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Abstract

Deformable registration of cardiac magnetic resonance imaging (MRI) is one of the

crucial tasks in medical image analysis. It aims to find the unique transformation

between images taken from the same scene at different times, from different views,

and by different imaging modalities such as MRI and CT. The main goal of this the-

sis is to develop automated deformable registration methods, particularly improving

the accuracy and robustness of image registration while preserving the topology and

invertibility of the deformation.

Although deformation fields related to the point correspondence between a pair of

images are high-dimensional, we propose a method that generates deformation fields

from low-dimensional latent variables by minimizing a dissimilarity metric between a

fixed and a warped moving image. This low-dimensional manifold formulation avoids

the intractability associated with the high-dimensional search space that most other

methods face during image registration.

Moreover, we propose an end-to-end learning-free multi-resolution framework.

This method eliminates the need for a dedicated training set while exploiting the

capabilities of neural networks to achieve accurate deformation fields. Since it is ca-

pable to share the parameters through the architecture, it can be used for Groupwise

registration as well as pairwise registration. We integrated Gaussian filters with the

GMCNet to impose a smoothness constraint which relaxes the need for an explicit

regularization term and its corresponding weight in the cost function.

Additionally, we propose a learning-free diffeomorphic recursive framework, which

models the changes in the deformation over multiple resolutions as opposed to the
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deformation itself. The final deformation is estimated by a solution to an ordinary

differential equation (ODE). Thus, the resulting algorithm is recursive. Following this

recursion, the moving image is warped successively and enables the final prediction

to be decomposed into smaller displacements.

Finally, we present an end-to-end unsupervised diffeomorphic framework based on

moving mesh parameterization. This new parameterization of the deformation field

has three significant advantages; firstly, it relaxes the need for an explicit regulariza-

tion term and its corresponding weight in the cost function. Secondly, it guarantees

diffeomorphism through explicit constraints applied to the transformation of the Ja-

cobian determinant. Finally, it is suitable for cardiac data since it parameterizes the

deformation using radial and rotational components.
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“Dreams are often most profound when they seem the most crazy.”
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Chapter 1

Introduction

1.1 Motivation

Image registration is a method of aligning two or more images into the same coordi-

nate system [1, 2]. It is required to find the geometrical transformation that aligns the

images taken at different times, from different perspectives or using different modali-

ties. Therefore the aligned images can be directly combined, compared and analyzed.

Medical imaging is one of the challenging application domains of image registration

[2, 3]. In different applications image registration can be called image alignment,

matching stabilization and fusion. Based on the image coordinate transformation,

we can have different types of registration rigid, when only translations and rotations

are needed to align images, affine when the transformation maps parallel lines onto

parallel lines, projective If it maps lines onto lines and finally deformable/non-rigid.

In rigid registration, rotation and shift are needed to align images, for instance,

to correct head position between scans. Most of the early research in medical image

registration was working on aligning brain images acquired with different modalities

[4, 5]. For these applications, a rigid body approximation was sufficient as there

is a relatively small difference in brain shape or position within the skull over the

relatively short periods between scans.

Deformable/non-rigid registration often arises where two images are related through

non-rigid geometric transformations. Deformable image registration is one of the key
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technologies in medical image analysis. The term deformable is used to denote the fact

that the mapping is associated with a nonlinear dense transformation. Most of the hu-

man body does not fit to a rigid or even affine approximation [6]. Therefore, the most

challenging work in registration involves the development of non-rigid/deformable reg-

istration techniques for applications ranging from correcting soft-tissue deformation

during imaging or surgery [2]. Application of deformable image registration includes

motion compensation, multimodality fusion, monitoring of changes, segmentation,

and atlas construction.

1.1.1 Deformable image registration

Deformable image registration is one of the crucial tasks in medical image analysis

which aims to find the point-wise mapping between a pair of images. These techniques

serve as the fundamental basis for procedures such as image-guided radiation therapy,

surgery, tumour growth monitoring, minimally invasive treatments, and many other

challenging problems [7, 8]. Studies have shown that deformable registration could

also be used for the cardiac functional assessment and delineation of cardiac structures

with magnetic resonance imaging (MRI) sequences.

Despite a large amount of work and relative success, deformable image registration

is still not a solved problem [2, 9]. Many challenges remain in the definition of corre-

spondences between the image elements and transformation models. Images can be

corrupted by noise, illumination changes and blocking artifacts, blur artifacts due to

body motion, or outliers, e.g. contrast agent, growing tumour or moving cells, which

have no correspondences in the other image. That makes mathematically formulating

the correspondence definition between images difficult. Furthermore, if two images

are from different modalities, then the same anatomical object can have completely

different intensities. The transformation model definition is the second main chal-

lenge in deformable image registration because the true underlying deformation is

often unknown. The definition of proper similarity measure is another challenging
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task in the presence of deformable registration.

Existing deformable image registration algorithms could be broadly categorized

into 1) Optimization-based approaches, and 2) Learning-based approaches. Tra-

ditional methods for deformable image registration hardly use any training sets.

Therefore, they are more generally and easily applicable. However, most similar-

ity measures, especially in multimodal registrations, have lots of local optima around

the global optimum which leads to early unanticipated convergence and stagnation.

These problems are two common limiting dilemmas in the optimization field [10]. On

the contrary, recently deep learning-based methods, which require a large training

set, are routinely defeating traditional methods with respect to accuracy. However,

learning-based methods include having to re-train for new images/modalities and the

need to have access to training datasets that are quite substantial in size. More im-

portantly, learning-based methods do not guarantee an optimal solution at the test

time. In addition, [11] disclosed that manually crafted methods might outperform

deep learning methods in unimodal registration cases. Thus, learning-based methods

typically trade optimality for efficiency at deployment and it seems that they are

trading generality and ease of use for computational time.

1.2 Thesis contribution

In the proposed research, we investigate learning and non-learning based on oppos-

ing views and bring the two ends closer together by using the advantages of both

methods. For instance, CNNs have a couple of powerful properties: a) excellent func-

tion approximation capability and b) an appropriate regularization mechanism in the

form of translational invariance. Additionally, modern tools, such as PyTorch and

TensorFlow made back-propagation easy through any differentiable pipeline including

deep networks. We would like to exploit these properties of deep neural nets vis-a-vis

auto-grad to combine them with the classic features of traditional methods: multi-

resolution structure, continuous nature, and learning-free nature of optimization.
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An overview is provided of the contributions in this thesis in the field of medical

image registration.

Unsupervised Deformable Image Registration with Fully Connected Gen-

erative Neural Network: The proposed method uses an FCNet as a generator to

estimate deformation fields directly and at the same resolution as the images to be

registered. Even though deformation fields related to the point correspondence be-

tween fixed and moving images are high-dimensional in nature, we assume that these

deformation fields form a low-dimensional manifold in many real-world applications.

Thus, in our method, a neural network generates an embedding of the deforma-

tion field from a low-dimensional vector. This low-dimensional manifold formulation

avoids the intractability associated with the high-dimensional search space that most

other methods face during image registration. As a result, while most methods rely on

explicit and handcrafted regularization of the deformation fields, our algorithm relies

on implicitly regularizing the network parameters. The proposed method generates

deformation fields from low dimensional latent space by minimizing a dissimilarity

metric between a fixed image and a warped moving image. Our method removes

the need for a large dataset to optimize the proposed network. The results have

demonstrated that a randomly-initialized neural network can be used as a handcraft

before achieving satisfying performance for deformable medical image registration. It

is remarkable because no aspect of the network is learned from data. Based on the

author knowledge it is the first neural network-based manifold embedding method for

unsupervised deformable image registration.

GMCNet: A generative Multi-resolution Framework for Cardiac Reg-

istration: As a second alternative for deformable image registration, we propose a

novel approach to improve registration accuracy and obtain smooth transformations

between image pairs using a generative multi-resolution training-free CNN-based ar-

chitecture. Similar to the first proposed method the second framework is generative

and capable of estimating desired deformation fields for pairs of images based on ran-
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dom low dimensional vectors as inputs. In this method, we use a Gaussian filter to

regularize deformation fields similar to the Demons algorithm. The results show that

the second algorithm outperforms recent state-of-the-art learning and non-learning-

based methods on three clinical cardiac MRI datasets with respect to accuracy. This

framework is faster, more accurate and has fewer parameters than the first proposed

method.

A Training-free Recursive Multi-resolution Framework for Diffeomor-

phic Deformable Image Registration: We have proposed a training-free approach

for deformable image registration that is built upon the principle of an ordinary dif-

ferential equation as a third solution. As [12] reveal that using ordinary differential

equations lead to faster, more accurate result for time-series predictions and comput-

ing gradients with constant memory cost. This method has reasonable computational

time and it is suitable for large deformation as well as small deformation. In this

method, the rate of change of deformation over image resolution is parameterized by

a CNN. Our formulation yields an Euler-integration type recursive scheme to esti-

mate the spatial transformations between fixed and moving multi-resolution image

pyramids. We optimize the parameters of the CNN by minimizing a loss between the

fixed and the warped moving image pyramids. In contrast to traditional non-learning

methods, the proposed approach is more flexible and expressive to model deforma-

tions because it integrates the outputs of a CNN starting from the coarsest to the

finest image resolutions to approximate spatial transformations. In comparison to

learning-based methods, the proposed method neither requires a dedicated training

set nor suffers from any training bias. Evaluations were performed on three clini-

cal cardiac MRI datasets, in terms of mean Dice coefficient and Hausdorff distance.

The evaluation results demonstrate that the proposed registration approach yields

state-of-the-art accuracy in a reasonable time.

Learning-based: Learning A Diffeomorphic Registration Model Using

Moving Mesh Correspondence for Cardiac MRI: All the previous methods
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are 2D registrations. Therefore, we propose a novel 2D-to-2D and 3D-to-3D diffeo-

morphic registration algorithm by investigating a new parameterization of the defor-

mation field, which describes a deformation field with its transformation Jacobian

determinant and curl of the end velocity field. The proposed representation of the

deformation field has some advantages: 1) it relaxes the need for an explicit regu-

larization to produce a physically plausible result because smoothness is implicitly

embedded in the solution. 2) Parameterizing a deformation field in terms of radial

and rotational components through unsupervised learning, making it especially suited

for processing cardiac data. 3) the deformation can be ensured to be diffeomorphic

by directly requiring the transformation Jacobian to be positive. 4) The other de-

sirable constraints also can be enforced within the same framework using an explicit

restriction on the transformation Jacobian such as incompressibility constraint.

Learning-based: Learning A Diffeomorphic Registration Model Using

Moving Mesh Correspondence for Cardiac MRI: All the previous methods

are 2D registrations. Therefore, we propose a novel 2D-to-2D and 3D-to-3D diffeo-

morphic registration algorithm by investigating a new parameterization of the defor-

mation field, which describes a deformation field with its transformation Jacobian

determinant and curl of the end velocity field. The proposed representation of the

deformation field has some advantages: 1) it relaxes the need for an explicit regu-

larization to produce a physically plausible result because smoothness is implicitly

embedded in the solution. 2) Parameterizing a deformation field in terms of radial

and rotational components through unsupervised learning, making it especially suited

for processing cardiac data. 3) the deformation can be ensured to be diffeomorphic

by directly requiring the transformation Jacobian to be positive. 4) The other de-

sirable constraints also can be enforced within the same framework using an explicit

restriction on the transformation Jacobian such as incompressibility constraint.

Diffeomorphic Image Registration for the Application of Cardiac Image

Segmentation: In this chapter we propose a novel end-to-end supervised cardiac
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MRI segmentation framework based on a diffeomorphic deformable registration that

can segment the left ventricle from 2D and 3D images or volumes. In order to rep-

resent the actual cardiac deformation, in this methodology the transformation is

parameterized using radial and rotational components, computed using a deep learn-

ing approach. The deep learning method is trained using a set of pair images along

with their segmentation masks. The formulation guarantees transformations that are

invertible and prevents mesh folding which is essential for preserving the topology of

the segmentation results. A physically plausible transformation is achieved by em-

ploying diffeomorphism in computing the transformations and activation functions

that constrain the range of the radial and rotational components.

1.3 Thesis overview

The thesis is structured into 8 main chapters as follows: In Chapter 2, previous works

both traditional methods, as well as deep learning-based approaches in the literature,

are presented. Chapter 3 presents an unsupervised dformable image registration with

a fully connected generative neural network. The proposed approach is a sequential

registration and is evaluated on a public set of MRI scans. In chapter 4 GMCNet:

A generative multi-resolution framework for cardiac registration is presented. The

method is evaluated on three datasets and compared with state-of-the-art learning

and non-learning-based methods. Chapter 5 presents a training-free recursive multi-

resolution framework for diffeomorphic deformable image registration. The proposed

method is compared against learning and non-learning-based algorithms. Evaluations

were performed on three different datasets. Chapter 6 discusses a 2D-to-2D and 3D-

to-3D diffeomorphic learning-based algorithm with moving mesh correspondence for

deformable image registration. Three datasets were employed for the evaluation.

Chapter 7 presents a diffeomorphic image registration for the application of cardiac

image segmentation. Finally, in Chapter 8, a summary of the significant results,

future work, and limitations are discussed.

7



Chapter 2

Background

2.1 Basics of image registration

Registration is the process of matching different images and transforming them into

the same coordinate system. The images can be acquired from different times, by

different sensors and/or from different viewpoints. Commonly when we aligning two

images, one is regarded as static and is known as the target, reference, or fixed image

and the other image undergoing transformation (i.e. translated, rotated, warped, etc.)

which is known as the source, or moving image. The geometrical transformation that

maps features in one image to features in another is known as the transformation,

deformation field, or displacement field. Which needs to be estimated/modelled in

order to register two or more images. These transformations are usually classified

as being rigid (where images simply need to be rotated and translated with respect

to one another to achieve correspondence), affine (which is an extension of rigid

registration, and includes scale factors and shears) or non-rigid/deformable (where

the correspondence between structures in two images cannot be achieved without

some localized stretching of the images) as illustrated in fig. 2.1. Most parts of

the human body especially soft tissues do not conform to a rigid or even an affine

approximation [2].

One of the challenges with the non-rigid registration problem is the large number

of parameters that makes it time-consuming and hard to solve. Since Rigid and

8



(a) Original

(b) Rigid

(c) Affine

(d) Non-rigid

Figure 2.1: Three transformation models.
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affine registrations have fewer parameters (degree of freedom), which typically can be

calculated in seconds or minutes. It is worth emphasizing that increasing flexibility

needs more parameters to be determined, which requires more computational time.

Therefore, most non-rigid optimization-based registration algorithms require minutes

or hours [2] to be solved. Another challenge with non-rigid registration is asymmetric

transformation. Asymmetric transformation is defined when there is a vector that

describes how each point in the source image displaces the corresponding point in

the target image, but there is no guarantee that each point in the target image can

be related to a corresponding position in the source image. Which may make a

gap in the target image. Some research has been done on symmetric schemes that

guarantee the same result whether image A is matched to image B or vice versa [13].

This may be more appropriate for some applications (matching one normal brain

to another) than others (monitoring the growth of a lesion). Finally, there is the

question of redundancy. Since non-rigid registration is an ill-posed problem, there

will be many different deformation fields (possible solutions) to align images which

behave differently. For instance, where deformation field can be “folded” to improve

the image match but in a non-physical way which is disallowed situations.

2.2 Deformable Image Registration

Deformable image registration has three main components include: 1) the similarity

measure, 2) the transformation model, 3) regularization. The similarity measure

usually is defined as an objective function that achieves its optimum when two images

have a certain relationship. We discuss different similarity measures in section 2.2.1.

The second component of an image registration algorithm is the transformation

model. The transformation model defines the set of plausible transformations re-

quired for aligning two images. For instance, in rigid parametrization, rotation and

shifting are adequate transformations to align two images with different orientations.

Deformable transformations are subdivided into parametric and non-parametric ones.
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Parametric methods assume a particular parametrization of the transformation, e.g.

spline-based [9]. In non-parametric methods, a transformation is estimated as an

unknown function. We overview different transformation models in section 2.2.2.

As image registration is inherently an ill-posed problem; the existence and the

uniqueness of the solution are not guaranteed and regularization is essential to make

the problem well-posed. Regularization adds constraints to the transformations. In

parametric methods regularization implicitly is applied to the transformation by us-

ing a low dimensional set of parameters. The theory of the regularization approaches

in image registration is reviewed in section 2.2.3. The last component of an image

registration algorithm is the optimization method that finds a set of parameters to

optimize a given similarity measure. Some examples of optimization methods are em-

ployed including Gradient Descent, Quasi-Newton, and Stochastic Gradient Descent

methods [14]

2.2.1 Similarity Measure

The similarity measure in intensity-based registration methods is defined directly by

image intensities. Intensity-based similarity measures based on their application area

are divided into two monomodal and multimodal classes.

Sum-of-squared-differences (SSD) is one of the simplest intensity-based measures

ESSD(T ) =
N∑︂

n=1

(IF
n − (IM

n ◦ T ))2 (2.1)

The optimal similarity measure of SSD occurs when two images only differ by Gaus-

sian noise. Even though, SSD is simple and widely used in image registration, but is

very sensitive to outliers and image artifacts. Sum-of-absolute-difference (SAD) is an

approach to reducing the effect of outliers

ESAD(T ) =
N∑︂

n=1

|IF n − (IM
n ◦ T )| (2.2)

Both SSD and SAD assume two images to have equal intensities at the correct align-

ment. On the contrary, the squared correlation coefficient (CC) is maximized when
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the images are linearly related

ECC(T ) =
(
∑︁N

n=1(IF
n − IF̄ )(IMn − IM̄

T
))2∑︁N

n=1(IF
n − IF̄ )2

∑︁N
n=1(IM

n − IM̄
T
)2

(2.3)

where IF̄ , IM̄ are the intensity mean of images IF and IM respectively. And IM
T is

IM ◦ T .

The Structural Similarity (SSIM) [15] index is another method for measuring the

similarity between two images. If we consider image I to have a perfect quality, then

the similarity measure can serve as a quantitative measurement of the quality of the

image J.

SSIM(IF , IM) =
(2µIFµIM + c1)(2σIF IM + c2)

(µ2
IF

+ µ2
IM

+ c1)(σ2
IF

+ σ2
IM

+ c2)
(2.4)

where µIF and µIM are the average of the images and σIF and σIM are the variance

of the images IF and IM respectively. σIIM is the co-variance IF and IM . Constant

c1 = (K1L)
2, c2 = (K2L)

2, and L is the dynamic range of the pixel values (255 for

grayscale image) and K1 << 1, K2 << 1 are small constant. The system separates

the task of similarity measurement into three comparisons: luminance, contrast and

structure. As the MI family assumes a statistical relation between the intensities of

the images they are suited not only for monomodal but also for multimodal image

pairs.

Mutual information (MI) [16] maximizes for the simultaneous low joint entropy

and high marginal entropies.

EMI(T ) = H(IF ) +H(IM ◦ T )−H(IF , IM ◦ T ) =
∑︂
i

∑︂
j

P T (i, j)log
P T (i, j)

PIM◦T (j)PIF (i)

(2.5)

where P T (i, j) is the joint probability of the intensities of the images, and PIM◦T (j),

PIF (i) are the marginal probabilities. MI measures how well one image explains the

other. Maximized MI is obtained when the value of a voxel in the first image is a

good predictor of the corresponding voxel in the second image.
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2.2.2 Transformation Model

The Transformation model is the way to deform one image to match the other. Non-

rigid transformation subdivide into parametric and non-parametric transformation

[9]. Parametric transformation such as B-spline depends on a set of parameters.

B-spline utilizes a mesh of control points (parameters) and interpolates in between

with B-spline basis functions. The sparseness of control points limits the possible

transformations. In non-parametric image registration methods, the transformation

is estimated as an unknown function. With a non-parametric approach, the complex

local deformation can be modelled. This approach is ill-posed and requires constrain-

ing the transformation by using regularization to be smooth or locally rigid.

Parametric Approach

In parametric image registration methods, the spatial transformation is usually de-

fined as a function of a set of parameters. The popular non-rigid parametric transfor-

mations include radial basis functions (RBF) and B-splines. RBF approach defines

the transformation as a linear combination of the basis functions

f(x) =
N∑︂

n=1

wnU(∥x− xn∥) (2.6)

where wn are unknown parameters. The basis function U depends on the Euclidean

distance from x to the given control point xn. Among different RBFs, TPS and Cubic

B-spline are more popular in medical image analysis.

Non-Parametric Approach

Non-parametric image registration estimates the transformation as an unknown func-

tion without explicit parametrization. The solution to such a problem is not unique,

it is called the ill-posed problem. To limit the problem a regularisation term can be

used to penalize some undesirable transformation properties. The transformation is

usually defined as

f(x) = x+ u(x) (2.7)
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where u(x) is an unknown displacement function that optimize the objective function:

E(u) = Esim(I, J(x+ u(x))) + γEreg(u(x)) (2.8)

where Esim is the similarity measure term, Ereg is the regularization term and γ is a

trade-off parameter.

2.2.3 Regularization

Regularization is an essential key in image registration. It imposes certain properties

such as sparsity, smoothness and rigidity on a function to make this ill-posed problem

well-posed. For instance, estimating a non-rigid transformation based on only a set

of given control points/landmarks. There is no unique solution to such a problem.

There is an infinite number of transformations that have different behaviour in the

remaining parts of the image but will match the corresponding landmarks. By defining

a regularization term to enforce some constraints to transformation, the problem

can be uniquely solved. Alternatively, the solution can be regularized by explicit

parametrization, e.g. rigid. A standard regularization approach is to augment the

existing optimization problem with a regularization term and minimize the following

functional

E(f) = S(f) + γR(f) (2.9)

where S(f) is objective function, R(f) is the regularization term and γ is the trade-off

parameter. There are two types of regularization implicit and explicit regularization.

Implicit Regularization

The regularization is imposed implicitly 1) Parametarizing the transformation

model by lower degrees of freedom by using a low dimensional set of parameters

such as free form deformations (FFD), B-spline, radial basis function (RBF). For

instance, B-spline parametrization limits the deformation by the control point spacing

and the smoothness of the B-spline basis functions. 2) Restricting the space of
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the transformation by looking at special spaces. The main idea of changing the

space is that instead of adding regularization to the transformation we can define the

transformation in a regularized space.

Explicit Regularization

The regularization is imposed explicitly by 1) Deformation field filtering: One

of the explicit regularization methods is to use the filtering deformation field, like

the Gaussian filter in the demons framework. The purpose of this smoothing is

to suppress noise and preserve the geometric continuity of the deformed image. 2)

Adding penalty/regularization term: Standard regularisation terms to make the

problem well-posed include the diffusion, curvature, elastic and fluid regularization.

2.3 Image Registration Overview and Methods in

Literature

2.3.1 Non-Learning-Based Image Registration Methods

Traditionally, deformable registration is resolved by optimizing a similarity metric

that measures the closeness between the fixed and the warped moving image. Sev-

eral studies using optimization within the space of displacement vector field such

as discrete methods [17–20] and Demons [21, 22] have been proposed for the regis-

tration problem. The basic concept behind the demons framework for deformable

image registration is that the pixels in the fixed image act as local forces (applied

by “demons”) that can displace the pixels in the moving image to match the fixed

image. The intuition behind the image force is that if the pixel value in the moving

image is lower than the pixel value in the fixed image, demons push according to the

image gradient. Demons push the opposite of the image gradient if the pixel value of

the moving image is higher than the target value.

In [23] a combination of segmentation and registration is suggested based on nonlin-

ear elasticity which uses a polyconvex for regularization. A numerical implementation
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of the registration with a polyconvex regularization term is also presented by Burger

et al. in [24]. Another study [25] proposed a method based on the log-domain for

spatial transformation where a physical constraint is applied to estimate the my-

ocardial strain from cine MRI in the registration process. Due to the properties of

diffeomorphic transforms, namely folding-free and invertible [7], some methods rely

on such transformations computed using an artificial velocity over time governed by

the Lagrange transport equation to model deformations. The importance of these

properties has led to the wide use of diffeomorphism in registration algorithms [26–

28].

In [29, 30], a registration framework was proposed based on moving mesh (grid

generation) to compute point-to-point correspondences. They used the L2 norm as

a dissimilarity measure. The authors modelled the deformation using radial (diver-

gence) and rotational (curl) components that is better for analyzing the heart as this

closely matches actual cardiac motion.

Despite the advancements in transformation computations, the deformable regis-

tration is an ill-posed problem that requires explicit regularization to obtain a unique

solution [7]. Several regularization such as elastic-based [24] or diffusion-based meth-

ods [31, 32] have been suggested to overcome the issue. Besides, most of these methods

require users to find parameters on hand. The process of finding the parameters that

match the characteristics of certain data depends entirely on the users’ intuition and

their several tedious attempts.

2.3.2 Learning-based image registration methods

Recently, learning-based predictive approaches, notably deep learning techniques have

been successfully used for image registration. Depending on the manner the net-

works are trained, they can be categorized into supervised and unsupervised learn-

ing. Deep-learning-based image registration can be divided into three main groups

of the algorithm: 1) iterative, 2) supervised and 3) unsupervised registration [11].
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Most learning-based algorithms use convolutional layers to learn the similarity/dis-

similarity between the moving and fixed images. In iterative registration, the gradient

descent is applied to iteratively update the parameters of the deformation field based

on the given similarity/dissimilarity metric. When the solution space in registration

is high dimensional, an iterative algorithm can lead to slow registration. This mo-

tivated the development of networks that could estimate the transformation in one

step. However, fully supervised transformation estimation needs the exclusive use of

ground truth data to define the loss function. The difficult nature of the acquisition

of reliable ground truth remains a significant hindrance which leads to unsupervised

approaches. One key innovation that has been useful to these works is the spatial

transformer network (STN).

In supervised-learning methods, a convolutional neural network is trained using

examples of medical images along with their ground truth transformation to predict

the transformation directly on test images. Inspired by U-Net network [33], and

using mesh segmentation to compute the reference transformation, [34] predicted the

deformation field for 3D cardiac MR registration. [35] proposed a convolutional neural

network (CNN) to estimate the displacement vector for 3D brain MR volumes. Where

equalized active-points guided sampling and similarity between image patches were

used to guide the learning process. Even though the accuracy of these approaches is

considerable, their performance is dependent on the quality of the ground truth. The

most significant drawback of the supervised methods is that the actual ground truth

of a desired neural network output is not often available. There are only a limited

number of individuals with the expertise to provide quality labels, and therefore, the

supervised methods have limited ability to enhance the size and diversity of datasets.

Even though the supervised learning-based methods could rely on synthetic exam-

ples generated using random transformations or well-established traditional registra-

tion methods to obtain reference transformations, such training options could limit

the robustness and accuracy of the algorithm in practice. Firstly, synthetic examples
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may not be realistic and lead to poor generalization. Secondly, using the transforma-

tion from a traditional method as a reference inherently limits the prediction accuracy

of the trained network to the accuracy of the original method [36]. The limitation

of supervised methods has motivated different research groups to investigate dual or

weakly supervised transformation estimation [37–39]. Nevertheless, these methods

still require manually produced labels or segmentation.

To overcome some of the limitations imposed by supervised learning-based methods

such as the need for expert annotated data, unsupervised image registration has

received a lot of attention. In other words, the quality of the model is not dependent

on the quality of the labels. Inspired by the spatial transformer network (STN) [40],

[41, 42] proposed an unsupervised network for deformable registration which relied on

normalized cross-correlation (NCC) and bending-energy regularization terms to train

a fully convolutional neural network (FCN). [43, 44] used similarity to train a general

framework for unsupervised image registration. Most unsupervised methods [41, 43,

45] use B-spline or STN as a differentiable warping of the moving images. However,

these methods have not demonstrated that their deformations are sufficiently regular

and plausible [46].

Generative models such as a generative adversarial network (GAN), stochastic

variational autoencoder (VAE) and adversarial autoencoder (AAE) showed promis-

ing results in medical imaging application in learning data distribution from large

image training set [7]. Recently, several research groups [45, 47] used unsupervised

adversarial for image registration. In contrast to some generative approaches that

used a GAN to ensure the predicted deformation is realistic, [48] proposed a GAN to

perform deformable image registration of 3DMR volumes. [49] proposed simultaneous

segmentation and registration of chest X-rays using a GAN framework. The network

relies on three inputs: a reference image, a moving image, and the segmentation mask

of the reference image and outputs the segmentation mask of the transformed image

and the deformation field. Three discriminators are used to assess the quality of the
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generated outputs, deformation field, warped image, and segmentation using cycle

consistency and a Dice metric. The approach parameterizes deformable registration

of 4D CT thoracic image volumes that uses the sum of squared differences (SSD) as a

similarity metric. [7] proposed a generative and probabilistic model for diffeomorphic

image registration which first trains an encoder-decoder neural network to estimate

the deformation field by providing a large dataset of training images. By learning the

low-dimensional global latent space, during the test time they use the decoder part

of the network. However, the performance of these methods depends on the structure

of a large training set [50].

2.3.3 Multi-Resolution Registration

A problem with non-linear medical image registration is the high complexity and

multiple local minima in the optimization surface [51]. The multi-resolution approach

is one of the solutions that help to overcome these issues. Multi-resolution methods

have also been called coarse-to-fine, hierarchical, and pyramidal in the literature.

These methods create from each image two or more images of increasingly smaller

sizes with fewer image geometric differences. Furthermore, using multi-resolution

techniques simplify the optimization and sapped up the registration process [52]. The

structure of a multi-resolution image registration method is shown in Fig. 2.2. Level 0

is the original images, and in each level, the images are decreased in size by a factor of

2 (typically) to obtain new images. To obtain the desired lowest-resolution images, the

process is repeated. The desired lowest resolution can be determined automatically or

provided by the user. First, the images at the level n are registered. Smaller images

simplify the correspondence process because local geometric differences between the

images will be reduced sufficiently. To estimate registration parameters at level n− 1

the registration result at level n is used.

By subdividing the images at one level higher resolution (level i − 1) into corre-

spondence subimages (level i) and registering two images at a given resolution (level
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Figure 2.2: The structure of multiresolution image registration [53].

i), the registration parameters can be refined using information into corresponding

subimages. The subdividing process causes us to deal with smaller images and re-

duces the search area. Besides, knowing the approximate registration parameters

makes finding the ultimate registration parameters faster.

Information about the registration of images at level i is used to guide registration

at level i− 1, and the process is repeated until registration at the highest resolution

(level 0) is achieved.

Gaussian Pyramid

It used a low-pass filter with Gaussian characteristics. Let G0 be the original image.

It becomes the bottom or zero levels of the Gaussian pyramid. Each pixel of the next

pyramid level, image G1, is obtained as a weighted average of the pixels in image G0

within an n × n window. Each pixel of G2 is then obtained from G1 by applying

the same pattern of weights. The window moves horizontally or vertically so that its

centre is the second-next pixel of the current pixel, i.e., the sample distance at each
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level is double that in the previous level. As a result, each image in the sequence is

represented by an array which is half as large as its predecessor.

gl(i, j) =
2∑︂

m=−2

2∑︂
n=−2

w(m,n)gl−1(2i+m, 2j + n) (2.10)

where w is Gaussian mask.

Figure 2.3: Image in multiresolution representation [54].

2.3.4 Groupwise Image Registration

In groupwise image registration methods, several images are registered to a common

coordinate system and instead of a single geometric transformation, there is a group

of transformations that has to be found [55] One method for groupwise registration
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is selecting the first (or any other) image as the reference image, and then the rest

of the images are registered to the reference using pairwise image registration. The

choice of the reference image is important in such an approach. In sequential image

registration, the next image is registered onto the previous and the deformation field

is tracked over time. Often two neighbouring images in a sequence have a small de-

formation and distant images have large deformation. Another variation of groupwise

image registration is to register the next image onto the average of previously aligned

images which removes noise. Finally, the ”true” groupwise non-rigid image registra-

tion registers all images simultaneously [55, 56]. Such a formulation eliminates the

bias of choosing any particular reference image.

2.4 Problem Definition

The main goal of image registration is to find the optimal spatial deformation field

Tµ parameterized by µ that warps a moving image IM to align it with a fixed image

IF . The optimal values of µ could be obtained by minimizing an objective function

of the form:

µ̂ = argmin
µ

L(IF , IM ◦ Tµ)) + λR(Tµ), (2.11)

where L is a metric that measures how well IF and the warped moving image IM ◦Tµ

are aligned. R is a penalty term that imposes smoothness on spatial deformation Tµ

and λ controls the relative importance of the term. Eq.2.11 is a problem of finding

deformation field T for defined similarity metric L and regularization R, but the

image registration problem is not simply optimization, because the optimization of

solving the problem greatly changes according to L and R. If L or R is too simple,

the optimization of 2.11 is also too easy and the resulting T is likely to be trivial.

Therefore, depending on the given source and target images, a different L and a

different R should be given.

In our proposed approaches, the transformation is defined by the parameters of
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the network and by optimizing these parameters we estimate the deformation field.

In learning-based, unsupervised methods, the objective function is defined as:

θ̂ = argmin
θ

∑︂
(IF ,IM )

L(IF , IM ◦ fθ(IF , IM)) + λR(fθ(IF , IM)). (2.12)

These methods use a neural network, such as CNN [41, 43], f with parameters θ. Eq.

(2.12) minimizes a loss L between the fixed, IF and the warped moving image, IM ◦fθ

from a set of training data.

2.4.1 Heart anatomy and function

Heart anatomy

The heart which is almost located in the center of the chest is the hardest working

muscle in the human body. The cardiovascular system is made up of the heart and

blood vessels. Its job is to circulate blood throughout the body. The blood brings

oxygen and nutrients to the tissues.

As it shown in Figure 2.4, the heart is divided into four chambers. The upper

chambers are termed atria, and the lower chambers are termed ventricles. The upper

right chamber of the heart is Left atrium which receives oxygenated blood from the

lungs and pumps it down into the left ventricle which delivers it to the body. The right

upper chamber of the heart is right atrium which receives deoxygenated blood from

the body and pumps it into the right ventricle which then sends it to the lungs to be

oxygenated. The left lower chamber of the heart is Left ventricle. Left ventricle (LV)

receives blood from the left atrium and pumps it out under high pressure through

the aorta to the body. Finally, the lower right chamber of the heart that receives

deoxygenated blood from the right atrium and pumps it under low pressure into the

lungs via the pulmonary artery is Right ventricle (RV). The heart itself is comprised

of three layers of tissue. The outermost layer is the epicardium, the middle is the

myocardium and the innermost layer is the endocardium. The myocardium is the

thickest muscular layer, responsible for pumping the blood.
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Figure 2.4: Basic anatomy of the heart [57].

2.4.2 MRI

A strong magnetic field is utilized to capture MR images and produce maps of hydro-

gen atoms in water or fat molecules in the body. By considering the spin of atomic

nuclei as a magnetic vector, the proton behaves like a magnet. The image acquisition

consists of an initial sequence of exciting pulses and recording of the emitted signal. In

the next step, the amplitude of the signal is used to generate maps showing the heart

structures. A 3D cross-sectional images of the heart can be created using cardiac

MRI. MRI produces images with high resolution and high tissue contrast useful for

different assessments such as heart valves, size and blood flow through the major ves-

sels, etc. MRI is also utilized in diagnosing a variety of cardiovascular disorders such

as tumors and inflammatory conditions, and for the preoperative treatment planning

procedure and monitoring the progression of certain disorders over time.
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2.5 Summary

In this section, we overviewed the general framework for image registration, and

the key components of image registration, including popular similarity measures and

transformation models, and showed the role of the regularization theory in image

registration.
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Chapter 3

Unsupervised Deformable Image
Registration with Fully Connected
Generative Neural Network

3.1 Overview

This chapter introduces a novel fully connected network (FCNet) to solve the opti-

mization problem for image registration. The proposed method uses an FCNet as

a generator to estimate deformation fields directly and at the same resolution as

the images to be registered. Even though deformation fields related to the point

correspondence between fixed and moving images are high-dimensional in nature,

we assume that these deformation fields form a low-dimensional manifold in many

real-world applications. Thus, in our method, a neural network generates an embed-

ding of the deformation field from a low-dimensional vector. This low-dimensional

manifold formulation avoids the intractability associated with the high-dimensional

search space that most other methods face during image registration. As a result,

while most methods rely on explicit and handcrafted regularization of the deforma-

tion fields, our algorithm relies on implicitly regularizing the network parameters.

The proposed method generates deformation fields from low dimensional latent space

by minimizing a dissimilarity metric between a fixed image and a warped moving

image. Our method removes the need for a large dataset to optimize the proposed
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network. The proposed method is quantitatively evaluated on a publicly available

dataset. The results demonstrate that the proposed method improves performance

in comparison to a moving mesh registration algorithm, and also it correlates well

while is independent of manual segmentations which are created by any experts.

Figure 3.1 displays a flowchart of the 2D registration method. Most deep learning-

based image registration methods learn spatial transformations from training data

with known deformation fields [58–61]. On the other hand, other methods estimate

spatial transformations by using the pairs of images (fixed and moving images) [41,

62]. On the contrary, in the proposed method for each pair of images a low random

dimensional vector (also known as a latent vector) is defined and it passes to the

network as an input. Suppose {Ii}ni=1 is a sequence of images that we would like to

register. We have a neural network with parameters θ that computes a deformation

field fθ(ti) : R
d → RN×N , where N is the number of pixels and d is a number much

smaller than N (in our work d is 25). We can call fθ as an embedding function. Thus,

for the ith image in the sequence, the neural network takes in a d-dimensional vector

ti and outputs a deformation field ϕ(ti). We can warp a moving image Ii by this

deformation field to get the warped image I(fθ(ti)). Therefore, we can minimize the

following cost function for registering image sequence {Ii}ni=1:

Edata(θ, {ti}ni=1) =
∑︂
i

|Ii − Imov(i)(ϕ(ti))| (3.1)

The minimization is performed jointly over the parameters θ of the neural network

and latent vectors {ti}ni=1, where Ii is a fixed image and the corresponding moving

image is Imov(i).
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Figure 3.1: Schematic of the proposed image registration approach based on a fully
connected network. The network uses one or more learnable vector which is initialized
by a random vector as an input.

3.2 Methodology

Image registration is inherently ill-posed so that the existence and the uniqueness of

the solution are not guaranteed [63]. Thus, regularization is essential to avoid both

physically implausible displacement fields and local minimum during optimization

[64]. As most optimization methods based on regularization image registration are

typically computationally expensive and time-consuming, an alternative is to regu-

larize network parameters θ. This regularization considers the mean of the sum of

squares of the network weights (MSW ):

MSW (θ) =
1

Nw

Nw∑︂
n=1

w2
n, (3.2)

where Nw represents the number of network weight parameters and wn is an ele-

ment of the parameter matrix in a vector expression W . The weights and biases of

the network are initialized as random variables drawn from a Gaussian distribution.

Finally, our optimization problem can be formulated as follows:
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E(θ, {ti}ni=1) = Edata(θ, {ti}ni=1) + λMSW (θ), (3.3)

The above optimization problem can be solved by backpropagation with stochastic

gradient descent.

We propose a deformable registration framework using FCNet (fully connected

network). In this method, in order to register each pair of images in a sequence,

a low dimensional vector (also known as latent vector) is passed to the network as

an input. One technique to find the latent vectors is using Auto-encoder (AE). The

auto-encoder is made of two parts, encoder and decoder. The encoder brings the data

from a high dimensional input to low dimensional output. Since using an auto-encoder

network to find latent vector add time and computational cost to our framework, we

initialized input vectors randomly and update it along with the parameters of the

network. the FCNet applies 8 fully connected layers to generate a two dimensional

deformation field dx, dy. The weights are initialized using a normal distribution with

zero mean and standard deviation that is a function of the filter kernel dimensions.

Our model is implemented using Tensorflow. Adam optimization technique [65] is

used with learning rate 1× 10−4, image batch size 10 and λ = 0.1. The results were

obtained with NVIDIA GTX 1080 Ti GPU, and 2000 iterations were adopted for the

optimization that takes 4–6 minutes per image. The optimization is stopped when

the maximum iteration number is reached or the loss function is not improving after

three iterations. A grid search algorithm is used to chose the number of layers and

other hyper-parameters.
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Figure 3.2: Comparison between proposed method and the methods by [30]. Reliabil-
ity R(d) = Pr(DM > d)) for the proposed method and [30]. The proposed method
led to a higher reliability curve.

.

Table 3.1: The mean, standard deviation of Dice score and Reliability function
(R(d) = P (DM > d)). The higher the DM and R, the better the performance.

Dice R(0.80) R(0.85) R(0.90)

MM[30] 0.85 ± 0.03 0.95 0.66 0.06

our method 0.89 ± 0.03 1 0.91 0.44
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Figure 3.3: Comparison between proposed method and the methods by [30] based on
Dice metric (DM).

.
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Figure 3.4: Selection of fixed and moving images in one sequence of the medical
image. DFi (i = 0, 1, 2, ..., K) are deformation fields generated by the network for
each pair of fixed and moving images.

3.3 Experiments

The proposed method is evaluated on Automated Cardiac Diagnosis Challenge (ACDC)

dataset cardiac cine MR sequences 3.3.1 and slice = 5, a total of 30000 images. In

each sequence Ii is selected as a moving image and Ii+1 is selected as a fixed image

Figure 3.4.

3.3.1 Data

Automated Cardiac Diagnosis Challenge (ACDC) dataset [66] which contains MRI

scans including 100 stack of short-axis cardiac cine MRI sequences, each consisting of

12 to 35 temporal frames. The spatial resolution varies from 1.37 to 1.68 mm2/pixel

with a slice thickness of 5 mm to 8 mm (in general 5mm) and sometimes an inter-slice

gap of 5mm. Each sequence consists of 28 to 40 images that cover the cardiac cycle
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completely or partially.

3.3.2 Quantitative Evaluation

Table 3.1 shows the accuracy for FCNet in comparison with moving mesh correspon-

dence method and it shows that our approach led to a significant improvement in

average the accuracy. In addition, Table 3.1 reports the reliability of both methods

in different accuracy levels and plot R(d) as a function of d that is shown in Figure

3.2. Our algorithm led to a higher reliability curve and improvement in reliabilities.

3.3.3 Visual Assessment

By using a grid mesh, we show the displacement fields obtained by FCNet Figure 3.5.

The comparison of the result of the FCNet and moving mesh correspondence method

[30] are given in Figure 3.6. In Figure 3.7, we give a representative sample of borders

obtained by our method. The FCNet approach yielded more accurate results than

the moving mesh method.
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Figure 3.5: Representative examples of the displacement field obtained by the pro-
posed method.
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Figure 3.6: Representative examples of obtained borders of the LV with FCNet (blue)
and moving mesh correspondence [30] (red) methods where FCNet provided signifi-
cantly more accurate results than [30].
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3.4 Conclusion

We proposed a deformable image registration algorithm based on the deep fully con-

nected network to generate spatial transformations. Our network predicted the defor-

mation field at the same resolution of fixed and moving images based on low dimen-

sional learnable vectors initialized by random values, independent from moving and

fixed images. The results have demonstrated that unsupervised deep learning models

built upon generative fully connected networks can achieve satisfying performance for

deformable medical image registration. This study shows that the proposed approach

improves the performance over recent state-of-the-art image registration with respect

to accuracy.

The drawback of our proposed method is that the fully connected network has lots

of parameters to optimize, so that it is time-consuming.

Figure 3.7: Sample of the boundary results with the proposed FCNet.

36



Chapter 4

GMCNet: A generative
multi-resolution framework for
cardiac registration:

4.1 Overview

Cardiac deformable registration is a fundamental step in quantitatively assessing

cardiac function and generating diagnostic measurements. Recently, learning-based

methods have yielded high performance for image registration by training on a large

dataset and using a regularized optimization framework to minimize dissimilarities

between an image pair. These methods have yielded well-suited approaches for image

registration by training on a large dataset. The performance of learning-based meth-

ods is related to their ability to learn information from a large number of samples of

medical images which is 1) difficult to obtain and 2) also makes the framework biased

to the specific domain of data.

In this chapter, inspired by the chapter 3 we propose a novel end-to-end learning-

free generative multi-resolution convolutional neural network (GMCNet) for image

registration. Even though learning-based methods have yielded high performance for

image registration, their performance depends on their ability to learn information

from a large number of samples of medical images which is 1) difficult to obtain and

2) also makes the framework biased to the specific domain of data.
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The proposed framework was quantitatively evaluated on clinical cardiac magnetic

resonance images (MRI) over three different datasets and compared against the per-

formance of nine state-of-the-art learning-based and optimization-based algorithms.

To examine GMCNet from different aspects, we assess (1) robustness; (2) perfor-

mance on pairwise registration; (3) influence of spatial transformation in a controlled

environment; (4) impact of different multi-resolution structures.

The proposed learning-free method eliminates the need for a dedicated training

set while exploiting the capabilities of neural networks to achieve accurate deforma-

tion fields. Due to its capability of parameter sharing through the architecture, the

GMCNet can be used as a groupwise registration as well as pairwise registration.

Additionally, inspired by the Demons algorithm Gaussian filters integrated with the

GMCNet to impose a smoothness constraint which relaxes the need for an explicit

regularization term and the corresponding weight in the cost function. The proposed

framework yielded promising results on clinical cardiac magnetic resonance images

over three different datasets when quantitatively compared against nine state-of-the-

art learning and optimization-based algorithms. Different aspects of the GMCNet

are explored by assessing 1) the robustness; 2) performance on pairwise registration;

3) the influence of spatial transformation in a controlled environment; and 4) the

impact of different multi-resolution structures. The results provide confirmatory ev-

idence that using temporal information from the 2D cardiac sequence to estimate

the deformation field leads to registration with higher accuracy and also a highly ro-

bust performance under different noise levels. Moreover, since the proposed method

is iterative and does not need a sample of images for training, its prediction is not

domain-specific and can be applied to any sequence of images.
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Figure 4.1: Iterations in the proposed GMCNet are shown for a pair of images for
one resolution. The parameter set θ of the network f and latent variable z0 for an
image pair are iteratively updated through the back-propagation to minimize the
registration cost (4.3) between the fixed image IF and warped moving image IM .

4.2 Methodology

The main goal of deformable image registration is to find the optimal spatial defor-

mation ϕθ parameterized by θ that warps a moving image IM to align it with a fixed

image IF . The optimal values of θ could be obtained by minimizing an objective

function of the form:

θ∗ = argmin
θ

L(IF , IM ◦ ϕθ)) + λR(ϕθ) (4.1)

where L is a metric that measures the dissimilarity between IF and the warped

moving image IM ◦ϕθ. R is a regularization term that imposes smoothness on spatial
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deformation. λ is a weight coefficient corresponding to the regularization term. In

unsupervised deep learning-based methods, a CNN is trained on a set of data to

minimize a dissimilarity metric and a spatial transformer layer is used to warp the

moving image IM .

θ∗ = argmin
θ

∑︂
(IF ,IM )

L(IF , IM ◦ fθ(IF , IM)) + λR(gθ(IF , IM)) (4.2)

where f is the network and θ is the parameters of the network.

4.2.1 Generative Multi-resolution Convolutional Network (GM-
CNet)

Inspired by 3 for each pair of moving and fixed image a latent variable z is defined

which is sampled from a random normal distribution and has the same dimensions as

the input images z ∈ RH′×W ′
. Where H andW are the height and width of images to

be registered, respectively. The GMCNet maps the input latent variables to a desire

deformation fields and uses the corresponding batch of fixed and moving images for

the loss function. Thus, during the optimization process the network’s parameters θ

and zi are optimized through back-propagation simultaneously.

So the new registration objective function can be formulated as follows:

θ∗, z∗ = argmin
θ,z

L(IF , IM ◦ fθ(z)), (4.3)

where the θ∗ and z∗ are obtained using a neural network optimizer such as stochastic

gradient descent. As it can be seen in the new formulation there is no need for

an external regularization term and a corresponding weight. Fig. 4.1 shows the

optimization of an input latent variable z and the parameters of the network θ during

the iterative processing for a sample pair of images. For the sake of simplicity, the

optimization process is showed for one resolution framework.

The proposed architecture implements the general principle of multiresolution

framework, where computations follow coarse-to-fine resolutions[67]. It has three
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Figure 4.2: The proposed generative multiresolution convolutional network (GMC-
Net) architecture for deformable image registration. The network generates a defor-
mation field based on low dimensional random inputs.

resolutions/scales denoted by a quarter g
1/4
θ1

, a half g
1/2
θ1,θ2

and the original resolution,

g1θ1,θ2,θ3 . The θ1, θ2, θ3 are used to denote parameters of each resolution of GMCNet.

A spatial Gaussian smoothing kernel is integrated with the GMCNet to yield suf-

ficiently smooth deformation fields. Such strategy has been adopted in the Demons

algorithm, where unconstrained optimization is followed by Gaussian filtering to im-

pose a smoothness constraint. So that, at each resolution a Gaussian kernel is applied

on the deformation field and then the smooth scaled deformation field is upsampled
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and added to the next scale. The components of the proposed GMCNet architecture

are shown in Fig. 4.2.

4.2.2 Groupwise Registration

Because of parameters sharing property, the GMCNet can be used as a groupwise

registration framework when we have a sequence of images to be registered {Ii}Ni=1.

In groupwise image registration methods, several images are registered to a common

coordinate system and therefore, a group of transformations has to be computed

instead of a single geometric transformation[55]. A common practice for groupwise

registration is to select the first (or any other) image as the reference image, and

then register the rest of the images to the reference using pairwise image registration.

The choice of the reference image is important in such an approach. In the proposed

Figure 4.3: Illustration of choosing fixed and moving images in a sequence. The frame
i is selected as a moving image and the next frame i+ 1 is selected as a fixed image.
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method each image in a cardiac sequence is registered to the next image in the

sequence. To register a set of images {Ii}Ni=1, the i
th image in a sequence is set as a

moving image I iM and i+ 1th image is set as a fixed image I iF , for i = 1, ..., N − 1 as

shown in Fig. 4.3. Such a formulation eliminates any potential bias introduced by

choosing a particular reference image. In our formulation, the weights θ are shared

through the entire sequence. Such consistency may not be obtained using traditional

pairwise approaches where the registration is performed by splitting the sequence into

a set of image pairs. For a set of N image pairs {I iF , I iM}Ni=1, N latent variables are

defined {zi}Ni=1. Where N is the number of images in a sequence.

In the case of groupwise registration (4.3) is changed as follows:

θ∗, {z∗i }Ni=1 = argmin
θ,{zi}Ni=1

N∑︂
i=1

L(I iF , I
i
M(gθ(zi))) (4.4)

4.2.3 Loss Function and Optimization

In each resolution a separate loss is defined to measure the dissimilarities between

the fixed and warped moving images at that resolution as follow:

The loss function for the coarsest resolution:

Loss1/4 =
N∑︂
i=1

L(I
1/4,i
F , I

1/4,i
M ◦ ϕ1/4

θ1
(zi)) (4.5)

where I
1/4,i
F and I

1/4,i
M are respectively down-sampled fixed and moving images at the

quarter resolution.

The loss function for the second (half) resolution:

Loss1/2 =
N∑︂
i=1

L(I
1/2,i
F , I

1/2,i
M ◦ ϕ1/2

θ1,θ2
(zi)) (4.6)

Similarly, the loss function for the full resolution is defined as:

Loss1 =
N∑︂
i=1

L(I1,iF , I1,iM ◦ ϕ
1
θ1,θ2,θ3

(zi))) (4.7)

The final loss function is a linear combination of loss functions in three resolutions:

Loss = αLoss1/4 + βLoss1/2 + γLoss1, (4.8)
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We optimize the whole network as one stage to reduce the computational time. All

the parameters of the network θ1,2,3 are initialized only once and they are shared for all

images in the sequence. It is possible to optimize the network in three phases so that

the first stage optimizes it with respect to θ1 and {zi}Ni=1, the second stage optimizes

θ1, θ2 and {zi}Ni=1 and finally, the third stage optimizes loss (4.8) with regard to all

parameters θ1, θ2, θ3 and {zi}Ni=1.

4.2.4 Learning-free framework

Since the propose method is learning-free there is no need to obtain a training set.

It means the GMCNet is not trained on a given data set. On this basis, to register

any sequence/pair of images the z and the parameters of the network θ are optimized

iteratively from scratch. The optimization is terminated based on two criteria, the

step size and iteration number. In each iteration, loss function is evaluated, and if it

does not improve, the step size will be reduced. The process is terminated once the

maximum number of iterations has been reached, or the step size is below the defined

threshold.

4.2.5 Implementation details

The proposed GMCNet consists of six convolutional layers with strides (1, 1, 1, 1) and

three upsample layers. The inputs fit in a convolutional Gaussian layer with σ = 2 and

kernel size 7. Each scale contains two convolutional layers, two upsample layers and

a convolutional Gaussian layer with σ = 3 and kernel size 15 in front of the estimated

deformation field and after adding a correction. Exponential linear unit (ELU) is

selected as an activation function and NCC is used as a loss function. The values of

α, β, and γ are chosen as 0.5, 0.25, and 0.25 respectively. We initialized a learning

rate of 5 × 10−4 with the Adam optimizer and a batch size of 10. The maximum

iteration number for is 800 and the minimum threshold of the step size is 0.5× 10−7.

The framework has been implemented using Python programming language with the
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Tensorflow machine learning module and it is tested with an NVIDIA GTX 1080

Ti graphics processing unit with 11GB memory. The weights are initialized using a

normal distribution with zero mean and standard deviation that is a function of the

filter kernel dimensions. The optimization is stopped when the maximum iteration

number is reached or the loss function is not improving after three iterations. A grid

search algorithm is used to chose the number of layers and other hyper-parameters.

4.3 Experiments

The proposed framework is evaluated on clinical cardiac MRI images over three

datasets.

4.3.1 Datasets

The following three datasets are considered in this study:

Automated Cardiac Diagnosis Challenge (ACDC)[66] This dataset contains

multiple temporal 2D short-axis cardiac cine MRI sequences acquired from 100 pa-

tients and one of the publicly available datasets for cardiac MRI assessment. The

spatial resolution varies from 1.37 to 1.68 mm2/pixel with a slice thickness of 5 mm

to 8 mm (in general 5mm) and sometimes an inter-slice gap of 5mm. Each sequence

consists of 28 to 40 images that cover the cardiac cycle completely or partially.

The Sunnybrook Cardiac Challenge data (SCD)[68] This dataset contains

multiple temporal 2D short-axis cardiac cine MRI scans acquired from 45 patients.

Each cine sequence includes 20 frames to cover the cardiac cycle. The image resolution

is 256× 256, with a pixel spacing of 1.25 mm and slice thickness of 8 mm.

Left Atrium (LA) This dataset includes 100 temporal 2D long-axis cine MRI

steady-state sequences from the 2, 3 and 4-chamber views. It was acquired from

the University Alberta Hospital. Each cycle includes 25 or 30 frames with image

45



resolutions 176× 189 – 256× 208 and image spacing 1.445− 1.795 mm. The ground

truth manual segmentation was initially performed by a medical student and edited

by an experienced radiologist. The 2ch, 3ch and 4ch are used in the rest of the paper

to denote 2, 3 and 4-chamber sequences, respectively.

4.3.2 Evaluation

In this section, we evaluate and compare the performance of the proposed framework

with both optimization-based state-of-the-art algorithms, SimpleElastix (Elastix)[69],

Moving Mesh (MM)[30], Real-Time Image-based Tracker (RRT)[70], Fast Symmet-

ric Forces Demons (Demons)[71], LCC-Demons[32], Symmetric Normalization[27]

and also learning-based state-of-the-art algorithms VoxelMorph (VM)[45], learning

probability model for diffeomorphic registration (LPM)[7] and DIRNet[41], a CNN-

based, end-to-end unsupervised deformable image registration. We denote GMCNet

as GMCNet s and GMCNet p to identify the sequential registration and pairwise

registration.

Quantitative Evaluation Metrics

The proposed method was evaluated quantitatively using four metrics, namely, Dice

metric (DM), Hausdorff distance (HD in mm), determinant of Jacobian of the defor-

mation field det(J), and reliability R(d).

Dice Metric The DM [73] is a well-known segmentation based metric to measure

the similarity (overlap) between two regions, warped moving and fixed image. The

DM of two regions A and B is formulated as:

DM(A,B) =
2|A ∩B|
A+B

(4.9)

Hausdorff Distance The HD [74] is another well-known metric which measures the

maximum deviation between two regions’ contours. The HD between two contours
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Table 4.1: Quantitative evaluation of the results for cardiac MRI registration on the
LA dataset. The evaluation is performed in terms of Dice (mean± standard deviation)
and HD (mean). The 2ch, 3ch and 4ch stand for the 2, 3 and 4-chamber. Values in
bold indicate the best performance. Undef stands for Undeformed.

Methods Dice HD

2ch 3ch 4ch 2ch 3ch 4ch

Undef 0.79 ± 0.07 0.78 ± 0.08 0.78 ± 0.09 7.37 7.70 8.66

FCG[72] 0.81 ± 0.11 0.84 ± 0.13 0.80 ± 0.10 7.5 7.67 8.2

RRT[70] 0.81 ± 0.13 0.85 ± 0.08 0.80 ± 0.11 7.3 6.99 8.01

Elastix[69] 0.82 ± 0.11 0.86 ± 0.10 0.82 ± 0.10 7.28 6.82 7.56

MM[30] 0.84 ± 0.06 0.83 ± 0.06 0.83 ± 0.08 6.58 6.48 6.77

Demons[71] 0.84 ± 0.08 0.85 ± 0.06 0.82 ± 0.10 7.41 7.33 7.84

SyN[27] 0.87 ± 0.06 0.86 ± 0.13 0.84 ± 0.11 6.92 7.52 7.51

GMCNet p 0.81 ± 0.12 0.84 ± 0.09 0.81 ± 0.11 7.1 5.1 6.3

GMCNet s 0.88 ± 0.05 0.87 ± 0.05 0.84 ± 0.07 6.2 4.9 6.2

(CA) and CB is formulated as:

HD(CA, CB) =max(max
i

(min
j
(d(piA, p

j
B))),

max
j

(min
i
(d(piA, p

j
B))))

(4.10)

where piA, p
j
B denote the set of all the points in CA and CB respectively. The term d(·)

denotes the Euclidean distance. The DM and HD were computed by comparing the

delineations obtained using the registration methods with expert manual contours.

Table 4.1, 4.2 and 4.3 show the mean and standard deviations of DM and HD for all

algorithms evaluated on LA, ACDC and SCD datasets, respectively. The reported

values for methods indicated with ∗ were taken from previous publications [7, 41].

It should be noted that the presented method (GMCNet approach) has a good per-

formance on all mentioned datasets (DM=0.85 − 0.87) and the reported values in
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Table 4.2: Quantitative evaluation of the results for cardiac MRI registration on
the ACDC dataset. The evaluation is performed over the left ventricle in terms of
Dice (mean± standard deviation) and HD (mean). Values in bold indicate the best
performance.

Method Dice HD

Undeformed 0.71 ± 0.145 10.1

LCC-Demon∗[32] 0.79 ± 0.096 9.21

VM∗[45] 0.79 ± 0.096 8.46

LPM S1∗[7] 0.79 ± 0.091 7.58

FCG[72] 0.80 ± 0.150 8.80

SyN∗[27] 0.80 ± 0.091 8.24

LPM S3∗[7] 0.81 ± 0.085 6.88

RRT[70] 0.83 ± 0.161 5.75

MM[30] 0.83 ± 0.153 5.64

Elastix[69] 0.84 ± 0.162 5.51

GMCNet p 0.84 ± 0.170 7.43

GMCNet s 0.86 ± 0.141 5.35

∗ Results are reported in[7] in which standard deviation
could not be estimated. N/A refers to the value that are
not reported in the original paper.

Table 4.1, 4.2 and 4.3 demonstrate that our approach outperforms other registration

methods in terms of both DM and HD.

Reliability: We also evaluated the performance of the proposed algorithm using

a reliability function computed based on DMs for each dataset. The complementary

cumulative distribution function is defined for each d ∈ [0, 1] as the probability of
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Table 4.3: Quantitative evaluation of the results for cardiac MRI registration on
the SCD dataset. The evaluation is performed in terms of Dice (mean± standard
deviation) and HD (mean). Values in bold indicate the best performance.

Method Dice HD

Undeformed 0.62 ± 0.15 16.02

RRT[70] 0.71 ± 0.19 13.10

FCG[72] 0.71 ± 0.2 12.82

Demons[71] 0.71 ± 0.18 12.46

MM[30] 0.72 ± 0.12 12.53

Elastix[69] 0.79 ± 0.08 11.12

DIRNet∗[41] 0.80 ± 0.08 N/A

SyN[27] 0.81 ± 0.16 8.9

GMCNet p 0.71 ± 0.16 7.95

GMCNet s 0.87 ± 0.09 4.58

∗ Results are reported in[41]. N/A refers to the value that
are not reported in the original paper.

obtaining DM higher than d over all volumes.

R(d) = Pr(Dice > d)

=
# Images segmented with DM higher than d

total number of images
.

(4.11)

R(d) measures how reliable the algorithm is in yielding accuracy d. The corresponding

reliability R(d) is plotted as a function of Dice in Fig. 4.4. The reliability values at

d = 0.80, 0.85, 0.90 and 0.95 are reported in Table 4.4, 4.5, and 4.6 for ACDC,

SCD and LA datasets, respectively. Our algorithm led to a higher reliability curve

on all ACDC, SCD, and LA datasets. We have 2%, 17% and 2% improvement in

R(0.80), respectively on ACDC, SCD and LA. For instance, on ACDC, we obtained

R(0.85) = 0.65, i.e, an excellent agreement (DM > 0.85) in 65% of the cases, whereas

the Elastix[69] achieved 63% of the cases with a similar accuracy. Also, we obtained
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Table 4.4: Reliability function (R(d) = Pr(DM > d)) for ACDC dataset. The higher
the R, the better the performance.

Method R(0.80) R(0.85) R(0.90) R(0.95)

RRT[70] 0.73 0.60 0.40 0.13

MM[30] 0.73 0.61 0.42 0.16

Elastix[69] 0.74 0.63 0.45 0.20

GMCNet s 0.74 0.65 0.48 0.23

Table 4.5: Reliability function (R(d) = Pr(DM > d)) for SCD. The higher the R,
the better the performance.

Method R(0.80) R(0.85) R(0.90) R(0.95)

RRT[70] 0.45 0.31 0.16 0.04

Demons[71] 0.22 0.16 0.08 0.02

MM[30] 0.46 0.30 0.20 0.09

Elastix[69] 0.46 0.33 0.19 0.04

SyN[27] 0.55 0.48 0.20 0.09

GMCNet s 0.75 0.61 0.37 0.13

R(0.85) = 0.60 on SCD, whereas the SyN[27] method, which has higher accuracy

among other methods, achieved 43%.

det(J): To analyze deformation regularity in different algorithms, we show the

determinant of the Jacobian det(J)[75]. If the value of det(J) equals to 1, the area

remains constant after the transformation, whereas the value smaller or larger than

1 indicates the local area shrinkage or expansion, respectively. The negative values

of det(J) imply that local folding and twisting have occurred, which is physically

not realizable and mathematically not invertible[45]. The minimum of det(J) of

deformation for each pair of images is reported. We use the det(J) computed by

SimpleITK[76–78] to quantify deformation regularity. Fig. 4.5 reports the minimum

det(J) values observed in each method. No negative minimum values of det(J) were

observed for test cases which indicates that the proposed method does not lead to

local mesh folding or twisting. This implies that the estimated deformations are
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Table 4.6: Reliability function (R(d) = Pr(DM > d)) for LA. The higher the R, the
better the performance.

Method R(0.80) R(0.85) R(0.90) R(0.95)

LA-2ch

RRT[70] 0.64 0.44 0.26 0.06

Demons[71] 0.75 0.51 0.24 0.07

MM[30] 0.78 0.50 0.17 0.04

Elastix[69] 0.60 0.44 0.22 0.08

SyN[27] 0.88 0.72 0.44 0.14

GMCNet s 0.90 0.74 0.45 0.18

LA-3ch

RRT[70] 0.81 0.62 0.37 0.12

Demons[71] 0.82 0.54 0.26 0.04

MM[30] 0.68 0.44 0.14 0.03

Elastix[69] 0.75 0.59 0.36 0.08

SyN[27] 0.87 0.66 0.41 0.11

GMCNet s 0.87 0.68 0.40 0.13

LA-4ch

RRT[70] 0.56 0.33 0.15 0.03

Demons[71] 0.59 0.39 0.26 0.09

MM[30] 0.45 0.31 0.16 0.04

Elastix[69] 0.50 0.28 0.13 0.02

SyN[27] 0.79 0.58 0.35 0.09

GMCNet s 0.79 0.59 0.34 0.10
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ACDC SCD

2ch 3ch 4ch
LA

Figure 4.4: Reliability versus Dice metric of different algorithms: MM[30], RRT[70],
Demons[45], SyN[27], SimpleElastix (Elastix)[69] and the proposed algorithm. The
figures omit results for methods with no public implementation available.

physically realizable. Sample of warped moving images and corresponding Jacobian

determinant with grid overlay is shown in Fig. 4.8.

Impact of Multi-resolution

We assess the impact of using different multi-resolution structures with GMCNet on

the performance, and reported the corresponding evaluations in terms of DM and HD

in Table 5.5. The results indicate that the high performance was obtained with the

use of three resolutions.
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Minimum det(J) — ACDC Minimum det(J) — SCD

Minimum det(J) – LA-2ch Minimum det(J) – LA-3ch Minimum det(J) - LA-4ch

Figure 4.5: Minimum of determinant of Jacobian results for different algorithms:
MM[30], RRT[70], Demons[45], SyN[27], SimpleElastix (Elastix)[69] and the proposed
algorithm. The figures omit results for methods with no public implementation avail-
able.

Assessment of robustness against different noise levels

To assess the robustness of proposed algorithm against different noise levels, we se-

lected a random sequence from SCD and applied the same level of noise (speckle noise

with µ = 1 and σs = [0, 0.5, . . . , 4]) to every frame in the sequence except for two

randomly selected frames which were corrupted with twice as much noise level than

other frames (standard deviation = 2σ). The DM of each algorithm was measured

and plotted in Fig. 4.6. The results show that our method is almost independent from

the noise level and at all noise level, we have the highest DM. This happens because

the proposed method uses shared weights for all frames in a sequence, which capture
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Table 4.7: Q
uantitative cardiac MRI registration results on the ACDC, SCD

and LA based on different number of resolution of
GMCNet.]Quantitative cardiac MRI registration results on the
ACDC, SCD and LA based on different number of resolution of
GMCNet. The evaluation is performed in terms of Dice (mean±
standard deviation) and HD (mean). The 2ch, 3ch and 4ch stand

for the 2, 3 and 4-chamber. Values in bold indicate the best
performance.

Dataset Dice HD

One
Resolution

ACDC 0.79 ± 0.15 8.01

SCD 0.73 ± 0.09 9.43

LA-2ch 0.80 ± 0.11 7.42

LA-3ch 0.82 ± 0.08 7.27

LA-4ch 0.79 ± 0.10 7.53

Two
Resolutions

ACDC 0.81 ± 0.13 6.81

SCD 0.77 ± 0.11 7.31

LA-2ch 0.81 ± 0.09 7.11

LA-3ch 0.84 ± 0.10 6.98

LA-4ch 0.80 ± 0.09 7.01

Three
Resolutions

ACDC 0.86 ± 0.14 5.35

SCD 0.87 ± 0.09 4.58

LA-2ch 0.88 ± 0.06 6.2

LA-3ch 0.87 ± 0.05 4.9

LA-4ch 0.84 ± 0.07 6.2

Four
Resolutions

ACDC 0.75 ± 0.18 8.45

SCD 0.85 ± 0.08 5.83

LA-2ch 0.82 ± 0.09 7.3

LA-3ch 0.85 ± 0.08 7.03

LA-4ch 0.82 ± 0.10 6.83

the correlation between frames. This, per se, leads to a more robust performance

under different levels of noise than non-learning based methods. Also, the drop rate
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for the other methods is higher than the proposed GMCNet method.

Evaluation against ground truth deformation by thin-plate spline

To analyze the spatial transformation in a controlled environment, we used the thin-

plate spline algorithm to generate a true deformation field[79]. The algorithm requires

an initial contour at end-diastole which was obtained by randomly selecting patients

from ACDC. First, the ground truth contour was obtained for the end-diastolic frame.

Then, by using a diffeomorphic registration method a set of control points were gen-

erated. The contours include 20 equally spaced points which were subsampled from

the generated sequence of control points. The thin-plate spline method was then used

to produce a smooth interpolation between these sets of points. We defined the least

bent surface that fits through the control points as follows:

f(x, y) = a1 + a2x+ a3y +
n∑︂

i=1

(wiU(|Pi − (x, y)|), (4.12)

where the first three terms a1 + a2x + a3y defines the best fitted plane through the

control points and the
n∑︁

i=1

(wiU(|Pi − (x, y)|) term is correspondence to the bending

forces provided by n control points.

The deformation fields generated by the thin plate spline approach were used to ver-

ify and compare the performance of different parameterization approaches: RRT[70],

Demons[71] and MM[30], Elastix[69], SyN[27], and the proposed GMCNet method.

The root mean squared error (RMSE) was calculated between the deformation

fields for both directions (x, y) and summed. The RMSE is defined by:

RMSE =

⌜⃓⃓⎷ 1

n

n∑︂
i=1

(x̂i − xi)2 + (ŷi − yi)2 (4.13)

where n is the total number of pixels in the deformation field and (xi, yi) and (x̂i, ŷi)

denote the true and estimated deformed points, respectively.

Fig. 4.7 displays the performance of the various registration algorithms compared

to the ground truth thin plate spline method. These algorithms were evaluated by the
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difference in the deformation grids, RMSE, where images were corrupted with different

degrees of noise. It can be seen that when there is no added noise, most of the methods

yield similar RMSE in the range of 0.52−0.53. However, the algorithm performance is

highly dependent on the noise level and even small increase in the value of noise would

highly increase the RMSE. On the contrary, the presented method demonstrates less

sensitive to noise levels with the standard deviation values of 0.0− 1.5. Even for the

greater noise levels with standard deviation values of 1.5−3.5, our method still yields

the least RMSE.

Figure 4.6: Dice scores (y-axis) for a randomly selected sequence from SCD corrupted
with speckle noise with increasing standard deviations (x-axis). See details in the text.

Pairwise registration

To assess the effects of groupwise registration, we also applied our method as pair-

wise registration on images acquired at end-systolic and end-diastolic phases which

has large deformation compares to neighbour frames in a sequence that has small
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Figure 4.7: Root mean square error (RMSE) for quantitative evaluation of the ac-
curacy between the ground truth deformation field and the six registration methods.
The lower the values of RMSE, the more accurate the registration.

difference. Tables 4.1, 4.2 and 4.3 show the mean and standard deviations of DM and

HD for pairwise GMCNet p, which is evaluated on ACDC, SCD and LA datasets,

respectively. It can be seen from these tables that the proposed sequential GMCNet s

outperforms GMCNet p in each tested case in terms of DM and HD.

Figure 4.8: Registration results by the proposed GMCNet method showing a warped
moving image with grid overlay and determinant of Jacobian.
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End-diastole Frame 2 Frame 3 Frame 4 Frame 5

Frame 6 Frame 7 Frame 8 Frame 9 End-systole

Figure 4.9: An example showing the predicted deformation results over the systolic
phase of the cardiac cycle. It start from End-diastole (Frame 1) to End-systole which
is 10th in this sequence. The grid deformation over the sequence shows the impact of
the application of the smoothness. Each frame is registered to the next frame with a
smooth transformation field computed using the proposed method.

4.4 Discussion

In this study, we proposed a CNN based registration approach to obtain accurate

results by exploiting temporal information from 2D image sequences. Registering

a sequence of images plays an important role in many applications including car-

diac functional assessment for MRI sequences. For instance, the left ventricle dys-

function is a significant condition for adults and often require the assessment of the

regional function[80]. A point-to-point registration approach could be used for detect-

ing regional left ventricular function abnormality[81]. In addition to the functional

assessment of left ventricle from short-axis MRI sequences, there are several other ap-

plications that could benefit from image registration applied to 2D sequences. This

includes functional assessment of left ventricle from short-axis MRI sequences[81], the

functional assessments of left and right atria from long-axis MRI sequences[82, 83].

An example of the prediction results of the GMCNet method can be visualized in
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Fig. 4.9 where the images were acquired from a patient’s MRI sequence. This exam-

ple shows that the proposed method leads to deformation fields with no local folding

or twisting. We evaluated the approach on cine-MRI registration and compared

registration performance in terms of DICE and Hausdorff distances to nine popu-

lar learning and non-learning based algorithms[32],[69], [7], [27],[30],[41],[45],[70],[71],

and our conference version method[72]. The performance of our approach showed

significant improvements in terms of registration accuracy.

The proposed method is applied as a sequential registration as well as pairwise

registration for the datasets tested in this study. In sequential registration, all images

were processed together, and therefore, we computed the equivalent time for pairwise

registration by dividing the total time with the number of image pairs. In this case,

the equivalent mean computational times were around 13, 10, and 17 seconds per

image pair for ACDC, SCD, and LA datasets, respectively. In the case of pairwise

registration, the mean of computational times were around 25, 30, and 47 seconds for

ACDC, SCD and LA datasets, respectively. Thus the proposed method is suitable for

medical applications that are not time-sensitive and the priority is given to robustness

and accuracy.

4.5 Conclusion

We proposed a learning-free fully automated approach using the structure of an un-

trained generative multi-resolution convolutional neural network for deformable med-

ical image registration. Optimizing the latent variables during the registration elim-

inates the need for regularization and tuning. The proposed method has yielded

promising results on the cardiac MRI images in comparison to the learning and non-

learning based methods. Moreover, the proposed method’s prediction is not domain-

specific and could be applied to any medical image sequence without resorting for

annotated training data. Our algorithm captures the correlation between frames in

a sequence which leads to a more robust performance under different levels of noise.
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Currently, the presented methodology is applied to temporal 2D registration problem.

In the future, we will extend the methodology to temporal 3D sequences.
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Chapter 5

Recursive multiresolution
framework for diffeomorphic
deformable image registration

5.1 Overview

Diffeomorphic deformable image registration is one of the crucial tasks in medical im-

age analysis, which aims to find a unique transformation while preserving the topology

and invertibility of the transformation. Deep convolutional neural networks (CNNs)

have yielded well-suited approaches for image registration by learning the transfor-

mation priors from a large dataset. The improvement in the performance of these

methods is related to their ability to learn information from several sample medical

images that are difficult to obtain and bias the framework to the specific domain of

data. In this paper, we propose a novel diffeomorphic training-free approach; this is

built upon the principle of an ordinary differential equation. Our formulation yields an

Euler integration type recursive scheme to estimate the changes of spatial transforma-

tions between the fixed and the moving image pyramids at different resolutions. The

proposed architecture is simple in design. The moving image is warped successively at

each resolution and finally aligned to the fixed image; this procedure is recursive in a

way that at each resolution, a fully convolutional network (FCN) models a progressive

change of deformation for the current warped image. The entire system is end-to-end
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and optimized for each pair of images from scratch. In comparison to learning-based

methods, the proposed method neither requires a dedicated training set nor suffers

from any training bias. We evaluate our method on three cardiac image datasets.

The evaluation results demonstrate that the proposed method achieves state-of-the-

art registration accuracy while maintaining desirable diffeomorphic properties. The

main elements of this work are:

1. In the proposed method, an FCN models the changes in the deformation over

multiple resolutions as opposed to the deformation itself that most existing

methods do. The final deformation is estimated by a solution to an ordinary

differential equation (ODE). Thus the resulting algorithm is recursive in nature.

2. Following this recursion, the moving image is warped successively, enabling the

final prediction, which might consist of large displacements, to be decomposed

into smaller displacements.

3. Within the recursive algorithmic framework, we introduce diffeomorphism, which

guarantees the inverse consistency of deformations.

4. The proposed method is learning-free, i.e., it optimizes the parameters of the

FCN from scratch for every new pair of images and eliminates the need for a

dedicated training set.

5. The parameters of the FCN are shared across all resolutions and the neural net

loss function values at all resolutions are optimized simultaneously.
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5.2 Methodology

Let Im ∈ Ω, If ∈ Ω denote the moving image and the fixed image respectively which

are both defined over d-dimensional space Ω. ϕ is the deformation field which maps

ϕ : Ω −→ Ω. Commonly, deformable registration methods construct a deformation

prediction function gθ which takes moving and fixed images as inputs and predicts

a dense deformation field that aligns Im to If . In contrast, in the proposed ap-

proach, we construct gθ as a function of coordinate grid (not images) to predict the

the change in the deformation field from one resolution to the next resolution. We

cascade this procedure by recursively performing registration on the multi-resolution

levels. Following this recursion, the change of deformation field is predicted at each

resolution, enabling the final deformation field probably with large displacement to

be decomposed into cascade with small displacement.

In multi-resolution pyramids, a Gaussian pyramid of images is constructed where

the original image lies at the bottom level and subsequently higher levels have a down-

scaled Gaussian blurred version of the image. Multi-resolution pyramids often serve

to accelerate the optimization and yield better accuracy. Using a multi-resolution

recipe, two image pyramids are built: I tF and I tM for t = K, . . . , 1, where K is the

maximum level in the pyramid. Here, I1F = IF and I1M = IM are the original fixed

and moving images, respectively.

Considering resolution t as the continuous variable, the change in deformation over

resolution t is conceived by a FCN gθ:

d

dt
ϕt = gθ(Xt, ϕt), (5.1)

where Xt, a multi-dimensional array, is the pixel coordinate grid at resolution t and

Dt is the deformation field, another multi-dimensional array at resolution t. Thus, we

model the change in deformation as a function of both the coordinate grid and the

deformation. Discretization of the resolution (i,e., pyramid levels) leads to a solution
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Algorithm 1: ODE-based Multi-resolution Diffeomorphism

Input: Pixel coordinates {Xt}Kt=1 for all resolutions
Output: Deformation fields {Dt}Kt=1 for all resolutions
-Initialize a spatial transformation

VK = fθ(XK , 0)
ϕK = EXP (VK)

for t← K − 1 to 0 do
ϕup
t+1 = UpSample(ϕt+1)
Vt = gθ(Xt, ϕ

up
t+1)

Vt ← LowPass(Vt)
ϕt = ϕup

t+1 ◦ EXP (Vt)
end

by a Euler integration with an initial value ϕK :

ϕt = ϕt+1 + gθ(Xt+1, ϕt+1), for t = K − 1, K − 2, ..., 1, (5.2)

where t = K is the coarsest and t = 1 is the finest/original resolution. ϕt+1 is the

upsampled deformation field from a lower level ϕt and gθ(Dt+1) is the changes of the

deformation field at resolution t+ 1 from resolution t.

Additionally, to have the same canonical range of pixel coordinates at every res-

olution, in our implementation, we use the range [−1, 1] × [−1, 1] for pixel coordi-

nates. With this view, a multi-resolution pyramid adds more samples in the space

[−1, 1]× [−1, 1] as we go from lower to higher resolutions.

A reasonable deformation field should prevent folding and be continuously varying

(diffeomorphism). By taking the composite form in the Euler integration instead of

the additive form, we introduce diffeomprhism to the framework. Further, if we treat

the output of the FCN as the velocity field, then exponential of the velocity field will

yield the multi-resolution diffeomorphic deformation:

ϕt = ϕt+1 ◦ EXP (fθ(Xt+1, ϕt+1)), for t = K − 1, K − 2, ..., 1. (5.3)

The computational scheme for ((5.3)) appears in Algorithm 1, where we introduced

two more functionalities: upsampling and smoothing. Upsampling interpolates a

deformation from a lower to the next upper level of resolution and smoothing of the

velocity field acts as an implicit regularizer for image registration.
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In this work, we use geometric optimization that uses the local canonical coor-

dinates [31]. Based on this method, to estimate the current deformation, a com-

positional update rule is used between the previous estimate and the exponential

map EXP of the displacement field. The exponential map is efficiently calculated

by using the scaling and squaring method [84] and the composition of displacement

fields. The exponentiation of the displacement field ensures the diffeomorphism of

the mapping. Therefore, our recursive diffeomorphic image registration is obtained

with Algorithm 1. Also the schematic of the proposed recursive algorithm is shown

in 5.1. To optimize the FCN parameters θ, we use two Gaussian pyramids, one each

for the moving I tM and the fixed I tF images, where t = 1, ..., K. Then, the FCN’s

parameters will be optimized based on the difference between warped moving image

and fixed image at the same resolution. In our approach, the neural network will be

optimized from the scratch for each pair of images being registered, and therefore,

the trainable parameter values of the network will at convergence will be different.

Our approach is a classical learning-free setting which would not require a dedicated

training set with annotations of any kind from experts.

The parameters θ of the FCN are found by solving the following optimization using

gradient descent (we use PyTorch’s autograd):

min
θ

K∑︂
t=1

∑︂
x∈Ω

L(I tF (x), I
t
M(Dt(x))) + γ ∥Dt(x)− x∥2 , (5.4)

where Ω denotes the fixed and moving images domain, I tF (x) is the fixed image pixel

value at pixel location x and resolution level t. I tM(Dt(x)) in (5.4) refers to the pixel

value on the moving image I tM at location x after being displaced by deformation

field Dt(x). L(., .) is a differentiable loss function. In order to use the same range of

displacement for all levels of resolution, we normalized the deformation field and the

index at all resolutions in a canonical range [−1, 1]. In most of the learning-based

deformable image registration approaches, the inverse mapping is often ignored [85].

However, the accuracy of the nonrigid registration could be improved by computing
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the mappings from moving to fixed image and vice versa as well as exploiting the

invertible property of diffeomorphic transformations.

In the proposed registration framework, we employ a FCN with two dense veloc-

ity fields to generate two deformation fields, namely, forward ϕF and backward ϕB

deformation fields, that register images IM to IF and IF to IM , respectively, using

Algorithm 1. We then enforce the consistency constraint that these two transfor-

mations are inverse mappings of each other by adding a regularization term to the

loss function. Our FCN architecture consists of 4 convolution layers, each contains

twenty-four 5× 5 filters with a stride of 1, followed by a rectified linear unit (ReLU)

activation, except for the last layer.

Note that the output of the Algorithm 1 is ϕt = [ϕF
t , ϕ

B
t ] in which ϕF

t and ϕB
t are

forward and backward deformation fields, respectively, see Fig. 5.2 as an example.

With this view the following forward-backward optimization is used:

min
θ

K∑︂
t=1

∑︂
x∈Ω

[L1(I
t
F (x), I

t
M(ϕF

t (x))) + L1(I
t
M(x), I tF (ϕ

B
t (x)))+

αL2(ϕ
B
t (ϕ

F
t (x)), x) + αL2(ϕ

F
t (ϕ

B
t (x)), x)+

γ
⃦⃦
ϕF
t (x)− x

⃦⃦2
+ γ

⃦⃦
ϕB
t (x)− x

⃦⃦2
]

(5.5)

We use differentiable mutual information (MI) [86] and structural similarity index

metric (SSIM) [86] as similarity metric L1 = MI + SSIM and mean squared error

(MSE) as penalizes term to enforce the inverse consistency L2 =MSE.
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ES ED Registered ES Flow DF

ED ES Registered ED Flow DB

Figure 5.2: A sample result of forward and backward registrations with velocity fields
and grid deformation fields from ACDC dataset.

Table 5.1: Quantitative evaluation of the results for cardiac MRI registration on the
ACDC dataset. The evaluation was performed in terms of Dice (mean± standard de-
viation) and HD (mean) and the average number of pixels with non-positive Jacobian
Determinant (lower is better). Values in bold indicate the best performance.

Dice HD det(Jϕ) < 0

Unregistered 0.65 ± 0.20 17.76 N/A

RTT(L2L2) 0.76 ± 0.18 7.19 0.10

RTT(L2L1) 0.78 ± 0.18 6.64 0.25

Elastix 0.79 ± 0.18 11.26 0.32

LCC-D 0.79 ± N/A 9.21 N/A

VM 0.79 ± N/A 8.46 N/A

LVM (S1) 0.79 ± N/A 7.58 N/A

SyN 0.80 ± N/A 8.24 N/A

MM 0.81 ± 0.18 8.59 0

LVM (S3) 0.81 ± N/A 6.88 N/A

Proposed Method 0.92 ± 0.10 4.76 0

∗Results are are reported in [7]. ∗∗Results are reported in [41]. N/A refers to the
value that are not reported in the original paper.
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Table 5.2: Quantitative evaluation of the results for cardiac MRI registration on the
SGD dataset. The evaluation was performed in terms of Dice (mean± standard devi-
ation) and HD (mean) and the average number of pixels with non-positive Jacobian
Determinant (lower is better). Values in bold indicate the best performance.

Methods Dice HD det(Jϕ) < 0

Unregistered 0.62 ± 0.15 N/A N/A

RTT(L2L2) 0.70 ± 0.12 5.36 0.30

RTT(L2L1) 0.70 ± 0.12 5.36 0.30

Elastix 0.79 ± 0.08 N/A 0.37

SyN 0.81 ± 0.16 8.9 0.02

MM 0.72 ± 0.12 3.48 0

Demons 0.65 ± 0.18 15.46 0.42

DIRNet 0.80 ± 0.08 N/A N/A

Proposed Method 0.85 ± 0.15 5.06 0

∗Results are are reported in [7]. ∗∗Results are reported in [41]. N/A refers to the
value that are not reported in the original paper.
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5.3 Experiments

5.3.1 Data:

The proposed framework is evaluated on three clinical cardiac MRI datasets:

Automated Cardiac Diagnosis Challenge (ACDC)[66] This dataset contains

multiple temporal 2D short-axis cardiac cine MRI sequences acquired from 100 pa-

tients and one of the publicly available datasets for cardiac MRI assessment. The

spatial resolution varies from 1.37 to 1.68 mm2/pixel with a slice thickness of 5 mm

to 8 mm (in general 5mm) and sometimes an inter-slice gap of 5mm. Each sequence

consists of 28 to 40 images that cover the cardiac cycle completely or partially.

The Sunnybrook Cardiac Challenge data (SCD)[68] This dataset contains

multiple temporal 2D short-axis cardiac cine MRI scans acquired from 45 patients.

Each cine sequence includes 20 frames to cover the cardiac cycle. The data set is

equally divided into 15 patient scans for training, 15 patient scans for validation, and

15 patient scans testing. The image resolution is 256 × 256, with a pixel spacing of

1.25 mm and slice thickness of 8 mm. To measure the accuracy of our method in

comparison to other methods, registration is performed on the 15 test scans.

Left Atrium (LA) This dataset includes 100 temporal 2D long-axis cine MRI

steady-state sequences from the 2, 3 and 4-chamber views. It is acquired from the

University Alberta Hospital. Each cycle includes 25 or 30 frames with image resolu-

tions 176× 189 – 256× 208 and image spacing 1.445− 1.795 mm. The ground truth

manual segmentation is initially performed by a medical student and edited by an

experienced radiologist. The 2ch, 3ch and 4ch are used in the rest of the paper to

denote 2, 3 and 4-chamber sequences, respectively.
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5.3.2 Implementation:

The proposed method is implemented in Python programming language using Pytorch

module. In neural network design, the Adam optimization with 800 update iterations

and a learning rate of 5×10−4 are used for all the three datasets. The level of pyramid

K is considered 2 with α = 1/(K), γ = λ×1
K

, λ = 5. The neural net framework is

evaluated on an NVIDIA GeForce GTX 1080 Ti GPU.

5.3.3 Evaluation Metrics:

The Dice metric (DM), reliability, Hausdorff distance (HD) and the determinant

of Jacobian are used as the evaluation metrics to compare the performance of the

algorithms.

Dice Metric The DM [73] is a well-known segmentation based metric to measure

the similarity (overlap) between two regions, warped moving and fixed image. The

DM of two regions A and B is formulated as:

DM(A,B) =
2|A ∩B|
A+B

(5.6)

Reliability The algorithms are examined by evaluating the reliability function [87]

of the obtained DMs using (5.7). The complementary cumulative distribution func-

tion is defined for each d ∈ [0, 1] as the probability of obtaining DM higher than

d over the entire set. The R(d) measures how reliable is the algorithm in yielding

accuracy d.

R(d) = Pr(Dice > d) =
# Images segmented with DM higher than d

total number of images
(5.7)

Hausdorff Distance The HD [74] is another well-known metric which measures the

maximum deviation between two regions’ contours. The HD between two contours

(CA) and CB is formulated as:

HD(CA, CB) = max(max
i

(min
j
(d(piA, p

j
B))),max

j
(min

i
(d(piA, p

j
B)))) (5.8)
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Table 5.4: Quantitative cardiac MRI registration results on 50% patients of ACDC,
SCD and LA datasets based on different loss functions. The evaluation was performed
in terms of average Dice, HD and the forward and backward registration time (per
second).

SCD

Methods Dice HD Time(s)

MSE 0.83 9.1 15

SSIM 0.86 7.9 20

SSIM + MI 0.89 6.01 26

ACDC

Methods Dice HD Time(s)

MSE 0.87 5.73 15

SSIM 0.92 4.31 21

SSIM + MI 0.93 4.31 35

LA

Methods Dice HD Time (s)

2ch 3ch 4ch 2ch 3ch 4ch

MSE 0.84 0.86 0.84 6.83 6.88 7.84 15

SSIM 0.91 0.93 0.89 6.26 6.11 6.42 22

SSIM + MI 0.90 0.93 0.87 6.89 5.22 6.40 35

where piA, p
j
B denote the set of all the points in CA and CB respectively. The term

d(·) denotes the Euclidean distance.

Determinant of Jacobian We quantify and analyze deformation regularity us-

ing the determinant of the Jacobian, det(Jϕ). Jacobian matrix captures the local

behaviours of the deformation field. If the value of det(J) equals to 1, the volume

remains constant after the transformation, the value smaller than 1 shows the local

volume shrinkage and greater than 1 shows the local volume expansion. The nega-

tive values imply that local folding and twists have occurred, which is physically not

realizable and mathematically not inevitable [45].
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2ch 3ch 4ch
Left Atrium

ACDC SCD

Figure 5.3: Reliability versus Dice metric for different algorithms. The figures omit
results for methods with no public implementation available.

5.3.4 Evaluation Results and Discussions

The performance of the proposed framework is compared with nine state-of-the-art

learning-based and classic deformable registration algorithms including SimpleElastix

(Elastix) [69], Moving Mesh (MM) [30], Real-Time Image-based Tracker (RTT) [70],

Demons [71], LCC-Demons (LCC-D) [32], Symmetric Normalization (SYN) [27], [45],

[7] and DIRNet [41].

Table ??, shows the mean and standard deviations of Dice scores, HD and the

average number of pixels with non-positive det(Jϕ) over all subjects ACDC, SCD,

and left atrium datasets. Compared to the conventional and learning-based methods,

our framework has the best performances in terms of Dice scores. In Fig. ??, the

highest accuracy, 50th percentile, and the lowest accuracy in terms of Dice scores

achieved by the proposed method are shown visually, where the red, blue, violet, gray
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Table 5.5: Quantitative cardiac MRI registration results on the
ACDC, SCD and LA based on different number of resolution. The
evaluation is performed in terms of Dice (mean± standard devia-
tion) and HD (mean). The 2ch, 3ch and 4ch stand for the 2, 3 and
4-chamber. Values in bold indicate the best performance.

Dataset Dice HD

One
Resolution

ACDC 0.85 ± 0.20 6.03

SCD 0.85 ± 0.17 7.70

LA-2ch 0.87 ± 0.08 7.6

LA-3ch 0.91 ± 0.05 6.59

LA- 0.88 ± 0.10 6.63

Two
Resolutions

ACDC 0.87 ± 0.17 6.27

SCD 0.86 ± 0.16 7.06

LA-2ch 0.89 ± 0.09 7.59

LA-3ch 0.93 ± 0.03 5.47

LA-4ch 0.87 ± 0.11 6.67

Three
Resolutions

ACDC 0.83 ± 0.22 6.70

SCD 0.85 ± 0.18 7.22

LA-2ch 0.86 ± 0.09 7.03

LA-3ch 0.90 ± 0.06 6.22

LA-4ch 0.86 ± 0.11 6.42

Four
Resolutions

ACDC 0.74 ± 0.24 8.96

SCD 0.85 ± 0.19 7.50

LA-2ch 0.82 ± 0.10 7.06

LA-3ch 0.86 ± 0.07 6.93

LA-4ch 0.81 ± 0.10 7.01

and orange contours depict the correspondence segmentation results by the proposed

method, RRT1, RRT2, Elastix and MM, respectively and the green contours depict

the ground truth.
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ACDC

SGD

Figure 5.4: The segmentation results with the highest (first column), 50th percentile
(2nd column), lowest (3rd column) Dice score values for (a) ACDC (1st row), (b)
SGD (2nd row). The green represent the ground truth, also the red, blue, violet,
gray and orange contours represent the boundary corresponds to the registration by
proposed method, RRT1, RRT2, Elastix and MM, respectively.

To quantify and analyse deformation regularity, we computed the determinant of

the Jacobian det(Jϕ) using SimpleITK [71]. No negative values of det(J) are observed

for the proposed method as can be seen in Table ??.

We also evaluated the performance of the proposed algorithm in terms of the

reliability function R(d) [87]. The corresponding R(d) are plot as a function of Dice

score in Fig. 5.3. Our algorithm led to a higher reliability curve on all ACDC, SCD,

and left atrium datasets.

We examined different loss functions, namely, MSE, SSIM and SSIM + MI, in our

framework and reported the average time to register one pair of images (Computing

both forward and backward deformation fields) as well as the average of DM and HD

over 50% of patient datasets in Table 5.4. It can be seen that the MSE loss function

led to the best average time; however, it does not yield the best accuracy in terms of
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Left-2ch

Left-3ch

Left-4ch

Figure 5.5: The segmentation results with the highest (first column), 50th percentile
(2nd column), lowest (3rd column) Dice score values for left atrium 2-chamber (3rd
row), (d) 3-chamber (4th row), 4-chamber (5th row) views. The green represent
the ground truth, also the red, blue, violet, gray and orange contours represent the
boundary corresponds to the registration by proposed method, RRT1, RRT2, Elastix
and MM, respectively.
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the Dice score.

We assessed the impact of using different multi-resolution structures on the perfor-

mance, and reported the corresponding evaluations in terms of DM and HD in Table

5.5. The results indicate that the high performance is obtained with the use of two

resolutions.

Examples of registered images from ACDC, SCD, and left atrium datasets with

their corresponding grid deformation are shown in Fig. 5.6 (a), (b), and (c), respec-

tively. Fig. 5.6 shows the original ED, ES and their correspondence registered images

and grid forward and backward deformations over images. The algorithm is applied

on whole images; however, to display the deformation tracking on the part that has

the most changes, we cropped the grid.

We have also evaluated the outputs from the forward deformation field by ignoring

the bidirectional registration to present its effects on the Dice score and HD. The

forward deformation field yields Dice score values of 0.88± 0.17 and 0.87± 0.14 and

HD values of 6.08 and 5.19 for ACDC and SCD, respectively, while the proposed

bidirectional approach yields Dice score values of 0.92± 0.10 and 0.90± 0.15 and HD

values of 4.76 and 5.06 for ACDC and SCD, as reported in Table ??. This clearly

indicates the importance of including the bidirectional registration to obtain high

performance.

5.4 Conclusion

We present an ODE-based diffeomorphic recursive framework for multi-resolution de-

formable registration using a FCN, to estimate the change velocity of forward and

backward deformation fields. We have then utilized inverse consistency loss to fur-

ther guarantee the desirable diffeomorphic properties of the resulting solutions. The

proposed framework is learning-free and does not require a dedicated training set.

The proposed approach simultaneously estimates the forward and backward map-

ping at all levels of the multi-resolution pyramid. We evaluated and compared the
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method using three different MRI datasets against several state-of-the-art traditional

and learning-based registration methods. The results demonstrate that our method

outperforms both traditional and learning-based methods.
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Chapter 6

Unsupervised 2D-to-2D and
3D-to-3D Diffeomorphic
Registration framework

6.1 Overview

In this chapter we propose a deformable registration algorithm based on unsupervised

learning by using the moving mesh parameterization of deformation fields. The mov-

ing mesh parametrization is originally designed to generate a grid suitable for solving

partial differential equations [88]. It naturally leads to a formulation of diffeomorphic

image registration as a constrained optimization problem which we solved it by us-

ing deep learning. Such strategy has been adopted in the Demons algorithm, where

unconstrained optimization is followed by a smoothing filter to impose a smooth-

ness constraint 5. Moving mesh parameterization models a deformation field with

its transformation Jacobian determinant and the curl of the end velocity field. The

new model of the deformation field has three significant advantages; firstly, it re-

laxes the need for an explicit regularization term and the corresponding weight in the

cost function. The smoothness is implicitly embedded in the solution which results

in a physically plausible deformation field. Secondly, it guarantees diffeomorphism

through explicit constraints applied to the transformation of the Jacobian determi-

nant to keep it positive. Finally, it is suitable for cardiac data processing, since the
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nature of this parameterization is to define the deformation field in terms of the radial

and rotational components. [29, 30, 89]. The effectiveness of the algorithm is inves-

tigated by evaluating the proposed method on three different data sets including 2D

and 3D cardiac MRI scans. The results demonstrate that the proposed framework

outperforms existing learning-based and non-learning-based methods while generat-

ing diffeomorphic transformations. The proposed 2D-to-2D registration framework

is tested on 2 publicly available datasets and 1 dataset which were scanned at the

Mazankowski Alberta Heart Institute (Edmonton, Alberta, Canada). The 3D-to-3D

version is tested on one publicly available dataset. The results show competitive

performance in comparison to learning-based and non-learning-based methods.

6.2 Methodology

Most of the learning-based algorithms formulate the deformable registration problem

as the minimization of the following equation:

ϕ∗ = argmin
ϕ

L(IF , IM ◦ ϕ(ξ)) (6.1)

where ξ denotes the pixel location in the image domain Ω, ϕ : Ω → Ω denotes

the transformation function, and the dissimilarity metric is denoted by L(.). With

the above formulation, introducing a regularization is necessarily to obtain a unique

solution. Without regularization, this may result in multiple physically non-plausible

solutions.

In our setting, we tackle these issues with the help of the moving mesh parameter-

ization.

6.2.1 Moving Mesh Grid Generation

In moving mesh generation formulation, we need to define a monitor function µ and

a vector field V . To avoid adding extra terms to the above formulation and having a
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unique solution, more constraints are required to be added using a monitor function

µ and curl of end velocity field γ.

First a continuous monitor function is defined and constrained by:

∫︂
Ω

µ = |Ω|. (6.2)

The goal here is to find a transformation ϕ1: Ω → Ω, ∂Ω → ∂Ω such that the

transformation Jacobian determinant Jϕ1(ξ) is equal to the monitor function µ :

Jϕ(ξ) = det∇ϕ1(ξ) = µ(ξ). (6.3)

To find the transformation ϕ1 which satisfies 7.2, the following steps need to be

taken,

Step 1 : A vector field V (ξ) is defined such that:

div V (ξ) = µ(ξ)− 1. (6.4)

Step 2 : A velocity vector field based on artificial-time is then constructed from

V (ξ):

Vt(ξ) =
V (ξ)

t+ (1− t)µ(ξ)
, t ∈ [0, 1] (6.5)

The desire transformation ϕ1 can be found by solving the following ordinary differ-

ential equation (ODE) at t = 1, ϕ1(ξ) = ψ(ξ, t = 1) where ψ(ξ,t=0) = ϕ0(ξ)

ψ(ξ, t)

dt
= Vt(ψ(ξ, t)), t ∈ [0, 1], (6.6)

Where ϕ0(ξ) is the identity mapping and det∇ϕ0(ξ) = 1 and ϕ0(ξ) = ξ. Since the

ϕ1(ξ) is the desire transformation that we are looking for, we drop the subscript and

use ϕ(ξ) for the rest of the paper. The main problem is how to find V (ξ) such that

divV (ξ) = µ(ξ) − 1. There are different methods to solve this problem such as the

div-curl system. To solve the problem with the div-curl system, we need to find the

divergence and curl at each point and set up the div-curl system of equations for
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Algorithm 2: Moving Mesh based deformable registration

Input: Given two 2D/3D pair of images, fixed image IF and moving image
IM . The upper bound τub and lower bound τlb of the transformation
Jacobian determinant

Output: Deformation field ϕ
Step 1: Pass the input to the CNN to compute µ(ξ) and V (ξ);
Step 2: Impose constraints from (7.7) for each pixel location ξ ∈ Ω :

µ(ξ)← |Ω|∑︁
ξ⊂Ω µ(ξ)

Step 3: Compute a curl of velocity field V (ξ) that satisfies (7.3) and
compute the deformation field ϕ
Step 4: Compute the loss function
Step 5: Update the µ and V (ξ) using back-propagation

each point. By solving this system we can reconstruct a differentiable and invertible

transformation. {︄
divV (ξ) = µ(ξ)− 1

curlV (ξ) = γ(ξ).
(6.7)

To have a unique ϕ a constraint need to be applied to the div of the vector field V (ξ)

7.6. The generated transformation ϕ now can be parameterized with transformation

Jacobian determinant and the curl of the end velocity field.

6.2.2 Diffeomorphic Image Registration

Using the above parameterization, the diffeomorphic image registration can be for-

mulated as a constrained optimization problem. Let IF and IM be 2D/3D fixed and

moving images/volumes, defined over Ω → R2/Ω → R3. We need to find µ(ξ) and

γ(ξ) ∀ξ ∈ Ω, that optimize a similarity metric LSim between the warped moving

image and fixed image, subject to the following constraints:

⎧⎨⎩
∫︂
µ(ξ)dξ = |Ω|

τub > µ(ξ) > τlb

(6.8)

where the τub is the upper bound and τlb is the lower bound of the transforma-

tion Jacobian determinant which were set by the user. The τlb > 0 guarantees the

diffeomorphism.
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Figure 6.1: Overview of end-to-end unsupervised architecture. The ConvNet
gθ(IF , IM) takes the input fixed image(IF ) and moving image(IM) and outputs the
transformation Jacobian determinant Jϕ(ξ) = µ(ξ), and the vector field V (ξ). Then
the diffeomorphic forward and backward transformations ϕf and ϕb are computed
using the moving mesh approach. Finally, the moving and fixed images are warped
using ϕf and ϕb.

6.2.3 Numerical Methods

2D Div-curl solver

We represent the deformation field by divergence and curl (div-curl) system repre-

sentation [90] (7.6). To find V (ξ) under the null condition we converted the (7.6)

into a set of Poisson equations as follows and used a Fast Fourier Transform (FFT)

based Poisson solver. As shown in (6.9) the radial component is given by F 1 and the

rotational components is given by F 2:{︄
∆Vx = µx − γy = F 1,

∆Vy = µy + γx = F 2,
(6.9)

3D Div-curl solver

The div-curl system for the 3D case is given in Equation (7.6). Where the divergence

of the deformation field represents the radial motion while the curl operator represents

the rotation of the media around every point. The 3D operator directly extends from

the 2D curl, where each rotational component represents the rotational motion of

the deformation field about each of the three axes. As it shown in (6.10) the radial

component is given by f 1 and the three rotational components are given by f 2, f 3
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and f 4. For the 3D version, there ate three unknowns (Vx, Vy, Vz) with four scalar

equations which makes this system overdetermined. Furthermore, a dummy variable

θ is introduced to solve the system. (please check [91] for more details.)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

divV =
∂Vx
∂x

+
∂Vy
∂y

+
∂Vz
∂z

= f 1

curlxV =
∂θ

∂x
+
∂Vz
∂y
− ∂Vy

∂z
= f 2

curlyV =
∂θ

∂y
+
∂Vx
∂z
− ∂Vz

∂x
= f 3

curlzV =
∂θ

∂z
+
∂Vy
∂x
− ∂Vx

∂y
= f 4.

(6.10)

Similar to the 2D version, we converted the (6.10) into a set of Poisson equations as

follows: ⎧⎪⎨⎪⎩
∆Vx = f 1

x + f 3
z − f 4

y = F 1,

∆Vy = f 1
y + f 4

x − f 2
z = F 2,

∆Vz = f 1
z + f 2

y − f 3
x = F 3.

(6.11)

Then the Euler method with arbitrary time steps is used to compute the transfor-

mation ϕ from V (ξ) via (7.4) and (7.5). For derivation and numerical implementation

details, we refer the reader to [91].

6.2.4 Data driven parameter computation

Despite the traditional methods that iteratively and manually compute the param-

eters and update the gradient [30, 89] which are time-consuming, we use an unsu-

pervised CNN and back-propagation Algorithm 2. In the proposed framework, the

network parameters are learnt in an unsupervised fashion and a diffeomorphic defor-

mation field is generated by moving mesh parameterization Figure 6.1.

As shown in Figure 6.1, the network takes IF and IM as input and outputs the

monitor function µ(ξ) and the velocity vector filed V (ξ). Then using the curl of

end velocity and a div-cur system a diffeomorphic transformation ϕ is computed. To

establish the uniqueness of the solution the Dirichlet boundary condition is used [92].

Additionally, a diffeomorphism, which is corresponded to a positive transformation

Jacobian determinant, is enforced explicitly via the monitor function [91]. All of the
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steps are designed to be differentiable and the network parameters are learnt using

stochastic gradient descent optimization.

6.2.5 Registration

To train the framework a set of pair images (IF , IM) were given. Then using the

monitor function and curl of end velocity, the desire ϕ was computed. Finally, the

moving image was warped to have the minimum dissimilarity with fixed image IF . For

each pair of image, we simultaneously calculated the forward transformation which

registers the fixed image IF to moving image IM and the backward transformation

which registers the moving image IM to fixed image IF . A symmetric loss function is

used as follows:

ϕ∗ = argmin
θ,µ,γ

{w × L(IF , IM ◦ ϕf ) + w × L(IM , IF ◦ ϕb)} (6.12)

where ϕf is the forward transformation and ϕb is the backward transformation.

The registration process is performed pairwise on both 2D images and 3D volumes.

In the cardiac data sets, the end-diastolic and end-systolic images are passed to the

proposed framework as input to compute the forward transformation ϕf and the

reverse transformation ϕb. For the 2D version the mean squared error (MSE) and for

the 3D version the normalise cross correlation (NCC) is used as dissimilarity metric.

6.3 Experiments

We perform a series of experiments to evaluate the registration accuracy of the pro-

posed diffeomorphic CNN method against the state-of-the-art methods. The evalua-

tions were performed over three data sets consisting of clinical 2D cardiac MR images

to assess the performance of the 2D version of our method. We also evaluated the 3D

version of the proposed framework using ACDC data set in 3D.

6.3.1 Data sets

The following three data sets are considered in this study:

87



Automated Cardiac Diagnosis Challenge (ACDC) [66] This data set con-

tains multiple temporal 2D short-axis cardiac cine MRI sequences acquired from 100

patients and is one of the publicly available data sets for cardiac MRI assessment. The

spatial resolution varies from 1.37 to 1.68 mm2/pixel with a slice thickness of 5 mm

to 8 mm (in average 5mm). The testing set contained 20 cases of each of the follow-

ing cardiac diseases: dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy

(HCM), previous myocardial infarction (MINF), abnormal right ventricle (RV) and

healthy (Normal). The images are cropped to a size of 128 × 128, and padded the

third dimension to 16 for the 3D voxels.

The Sunnybrook Cardiac Challenge data (SCD) [68] This data set contains

multiple temporal 2D short-axis cardiac cine MRI scans acquired from 45 patients.

Each cine sequence includes 20 frames to cover the cardiac cycle. The data set is

equally divided into 15 patient scans for training, 15 patient scans for validation, and

15 patient scans for testing. The image resolution is 256× 256, with a pixel spacing

of 1.25 mm and slice thickness of 8 mm.

Left Atrium (LA) This data set includes 100 temporal 2D long-axis cine MRI

steady-state sequences from the 2, 3 and 4-chamber views, acquired from the Uni-

versity Alberta Hospital. Each cycle includes 25 or 30 frames with image resolutions

176×189 – 256×208 and image spacing 1.445−1.795 mm. The ground truth manual

segmentation is initially performed by a medical student and edited by an experienced

radiologist. The 2ch, 3ch and 4ch are used in the rest of the paper to denote 2, 3 and

4-chamber sequences, respectively. The results are compared on end-diastolic and

end-systolic frames.

6.3.2 Quantitative Evaluation Metrics

The proposed method is evaluated quantitatively using four metrics, namely, Dice

metric (DM), Hausdorff distance (HD in mm), determinant of Jacobian of the defor-
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mation field det(J), and reliability R(d).

Dice Metric: The DM [73] is a segmentation-based metric to measure the sim-

ilarity (overlap) between two regions, warped moving and fixed images. Where the

Dice score of 1 indicates complete overlap and Dice score of 0 indicates no overlap.

The DM of two regions A and B is formulated as:

DM(A,B) =
2|A ∩B|
A+B

(6.13)

Hausdorff Distance: The HD [74] is another metric which measures the maxi-

mum deviation between two regions’ contours. The HD between two contours (CA)

and CB is formulated as:

HD(CA, CB) =max(max
i

(min
j
(d(piA, p

j
B))),

max
j

(min
i
(d(piA, p

j
B))))

(6.14)

where piA, p
j
B denote the set of all the points in CA and CB respectively. The term

d(·) denotes the Euclidean distance.

Reliability: We also evaluated the performance of the proposed algorithm using

a reliability function computed based on DMs for each data set. The complementary

cumulative distribution function is defined for each d ∈ [0, 1] as the probability of

obtaining DM higher than d overall volumes.

R(d) = Pr(Dice > d)

=
# Images segmented with DM higher than d

total number of images
.

(6.15)

R(d) measures how reliable the algorithm is in yielding accuracy d.

det(J): To analyze deformation regularity in different algorithms, we calculate

the determinant of the Jacobian det(J) [75]. If the value of det(J) equals 1, the area

remains constant after the transformation, whereas the value smaller or larger than

1 indicates the local area shrinkage or expansion, respectively. The negative value of

det(J) implies that local folding and twisting have occurred, which are physically not

realizable and mathematically not invertible [45].
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LA

(a) 2ch

(b) 3ch

(a) ES (b) ED (c) Warped ES (d) DF (e) GT

(c) 4ch

Figure 6.2: Samples of registered images on the left atrium data set with the cor-
responding deformation field grid (DF). The end-systolic (ES) frame is the moving
image and end-diastolic (ED) frame is the fixed image. The warped ES of each row is
shown in the third column. The last column labeled ground truth (GT) displays the
true segmentation and the predicted segmentation, which are shown by the green line
and blue line respectively. The 2ch, 3ch and 4ch stand for the 2, 3 and 4-chamber.
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SCD

(a) ES (b) ED (c) Warped ES (d) DF (e) GT

Figure 6.3: Samples of registered images on the SCD with the corresponding deforma-
tion filed grid (DF). End-systolic (ES) frame is the moving image and end-diastolic
(ED) frame is the fixed image. The warped ES of each row is shown in the third
column. The last column labeled ground truth (GT) displays the true segmentation
and the predicted segmentation, which are shown by the green line and blue line
respectively.
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ACDC

Myo

LV

(a) ES (b) ED (c) Warped ES (d) DF (e) GT
RV

Figure 6.4: Samples of registered images on the ACDC on the myocardium (Myo), left
ventricle (LV), and right ventricle (RV) anatomical structures with the correspondence
deformation filed grid (DF). End-systolic (ES) frame is the moving image and end-
diastolic (ED) frame is the fixed image. The warped ES of each row is shown in
the third column. The last column labeled ground truth (GT) displays the true
segmentation and the predicted segmentation, which are shown by the green line and
blue line respectively.
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Table 6.1: Quantitative evaluation of the results for cardiac MRI registration on the
2D ACDC data set. The following metrics are reported for each method: The Dice
score Dice (mean± standard deviation), Hausdorff distance HD, the percentage of
the number of pixels with negative Jacobian determinant %|Jθ| < 0, and reliability
R(0.75). Smaller values of HD and larger values of Dice indicate more accurate
results. Also the smaller %|Jθ| < 0 indicates less mesh folding. The higher probability
values of R(0.75) show that more patients have the dice score higher or equal to %0.75.
Values that are highlighted in bold indicate the metric that gave the best performance
compared to the other algorithms.

Method Dice HD %|Jθ| < 0 R(0.75)

Undeformed 0.71 ± 0.15 10.1 – –

Demon [93] 0.76 ± 0.10 8.3 0.27 0.36

SyN [27] 0.80 ± 0.09 8.1 0.28 0.66

LPM [7] 0.79 ± 0.10 7.6 0.38 0.46

MM [30] 0.83 ± 0.15 5.64 0 0.81

Elastix [69] 0.84 ± 0.14 4.51 0.12 0.82

Proposed Method 0.88 ± 0.11 3.85 0 0.89

Figure 6.5: Example of cardiac anatomy: The left image demonstrates a sample MR
short axis slice from the ACDC data set. The figure on the right displays the cardiac
anatomy (LV = left ventricle, RV = right ventricle, MYO = myocardium) which are
used for measuring the registration and segmentation accuracy.

6.3.3 Baseline Methods

We compared the performance of the proposed framework with state-of-the-art algo-

rithms, SimpleElastix (Elastix) [69],(MM) [30, 94], Fast Symmetric Forces Demons
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Table 6.2: Quantitative evaluation of the results for cardiac MRI registration on the
2D LA data set. The following metrics are reported for each method: The Dice
score Dice (mean± standard deviation), Hausdorff distance HD, the percentage of
the number of pixels with negative Jacobian determinant %|Jθ| < 0, and reliability
R(0.75). The 2ch, 3ch and 4ch stand for the 2, 3 and 4-chamber. Values in bold
indicate the best performance.

(a) 2ch

Methods Dice HD %|Jθ| < 0 R(0.75)

Undeformed 0.79 ± 0.07 7.37 – –

Demons [71] 0.84 ± 0.08 7.41 0.38 0.89

SyN [27] 0.87 ± 0.06 6.38 0.18 0.95

MM [30] 0.84 ± 0.06 6.58 0 0.92

Elastix [69] 0.82 ± 0.11 7.28 0.28 0.74

Proposed Method 0.88 ± 0.04 6.54 0 0.95

(b) 3ch

Methods Dice HD %|Jθ| < 0 R(0.75)

Undeformed 0.78 ± 0.08 7.70 – –

Demons [71] 0.85 ± 0.06 7.33 0.36 0.94

SyN [27] 0.86 ± 0.13 7.52 0.21 0.93

MM [30] 0.83 ± 0.06 6.48 0 0.88

Elastix [69] 0.86 ± 0.10 6.82 0.26 0.9

Proposed Method 0.87 ± 0.05 6.3 0 0.94

(c) 4ch

Methods Dice HD %|Jθ| < 0 R(0.75)

Undeformed 0.78 ± 0.09 8.66 – –

Demons [71] 0.82 ± 0.10 7.84 0.43 0.77

SyN [27] 0.84 ± 0.11 7.51 0.20 0.86

MM [30] 0.83 ± 0.08 6.77 0 0.87

Elastix [69] 0.82 ± 0.10 7.56 0.38 0.64

Proposed Method 0.87 ± 0.05 6.1 0 0.99
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Table 6.3: Quantitative evaluation of the results for cardiac MRI registration on the
2D SCD data set. The following metrics are reported for each method: The Dice
score Dice (mean± standard deviation), Hausdorff distance HD, the percentage of
the number of pixels with negative Jacobian determinant %|Jθ| < 0, and reliability
R(0.75). Smaller values of HD and larger values of Dice indicate more accurate
results. Also the smaller %|Jθ| < 0 indicates less mesh folding. The higher probability
values of R(0.75) show that more patients have the dice score higher or equal to %0.75.
Values that are highlighted in bold indicate the metric that gave the best performance
compared to the other algorithms.

Method Dice HD %|Jθ| < 0 R(0.75)

Undeformed 0.62 ± 0.15 16.02 – –

Demons [71] 0.68 ± 0.18 12.46 0.4 0.36

SyN [27] 0.81 ± 0.16 8.9 0.02 0.70

LPM [7] 0.78 ± 0.08 7.6 0.38 0.63

MM [30] 0.72 ± 0.12 12.53 0 0.59

Elastix [69] 0.79 ± 0.08 11.12 0.37 0.62

Proposed Method 0.88 ± 0.09 5.25 0 0.90

(Demons) [71], Symmetric Normalization [27] which are optimization based methods

and diffeomorphic learning-based methods LPM [7] and LapIRN [95].

2D Image Registration Results

Tables 7.1, 7.3 and 7.2 provide a summary of the results of the proposed method, the

mean and standard deviations of DM, HD, the percentage of the number of pixels

with negative Jacobian determinant %|Jθ| < 0, and reliability R(0.75) on the held

out test set on ACDC, LA, and SCD data sets, respectively. Figures 6.2, 6.3, 6.4

show samples of registered images on the LA, SCD, and ACDC data sets with the

corresponding deformation field grid. End-systolic frame is the moving image and

end-diastolic frame is the fixed image. The registered image of each row is shown in

the third column. Also, the true and predicted segmentation maps are shown by the

green and blue line respectively. For each new 2D pair of images, the registration

process takes an average of 0.05± 0.03 seconds on a GPU.
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2D ACDC

3D ACDC

Figure 6.6: Boxplots indicating DM(mean± standard deviation) and HD (mean) for
anatomical structures on the 2D and 3D ACDC dataset. The evaluation is performed
over the myocardium (Myo), left ventricle (LV), and right ventricle (RV) anatomical
structures.

The ACDC data set is originally a 3D data set where a set of 2D axial slices are

stacked to form a 3D volume. To evaluate the 2D version of the proposed framework

on ACDC, we computed 2D metrics on each slice separately and aggregated the

results over all slices to obtain the final values reported in Table 7.1.

Since the ACDC data set offers different anatomical structures of the heart, my-

ocardium (Myo), left ventricle (LV), and right ventricle (RV) Figure. 6.5. We also

evaluated the proposed method on all three structures to show the reliability of the

proposed method. Figure 6.6 illustrates the DM and HD results on different struc-

tures.
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The presented method shows a better performance among the all compared meth-

ods in all aspects e.g., there is a noticeable difference between the obtain Dice score

and Hausdorff distance. As can be seen, the improvement is not just limited to these

two parameters, the Jacobian determinant is zero which means there is no folding or

twisting in the transformation. This is in contrast to other methods where the de-

terminant Jacobian is non-zero. Figure. 6.7 shows the end-diastolic and end-systolic

images and the determinant of the Jacobian (|Jθ|) with grid overlay for five example

patients. As shown in all tables and Figure. 6.7, no negative values were observed on

the test data for the proposed method which means our approach produced smooth

and regular deformations.

Table 6.4: Quantitative evaluation of the results for cardiac MRI registration on the
3D ACDC data set. The following metrics are reported for each method: The Dice
score Dice (mean± standard deviation), Hausdorff distance HD, the percentage of
the number of pixels with negative Jacobian determinant %|Jθ| < 0, and reliability
R(0.75). Smaller values of HD and larger values of Dice indicate more accurate
results. Also the smaller %|Jθ| < 0 indicates less mesh folding. The higher probability
values of R(0.75) show that more patients have the dice score higher or equal to %0.75.
Values that are highlighted in bold indicate the metric that gave the best performance
compared to the other algorithms.

Method Dice HD %|Jθ| < 0 R(0.75)

Undeformed 0.71 ± 0.145 10.1 – –

Demon [93] 0.80 ± 0.17 8.3 0.34 0.28

SyN [27] 0.80 ± 0.091 8.1 0.17 0.51

LPM [7] 0.81 ± 0.085 7.3 0.12 0.52

LapIRN [95] 0.72 ± 0.162 7.4 0 0.35

MM [94] 0.75 ± 0.156 7.03 0 0.56

Elastix [69] 0.83 ± 0.161 5.75 0.09 0.60

Proposed Method 0.84 ± 0.06 5.3 0 0.78
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3D Image Registration results

The publicly available Automated Cardiac Diagnosis Challenge (ACDC) data set was

employed for the evaluation of the proposed 3D-to-3D registration algorithm. Table

7.4 provides a summary of the results of the proposed method on the ACDC data

set. The presented method displays a better performance among all the compared

methods in all aspects e.g., there is a noticeable difference between the obtained Dice

score and Hausdorff distance. Also, the higher probability values of R(0.75) proves

that the proposed method is more reliable than the other compared methods since

more patients have the dice score higher or equal to %0.75. In addition, similar to

2D version, the Jacobian determinant is also zero in 3D version which means there is

no mesh folding in the transformation. The registration process takes an average of

0.07± 0.005 seconds on a GPU to register an unseen 3D pair of images.

Figure 6.8 displays a correlation plot, where the ground truth volume in mL is

plotted against the volume from the proposed method. The clustering of the dots to

the reference yellow line indicates the high agreement between the proposed method

to the ground truth. The analysis produced a Pearson correlation coefficient of 0.98.

Implementation and Parameters Analysis

The proposed method is implemented in Python programming language using Pytorch

module. The network is designed based on a UNet-style architecture [33] which

includes a convolutional layer with 16 filters, three downsampling layers with 32,64,64

convolutional filters and a stride of two, and upsampling convolutional layers with

64,64,32,32,32,16 filters. The Adam optimization with learning rate of 5 × 10−4 is

used for all the three datasets. The proposed framework is evaluated on an NVIDIA

GeForce GTX 1080 Ti GPU.

To guarantee the diffeomorphism and keep the transformation determinant Jaco-

bian positive, different activation functions are used to apply constraints on µ and

V (ξ) and keep their range in (0, 1) and (−λ,+λ) respectively. Where λ can be any

98



value in range of (1,∞), we set λ = 10 in our experiment. Then using the two

hyper-parameters, lower bound τlb ∈ (0, 1) and upper bound τub ∈ (1, λ) of the trans-

formation Jacobian determinant |Jθ|, the user can control the amount of movement

which directly affects the evaluation metrics. By increasing the values of τlb and τub,

each node in a grid (each pixel) can have a larger displacement; however, after a

certain point, the results do not change significantly. We vary the precision τlb, τub

and set them to 0.2, 8.0 respectively. The chosen values resulted in the best Dice

score and HD distance.
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ACDC

SCD

left-2ch

left-3ch

left-4ch

Figure 6.7: 2D registration results for five example patients, where the first column
is the end-systolic image and the second column is the end-diastolic image. The
grid deformations in the 3rd column displays the deformation from end-systole to
end-diastole, while the last column displays the deformation from end-diastole to
end-systole. The color represents the value of the Jacobian determinant, where red
indicates values below 0, which is where mesh folding occurs. It can be seen that
using the proposed method, no mesh folding occurs.
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Figure 6.8: The ground truth volume in mL plotted against the volume from the
proposed method, where each patient is represented by a blue dot. The yellow dotted
line indicates the y=x line for reference. The Pearson correlation coefficient calculated
is 0.98, revealing a high correlation of the proposed method to the ground truth.
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6.4 Conclusion

In this work, we build a principled connection between classical registration meth-

ods and recent learning-based approaches. We propose an end-to-end framework for

diffeomorphic image registration and derive a learning algorithm that leverages a

convolutional neural network and unsupervised learning for fast runtime. To achieve

diffeomorphic transforms, we integrate a new parameterization of deformation fields

for 2D-to-2D and 3D-to-3D diffeomorphic registration algorithm for the application of

MRI cardiac registration.Which describes a deformation field with its transformation

Jacobian determinant and curl of the end velocity field. It also relaxes the need for

an explicit regularization to produce a physically plausible result because smoothness

is implicitly embedded in the solution. Removing explicit regularization makes the

need for an empirical trade-off between the similarity term and the regularization

term, which may cause bias [96], unnecessary.

Furthermore, by directly requiring the transformation Jacobian to be positive, the

deformation can be ensured to be diffeomorphic. The other desirable constraints

also can be enforced within the same framework using an explicit restriction on the

transformation Jacobian such as incompressibility constraint.

Additionally, the proposed parameterization naturally describes a deformation field

in terms of radial and rotational components, making it especially suited for process-

ing cardiac data [97]. We also provide an anatomical surface deformation model. If

image segmentations are available for a particular anatomical structure, the model

incorporates them naturally in the same joint framework.

Our algorithm can infer the registration of new image pairs in under a second.
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Compared to traditional methods, our approach is significantly faster, and compared

to recent learning-based methods, our method offers diffeomorphic guarantees. We

demonstrate that the surface extension to our model can help improve registration

while preserving properties such as low runtime and diffeomorphisms. The proposed

algorithm was evaluated on end-diastole to end-systole cardiac cine-MRI registration

on two publicly available ACDC Challenge [98] and Sunnybrook datasets (SCD)[68] as

well as a set of Left Atrium obtained from the Mazankowski Alberta Heart Institute.

We compared registration performance in terms of DICE and Hausdorff distances

to six other registration methods, Symmetric Normalization diffeomorphic registra-

tion from the Dipy package [27], two versions of the Demons algorithm (classical

and fast symmetric forces) from ITK [93], the Elastix software package [99, 100], a

learning-based framework voxcelMorph [7] and optimization-based registration MM.

The proposed algorithm is diffeomorphic, allowing it to capture the true deformation

of the cardiac tissue. Observing the percentage of voxels with a Jacobian determinant

less than zero, all of the other registration methods yielded mesh folding for either

the MRI dataset. The presence of mesh folding may result in the inability of these

methods to capture the true anatomical motion.

6.5 Conclusion

In this work, we build a principled connection between classical registration meth-

ods and recent learning-based approaches. We propose an end-to-end framework for

diffeomorphic image registration and derive a learning algorithm that leverages a

convolutional neural network and unsupervised learning for fast runtime. To achieve

diffeomorphic transforms, we integrate a new parameterization of deformation fields

for 2D-to-2D and 3D-to-3D diffeomorphic registration algorithm for the application of

MRI cardiac registration, which describe a deformation field with its transformation

Jacobian determinant and curl of the end velocity field. It also relaxes the need for

an explicit regularization to produce a physically plausible result, as smoothness is
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implicitly embedded in the solution. Removing explicit regularization makes the need

for an empirical trade-off between the similarity term and the regularization term,

which may cause bias [96], unnecessary.

Furthermore, by directly requiring the transformation Jacobian to be positive, the

deformation can be ensured to be diffeomorphic. The other desirable constraints also

can be enforced within the same framework using an explicit restriction on the trans-

formation Jacobian such as incompressibility constraint. Additionally, the proposed

parameterization naturally describes a deformation field in terms of radial and rota-

tional components, making it especially suited for processing cardiac data [97]. Our

algorithm can infer the registration of new image pairs in under a second, which is

significantly faster than traditional iterative methods. Compared to recent learning-

based methods, our method offers a guarantee of a diffeomorphic transform.

The proposed algorithm was evaluated on end-diastolic to end-systolic cardiac cine-

MRI registration on two publicly available ACDC Challenge [98] and Sunnybrook data

sets (SCD) [68] as well as a set of left atrium images obtained from the Mazankowski

Alberta Heart Institute. The proposed algorithm is diffeomorphic, allowing it to

capture the true deformation of the cardiac tissue. Observing the percentage of voxels

with a Jacobian determinant less than zero, most of the other registration methods

yielded mesh folding for either the MRI data sets. The presence of mesh folding may

result in the inability of these methods to capture the true anatomical motion.
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Chapter 7

Diffeomorphic Image Registration
for the Application of Cardiac
Image Segmentation

7.1 Overview

Cardiac segmentation from magnetic resonance imaging (MRI) is one of the essential

tasks to analyze the anatomy and function of the heart for the assessment and diagno-

sis of cardiac diseases. However, cardiac MRI generates hundreds of images per scan

and manual annotation of them is difficult and time consuming, and therefore process-

ing these images automatically is of interest. This study proposes a novel end-to-end

supervised cardiac MRI segmentation framework based on a diffeomorphic deformable

registration that can segment the left ventricle from 2D and 3D images or volumes. In

order to represent the actual cardiac deformation, the methodology parameterizes the

transformation using radial and rotational components, computed using a deep learn-

ing approach. The deep learning method is trained using a set of pair images along

with their segmentation masks. The formulation guarantees transformations that are

invertible and prevents mesh folding which is essential for preserving the topology of

the segmentation results. A physically plausible transformation is achieved by em-

ploying diffeomorphism in computing the transformations and activation functions

that constrain the range of the radial and rotational components. The method was
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evaluated over three different data sets and showed significant improvements com-

pared to exacting learning and non-learning based methods in terms of the Dice score

and Hausdorff distance metrics.

7.2 Methodology

The objective of this study is to enhance the accuracy of a supervised 2D and 3D

segmentation framework using a diffeomorphic non-rigid image registration algorithm

6. The method computes a point-to-point mapping between two images or volumes

using a convolutional neural network while preserving the topology.

Finding the optimum mapping between a pair of images can be formulated as

follows:

ϕ∗ = argmin
ϕ

L(I2, I1 ◦ ϕ(ξ)) (7.1)

where L(.) is dissimilarity metric, ξ ∈ Ω denotes the pixel location in the image

domain Ω, ϕ : Ω → Ω is the transformation function, I1 is template image and I2

is the image or volume that need to be segmented. To have a unique solution for

the above formulation and more constrained, we define a deformation field using a

monitor function µ where µ : Ω → R and
∫︁
Ω
µ = |Ω| and curl of end velocity field

v : Ω → R.

The objective here is to find a transformation ϕ: Ω → Ω, ∂Ω → ∂Ω so that the

Jacobian determinant of the transformation Jϕ(ξ) is equal to the monitor function µ

:

Jϕ(ξ) = det∇ϕ(ξ) = µ(ξ). (7.2)

To find the transformation ϕ which satisfies 7.2, we first compute a vector field

γ(ξ) such that:

div γ(ξ) = µ(ξ)− 1. (7.3)

and then a velocity vector field based on artificial-time is constructed from γ(ξ):
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γt(ξ) =
γ(ξ)

t+ (1− t)µ(ξ)
, t ∈ [0, 1] (7.4)

The desired transformation ϕ can be found by solving the following ordinary dif-

ferential equation (ODE) at t = 1, ϕ(ξ) = ψ(ξ, t = 1) and ψ(ξ,t=0) = ϕ0(ξ)

ψ(ξ, t)

dt
= γt(ψ(ξ, t)), t ∈ [0, 1], (7.5)

Where ϕ0(ξ) is the identity mapping and det∇ϕ0(ξ) = 1 and ϕ0(ξ) = ξ.

The main problem is how to find γ(ξ) such that divγ(ξ) = µ(ξ)− 1. To solve this

problem we use the div-curl system, by finding the divergence and curl at each point

and set up the div-curl system of equations for each point which leads to reconstruct

a differentiable and invertible transformation.{︄
divγ(ξ) = µ(ξ)− 1

curlγ(ξ) = v(ξ).
(7.6)

To have a unique ϕ the Dirichlet boundary condition is used [92]. Additionally,

a diffeomorphism, which corresponds to a positive transformation Jacobian determi-

nant, is enforced explicitly via the monitor function [91].

7.2.1 Segmentation Framework

Let I1 and I2 be 2D/3D pair images/volumes, defined over Ω → R2/Ω → R3 and S1

and S2 are their corresponding segmentation maps where each pixel/voxel is assigned

to a desired anatomical label or background. As shown in Figure 7.1, the presented

segmentation framework includes three steps as follows.

• First, the proposed network gθ(I1, I2) which is designed based on the UNet-style

architecture [33] takes I1 and I2 along with S1 and S2 as inputs and outputs

µ(ξ), and γ(ξ).

• Then, using the moving mesh approach, we compute v, which is the curlγ(ξ),

and the desire ϕ. Where the following constraints are imposed on µ(ξ) to

guarantee the diffeomorphism:

107



Figure 7.1: Overview of supervised architecture. During the training phase, a pair
of images I2 and I1 with their correspondence segmentation maps (S2) and (S1) are
passed to the CNN, gθ(I2, I1) as inputs. The CNN then outputs the radial and
rotational parameters. Then using the moving mesh grid generation method the
transformation ϕ is computed. Finally, the segmentation map and source image are
warped using the predicted ϕ and generate the desired segmentation S1 ◦ ϕ. In the
inference phase, only the segmentation map corresponding to the template image I1
is passed to the framework and it outputs the desire segmentation map S∗

2 for I2 using
S1 ◦ ϕ.

⎧⎨⎩
∫︂
µ(ξ)dξ = |Ω|

τub > µ(ξ) > τlb

(7.7)

where the τub is the upper bound of the transformation Jacobian determinant,

and τlb is the lower bound which were set by the user. The τlb > 0 guarantees

the diffeomorphism.

• Finally, the segmentation map S1 is warped according to the computed trans-

formation ϕ, S1 ◦ ϕ and desire S∗
2 is generated.
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In summary, during the training phase, the network takes I1 and I2 images/vol-

umes, which are the end-diastolic and end-systolic frames of the cardiac sequence,

along with their corresponding segmentation maps S1 and S2. The network is trained

to obtain the point-to-point correspondence using the diffeomorphic transformation

which is then used to compute the segmentation map at end-systole using the seg-

mentation map at end-diastole. Since all the steps are designed to be differentiable,

the network parameters are learnt using a stochastic gradient descent-based method

with the following loss function:

L(ϕ; I2, S2, I1, S1) = NCC(I2, I1 ◦ ϕ) +Dice(S2, S1 ◦ ϕ) (7.8)

where NCC is normalized cross correlation metric and Dice is the Dice metric.

As shown in Eq. 7.8, to improve the accuracy of the segmentation we measure the

difference between images/volumes as well as segmentation maps.

In the inference phase we only pass the segmentation map corresponding to the

template image I1 to the framework and it outputs the desire segmentation map S∗
2

for I2 using S1 ◦ ϕ.

7.3 Experiments

We perform a series of experiments to evaluate the accuracy of the proposed su-

pervised segmentation framework against the state-of-the-art algorithms, SimpleE-

lastix (Elastix)[69], Moving Mesh (MM)[30, 94], Fast Symmetric Forces Demons

(Demons)[71], LCC-Demons[32], Symmetric Normalization[27] which are well known

optimization based algorithms and diffeomorphic learning-based methods LPM [7],

LapIRN [95], and Unsupervised diffeomorphic cardiac registration (UDCR) 6. To as-

sess the performance of the 2D version of our method, the evaluations were performed

over three data sets consisting of clinical 2D cardiac MR images. We also evaluated

the 3D version of the proposed framework using ACDC data set in 3D.
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7.3.1 Data sets

The following three data sets are considered in this study:

Automated Cardiac Diagnosis Challenge (ACDC)[66] This data set con-

tains multiple temporal short-axis cardiac cine MRI sequences acquired from 100 pa-

tients and is one of the publicly available data sets for cardiac MRI assessment. The

spatial resolution varies from 1.37mm2/pixel to 1.68mm2/pixel with a slice thickness

of 5 mm to 8 mm. The images are cropped to the size of 128× 128 as 2D images and

128 × 128 × 16 as 3D volume. These dimensions were chosen to save computation

time and are not a limitation of the framework.

The Sunnybrook Cardiac Challenge data (SCD)[68] This data set contains

multiple temporal 2D short-axis cardiac cine MRI scans acquired from 45 patients.

The data set is equally divided into 15 patient scans for training, 15 patient scans for

validation, and 15 patient scans for testing. The image resolution is 256× 256, with

a pixel spacing of 1.25 mm and slice thickness of 8 mm.

Left Atrium (LA) This data set includes 100 temporal 2D long-axis cine MRI

steady-state sequences from the 2, 3 and 4-chamber views. It is acquired from the

University Alberta Hospital. Image resolutions 176 × 189 – 256 × 208 and image

spacing 1.445− 1.795 mm. The 2ch, 3ch and 4ch are used in the rest of the paper to

denote 2, 3 and 4-chamber sequences, respectively.

7.3.2 Quantitative Evaluation Metrics

The proposed method is evaluated quantitatively using four metrics, namely, Dice

score, Hausdorff distance (HD in mm), determinant of Jacobian of the deformation

field det(J), and reliability R(d).

Dice Score The Dice Score [73] is a well-known segmentation-based metric to mea-

sure the similarity (overlap) between two regions, warped moving and fixed images.
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The Dice score of two regions A and B is formulated as:

Dice(A,B) =
2|A ∩B|
A+B

(7.9)

Hausdorff Distance The HD [74] is another well-known metric which measures

the maximum deviation between two regions’ contours. The HD between two contours

(CA) and CB is formulated as:

HD(CA, CB) =max(max
i

(min
j
(d(piA, p

j
B))),

max
j

(min
i
(d(piA, p

j
B))))

(7.10)

where piA, p
j
B denote the set of all the points in CA and CB respectively. The term

d(·) denotes the Euclidean distance.

Reliability: We also evaluated the performance of the proposed algorithm using a

reliability function computed based on Dice scores for each data set. The complemen-

tary cumulative distribution function is defined for each d ∈ [0, 1] as the probability

of obtaining Dice score higher than d overall volumes.

R(d) = Pr(Dice > d)

=
# Images segmented with Dice score higher than d

total number of images
.

(7.11)

R(d) measures how reliable the algorithm is in yielding accuracy d.

7.3.3 Segmentation Results

2D Segmentation Results

The summary of the results, the mean and standard deviations of Dice score, HD

and reliability R(0.75) on ACDC, LA, and SCD data sets are reported in tables

7.1, 7.2, and 7.3 respectively. Figures 7.2, 7.3, and 7.4 respectively show samples of

segmentation results on the ACDC, SCD, and LA data sets. The end-diastolic frame

is I1 and the end-systolic frame is I2. The true and predicted segmentation maps are

shown by the green and red lines respectively. The time for segmenting an unseen

2D image is 0.03± 0.007 seconds on a GPU.
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ED ES GT
ACDC

Figure 7.2: Samples of registered images on the ACDC with the correspondence
segmentation. End-diastolic (ED) frame is I1 and end-systolic (ES) frame is I2. The
true segmentation and predicted segmentation are shown by the green line and red
line respectively.

ED ES GT
SCD

Figure 7.3: Samples of registered images on the SCD with with the correspondence
segmentation. End-diastolic (ED) frame is I1 and end-systolic (ES) frame is I2. The
true segmentation and predicted segmentation are shown by the green line and red
line respectively.
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Table 7.1: Quantitative evaluation of the results for cardiac MRI registration on the
2D ACDC data set. The following metrics are reported for each method: The Dice
score Dice (mean± standard deviation), and Hausdorff distance HD, and reliability
R(0.75). Smaller values of HD and larger values of Dice indicate more accurate
results. The higher probability values of R(0.75) show that more patients have the
dice score higher or equal to %0.75. Values that are highlighted in bold indicate the
metric that gave the best performance compared to the other algorithms.

Method Dice HD R(0.75)

Undeformed 0.71 ± 0.145 10.1 –

Demon[93] 0.76 ± 0.096 8.3 0.36

SyN[27] 0.80 ± 0.091 8.1 0.66

LPM[7] 0.79 ± 0.095 7.6 0.46

MM[30] 0.83 ± 0.153 5.64 0.81

Elastix[69] 0.84 ± 0.138 4.51 0.82

UDCR6 0.88 ± 0.11 3.85 0.89

Proposed Method 0.98 ± 0.03 0.35 0.99

Table 7.2: Quantitative evaluation of the results for cardiac MRI registration on the
2D SCD data set. The following metrics are reported for each method: The Dice score
Dice (mean± standard deviation), Hausdorff distance HD, and reliability R(0.75).
Smaller values of HD and larger values of Dice indicate more accurate results. The
higher probability values of R(0.75) show that more patients have the dice score
higher or equal to %0.75. Values that are highlighted in bold indicate the metric that
gave the best performance compared to the other algorithms.

Method Dice HD R(0.75)

Undeformed 0.62 ± 0.15 16.02 –

Demons[71] 0.68 ± 0.18 12.46 0.36

SyN[27] 0.81 ± 0.16 8.9 0.70

LPM[7] 0.78 ± 0.08 7.6 0.63

MM[30] 0.72 ± 0.12 12.53 0.59

Elastix[69] 0.79 ± 0.08 11.12 0.62

UDCR6 0.88 ± 0.09 5.25 0.90

Proposed Method 0.92 ± 0.10 3.18 0.96
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Since the ACDC data set is originally a 3D data set where a set of 2D axial slices

are stacked to form a 3D volume, we computed 2D metrics on each slice separately

and aggregated the results over all slices to obtain the final values, reported in Table

7.1.

The presented method has shown significantly better performance among other

compared methods in all aspects. The Dice score and HD of ACDC data set have

been improved by 10% and 3% respectively. For LA data set, the proposed method

yielded an improvement of 10%, 11%, and 11% for Dice score and 5%, 4%, and 4%

for HD for 2-chamber, 3-chamber, and 4-chamber, respectively. The accuracy of the

results by the proposed method over the SCD data set has also been improved by 4%

for Dice score and 2% for HD.

3D Segmentation Results

Table. 7.4 provides the summary of the mean and standard deviations of Dice score,

HD and reliability R(0.75) metrics on 3D ACDC. Similar to the 2D version the

end-systolic frame and end-diastolic frame are used as the moving and fixed images

respectively. The time to segment an unseen 3D volume is 0.07± 0.001 seconds on a

GPU. As it can be seen in Table 7.4, the proposed method improved the segmentation

results by 8% in Dice score and 2% in HD.

Analysis of cardiac data requires the calculation of clinical metrics which are crucial

for diagnosis. One such metric is the volume of the LV, which when calculated at

the end-diastolic and the end-systolic frames can be used to calculate the ejection

fraction, an indication of the ability of the heart to pump blood. The Bland-Altman

plot can be used to describe the agreement between the ground truth volume and

the proposed method volume, as seen in Figure 7.5. The blue dots represent each

patient volume, and the red line indicates the bias, or how much underestimation

or overestimation of the volume occurs. The two yellow lines indicate the limits of

agreement, which are two standard deviations from the bias. In this case the bias
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was calculated to be -0.539 mL, indicating a slight overestimation of the volume by

the proposed method compared to the ground truth. It can be seen that almost all

patients fall within the limits of agreement, demonstrating the high agreement of the

proposed volume to the ground truth.

The correlation can also be calculated between the ground truth and the proposed

volume, as demonstrated in Fig 7.6. Each patient is represented by a blue dot and

the reference y=x line is shown by a yellow dotted line. The resulting correlation is

0.999 indicating a high agreement between the two sets of volumes.

7.3.4 Implementation and Parameters Analysis

The proposed method is implemented in Python programming language using Pytorch

module. The network includes three downsampling layers with 32,64,64 convolutional

filters and a stride of two, and 5 upsampling convolutional layers with 64,64,32,32,16

filters. The neural net framework is evaluated on an NVIDIA GeForce GTX 1080

Ti GPU. Different activation functions are used to apply constraints on µ and γ and

keep their range in (0, 1) and (−λ,+λ) respectively. Where λ can be any value in

range of (1,∞), we set λ = 10 in our experiment. The two main hyper-parameters,

lower bound τlb ∈ (0, 1) and upper bound τub ∈ (1,∞) of the transformation Jacobian

determinant |Jθ| which are set by the user can control the diffeomorphism and the

amount of movement which directly affects the evaluation metrics. By increasing the

values of τlb and τub, each node in a grid (each pixel) can have a larger displacement;

however, after a certain point, the results do not change significantly. We vary the

precision τlb, τub and set them to 0.2, 8.0 respectively. The chosen values resulted in

the best Dice score and HD distance.
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Table 7.3: Quantitative evaluation of the results for cardiac MRI registration on the
2D LA data set. The following metrics are reported for each method: The Dice score
Dice (mean± standard deviation), Hausdorff distance HD, and reliability R(0.75).
Values in bold indicate the best performance.

(a) 2ch

Methods Dice HD R(0.75)

Undeformed 0.79 ± 0.07 7.37 –

Demons[71] 0.84 ± 0.08 7.41 0.89

SyN[27] 0.87 ± 0.06 6.38 0.95

MM[30] 0.84 ± 0.06 6.58 0.92

Elastix[69] 0.82 ± 0.11 7.28 0.74

UDCR6 0.88 ± 0.04 6.54 0.95

Proposed Method 0.98 ± 0.01 1.28 1.0

(b) 3ch

Methods Dice HD R(0.75)

Undeformed 0.78 ± 0.08 7.70 –

Demons[71] 0.85 ± 0.06 7.33 0.94

SyN[27] 0.86 ± 0.13 7.52 0.93

MM[30] 0.83 ± 0.06 6.48 0.88

Elastix[69] 0.86 ± 0.10 6.82 0.9

UDCR6 0.87 ± 0.05 6.3 0.94

Proposed Method 0.98 ± 0.02 1.44 1.0

(c) 4ch

Methods Dice HD R(0.75)

Undeformed 0.78 ± 0.09 8.66 –

Demons[71] 0.82 ± 0.10 7.84 0.77

SyN[27] 0.84 ± 0.11 7.51 0.86

MM[30] 0.83 ± 0.08 6.77 0.87

Elastix[69] 0.82 ± 0.10 7.56 0.64

UDCR6 0.87 ± 0.05 6.1 0.99

Proposed Method 0.98 ± 0.01 1.5 1.0
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ED ES GT

ED ES GT

ED ES GT

Figure 7.4: Samples of registered images on the left atrium data set with the corre-
spondence segmentation. The first two rows are 2ch, the next rows are 3ch and the
last tow rows are 4ch views. End-diastolic (ED) frame is I1 and end-systolic (ES)
frame is I2. The true segmentation and predicted segmentation are shown by the
green line and red line respectively. 117



Table 7.4: Quantitative evaluation of the results for cardiac MRI registration on
the 3D ACDC data set. The following metrics are reported for each method: The
Dice score Dice (mean± standard deviation), Hausdorff distance HD, and reliability
R(0.75). Smaller values of HD and larger values of Dice indicate more accurate
results. The higher probability values of R(0.75) show that more patients have the
dice score higher or equal to %0.75. Bold values indicate the best performance.

Method Dice HD R(0.75)

Undeformed 0.71 ± 0.145 10.1 –

Demon[93] 0.80 ± 0.17 8.3 0.28

SyN[27] 0.801 ± 0.091 8.1 0.51

LPM[7] 0.812 ± 0.085 7.3 0.52

LapIRN [95] 0.74 ± 0.162 7.4 0

MM[94] 0.75 ± 0.156 7.03 0

Elastix[69] 0.83 ± 0.161 5.75 0.60

UDCR [101]6 0.84 ± 0.06 5.3 0.78

Proposed Method 0.92 ± 0.04 3.3 1.0
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Figure 7.5: The figure on the left displays the Bland-Altman plot for the 3D segmen-
tation results on the ACDC dataset. The blue dots represent each of the patients
analyzed, and the bias is represented by the red dotted line and the limits of agree-
ment are represented by the yellow dotted lines. The bias is -0.539 mL which indicates
a slight overestimation of the volume of the chamber.
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Figure 7.6: This figure displays correlation between the ground truth and the proposed
method volume, where each blue dot represents a patient and the yellow dotted line
is the reference y=x line. The resulting correlation is 0.999 indicating high agreement
between the ground truth and the proposed method volumes.
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7.4 Conclusion

We propose an end-to-end supervised framework for 2D and 3D cardiac MRI seg-

mentation. To preserve the topology and find the points correspondence, we used

a diffeomorphic deformable image registration algorithm. Which formulate a trans-

formation in terms of radial and rotational components and make it suitable for

processing cardiac imaging data.

The proposed algorithm was evaluated on cardiac cine-MRI images of two publicly

available data sets as well as a set of left atrial images obtained from the Mazankowski

Alberta Heart Institute against ground truth segmentation by expert clinicians. The

reported results demonstrated significant improvement of proposed method in com-

parison to the existing learning and non-learning based methods.
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Chapter 8

Conclusion

8.1 Summary

Cardiac deformable registration is a fundamental step in quantitatively assessing car-

diac function and generating diagnostic measurements. The interpretations of medical

data are mostly being done by medical experts that are quite limited due to their

subjectivity, the complexity of the image, extensive variations exist across different

interpreters, and fatigue. Therefore, there is a strong need for automated algorithms

for medical image processing and my goal is to develop deep learning approaches to

meet the demands of this emerging area of the healthcare technology sector. The lack

of reliable and automatic tools significantly limits the usage of registration which is

heavily underutilized in the course of clinical treatment. Several medical media are

required to provide accurate and complete information about a patient. For exam-

ple, each CT, MRI, and ultrasound images provide different information in which the

combination of them will be useful for the treatment. At the same time, medical

image registration techniques serve as the fundamental basis for procedures such as

image-guided radiation therapy, image-guided radiation surgery, and image-guided

minimally invasive treatments.

The main goal of this thesis was to develop automated diffeomorphic methods to ad-

dress the shortcomings listed above. Particularly improving the accuracy and robust-

ness of image registration. In chapter 3 and chapter 4, we proposed two training-free
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deformable image registration frameworks that eliminated the need for a dedicated

training set while exploiting the capabilities of neural networks. Both are suitable for

group-wise cardiac MRI registration. In chapter 5, a training-free multi-resolution

framework for diffeomorphic deformable image registration was proposed. The pro-

posed recursive algorithm also eliminates the need for dedicated training data. Since

the presented framework was formulated in the diffeomorphic setting, it is suitable

for pairwise registration. All the proposed methods in chapters 3, 4, 5 achieved the

highest accuracy in comparison to learning and non-learning based methods. As

these methods are iterative, they are suitable for the problems with the lack of suit-

able training data. However, they are not qualified for real-time applications. To

address the above issues, in chapter 6, we proposed an unsupervised diffeomorphic

cardiac image registration using the moving mesh parameterization. Since the pre-

sented method is learning-based, the time to register an unknown pair of images,

during the deployment phase is less than a second. Which makes it appropriate for

real-time applications. In addition, parametrizing the deformation field using radial

and rotational components made this method more suitable for cardiac registration.

As shown in chapter 7 the proposed method in chapter 6 can be used for supervised

segmentation tasks as well.

8.2 Contributions

The list of original accomplishments described in this thesis can be summarized as

the following:

• A training-free generative neural network for group-wise cardiac deformable

image registration [72]

• A training-free generative multi-resolution framework for group-wise cardiac

deformable registration
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• A training-free recursive multi-resolution framework for diffeomorphic deformable

image registration for cardiac images [102]

• An unsupervised 2D-to-2D and 3D-to-3D diffeomorphic learning-based algo-

rithm with moving mesh correspondence for cardiac image registration [101]

• A supervised 2D and 3D diffeomorphic learning-based segmentation framework

using deformable image registration

In conclusion,

8.3 Future Considerations

This section lists some of the limitations of the proposed work, and ways to remedy

them and improve on the algorithms developed.

• Multimodality registration

Multimodality image registration refers to those applications where the moving

and targeted fixed images are acquired using different imaging modalities and

sometimes even in different dimensions. Multimodality image registration and

fusion have a key role in routine diagnosis, staging, restaging, and the assess-

ment of response to treatment, surgery, and radiotherapy planning of malignant

disease. The complementarity between anatomic (CT and MR imaging) and

molecular (SPECT and PET) imaging modalities is well established and the

role of fusion imaging is widely recognized as a central piece of the general

tree of clinical decision making. Moreover, dual-modality imaging technologies

including SPECT/CT, PET/CT, and, in the future, PET/MR imaging, now

represent the leading component of contemporary health care institutions.

In addition to the challenge caused by tissue deformation presented in single-

modality image registration, gauging image similarity between multimodality
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images can be difficult, even when they are well aligned. So that, multimodality

image registration can be considered in the future.

• Different modalities:

Cardiac MRI can provide 3D cross-section images of the heart and produce

images with high resolution as well as high tissue contrast which is useful for

different assessments such as heart chambers, heart valves, etc. Also, MRI is

used in diagnosing a variety of cardiovascular disorders. Unfortunately, MRI

suffers from several drawbacks. Compared with cardiac CT, these examinations

are much more expensive and high cost and the fact that it is not portable[103].

Echocardiography or ultrasound imaging has therefore been used by clinicians

to address the above issues. All different proposed methods in this thesis are

tested on MRI images. In the future, it would be beneficial to perform these

methods on different modalities such as ultrasound.

• Improvements to the 3D-to-3D registration algorithm

The proposed a 2D-to-2D/3D-to-3D diffeomorphic registration algorithm that

was applied to cardiac MR images. The main idea of using moving mesh gen-

eration is to parameterize the deformation field with radial and rotational com-

ponents which are more suitable for cardiac images. Since heart spatially the

left ventricle twists in systole storing potential energy and untwists (recoils) in

diastole releasing the energy. Twist aids left ventricular ejection and untwist

aids relaxation and ventricular filling. Therefore, rotation and torsion are im-

portant in cardiac mechanics. It would also be beneficial to validate the method

on different tissues such as the brain, lung, etc.
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