 4 for Co), 𝑛𝐵 the number of 

Bohr magnetons (= 1.7 for Co), 𝜇𝑜 the permeability of free space, e is the unit charge, 

𝑚𝑜 is electron rest mass, and a is the interatomic distance (= 0.4 nm for Co).  With 

2/1000 phase error and a signal-to-noise ratio (SNR) of 2.0, the associated cluster 

size is ~1.7 nm (80 atoms) which is less than the typical spatial resolution of 
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uncorrected Lorentz imaging. The low phase error achieved by summation of 

hologram series makes investigation of weak electric and magnetic potentials 

possible.   

The phase error floor can be compared to how close an electron travelling through 

vacuum would have to pass to a dipole to see a significant phase shift.  An electric 

dipole, with the dipole moment oriented orthogonally to the electron trajectory, has 

a projected potential, 

 𝜙 = 𝐶𝐸𝑈𝑝𝑟𝑜𝑗 = 

𝐶𝐸𝑘𝑐𝑞 ∫
1

√(𝑥 − 𝑑 2⁄ )2 + 𝑦2 + 𝑧2
−

1

√(𝑥 + 𝑑 2⁄ )2 + 𝑦2 + 𝑧2

∞

−∞

𝑑𝑧 

 

(5.2) 

where 𝐶 is the electrostatic interaction constant (𝐶𝐸 = 6.66 ∙ 106 𝐶𝑚−1𝐽−1 at 200 

keV),  𝑘𝑐 is Coulomb’s constant, 𝑞 is the screened dipole charge, and d is the distance 

between the two charges. Then at an SNR of 2.0, the minimum projected potential 

that the hologram series could measure would be 𝑈𝑝𝑟𝑜𝑗 = 1.6 𝑉 𝑛𝑚.   A dipole with 

𝑞 = 𝑒 20⁄   and 𝑑 = 0.4 𝑛𝑚, which has a dipole moment of ~1 𝐷𝑒𝑏𝑦𝑒, can be 

integrated numerically over z. A rendered phase shift map is shown in Figure 5.1 

with contour lines indicating a phase shift of 2/500, which represents the phase 

detection limit with 𝑆𝑁𝑅 = 2.  From this, the 1 𝐷𝑒𝑏𝑦𝑒 dipole can be observed 1.3 nm 

away from the core.  As such, electron holography could potentially be used to 

investigate the dipole moments of quantum dots and other nanostructures [4]. For 

reference, the dipole moment of water is 1.84 𝐷𝑒𝑏𝑦𝑒.   

 

Figure 5.1: The projected phase shift for an electric dipole with 𝑞 = 𝑒 20⁄  and 𝑑 =
0.4 𝑛𝑚 for an accelerating voltage of 200 keV. The black contours indicate the 
approximate detect limit for the hologram series results in chapter 4.  The colorbar 
gives the phase shift in radians. 
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A similar argument can be made for atomic compositional analysis based on phase.  

Based on published simulations for the phase-shift of single atoms [5] the phase 

shift of a single substitutional Phosphorous atom in a column of Silicon atoms is 

~0.006 rad (2/1000). Since that is equivalent to the noise floor of the results 

published in chapter 4, a single substitutional P atom cannot currently be measured.  

However, there is a path to achieving that goal by aberration correction in 

conjunction with elliptical illumination.  Therefore the sensitivity of electron 

holography for dopant profiling in semiconductors is potentially perfect.   

In practice, contamination, electron-beam induced sputtering, and charging of the 

specimen by secondary electron emission are more likely to limit compositional 

mapping than precision of the measurement.  With regards to phase imaging, it is 

necessary to expand the scope of what is considered ‘radiation damage.’ For 

example, the bee-swarm effect is the random phase fluctuations caused by long-

lived holes generated by secondary electron emission [6].  Accumulation of charge 

on the specimen or on imperfections in the biprism wire (i.e. ‘dirt’) can cause 

changes in the mean phase shift of an area over a hologram series. Reconfiguration 

of the crystal lattice, such as crystallites flipping back and forth between FCC and 

BCC lattices, is another potential concern.  We have also in the past observed 

‘weather veining’ where amorphous carbon under extended illumination begins to 

form graphite layers parallel to the electron beam.   

Another concern for summation of hologram series is management of the reference 

hologram series.  In conventional electron holography, the reference hologram is 

recorded immediately after the object hologram, so correspondence of the projector 

wavefront phase is assured.  Hologram series take many minute to acquire, so one-

to-one correspondence is a greater concern after many minutes of biprism drift.  At 

lower magnifications than used in chapter 4, distortion of the projector lenses 

should be more significant.  In that case, modeling the wavefront drift as a scalar 

may not be strictly valid. There is also concern for ‘broken symmetry’ caused by 

debris on the biprism wire resulting in wavefront drift being non-scalar in nature. 

Displacement over time of the envelope function caused by the biprism shadow is 

also a potential concern. 

Furthermore, with a reference hologram, the biprism is incoherently illuminated. 

Therefore the reference hologram normalization only removes the wavefront 

aberrations electro-optical components below the biprism plane. The most 

significant electro-optical aberrations, from the objective lens contrast-transfer 

function, are not characterized. It is known that aberration correctors suffer from 

wavefront drive over time [7]. A superior methodology for reference subtraction 

should attempt to use the information redundancy present in hologram series to 

track the evolution of the wavefront shift over the series.     
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A1 APPENDIX 1 – SUPPLEMENTARY MATERIAL FOR 

CHAPTER 3 

A1.1 HIGH FIDELITY DARK REFERENCE 
We examine the relationship between detector temperature, measured from the 

Gatan First Light™ controller unit.  Temperature was varied by switching the 

Pelletier cooler off while an automated script took dark references at specified 

intervals.  Figure A1.1 shows the dark current mean and standard deviation.  As can 

be seen, the relationship is exponential with temperature and the detector is 

maintained at a temperature where the slope is low.  Consequently, we observe 

excellent dark current stability.  

As described in the manuscript, the dark reference is best composed from a sum of 

many dark references that have been individually filtered for ‘zingers’ from cosmic 

rays.  An example Digital Micrograph script for overnight collection of dark 

references is provided in section S1.2.  Ten-thousand dark references is generally a 

sufficient number to remove all correlated noise from the reference.  Example of a 

1000 frame dark reference is provided in Figure A1.2.  Example of a 120 000 frame 

dark reference is provided in Figure A1.3. 

The long-term stability of the dark reference sum is very good, as shown in Figure 

A1.4, with hot pixels gradually appearing over the lifetime of the detector.  We 

recommend acquisition of a > 10 000 frame dark reference once per year, which can 

typically be performed overnight while the instrument is not in use. 
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Figure A1.1: The dark current mean and standard deviation (dots) varies 
exponentially with temperature of the detector (best fits – solid lines).   

 

Figure A1.2: A dark reference composed of 1000 frames.  Speckle noise is still 
apparent in the reference. Sidebar gives intensity scale in counts. 
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Figure A1.3: A dark reference composed of 120 000 frames.  Compared to a typical 
single-frame reference, the amount of speckle noise is extremely small (≪ 1 𝑐𝑜𝑢𝑛𝑡).  
Note the roll-off on the horizontal axes of the detector.  Detector read-out is 
performed in the vertical direction.  Sidebar gives intensity scale in counts.   

 

Figure A1.4: The difference between two 17 000 frame dark references, acquired on 
11 September 2011 and 22 January 2013, or sixteen months apart.  A scattered 
number of new hot pixels have appeared over 16 months of usage.  As noted in the 
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manuscript, only 4084 pixels (0.1 % of the total) differ by more than one count 
while 531 pixels differ by more than 5 counts.   

A1.2 DIGITAL MICROGRAPH DARK REFERENCE SUM SCRIPT 
Code is designed to save a copy of the dark reference every 1000 dark reference 

images. After the summed image has been saved to disk, it is necessary to normalize 

it by the exposure count, m.  Note that the background level of the Gatan US1000 is 

1000 counts. I.e. 

m= 17000; 
darksum = ((darksum – m*1000)/m) + 1000 

 
Script as follows: 

// Dark reference sum script 
// 22 Dec 2010 
// Robert A. McLeod  
// 
// Designed to be run over a weekend. Takes a huge series of images and sums 
// them into a single image.   
 
// In: input image 
// MTyp: 3 for 2-d image, 0 for 1-D graphs 
// MSize: Size of the median filter. 
// Sigma: Multiplier for standard deviation.  Standard deviation is a 68% confidence interval 
// 1 0.6826895 
// 2 0.9544997 
// 3 0.9973002 
// 4  0.9999366 
// 5  0.9999994 
// OPTcount: count the number of x-rays?  1 Yes, 0 No 
// FOUND: number of x-rays found 
image RemoveXrayFilter( image IN, number MTyp, number MSize, number Sigma, number 
OPTcount, number &FOUND) 
{ 
 image median = MedianFilter( in, MTyp, MSize) 
 image diff = abs( in - median ) 
 number meandiff = Sigma * sqrt( variance(diff) ) 
 image out = tert( diff > meanDiff, median, in) 
 If ( OPTcount ) FOUND = sum(!!(out-in)) 
 return out 
} 
 
number imagecount, top, left, height, width, exposure 
image darksum, temp 
string imageName,path, imagetitle 
number xraycount 
 
top = 0 
left = 0 
height = 2048 
width = 2048 
exposure = 1 
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sigma = 10 
 
if( ! GetDirectoryDialog(path) ) 
{ 
 // Failed, exit script 
 Result( "No directory chosen, exiting script\n" ) 
 exit( 0 ) 
} 
 
Result( "Hold SPACEBAR to halt execution\n" ) 
darksum = exprsize( height, width, 0.0 ) 
imagecount = 0; 
while( 1 ) 
{ 
 temp  =  sscunprocessedbinnedacquire(exposure, 1, top, left, top+height, left+width) 
  
 // Apply x-ray filter 
 temp = RemoveXrayFilter( temp, 3, 1, sigma, 1, xraycount ) 
 
     darksum = darksum + temp 
 temp.closeimage()               
  
 imagecount = imagecount + 1 
 //Result( "Summed image #" + imagecount + "\n" ) 
 if( getkey() == 32 ) // spacebar 
 { 
  break 
 } 
 // Save a copy every 1000 images 
 if( mod(imagecount, 1000) == 0 ) 
 { 
  Result( "X-ray count: " + xraycount ); 
  imagetitle = path + "DarkRefSum" + imagecount + ".dm3" 
  saveimage( darksum, imagetitle ) 
 } 
} 
Result( "X-ray count: " + xraycount ); 
imagetitle = path + "DarkRefSum" + imagecount + ".dm3" 
saveimage( darksum, imagetitle ) 

A1.3 VOIGHT PROFILE BEST-FIT PARAMETERS 
 

Table A1.1: Least-squares best-fit parameters and standard deviation for Gaussian 
and Lorentzian sum of Voight profile of Eqn. 3.2. Note that the 3rd term in the sum is 
generally not required for the NTF but is necessary for the MTF best-fits. Note that 
the NTF best-fits are not dealiased, but rather the actual fits to the recorded Fourier 
spectra.  

Profile Primary Electron Energy 
NTF (de-aliased) 100 keV 200 keV 300 keV 
Lorentzian a1 0.7924 0.7431 0.6099 

b1 0.2076 0.1225 0.1021 
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Gaussian a2 0.1725 0.2180 0.3196 
b2 0.3226 0.2876 0.2596 

Lorentzian a3 0.0 0.0389 0.0705 
b3 1.0 10 10 

MTFedge 100 keV 200 keV 300 keV 
Lorentzian a1 0.2826 0.6449 0.3544 

b1 0.08896 0.06848 0.1023 
Gaussian a2 0.3451 0.2051 0.2048 

b2 0.2931 0.3001 0.2979 
Gaussian a3 0.3723 0.1500 0.4408 

b3 0.1549 0.09696 0.03771 
MTFholo 100 keV 200 keV 300 keV 
Lorentzian a1 0.1649 0.0476 0.2982 

b1 0.4433 1.0 0.1556 
Gaussian a2 0.6723 0.3594 0.2228 

b2 0.1905 0.2616 0.3019 
Gaussian a3 0.1628 0.5930 0.4789 

b3 0.0827 0.093 0.04803 
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A2 APPENDIX 2 – SUPPLEMENTARY MATERIAL FOR 

CHAPTER 4 

A2.1 DESCRIPTION OF HOLOGRAM SERIES SUMMATION ALGORITHM 
Here we discuss the algorithm, implemented in Matlab, used for the results 

presented in the manuscript.  The algorithm consists of three basic code blocks: 1.) 

input and reconstruction of each individual hologram in the series; 2.) registration 

and correction of the image and phase drift; and 3.) plotting and movie display 

functions of the hologram series and summed reconstruction. Hologram series are 

acquired by automated TEM control via Matlab script over TCP/IP with the Maestro 

package. Holograms are acquired in ‘unprocessed’ mode which has the shortest 

read-out time and allows customized normalization routines to be applied [22]. 

In conventional off-axis holography, reference holograms are acquired immediately 

after an object hologram. For hologram series it is most practical to acquire all of the 

object holograms in series, and then acquire an identical number of reference 

holograms with the object and any associated long-range fields removed from the 

field of view. As the biprisms drift during the object exposure, the hologram 

envelope will be in a different position for the reference series compared to the 

object series. Therefore, we apply the heuristic strategy of separately summing the 

hologram series and the reference series, and then aligning the fringe fields prior to 

subtraction. 

Hologram reconstruction is performed in a manner described in the literature 

[2][20]. Extra attention is put on pre-processing to reduce artifacts in the result, as 

discussed in the steps below. Artifacts can be problematic in the registration stage, 

producing anomalous cross-correlation and phase offset results. The reconstruction 

of every hologram sideband and centerband is stored in computer memory, which 

provides maximum flexibility. The reconstruction steps are as follows: 

1. Import Gatan Digital Micrograph-format holograms, into Matlab. 

2. Determine sideband position, for example from a representative reference 

hologram.   

3. Apply high quality dark reference subtraction and gain reference 

normalization [22]. Due to the repeated normalization, there is the potential 

to introduce correlated, periodic noise artifacts which can affect the cross-

correlation procedure. An ideal gain reference is approximately 300 frames 

recorded at similar dose to what is expected for an individual hologram. 

4. Dampen zingers (cosmic rays) with a confidence interval median filter. 

5. Reconstruct the sideband for each hologram in the series. 

6. Extract the centerband for each hologram in the series. 
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As discussed in section 3 of the manuscript, the image and phase drifts over the 

course of the exposures so image and phase registration is required. Complex 

numbers are challenging to sum or average because small changes in phase can 

cause large changes along the real and imaginary axes. If the phase drift among all 

frames is estimated and subtracted, the real and imaginary components of each 

pixel can be summed (or averaged) arithmetically. Registration of hologram series 

consists of: 

1. User selection of cross-correlation area.  Display centerband of first frame 

and last frame side-by-side.   

2. Cross-correlation to register image drift of each frame, relative to middle 

frame. 

3. Shift and crop image to limits determined by maximum and minimum drift. 

4. Calculate and subtract phase offset for each frame, relative to middle frame. 

5. Sum hologram series. 

Normalized cross-correlation is applied to a masked region, chosen by the operator, 

to estimate the image drift, typically with four-fold oversampling to give quarter-

pixel precision [35]. Typically a corner of the object is the best region for the cross-

correlation to operate on, as it provides an edge along both the horizontal and 

vertical axes to register. Care should be taken with lattice fringes inside the cross-

correlation region. Digital apodization in the reconstruction process can alias the 

lattice fringes, which then acts as an artifact in the cross-correlation. Lowering the 

radius of the apodization function can remove high-frequency fringes.  

We have chosen to register the image drift by cross-correlation on the centerband 

(the autocorrelation) of the reconstructed hologram. Compared to the centerband, 

the sideband signal is lowered by the holographic visibility.  Therefore the image 

registration error, I, and phase registration error, , are lowest when the 

centerband is used.  After the registration of each frame is completed the total drift 

from first to last frame in pixels is known, so each frame is shifted and cropped 

appropriately. The estimated subpixel shift is then applied to each frame via a cyclic 

phase shift in reciprocal space. Post image shift and crop, there is still a scalar phase 

offset amongst frames caused by wavefront phase drift.  The wavefront phase is 

removed by a Fourier phase matching method [36].  

Display of the results, particularly in movie format, is convenient to evaluate and 

validate that the hologram series was well behaved during the registration process. 

Periodic objects, such as lattice fringes, create local maxima in the cross-correlation.  

The local maxima in turn generate the potential for the registration to ‘jump a 

period’. Fresnel fringes could also potentially cause registration difficulties, 

although in the double biprism configuration they are strongly suppressed.  As such, 

the operator watches a movie of the unregistered centerband side-by-side with the 

registered and shifted centerband as it accumulates to check for anomalous jumps.  

The unregistered and registered phase can also be displayed to check the phase 
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offset. When desired, the phase is unwrapped with a Fourier unwrapping technique 

[52]. The estimated image drift, phase drift, dose, and phase error metrics may also 

be plotted. Examples are shown in section 5 of the manuscript. 

A2.2 APPENDIX VIDEOS 
Author’s note: video stills and captions are provided here.  Videos are available 

through the provided links. 

 

Video A2.1: Verification of image drift registration is important to ensure accuracy 
of summation. The unregistered, unsummed centerband reconstruction (left) is 
shown alongside the registered, unsummed centerband (right).  It is observed that 
the random-walk motion of the unregistered video is substantial, whereas there is 
no apparent residual drift after registration.   
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Video A2.2: The unwrapped, registered cumulative sum phase image (left) is shown 
alongside a selected cross-section of the WS2 layers (right).  The black line in the 
phase image shows the position and direction of the cross-section. The purple cross-
section is that of the registered cumulative sum phase whereas the blue cross-
section is the unregistered cumulative sum phase.  The cross-sections origins have 
been offset for clarity.  It is observed that there is no peak shortening or broadening 
in the registered phase (purple), whereas the unregistered phase flattens 
significantly (blue).  Cross-sections were computed by bicubic interpolation.   

 

 


