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Abstract 

Microring resonators are compact integrated optics resonators which have found a wide 

range application in optical communication and optical signal processing, including 

spectral filters, optical delay lines, switches, modulators and wavelength converters.  In 

recent years, there has also been increased interest in studying the dynamical behaviours 

of nonlinear microresonators, especially in the instability regimes, for applications in all-

optical switching, high-frequency optical clock generation, and fast optical pulse 

generation.  In addition to these practical applications, the study of instability phenomena 

in optical microresonator systems can also provide important contributions to 

fundamental research on nonlinear dynamical systems. 

The aim of this thesis is to investigate the nonlinear dynamics in single and coupled 

microring resonators in the presence of instantaneous and non-instantaneous 

nonlinearities.  Methods based on the energy coupling and power coupling formalisms of 

microring resonators are developed to analyze and investigate various types of instability 

in these systems, including bistability, self-pulsation and period-doubling oscillations.  

An important objective is to study the influences of various device parameters on the 

threshold powers for reaching self-pulsation, with the aim of reducing these thresholds to 

levels that can be realistically achieved in practical integrated optics devices.  In 

particular, in a single microring resonator with free carrier induced nonlinearity, the 

region of self-pulsation is constrained by a minimum free carrier lifetime.  By exploring 

high-order instability, we show that on higher-order branches of the stability curve, the 

free carrier lifetime has a less restrictive influence on the nonlinear dynamics, allowing 
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self-pulsation to be achieved over a wider range of free carrier lifetimes and with a wider 

range of oscillation frequencies. 

We also study the nonlinear dynamical behaviours of system of coupled microring 

resonators – also known as Coupled Resonator Optical Waveguides (CROWs).  The aim 

here is that, by enhancing the spatial complexity of the nonlinear system, we can achieve 

novel instability effects and further reduce the threshold powers for observing self-

pulsation.  Using the power coupling formalism developed, we show that period-doubling 

oscillations can occur in a chain of coupled microring resonators with instantaneous Kerr 

nonlinearity, although the threshold power required to reach this instability increases with 

the number of resonators.  On the other hand, we found that there exists an optimum 

CROW waveguide length for which the threshold power for observing self-pulsation is 

minimized.  Finally, we also develop a formalism based on the Coupled Map Lattice for 

describing nonlinear dynamics of CROW waveguides with long length.  The formalism 

allows us to investigate temporal instability in these structures, and potentially 

spatiotemporal chaos pattern forming if gain is introduced in the resonators.  
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1 Introduction 

With the invention of the laser at the beginning of the 1960’s, a new branch of optics 

known as nonlinear optics was born [1].  This regime of operation is characterized by 

high intensity of the optical laser beam, which causes the relation between the optical 

field and the induced polarization of the medium to become nonlinear.  This nonlinear 

polarization gives rise to new physical phenomena which are not observed in the linear 

regime of operation at lower optical intensities.  The observation of harmonic generation 

effect by G. Winreich in 1961 was the first experimental work in this area [2].   

A variety of instantaneous and non-instantaneous optical nonlinearities can be observed 

in semiconductor materials such as silicon [3].  Instantaneous nonlinearity such as Kerr 

effect arises from the interaction of the optical field with bound electrons, with the 

response time in the order of a few femtoseconds [4], which causes the refractive index of 

the medium to depend on the applied optical intensity [5].  On the other hand, 

nonlinearity due to free carrier dispersion (FCD) [6] is a non-instantaneous effect with 

interaction times ranging from 1ps to 10μs [3].  In this effect, a high-intensity optical 

signal generates free carriers (FC) in the semiconductor material through the two-photon 

absorption (TPA) process, and these generated free carriers in turn induce a change in the 

refractive index and absorption of the material.  Soref et al. have derived an empirical 

relation for the index and absorption changes due to free carriers for crystalline silicon 

[7].  The response time of FCD and free carrier absorption (FCA) is determined by the 
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relaxation time of the generated free carriers in the medium, which can range from 

picoseconds to microseconds. In addition to Kerr and free carrier induced nonlinearities, 

thermo-optic (TO) effect may also arise from the generated heat due to nonlinear 

absorption (TPA and FCA) of light in the material [8].  The thermo-optic effect typically 

has much slower response time than Kerr and FC induced nonlinearities, in the order of 

micro to milliseconds.  It is also worth mentioning that the relaxation times of different 

nonlinear effects are highly dependent on the materials [4, 8, 9].   

In this thesis, to investigate the nonlinear dynamic behaviors of optical micro-resonators 

due to instantaneous and non-instantaneous nonlinearities, we choose chalcogenide glass 

and silicon as the nonlinear optical media.  Chalcogenide glass is a material with large 

Kerr coefficient and almost instantaneous response [10].  Silicon is a widely-used 

material for integrated optical devices which possesses both instantaneous Kerr effect and 

non-instantaneous FC induced nonlinearities.   

In a nonlinear optical waveguide, two common nonlinear effects that can be observed are 

self-phase modulation (SPM) [11] and cross-phase modulation (XPM) [12].  SPM occurs 

when a high-intensity optical pump changes the effective index of the waveguide, which 

in turn induces a nonlinear phase shift in the pump signal.  When a low-intensity probe 

signal also co-propagates with the high-intensity pump, the probe signal experiences the 

nonlinear index change in the medium caused by the pump so that its phase is also 

modified.  This effect is known as cross-phase modulation.  The propagation of an optical 

signal in a nonlinear waveguide can be described by the Nonlinear Schrödinger Equation 

(NLSE).  This equation can be modified to account for various material nonlinearities, 
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including instantaneous Kerr nonlinearity, two-photon absorption, free carrier dispersion 

and free carrier absorption [13]. 

In addition to these material nonlinearities, Stimulated Raman scattering (SRS), 

Stimulated Brillouin scattering (SBS), and four wave mixing (FWM) are other significant 

nonlinear effects in a semiconductor waveguide [1, 3].  SRS and SBS can provide optical 

gain but do not alter the nonlinear dynamic behavior of an optical system with feedback, 

such as in a microresonator [1]. For this reason we do not consider these effects in this 

thesis. Four wave mixing is a process which involves energy transfer between at least two 

optical waves with different wavelengths under appropriate phase matching condition.  

We also do not consider this effect in the microresonators studied in this thesis. 

In a nonlinear optical system with feedback, such as in an optical resonator filled with a 

nonlinear material, nonlinear dynamic behaviors such as self-pulsation [14], period 

doubling [15], and chaos [16] can arise. An optical resonator also serves to enhance the 

nonlinear effect by amplifying the optical intensity inside the cavity.  Microring 

resonators (MRRs) are the simplest and most robust optical resonators that can be 

realized in integrated optics.  An MRR device consists of a closed loop waveguide (ring) 

acting as the resonator and a straight waveguide for coupling light into and out of the 

ring.  Coupling between the straight waveguide and the ring waveguide is achieved 

through the evanescent waveguide fields [17].  Near a resonance frequency, a large 

optical intensity is built up in the ring cavity, which serves to amplify the nonlinearity.  

Thus, nonlinear effects can be observed with less optical power in an MRR compared to a 

straight waveguide with the same cross-section.  The ring cavity also provides a natural 
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feedback mechanism which gives rise to richer nonlinear dynamic behaviors than in a 

straight waveguide.  In addition, multiple MRRs can be arranged in a coupled resonator 

array, which greatly enhances the spatial complexity of the light-confining structure and 

enables even more complex nonlinear dynamic behaviors to be observed.  

The objective of this thesis is to investigate the nonlinear dynamic behaviors in single and 

coupled microring resonators, with instantaneous and non-instantaneous nonlinearities.  

These dynamic behaviors can have novel applications in optical information technology, 

such as all-optical switching and the generation of high-frequency optical clocks.  In the 

next section, we provide more details on the background and motivation of our research. 

1.1 Background and Motivation 

In the linear regime of operation, MRRs have a broad range of applications in optical 

communication and information processing, for example, as wavelength filters, 

multiplexers and demultiplexers [18-20].  When made of a highly nonlinear material, 

these devices can also exhibit rich nonlinear dynamic behaviors such as self-pulsation, 

bistability, period doubling and even chaos [14-16].  These effects have many interesting 

and important applications for optical communication and all-optical signal processing.  

A particular application of interest in our research is the realization of high-frequency 

optical oscillators.  Local oscillators are used to generate harmonic signals and are 

essential components in coherent optical communication systems, which employ 

advanced modulation-coding/coherent receiver for improving spectral efficiency [4].  

Local oscillators are typically built with a Mach-Zehnder modulator and an electrical 
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microwave signal generator, as shown in Figure 1.1.   

 

Figure 1.1, Schematic of MZI as an electro-optic local oscillator  

The main drawback of this E/O (electro-optical) oscillator is fabrication complexity, 

since it requires integration of electrical and optical parts, as well as the speed limitation 

of the electronics. All-optical oscillators may offer a better alternative.  Mode-locked and 

DFB lasers can be used to generate optical clock signals [2] but they are not compatible 

with silicon photonics technology.  Optical comb generation by FWM in a silicon 

microring resonator is another solution [5], although the performance of the oscillator is 

degraded by FCA, which reduces the efficiency of the FWM process [3]. 

Self-pulsation (SP) and Ikeda instability in MRRs provide a novel way to generate optical 

clock signals which can be simpler and more cost effective compared to techniques based 

on mode-locked lasers and optical comb generation.  There is particularly great interest 

and potential value in endeavoring to achieve self-pulsation and other nonlinear dynamic 

behaviors in silicon MRRs, given the prevalence of silicon photonics technology in 

integrated optics.  However, there exist long standing obstacles to achieving these 

behaviours in practice, especially on an integrated optics platform.  For example, we need 

pump signals of very high optical intensities to observe instability in an integrated MRR 

and in many instances, the required optical intensity is so high that it may cause 

CW optical wave 

Electro-optic phase shifter 

Y-combiner Y-splitter 
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permanent damages to the photonic chip.  Another challenge is that self-pulsation in an 

MRR with non-instantaneous nonlinearity is limited by the relaxation time of the 

nonlinear medium.  As shown in [21] and [22], there exists an upper limit on the FC 

lifetime in a semiconductor MRR for FC-induced SP to be achieved.  Unfortunately, this 

critical relaxation time constant is much shorter than the typical FC lifetime in a silicon 

waveguide, so that SP due to FCD has not been experimentally observed in a silicon 

MRR. 

Given these challenges, we are motivated to explore new mechanisms and new device 

structures that could enable feasible and realistic demonstrations of these nonlinear 

effects on an integrated photonic platform.  In particular, we will investigate the higher-

order nonlinear dynamics in a single MRR, as well as nonlinear dynamics of a chain of 

coupled MRRs.  For the latter case, our hypothesis is that by increasing the length of a 

chain of coupled MRRs, we can decrease the threshold power required to achieve 

instability due to enhancement in the nonlinear interaction length.  Also, the spatial 

complexity of coupled MRRs compared to a single resonator may alter the nature of the 

nonlinear interactions, allowing self-pulsation to be observed at longer material 

relaxation times.  

Another objective of the thesis is to develop rigorous models for analyzing and 

investigating nonlinear dynamics of coupled MRRs.  To date, simple models have been 

used to analyze the nonlinear behavior of single MRRs with instantaneous and non-

instantaneous nonlinearities.  To investigate the much richer nonlinear dynamics of 

coupled MRRs, we need to develop comprehensive models and analysis methods in the 
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time and frequency domains.  These models are not only suitable for analyzing the 

stability of a finite chain of coupled MRRs, but can also be used to investigate the 

spatiotemporal behavior of optical propagation in an infinitely long chain of coupled 

MRRs.   

1.2 Literature Survey 

In the linear regime, MRRs have important applications in integrated photonics as 

spectral filters [23], switches [24], optical delay lines [25], label-free biosensors [26], and 

modulators [27].  In addition to these well-developed applications, comprehensive studies 

have been performed to model and analyze the static and dynamic behaviours of MRR 

devices [28-37].  The models used can be divided into two broad categories: energy-time 

coupling and power-space coupling models.  In the energy-time coupling (EC) model, we 

treat an MRR as a lumped oscillator which supports only a single resonance mode [22].  

On the other hand, the power-space coupling (PC) model treats an MRR as a traveling 

wave resonator with an infinite number of resonance modes [37].  The EC model is 

strictly valid only for weak coupling and at frequencies near a resonance mode, whereas 

the PC model is valid for all coupling values and at all frequencies.  Both of these models 

can be extended to include optical nonlinearities in the MRR. 

So far, several numerical and experimental studies have been performed on single MRRs 

with instantaneous and non-instantaneous optical nonlinearities [28-37].  Most of these 

works focused on third-order harmonic generation, wavelength conversion, frequency 

comb generation, entangled photon generation, soliton wave generation [38], ultrashort 

pulse generation [39], and optical bistability [40].  On the other hand, nonlinear 
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dynamical and instability effects such as self-pulsation, period doubling, and chaos have 

been investigated to a much lesser extent, due to the high optical intensities required to 

observe these phenomena.   

These effects can have potential applications in optical communication and optical 

computation, such as clock generation, clock recovery, cryptography, Boolean logic 

gates, and optical memories [41-45].  

The Ikeda instability mechanism could be used as a technique to generate Tera hertz 

(THz) waves. Although the duty cycle of generated waves by Ikeda instability is a 

constant value of 50%, the oscillation frequency of the generated signal can be increased 

by reducing the ring radius. In particular, for silicon MRRs, terahertz Ikeda oscillations 

can potentially be achieved for ring radius around 1µm. 

Another possible application of the nonlinear dynamics of MRR is in the encryption-

decryption scheme. By increasing the input power beyond the Ikeda instability region 

[16], the system behaves chaotically. The threshold for observing chaos in a single MRR 

is beyond the laser damage threshold but this mechanism happens in chain of coupled 

micoring resonators. In this region, for any input, the output is a sequence of pseudo 

random numbers that could be used as an encryption (private) key.  It is worth to mention 

that a dynamic map of MRR has two-dimensional nature because of the existence of real 

and imaginary parts of an optical field. Due to the 2D nature of this map, this dynamic 

behavior is suitable for performing real time chaotic encryption on image or video 

stream.  In this dissertation, we will focus on the nonlinear dynamic behaviours of single 

and coupled MRRs in the presence of Kerr nonlinearity, free carrier dispersion, and free 
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carrier absorption.  We will neglect the thermo-optic effect because its relaxation time is 

much slower than the time scales of the nonlinear dynamic processes and the operating 

speeds of related applications which we are interested in studying. 

A variety of nonlinear dynamic behaviours can occur in a nonlinear optical resonator 

such as in an MRR with Kerr nonlinearity.  These include bistability, self-pulsation, 

Ikeda instability and chaos.  Bistability occurs when two stable power (or intensity) levels 

can exist in an optical resonator for the same input optical power.  This phenomenon can 

be used to realize all-optical switches, logic gates, and optical memory.  Boolean logic 

gates based on optical bistability have been demonstrated in [46].  Bistability has also 

been used to implement an optical transistor in [47], for applications in amplification and 

switching.  Compared to other instability phenomena such as self-pulsation and chaos, 

bistability occurs at a lower power threshold and for a wider range of phase detunings of 

the resonator.  For this reason, it is much easier to observe bistability than other nonlinear 

dynamical phenomena. 

Self-pulsation (SP) refers to the generation of a pulse train, or amplitude oscillations, in 

an optical resonator from an input continuous-wave (CW) light beam.  An essential 

condition for achieving SP in a nonlinear MRR is that the relaxation time constant of the 

nonlinear medium must be much longer than the roundtrip time of the resonator.  In 

general, the frequency of the self-oscillations highly depends on the linear phase detune 

of the resonator.  If the medium relaxation time constant is much shorter than the 

roundtrip time of the MRR, oscillations known as Ikeda instability (or period doubling) 

can occur.  Ikeda instability, which was first predicted in a cavity with instantaneous Kerr 
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nonlinearity [48], is similar to self-pulsation but the period of oscillations is exactly equal 

to twice of the cavity roundtrip time and does not depend on the input power or the linear 

phase detune [49].  Self-pulsation and Ikeda instability have been suggested to have 

potential applications for high-speed optical clock generation for coherent 

communication systems.  At very high optical intensities, a regime of behaviour called 

chaos exists, where the intensity in the cavity fluctuates randomly with time [16].  One 

potential application of chaotic behaviour in a nonlinear MRR is for random sequence 

generation. 

In 1983 Gibbs et. al. first demonstrated Ikeda instability in a hybrid electrical-optical 

bistable system [50].  In this hybrid system, the time delay feedback mechanism was 

realized with a microcontroller, photodetector, A/D and D/A converters.  By further 

increasing the input CW optical power, the system was observed to transition from period 

doubling oscillations to chaotic behaviour.  The authors also studied in detail the effect of 

the ratio of the nonlinear relaxation time constant to the feedback time delay on the 

characteristics of the self-oscillations.  Nakatsuka et. al. later observed period doubling 

oscillations and chaos in a nonlinear optical fiber ring cavity [51].  It should also be 

mentioned that different research groups have reported observations of SP with longer 

periods of oscillation than period doubling in various hybrid and intrinsic nonlinear 

systems.  Konthasinghe et. al. showed SP effect in a nonlinear Fabry-Perot cavity with an 

extended period of oscillation of half a microsecond [52].  The low frequency of 

oscillation is attributed to thermo-optic nonlinearity, which has long relaxation time 

constant.  The development of microfabrication technology in recent years has enabled 

microcavities such as microring resonators and microdisks with very high quality factors 
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(Q factors) to be fabricated.  The high optical intensities achieved in these microcavities 

can help substantially reduce the power thresholds required for observing nonlinear 

dynamical effects. Zhang et.al. observed SP in a high-Q silicon microdisk with 12 μW 

continuous input power [53].  However, the period of oscillations was relatively slow (1 

s), which was attributed to the competition between two nonlinear effects of opposite 

signs in the microdisk, namely, free carrier dispersion and the thermo-optic effect.  

In addition to the experimental works mentioned above, there have also been several 

theoretical works studying the nonlinear dynamics of single and coupled MRRs.  The 

energy-time coupling (EC) formalism is the main foundation of these works.  M. Armilla 

studied self-pulsation in a single MRR with FCD.  The existence of a critical FC lifetime 

for observing SP in a micro-resonator has been proved in [21, 22, 54] by linear stability 

analysis based on the EC model.  With respect to coupled MRRs, B. Maes et. al. [35] 

analyzed the stability behavior of two and three coupled MRRs with instantaneous Kerr 

nonlinearity using the EC model and predicted SP behaviour over specific ranges of input 

powers.   

The wide application of the EC formalism to study the nonlinear dynamics of MRRs is 

mainly due to the relative analytical simplicity of the model.  However, since the EC 

formalism only models a single resonance mode of the cavity, it fails to predict some 

important nonlinear effects, especially at high optical intensities.  On the other hand, the 

PC formalism explicitly accounts for the nonlinear delayed feedback in the system [37, 

49, 55] and can model the interactions between adjacent resonance modes.  As a result it 

provides a more accurate picture of all the nonlinear dynamics that occur in an MRR or in 
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a chain of coupled MRRs.  In spite of this advantage, there have been very few studies of 

instability in MRRs based on the PC model.  For example, high-order instability, which 

does not exist in the EC model, has not been investigated in an MRR using the PC model.  

Although Ikeda instability is known to exist in a single resonator, its existence in coupled 

microresonators has not been shown.  This type of instability relies on the mixing of 

adjacent resonator modes and thus can only be described by the PC formalism.  In 

addition, a detailed comparison between the EC and PC models in terms of the predicted 

nonlinear dynamics of single and coupled MRRs has not been performed.  Such a 

comparison would help us understand the limitations of the EC model and gain deeper 

insights into the physics of the instability behaviors in these devices. 

As previously stated, a major focus of this thesis is the nonlinear dynamics of coupled 

MRRs.  A chain of coupled MRRs was originally proposed by A. Yariv as a medium for 

transporting optical signals similar to an optical waveguide [56].  The structure is thus 

known as a coupled-resonator optical waveguide (CROW).  Propagation of an optical 

wave in a nonlinear CROW waveguide has been studied using the scattering matrix 

method [57].  The main drawback of this method, however, is the very large computation 

effort required for long CROW waveguides. Both the EC and PC models can be used to 

study nonlinear dynamics of short chains of coupled MRRs, but they are not suitable for 

analyzing very long CROW waveguides due to the large matrix systems involved.  In this 

thesis, we will develop an alternative method for analyzing the spatiotemporal field 

patterns of optical propagation in a long CROW waveguide.  The method is based on the 

Coupled Map Lattice (CML) theory [58], which has been used to describe the dynamic 

behaviours of extended systems in diverse fields such as electrical circuits [59] and 
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chemical reactions [60].  Here, we will apply the CML theory to study the problem of 

optical propagation in a long nonlinear CROW waveguide. 

1.3 Theoretical Background 

The main focus of this thesis is to investigate the nonlinear dynamics of MRRs.  In this 

section, we will review the theoretical foundations of our work, including the analytical 

descriptions of a microring resonator and a brief review of the fundamental concepts of 

nonlinear optics and nonlinear dynamic systems.  

1.3.1 Microring resonators 

A common configuration of a MRR is shown in figure 1.2.  The device consists of a 

straight waveguide called a bus waveguide and a circular waveguide which forms the 

microring resonator.  The microring has a radius R and is evanescently coupled to the bus 

waveguide with the coupling strength given by a field coupling ratio κ1. The roundtrip 

amplitude attenuation in the microring waveguide is denoted as art. At wavelengths 

satisfying the condition 2R = m/neff, where neff is the effective index of the microring 

waveguide and m is an integer, constructive interference of light waves occurs in the 

microring corresponding to the resonance mode number m.   

 

Figure 1.2, Schematic of Microring Resonator 
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The universal coupling matrix [61] determines the relation between the wave circulating 

in the microring (A1 and D1) and the input and output waves (Ein and Eout) propagating in 

the bus waveguide as follows, 
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In the above equation, art, κ1, and ΔL,1 are roundtrip loss, the field coupling coefficient 

and the linear phase detune, respectively. Af,1 and Df,1 are the steady-state solutions of 

A1(t) and D1(t), respectively. From the above equation, we can find the transfer function 

relating the field Af,1 inside the microring and input field Ein as 
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A typical spectral response of the power in the microring resonator is shown in figure 1.3.  

 

Figure 1.3, Power transmission ratio (Pout/Pin) vs linear phase detune of an MRR. 

We can characterize the performance of an MRR by three parameters: the free spectral 
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range (FSR), the full width at half maximum (FWHM) (or the 3dB bandwidth of the 

resonance) and the quality factor Q. 

The FSR is the spacing between two successive maxima or minima of the transmitted 

optical power of the MRR.  The FSR can be computed from  

R2n
FSR

g

2




  (1.3) 

where λ and ng are the resonant wavelength and the group index of the microring 

waveguide, respectively.  The quality factor (Q-factor) of an MRR measures the 

sharpness of the resonance and is given by 

FWHM
Q


  (1.4) 

where λ is the resonant wavelength and FWHM is the 3-dB bandwidth in terms of 

wavelength. 

1.3.2 Nonlinear Optics 

Nonlinear optics is a branch of optics that studies how an optical wave behaves in a 

medium with nonlinear induced polarization.  The dependence of the polarization P of a 

dielectric medium on the electric field E of the light wave can be expressed in terms of 

the Taylor series [62], 

 EEEEEEPPP 321

0NLL   (1.5) 

where PL and PNL are the linear and nonlinear polarizations, ε0 is the vacuum permittivity, 

and χn is the nth-order susceptibility of the medium.  In centro-symmetric materials such 
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as silicon, fused silica and chalcogenide glass, the even power terms in equation (1.5) are 

absent.  In this case, the most dominant nonlinear term is the third-order term, so these 

materials are said to have third order nonlinearity.  Since we will be mainly interested in 

silicon and chalcogenide materials in this thesis, we will focus only on the third order 

nonlinearity, which is also known as Kerr nonlinearity.  The real part of χ3 gives rise to 

various nonlinear effects such as self-phase modulation (SPM), cross-phase modulation 

(XPM), and four-wave mixing (FWM) [62].  The imaginary part of χ3 describes a 

nonlinear absorption process known as two-photon absorption (TPA).  TPA occurs when 

the energy of the incident photon is larger than half the band gap energy of the material.  

The absorption of a pair of photons generates a free electron hole pair, which induces a 

refractive index change in the medium known as free carrier dispersion (FCD) and causes 

additional optical loss known as free carrier absorption (FCA). Different types of 

nonlinearities have different response times, and for the purpose of this thesis, we will 

categorize them as instantaneous and non-instantaneous nonlinearities. Instantaneous 

nonlinearities such as the Kerr effect and TPA have very fast response time in the order 

of a few femtoseconds.  On the other hand, FC induced nonlinear effects (FCD and FCA) 

and thermo-opitc effect have much slower response times which are limited by the rates 

of FC recombination (ps to ns) or by thermal heat dissipation (s to ms) [5].  These 

effects are thus characterized as non-instantaneous. 

1.3.3 Nonlinear Dynamic Systems 

The temporal behaviors of a nonlinear MRR can be analyzed by treating the device as a 

nonlinear dynamic system.  In general, a given system is dynamic if its state spaces 
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evolve with time according to a transformation rule.  Two types of transformation rules 

exist which determine the behavior of the dynamic system.  Continuous-time systems are 

governed by equations that describe the time derivatives of the system variables in terms 

of their current and past values.  In this case, the system variables vary continuously in 

time. For example, the equation of motion describing the path of the earth in the solar 

system is a continuous dynamical system.  In discrete-time systems, the transformation 

rule is a set of equations which specify how the new values of the system variables are 

updated from the values at the current and discrete time points in the past. 

A set of equations describing a continuous-time dynamical system can have the following 

form 

    txftx  . (1.6) 

In the above equation, x is a state containing the system variables and f is a given 

function of the system variables.  A set of equations describing a discrete-time dynamical 

system can have the following form 

 tt n1n
xFx 


 (1.7) 

In the above equation, the function F updates the value of x at the next time step, 
1n tx


, 

based on the value at the current time step, tn
x .  The function F is also referred to as an 

iterated map which takes the system from one-time step to the next. 

A nonlinear dynamical system is one whose function f or F is a nonlinear function of the 

state variable.  In a nonlinear dynamical system, the output is not necessary a single state, 
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i.e., multiple outputs can result from a single input.  For example, a dynamical system is 

bistable if it has two possible stable states for a given input.  Also, a system may fluctuate 

periodically between two or more states.  This phenomenon is known as self-pulsation.  If 

there is no pattern for the fluctuations between the different states, the dynamical system 

is said to be in a chaotic state and the output of the system is very sensitive to the initial 

condition.  The behaviors of a nonlinear dynamic system can be determined by applying 

linear stability analysis around a fixed point of the system.  For a linearized dynamical 

system, the location of the poles in the s-plane (for continuous time) and Region of 

Convergence (ROC) (for discrete time) determines the dynamical behavior of the system.  

This procedure will be used throughout this thesis to investigate the nonlinear dynamics 

of MRR devices. 

1.4 Research Objectives 

The aim of this thesis is to investigate the nonlinear dynamics in single and coupled 

MRRs with instantaneous and non-instantaneous nonlinearities.  The specific objectives 

of the research are as follows: 

 We perform a comparison between the EC and PC formalisms for predicting 

instability in a single MRR with instantaneous Kerr nonlinearity.  The 

comparative study will help us understand the differences between these two 

models and gain further insights into the physics of self-pulsation phenomena. 

 We aim to formulate a PC model for analyzing instability in a single MRR with 

FC induced nonlinearity.  We are particularly interested in exploring high-order 

instability with the aim of overcoming the FC lifetime limit for reaching self-

pulsation in silicon MRRs. 

 We extend the EC and PC formalisms to develop a transfer matrix method to 
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study instability in a chain of coupled MRRs with instantaneous and non-

instantaneous nonlinearities.  The aim is to exploit the long nonlinear interaction 

lengths in these structures to reduce the power thresholds required to reach self-

pulsation and Ikeda instability.  Currently, the power thresholds for reaching SP 

and Ikeda instability typically exceed the limit that can be handled by silicon 

integrated photonic devices.  It is thus of practical interest to reduce the power 

requirement to more realistic levels. 

 The transfer matrix method developed above is suitable only for short chains of 

coupled MRRs.  To analyzing spatiotemporal dynamic instabilities in a long chain 

of coupled MRRs, such as in a nonlinear CROW waveguide, we aim to develop a 

hybrid EC-PC formalism based on the Coupled Map Lattice (CML) theory.  The 

formalism will allow us to study the spatiotemporal field patterns in extended 

chains of coupled MRRs with instantaneous nonlinearity.  

 In nonlinear MRR devices with FC induced nonlinearity, the FC lifetime is a 

critical parameter influencing the nonlinear dynamics of the device.  In order to 

better understand the influence of free carriers on light propagation in a silicon 

waveguide, especially at moderate to high input optical powers, we aim to 

develop a model and numerically investigate the relaxation time constant of the 

transmitted optical power in a silicon waveguide due to various FC recombination 

mechanisms.  We will perform power transmission experiments with silicon 

waveguides under pulse width modulation excitation to validate the simulation 

results and the model. 

1.5 Thesis Organization 

This thesis is organized into six chapters.  In Chapter 2, we study in detail the nonlinear 

dynamics of a single MRR predicted by the EC and PC models.  Using the PC model, we 

show for the first time that the high-order self-pulsation can occur in a silicon MRR due 

to Kerr and FC induced nonlinearities.  In Chapter 3, we investigate the nonlinear 

dynamics of short chains of coupled MRRs using the EC and PC formalisms.  We will 
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present a transfer matrix method which allows us to analyze the stability of short chains 

of nonlinear coupled MRRs.  In Chapter 4, we derive a Coupled Map Lattice formulation 

to describe long and infinite chains of nonlinear coupled MRRs.  The formulation enables 

us to we study nonlinear optical propagation in extended spatial networks comprising of 

coupled MRRs.  In Chapter 5, we investigate the effect of various FC recombination 

mechanisms on the relaxation time of the optical power in a silicon waveguide through 

numerical studies and experimental measurements.  Chapter 6 concludes the thesis with a 

summary of the research and our contributions, and provides suggestions for future work. 
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2 Nonlinear Dynamics in a Single Microring Resonator  

Over the past two decades, integrated photonics has attracted a lot of attention for 

applications in optical information technology because of the deep miniaturization and 

high level of integration these devices can offer [63].  Among the different candidate 

materials for integrated photonic circuits, silicon has emerged as an important photonic 

material because of its compatibility with the CMOS technology and low cost of 

fabrication [63].  Various passive and active silicon integrated photonic components such 

as couplers, microring resonators, intensity and phase modulators, Raman lasers and 

photodiodes have been developed.  For nonlinear optics applications, silicon can provide 

a large nonlinearity through the TPA and FCD effects.  However, the response time of 

this nonlinearity is limited by the FC lifetime, which may not be fast enough for certain 

applications.  An alternative photonic material which has low loss at the 

telecommunication wavelengths and large instantaneous Kerr effect is chalcogenide glass 

[64].  Both silicon and chalcogenide have high refractive indices, which enable strong 

light confinement in the waveguide core leading to enhanced nonlinear effects.  For linear 

device operations, the strong optical nonlinearity can cause unwanted effects such as 

crosstalk between signals [65] and signal distortion [66].  On the other hand, these 

nonlinear effects have also been exploited for applications such as all-optical switching 

and optical logic gates [5, 18, 24, 67, 68].  

Among various photonic components, those with an internal or external feedback 

mechanism can exhibit rich nonlinear dynamic behaviours such as bistability, self-
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pulsation (SP), Ikeda instability (or period doubling), and even chaos [14-16, 21, 22, 50, 

51].  These phenomena can potentially be exploited to build components for coherent and 

incoherent optical systems, such as thresholders, discriminators, high-frequency optical 

clocks and random sequence generators [69-71].  In addition, feedback leads to a large 

buildup of optical intensity inside the device through resonance, which enhances the 

optical nonlinearity and reduces the optical power requirement.  Among various 

integrated photonic devices with built-in feedback mechanisms, microring resonators are 

simple to fabricate and have high Q factors and simple coupling scheme.  For this reason, 

we will focus mainly on MRR devices in this thesis, although the analyses can also be 

extended to other types of optical resonators such as Fabry-Perot resonators and photonic 

crystal cavities. 

In a nonlinear system with feedback, the ratio of the relaxation time constant of the 

nonlinearity to the feedback delay (e.g., roundtrip delay in an MRR) determines the 

different oscillation behaviours, as discussed in detail by Silberberg et.al. [48].  If the 

nonlinearity relaxation time constant is much longer than the feedback delay, SP 

oscillations occur.  In this case, a high-intensity input CW signal will generate a train of 

optical pulses with a variable period of oscillation.  In particular, the oscillation 

frequency highly depends on the relaxation time constant of the nonlinearity and the 

linear phase detune of the resonator [14, 21, 22]. In the opposite case where the relaxation 

time constant of the nonlinearity is much shorter than the feedback delay, Ikeda 

instability or 2n-period doubling can occur.  The oscillation period in this case is exactly 

equal to 2n (n = 1, 2, 3,…) of the feedback delay and is independent of the input power, 

phase detune and other physical linear and nonlinear parameters of the structure [16, 
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50, 51].  This type of oscillations can be observed in a feedback system with 

instantaneous nonlinearity such as chalcogenide or fused silica MMR [15]. 

There has recently been a resurgence in research interest in self-pulsation and period 

doubling oscillations in nonlinear optical systems, with various theoretical and 

experimental studies reported by different research groups.  Abrams et. al. demonstrated 

bistability and self-pulsation in an ultra-small volume silicon microdisk [72].  The 

observed threshold input power for Bistability (BI) and SP was 45µW and 120µW, 

respectively.  Although the source of nonlinearity is due to free carriers, the fact that the 

SP frequency was only about 1MHz reveals that the oscillations were caused by the 

thermo-optic effect with the heat generated from free carrier absorption (FCA) [72].  

Zhang et. al. demonstrated numerically and experimentally bistability and SP in a 10µm-

radius silicon MRR.  Again the observed SP was due to the thermo-optic effect with the 

oscillation frequency in the 8-11 MHz range for input powers of 65-121 mW [73].  

Despite using a reverse-biased PIN diode in the MRR to reduce the FC lifetime to 12 ps, 

the authors were unsuccessful in achieving high-speed SP caused by FCD.  They believed 

that such high-frequency SP was not observable because of the low extinction ratio of the 

MRR due to the short FC lifetime.   

Chen, Armaroli, and Vaerenbergh analyzed in detail bistability and self-pulsation in an 

MRR with finite nonlinear relaxation time [14, 21, 22, 54].  They showed that an upper 

limit of the relaxation time exists for SP.  However, since their analysis was based on the 

mean field method (also known as the EC method), they could not predict Ikeda 

instability in the device.  As demonstrated by Ikeda in his original paper on the 2n-period 

oscillation phenomenon [15], a time delay due to a feedback mechanism must be 
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introduced into the system in order for this type of oscillations to exist.  It was Gibbs et. 

al. who first demonstrated period doubling in an electro-optical hybrid bistable device 

[50].  Subsequently, Nakatsuka et. al. also showed period doubling in a ring cavity with 

an optical fiber as the nonlinear medium [51]. However, there has not been any 

successful experimental demonstration of Ikeda oscillations on an integrated photonic 

platform, mainly because of the prohibitively high optical power required to observe such 

oscillations. 

In this chapter, we will examine in detail the nonlinear dynamics in a single MRR in the 

presence of instantaneous and non-instantaneous nonlinearities.  We will first perform a 

comparison between the EC model and the PC model in predicting instability in a 

nonlinear optical device with feedback, such as an MRR.  We show that, for the case of 

non-instantaneous nonlinearity, the PC model also predicts an upper limit of the 

nonlinear relaxation time constant for SP to occur, but this value is higher (thus making 

the constraint less strict) than the value predicted by the EC model [21, 22].  By 

comparing the results of the two models, we provide an explanation why high-frequency 

instability such as period doubling and free carrier induced SP have not been observed in 

integrated optics, such as in a silicon MRR. We also provide clarification in section 2.2 

on low extension ratio of SP effect in MRR provided by [73] for not observing of SP in 

MRR due to FCD is not accurate. 

This chapter is organized as follows.  In Section 2.1 we apply the EC and PC formalisms 

to study nonlinear dynamics of a single MRR with instantaneous Kerr nonlinearity.  This 

system is characterized by the fact that the relaxation time of the nonlinearity is shorter 
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than the cavity roundtrip time.  As a numerical example, we will consider an MRR made 

of chalcogenide glass, which has a large Kerr coefficient with ultrafast response time.  In 

Section 2.2, we will investigate the nonlinear dynamics of a single MRR with non-

instantaneous nonlinearity, which is characterized by a relaxation time that is longer than 

the cavity roundtrip time.  An important device which exemplifies this system is a silicon 

MRR, in which the nonlinear effect is dominated by FCD.  We will study the influence of 

the FC lifetime and FCA on the nonlinear dynamics of the device, with the aim of 

assessing the feasibility of achieving these behaviours in a practical device.  In particular, 

we will show that high-order instability may provide a promising route to observing 

nonlinear dynamics in a silicon MRR, allowing these effects to be exploited for practical 

applications.  We will conclude the chapter in Section 2.3 with a summary. 

2.1 Nonlinear Dynamics in a Single MRR with Instantaneous 

Nonlinearity 

Figure 2.1 shows a single MRR with radius R coupled to a straight waveguide with field 

coupling coefficient κ1.  The coupling strength can be adjusted by varying the dimensions 

of the microring and bus waveguides, as well as the gap separation between them [74].  

We assume the microring waveguide is made of a high-index material with instantaneous 

nonlinearity, such as the Kerr effect in silicon or chalcogenide glass. 

 

Figure 2.1, A Unidirectional Microring Resonator (MRR) 
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There are two main approaches to analyze the nonlinear dynamics of the MRR: the EC 

model and the PC model.  In the EC model, we treat the MRR as a lumped RLC network 

which supports a single resonance mode. On the other hand, the PC model takes into 

account the distributed nature and the time delay of the traveling wave around the 

microring.  In this case, the microring supports an infinite number of resonance modes. 

The differences in the resonance spectra of the power in an MRR obtained from the EC 

and PC model are shown in figure 2.2 for an MRR with roundtrip loss art of 0.98, radius 

R of 100μm and coupling strength κ1 of 0.4. 

 

Figure 2.2, The stored power in the MRR vs linear phase detune 

The figure shows the stored power Pa,1 in an MRR as a function of linear phase detune 

ΔφL,1.  The EC spectrum (shown by red solid line) has only one resonance mode and an 

infinitely wide FSR, while the PC spectrum (black dashed line) consists of an infinite 

comb of resonances equally spaced by a fixed FSR (assuming no waveguide dispersion).  

As a result, the EC model is valid for analysis involving only a narrow range of 

frequencies surrounding a resonance mode of interest, while the PC model has more 

general validity and can predict phenomena not accessible with the EC model.  In this 

section, we will apply each method to analyze the nonlinear dynamics of an MRR with 



  27 

instantaneous nonlinearity. 

2.1.1 Energy-Time formalism of a Single Microring Resonator (EC model) 

We consider the behavior of the MRR near a resonance frequency ω1, which allows us to 

model the resonator by an RLC circuit [75].  We denote â1(t) and |â1(t)|
2 as the wave 

amplitude and stored energy in the MRR, respectively.  Instead of the field coupling 

coefficient 
1  we define the energy coupling coefficient 

2

1  as the rate of energy 

exchange between the bus waveguide and the resonator [74]. The energy coupling 

coefficient is related to the field coupling coefficient 1  as 
rt

2

12

1
T


 , where Trt is the 

roundtrip time of the MRR [73].  The photon lifetime in the MRR, τph,1, is due to the 

energy loss through the coupling coefficient μ1 and the intrinsic losses in the cavity (i.e., 

linear absorption and scattering loss):  

2

1
2

1
0

1,





 g

ph

v  (2.1) 

In the above equation, α0 is the linear loss coefficient and vg = C/ng
 is the group velocity 

of light in the microring waveguide (C is the speed of light in free space and ng is the 

group index).  The rate of energy change in the MRR can be described in the time domain 

by [74], 
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 , (2.2) 

where  tPin
ˆ  and ω1 are the square of input optical field applied to the bus waveguide and 
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resonance frequency of micoring resonator, respectively.  Writing â1(t) in terms of the 

slowly varying envelop a1(t) and a fast oscillating wave at frequency ω,     tj

11 etata 


 , 

we substitute into equation (2.2) to get 

 
   tPjta

1
j

dt

tda
in11

1,ph

1
1 
















 , (2.3) 

where Δω1 = ω1 – ω and Pin(t) are the frequency detuning from the resonance and input 

optical power, respectively .  Equation (2.3) describes the linear dynamics of the slowly 

varying signal envelope a1(t).   

We can introduce nonlinearity into the equation by including the resonance frequency 

shift caused by the Kerr effect. When the microring waveguide possesses instantaneous 

Kerr nonlinearity with Kerr coefficient n2, the refractive index of the ring waveguide 

depends on the intensity of the optical field as n(t) = n0 + ΔnNL, where n0 is the linear 

effective index of the waveguide and   rteff

2

12NL TAtann   is the nonlinear index 

change due to the Kerr effect.  In the expression for ΔnNL, Aeff is the effective mode area 

of the waveguide and Trt=2πR/vg is the roundtrip delay time.  The term |a1(t)|
2/Trt 

represents the power flowing through a cross-section of the microring waveguide.  The 

nonlinear index change causes a resonant frequency shift of the MRR given by δωNL = 

ω1ΔnNL/ng.  Including this nonlinear frequency shift in equation (2.3), we obtain the 

equation describing the nonlinear dynamics of the MRR as [74] 

 
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dt
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


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 , (2.4) 

where we have defined the instantaneous nonlinear coefficient γKerr as γKerr = n2(ngAeffTrt)
-
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1.  To study the stability of the nonlinear MRR, we first find the stationary solution af,1 of 

the above equation by setting 
 

0
dt

tda 1,f
  and solving for af,1 to get  

 
2

1,ph

22

1,fKerr11

in

2

1
2

1,f 1
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P
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
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
 . 

(2.5) 

Next we apply a small perturbation εa,1(t) to the stationary state to get a1(t) = af,1 + εa,1(t).  

By substituting this perturbative solution into equation (2.4) and keeping only terms of 

first order in εa,1, we obtain the following characteristic equation: 
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 (2.6) 

The roots of the above equation in the Laplace domain are the eigenvalues s1 and s2 

which determine the dynamic behavior of the energy in the MRR: 

  2

1,f1Kerr1

2

1,f1Kerr1

1,ph

2,1 a3aj
1

s 


  (2.7) 

In particular, the stationary point is stable if the real parts of both eigenvalues are 

negative.  On the other hand, if one of the eigenvalues lies in the right-hand side of the s-

plane, the energy in the MRR exhibits unstable behavior.  In this case, if the eigenvalue is 

real, the energy has two bistable values.  If the eigenvalue is complex, the MRR exhibits 

self-pulsation at a frequency determined by the imaginary part of the eigenvalue [21]. 

From equation (2.7) we find that the eigenvalues are complex but their real parts (given 

by -1/τph,1) are always negative if the frequency detune Δω1 is outside the range -

3γKerrω1|af,1|
2 < Δω1< - γKerrω1|af,1|

2.  Thus, the system is always stable outside this 



  30 

frequency range and never experiences instability.  On the other hand, within this 

frequency range, the eigenvalues are real and one of them is positive, so that the MRR 

exhibits bistable behavior.  Thus, according to the EC model, SP never occurs in an MRR 

with instantaneous Kerr nonlinearity. 

2.1.2 Power-Space formalism of a Single MRR (PC method) 

We consider again the MRR device in figure 2.1.  We denote the field amplitude of the 

optical wave propagating in the microring waveguide as A1(t) and its power by |A1(t)|
2.  

The power coupling coefficient κ1
2 expresses the fraction of power coupled between the 

bus waveguide and the resonator waveguide.  Referring to figure 2.1, we can relate the 

fields A1(t) and D1(t) in the MRR to the input and output fields Ein(t) and Eout(t) via the 

universal coupling matrix [61], 
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*
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11,cp

1

out
. (2.8) 

For a lossless coupling junction, the field coupling coefficient κ1 and transmission 

coefficient τcp,1 satisfy the power conservation law [61], 

1
2

1

2

1,cp   (2.9) 

The j factor in the matrix equation (2.8) expresses the fact that the coupled fields 

experience a π/2 phase shift. Also, one of the main assumptions of the universal coupling 

model is that the coupling junction doesn't have a physical length.  Thus, there is no 

phase shift in the transmitted fields, and both the transmission and coupling coefficients 

are real constants [76]. 
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Using the fact that the field D1(t) is a delayed version of the field A1(t) by exactly one 

roundtrip, we obtain the following relation between A1(t) and the input field Ein(t):  

     rtin11

j

rt1 TtEjtAeTtA 1,L 


   (2.10) 

where art is the amplitude attenuation per roundtrip, ΔφL,1 = 2πRK0 is the linear roundtrip 

phase detune, K0 is the wave number of the field inside the waveguide and γ = artτcp,1.  

Equation (2.10) describes the time evolution of the field as it circulates around the MRR.   

For an MRR with Kerr nonlinearity, the nonlinear index change ΔnNL(t) adds an 

intensity-dependent contribution to the roundtrip phase given by φNL,1(t) = ξKerr|A1(t)|
2, 

where the nonlinear phase coefficient is ξkerr = K0vgTrtn2/Aeff.  Including this nonlinear 

phase in equation (2.10), we get 

        rtin1

tj

1rt1 TtEjetATtA 1,NL1,L 


. (2.11) 

The above equation describes how the field in the nonlinear MRR is updated after each 

roundtrip.  It is called the iterated map of the nonlinear dynamic system. 

To determine the stationary solution (or fixed point) of the iterated map, we set A1(t+Trt) 

= A1(t) = Af,1 in equation (2.11) and solve for Af,1 to get 

1,fj

in1
1,f
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
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
 , (2.12) 

where φf,1 is the total phase detune of the stationary state, φf,1 = ΔφL,1+ξKerr|Af,1|
2.  To 

determine the stability of the stationary solution, we add a small perturbation εA,1(t) to the 

field amplitude, A1(t) = Af,1 + εA,1(t), and substitute it into equation (2.11).  By linearizing 

the exponential term and keeping only terms of first order in εA,1, we obtain 
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The above equation with its complex conjugate part forms a dynamic system such as 

   tJTt rt A,1A,1 εε  .  The vector of  tA,1ε  consist of  tA 1,  and C.C of  tA 1, . The 

eigenvalues of J determine the nonlinear dynamics of the field inside the MRR: 

  1,
2

1,ker0

22

002,1 1Re; fj

fr eAjxxxz





  (2.14) 

The stationary solution is stable if the magnitudes of both eigenvalues are less than 1. If 

the magnitude of either eigenvalue exceeds 1, the following instabilities can occur [77]: 

I.  If one of the eigenvalues is real and greater than 1, the field inside the MRR exhibits 

BS behavior. 

II. If one of the eigenvalues is real and less than -1, Ikeda instability occurs.  This type of 

instability is also known as period doubling and corresponds to an oscillatory solution 

around the stationary state with a period of twice the roundtrip delay time Trt.  

III. If the eigenvalues are complex with magnitude greater than 1, SP occurs with the 

period of oscillation given by 2πTrt/Ф, where Ф is the phase angle of the eigenvalue. 

Equation (2.14) suggests that the optical field has bistable solutions if 1+γ2 > 2x0 and 

exhibits Ikeda instability if 1+γ2 < -2x0. 

Ikeda and SP instabilities can be considered as being caused by a spontaneous breaking 

of time symmetry due to nonlinearity.  We can explain Ikeda instability in terms of 

spontaneous four-wave mixing of two adjacent modes of the MRR [78].  When an input 

signal Eq with frequency ωq is tuned to approximately half way between two resonant 

modes ωn and ωm, at high enough intensity, two new frequency components En and Em 

are spontaneously generated at the resonant frequencies ωn and ωm.  These two frequency 

components beat with each other to form modulations in the cavity field with period 
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equal to 2Trt.  On the other hand, SP is caused by energy exchange and beating between 

two linear coupled modes [36]. Thus, SP does not occur in first order systems such as a 

single MRR with instantaneous nonlinearity.  

2.1.3 Numerical Results 

In this section, we present numerical results obtained from the EC and PC stability 

analyses to compare the nonlinear dynamic behaviors predicted by the two models.  We 

choose the example of an MRR made of chalcogenide glass (As2Se3), since this material 

has a large Kerr nonlinear coefficient (n2 = 11×10-14 cm2/W) with ultrafast response time 

and negligible two-photon absorption in the telecommunication window (L and C bands) 

[79].  The waveguide structure is a channel waveguide with As2Se3 as the core material 

(index = 2.743) with a height of 320nm and a width of 500nm.  The waveguide lies on a 

SiO2 substrate (index = 1.46) with air cladding (index = 1). We performed a full vectorial 

modal analysis on the waveguide to find the effective index, group index and effective 

area of the fundamental TE mode [80]. The optical field distribution of the fundamental 

transverse electric (TE0) mode is shown in figure 2.3.  At the 1.55 µm wavelength, the 

effective index neff and group index ng of the waveguide are 2.37 and 3.36, respectively.  

The effective mode area is Aeff = 0.1328μm2.  Because the field distribution is symmetric 

regarding x direction, we only demonstrated half of the waveguide in this direction. 
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Figure 2.3, Optical Field distribution in the cross-section of Chalcogenide waveguide for fundamental TE0 mode 

(Ex)  

We choose the radius of the MRR to be R = 100μm and power coupling coefficient κ1 = 

0.4.  The roundtrip amplitude attenuation factor is assumed to be art = 0.98.  We 

performed stability analysis of the MRR using both the EC and PC models.  Figure 2.4(a) 

and (b) show the stability phase map plots of the device obtained from the two models.  

The stability phase map shows the regions of stable response (blue), bistable response 

(yellow) and Ikeda oscillations (brown) as functions of the linear phase detune (ΔφL,1) 

and the power in the MRR (the stored power Pa,1).  From the stored power in the 

microring, we calculated the input power Pin using equations (2.5) and (2.12) for the EC 

and PC models, respectively.  These values are shown on the contour lines in the figures.  

 
(a) 
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(b) 

Figure 2.4, Phase map of stored power inside a single MRR vs linear phase detune for (a) EC model (b) PC 

model. 

The stability phase maps obtained from the EC and PC models have three significant 

differences. The first and most significant difference is that the EC model predicts only 

bistable behavior.  It fails to predict Ikeda instability.  As explained in the previous 

sections, the EC model accounts for only a single resonance mode so that Ikeda 

instability, which relies on adjacent resonance modes being generated and beating with 

each other, cannot occur within the EC formalism.  The second difference is that the PC 

stability map is periodic with respect to the linear phase detune so that multiple BI and 

Ikeda instability regions can exist for a fixed stored power.  Finally, the EC model is not 

valid for frequencies far from the resonance or at high powers, which explains the 

discrepancy in the first bistable region predicted by the EC and PC models.  These results 

show that the EC model is not suitable for analyzing the nonlinear dynamic behavior of 

MRRs at large linear phase detunes or high input powers. 
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(a) 

  

(b) 

Figure 2.5, The stored power inside the MRR as a function of input power for linear phase detunes -0.2π (black 

solid line) and -0.4π (blue dashed line).  (b) Plot of threshold power of Ikeda instability vs. linear phase detune. 

To be able to achieve in practice the various nonlinear dynamic behaviors predicted in the 

stability map, the powers required to reach these behaviors must be within the practical 

limits that an integrated photonic MRR can handle.  To examine this issue more closely, 

we plot in figure 2.5(a) the stored power in the MRR (i.e., the stationary solutions |Af,1|
2) 

as a function of the input power for two different phase detune values, ΔφL,1 = -0.2π 

(black solid line) and ΔφL,1 = -0.4π (blue dashed line).  The stationary solutions 

corresponding to Ikeda instability are shown by the stars.  The plot shows that for a given 

input power, the stored power in the MRR can take on multiple values, with some of 

these values corresponding to stable solutions while others to bistable solutions or Ikeda 

Minimum Threshold of Ikeda  
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oscillations.  The device is said to exhibit multi-stability.  The plot also shows that to 

reach the first Ikeda region, the input power must be increased past the first “bistability 

knee” as indicated in the plot.  Similarly, to reach the second Ikeda region, the input 

power must be increased past the second “bistability knee”, and so on.  The first 

“bistability knee” corresponds to an input power of 270 mW, while the second 

“bistability knee” corresponds to an input power of around 230 W (for ΔφL,1 = -0.2π). 

The threshold of 270 mW indicates that system enters the Bistable region of operation at 

relatively small power.    

These optical powers are simply too large for integrated photonic devices to handle.  For 

this reason, Ikeda instability has not been observed in an integrated optical resonator. 

Comparison of the stability curves for ΔφL,1 = -0.2π (solid line) and ΔφL,1 = -0.4π (dashed 

line) shows that the powers required to reach the “bistability knees” highly depend on the 

linear phase detune.  In general, increasing the linear phase detune from the resonance 

decreases the amount of optical power stored in the MRR.  So, to achieve the same 

nonlinear effect, we must pump more power into the MRR.  Thus we expect the threshold 

power for reaching bistability to increase with increasing linear phase detune.  This trend 

is also observed in the phase maps in figure 2.4.   

In figure 2.5(b) we plot the threshold input power required to reach Ikeda instability as a 

function of the linear phase detune.  From the plot we find that we can reach Ikeda 

instability with a minimum input power of 6W.  The stationary solution corresponding to 

this threshold value lies on the Ikeda instability branch above the second “bistability 

knee”, as indicated in figure 2.5(a).  Thus, in order to reach this Ikeda threshold, we must 

first increase the input power above 230 W past the second “bistability knee”, which as 
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explained above is not practical.  In Section 2.2.3, we will propose two alternative routes 

to reach higher-order instability without requiring prohibitively high input CW optical 

power.  The plot in figure 2.5(b) also indicates that the minimum threshold power for 

reaching Ikeda instability occurs at linear phase detunes close to ±π.  For cavity phase 

detunes near , the two adjacent modes of the cavity have the highest probability of being 

spontaneously generated through FWM to form period-doubling oscillations [78].   

To verify the results of the stability analysis based on equations (2.7) and (2.13), we 

performed steady-state analysis of the MRR for a fixed linear phase detune using both the 

EC and PC formalisms.  Figure 2.6 shows the stored power in the microring (Pa,1) as a 

function of the input power (Pin) for a fixed linear phase detune ΔφL,1 = -0.2π.  The time-

domain simulation results are in good agreement with the stability curve in figure 2.5 (for 

linear phase detune ΔφL,1 = -0.2π).  Both the EC and PC simulations predict bistable 

behavior for the range of input powers from 72mW to about 725 mW.  Beyond this range 

the device is in the stable regime again, until the input power exceeds 27W, at which 

point the PC model predicts the emergence of Ikeda instability.  For input powers above 

30 W, the field becomes chaotic. 

 
Figure 2.6, The stored optical power Pa, 1 versus input power Pin for single MRR with linear phase detune -0.2π 
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As shown in figure 2.6, the field inside the MRR takes multiple values in the Ikeda 

instability region (Pin > 27 W).  To verify that this corresponds to oscillation behavior, we 

performed time domain simulation of the device by solving equation (2.11) numerically 

using the finite difference method.  In this approach, we discretized the circumference of 

the MRR into Nz equal arcs of length Δz = 2πR/Nz.  The linear phase delay, nonlinear 

phase shift coefficient and linear loss in each arc are given by ΔφL,1/Nz, ξkerr/Nz, and 

zN
rta , respectively.  With these modifications, the propagation of an optical signal in the 

MRR is calculated from the recursive equation 
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In the above equation, nt and nz are the index of the discrete time and arc segment, 

respectively.  At the end of each roundtrip, nz = Nz, we apply the boundary condition at 

the coupling junction, 

t
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t n

N1,cpin1

n

1 AEjA   (2.16) 

Figure 2.7(a) and (b) show the simulation results for input power Pin = 15 W and Pin = 27 

W, respectively.  The linear phase detune is ΔφL,1 = -0.2π for both simulations.  For Pin = 

15 W, the power in the MRR is stable, which is also predicted by the PC stability curve in 

figure 2.6.  However, for Pin = 27 W, the power in the MRR oscillates between two 

extremum values of 3 W and 5.8 W, with an oscillation period exactly equal to two 

roundtrips, as shown by the inset of figure 2.7(b).  This period-doubling oscillation is 

predicted by the PC stability curve in figure 2.6. 



  40 

 

(a) 

 

(b) 

Figure 2.7, The stored power inside the microring Pa1 versus round trip indices for a single MRR with linear 

phase detune -0.2π (a) Pin=15W, (b) Pin=27W 

A power of 27 W for observing of Ikeda instability is too high for an integrated photonic 

device as the chip would be damaged by the laser.   

The laser damage threshold highly depends on the waveguide dimensions (W and H) and 

Laser operation mode (CW or pulse).  For a Chalcogenide fiber with conventional 

diameter of 10 µm, it can handle optical power in the range of 5W [79]. 

It is possible to reduce this power, for example, by designing the waveguide to have 

stronger mode confinement so that the nonlinear interaction between photons is enhanced 

per roundtrip.  Also, by using an MRR with a larger radius, it may also be possible to 



  41 

reduce the threshold power due to the increased roundtrip interaction length as well as 

increased effective nonlinear coefficient ζKerr. This is verified by the simulation results in 

figure 2.8, which shows the dependence of the threshold of Ikeda instability on the 

microring radius R. The propagation loss is set to a fixed value of 0.087 dB/100μm 

(corresponding to a roundtrip amplitude attenuation of 0.98 in an MRR with 100μm 

radius).  Although the threshold power can be substantially reduced as R is increased, it is 

still not possible to reduce the required power for observing Ikeda oscillations in a single 

MRR with instantaneous Kerr nonlinearity to a level that can be tolerated by integrated 

optics devices (e.g., less than a few hundred watts).   

 

Figure 2.8, Dependence of the threshold power of Ikeda instability on the MRR radius 

Although for the smaller radius MRR, we need more power to show Ikeda instability but 

this mechanism is promising for generation of the THZ periodic signal.  For example, by 

the state of art design of MRR with radius of 1 µm and round-trip delay of 83 fs, one can 

generate optical signal with oscillation frequency of 10 THz. The oscillation frequency 

highly depends on the radius of MRR and we can generate arbitrary frequency 

components by varying the radius of MRR.  
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2.2 Nonlinear Dynamics in a Single MRR with Non-Instantaneous 

Nonlinearity  

In the previous section, we showed that a single MRR with instantaneous Kerr 

nonlinearity can only exhibit oscillations of the Ikeda type, and the threshold power to 

achieve this instability is too large for integrated photonic devices.  The challenge with 

this type of devices is that the Kerr effect in most dielectric optical materials is very 

weak.  On the other hand, in a semiconductor such as silicon operating at the 

telecommunication wavelengths, significant two-photon absorption takes place which 

generates a large free carrier density.  These free carriers in turn give rise to optical 

nonlinearity through the free carrier dispersion and absorption effects.  Depending on the 

input power level and free carrier lifetime, free carrier induced nonlinearity could be two 

orders of magnitude larger than the Kerr effect.  This strong FC induced optical 

nonlinearity can potentially be exploited to achieve optical instabilities in an MRR at low 

powers.  On the other hand, the time response of the nonlinear medium is limited by the 

FC lifetime and the free carriers also cause excess loss due to FCA.  These effects have a 

strong influence on the nonlinear dynamics of the device.  In this section, we will study 

the nonlinear dynamics of an MRR with non-instantaneous nonlinearity.  The material 

chosen for the device is silicon, which is widely used in integrated optics [73].  We will 

perform stability analysis of a silicon MRR in the presence of FCD and FCA using both 

the EC and PC models and compare their results. 

2.2.1 Energy-Time formalism of a Single MRR (EC method) 

We can modify the EC description of a single nonlinear MRR (equation (2.4)) to include 
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nonlinearity caused by FCs generated by TPA in the resonator.  This is accomplished by 

including a resonant frequency shift due to the nonlinear index change in the MRR 

caused by the FCs.  Let N1(t) be the time-dependent FC density generated in the 

microring, the nonlinear index change due to FCD is ΔnNL = σFCDN1(t), where σFCD is the 

free carrier dispersion volume.  Since the resonant frequency shift due to FCD is given by 

δωNL= ω1ΔnNL/ng, we can modify equation (2.4) describing the time evolution of the 

energy in the MRR as follows [14]: 
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The generation of the FC density in the MRR by TPA can be modeled by the rate 

equation  
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where βTPA is the TPA coefficient [m.W-1], ħω1 is the photon energy and τfc is the FC 

lifetime due to various recombination processes.  Note that in equation (2.17.a) we have 

neglected the resonant frequency shift due to Kerr effect because it is much smaller than 

the FCD-induced shift in a silicon MRR at moderate input optical powers.  In addition, 

we have also neglected loss in the resonator due to FCA. 

To determine the behaviour of the MRR at a stationary state, we perform stability 

analysis around the stationary solutions (af,1, Nf,1) by adding small perturbations:  a1(t) 

=af,1+εa,1(t) and N1(t)= Nf,1+εn,1(t).  The fixed points of equation 2.17, Pin and Nf,1, are as 
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follows: 
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The above coupled equations suggest that finding Pin and Nf,1 from a given value of af,1 is 

much easier than solving for a fixed value of af,1 from a given Pin.  Substituting the 

perturbed solutions into equations (2.17) and keeping only the first-order perturbation 

terms, we obtain the following characteristic equations:  
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Equation (2.19.a), its complex conjugate, and equation (2.19.b) form a dynamic system, 

dε/dt = Jε, where  = [εa,1(t), ε*a,1(t), εn,1(t)]
T and the Jacobian matrix J is given by 
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We can determine the stability of the MRR dynamic system by applying the Ruth-

Hurwitz stability criterion to the eigenvalues of the Jacobian matrix [77]. The eigenvalues 

are given by the roots of the cubic polynomial which are determined by solving |J-sI|=0, 

as follows, 
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If none of the eigenvalues have a positive real part, the system is stable; otherwise it is 

unstable.  For the unstable case, the energy inside the MRR exhibits bistable behavior if 

the eigenvalues are real and SP if the eigenvalues are complex (nonzero imaginary parts).  

According to the Ruth-Hurwitz stability criterion, we can determine the stability behavior 

of the system based on the coefficients of the characteristic polynomial equation (2.21).  

Since all the coefficients of the polynomial except for the zeroth-order term are always 

positive, the zeroth-order term alone will determine the stability of the system.  For 

unstable solutions, the zeroth-order term defines the nature of the instability, such as 

bistable or SP.  Specifically, for bistable behavior, the following condition must be 
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satisfied: 
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The above inequality shows that the condition for bistability to occur depends on the 

intensity of the stored energy inside the MRR and the linear phase detune.  It is also 

worth mentioning that bistable behavior is nearly independent of the FC lifetime because 

of 1/τfc and ΔωNL,1 terms in equation 2.22. 

On the other hand, the condition for SP to occur is more complicated and the FC lifetime 

plays a significant role in this phenomenon.  The following requirement should be 

satisfied to have SP behavior in a single MRR with non-instantaneous nonlinearity: 
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We can determine the threshold energy inside the MRR and the critical FC lifetime for 

SP to occur by enforcing the equality condition in equation (2.22): 
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By writing 
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The roots of the above quadratic equation (
2
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) determine the upper and 

lower limits of the stored energy for SP to occur.  The critical FC lifetime, which is the 

value fc at which SP ceases to exist, occurs when these two limits merge together, 
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of equation (2.25) is zero, we use this condition to obtain the equation for the critical FC 

lifetime: 
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The above equation is rearranged to obtain a cubic equation for the critical carrier 

lifetime fc: 
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We apply the above analysis to study the nonlinear dynamics of a silicon MRR with the 

parameters listed in Table 2.1.  The MRR is a strip waveguide with dimensions of 320nm 
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× 500nm and air cladding. The nonlinear parameters of silicon are obtained from [81, 82].  

The effective index, group index and effective area of the silicon strip waveguide are 

calculated for the 1.55 m wavelength using a full vectorial mode solver.  Figure 2.9 

shows the stability phase map obtained for the MRR at a fixed phase detune of 0.1π.  The 

map shows the regions of stable (blue), bistable (yellow) and SP (azure) behaviors as a 

function of the power inside the MRR and the normalized FC lifetime τn = τfc/Trt (where 

Trt is the roundtrip time of the MRR).  From the map, we obtain the normalized critical 

FC lifetime for SP to occur to be τc = 152 Trt.  This value is in good agreement with the 

analytical result τc = 151.65 computed using equation (2.27).  This value corresponds to a 

FC lifetime of 1.2 ns, which is in the same range of the FC lifetime in most silicon 

waveguides [81].  In the SP region of the stability phase map, the values of the dotted 

contour lines represent the normalized frequencies of the SP oscillation (defined as 

fsp×Trt).  It is evident that the oscillation frequency depends highly on the FC lifetime and 

the power in the MRR.   

Table 2.1, Parameters of silicon MRR 

Parameter Value Unit 

neff 2.616 - 

ng 4.119 - 

τfc Variable ns 

art .98 - 

R 100 µm 

βTPA 0.75×10-11 m.W-1 

Aeff 0.1328×10-12 μm2 

σFCD 5.3×10-27 m3 

τph,1 190 ps 

κ1 0.4 - 

ΔφL,1 -0.1π Radian 
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In Figure 2.10 we plot the normalized SP frequency as a function of the power in the 

MRR for a fixed FC lifetime value τfc = 1.3ns and linear phase detune of 0.1π.   

 

Figure 2.9, Stability phase map of single MRR with linear phase detune 0.1π 

The plot shows that the threshold power for SP to occur is about 17mW, which is well 

within the practical power range that a silicon MRR can handle.  We observe that the SP 

frequency increases as the power is increased beyond the threshold, suggesting that the 

frequency oscillation can be tuned by varying the input power to the MRR. The 

normalized oscillation frequency is in the range of 0.011 to 0.016, which corresponds to a 

frequency range from 1.16 GHz to 1.85 GHz for a 100μm radius MRR. 

As figure 2.9 shows, the carrier lifetime is a constraint and can be counted as a reason for 

not experimentally observation of this effect in MRR. 
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Figure 2.10, The normalized SP frequency as a function of input power for ΔφL,1=0.1π and τfc = 1. 2ns 

To verify the stability analysis based on first-order perturbation, we also performed the 

time-domain simulations of the MRR by solving equation (2.17) using the finite 

difference method.  We simulated the device with normalized FC lifetime fc/Trt = 140 

(fc=1.23ns), linear phase detune ΔφL,1 = -0.1, and two different stored power levels: Pa,1 

= 45.4 mW and Pa,1 = 205mW.  Eigenvalue stability analysis shows that the device 

exhibits stable behavior at the lower power and SP behavior at the higher power, with an 

oscillation frequency of 1.6249 GHz.  The input powers required to reach these stored 

power levels in the MRR are 23.7 mW and 8.5 mW, respectively. 

In the time-domain simulations, we applied the input power to the MRR and computed 

the stored power in the resonator as a function of time until steady state was reached. The 

results are shown in figure 2.11(a) for the low input power and 2.11(b) for the high input 

power.  We observe in figure 2.11(a) that after an initial transient period, the power in the 

MRR becomes stable at around 40 mW, which is close to the value predicted by the 

eigenvalue analysis.  On the other hand, figure 2.11(b) shows that at steady state, the 

power in the MRR oscillates around a mean value of 150 mW with a frequency of 1.852 

GHz.  This SP frequency is also close to the value predicted by the eigenvalue 

SP  
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analysis, thus validating the first-order perturbation method for predicting the nonlinear 

dynamic behavior of the MRR in the presence of non-instantaneous nonlinearity. 

 
(a) 

 

 

(b) 

Figure 2.11, The Stored power in a single MRR Vs. Time for input power of (a) 23.7mW and (b) 8.5mW. 

Physically, SP in the MRR arises from the periodic interaction between the cavity mode 

and the nonlinear response of the medium.  Silberberg et. al. has studied in detail the 

influence of the relaxation time of the nonlinearity on the SP mechanism in an optical 

cavity [48].  If the nonlinearity relaxation time constant is shorter than the roundtrip delay 

(as in the case of instantaneous nonlinearity), the system exhibits Ikeda instability (or 

period doubling) and SP cannot occur [48].  On the other hand, if the nonlinear time 

constant is longer than the cavity roundtrip time, SP will occur instead of period doubling 

oscillations.  For our example of the silicon MRR with a 100 µm radius, the roundtrip 
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time delay is 8.5 ps whereas the FC lifetime is more than 1ns [81].  We thus expect SP to 

occur but not Ikeda oscillations, and this is confirmed by the results of our stability 

analysis (e.g. the phase map in figure 2.9). 

As the stability analysis and numerical simulations suggest, the power required to reach 

SP in the silicon MRR highly depends on the FC lifetime and the linear phase detune.  

The FC lifetime in silicon is about 1ns, which is in the same range of the maximum 

critical lifetime τc predicted in figure 2.9.  Thus it is not generally difficult to observe SP 

in a silicon waveguide with FC induced nonlinearity. However, our stability analysis in 

this section is based on the EC model, which may not capture the complete nonlinear 

dynamics of the MRR.  In particular, the model does not account for the effects of 

adjacent cavity modes.  These effects can only be studied with the use of the PC model, 

which we will develop in the next section. 

2.2.2 Power-Space formalism of a Single MRR (PC method) 

As predicted by the EC model, free carrier dispersion induces BS and SP in a single 

MRR.  In this section, we show how we can modify the PC model (equation (2.11)) to 

investigate nonlinear dynamic behaviours of an MRR with non-instantaneous 

nonlinearity.  In particular, we show that the device dynamics is governed by a system of 

coupled delay-differential equations, instead of a system of coupled differential equations 

in the EC model (equations (2.17)).  The PC model allows us to investigate high-order 

instability induced by FCD and explore parameter space not available in the EC model. 

In a silicon MRR, FCD and FCA cause a nonlinear phase shift and a nonlinear loss, 

respectively, which can be included in the PC model (equation (2.11)) as follows.  
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Neglecting Kerr effect in the material, we attribute the nonlinear index change in the 

MRR due to free carriers generated from TPA, ΔnNL,1 (t) = ncoreσFCDN1(t)/neff.  This index 

change causes a roundtrip phase detune equal to ΔφNL,1(t) = ΔnNL,1(t)K02πR = 

(ncoreσFCD/neff) K02πR N1(t).  Additionally, free carrier absorption causes nonlinear loss in 

the MRR [22] given by  
   ttN
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.  The FC-induced nonlinear phase shift and 

nonlinear loss are incorporated into equation (2.11) for updating the field in the MRR 

after each roundtrip time Trt as follows:  
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(2.28.a) 

Where γ is τcp1×art. Since the nonlinear roundtrip phase depends on the FC density, it also 

satisfies the rate equation  
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 (2.28.b) 

Equations (2.28.a) and (2.28.b) form a system of nonlinear delay-and-differential 

equations describing the nonlinear dynamics in a single MRR with FC-induced non-

instantaneous nonlinearity.  We can obtain the stationary states of the above nonlinear 

system by setting A1(t+Trt) =A1(t) =Af,1 and dφNL,1(t)/dt = 0.  The stationary state could 

be found as follows: 
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where the stationary roundtrip phase φf,1 is given by φL,1+τfcξFC|Af,1|
4, with the 

parameter ξFC defined as ξFC = 
2

effeff

FCDcoreTPA

CAn

Rn




.  From the stationary solution for the 

field inside the MRR, we can determine the input power applied to the bus waveguide 

from 
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(2.30) 

where g = κ1(1-artαNL)-1 and F = 4artαNL(1- artαNL)-2.  The parameters F and g represent the 

contrast factor and the gain in the MRR at resonance, respectively. 

To study the stability of a stationary solution Af,1, we again apply the stability analysis 

based on first-order perturbation.  Adding a small perturbation of εA,1(t) and εNL,1(t) to 

the field amplitude and nonlinear phase shift, we get A1(t)=Af,1+εA,1(t) and φNL,1(t)=φf,1+ 

εNL,1(t).  By substituting these perturbed values into equations (2.28) and keeping only 

first-order perturbation terms, we have 
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Replacing the ansatz εA,1(t)=A0e
st and εφNL,1(t)=φ0e

st into equations (2.31), we obtain the 

following characteristic equation in the Laplace domain (or z-domain if we set z=esTrt): 
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(2.32) 

Solutions of s with a negative real part correspond to stable fields in the MRR.  On the 
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other hand, if the real part of s is positive, the field exhibits unstable behavior.  In this 

case, SP occurs if s is complex (has a non-zero imaginary part) and bistability occurs if s 

is real.  In Section 2.2.3, we will first investigate the nonlinear dynamics of the MRR in 

the absence of FCA, which greatly simplifies equation (2.32).  The deleterious effect of 

nonlinear loss due to FCA on the device dynamics will be studied in Section 2.2.4. 

2.2.3 Nonlinear Dynamics in the Absence of FCA 

We begin by determining the conditions for bistability and SP to occur in the microring 

resonator when FCA is absent.  The boundaries of the bistability regions can be found 

from the condition that the root s is zero.  In the absence of FCA, we have NL=1 and η = 

0.  In this case, setting s=0 in equation (2.32) gives 

11,f1,NL1,f Bsin2cos   (2.33) 

where B1=(1+γ2)/2γ.  Solution of equation (2.33) gives the threshold values of φNL,1 at 

which bistability begins to occur.  Note that these threshold values do not depend on the 

FC lifetime.  For high-Q microring resonators, B1≈1, in which case equation (2.33) 

reduces to 
1,NL

1,f
2

2
tan 


.  This equation shows that for a given linear phase detune 

ΔφL,1, a pair of roots for φNL,1 exists for each 2π increment of φf,1.  Each pair of roots 

defines the boundaries (or thresholds) of the bistable region for that branch of the stability 

curve. 

For the SP regions, the thresholds occur at the Hopf bifurcation points, which correspond 

to imaginary solutions of s.  Setting s=jω in equation (2.33) and separating the real and 

imaginary parts, we obtain the expressions 
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n211,f /sinBcosBcos   (2.34.a) 

 sin)/1(Bsin2 nn21,f1,NL  (2.34.b) 

where τn=τ/Trt, Ω=ωTrt, and B2=1-γ2/2γ.  The above equations are solved to give the 

threshold values of φNL,1 at which SP begins to occur and the normalized oscillation 

frequency Ω.  The solutions of the coupled equations (2.34) can be sought by writing 
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where m is an integer indicating the branch order.  Figure. 2.12 shows the plots of f1,1 

and f2,1 vs. Ω for an MRR with γ = 0.97 (finesse ғ≈100), linear phase detune ΔφL,1= -

0.1π, and two different values of the normalized FC lifetime, τn = 200 and τn = 2000.   

 
(a) 
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 (b) 

Figure 2.12, The φf,1 vs. the normalized oscillation frequency Ω showing solutions of the SP thresholds for 

different branch orders m. The MRR parameters are γ= 0.97, ΔφL,1= 0.1π, (a) τn= 200 and (b)τn=2000 

 

For each branch order m, a pair of solutions for φF1 exists which defines the lower and 

upper bounds }{ )(

1,NL

  of the SP region.  These solutions can be approximated by 

replacing the sine and cosine functions in equation (2.35) with their small argument 

approximations.  Letting  m20FF , we then get 
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where B3=(1-γ)2/γ.  The above equations can be combined to give a quadratic equation in 

φF0, whose solution yields the following threshold values for φNL,1: 
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where  m21,Lm,L  and 12n B/B .  When the discriminant under the square 

root sign is negative, the threshold values of NL1 do not exist, implying that SP does not 

occur.  Using this condition, we find that for a fixed linear phase detune, SP only occurs 

if the normalized FC lifetime is less than a critical value c given by 
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  3

2

m,L21c B11BB   (2.38) 

In figure 2.13 we plot the SP threshold values }{ )(

1,NL

  as functions of the normalized FC 

lifetime τn for several values of the linear phase detune ΔφL,1.  Figure 2.13 (a) shows the 

regions of SP on the first branch (m = 0) while figure 2.13(b) shows the SP regions on the 

second branch (m = 1).   

 

(a) 

 

(b) 

Figure 2.13, The onset of SP {φNL,1±} vs. the normalized FC lifetime τn for several values of the linear phase 

detune: (a) the 1st branch (m = 0) and (b) the 2nd branches (m = 1) 

In both plots we observe that for a fixed linear phase detune, there exists a maximum 

normalized FC lifetime value for which SP can occur.  The critical τc values on the first 

branch are the same as those predicted using the EC stability analysis in the previous 
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section.  On the second branch, there is also a maximum value for τn (τc ~ 6800) for 

which SP can occur, but this value is much larger than the critical values on the first 

branch, by as much as an order of magnitude for linear phase detunes up to -0.1π.  As an 

example, considering that a silicon MRR with a radius of 10μm has a roundtrip time Trt ~ 

0.8ps, the above result predicts that SP can occur on the second branch for FC lifetime as 

long as 6ns, which is longer than the carrier lifetime in a typical silicon waveguide (τfc ~1 

ns).  On the other hand, the critical τc values on the first branch correspond to FC 

lifetimes in the range of 100ps - 360ps for linear phase detune values up to -0.1π.  These 

values are much shorter than typical 1 ns FC lifetimes in silicon waveguides so that SP 

cannot occur on the first branch.  This example illustrates the advantage of exploiting 

high-order instability to achieve FC-induced SP in semiconductor microcavities. 

By comparing the results of critical lifetime of SP of 10μm and 100μm, we learn that 

observation of SP in the first branch of Bistability is more probable in the microring with 

higher radius. 

In figure 2.14. (a) we plot the threshold values }{ )(

1,NL

  for both regions of bistability and 

SP as functions of the linear phase detune ΔφL,1 for a fixed value τn = 1000.  The regions 

of bistability and SP on the first branch are shown in figure 2.14(a) while those on the 

second branch are shown in figure 2.14 (b).  We observe that on the first branch, SP 

occurs only in a narrow region for linear phase detune ΔφL,1 < -0.3π while the SP region 

is much larger on the second branch and there is no minimum value for the linear phase 

detune.  We also look at the range of oscillation frequencies that can be achieved by 

plotting in figure 2.14 (c) the normalized frequency of oscillation Ω at the SP threshold 

values )(

1,NL

  for both the first and second branches.  We observe that a much larger 
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range of oscillation frequencies can be achieved on the second branch compared to the 

first branch.  In addition, the frequency can be varied by changing the linear phase 

detune.  For example, for linear phase detune ΔL,1 = -0.4π, the oscillation frequencies at 

the lower and upper SP thresholds of the second branch are 0.01 and 0.16, respectively.  

These values correspond to an oscillation frequency range of 1.6GHz – 25GHz for a 10-

μm radius silicon MRR.  We note that the upper frequency limit is 6.5 times larger than 

the corresponding upper value that can be achieved on the first branch.  Thus, not only is 

it easier to observe FC-induced SP on the second branch, the frequency of oscillation is 

also higher and tunable over a wider range than on the first branch.  The above results 

show that the FC lifetime has a lesser influence on higher-order instability of the MRR 

than instability on the lowest branch.  The reason for this may be explained by the fact 

that instability on higher-order branches is typically characterized by oscillations at much 

higher frequencies than the FC relaxation rate, so that the FC lifetime plays a less 

important role in the nonlinear dynamics of the resonator. 

 

(a) 
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(b) 

 

(c) 

Figure 2.14, the threshold values {φNL,1±} vs. linear phase detune for τn = 1000, presenting BS and SP regions in 

(a) the 1st (m = 0) and (b) the 2nd branches (m = 1). (c) The normalized oscillation frequency Ω at the upper and 

lower SP thresholds {φNL,1±} 

2.2.4 FC Induced Nonlinear Dynamics in an MRR with FCA  

In the presence of free carrier absorption, equation (2.35) for the SP thresholds are 

modified as follows: 
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show the SP regions on the first branch and second branch, respectively, for an MRR 

with γ = 0.97.  The FC ratio is set at η = 2%, which is typical for silicon near the 1.55μm 

wavelength.  Compared to figure 2.14(a) and (b) (where η = 0), we observe that the effect 

of FCA is to reduce the range of FC lifetimes (i.e., the τc values) on both branches for 

which SP can occur.  However, the τc value on the second branch is insensitive to the 

linear phase detuning whereas it decreases rapidly with smaller phase detunes on the first 

branch.  We note that in general, it is more advantageous to operate the resonator at 

smaller phase detunes because the power in the microring is enhanced near a resonance, 

which leads to smaller input power requirement. 

 

(a) 

 

(b) 

Figure 2.15, The SP thresholds vs. the normalized FC lifetime τn with FC parameter η= 2% and for several 

values of the linear phase detune: (a) the 1st (m = 0) and (b) the 2nd branches 
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The FC parameter η has a strong influence on the SP thresholds for both the first and 

second branches.  In general, the SP region becomes larger as the η value decreases, 

which implies smaller FCA effect.  Figure 2.16 (a) shows the dependence of the critical 

FC lifetime τc on the linear phase detune ΔφL,1 for different values of η for both the first 

and second branches.  The cavity loss factor is fixed at γ = 0.97.  The plot indicates that η 

has a strong influence on τc, especially on the second branch.  We also observe that on the 

first branch, τc increases with increasing linear phase detune whereas it is insensitive to 

ΔφL,1 on the second branch.  For small values of ΔφL,1, the critical FC lifetime on the 

second branch is larger than the corresponding value on the first branch, implying that FC 

lifetime has a lesser influence on instability on the second branch than the first. Figure 

2.16(b) shows the dependence of τc on the cavity loss factor γ for different values of η.  

The linear phase detune is fixed at ΔφL,1 = -0.1π.  For both branches, τc increases as the 

total loss in the cavity is reduced (higher γ values).  It is also seen that for larger cavity 

losses (smaller γ values), the FC lifetime has less influence on the SP threshold on the 

second branch compared to the first.  Thus, it can be concluded from the results in this 

section that SP on the second branch is generally less susceptible to linear loss (γ) and 

FCA (η) compared to the first branch. 

  
(a) 



  64 

  
(b) 

Figure 2.16, The normalized critical FC lifetime τc to have SP vs. the linear phase detune for different values of 

the FC parameter η.  The cavity loss factor is fixed at γ= 0.97.  (b) Plot of the normalized critical FC lifetime τc 

vs. the cavity loss 

2.2.5 Routes to Self-pulsation on the second branch  

We now discuss the possible routes to reach SP on the upper branch of the stability curve.  

To give a concrete example, we consider a silicon MRR with radius R = 200μm, effective 

index neff = 2.5, group index ng = 4.9, coupling coefficient κ1 = 0.35 and cavity loss factor 

γ = 0.92.  For silicon near the 1.55μm wavelength, the FC refraction volume and 

absorption cross-section are σFCD = -4.5×10-21 cm3 and σFCA = 0.8×10-17 cm2 [83], which 

gives η ~ 2%.  Figure 2.17(a) shows the stationary solution φNL,1 as a function of the 

input power Pin for linear phase detune ΔφL,1 = 0 and τfc = 2ns.  The regions of bistability 

and SP are also indicated on the curve.  It can be seen that SP occurs only on the second 

branch; however, in order to reach this instability region, one would have to overcome 

the first bistability knee by increasing the input power to over 5.5W, which is impractical 

for the silicon microring device.  The maximum power could be handled by an SOI 

waveguide highly depends on the waveguide dimension and optical waveform (CW or 

Pulse).  A calculation shows that a conventional waveguide with dimension of 220nm 

×500nm can tolerate CW power up to 1.5Watt before permanent damage happens [8] 
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(a) 

 
(b) 

Figure 2.17, (a) Plot of the stationary solutions of φNL,1 vs. input power for ΔφL,1 = .1π and τfc = 2ns.  (b)  Plot of 

the stationary solutions of φNL,1 vs. linear phase detune ΔφL,1 for τn = 100 and Pin = 100mW. 

We propose here a route to reach SP on the second branch which does not require 

prohibitively high input CW power.  The method is based on tuning the linear phase to 

reach the instability region.  Figure 2.17(b) shows the plot of the stationary solution φNL,1 

as a function of the linear phase detune ΔL,1 for a fixed input power Pin = 100mW.  The 

SP regions are also indicated on the curve.  It can be seen that SP on the second branch 

can be reached by initially detuning the linear phase by slightly more than 2π, then 

decreasing the phase detune until it reaches near zero.  As the linear phase is decreased, 

the nonlinear phase shift will follow the upper branch of the curve to reach the SP region 

on the second branch.  Note that the input power is still maintained at a fixed level of 

100mW, which is much smaller than the value required to overcome the bistability knee 



  66 

in figure 2.17(a).  In general, for a fixed FC parameter η, the input power required to 

reach SP on the second branch can be reduced by increasing the microring radius, which 

has the effect of decreasing the normalized FC lifetime τn. 

To verify the phase tuning method, we performed time-domain simulation of the MRR 

with a fixed CW input of 100mW and initial linear phase detune ΔφL,1 = 2π.  After the 

power in the microring has reached steady state (inset (i) of figure 2.18(a)), we began to 

decrease ΔφL,1 to zero at rate of about -π/4 rad/μs.  Figure 2.18(a) shows the time trace of 

the power in the microring when ΔL,1 has reached zero.   

 
(a) 

 
(b) 

Figure 2.18, Time trace of the power in the microring exhibiting SP behavior on the second branch reached by 

(a) linear phase tuning and (b) ultrafast pulse excitation.  In each plot, inset (i) shows the initial steady state 

before excitation and inset (ii) shows a zoomed-in view of the oscillations after excitation. 

We observe that after a short transient time, the power reaches a state of stable 
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oscillation, with a period of 2.2 GHz.  From our stability analysis, we obtained a SP 

period of 2.1 GHz at this stationary point, which is close to the value obtained from the 

time-domain simulation.  It is also possible to reach the second branch of the stability 

curve by applying an ultrafast control pulse to the resonator with a sufficiently high peak 

power to overcome the bistability knee. For demonstration and comparison with the 

linear phase tuning method, we also performed time-domain simulation to verify that SP 

can be reached by ultrafast pulse excitation.  We initially applied 100mW of CW power 

to the microring with zero linear phase detune.  After the device reached steady state 

(inset (i) of figure 2.18(b)), we applied an optical pulse with 123.15 ps pulse width and 

4W peak power.  The pulse energy delivered to the device is 490 pJ, which is small 

enough that there should be no damage to the silicon microring.  The time trace of the 

power in the microring after the application of the pulse is shown in figure 2.18(b).  We 

observe that the power also reaches stable oscillation after an initial transient period.  The 

SP frequency is 2.1 GHz, which agrees with the result obtained from the linear phase 

tuning method, indicating that optical pulse excitation is also an effective route to reach 

higher-order instability. 

2.3 Summary 

In this chapter we studied in detail the nonlinear dynamics of a single MRR with 

instantaneous (Kerr) and non-instantaneous (FCD) nonlinearity.  We utilized, as 

numerical examples, chalcogenide glass for the former device and silicon for the latter.  

For each device, we used both the EC and PC formalisms to study the different nonlinear 

dynamical behaviours, including bistability (or multistability), self-pulsation and Ikeda 
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instability.  We showed that the EC model cannot predict Ikeda instability in an MRR 

with instantaneous Kerr nonlinearity.  Using the PC model, we also investigated higher-

order instability in an MRR with TPA-generated FCD and showed that SP on the second-

order branch of the stability curve offers several advantages, including higher critical FC 

lifetime, higher oscillation frequencies, wider linear phase detune range, and insensitivity 

of the critical FC lifetime to linear phase detune.  Finally, we proposed two alternative 

methods for reaching the second-order SP in a silicon MRR without requiring 

prohibitively high CW powers, namely, linear phase sweeping and ultrafast pulse 

excitation.  The validity of these methods was also verified by rigorous time-domain 

simulations. 
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3 Nonlinear Dynamics in Coupled Microring 

Resonators 

In the previous chapter we studied the nonlinear dynamics of a single MRR with 

instantaneous and non-instantaneous nonlinearities.  We found that there are several 

practical challenges to achieving SP in a nonlinear MRR, including prohibitively high 

CW threshold power, requirement of fast nonlinear relaxation time, and the deleterious 

effect of nonlinear loss.  In this chapter, we introduce spatial complexity to the nonlinear 

system with the aim of exploring the feasibility of relaxing many of these practical 

constraints.  In particular, by forming a system of coupled microring resonators 

(CMRRs), the rich spectral characteristics and nonlinear interactions between cavities can 

open up a wide range of dynamic behaviors that are more easily accessed.  We will 

extend the EC and PC stability analyses employed in Chapter 2 to analyze the nonlinear 

dynamics of CMRRs with instantaneous and non-instantaneous nonlinearities.  We will 

again consider the Kerr effect in chalcogenide glass as an example of instantaneous 

nonlinearity, and FC effects in silicon as an example of non-instantaneous nonlinearity.   

Nonlinear dynamics such as BS, SP and chaos in CMRRs with various types of 

nonlinearities have been investigated using the EC formalism.  For example, Zhu et. al. 

analyzed and demonstrated nonlinear dynamics such as bistability and chaos in a silicon 

CMRR with thermo-optic origin [84].  Armaroli et. al. also investigated BS and SP due to 

Kerr effect in three coupled microcavities [85] and Grigoriev et. al. also analyzed self-

pulsation in couple microcavities with Kerr nonlinearity [86]. In this chapter, we will 
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develop a general EC formalism that can be used to analyze the nonlinear dynamics of a 

chain of Nz coupled MRRs. 

On the other hand, the PC formalism has not been used to analyze the nonlinear dynamics 

of CMRRs.  As we discussed in the previous chapter, although the EC model allows for 

simpler analysis, its validity is limited to low powers and small linear phase detunes from 

a resonance.  Since the PC model has more general validity, it allows us to study the 

nonlinear behaviours of CMRRs under a broader range of conditions.  For this purpose, 

we will develop a general PC formalism based on the transfer matrix method that can be 

used to analyze the stability of a chain of Nz coupled MRRs with instantaneous 

nonlinearity. 

This chapter is organized as follows.  In section 3.1 we develop the EC and PC 

formalisms for analyzing the nonlinear dynamics in a CMRR system consisting of two 

microrings (i.e., a double CMRR) with instantaneous Kerr nonlinearity.  Double CMRRs 

with non-instantaneous nonlinearity will be investigated in section 3.2.  For each case, 

numerical examples based on the chalcogenide and silicon materials will be presented 

and compared with the nonlinear dynamics of single MRRs.  In section 3.3, we will 

extend the analysis of double CMRRs to a chain of CMRRs of finite length Nz.  In 

particular, we will develop matrix formalisms based on the EC and PC models to 

investigate the nonlinear dynamics of spatially extended CMRR structures, also known as 

CROWs (coupled resonator optical waveguides).  The chapter is concluded in section 3.4 

with a summary. 
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3.1 Instability in a Double CMRR with Instantaneous Nonlinearity 

Figure 3.1 shows a schematic of a CMRR system consisting of two coupled microrings.   

 

 

 

 

 

 

 

Figure 3.1, Schematic of a double Coupled Microring Resonators (CMRR) structure  

We denote the field coupling coefficient between the straight bus waveguide and 

microring 1 as κ1 and between the two microrings as κ2.  From these field coupling 

coefficients, we can also obtain the corresponding energy coupling coefficients as 

µ1=κ1×Trt
-0.5 and µ2=κ2×Trt

-1 [74].  We denote the field circulating in microring 1 as A1 

and in microring 2 as A2, normalized such that |Ai|
2 represents the power in microring i.  

The corresponding energy stored in microring i is also given by |ai|
2 = |Ai|

2Trt.  The power 

applied to the input of the bus waveguide is |Ein(t)|
2 and the transmitted power at the 

output is denoted by |Eout(t)|
2.  We analyze the stability of the device using the EC model 

in Section 3.1.1 and the PC model in Section 3.1.2. Energy-Time Coupling model (EC 

method) 

We modify the EC equation for a single MRR with instantaneous Kerr nonlinearity 

(equation (2.4)) to account for the coupling 2 between the two microrings in the CMRR.  

The equations describing the rates of energy change in microrings 1 and 2 become:  

κ1(μ1) 

κ2(μ2) 
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In the above equations, ωi and Δωi (i = 1, 2) are the resonant frequency and the linear 

frequency detune, respectively, of microring I, and γKerr= n2(ngAeffTrt)
-1 is the effective 

Kerr coefficient.  The cavity lifetimes τph,1 and τph,2 of microrings 1 and 2 are related to 

the linear loss 0 and the coupling coefficients as follows [74]: 
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Equations (3.1.a) and (3.1.b) form a coupled nonlinear dynamical system.  The stationary 

solutions can be obtained by setting the time derivatives daf,1/dt = 0 and daf,2/dt = 0 and 

solving for af,1 and af,2 to get 
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To determine the stability of the system around the stationary point, we add a small 
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perturbation to the stationary solutions: a1(t) = af,1 + εa,1(t) and a2(t) = af,2 + εa,2(t).  

Substituting these expressions into equations (3.1.a) and (3.1.b), we get 
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Keeping only the first-order perturbation terms, we obtain the following coupled linear 

equations describing the dynamics of the perturbations: 
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Equations (3.5) and their complex conjugates form the dynamic system, dε/dt=Jε, with 
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with xi and yi given by 
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The eigenvalues of the above Jacobian matrix determine the dynamic behaviour of the 

system.  Since the eigenvalues are the roots of a fourth-order polynomial, solutions 

cannot be obtained analytically but must be found by an iterative numerical method.  This 

also means that we cannot analytically determine the thresholds for the different 

instability regions.  Instead, we will provide a numerical analysis in Section 3.1.3. 

3.1.1 Power-Space Coupling model (PC method) 

We first consider the CMRR device in figure 3.1 in the absence of nonlinearity.  By 

writing the equations relating the fields propagating inside microrings 1 and 2 and the 

input field, we obtain the following coupled delay equations: 
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In the above equation, τcp,1 = (1-κ1
2)1/2 and τcp,2 = (1-κ2

2)1/2 are the field transmission 

coefficients of the coupling junctions, and ΔφL,1 = ΔφL,2 =2πRngK0 is the linear roundtrip 

phase of the microrings.  In the presence of instantaneous Kerr nonlinearity, the roundtrip 

phase in each microring acquires an addition nonlinear term given by φNL,i = 

2πRn2|Ai(t)|
2K0.  Equations (3.8.a) and (3.8.b) are thus modified as 
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The above equations form a system of coupled nonlinear delay equations describing the 

nonlinear dynamics of the CMRR.  The stationary states of the system are obtained by 

setting A1(t+Trt) =A1(t)=Af,1 and A2(t+Trt) =A2(t)=Af,2 and solving for Af,1 and Af,2 to get 
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In the above equations, φf,i =ΔφL,i+ξKerr|Af,i|
2 is the total phase shift corresponding to the 

stationary field Af,i. To determine the stability of the CMRR around a stationary state, we 

write the fields in the microrings as A1(t)=Af,1+εA,1(t) and A2(t)=Af,2+εA,2(t), where εA,1(t) 

and εA,2(t) represent small perturbations.  By substituting these expressions into equations 

(3.9.a) and (3.9.b) and linearizing around the stationary point, we obtain 

    

2

AAAAA
jeaj

A
2

j1eaj

AjAj1eaTt

*

2,a

2

2,f1,a

*

1,ff,21,a2,f1,f

rker
2

j

1,cprt2

2,a

2

2,f
rker2

j

1,cprt2

1,a

2

1,frker1,a

2

1,frker

j

2,cp1,cprtrt1,A

2,f1,f

2,f1,f

1,f











 












 (3.11.a) 



  76 

    













 









 












2

AAAAA
jeaj

A
2

j1eaj

AjAj1eaTt

*

2,a2,f1,f2,a

*

2,f1,f1,a

2

1,f

rker
2

j

rt2

1,a

2

1,f
rker2

j

rt2

2,a

2

2,frker2,a

2

2,frker

j

2,cprtrt2,A

2,f1,f

2,f1,f

2,f

 
(3.11.b) 

The above equations and their complex conjugates form a linear time-delay system, 

which can be expressed in matrix form as 
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where J is the Jacobian matrix of the system.  Solutions of the above linear system have 

the form (t + Trt) = z (t), where z = esTrt is an eigenvalue of the Jacobian matrix J.  

Thus, the locations of the eigenvalues in the z-plane determine the stability behavior of 

the CMRR.  More specifically, if all the eigenvalues have magnitude less than unity, the 

optical fields inside the CMRR are stable.  Otherwise, the system exhibits instabilities 

such as BS, SP, and Ikeda.  In section 2.1.2 we discussed in detail the dynamic behaviors 

corresponding to the different locations of the eigenvalues in the z-space.   

3.1.2 Simulation Results and Discussion 

To compare the nonlinear dynamics of a double CMRR predicted by the EC and PC 

models, we use the example of a CMRR device with chalcogenide glass as the core 

waveguide material because of its high Kerr coefficient and the absence of FC effects 

[79].  The dimensions and the linear and nonlinear material parameters of the 
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chalcogenide waveguide are the same as in section 2.1.3.  The microrings have radius R1 

= R2 = 100 m.  Since the EC model is valid only for weak couplings, we choose a small 

coupling coefficient of 1
 = 2

 = 1% for both the ring-to-bus coupling and ring-to-ring 

coupling. 

Figures 3.2(a) and (b) show the stability phase maps of the device obtained from the EC 

and PC models, respectively.  The maps show the regions of stable behavior (blue), BS 

(yellow), SP (azure) and Ikeda instability (brown) as functions of the linear phase detune 

(L,1 = L,2) and the power in microring 2 (Pa,2).  The corresponding input power Pin 

and the power in microring 1 (Pa,1) can be computed from Pa,2 using equations (3.10.a) 

and (3.10.b), respectively.  Comparison between the EC and PC stability phase maps 

shows that the PC model predicts much richer nonlinear dynamics in the CMRR than the 

EC model.  The most obvious difference is that the PC phase map exhibits multiple BS 

regions.  In addition, the EC model fails to predict Ikeda instability (period doubling) and 

high-order instability because it models only one resonance mode for each MRR.  On the 

other hand, the PC model shows that Ikeda instability can occur in a CMRR.  To our 

knowledge, this is the first time period doubling oscillation is predicted to also occur in a 

system of coupled resonators. 
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(a) 

 

(b) 

Figure 3.2,The Stability phase map as a function of the stored power inside a weakly coupled CMRR and linear 

phase detune for (a) EC and (b) PC models  

It is of interest to compare the threshold power for observing Ikeda instability in a single 

MRR and a double CMRR.  Figure 3.3 plots the Ikeda threshold power as a function of 

the linear phase detune for each device.  We see that the threshold power is generally 

higher for the CMRR than the single MRR.  This may be explained in terms of the linear 

resonance spectrum of the CMRR.  Figure 3.4 shows the resonance spectra of the powers 

in both microrings 1 and 2 of the CMRR.  We observe that the mode in each resonator 

experiences splitting due to coupling between the two resonators. This resonance splitting 

has the effect of lowering the peak stored power in each microring, which degrades the 



  79 

efficiency of the four-wave mixing process of adjacent cavity modes that is responsible 

for the period-doubling oscillations. We also note from figure 3.3 that the threshold 

powers required to observe Ikeda instability in the CMRR are in the order of a few Watts, 

which is too high for practical chalcogenide devices. Another interesting observation 

from the phase maps in figure 3.2 that both the EC and PC models predict that SP can 

also occur in the CMRR.  This is a significant difference compared to a single MRR with 

instantaneous nonlinearity, where both the EC and PC model show that SP cannot occur 

[14].   

 

Figure 3.3, The threshold power of Ikeda instability vs linear phase detune for a single MRR and a double 

CMRR 

 

Figure 3.4,  Resonance spectra of the powers in microrings 1 and 2 of the CMRR 
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In the CMRR, SP arises from the beating between the resonance modes of the two 

microrings [36], as opposed to Ikeda instability, which arises from the beating between 

two adjacent resonance modes of the same cavity.  It is also interesting to compare the 

threshold power for observing SP with that required for Ikeda instability.  Figure 3.5 

shows the plot of the SP threshold power as a function of the linear phase detune.  We see 

that SP can be observed with a power level as low as 130 mW (at linear phase detune 

around -0.46), which can be handled by practical chalcogenide devices. 

 

Figure 3.5,  The Threshold power of SP vs. Linear phase detune  

3.2 Instability in CMRRs with Non-Instantaneous Nonlinearity 

In this section we extend the EC model to study the nonlinear dynamic behavior of a 

double CMRR with non-instantaneous nonlinearity.  We are interested in CMRRs made 

of silicon due to its wide spread use in integrated photonics [87] and its strong FC 

induced nonlinearity.  However, since the nonlinearity depends on the FC density, it has a 

finite relaxation time determined by the FC lifetime in the silicon waveguide. 

For a system of two couple MRRs as depicted in figure 3.1, we can modify the EC 

equations (3.1.a) and (3.1.b) to include the nonlinear resonant frequency shift in each 
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MRR due to FCD as follows: 
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The FC densities N1(t) and N2(t) in microrings 1 and 2 satisfy the rate equations: 
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Equations (3.13) form a nonlinear dynamic system.  To perform stability analysis of the 

system, we introduce small perturbations to the variables, a1(t) = af,1 + εa,1(t), a2(t) = af,2 + 

εa,2(t), N1(t) = Nf,1 + N,1(t), N2(t) = Nf,2 + N,2(t).  The quantities af,1, af,2, Nf,1 and Nf,2 are 

steady state solutions of equations (3.13), 
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Substituting these expressions into equations (3.13) and separating the steady state 

solutions from the linearized perturbation terms, we get 
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The above equations can be put in matrix form as 
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where J is the Jacobian matrix of the system.  As before, the eigenvalues of the Jacobian 

determine the dynamic behavior of the stored energies and the FC densities in the 

CMRR. 

We apply the above analysis to a silicon CMRR with the parameters shown in Table 2.1.  

The power coupling coefficients are chosen to be κ1
2 = 16% and κ2

2 = 1%, which 

correspond to energy coupling coefficients μ1 = 1.3619×105 [Hz0.5] and μ2 = 1.1592×1010 

[Hz].  We assume the FC lifetime in the silicon waveguide to be fc = 1 ns.  Figure 3.6 

shows the stability phase map of the CMRR as a function of the linear phase detune and 

the power in microring 2 (Pa,2).  The regions of stable behavior, BS and SP are 

represented by the colors blue, yellow and azure, respectively.  We observe that there are 

two separate BS regions, implying that multi-stability occurs in the device due to the 

existence of two resonance modes in the system.  To study the influence of the FC 

lifetime on the SP behavior of the CMRR, we show in figure 3.7 the stability phase map 

as a function of the normalized FC lifetime (τfc/ Trt) and the stored power in microring 2 

for a specific phase detune of 0.1π.   

 

Figure 3.6, Stability phase map of Silicon CMRR with τfc of 1 ns as a function of linear phase detune and stored 

power in 2nd MRR  
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Figure 3.7, Stability map for linear phase detune .1π as a function of stored power in microring 2 and the 

normalized free carrier lifetime 

We observe that similar to SP in a single MRR, there exists an upper limit to the FC 

lifetime for which SP in the CMRR can take place.  For example, for the first-order 

instability (lowest branch in the stability map) the critical FC lifetime value is 141Trt 

(1.15 ns for 100 µm MRR), as indicated in figure 3.7.   

In figure 3.8 we plot the critical FC lifetime as a function of the linear phase detune.  

Also shown for comparison is the critical FC lifetime for observing SP in a single silicon 

MRR.  We observe that the critical FC lifetime for the CMRR is reduced by about 164ps 

compared to that of the single MRR, implying that the nonlinear relaxation time places a 

more restrict constraint on SP in the CMRR.  In addition, we observe that SP can also 

occur at higher powers and larger FC lifetime values.  These instabilities are absent in a 

single MRR and can be attributed to the mutual interactions of the two resonance modes 

in the CMRR. 
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Figure 3.8, Critical FC lifetime vs. linear phase detune for SP in a single MRR and a double CMRR 

Figure 3.9 compares the input threshold powers required to reach SP in a single MRR and 

a double CMRR as a function of the linear phase detune for the critical FC lifetime 

reported in figure 3.8.  It is seen that the CMRR has a higher threshold power, which is 

due to the fact that the power is distributed over two resonators so that the nonlinear 

interactions are weaker for the same input power as in a single MRR.  Also, the threshold 

power generally decreases at larger linear phase detunes because of increasing the critical 

carrier lifetime. 

 

Figure 3.9, Input threshold power for SP vs linear phase detune for single MRR and double CMRR 

Finally we compare in figure 3.10 the SP period as a function of the linear phase detune 

for a single MRR and a double CMRR.  The FC lifetime is set at the critical lifetime 
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value reported in figure 3.8 for each linear phase detune.  We see that compared to the 

singel MRR, the SP period in the CMRR can be varied over a wider range, from 5.3 GHz 

to 21 GHz, by tuning the linear phase.   

 

Figure 3.10, SP period vs the linear phase detunes for single MRR and double CMRR 

This large variation in the period of oscillation may be associated with the nonlinear 

beating between splitted frequency components generated by coupling between the 

microrings.  From the above analysis, we conclude that a double CMRR requires higher 

input power to observe SP than a single MRR and slightly more constrained by the FC 

lifetime, it does allow for a larger range of oscillation frequencies to be achieved. 

3.3 Matrix formalism for CMRRs with Instantaneous Nonlinearity 

In section 3.1, we showed that a double CMRR with instantaneous Kerr nonlinearity, SP 

can occur due to the beating of the resonance modes of the two microrings [36, 86].  By 

further increasing the number of resonators to form a chain of coupled MRRs, we may 

expect to observe more complex nonlinear dynamic behaviours.  In addition to the 

emergence of new nonlinear dynamics, it may also be possible to achieve a reduction in 

the threshold power for observing SP in a chain of CMRRs due to the increased nonlinear 
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interaction length.   

A chain of CMRRs is also called a Coupled Ring Oscillator Waveguide (CROW), which 

was originally proposed by A. Yariv in 1999 for achieving slow light propagation and 

dispersion engineering in the linear regime [56].  In this section, we will develop general 

transfer matrix formalisms based on the EC and PC models for analyzing the dynamic 

behaviors of the propagating fields in a CROW structure with instantaneous Kerr 

nonlinearity.  These formalisms will allow us to study the instability of spatially extended 

networks with finite lengths, which will be compared to the nonlinear dynamics of 

infinite extended networks in chapter 4. 

In developing a general matrix formalism for the nonlinear dynamics of a CROW 

structure of length Nz (Nz being the number of resonators in the chain), we found that it is 

convenient to first obtain the matrix equation for a unit cell consisting of three coupled 

MRRs, as shown in figure 3.11.  The result is then generalized for a CROW waveguide 

of arbitrary length Nz. 

 

Figure 3.11, Structure of three coupled MRRs  

κ1(μ1) 

κ2(μ2) 

κ3(μ3) 
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In the chain of three CMRRs in figure 3.11, we denote i (i) as the field (energy) 

coupling coefficient between microring i and i – 1 (i = 0 being the bus waveguide).  The 

optical wave inside microring i is represented by ai in the EC model and Ai in the PC 

model, which are normalized such that |ai|
2 and |Ai|

2 give the energy and power, 

respectively, in the microring.   

3.3.1 The EC model 

The equations for the time evolution of the waves in the three CMRRs in the presence of 

Kerr nonlinearity can be written in matrix form as follows:  

       tt
dt

td
NL_EL_E SaMM

a
  (3.17) 

where a(t) is the wave amplitude array, ME_L is the linear coupling matrix, ME_NL is the 

nonlinear coupling matrix and S represents the input excitation.  These variables are 

written explicitly as follows:  

        T321 tatatat a  (3.18.a) 
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    2

rkerNL_E tadiagj M  (3.18.c) 

    Tin1 00tPjt S  (3.18.d) 
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Kerr coefficient strength is γKerr= n2(ngAeffTrt)
-1. Equation (3.17) describes the nonlinear 

dynamics of a CROW structure consisting of three CMRRs.  The system can be easily 

generalized to a CROW of length Nz by observing the patterns exhibited by the matrices 

in (3.18).   

For the general CROW structure, we obtain the stationary solution af by setting the time 

derivative da/dt to zero, which yields the matrix equation 

  SaMM  fL_E NL_E
 (3.19) 

Next we perturb the solution around the stationary point, a(t) = af + εa(t), where ε = [εa,1, 

εa,2, εa,3]
T.  Substituting into equation (3.17) and keeping only the first-order perturbation 

terms, we get 

         tjt2
dt

td *

a

2

frkeraNL_EL_E
a εaεMM
ε

  (3.20) 

The Jacobian matrix of the above linear system has the form 
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j

j

MMa
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The eigenvalues of the Jacobian matrix determine the stability behaviour of the nonlinear 

CROW structure. 

3.3.2 The PC Model 

For a CROW structure with three CMRRs, the fields inside the microrings are updated 

after each roundtrip by the following matrix equation: 
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     ttTt rt SHAA   (3.22) 

In the above equation, the microring field array A, the applied field array S and the 

coupling matrix H are given by 

        T321 tAtAtAt A  (3.23.a) 

    Tin1 00tEjt S  (3.23.b) 
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In the above matrix equation, τcp1, φf,1 are transmission coefficient and steady state phase 

shift in 1st MRR. This induced phase shift consists of linear and nonlinear parts. 

We can further decompose H into a coupling matrix Kcoupling and a phase detune Λ in the 

form H = ΛKcouplingΛ, where Kcoupling and Λ are defined as follows: 
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In order to express H in the form H = ΛKcouplingΛ, we note that the phase delay between 

the second and the third MRR (or vice versa) in the matrix H in equation (3.23.c) is φf,3 

(or φf,2) while the same element in the matrix ΛKcouplingΛ is ½(φf,2+ φf,3).  We thus rewrite 

the phase detunes φf,3 and φf,2 as  

2222

32,f3,f2,f3,f2,f3,f

3,f











  (3.25.a) 

222222

22,f3,f32,f3,f2,f3,f2,f3,f

2,f
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
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








  (3.25.b) 

Where 2 (3) is the phase shift difference between 2nd (3rd) and 3rd(2nd) MRR.  

Because the nonlinear phase detune ΔφNL,1 has a perturbative nature, we can ignore the 

nonlinear phase contribution in ΔΘ3 to keep the formalism as simple as possible.  Hence 

ΔΘ3 consists of the linear phase detune of the 2nd and the 3rd MRRs. Based on the above 

definition we can write ΔΘ3=ΔφL,2- ΔφL,3 and ΔΘ2=ΔφL,3- ΔφL,2. 

We could incorporate ΔΘ3 into the Kcoupling matrix due to the linear nature of this term to 

form a new coupling matrix Kcoupling.  Except for the elements (2, 3) and (3, 2) of 

Kcoupling, all the elements of Kcoupling and Kcoupling are identical.  The elements (2, 3) and 

(3, 2) of Kcoupling have additional phase shifts of -½ΔΘ3 and -½ΔΘ2 (=½ΔΘ3).  By 

generalizing this modification to a CROW structure of length Nz, we found that this 

pattern is repeated between the 2ith and 2i+1th MRRs.  We thus modify the different 

elements of the new coupling matrix Kcoupling as follows: 
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        
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2
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The equation governing the field propagation in a nonlinear CROW waveguide is then 

A(t+T)= ΛK՜ couplingΛ A(t)+S(t) 

The stationary solution Af of the nonlinear system (3.22) is obtained by solving (I - H)Af 

= S.  Applying perturbation to the stationary solution, A(t) = Af + (t), and substituting it 

into equation (3.22), we obtain the following equation describing the evolution of the 

perturbation: 
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where P1 = Λ(LAf*)Λ, P2 = Λ(LAf)Λ, and L is a diagonal matrix given by 

L = diag(K՜ coupling×Af) + K՜ coupling×Af. 

The dynamics of the perturbation are determined by the eigenvalues of the Jacobian 

matrix of equation (3.27), which is given by 
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We apply the above matrix analysis to investigate the nonlinear dynamics in a chain of 

chalcogenide CMRRs of length Nz with instantaneous Kerr nonlinearity. The properties 

of CROW waveguide is listed in table 2.  

Table 3.1, Parameters of the CROW waveguide 
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Parameter Value Dimension 

Core material Chalcogenide glass N/A 

Coupling coefficient 0.1 N/A 

Waveguide cross-section dimension 320×500 nm×nm 

Round trip loss 0.98 N/A 

Kerr coefficient 11×10-18 
 

m2.W-1 

Ring radius 100 μm 

Figure 3.12 shows the plot of the threshold power for observing SP as a function of the 

length of the CMRR.  Also shown in the plot is the linear phase detune where the SP 

occurs.  We observe that as the CMRR length is increased, the threshold power decreases 

due to an increase in the nonlinear interaction length.  However, for CMRR length greater 

than 4, the threshold power levels out and begins to increase slightly with Nz, which is 

attributed to decreased nonlinear interaction. Although the traveled path of the optical 

wave is getting longer by increasing the length of CROW waveguide, but the stored 

power in each ring exponentially decays in the direction of CROW waveguide which 

reduces the probability of nonlinear interaction between photons in the longer waveguide.  

The plot shows that the minimum threshold power is achieved with a CMRR of length 4.  

This threshold power is around 35 mW, which is about three times lower than the 

threshold power in a coupled MRR.  This example illustrates the advantage of a spatially 

extended CMRR chain over a single MRR for achieving instability. 
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Figure 3.12, Threshold power for SP in a CMRR chain vs. the chain length  

We also investigate the influence of the CMRR length on the threshold for Ikeda 

instability.  The plot of Ikeda threshold vs. Nz is shown in figure 3.13.  Here, we observe 

that the threshold power for reaching Ikeda instability also decreases with increasing 

CMRR length, as a result of increased nonlinear interaction length.  However, the 

threshold power is in the range of Watts, which is too high for practical integrated 

photonic devices.  Thus it is not feasible to observe Ikeda instability in a chain of CMRRs 

with instantaneous Kerr nonlinearity. 

 

Figure 3.13,  Ikeda Instability threshold power in a CMRR chain as a function of the chain length  

3.4 Summary 
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In this chapter, we derived systems of nonlinear coupled equations to study the dynamic 

behaviors of double CMRR structures with instantaneous and non-instantaneous 

nonlinearities based on the EC and PC models.  Both models predict that SP can occur in 

a double CMRR with instantaneous Kerr nonlinearity, a phenomenon which cannot occur 

in a single MRR.  This instability is attributed to the nonlinear mixing of the resonance 

modes of the two cavities.  In addition, using the PC formalism, we show for the first 

time that Ikeda instability can occur in a double CMRR. 

For a double CMRR with FC induced nonlinearity, we showed that multistability occurs 

due to the presence of two resonance modes in the structure.  Also, unlike in a single 

MRR, two types of SP can occur in a double CMRR.  On the first branch SP has the same 

critical FC lifetime as in a single MRR, but higher order SPs (SPs on the upper branches) 

are independent of the carrier lifetime.  Also due to resonance splitting, the range of 

linear phase detune over which SP can occur is much wider than in a single MRR.  

We also extended our analysis of double CMRRs to CMRR chains of length Nz.  To 

facilitate the analysis, we developed general matrix formalisms based on the EC and PC 

models for describing the nonlinear dynamics of the CMRR chains with instantaneous 

nonlinearity. Our numerical studies showed that by increasing the CMRR length, the 

threshold powers for observing SP and Ikeda instability can be reduced, although the 

Ikeda threshold power is still impractically high for integrated photonic devices. 
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4 Coupled Map Lattice (CML) description of long 

chain CROW with Instantaneous Nonlinearity  

In the previous chapter, we developed the EC and PC matrix formalisms, which are 

appropriate for analyzing the stability of short chains of nonlinear CMRRs.  For long 

chains of CMRRs, the matrix approach can become very computationally intensive, 

making it less suitable for studying the dynamics of nonlinear propagation of light in such 

structures.  Also, while the matrix formalism is widely used for analyzing the dispersion 

characteristics of light propagation in an infinite CROW, it cannot be used to describe 

light propagation in an infinitely long nonlinear CROW. 

In this chapter, we develop an alternative method for analyzing the temporal behaviours 

of long chains of nonlinear CMRRs based on the Coupled Map Lattice (CML) theory.  

More specifically, using a hybrid EC-PC model, we show that a nonlinear CROW can be 

described as a one-dimensional (1D) coupled map lattice system.  For simplicity, we will 

limit the model to only structures with instantaneous Kerr nonlinearity. 

This chapter is organized as follows.  We will begin by providing a theoretical 

background of coupled map lattice systems in Section 4.1.  In Section 4.2 we will 

formulate a CML description of long chains of CMRRs.  With the help of the CML 

formalism, we will study the spatiotemporal dynamics of nonlinear CROW waveguides.  

The chapter is concluded in Section 4.3. 
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4.1 Theoretical background 

Coupled Map Lattice was originally developed in the mid 1980’s to study the formation 

of spatiotemporal patterns in extended nonlinear systems with 1D, 2D and 3D chaotic 

elements such as logistic, duffing, or Hénnon maps.  Kuznetsov applied CML theory to 

electrical circuits by forming a renormalization group approach [59].  Kapral used CMLs 

to model chemical reactions in spatial platforms [60].  Rayleigh–Bénard convection has 

been studied using CML theory [88].  Kaneko is widely recognized as the pioneer and 

most active researcher in this area, and his focus was much broader than his 

contemporaneous researchers in this field [89].  During the last decade, CMLs have been 

expanded to study spatiotemporal dynamic behaviours and pattern formation in a broad 

spectrum of topics including biology, applied mathematics, engineering, and 

cryptography [90-92].   

Like cellular automata, a CML describes the discrete features of a network consisting of 

discrete nonlinear elements [93].  A CML consists of a chain or lattice of elements in 

which the value at each site depends on its own nonlinear dynamics and the nonlinear 

dynamics of adjacent sites.  In 1983 Kaneko introduced the following general equation to 

describe any CML system [58, 88, 89]: 
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  (4.1) 

In the above equation, u, κ and f are the state variable, coupling strength, and local 

dynamic, respectively, and nt and nz represent the time and spatial steps of the state 

variable of u.  We can depict the relation between adjacent sites by the graph diagram in 
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figure 4.1 [94].  The dynamics of the nz
th site depends not only on its own dynamics but 

also the dynamics of the adjacent nodes.  A CML is discrete by nature, with the system 

dynamics described at discrete time steps and spatial locations.   

 

Figure 4.1, Schematic of the interactions between the dynamics of neighbors in a CML 

A typical CML system consists of the following essential ingredients: 

Local dynamics:  The local dynamics describes how the state variable at a local node (or 

site) evolves with time.  It is specified in the form of a discrete map (f) and is the source 

of the temporal pattern formation at a local node. 

Coupling:  The coupling or interaction term () models how information transmission 

occurs between different nodes in the spatial network (lattice).  For instance, in a 

chemical reaction the interaction term expresses the diffusion of concentration from one 

location to another.  In general, there are two types of coupling depending on the nature 

of the information transmission.  If the nodes interact only with adjacent nodes, the 

coupling is local.  On the other hand, if the interaction occurs between nodes distributed 

over the network, the coupling is global.  In addition, the coupling is said to be 

homogeneous if the coupling strength is constant between any two nodes. In the opposite 

case, the coupling is heterogeneous if the coupling strength between the two nodes 

depends on the location of the nodes. 
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Boundary conditions:  Like wave propagation in a medium, boundary conditions are 

crucial in determining the output of a CML system for a given input.  Specific boundary 

conditions will be described when we apply the CML theory to analyze CMRR 

structures. 

In the next section, we will show how the CML theory can be used to describe the 

spatiotemporal dynamics of an optical wave propagating in a long or infinite chain of 

CMRRs with instantaneous nonlinearity. 

4.2 CML Description of nonlinear CMRRs 

 

Figure 4.2,The structure of CROW waveguide  

Figure 4.2 shows a schematic of a chain of CMRR.  We denote the fields at the input port 

and the through (or reflection) port as Ein and Eout, respectively.  We define the fields 

propagating in microring nz as Anz and Bnz, as shown in the figure. We assume the 

coupling between microrings are a constant value of κ.  The transmission coefficient is 

given by 
2

cp 1  .  By defining the unit cell as shown in figure 4.2, we can relate the 

forward and backward waves in each unit cell by the following scattering matrix M: 
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Using the above relation and accounting for the nonlinear phase shift due to Kerr effect in 

microring nz, we can express the evolution of the field in the nz
th unit cell by [57] 
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where ζkerr = 4π2Rn2/λ0 and ΔφL,1 = 4π2Rng/λ0.  The above equations indicate that the 

dynamics of the forward wave (Anz) at the nz
th node depends on the backward wave (Bnz) 

at same node and the forward wave (Anz-1) at the nz-1
th node, while the dynamics of the 

backward wave (Bnz) at the nz
th node depends on the forward wave at the same node (Anz) 

and the backward wave (Bnz+1) at nz+1th node.  

It is apparent that equations (4.3) do not have the same form as the Kaneko equation (4.1) 

for a CML.  Equations (4.3) are based on field coupling between two adjacent nodes 

through the scattering matrix M [95], whereas the CML equation is more closely 

associated with mean-field coupling between adjacent nodes.  Thus, we need to derive an 

alternative formalism that encompasses some aspects of the EC model and some aspects 

of the PC model.  More specifically, this new formalism should have the mean-field 

coupling nature of the EC model and the discrete nature of the PC model.   

The first step to obtain the new model is to find the discrete solutions for the energies in 

the CMRRs.  If we assume that the energy couplings () between the microrings are 
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homogenous and the cavity lifetimes (ph) and resonant frequencies (0) are identical 

within the CROW waveguide, then the following differential equation describes the mean 

field dynamics of the stored energy in the nz
th microring in the linear case:  
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where  =  – 0.  By integrating equation (4.4), we obtain the analytical solution at 

time t+Δt as follows, 
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(4.5) 

The above analytical solution of equation (4.4) is valid in the vicinity of the resonance 

wavelength.  This region of operation is important for us because SP is most likely to 

occur in this region.  

Taking Δt as the microring roundtrip time Trt, we can express the stored energy in the 

microring after each roundtrip as 
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(4.6) 

In the above equation, we have made the substitution 
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where L,1 and art represent the linear roundtrip phase and roundtrip amplitude 

attenuation, respectively, in the microring.   

By approximating the exponential term by a first-order Taylor series expansion, we can 

express equation (4.6) as 
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where we have made the replacements 

 rtT  (4.9.a) 

rtTAa   (4.9.b) 

Equation (4.8) has a similar form as the Kaneko equation (4.1) for a CML in 1D.  If we 

include the nonlinear phase shift in equation (4.8), the resulting equation will describe the 

spatiotemporal evolution of the power distribution in a nonlinear CROW.  We will first 

examine the linear response of the CML model of a CROW waveguide. 

4.2.1 Linear response of the CML model 

To validate the hybrid EC-PC model (equation (4.8)) for the CMRR structure, we 

compare the band diagram and steady state response for a linear CMRR with the results 

obtained from the scattering matrix method (equation (4.3) for the linear case).  To obtain 

the band diagram from the CML equation, we consider an infinite CROW with constant 

coupling coefficient  and no loss, and derive the dispersion relation of the structure.  
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The steady state solution of equation (4.8) is obtained by setting 
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Based on the Floquet-Bloch theory, the field of a light wave propagating in the CROW 

structure should have solution of the form z

z

jQn

0n,f eAA


 , where Q is the Bloch wave 

number.  Substituting the Bloch wave solution into equation (4.10), we get 
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By eliminating the common factor zjQn

0eA
 and simplifying, we obtain the following 

dispersion relation for a lossless CROW  
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 (4.12) 

The above dispersion relation is consistent with the well-known dispersion relation of a 

CROW waveguide obtained using the scattering matrix, Qcos
sin 1,L





. 

To validate this analytical equation, we show in figure 4.3 the dispersion curves for a 

CROW structure with 1% power coupling between adjacent MRRs in the first Brillouin 

zone using the hybrid EC-PC method and the scattering matrix method. 
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Figure 4.3, Band diagram of lossless CROW waveguide.  Left) linear phase shift vs real part of Ω. Right) 

imaginary part of Ω as a linear phase detune  

As expected, both dispersion curves show the formation of a band gap due to periodic 

reflections of an optical wave as it propagates along the CROW structure.  Apart from a 

small discrepancy between these two methods caused by the Taylor approximation in 

equation 4.12 , the dispersion diagrams suggest that both models are consistent with 

respect to the linear behavior of an infinite CROW waveguide.   

We next validate the hybrid EC-PC model for a CROW of finite length by computing the 

steady-state power distribution in a chain of 30 lossless CMRRs. The power coupling 

ratio between adjacent MRRs is 1%.  In figure 4.4, we plot the stored power in the last 

MRR (nz = 30) as a function of the linear phase detune.  For comparison, the results 

obtained from the EC and PC models are also shown.  We observe that the CML result 

falls between the EC and PC models.  Specifically, it inherits multiple peaks (or ripples) 

within the passband from the PC model but has the same bandwidth as the EC model. 

Due to the periodic structure of the CROW waveguide, photonic band gaps exist (as 

shown in figure 4.3) in which light cannot propagate and the input power is mostly 

reflected.   



  105 

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

L
,
1
/

-100

-80

-60

-40

P
3

0
 [
d
B

]
Our Model

EC

PC

 
Figure 4.4, The stored power in 25th MRR vs linear phase detune 

These frequencies fall outside the transmission bandwidth of the plot in figure 4.4.  The 

finite bandwidth of the CROW waveguide also suggests that it has a phase-dependent (or 

frequency) linear attenuation, as can also be deduced from the band diagram.  To show 

the phase-dependent attenuation, we plot the spatial distribution of the stored power in a 

CROW waveguide of 100 long CROW waveguide for various linear phase detunes in 

figure 4.5.  We observe that the power attenuation increases with larger phase detune 

from the resonance which increases the threshold of nonlinear dynamic behavior. 

 
Figure 4.5, The stored power as a function of the MRR position in a 100 long CROW waveguide for different 

linear phase detunes and κ=1% 

4.2.2 CML model of CMRRs with instantaneous Kerr nonlinearity 

Having verified the CML model for linear CMRRs, we now modify the equation to study 
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the temporal dynamics of a CROW waveguide with instantaneous Kerr nonlinearity.  The 

Kerr effect induces a nonlinear phase shift in each MRR given by ζkerr|A|2, where |A|2 is 

the stored power in the MRR.  This phase shift can be incorporated into the CML 

equation (4.10) to give  
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By defining the local dynamic function f as 
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we can express equation (4.14) in the form of the general Kaneko CML equation (4.1):  
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The above equation describes the spatiotemporal field evolution in a nonlinear CROW 

with homogeneous coupling as a 1D CML system.  At the input end of the CROW (z = 

0), we apply the boundary condition 
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where Ein is the input field.  At the output end (at z = nz) of the waveguide, we set 

  0n,nA t1z   to get the boundary condition 
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We use the CML equation (4.15) along with the boundary conditions to simulate the 

nonlinear dynamics of a Chalcogenide CROW waveguide with instantaneous Kerr 

nonlinearity.  The power coupling between adjacent MRRs is set to 2 = 1% and the 
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coupling between the input waveguide and the first MRR is 16%.  Loss is specified in the 

MRRs by setting the photon lifetime of each resonator to 190ps.  The linear and nonlinear 

parameters of Chalcogenide are the same as in section 3.1.3.  These parameters are listed 

in table 4.1. The input wave is a CW optical signal at the wavelength of 1550 nm. 

As discussed in [57], the effect of Kerr nonlinearity is to shift the dispersion relation of 

the CROW structure in the ΔφL,1-Q plane and reduces its transmission bandwidth.  In 

figure 4.6, we plot the stored power in the last MRR for a CROW waveguide with a 

length of 30 (Nz=30) as a function of the linear phase detune for different input powers. 

We observe that the bandwidth of the CROW waveguide is not a constant value but 

depends on the input power.  Also, the center frequency of the passband increases with 

increasing input power because of Kerr effect. In order to reduce the threshold powers for 

observing nonlinear dynamics in the CROW waveguide, the operating wavelength should 

be within the bandwidth of the structure to reduce the phase-dependent propagation loss. 
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Figure 4.6, Plot of the stored power in the 30th MRR vs linear phase detune 

To study the nonlinear dynamics of the CROW waveguide, we add a small perturbation 

εnz(t) to the stationary field amplitude, Anz(t) = Af,nz + εnz(t).  The fixed point (or 



  108 

stationary solution) Anz,f is the steady-state solution of the CML equation (4.15) with 

      nz,ftz1tz1tz An,nAn,nAn,nA   : 
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By substituting the perturbed solution Anz(t) = Af,nz + εnz(t) into equation (4.15) and 

linearizing the equation to keep only terms of first order in εnz(t), we obtain the following 

system of coupled characteristic equations: 
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(4.19.b) 

The perturbative terms at time step of t+Trt and t can be related to each other through the 

Jacobian matrix as follows, 

   tTt rt Jεε   (4.20) 

where ε = […..,εnz-1, εnz-1*,εnz, εnz*, εnz+1, εnz+1*,….] T. The Jacobian matrix is as follows,   
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For simplicity in demonstration of Jacobian matrix we present 
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the above Jacobian matrix, we only discussed information of nodes of nz-1,nz and nz+1. 

The eigenvalues of the Jacobian matrix determine the temporal behavior of the CROW 

waveguide as follows: 

1. If all the eigenvalues have absolute value less than one, the system is stable 

2. If an eigenvalue is real and larger than one, the system exhibits bistability 

3. If an eigenvalue is real and smaller than -1, the system exhibits Ikeda instability 

4. If an eigenvalue is complex with the real part larger than one, self-pulsation 

occurs. 

The first task in the analysis of the nonlinear behaviors of the CROW waveguide is to 

obtain the stability curve of the system, i.e., the plot of the power in the waveguide vs. 

input power at a fixed linear phase detune. As an example, we show in figure 4.7 the 

stability curve for a chalcogenide CROW waveguide with a short length of 4 MRRs at a 

linear phase detune of -0.1π.  The parameters of the structure are listed in table 4.1.  The 

power in the CROW waveguide is taken to be the stored power in last MRR.  It is evident 

from the plot that multistability occurs in this system because the CML model developed 

for the CROW waveguide (equation (4.13)) allows each MRR to support an infinite 

number of resonance modes. 

Table 4.1, Parameters of Chalcogenide CROW waveguide of length 4 

Parameter Discerption Value Dimension 

R Ring radius 200 μm 

Aeff Effective area 0.1326 μm2 

ng Group Index 3.363 - 

neff Effective index of Waveguide 1.836 - 
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n2 Kerr Nonlinearity 11×10-18 m2.W-1 

art Round trip loss .98 - 

κ1 Coupling between MRR and waveguide .4 - 

κ2 Coupling between MRRs .1 - 

 

Figure 4.7, The stability curve of CROW waveguide of length 4 showing the stored power in microring 4 vs. the 

input power at a fixed linear phase detune of -0.1π. 

In figure 4.8, we show the stability map of the same CROW waveguide, where the 

regions of stable, BS, Ikeda and SP are indicated by the colors blue, yellow, brown and 

azure, respectively.  The map confirms that the CML formalism can also predict BS, SP 

and Ikeda instabilities as obtained with the PC model in the previous section. It is worth 

to mention that a longer CROW waveguide behaves more chaotic. Because chaotic 

behavior is not traceable by the 1st order perturbative stability analysis, it appears as a SP 

in stability map. As a result, figure 4.8 doesn’t have a solid distinguished color codes . 

For example, in the yellow region, it seems that are also spots of brown.  



  111 

 

Figure 4.8, The stability map showing regions of BS, SP and Ikeda instabilities as a function of the power in the 

4th MRR and the linear phase detune.  

Next we investigate the threshold power required to reach SP in the CROW waveguide.  

The SP threshold power is defined as the minimum power to reach SP over the linear 

phase detuning range from 0 to -2.  Figure 4.9 plots the SP threshold power (blue line) 

and the frequency of oscillation (black line) as functions of the CROW length.  We 

observe that the SP threshold initially decreases rapidly as the CROW length reaches up 

to about 5 MRRs, then settling to a relatively constant power level of around 44 mW with 

further increase in the CROW length.  This result is in good agreement with result of 

matrix stability analysis (Chapter 3) where the optimum waveguide length to have SP is 

four. The relative independence of the SP threshold power on the CROW length can be 

explained in terms of the power distribution in a linear CROW waveguide.  As figure 4.5 

shows, the stored powers in the MRRs decay along the CROW length so the nonlinear 

effect in each MRR becomes less pronounced by increasing physical length of the 

CROW waveguide.  These two competing effects (increasing interaction length and less 

nonlinear interaction) lead to the saturation of the SP threshold power for long CROW 

lengths. 
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The plot in figure 4.9 also shows that the oscillation frequency jumps from 0.004/Trt to 

0.07/Trt as the CROW length increases.  For a chalcogenide MRR with a 100 μm radius, 

the SP frequency can vary between 487 MHz and 8.2 GHz depending on the CROW 

length.  We also note that it is possible to tune the SP frequency by varying the linear 

phase detune of the MRRs. 

.  

Figure 4.9, Threshold power and frequency of SP as a function of CROW length 

We also study the threshold power required to reach Ikeda instability in a CROW 

waveguide.  We recall that Ikeda instability arises due to four-wave mixing between 

adjacent modes of the MRRs and the minimum threshold power generally occurs when 

the linear roundtrip phases of the MRRs are tuned to around π. Figure 4.10 shows the 

threshold power for observing Ikeda instability and the associated phase detune versus 

the CROW waveguide length.  We observe that in contrast to SP, the Ikeda threshold 

power in general increases with the CROW length.  The reason for this behavior can be 

explained as follows.  As the number of resonators increases, the CROW waveguide 

behaves more like an infinite CROW.  In an infinite CROW with -π linear phase detune, 

the light experiences strong reflection so that very little optical power can build up in 

each resonator.  As a result higher input power is required to cause four-wave mixing 
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in the resonators, resulting in higher threshold powers required to achieve Ikeda 

instability.  The plot in figure 4.10 verifies that the phase shift needed to achieve 

minimum threshold power for Ikeda instability is about -π, and the threshold power 

grows substantially as the number of MRRs increases.  This result shows that CROW 

waveguide is not a suitable platform for observing Ikeda instability.  

  

Figure 4.10, The threshold power for observing Ikeda instability (black) and corresponding phase detune (blue) 

versus the CROW length 

4.2.3 Spatiotemporal instability in a nonlinear CROW with gain 

The primary purpose of the CML formalism is to study spatiotemporal instabilities in an 

extended spatial system such as chemical reaction-diffusion system.  In order for 

spatiotemporal patterns to form in these systems, the local dynamics must also have gain 

[91].  As we showed before, the local map of a nonlinear CROW waveguide is given by 

   
ueauf

2

rker1L uj

rt


 .  Since this map does not have a gain mechanism, the only effects 

that can be observed are temporal instabilities such as BS, self-pulsation and Ikeda 

oscillations.  We can modify the local dynamic of each MRR to include gain as follows: 

   
uGeauf

2

rker1,L uj

rt


  

(4.21) 
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where G is the gain factor. Depending on the G value, various spatial instabilities can 

occur in the CROW waveguide in addition to temporal instabilities.   

One of the possible solution to implement a constant gain to each MRR is introducing 

erbium doped material to this platform. Also inserting a quantum well GaAs as a gain 

medium in MRR is an alternative solution. 

Similar to temporal instability, if the stored optical power in a CROW waveguide 

experiences growth along the direction of propagation, the CROW structure becomes 

spatially unstable. To distinguish between temporal and spatial instabilities, we present 

below a study of CROW waveguides with different gain values. 

For G=1, the system is a simple CROW waveguide where the optical power decays 

during propagation along the waveguide due to linear loss and limited bandwidth of the 

MRRs. Figure 4.11 shows the steady-state power in each MRR for a CROW waveguide 

with linear phase detune of 0.02π, coupling coefficient κ of 0.05, and roundtrip 

attenuation of 0.98.  The stored power is seen to decay exponentially as a function of the 

waveguide length.  We can achieve temporal SP by applying proper phase detuning of 

each MRR and appropriate input power to the structure. For example, for an input power 

of 0.1W and linear phase detune of 0.02π, each MRR exhibits temporal oscillations with 

a period of 40×Trt .  Figure 4.12 shows the time trace of the stored power in the 60th and 

80th MRRs showing temporal oscillatory behavior. This temporal oscillatory signal is 

modulated by high intensity pulse shape signal.  
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Figure 4.11, The steady state stored power vs waveguide length in a CROW waveguide with G = 1. 

 

Figure 4.12, The temporal behaviors of the stored powers in different MRRs of the CROW waveguide. 

If we introduce gain to each MRR, depending on the value of the linear phase detune of 

the cavities, an optical signal can experience spatial instability as it propagates along the 

CML lattice.  For example, for the same CROW waveguide but with a gain of G = 1.005, 

linear phase detunes of 0 and input power of 0.1W, we can observe quasi spatial 

pulsation with a spatial period of 4 Nz.  Figure 4.13 (a) shows the stored power in each 

MRR at time step of 15000Trt versus its location (Nz) along the CROW waveguide.  The 

power has a quasi-periodic pattern where it peaks in roughly every fourth MRR.  The 

temporal behavior of the stored power in the MRRs is illustrated in figure 4.13(b) for two 

MRR at locations of 40 and 100. 
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(a) 

 
(b) 

Figure 4.13, The stored power versus different location at time step 15000Trt.  (b) Time trace of stored power in 

40th and 100th MRRR 

In figure 4.14 (a) we show the spatiotemporal behavior of the CROW waveguide by 

plotting the stored power in each MRR as a function of both the time step (Nt) and spatial 

location (Nz).  Also to show the spatial oscillatory behavior of this system, we plot the 

zoomed in 2D spatiotemporal behavior of this lattice in figure 4.14 (b). 



  117 

 

(a) 

 
(b) 

Figure 4.14, (a)2D plot of power vs. location (Nz) and time step (Nt) showing the spatiotemporal behavior of the 

CROW waveguide. (b) zoomed in plot of spatiotemporal behavior 

The plot shows that the nonlinear CROW structure can exhibit spatiotemporal pattern 

forming which is characteristic of 1D CML systems. Results of figures 4.14(a) and 4.14 

(b) have suggested to us that the quasi-spatial oscillation at different time step has a same 

period of oscillation and this pattern is independent of time.   

It is interesting to point out that similar to temporal chaos in an optical cavity, spatial 

chaos may occur in a CROW waveguide with gain. For example, for the same input 

power and same linear phase detune, if we increase the gain of the CROW structure in 

the previous example to G = 1.018, the power distribution the CROW waveguide exhibits 
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spatial chaos, as shown in figure 4.15 (a).  Figure 4.15 (b) shows the time trace of stored 

power at different locations of CROW waveguide experience temporal chaos.  

 

(a) 

 

(b) 

Figure 4.15, (a)Plot of the stored power at time step 15000Trt vs location of MRRs along the CROW waveguide 

showing spatial chaotic power distribution. (b) Time trace of stored power for different locations of 40 and 80 

The spatiotemporal behavior of the structure is shown in the 2D map in figure 4.16 (a).  

The map shows that spatial chaos similar to figure 4.15 (a) exists in the CROW 

waveguide at any given time instant, and the power in at any location (MRR) in the 

CROW waveguide exhibits temporal chaos behavior similar to figure 4.15 (b) for two 

different locations of 40 and 80.  A potential application of such a structure is for 

generating random sequences on an integrated photonic platform. To make 
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spatiotemporal chaotic behavior more pronounced, we plot the zoomed in of 4.16 (a) in 

figure 4.16 (b). 

 

(a) 

 

Figure 4.16, (a)2D plot of power vs. location (Nz) and time step (Nt) showing the spatiotemporal behavior of the 

CROW waveguide. (b) zoomed in plot of figure 4.16 (a) 

4.3 Summary 

In this chapter we developed a CML formalism for studying the nonlinear dynamics of 

spatially extended coupled MRRs, also known as nonlinear CROW waveguides.  The 

main application of the CML theory is to study the formation of spatiotemporal patterns 

in a spatially extended system in the presence of two competing mechanisms in each 

local map.  Since such competing mechanisms are lacking in a nonlinear MRR, we are 
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limited to studying the temporal instabilities such as self-pulsation and Ikeda oscillations 

in nonlinear CROWs.  Nevertheless, several interesting conclusions can be drawn from 

our analysis.  In particular, the CML model shows that the SP threshold power decreases 

with the CROW wavelength up to a critical length beyond which the threshold power 

becomes saturated (i.e., it becomes independent of the number of resonators).  We 

attribute the main cause of this saturation effect to a reduction in the nonlinear interaction 

due to the decaying power distribution along the CROW waveguide.  We also found that 

in contrast to SP, the threshold power for observing Ikeda instability in a nonlinear 

CROW generally increases with the CROW length since the device is operated within the 

photonic bandgap.  We thus conclude that a CROW waveguide is not a suitable platform 

for observing Ikeda instability. 

When we introduce gain to a nonlinear CROW, spatial instabilities can also emerge in 

addition to temporal instabilities.  In particular, the power distribution along the CROW 

waveguide is shown to exhibit quasi-periodic spatial oscillations and even chaotic spatial 

patterns.  These structures may have interesting applications, for example, in quasi-

periodic and pseudo-random sequence generations. 
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5 Free Carrier Induced Nonlinear Relaxation in a 

Silicon Waveguide 

In the previous chapters, we saw that free carriers generated by two-photon absorption in 

a semiconductor material such as silicon provide a significant source of nonlinearity, 

which can be exploited to achieve nonlinear processes such as bistability and self-

pulsation in a resonator.  We also found that the lifetime of the generated free carriers 

plays a critical role in determining the threshold powers required to observe these 

phenomena.  Since the FC density is proportional to the FC lifetime at steady state, 

higher loss due to FC absorption also results from longer FC lifetime. 

In general, the efficiency of a FC-induced nonlinear process in a silicon photonic device 

is limited by the additional loss due to free carrier absorption and by the finite lifetime of 

the free carriers.  In particular, the FC lifetime limits the switching speed of a silicon 

microring resonator [1], reduces the wavelength conversion efficiency by four-wave 

mixing in a silicon waveguide [5], and places a lower limit on the threshold power 

required to achieve self-oscillations in a silicon micro-cavity [6].  While the dependence 

of the FC lifetime on the optical intensity in a silicon waveguide has been well studied, 

especially for silicon Raman laser applications [7, 8, 13], its effect on the relaxation time 

of light propagation in the waveguide has received much less attention, particularly at 

moderate to high powers where FCA dominates over TPA as the main source of 

nonlinear loss in the waveguide. An accurate analysis of the nonlinear transient behaviour 

of the power transmission could be important for all-optical switching and modulation 
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applications, as well as for FC lifetime measurements [9, 10].  For example, one of the 

methods used to determine the FC lifetime in a silicon waveguide is by propagating a 

high-intensity optical pulse in the waveguide and measuring the transient response of the 

transmitted power [9].  Due to the nonlinear loss caused by FCA, the optical pulse 

exhibits a temporal decaying behaviour and the decay time constant of the optical 

intensity is presumed to be the same as the relaxation time of the free carriers.  This 

assumption, however, has not been rigorously validated, especially at moderate to high 

optical powers. 

In this chapter we will perform a detailed analysis, through numerical simulations and 

experimental validation, of the effect of the FC lifetime on the transient response of the 

optical power in a silicon waveguide.  Our model includes contributions to the FC 

lifetime from both surface/interface recombination and Auger recombination, the latter of 

which becomes important at high powers.  We find that the decay time of the optical 

intensity is typically shorter than the FC lifetime, and is not constant but depends on the 

optical power.  In particular, we find that the effective decay time is significantly reduced 

at high input powers.  This result could have implications for nonlinear optics 

applications of silicon waveguides, such as the possibility of performing all-optical 

switching and modulation at speeds exceeding the limit set by the FC lifetime. 

The chapter is organized as follows.  In Section 5.1 we present a model for simulating 

nonlinear optical propagation in a silicon waveguide in the presence of free carriers 

generated by TPA.  The model takes into account FC population relaxation times due to 

surface and interface recombination, Shockley-Reed-Hall recombination and Auger 
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recombination.  Section 5.2 presents numerical simulations to study the transient 

responses of the FC density and power transmission in a silicon waveguide under step 

input and square wave input excitation.  Section 5.3 presents the experiment performed 

and measurements obtained to validate the simulation results.  A conclusion in provided 

in Section 5.4. 

5.1 Theory and Background 

When an optical signal with sufficiently high intensity in the telecommunication 

wavelength range propagates in a silicon waveguide, two-photon absorption causes 

electrons to be excited from the valence band to the conduction band (and holes from the 

conduction band to the valence band).  This process causes the optical signal to lose a 

fraction of energy equal to (βTPA/Aeff)×Pa, where Pa is the optical power, βTPA is the TPA 

coefficient, and Aeff is the effective mode area of the silicon waveguide [96- 98].  The 

electrons in the conduction band can themselves interact with the optical field.  In a 

process known as free carrier absorption, the optical signal excites the free electrons to 

higher energy levels within the conduction band [99, 100] and loses an amount of energy 

given by σFCAN(t, z), where N is the FC density and FCA is the FCA cross section.  In 

addition, the optical signal also experiences linear loss given by the linear waveguide loss 

coefficient α0.  Taking these sources of loss together, we can write the equation for the 

optical power P(z, t) propagating in a silicon waveguide oriented along the z direction as 

[96, 97]: 

 
     t,zPt,zNt,zP

Az

t,zP
FCA

eff

TPA
0 
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
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



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


 (5.1) 
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The free electrons generated by TPA diffuse throughout the waveguide and eventually 

recombine with the holes.  Denoting fc as the lifetime of the FC, we can also write the 

equation for the FC density N(z, t) as 

   
 t,zP

t,zN

t

t,zN 2

FCA

fc








 (5.2) 

where γFCA = βTPA/(2ħωAeff
2).  The last term on the right-hand side gives the FC 

generation rate by TPA process. 

In general, the generated free carriers diffuse and recombine through a number of 

processes, each with its own characteristic lifetime.  The chain of events occurring when 

a high-intensity optical signal is applied to the silicon waveguide can be described as 

follows. In the first few femtoseconds, the optical field generates electron-hole-pairs 

through the TPA process [99- 100].  Assuming that the optical signal excites the 

fundamental transverse electric (TE0) mode of the waveguide, most of the optical power 

is concentrated near the center of the waveguide as shown in figure 5.1.  As a result, the 

majority of the free carriers are generated in this region.  The generated free carriers then 

begin to diffuse out toward the sidewalls of the waveguide where the FC density is much 

smaller.  The direction of carrier diffusion in the waveguide is shown by the arrow in 

figure 5.1.   
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Figure 5. 1, Fundamental mode (TE0) distribution in cross section of the waveguide (only right half shown). The 

waveguide core had thickness H = 220 nm and width W = 1.82 µm, lying on a 1 µm-thick oxide layer with its top 

and sidewalls are exposed to air. 

Depending on the location of the free carriers in the waveguide cross-section, they 

experience different nonradiative recombination mechanisms.  Most free carriers 

recombine with surface states at the top and side walls of the waveguide, and also at its 

bottom interface with SiO2.  This is called surface/interface recombination (SIR) [101, 

102].  The rate of SIR in a strip waveguide of width W and height H is given by 

S
HW

H2W

H

S11

bSIR





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



 (5.3) 

where S and S are the top and bottom surface recombination velocities, respectively, and 

τb is the bulk recombination lifetime.  The surface recombination velocity for silicon 

waveguide highly depends on the fabrication technology and is reported to be between 10 

m/s and 100 m/s [99]. 

Some carriers may undergo Shockley-Reed-Hall (SRH) recombination in the bulk silicon 

core before reaching the waveguide surface [101].  SRH is also known as defect 

recombination.  A defect in the silicon crystalline structure introduces an energy state 
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within the bandgap of the material.  A free electron can recombine with this state, with a 

probability (or recombination rate) determined by the distance of the energy level from 

either of the band edges.  Recombination is more likely for energy levels near mid gap 

and becomes less likely for energy levels closer to either band edge.  The SRH 

recombination rate highly depends on the band gap size and temperature [103, 104]. 

At high FC densities, another nonradiative recombination process called Auger 

recombination can also occur which involves three carriers.  In this process, the energy 

released from the recombination of an electron-hole-pair is not transferred to a phonon 

but instead excites another free carrier to a higher energy level within the conduction 

band.  This excited carrier then gives up its energy as a phonon and returns to the edge of 

the conduction band.  Due to its involvement of three carriers, Auger recombination has a 

higher chance of occurrence in regions with high FC densities (high optical power) [105], 

leading to shorter FC lifetime in these regions [106].  The free carrier lifetime associated 

with Auger recombination is given by τAug = (CaN
2)-1 where Ca is the ambipolar Auger 

coefficient and N is the free carrier density.  For lightly-doped silicon, the ambipolar 

Auger recombination coefficient is 3.79×10-43 m6/s [106].   

The effective FC lifetime in a silicon waveguide is due to SIR, SRH and Auger 

recombination, and can be expressed as,  

SIRAugSRHfc

1111











 (5.4) 

We can lump the SIR and SRH lifetimes, which do not depend on the FC density, into a 

single time constant τ0, and rewrite equation (5.4) as 
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 (5.5) 

Since the FC density depends on the optical power, it is evident from the above equation 

that the effective FC lifetime in a silicon waveguide is not a constant but depends on the 

power of the optical signal.   

Using the expression for the effective FC lifetime in equation (5.5), we can express 

equation (5.2) for the time evolution of the FC density as  
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 (5.6) 

5.1.1 Steady-state solutions 

We first look at the solution to equations (5.1) and (5.6) under the steady-state condition, 

when an optical signal of constant optical power Pbias is applied to the waveguide.  

Setting the time derivative dN/dt = 0, we have  
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where Pdc(z) and Ndc(z) are the steady-state power and FC distributions along the 

waveguide.  We can obtain the analytical solutions of equations (5.7) by ignoring Auger 

recombination as [107],  
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In equation (5.8.a), Leff is the effective length of the waveguide due to linear loss [107], 
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

 (5.9) 

We calculated the steady-state solutions for a sample silicon waveguide with similar 

dimensions to the one used in our experiment in section 5.3.  The waveguide had 

thickness H = 220 nm, width W = 1.82 µm and length Lz = 5.3 mm.  The silicon core lies 

on an oxide layer with 1 µm thickness and its top and sidewalls are exposed to air.  The 

effective area of the fundamental TE mode at 1.55 µm wavelength is calculated to be Aeff 

= 4.1×10-13 m2.  The material parameters for silicon are α0 = 5 dB.cm-1, βTPA = 8×10-11 

m×W-1, and σFCA = 1.45×10-21 m2 [82].  The free carrier lifetime associated with SRH 

and SIR (τ0) of lightly doped SOI-waveguide is set to be 150 ns.  This value was obtained 

from fitting simulation results to measurement data, as discussed in Section 5.3.  

In figure 5.2 (a) we plot the steady-state power distribution along the waveguide for an 

input power of 50 mW in the presence of nonlinear loss due to FCA (red line).  For 

comparison we also show the power distribution when only linear loss is present in the 

waveguide (black line).  We observe that the effect of nonlinear loss is most pronounced 

near the input end of the waveguide, where the induced loss by FC is the largest.  As the 

optical wave propagates along the waveguide, it experiences attenuation due to both 

linear and nonlinear losses.  This power decay leads to decreasing free carrier generation 

by TPA along the waveguide, as confirmed by the plot of FC concentration vs. distance 

in figure 5.2 (b).  
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(a) 

 
(b) 

Figure 5.2, The Steady-state (a) power and (b) free carrier distribution along the SOI waveguide. 

Figure 5.3 plots the transmitted power at the output of the 5.3 mm-long waveguide versus 

the input power in the absence (black line) and presence (red line) of nonlinear loss.  We 

observe that the effect of nonlinear loss becomes more pronounced at higher input 

powers, as evident from the larger deviation between the two curves.  To study the 

dependence of the transmitted power on the FC lifetime, we plot in figure 5.4 the output 

power versus the FC lifetime for a fixed input power of 50 mW.  We observe that as the 

FC lifetime is increased, the FC density is also increased, which leads to a reduction in 

the output power. 
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Figure 5.3, The steady-state output power versus input power for a 5.3 mm-long silicon waveguide in the 

presence (red line) and absence (black line) of nonlinear loss due to FCA 

 

Figure 5.4, The steady-state output power versus free carrier lifetime for an input power of 50mW in a 5.3mm 

long silicon waveguide. 

5.1.2 Transient solutions 

To obtain the solutions to the coupled equations (5.1) and (5.2) to a time varying input 

power signal Pin(t), we assume that the input power can be decomposed into a steady-

state (DC) component and a small-signal transient (AC) component as Pin(t) = Pbias + 

pin(t).  Similarly, we also separate the power and FC distributions in the waveguide into a 

DC part and a small-signal AC part as P(z,t) = Pdc(z) + p(z,t) and N(z,t) = Ndc(z)  +n(z,t), 

respectively.  Substituting these expressions into equations (5.1) and (5.2), we get 
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The above equations can also be separated into a set of DC equations and a set of 

transient equations.  The DC equations are the same as equations (5.7), whose solutions 

we have previously discussed.  For the transient equations, we further simplify by 

neglecting high-order terms in p and n to obtain the system of coupled linear equations, 
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In the above equation, fc  is the small-signal free carrier lifetime given by 
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Equations (5.11.a) and (5.11.b) cannot be solved analytically.  Instead, we resort to a 

semi-numerical method based on a time marching algorithm in which we discretize the 

time variable into small intervals of size t.  Supposing that at time t, the solutions are 

given by p(z, t) and n(z, t).  From equation (5.11.b), we obtain the time marching formula 

for the FC density at time t + t as 
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 (5.13) 

In the above analytical solution, we assumed that p(z,t) is constant in interval between t 

and t+Δt because of its perturbative nature in comparison to Pdc(z). 
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Next, the transient power distribution p(z, t + t) is updated using the expression 
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In the above equation, ΔP is the AC input power.  At the initial time t = 0, the FC density 

is n(z, 0) = 0 and the power distribution is given by 

 
  











zdzNz

ac

z

0
dcFCA0

Pe0,zp   (5.15) 

In the next section we apply the above numerical method to simulate the nonlinear 

response of a silicon waveguide to step input and square wave optical signals 

5.2 Numerical Simulations 

In the following simulations, we use a silicon waveguide with the same dimensions and 

material parameters as described in Section 5.2.1.   

5.2.1 Nonlinear response to a step input optical signal 

We simulated the transient response of the transmitted power, Pout(t), at the output of the 

waveguide for a step input signal of the form )t(PuP)t(P biasin  , where Pbias is a 

constant bias power, P is the step change in power and u(t) is the Heaviside function.  

The time responses of the transmitted power and the FC density at the input end of the 

waveguide are shown in figure 5.5 for a sample input signal with Pbias = 50 mW and P = 

1 mW.  We observe that the output power becomes attenuated as free carriers are 

generated in the waveguide.  However, due to the coupling dynamics between the FC 
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density and the optical power, the transient responses of both the output power and the 

FC density generally do not follow a pure exponential behavior with a fixed time 

constant.  It is also evident from the plot that the relaxation times of the power and FC 

density are not the same.   
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Figure 5.5, Simulated transient responses of the output power and the FC density at the waveguide input for a 

step input signal with Pbias = 50 mW and ΔP = 1 mW 

Nevertheless, we can quantify the rate of decay of each curve by defining an effective 

time constant eff as the initial decay constant of the transient response just after the input 

step change.  For the results in figure 5.5, we obtain the effective time constants for the 

output power and FC density to be eff,out = 0.74o and eff,fc = 0.99o, respectively, which 

indicates that the output power has a faster decay rate than the FC density. 

Since the input bias power determines the level of FC density generated in the waveguide 

and hence the magnitude of the FC-induced nonlinear loss, we expect it to also have a 

direct impact on the relaxation time of the transient response.  Figure 5.6 shows the 

dependence of the normalized effective time constant of the output power (eff,out/o) and 

the FC density (eff,fc/o) on the bias power (Pbias) with the step change P fixed at 1 mW.  

Below about 10 mW (region I), the FC density and output power have roughly the same 
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relaxation time, which is approximately equal to the lifetime o.  Between 10 mW and 50 

mW (region II), the effective decay time of the output power decreases noticeably as the 

bias power increases.  However, the effective FC lifetime remains relatively constant in 

this region and only begins to drop when Pbias exceeds 50 mW (region III). 

 

Figure 5.6, Dependence of the effective decay time of the output power and the effective FC lifetime on the input 

bias power (at a fixed step power change ΔP = 1 mW). 

To understand the cause for the decrease in the decay times, we show in the plot the 

small-signal FC lifetime (open circles), which is seen to be nearly identical to the 

effective lifetime of the FC density, as may be expected from equation (5.12).  Notably, 

the small-signal FC lifetime begins to exhibit a sharp drop-off at Pbias ~ 50 mW due to 

Auger recombination.  However, in region II, the effect of Auger recombination is 

negligible but the effective decay time of the output power still shows a steep drop with 

the bias power.  We attribute the reduction in the decay time of the output power in this 

region to the interaction between the FC population and the optical intensity in the 

waveguide.  To gain further understanding of the effect of Auger recombination, we also 

plot in figure 5.6 the simulation results without Auger recombination (dotted curves).  

We observe that the results with and without Auger recombination begin to deviate from 
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each other for input bias powers greater than 50 mW, indicating again that Auger 

recombination becomes non-negligible at high powers.  Finally we note that the reduction 

in the effective decay times is also observed if we increase the step power change P of 

the input signal instead of the bias power level. 

The dependence of the decay times on the power level suggests that care must be taken 

when determining the FC lifetime in a silicon waveguide from the relaxation time of the 

transmitted power.  On the one hand, it is desirable to use a high input power in such a 

measurement so that the FC-induced power attenuation is large, making it easier to 

measure the decay time constant.  On the other hand, a high input power may cause the 

FC lifetime to be underestimated.  As shown by the simulation results in figure 5.6, the 

decay time of the transmitted power can be much shorter than the FC lifetime in the 

waveguide at moderate input powers.  This result also suggests that it may be possible to 

perform all-optical switching in a silicon waveguide at speeds faster than the FC 

relaxation rate. 

5.2.2 Nonlinear response to a square wave optical signal 

In this section we investigate the nonlinear response of a silicon waveguide to an input 

pulse train with duty cycle D and modulation frequency Fmodulation.  The power levels of 

the signal during the on interval (TOn) and off interval (TOff) are POn and POff, 

respectively.  The duty cycle of the pulse train is defined as D = TOn/( TOn +TOff).  To 

study the effect of the optical power on the effective FC lifetime and power decay rate, 

we apply two pulse trains with different bias levels of 35 mW and 130 mW, respectively. 

The pulse height of both inputs is 20 mW.  Thus for the low-power signal, POff = 35 mW 
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and POn = 55 mW, whereas for the high-power signal, POff = 130 mW and POn = 150 mW.  

The modulation frequency is 1 MHz and the duty cycle is fixed at 70%.  Figures 5.7(a) 

and (b) show the temporal profiles of the transmitted powers (solid lines) and the free 

carrier densities (dashed lines) at the output of the waveguide for the low-power and 

high-power input signals, respectively.  We observe that during the On interval, the 

optical power is absorbed to generate free carriers so the transmission decreases.  The 

reduction of the power in the waveguide due to nonlinear loss, however, eventually leads 

to a decrease in the FC density.  During the Off interval, the drop in the optical power 

causes a fall-off in the density of the free carriers as they recombine.  The decrease in the 

FC density is accompanied by a corresponding increase in the power transmission in the 

Off interval. 
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 (b) 

Figure 5.7, The time trace of power and free carrier density at the output of waveguide for bias level of (a) 

35mW and (b) 130mW 

To quantify the rise times and fall times of the transmitted power and FC density, we 

define the effective FC lifetimes during the Off and On intervals as τeff,Off,fc and τeff,On,fc, 

respectively, and the effective power decay times as τeff,Off,PWR and τeff,On,PWR, 

respectively, as shown in figure 5.7(a).  The values for these time constants are obtained 

from the plots and tabulated in table 5.1. It is evident from the table that the time 

constants for both the FC density and the transmitted power are smaller at the higher 

input power (i.e., the rise times are shorter than the fall times), indicating that the time 

constants are dependent on the input power.  These results correlate with the results from 

the step-input analysis of figure 5.5. 

Table 5.1, The effective power decay and free carrier generation rate for various power levels and intervals 

Input power Interval variable value 

τeff,Off,out 107 ns 

τeff,Off,fc 94 ns 

τeff,On,out 93.4 ns 

τeff,On,fc 73.4 ns 

τeff,Off,out 60.3 ns 

τeff,Off,fc 33.33 ns 
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On 

τeff,On,out 53.4 ns 

τeff,On,fc 26.7 ns 

To study the variation of the effective time constants with the modulation frequency of 

the input signal, we applied a square wave to the silicon waveguide with the modulation 

frequency varied from 1 MHz to 100 MHz.  The input signals have a fixed bias power 

Pbias = 50 mW, step height P = 20 mW and duty cycle D = 70%.  Figure 5.8 shows the 

plot of the average power transmission as a function of modulation frequency.   

 

Figure 5.8, Average transmission ratio as a function of frequency of modulation 

The average transmission is computed as  
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In the above equation, T is the period of the square wave and Lz = 5.3 mm is the 

waveguide length.  Increasing the modulation frequency reduces the durations of the on 

and off intervals.  As a result, smaller FC densities are generated during the on intervals, 

leading to lower nonlinear absorption in the waveguide.  Thus, we observe from the 

figure 5.8 that the average transmission of the silicon waveguide increases with 
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increasing modulation frequency. 

We also studied the variation of the effective time constants with the duty cycle D.  

Figure 5.9 plots the average power transmission as a function of the duty cycle for a 

square pulse train with modulation frequency of 1MHz, bias power level Pbias = 50 mW, 

and step height ΔP = 20 mW.  We observe that the average transmission decreases with 

increasing duty cycle.  As the duty cycle is increased (i.e., the ratio of the On interval to 

Off interval is increased), the density of free carriers generated during the On intervals 

increases while fewer free carriers are recombined in the Off intervals.   

 

Figure 5.9, Average transmission ratio as a function of Duty Cycle for a 1MHz modulation frequency 

As a result, the optical pulses experience more nonlinear absorption, leading to a decrease 

in the average power transmission, as observed in the plot. 

5.3 Experimental Validation 

In this Section we report our experimental work to validate the simulation results 

obtained in the previous section.  We will first describe the silicon waveguide used in the 

experiment and the experimental setup used to perform time-domain measurements of the 

power transmission of the waveguide.  Experimental results will then be presented and 
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compared to the simulation results.  

5.3.1 Silicon-on-Insulator waveguide 

The Silicon-on-Insulator (SOI) waveguide used in our study has a silicon core of 220 nm 

thickness and 1.82 m width.  The waveguide lies on a 1 m-thick oxide layer with the 

top and sidewalls exposed to air.  The effective area of the transverse electric (TE) mode 

at 1.55 m wavelength is calculated to be Aeff = 4.1×10-13 m2 and the total waveguide 

length is 5.3 mm.  A diagram and SEM image of this waveguide is shown in figure 5.10 

(a) and 5.10 (b), respectively.   

 

(a) 

 

(b) 



  141 

Figure 5.10, (a) A diagram of the waveguide. (b) an SEM image of the fabricated waveguide  

The waveguide was fabricated in the University of Alberta Nanofabrication Facility.  The 

procedure used to fabricate the waveguide is summarized in Appendix I. 

5.3.2 Experimental setup 

Figure 5.11 shows the experimental setup used to measure the transient response of the 

transmitted power of the silicon waveguide.  In the experiment, we modulated a CW 

optical signal at the 1.55 µm wavelength from a tunable laser using a 40 Gbps intensity 

modulator.  The CW signal had a power level of 25 mW (14.1dBm).  We biased the 

modulator to Vπ = 2.5 V from a DC power supply (Vπ is called the half-wave voltage, 

which is the voltage required to induce a  phase shift in the modulator).   
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Figure 5.11, Schematic of the experimental setup used to measure the transient response of the transmitted 

power of a silicon waveguide for an input square wave. 

A microwave arbitrary waveform generator (AFG3000) provided a square wave with 

peak-to-peak amplitude of 2.5 V to the intensity modulator.  We then amplified the 

modulated optical signal with a DC-Erbium-doped fiber amplifier (EDFA).  The 

amplification step provided by the EDFA is 10 mW with a maximum output power of 2 

W.   

To excite the TE mode of the silicon waveguide, we passed the modulated and amplified 

optical signal through a polarization controller to select the TE polarization.  The light 

was then butt-coupled to the silicon waveguide using a lensed fiber.  The transmitted 
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power is detected by a high-speed photodetector (12 GHz bandwidth) and the output time 

trace is recorded on an oscilloscope.  In the experiment, we set the pulse repetition rate 

(or modulation frequency) of the signal generator to 1 MHz and the duty cycle to be D = 

70%.  By changing the power level of the EDFA, we could vary the power level of the 

input optical signal.  Figures 5.12 (a) and (b) show the time traces of the transmitted 

powers of the silicon waveguide for two different input power levels.  Excluding input 

coupling loss, the values for the bias power and step change of the input square waves 

were Pbias = 50 mW, P = 20 mW (POff = 50 mW and POn = 70 mW) for figure 5.12(a) 

and Pbias = 130 mW, P = 20 mW (POff = 130 mW and POn = 150 mW) for figure 5.12(b).   

To extract eff,On and eff,Off  values from experimental data we performed curve fitting to 

the function   eff

t

beatf




  where a, b, and τ are determined by least square method 

(L:SM). The values of a, b, and τeff are different for on and off intervals.  

For the trace in figure 5.12(a), the effective time constants obtained from the output 

power response are eff,On = 98 ns during the high-power (On) interval and eff,Off = 115 ns 

during the low-power (Off) interval.   

For the trace in figure 5.12(b), the corresponding values are eff,On = 55 ns and eff,Off = 72 

ns.  It is evident that the effective time constants are reduced at the higher bias power, by 

as much as 60% compared to those at the lower bias power.  We note that the On and Off 

effective time constants are not equal because they depend on the FC concentration in the 

waveguide before the On or Off step change occurs. 
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(a) 

 

(b) 

Figure 5.12,  Measured (grey dots) and simulated (dashed line) transient responses of the transmitted power for 

a 1 MHz input square wave with (a) low bias power (Pbias = 35 mW, ΔP = 20 mW) and (b) high bias power (Pbias 

= 130 mW, ΔP = 20 mW). 

To compare the measurement results with the results predicted by the model in equation 

(5.7), we performed numerical simulation of the silicon waveguide with the linear loss α0 

and the Auger-independent FC lifetime τ0 optimized to obtain a good fit between the 

simulated and measured transmitted powers.  The linear and nonlinear parameters of the 

SOI waveguide used in the simulation are listed in table 5.2.  The Auger-independent FC 

lifetime value o is 150 ns, which is larger than the typical lifetime in SOI waveguides 

because of the large width of our waveguide.  It may also be due to the low surface 
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recombination velocities associated with the surfaces and Si/SiO2 interface of our SOI 

waveguide since it is known that this parameter varies widely depending on the method 

of interface formation and surface treatment [104, 107].  On the other hand, the small SIR 

rate allows the effect of Auger recombination to be observed at lower powers. 

Table 5.2, Linear and nonlinear parameters of SOI waveguide 

Coefficient Expression Value Dimension 

α0 Linear Loss 5 [dB/cm] 

βTPA Two Photon Absorption 
1.2×10-11 

[m.W-1] 

Aeff Effective Area 
0.41×10-12 

[m-2] 

τ0 Auger independent free carrier lifetime 
150 

[ns] 

Ca Ambipolar Auger coefficient 
3.79×10-43 

[m6/sec] 

σFCA Free carrier Dispersion Cross Area 
1.4×10-21 

[m-2] 

λ wavelength 
1.55 

[μm] 

ΔP Step power 
20 

[mW] 

Lz Waveguide Length 5.3 [mm] 

Since the measured time trace recorded by the high-speed photodetector only contains the 

transient (AC) component, we removed the DC part from the simulated output power to 

obtain the AC component as follows: 

  dt)t,L(P
T

1
)t,L(PtP

T

0

zzac_out   (5.17) 

The simulated results are shown by the dashed lines in figures 5.12(a) and (b) for both 

input power levels, showing excellent agreement with the measurement results.   

We also studied the variation of the effective decay time with the frequency of the input 

signal.  We applied a square wave to the silicon waveguide with bias power Pbias = 130 

mW and step height P = 20 mW.  The duty cycle was fixed at 70% and the modulation 
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frequency was varied from 1 MHz to 10 MHz with 1 MHz step. By changing the 

repetition frequency of modulator (between 1MHz to 10 MHz), the DC value of 

modulated optical signal varies and we should modify the Vπ in each step to have a 

consistent DC part during the entire experiment for the frequency range from 1MHz to 

10MHz. 

A sample measured transient response for a 4 MHz input square wave is shown in figure 

5.13.  Also shown is the simulated curve, which was obtained using the same parameters 

in Table 5.2 except for the frequency change.   

 

Figure 5.13, Measured and simulated time responses of the output power for a 4 MHz in square wave with Pbias 

= 130 mW and pulse height of 20 mW 

In figure 5.14 we plot the measured effective time constant during the on interval of the 

output power versus the frequency.  The values predicted by the model are also plotted, 

showing that the decay time increases only slightly with frequency.   
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Figure 5.14, Plot of the measured (solid line) and simulated (dashed line) effective time constant of the output 

power versus the modulation frequency 

Although the data for the measured time constant exhibit large variations with simulation 

result due to limited band width of oscilloscope (1MHz), they can be seen to be roughly 

in the same range of values as the simulation result. 

5.4 Summary 

In this chapter we reported a detailed analysis, through numerical simulations and 

experimental validation, of the effect of the FC lifetime on the transient response of the 

optical power in a silicon waveguide.  Our model includes contributions to the FC 

lifetime from both surface/interface recombination and Auger recombination, the latter of 

which becomes important at high powers.  We found that in general the output power 

exhibits a shorter decay time than the FC lifetime, and this decay time decreases with 

increasing input powers.  Furthermore, the reduction in the decay time occurs well below 

the power levels at which Auger recombination becomes important, and is attributed to 

the coupling dynamics between the optical intensity and the FC population in the 

waveguide.  This result could have implications for nonlinear optics applications of 

silicon waveguides, such as the possibility of performing all-optical switching and 
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modulation at speeds exceeding the limit set by the FC lifetime.  As a validation to the 

model used, we also performed measurement of the transmitted power of a silicon 

waveguide for different input powers and frequencies, with the results obtained showing 

excellent agreement to simulations. 
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6 Conclusions 

6.1 Summary of research contributions  

In this thesis we investigated the nonlinear dynamics of single microrings and systems of 

coupled microring resonators.  In addition to the interesting fundamental physics that 

these systems entail, they can also have potential applications in high-frequency optical 

clock generation and optical pulse generation.  In particular, we studied self-pulsation 

behaviours in resonators with instantaneous nonlinearity where the nonlinear response 

time of the material is much shorter than the cavity roundtrip time, and in resonators with 

non-instantaneous nonlinearity where the nonlinear response time is longer than the 

roundtrip time.  A specific example of instantaneous nonlinearity considered in the thesis 

is Kerr nonlinearity in chalcogenide glass.  For resonators with non-instantaneous 

nonlinearity, we considered semiconductor materials such as silicon, where the nonlinear 

response is due to free carriers generated by two-photon absorption.  For each type of 

nonlinearity, we developed models to analyze the nonlinear dynamic behaviours of single 

microrings and systems of coupled microrings, with the aim of understanding the 

mechanisms giving rise to instability and reducing the threshold powers required to 

achieve self-pulsation in practical integrated photonic devices. 

In Chapter 2, we reviewed the EC and PC models for analyzing the stability of a 

microring resonator with instantaneous Kerr nonlinearity.  Since the EC model is valid 

only for a narrow frequency range around a single resonance mode of the microring, it 
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cannot predict Ikeda instability, which relies on the mixing of adjacent resonator modes.  

On the other hand, the PC model accounts for an infinite number of resonance modes and 

can thus predict Ikeda instability and multistability phenomena in a single resonator.  

This observation motivated us to develop a PC model to study the nonlinear dynamics of 

a single MRR with non-instantaneous nonlinearity.  The model allowed us to investigate, 

for the first time, higher-order SP behaviours in a silicon MRR with FC-induced 

nonlinearity.  In particular, we showed that 2nd-order SP can be achieved for much longer 

FC lifetimes than possible with 1st-order SP, and the range of oscillation frequencies is 

also wider.  We also proposed two alternative techniques for reaching SP on the second 

branch of the stability curve without requiring prohibitively high CW optical powers.  

The first technique is based on tuning the linear phase of the microring over more than 

one FSR, while the second technique is based on applying an ultrafast optical pulse with 

high peak power to overcome the bistability knee.  These methods can potentially allow 

for the experimental observation of high-order SP in silicon microring resonators, leading 

to practical integrated optics devices for generating high-frequency optical clock signals 

on a silicon chip.   

In Chapter 3, we extended the analysis of nonlinear dynamics to a system of coupled 

MRRs with the aim of lowering the threshold powers for reaching SP.  Again we 

considered both systems with instantaneous Kerr type nonlinearity and FC-induced 

nonlinearity with finite relaxation time.  A significant contribution arising from this study 

is that by using the PC formalism, we showed for the first time that Ikeda instability also 

exists in a system of coupled MRRs with instantaneous Kerr nonlinearity.  In addition, 

for specific design parameters, we could achieve minimum threshold powers for SP with 
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four coupled MRRs.  However, the threshold power for observing Ikeda instability in a 

chain of coupled MRRs is found to be higher than for a single MRR since the input 

power is distributed over many resonators. 

Our work on the nonlinear dynamics of a chain of coupled MRRs led us to formulate an 

alternative description of such a system as a Coupled Map Lattice in Chapter 4.  The 

CML formalism allows us to study the spatiotemporal distribution of the optical power in 

long nonlinear CMRR chains.  It is well known that spatiotemporal patterns can form in a 

1D CML system with gain.  However, since the nonlinear CROW waveguides we studied 

do not have gain, the CML formalism only predicts temporal instabilities such as SP and 

Ikeda instability in these structures.  On the other hand, by introducing a small gain in 

each microring in the chain, we showed that much richer spatiotemporal behaviours can 

exist in the CROW waveguide, such as quasi-periodic spatial pattern formations (i.e., 

spatial instability) and chaotic spatiotemporal behaviours.  These structures can 

potentially have applications in quasi-periodic and random sequence generations. 

In silicon photonic devices, free carriers generated by TPA provide the dominant source 

of nonlinearity, which can be exploited to achieve SP in single and coupled MRRs, as we 

showed in Chapters 2 and 3.  In these devices, the FC lifetime is a critical parameter 

which affects the onset of SP.  Given the important role of the FC lifetime in the 

nonlinear dynamics of silicon photonic devices (as well as other nonlinear processes such 

as four-wave mixing [108] and Raman gain [107]), we devoted Chapter 5 to the 

theoretical modeling and experimental study of the effect of the FC lifetime on the 

nonlinear relaxation of light propagation in a silicon waveguide, especially at moderate to 
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high powers where Auger recombination becomes significant.  We showed that contrary 

to the usual assumption, the FC lifetime is generally different from the decay time of the 

optical intensity, and this decay time is not constant but depends on the optical power.  In 

particular, we find that the effective decay time constant of the optical signal is 

significantly reduced at high input powers.  This result could have implications for 

nonlinear optics applications of silicon waveguides, such as the possibility of performing 

all-optical switching and modulation at speeds exceeding the conventional limit set by the 

FC lifetime. 

Our research contributions have been published in the following journal articles: 

1. Siamak Abdollahi and Vien Van, "Analysis of optical instability in coupled 

microring resonators," J. Opt. Soc. Am. B 31, 3081-3087 (2014) 

2. Siamak Abdollahi and Vien Van, " Free-Carrier-Induced Nonlinear Relaxation 

in a Silicon Waveguide," IEEE Photonics Technology Letters, 29, 1112-1115 

(2017) 

3. Siamak Abdollahi and Vien Van, " Free carrier induced high-order instability 

in an optical microcavity," J. Opt. Soc. Am. B (2017) 

6.2 Suggested directions for future research 

The results obtained from our theoretical studies of instability in nonlinear MRRs in this 

thesis provide directions for achieving experimental demonstrations of these phenomena 

in practical integrated photonic devices.  We list below suggested future research 

directions that can help further our understanding of the nonlinear dynamics of CMRR 
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systems and bring their practical applications closer to reality. 

 Experimental demonstration of 2nd-order instability in silicon MRRs: 

Using the PC model developed in Chapter 2 for analyzing instability in an MRR 

with FC-induced nonlinearity, we can optimize parameters of silicon MRR such 

as waveguide width, ring size, Q factor to achieve minimum threshold power for 

observing SP on the 2nd branch.  The device can then be fabricated and 

experiments based on the linear phase tuning technique proposed in Section 

2.2.5 performed to demonstrate 2nd-order SP and the generation of high-

frequency optical clock signals. 

 Experimental demonstration of instability in nonlinear CROWs: 

Using the PC model developed in Chapter 3 for analyzing instability in 

nonlinear CROWs, we can optimize silicon CROWs of various lengths, coupling 

parameters, etc. to reduce the threshold powers for observing SP to practical 

levels.  The devices can then be fabricated and experiments performed to 

demonstrate SP in nonlinear CROWs for fast optical pulse generation. 

 Lyapunov stability analysis of CROW waveguide: 

The stability analysis performed in this thesis is based on the linearization of 

nonlinear coupled equations.  Nonlinear stability analysis known as Lyapunov 

analysis can provide deeper insight into the nature of the nonlinear dynamics.  For 

example chaotic dynamic behaviour could be detected only by Lyapunov stability 

analysis.  Nonlinear Lyapunov analysis could enable us to design CMRRs for 
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novel applications in cryptography, signal processing and optical communication.  
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APPENDIX I 

We listed the steps to fabricate SOI waveguide in figure A.1   

 

  

 

   

Figure A. 1, Silicon-on-insulator fabrication process for realizing [109] 

(a) Dicing: The first step for fabrication of SOI waveguide is to cut up a 4'' SOI wafer 

into 1×1 cm2 chips using a wafer dicer. We should immerse the individual chips to an 

ultrasonic bath to clean the debris and dusts. 

(b) Piranha clean: For additional cleaning the chips surface from organic remains, for 

about 15 minutes, we should immerse the chip into a Piranha solution.  After Piranha 

cleaning step, we removed the surface moisture by washing with de-ionized water 
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and we finish this stage by nitrogen blow drying.  The diced and cleaned chip is 

illustrated in figure A.1 (a). 

(c) Resist coating: In the next step, we coat a layer of the electron beam lithography 

resist onto the chip by a resist spinner.  We prebaked the chip at 100C on the hot plate 

to remove any surface moisture.  After prebaking, we performed speed coating for 40 

second at 4000 rpm.  As illustrated in figure 1.A (b), the resist layer thickness was 

measured to be about 90 nm. We performed additional post baking for approximately 

10 minutes at 180 oC, to remove any residual solvent from the resist.   

(d) Electron beam lithography (EBL): The electron beam lithography system used 

to fabricate the waveguide is the 30 kV Raith 150 system.  Unlike UV lithography 

system, Electron beam lithography can produce high resolution pattern which allows 

writing a pattern with 1nm resolution. Exposed resist to EBL is shown by figure A.1 

(c). 

(e) Resist development: PMMA (poly methyl methacrylate) is a polymeric material 

that is commonly used as a high resolution positive resist for EBL.  Because PMMA 

is a positive EBL resist, the exposed portion of the resist becomes soluble to the resist 

developer.  After an EBL exposure, the resist was developed in developer solution.  

Finally, we performed Nitrogen blow drying to eliminate any moisture. In figure A.1 

(d), we showed the chip at the end of this stage.  

(f) Reactive Ion etching (ICP-RIE): To remove material deposited on wafers, 

RIE uses chemically reactive plasma. This plasma is generated under low pressure 

(vacuum).  The High-energy ions attack the wafer surface and react with it.  The ICP-
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RIE procedure shown by figure A.1 (e). 

(g) Post-etch processing: Under ultrasonic vibrations in acetone bath, we removed the 

residual of resist.  The final chip illustrated in figure A.1 (f).  At the last stage, we 

cleaved the device to expose the waveguide facets for butt-coupling configuration.  

The facet of the cleaved waveguide facet is shown by figure 5.10 
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