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Abstract

Cellular automata consistently grow in relevance to engineering and science as computation becomes

more important for design and theoretical analysis. Although cellular automata have been used

for a variety of tasks a means of representing objects has not yet been devised. This is a severe

limitation for cellular automata as objects are the ultimate means for systematically describing

physical systems. In an effort to construct objects in cellular automata a discrete structure called

an event-lattice was developed. It refines the definition of an event to have explicit extension in

time and space. Using Alfred North Whitehead’s conception of what distinguishes an actual entity

from an object a framework for objects could be devised under the assumption that a finite volume

of space-time contains a finite amount of information. An external binary operation uses a finite

set of symbols to give the event-lattice its structure and also acts as a set used to construct objects.

The set of occurrences of all objects in the lattice is representable as the free group generated by

the set of symbols. This particular structure was inspired by the Lattice Gas Automaton. This

conception of objects has a number of agreeable properties beyond the applications of simulation.

As the point particle is arguably the most important object for description a point particle model

was developed and investigated. An algorithm is identified such that particles may maintain their

identities by having unique spatial coordinates at all times. Interactions amongst these particles

were generalized and studied using a momentum balance. A discretized form of the Navier-Stokes

equation was obtained. When the generalized interactions are organized as a vector the evolution

of the system closely resembles the collision step of the Lattice Boltzmann Method which was then

retrofitted and used to study the point particle model further. The most important directions for

further research are in the compact representations of objects as sequences.
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Chapter 1

Introduction

This thesis concerns itself with the task of representing objects in computers for the purpose of

simulating physical systems. What is meant by a physical system is a system that can be described

in terms of time, space, and matter. [1] Motivation for this research arose from the challenges asso-

ciated with simulating nanoscale fluid systems. Many important industrial and biological processes

are carried out in environments which are best described as nanofluidic. The objects of investi-

gation are on the order of nanometers and interact within a solvent basin larger than themselves

but by no means macroscopic. The self assembly of colloidal materials, reaction-diffusion at and

around catalyst sites, and the folding of proteins are important examples. Construction and de-

sign of technology at this order of magnitude presents wonderful opportunities along with serious

engineering challenges. Computer simulation, so long as it can be efficiently applied provides an

indispensable technique of design, analysis, and investigation in this area of research. However,

many systems are beyond the reach of current simulation techniques due to the shear magnitude

of entities involved and the complexity of their interactions.

The work of Toffoli provides interesting ideas for how to approach these problems from a prag-

matic standpoint. [2] Toffoli’s main dilemma was that physical description has always been influ-

enced by the nature of the available computational tools for its formulation and expression and that

as computational technology evolves so too should the means of physical description. The most

pernicious feature of the past formulations being the use of continuums. Although appropriate for

analytic derivation, mathematical descriptions which utilize continuums must undergo discretiza-

tion in order to be expressed in a computational environment. As the overwhelming majority of

cases are only solvable numerically, i.e. very few systems admit analytic solutions, Toffoli analyzed
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cellular automata as an alternative rather than an approximation of differential equations. He

questioned whether differential equations should be the starting point for computer simulation of

physical systems noting that differential equations are already an abstraction of the underlying

reality as a continuum, abstracted again in discretization to create a system of linear equations,

and then abstracted a third time in projecting real valued variables onto finite computer words.

The central question underlying Toffoli’s work is how can we innovate upon then means of physical

description such that the framework of physical description is itself isomorphic to the framework

and structure of the computer. This framework of course being of a discrete nature. The bet is that

a discrete framework naturally attuned to the discrete computational environment will be orders of

magnitude faster and more effective with no rounding error, such that simulations will stand with

the authority of mathematical theorems yet maintain a direct relevance to physical systems as they

were devised in that framework.

Toffoli’s dilemma was of pragmatic character but the general concern was not new. For instance

Feynman in his later years inquired about the nature of computation as a means for understanding

quantum mechanics. [3] He analyzed consequences of the proposition that there is a simulation

that behaves exactly like the contents of a finite space-time volume with a finite number of logical

operations. Cellular automata find their way into his enquiry by nature of their local behaviour

thereby satisfying his condition that the number of logical operations should grow proportionally,

not exponentially, to the volume of space-time under consideration. Similar ideals of a finite

amount of information in a finite volume of space-time have been espoused by ’t Hooft although

on entirely different lines of thought. By finding success with non-local probabilistic quantum

mechanical predictions applied to results of local, determnisitic cellular automata ’t Hooft has

begun to question the generally accepted interpretations of quantum mechanics. [4]

All three, Toffoli, Feynman, and ’t Hooft have been influenced by Fredkin and his continuous

efforts to create a cellular automaton which can be programmed to act like physics. [5] Fredkin

developed his digital mechanics in companion with his digital philosophy which centers around

the fundamental assumption that all physical processes are discrete by nature, and accordingly

have a fundamental representation as information processes. The motivating issue is that the use

of continuums in physical description require that a volume of space-time, no matter how small,

will always contain an infinite amount of information. One can very well suspect that the main
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subject of these ideas of finite information in a finite space-time volume are following a thematic

trend of our era in the information age. [6] Ideas about the equivalence between information and

physical processes obtained concreteness by the mathematical theory of communication of Shannon

in finding that the measure of average information and Boltzmann’s formulation of entropy have

identical form. [7] This relation was long anticipated by Maxwell and his Demon. [8, 9] Yet, there

was something different about Toffoli’s work that was implicit in his exposition and also shared

by ’t Hooft. Namely that frameworks for physical description are tools and that they should be

understood and innovated as such.

Frameworks for physical description or frameworks in short are for describing, not explaining

physical processes. Even if Fredkin’s program reaches perfection in that a universal cellular au-

tomaton is found which can exhibit all of the abilities of matter and predict new features of the

microscopic world that no other mechanical theory has yet obtained there will still be doubt in

regards to it as having any absolute truth. In the same way that a camera being able to create

images of a variety of disparate objects is not evidence that the world is pixelated so too symbolic

physical theories are unable to assert their own absolute truths by agreement with empirical facts.

This does not mean they are not useful and valuable. It is simply that a mechanical theory is a

framework for description which in itself enforces the general rules or at least has the potential

to enforce the general rules which have been deemed true of objects. Conservation of energy and

momentum, the finite speed of light and uncertainty are examples of the general rules of objects

which a framework must have the capacity to exhibit in order for use in physical description. When

a framework of description can maintain these rules it can be used to describe a multiplicity of

systems without concern of violating what is agreed upon as physical law. Since these laws gen-

erally apply and the framework follows these laws it can then be predictive about the behaviour

of actual objects, useful for simulation, and aid in the efforts of engineering. The task of finding

finite representations of objects suitable for computers is then a pragmatic effort but it cannot be

avoided that any advances on this front have theoretical content.

Automata, as direct models of computation, could not be better suited to solving Toffoli’s

dilemma. The potential of automata for physical simulation and modelling has long been recognized

even before their cellular conception by von Neummann and have proved to be powerful means

of simulating complicated systems. [10] Their theoretical merits have also been affirmed by the
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work of Nobel Laureate’s Feynman and ’t Hooft. However, as literal models of complexity their

general application to physical simulation is far from trivial. [11] Aside from single particles with

unit velocities, objects in all their usefulness and practicality, as physical entities or as conceptual

conveniences constituting the basis of physical description, are not yet liable to formulation in

cellular automata. This thesis addresses this problem directly in an effort to find a framework for

representing objects within cellular automata, not as emergent entities but as discrete computable

structures.

Such a framework can be constructed. It begins first with an understanding of what simulation

constitutes for science, why automata can play a profound role, and why the inclusion of objects

is important. Secondly one must know what is really meant by an object as opposed to an entity

or an event. The process metaphysics of Whitehead has proved to be an in-exhaustible mine of

suggestion on this front. Thirdly, knowing which features of cellular automata have proved useful

in the past is necessary for success in the present. With this background in hand we can then

embark on the task of constructing a framework for representing objects in cellular automata.
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Chapter 2

Background

2.1 The Appeal of Cellular Automata

Science as a practice is concerned with the objective understanding of the actual world. Objective

signifying that science comprises of an understanding we can all agree on. The empirical aspect

of science demands that the understanding itself be liable to falsification through experiment. In

order that a given understanding of a phenomenon be falsifiable it must in some way be compared

to the phenomenon itself. The first task is to give a description of the phenomenon such that the

description can be used to make predictions. These descriptions are to be exact as possible but

are not definitions. A description in this sense is to be understood as a symbolic representation

of the phenomenon. But the representation itself as ink on paper is a completely separate and

independent thing in the actual world which allows it to be an object of agreement. The fact that

it may ever be considered a representation results from a structural similarity shared between the

actual phenomenon and the symbolic description. The process of description in science is to give a

symbolic representations of phenomena and is a means of expressing a given hypothesis in objective

form. This symbolic form cannot be just any old squiggle of ink on paper. A systematic framework

of description is necessary. In particular what is required is some description which exists in a

framework such that alterations in the description correspond to alterations in experiment which

lead to testable consequences that are reflected in the description as indicated by the framework.

An example of a description of a phenomenon would be the truth value of the sentence of ‘if p

then q,’ compactly, p → q. Suppose p → q to be a hypothesis or theory. By itself p → q is
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nothing but ink on paper or a contrast of pixels. It is only in the framework of logic that this

becomes a scientific description of some sort. Supposing the scientific description to be p → q then

it follows that if p is made to be true then q should be observed. If there is indeed p and then q

is not observed the framework of logic says the description is false, and indeed the scientist would

conclude the hypothesis or theory is false. It is the framework of logic that allowed the description

as description to be falsified.

Newtonian mechanics is a framework to describe the motion of point particles, statistical me-

chanics is a framework to describe ensembles of particles, thermodynamics to describe work and

energy, relativity to describe energy and space-time curvature, and quantum mechanics to describe

wavefunctions. The descriptive power of a framework can always be increased through addition

or improvement of the supposed objects. For instance, the transition of classical mechanics to

quantum mechanics is like the transition from a black and white television to a color television.

Naturally a complex probability amplitude has more descriptive power for expressing the position

of an object than the Newtonian binary conception that the particle is either there or not there.

In the same way color pictures have more descriptive power than binary black and white images.

However it is often times much more preferable to use a black and white image just as it is often

much better to use Newtonian mechanics as opposed to quantum mechanics for describing some

objects.

One may inquire as to what framework is the true framework. None of them. They are

not truths, they are frameworks for describing physical systems to a degree of accuracy. The

effectiveness of a framework is just as much constituted by what the framework can include as well

as what it can leave out. Consider the following circumstances: (i) an electron fired in a cathode ray

tube, (ii) an electron on a nano scale crystal surface, (iii) a person being fired from a cannon, and

(iv) a person choosing a seat in a café. All of these cases can be found in the external world and on

the basis of the fallacy of misplaced concreteness none can be taken as more fundamental than any

other. [12] Cases (i) and (iii) are liable to the Newtonian framework. Newtonian mechanics can give

a good prediction where the human will end up given the angle of the cannon, mass of the human,

initial velocity and so forth. Similarly a cathode ray tube can be designed to project the electron

at a screen to such a degree of accuracy that you could use the system to watch a video. Cases (ii)

and (iv) however are beyond the Newtonian framework’s domain. Neither the exact position of the
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electron on the surface, nor the final seating choice in the café can be predicted with certainty or

even be well defined for that matter.

As computers can express a great variety of descriptions and enforce their associated frameworks

it is natural to inquire about a common framework inherent in computers which all these other

frameworks are expressed in terms of. Certainly if this framework can be instantiated as any other

framework than it has a universal character.

Fundamentally computers process information. Automata, or finite state machines, are mathe-

matical models of devices which process information by giving responses to inputs. [13] Hence their

appeal. Formally one may consider an automaton as a tuple consisting of a set of states Q, inputs

X, outputs Y , and a transition function δ : X ×Q → Y ×Q. [14, 15] When the automaton is in a

given state and receives an input it produces an output and selects a new state as determined by

the transition function. Most often the state of the automaton is identical to its output such that

the automaton consists solely of the tuple (Q,X, δ). When many automata are working in concert

with each other it is necessary to have a clock such that the automata all update their states at

the same time. Automata have much in common with semi-groups and formal languages and were

intensively studied as models of computation. [16] It is no surprise that the computer, granted this

general framework, can replicate a wide variety of frameworks.

The basic applicability of automata can be elucidated by describing a system at multiple orders.

Take flowing water as an example. In one case the water may be divided into elements extended

in space and considered over a duration. The states of the various fluid elements become velocity

and pressure. The next state of the fluid element is determined by its current state and the state

of surrounding elements guided by some transition function such as the Navier-Stokes equation.

Further the water molecules may be identified as the elements with states of position and momen-

tum. The next state being a function of its state and the states of the other molecules guided by

some transition function such as Newton’s Laws of motion in molecular dynamics. Automata are

absolute generalizations of this basic notion. So long as the system may be divided into things

and states may be specified for the things the system can be viewed in terms of automata. This

is supported by the wide variety of uses automata have found in scientific applications. The most

prominent automata for physical description have been cellular automata.

Cellular automata are a type of automata where all the automatons are organized in space like a
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grid of cells. Thus the cellular structure constitutes a spatial basis where automaton events can take

place. [17] Each automaton uses the states of the neighboring automata as inputs for determining

its next state. The set of all the neighbors comprise the neighborhood of the automaton, and

accordingly the set of inputs X is then the total set of states the neighborhood can be in. If

there are N neighbors and each automaton can be in k states then there are kN = |X| possible

inputs. Von Neumann first used cellular automata for his basic theory of self-reproduction. [10]

The cellular arrangement was suggested to him by Ulam who was interested in the interaction

of finite sets of particles, too many for analytical methods but too few for probabilistic analysis

to be meaningful. [18, 19] Creating self-reproducing systems out of cellular automata were further

conducted by Codd, Devore, and Langton. [20–22]

Aside from the natural implementation of automata in computation cellular automata have

proved useful for the physical modeling of polymer conformation and dynamics [23, 24], complex

reaction-diffusion schemes [25–27], urban growth prediciton [28–30], the dynamics of how diseases

spread in the study of pandemics [31,32], biological modelling for pattern formation [33–35], molec-

ular self assembly [36–38], traffic flow simulation and dynamics [39–41], the behaviour of pedestrians

and crowds [42, 43], artificial life [44], and population dynamics. [45–47] The largest resource for

cellular automata applications is found in the proceedings of the ACRI International Conference

on Cellular Automata for Research and Industry. The major topics included are cellular au-

tomata theory and implmentation, computational theory, population dynamics, physical, urban,

environmental, traffic, crowd, swarm, and social modeling, boolean networks, multi-agent systems,

robotics, crypotgraphy, dynamical systems, cellular automata based hardware, natural computing,

and pattern classification [48–54].

The wide application of this framework to diverse areas speaks to the potential of cellular

automata for physical description but only a handful of models, namely traffic simulation and

hydrodynamics, have reached a level of practical use. A seemingly endless search is ahead for

finding transition functions which are universally applicable to physical systems without generating

an unbearable degree of complexity. In fact cellular automata are widely noted for exhibiting

extremely complex behaviour with very simple rules. [11, 55,56]

In the early 20th century Einstein generated the field equations which describe the geometry of

space-time given the energy and momentum distributed within it. That is, given a distribution of
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energy in space, Einstein’s field equations yield the geometry of the space-time which in turn yields

gravity. Aside from these relations, the general theory of relativity does not provide any basis as

to how the energy distribution evolves in and of itself. The task of determining the evolution of

the energy distribution in itself has its natural home in the subject of mechanics. Prior to the

application of a mechanical theory the existence of a something somewhere is posited. It then

proceeds to derive the evolution of the state of this something as it goes somewhere as per the

rules of the mechanical theory. This something is an object, and this somewhere is in space-time.

As objects are representations for the energy and momentum in the system, mechanics effectively

provides a way for describing the evolution of an energy distribution in space-time through objects.

Advances in mechanical theories are often accompanied by an innovation in the nature of the object

that was posited, for example point particles, waves, fields, ethers, and probability amplitudes are

examples of objects which have different descriptive powers, advantages and disadvantages, pending

the system undergoing description.

In the theoretical development of cellular automata much focus has been placed on trying to

make physics emerge and not enough has been focused on expanding the range of its applicability

to already known problems. Although cellular automata utilize a powerful and general framework

their current formulation does not allow for the easy and ready implementation of objects i.e. those

things which have proved so productive since the inception of science centuries ago and enjoy an

ultimate generality of application. Ultimately some synthesis between the notion of objects and the

framework of cellular automata will be necessary to extend this framework to the larger purpose

of physical description.

2.2 The Process Conception of Objects

A brief survey of the environment may suggest objects are forms taken by substance. But if

substance is investigated and described it is found to be composed of objects. Watts provides a

useful thought experiement for elucidating the dilemma of what constitutes an object. [58] Consider

a string made of a blue string, green string, and red string tied together such that one end of the

green string is tied to an end of the blue string and the other end of the green string is tied to an

end of the red string. If we were to tie a knot into the blue string, and then wiggle it across the
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string without undoing the knot until it was completely in the red part of the string we can ask

“is it the same knot?” It is by virtue of it having the same form and so it is recognizable as the

knot throughout the wiggling process. But the knot at the beginning was composed of blue string

and only blue string, in the middle it was made of green and only green string, and in the end it is

made of red and only red string. We can then untie the knot and it no longer exists. The object of

the knot was not substance but we do not find ground to deny its existence. In the same way that

a whirlpool in a river does not consist of any particular set of water molecules but instead is a flux

of water, or a university is a flux of students, teachers, bricks, and books, the knot was recognizable

as the knot and it was convenient to call it so. Watts makes the case an object is a noun, i.e. it is

a name given to a recognizable form for convenience of description and communication.

On a further basis our language as a system which we participate in requires identification

of objects. For instance Quine recognized that language as a social institution requires physical

objects as common denominators of individual sense experiences. [59] What is not so well indicated

by Quine is that we did indeed invent the objects as they are understood. A tree leaf does not

exist as a thing separate from a tree but it is readily considered in common speech as an individual

object. We cannot define a single entity without artificially, albeit conveniently, separating it from

the rest of actuality. The leaf may indeed be plucked from a branch and called individual, but

the leaf never springs alone. Korzybski describes this viewpoint in wider scope. In his general

semantics Korzybski cautions against mistaking the map for the territory in that the real objects

which make up the actual world are on an un-speakable objective level. He claims that the only

link between the objective and verbal world is of structural content i.e. a complex of relations,

concluding that objects may be considered as names for relations among microscopic events. [60]

From this point of view the name leaf is indeed the relationship between a collection of plant cells

amongst themselves and equally a relationship between them and our experience of that collective.

This in turn requires the description of the plant cells as molecules in the same way ad infinitum.

The result of this is that we cannot describe or attribute any properties to an individual object

without specifying other entities to describe it in terms of because the only inherent knowledge in

the description is the structure.

Whitehead, whom no doubt influenced Watts, Quine, and Korzybski on this matter, admits as

a fundamental truth that objectification is abstraction and bears the important role of blocking out
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unwanted detail. [61, p. 154] Whitehead’s process metaphysics provides an interesting means of

getting a hold of the knot in Watts’ thought experiment. It is also appealing in that the cosmology of

the process metaphysics has an algorithmic character. Process philosophy recognizes the difference

between the instances of the knot as bare experiential fact but yet all participating in a recognizable

form. Throughout the wiggling process the knot was at one time composed purely of blue string,

another time purely of green string and another time as purely red string. Each of these instances

of the knot Whitehead terms an actual entity or an actual occasion. They are undeniable truths of

happening in the world, each unique and independent of one another. In this sense they are events

with extension in time and extension in space. Each of these three events is enveloped by the total

event of the knot from being tied to untied and each of the three events envelope other events of

the knot. For instance over a duration where the knot was composed of green and only green string

there was still a flux of air into and out of the threads of the string, and Brownian motion of the

molecules making it up causing it to be in different states, each of these being an actual occasion

or an actual entity in their own right. In terms of actual entities there is not the blue knot turning

into a green knot turning into a red knot. There was a blue knot and then a green knot and then

a red knot. When the red knot is, the green knot isn’t. To borrow from Watts, spring does not

become summer - there is spring and then there is summer. It is important to realize it is these

actual occasions as determinate matters of fact i.e. things that have happened, which are the only

content of subjective experience and thus the only data of empirical investigation. Beyond the

subjective experience there is bare nothingness. [61, p. 254]

Accordingly in the present actual entities are perishing and others are in becoming. In becoming,

actual entities are always novel as they arise in the present which is a state of objective facts never

hitherto experienced. In their perishing they add their novelty to the objective facts. [61, p. 134]

Objects are then the recognizable forms which are constituted by actual occasions. That is an object

is a series of actual entities which all participate in the objective form of that object. Accordingly

objects are persistent while actual entities are fleeting. Whitehead actually calls them eternal

objects due to their similarity with Platonic forms.

A vortex in a stream is a useful image. Vortexes form and are persistent but there is no definite

persistent substance that forms the vortex for the duration of its existence. In process philosophy all

persistent things are objects and not composed of substance but arise from recognizable patterns of
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actual occasions which are events. A full elucidation of the process philosophy cannot be undertaken

here. Actual entities along with eternal objects play many more roles then those ascribed above and

are necessary for Whitehead’s full conception. But the details given are sufficient for a satisfactory

notion of objects that can be realized in practice. The discrete character of actual occasions

participating in succession as the basis for objects relieves us of having to define substance before

defining objects as they may be solely given as collections of events which are recognizable over

durations beyond the actual occasions. We now turn to the Lattice Gas Automaton in search of

the feature from which it derives its utility.

2.3 Useful Features of Lattice Gas Automata

In 1973, Hardy, Pomeau, and de Pazzis introduced a fully deterministic two-dimensional cellular

automata model to better understand hydrodynamic relaxation processes [62]. This model was the

original Lattice Gas Automaton (LGA). The model consists of cells organized as a grid on a plane.

Each cell has four sites and each site may be in one of two states thus the state of each cell may

be represented by four bits. Each cell is an automaton. The neighborhood consists of the four

cells sharing an edge with the given cell known as the von Neumann neighborhood. Each site has

an associated velocity. The four velocities corresponding to the four sites are (1, 0), (0, 1), (−1, 0),

and (0,−1) for the standard (x, y) plane. If a site in a cell is ‘occupied’ then the interpretation is

that there is a particle at that cell with the velocity associated with that site. Particles being in

the same cell with the same velocity are not allowed and so long as the initial state of the LGA

does not violate this condition it will never violate it thereafter. The model is endowed with an

evolution mapping which consists of a streaming process and a collision process. In the streaming

process a particle moves from its cell into the adjacent cell as given by the velocity. But there are

no actual particles, only cells with sites and their occupancy states. Thus the streaming process is

actually the activation of states. Take any given cell (an automaton). If the cell below that i.e. in

the (0,−1) direction from it, has the site with associated velocity (0, 1) occupied then through the

streaming process the given cell’s (0, 1) site will become occupied. If the cell below the given cell

does not have the same situation i.e. there is not a cell below it that has the (0, 1) site occupied

then it will become unoccupied. Thus when a cell has the site with velocity (0, 1) occupied the
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streaming consists in causing the (0, 1) site in the (0, 1) direction to become occupied and then

accordingly the (0, 1) site which was occupied turns to become unoccupied.

Thus a single particle would appear to propagate in the direction in accordance with the unit

velocity of the site it occupies. But there is no particle, only the progression of states which may be

interpreted as a particle. In this way the LGA achieves the appearance of an object without ever

referencing an object. After each streaming process a collision process occurs. If on a given cell two

sites with opposite velocity are occupied and the other sites are unoccupied then the occupied states

become unoccupied and the unoccupied states become occupied. As an interpretation in terms of

particles the collision process results in the velocities of two particles directed at one another in the

same cell being rotated by 90 degrees. A visual aid is found in Figure 2.1. Three time steps are

indicated. From t1 to t2 is a streaming process, from t2 to the second t2 is a collision process which

is instantaneous, and from t2 to t3 is another streaming process. A white dot with black outline

acts as a reference for each time step. The streaming process and collision process together form a

Figure 2.1: A demonstration of streaming and collision steps in the Lattice Gas Automaton

single evolution of the system. It is clear that each evolution operation conserves linear momentum,

kinetic energy, and mass. This conservation is afforded by the highly discretized velocities and 90

degree rotation. Although intuitive and conceptually simple to explain, the mathematical formula-

tion of the model does not take a form familiar to the differential equations normally encountered in

hydrodynamics. However the set-theoretic formulation allows for investigation of infinite systems,

which the creators of the LGA were highly interested in. However it could not be ignored that the

LGA had salient computational features, namely that it was a completely discretized formulation

which made it highly appropriate for the finite architecture which all computers are endowed with

and the locality of the interactions made it trivial to parallelize. The same authors further inves-

tigated the model by deriving Navier-Stokes hydrodynamical equations, modes, and numerically

13



calculated the time correlations corresponding to the transport coefficients obtained by the Navier-

Stokes equation and Green-Kubo formulas [63]. Aside from its defects of lack of Galilean invariance

and rotational symmetry the model was a great success and marks a milestone in computational

fluid dynamics.

Approximately a decade later Frisch, Hasslacher, and Pomeau named the orignal lattice gas

automaton the HPP model and presented the the FHP model [64]. The FHP model used a trian-

gular lattice such that the neighborhood of any point is hexagonal. This simple change allowed the

momentum flux tensor to become isotropic and give the correct form for the Navier-Stokes equation

at low Mach number in two dimensions. There were then six sites, one for each direction on the

hexagonal neighborhood. In this work the authors stressed the power of the finite models potential

for parallel simulation. In the same year Orzag and Yakhot argued the computational requirements

for these cellular automata models are much more severe than for solutions of the continuum equa-

tions themselves [65]. These challenges were at the same time being met with improvements in

hardware. [66] While analytical interest continued the numerical challenge was quickly met by the

efforts of McNamara and Zanetti in 1988 [67], and Higuera, Jiménez, and Succi in 1989 [68,69]. In

these works the authors implemented the Lattice Boltzmann Equation (LBE) as collision rules for

the LGA. The LBE as it was then used was already obtained by Frisch et al in 1987. [70] In this

alteration the occupancy of a lattice site changed from being boolean to a continuous value. The

shift was that instead of the state of the cells representing a given particle or not the state of the cell

would represent the velocity distribution of particles at that point in the domain. The Boltzmann

equation could then be applied directly to the evolution of these distributions. This move broke

away from the finite tradition thus far but it maintained the inherent locality of interaction and

thus the parallelism of the method. Still it was a lattice model and there remained a degree of

freedom in each cell for every neighboring cell.

After this point two schools of thought emerged. In 1992 Qian, d’Humières, and Lallemand

presented a single relaxation time model where the Bhatnagar-Gross-Krook collision process is

used to relax the velocity distribution values to the equilibirum velocity distribution. [71,72] A near

identical model by was presented Chen et al. at the same time [73]. In the same year d’Humières

strove to remove the constraints of the standard equilibrium distribution function by adding new

degrees of freedom thereby creating the multiple relaxation times model which was originally called

14



the generalized lattice-boltzmann equations. [74] The multiple relaxation times model is superior

to the single relaxation time model but the latter is more popular due its simplicity. [75]

The LBM single relaxation time may be directly derived from the Boltzmann Equation to obtain

the Lattice Boltzmann Equation which is then separated into a streaming process and a collision

process. [76] The cells are related by velocity vectors ck, k = 0, 1, 2...K where k = 0 refers to the

zero vector or the vector from a cell to itself. These ck velocity vectors have a simple interpretation.

Suppose there to be a cell with position x and at that cell at time t a particle has velocity ck. Then

at the next time step t + ∆t the particle will be at the cell located at x + ck∆t. This cell which

the particle arrives at is the kth cell relative to the first cell. The discrete distribution function of

particles in a cell is a set fk, k = 0, 1, 2...K where each member of the distribution function fk is

the number of particles in the cell with velocity ck. The streaming step can then be stated as

fk(x+ ck∆t, t+∆t) = fk(x, t) (2.1)

A natural consequence is that the lattice has a maximum velocity ∆x/∆t often taken to be the speed

of sound. Whereas the streaming process handles the particle-space relations, the collision process

handles the particle-particle relations. The collision process causes the distribution function, the

set fk, to tend towards an equilibrium distribution f eqk in accordance with the average velocity of

the fluid in the cell. The collision step is computed as

fk(x, t+∆t) = fk(x, t)[1−
∆t

τ
] +

∆t

τ
f eqk (x, t) (2.2)

and occurs at a single cell. It does not alter the net velocity at the cell but redistributes the

amount of particles in each fk due to collision. The LBM marked a great innovation of the LGA

and has become a powerful technique of computational fluid dynamics. [77] Accordingly it has

caused a great deal of attention to be paid to cellular automata models in general and speaks to

the potential which was implicit in the LGA formulation.

It is however not so much what has changed in the evolution of the LGA into the LBM that

matters here. The more important question to ask is what feature the LGA and LBM share. For

instance this feature was necessary when Succi and Benzi extended the Lattice Boltzmann Method
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to non-relativistic quantum mechanics. [78] It was also useful for Meyer in building upon the works

of Grössing and Zeilinger for making cellular automaton based quantum algorithms [79–82].

The critical feature of the LGA is that each state has specific relevance to the members of the

neighborhood. Recognizing the value and productivity of this feature it became the appropriate

place to begin developing a means for representing objects in cellular automata. It manifests itself

in the following work through an external binary operation σ : S × Γ → Γ where S is a finite set

of symbols and Γ is a set of cells. The set S plays the dual role of giving spatial relations amongst

cells via σ and also acting as a set of states for the cells. The result is a direct relation between the

states of the cells and the members of the neighborhood.
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Chapter 3

Objects as Action Sequences

In preparation for the ensuing discussion it is worthwhile to point out some basic forms of spatial

abstraction so as to give an idea as to what is meant in the following. In the most basic form of

physical space the point is the fundamental yet undefined feature. A point is the ideal of absolutely

no spatial extension and is given by a set of coordinates. A set of points is the basis of a space.

Since no object is like a point, they are spatially extended, the point does not actually refer to an

object directly but instead refers to a derivative notion of it such as a center of mass or center of

charge. The use of a distance dependent interaction such as an interaction potential is necessary

for points as objects since regardless of how close two points may be they are not in contact until

they are given the exact same coordinate. If the entities are nothing but points then the condition

of contact relinquishes to the points being identical. When an entity is not well represented by a

single point it can be represented as a collection of points. The interaction amongst the collection

is carried out so as to maintain the form of the total object. When using a cellular structure such as

those commonly used in cellular automata the cell and the object are identified such that the state

of the cell implies the existence of the object. In its most abstract ideal there are no actual objects.

The idea of objects arise from the pattern of states which the cells may take. The framework

developed here works to leverage these notions. The object being associated with the cell is not

the claim that the object is within the cell nor is it the claim that the center of mass of the object

resides within the cell. It is that a derivative notion of the object may be associated with a single

well defined unit of space-time, namely an event. The object is expressed as a pattern of events

designated by the states of the cells expressible within but beyond the assumed lattice structure.
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An event-lattice consists of a set of cells Γ and a set of actions S with an external binary

operation such that σ : S×Γ → Γ. Thus an event-lattice is a tuple L = (Γ, S, σ). The event-lattice

is the underlying framework for constructing cellular automata which can utilize objects. A naive

event-lattice will be presented first to develop an intuition for the event-lattice structure. This

event-lattice has the virtue of being easily displayed as an image with a normal coordinate system.

It bears many similarities to a less naive event-lattice to be presented following the first. This

second event-lattice has less assumptions and a smaller action set. A metaphorical diagram can be

given but in the end it requires a greater leap of imagination than the first event-lattice. Afterwards

the event-lattice is left as is and the representation of objects in cellular automata is formulated

using the event-lattice as a basis. The remainder of the thesis after this chapter is concerned with

interpreting these objects with the available tools and algorithms in a classical case to see if this

framework has any merit.

3.1 Event-Lattices

Envision a real line partitioned into equal segments called cells such that Γ refers to the set of all

cells. For a system with one spatial dimension, space-time may be envisioned as a typical grid

where each square of the grid is a cell over a duration. Let an event refer to a cell over a duration.

Thus the grid is composed of events. If the horizontal axis is taken as space and the vertical axis as

time then each row refers to the set of cells Γ over the same duration while rows above and below

refer to those same cells but in the past and future durations. Any given column is then the same

cell γ ∈ Γ over many durations. In the way that the cells partition space, events can be thought of

as partitioning space-time. Let the ratio of the spatial extension of the event, dx, to the temporal

extension of the event, dt, be equal to the speed of light such that in natural units

dx

dt
= c = 1 (3.1)

It follows that if there is an object which is within a cell γ ∈ Γ at an instant t then there is

a finite set of cells, Γ′, after a duration dt which the object may be be found within. This set Γ′

consists of the same spatial cell γ ∈ Γ and the cells directly adjacent to that cell. It cannot be

in any other cells because to do so would require a velocity greater than the speed of light. The
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transition of the object from cell γ ∈ Γ at t to γ′ ∈ Γ′ at t+ dt is called the action of the object

over the duration dt. Now the action set S and the binary operation σ are such that there is an

action s ∈ S where

γ′(t+ dt) = σs(γ(t)) (3.2)

Thus the action set defines the finite set which the object may be found within as

Γ′ = {γ′|∀s ∈ S : γ′ = σs(γ)} (3.3)

It is the action set, and the binary operation together which give the space its structure such that

∀γ0 ∈ Γ & ∀x, y ∈ S :

(
∃γx, γy ∈ Γ : γx = σx(γ0), γy = σy(γ0) & γx = γy ⇐⇒ x = y

)
(3.4)

To make it more concrete, in a one dimensional space let there be a lattice which divides the

line into a set of cells γi ∈ Γ, i = 1, 2, 3, .... such that γ3 is to the right of γ2 and to the left of γ4.

Now, if an object is covered by the cell γj in the duration t0 ≤ t ≤ t0 + dt then one duration later

i.e at t = t+ dt the object is either in γj−1, γj , or γj+1. It cannot be in γj−2 nor in γj+2 because to

do so would require a velocity greater than the speed of light. Thus the action of the object over

the duration dt is

γj+s(t+ dt) = σs(γj(t)) (3.5)

and the total action set has three members such that S = {1, 0,−1} or as S = {+, 0,−}.

In this way the world line of any object in an event-lattice can be represented as a sequence

of a finite set of actions. Figure 3.1 is a pictorial representation of the lattice just discussed. The

black line represents a world-line of some object. The grid of squares represent events. A line of

events parallel to the horizontal axis are events which occur in the same duration. The vertical

axis denotes time such that a column of cells parallel to the time axis denote the same cell over

multiple durations. Under the world-line a set of events have been shaded. The left sequence is

proper in that only one event occurs for the object over a duration. The events shaded in the right

sequence are improper. Figure 3.2 displays relations between the only possible event patterns and
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the action set for the one dimensional lattice. With this identification the object is representable

as an action sequence. For the object in the left side of Figure 3.1 s = {+ 0 + 0 + 0 0 0 0 0 0 0 −

− 0 ...0 + +} represents the path of the object in the event-lattice.

Figure 3.1: The world line of an object in an event-lattice with shaded squares indicating events
which the object participates in. The left line shows this process when carried out in agreement
with the resolution of the event-lattice. The right line shows an improper sequnce where an object
participates in multiple events in a single duration.

A central issue of this lattice is that it has a definite limit of resolution as can be understood in

terms of the following. Consider the world line travelling through a duration of t0 < t′ < t0 + dt.

At some exact instant t0 +∆t it is decided which cell the object resides in by virtue of which cell

covers the object at that time i.e. which cell the world line is in at t0 + ∆t where 0 ≤ ∆t ≤ dt.

Regardless of what ∆t is selected, in the next duration it must be decided at that same instant

relative to the duration i.e at t0 + dt + ∆t. For example if ∆t = 0 the proper cell for the event

in the duration is the cell which the the world line entered the event from the previous duration.
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Figure 3.2: Notation relating the members of the action set to actions of an object as a world line
in an event-lattice.

Equivalently it could be taken as the cell which the world-line exits from given the duration in

which case ∆t = dt. The former case is shown in the Figure 3.1. In this way the proper event is

determined by the temporal resolution of the lattice and the instant of when it was determined i.e.

it references time externally.

Objects are extensions in time and in space. The idea of an object with perfect extension in

time and none in space is as fictitious as the idea of an object with perfect extension in space and no

extension in time. The latter is characterized by the idea that light had infinite velocity and so had

pure spatial extension. Similarly the former is characterized by the idea of a pure rest mass point

particle with no velocity representing an object with perfect extension in time and no extension in

space. The finite velocity of light of order c and the uncertainty principle of the order of Plank’s

constant h confirm the falsity of these abstract notions.

Although this lattice does not commit the fallacy of perfect extension in space by using a

finite velocity of light it does allow perfect extension in time where a sequence can have the form

s = {000...0} for any resolution. In the limit as dx → 0 i.e. as the spatial resolution of the lattice

approaches zero the sequence becomes a poor representation of any real object as the object has an

exact position and no translation thus no velocity nor momentum thereby violating the uncertainty

principle. Secondly the notion of time and space were separately assumed and used to define

an event. As has been thoroughly argued by Whitehead neither time nor space make up direct

experience, both are abstractions from the events which are the basic substance of experience as

readily available fact. [83] Thus it should instead be the opposite that the notion of an extension in

time and an extension in space are derived from the definition of the event itself, which is in turn

derived from the tuple which constitutes the event-lattice.

Consider now the following, an event-lattice consists of a set of cells Γ and a set of actions S
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with an external binary operation such that σ : S × Γ → Γ. In the previous event-lattice an event

was defined as a cell over a duration. Now, let two cells related by an action s ∈ S denote an

event. Under this definition an event does not obtain extension or duration through the cell and

an absolute time respectively, but obtains extension and duration as an action. We maintain that

∀γ0 ∈ Γ & ∀x, y ∈ S :

(
∃γx, γy ∈ Γ : γx = σx(γ0), γy = σy(γ0) & γx = γy ⇐⇒ x = y

)
(3.6)

This definition of an event imposes a direct relation between space and time. It is a manifestation

of the following facts. Let the predicate ∆(x, x′) denote a change in x such that if x ̸= x′ then

∆(x, x′) is true and false otherwise. Now let r represent position of an object, and t denote an

instance in time. Granted an object changes position i.e ∆(r, r′), and velocity is finite it implies

that there was a change in time thus

∆(r, r′) → ∆(t, t′) (3.7)

However, if one were to scientifically measure the passage of time they must look into the envi-

ronment to see if something has moved e.g. observing the movement of a clock hand. We cannot

scientifically affirm a passage of time i.e. ∆(t, t′) without referencing a change in position of an

object ∆(r, r′). If all the sudden everything stopped moving a logical conclusion would be that

time has stood still. Thus a change in time implies a change in position such that

∆(t, t′) → ∆(r, r′) (3.8)

But, 3.7 and 3.8 together are by logical definition equivalent to the statement of “∆(t, t′) if and only

if ∆(r, r′)” which is symmetric such that “∆(r, r′) if and only if ∆(t, t′)” is an identical statement.

In conclusion there can only be a change in time if a corresponding change in position is observed.

Take the well known thought experiment of an object alone in free space. Most agree that if there

is only one object in free space it is impossible to tell if the object is moving or not, because there

is nothing for the object to move relative to. However if there is only one object and this idea is

maintained then it is not only impossible to tell if it is moving but also impossible to determine if

time is passing. The observer is the object in this condition which implicitly grants the passage of
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time such that the object can be conceived as stationary or moving.

This is principally concerned with the idea of a free object of any mechanical theory. A free

object is an object which is not interacting with any other object. Yet observation is itself a definite

form of interaction. Thus there cannot be an observed free object, because the observation of the

object is a form of interaction, and if the object is interacting the object is not free. That does

not imply the non-existence of a free object. It implies that a free object is always in a process

of change to exist in space-time. Thus if an object is a series of events they must be extended in

space and time. This amounts to the restriction on the action set that

@s ∈ S such that γ = σs(γ) (3.9)

Since actions such as γ = σs(γ) lack spatial extension, or a change in position they also lack

temporal extension and thus do not constitute events in space-time. Two metaphorical diagrams

of this event-lattice are shown in Figure 3.3. The left event-lattice is four times smaller than the

right event-lattice. Unlike the previous event-lattice the grid is rotated so that cells appear as

diamonds and do not refer to events. For each event-lattice a set of dotted lines are shown. The

path of an object is depicted as black disks in the small event-lattice and shaded diamonds in the

larger event-lattice. The crossing of an object from cell to cell comprises an event and in each

event-lattice an event has been circles with a small black oval. As has been discussed no free object

can exceed the speed of light nor can it remain stationary of its own accord. This diagram achieves

this by not allowing an object to pass from diamond to diamond without them having adjacent

edges but no diamond shares an edge with itself. Also objects can only go backwards in time if they

have a velocity faster than the speed of light. Secondly the duration of an event is derivative from

the event itself by the fact that definite durations can be allotted in the time axis such that for a

given object each duration only contains one event. To make this clear the smaller event-lattice

is superimposed on the larger lattice as shown in Figure 3.4. This is easiest seen by observing

the world line of the object in the small event-lattice in the region of the large event-lattice which

has durations indicated over it with dotted lines. A black line linking two black discs indicates

the event in the larger lattice. With the durations allotted one event occurs for one duration such

that events determine duration. In the top of the figure durations can also be defined for the
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Figure 3.3: Metaphorical diagram on a event lattice which utilized relations between cells as the
definition of events. Two separate lattices are shown one four times smaller than the other. Disks
portray active cells in the path of an object for the smaller lattice, while shaded cells show the path
of another object in the larger lattice. The circled edge joining two cells is the event between the
two cells. Indications on the time axis show that the time may be partitioned such that only one
event occurs per duration.

smaller event-lattice where each action constitutes an event. It will also be noted that for each

duration outlined the full set of cells are present although in an obtuse way, hence the diagram as

metaphorical. It exhibits an interesting property that the space-time itself can be tessellated but it

does not give consistent reference to a tessellation in space or a tessellation in time as the elements

of the space-time tessellation overlap when projected onto either the space or the time axes. An

additional property of objects is that they can have no net translation i.e be at rest. Since objects

are always participating in events in order to be existent and have no net translation it is required

that

∀x ∈ S :

(
∃y ∈ S such that γ = σxσy(γ) = σyσx(γ) = σx+y(γ)

)
(3.10)

We shall call y the inverse of x and most often write y as x−1. This condition is also a symmetry

condition on the event-lattice that if γ is a neighbor of γ′ then γ′ is a neighbor of γ. Thus if γ′ and

γ are neighbors there exists an action x relating γ to γ′ and an action x−1 relating γ′ to γ. The

subset {x, x−1} ∈ S will be termed an inverse action pair. Extending this framework to multiple

dimensions amounts to adding inverse action pairs.
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Figure 3.4: The two event-lattices of Figure 3.3 superimposed onto the same axis.

Although the description of this event-lattice may suggest that the fundamental nature of space

is a Cartesian lattice geometry with a Manhattan metric it was not stipulated nor required. The

only requirement is that each cell in the event-lattice has a neighboring cell given by the external

binary operation σ for every member of the action set S, where no two different actions yield the

same neighboring cell, every action has an inverse action, and no action maps a cell to itself. For

example it is perfectly viable that a cell be missing from where one thinks it should be as in Figure

3.5 where the dots are cells and the lines connecting the dots represent connections through actions.

The event-lattice is completely ignorant of this apparent error which arose from embedding the two

dimensional event lattice on the Euclidean plane. This loose requirement leaves plenty of room for

further development as far as space-time topology is concerned. Still in this event-lattice the world

line of any object may be represented as a sequence of actions from the action set.
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Figure 3.5: Depiction of a structure which satisfies the event lattice condition. Dots indicate cells
in the event-lattice and lines connecting dots indicate actions relating cells. Even though the a cell
appears to be missing this structure will still make a valid event-lattice.

3.2 Finite Representations of Objects in an Event-Lattice

Before getting into the more abstract definitions let us assume that an object is representable by a

finite string of symbols from the action set. Imagine this string of symbols to be a tiny script or tiny

program which the object uses to traverse the event-lattice by executing the actions in sequential

order. Once the object reaches the end of the script it begins from the beginning again. In a one

dimensional event-lattice the action set is simply S = {+,−} and so the action sequence of the

object is representable as a finite binary action sequence.

Let us now consider an object be given by the action sequence s = {+−+−++}. This

sequence is quantifiable in two distinct ways. The first is that of size or length which will be

denoted as ⌈s⌉ which is the number of members in the sequence such that ⌈s⌉ = 6. The second

quantification will be called the sum of the sequence which has the intuitive notion that the sum

of s is s⃗ = 2. In more depth, the sum of s = {+−+−++} is obtained by the replacement of

each member of the sequence such that + = +1, − = −1 and the sum is then the algebraic sum

of the result. Thus s⃗ = +1− 1 + 1− 1 + 1 + 1 + 1 = 2. Figure 3.6 shows this particular sequence

and indicates precisely what is meant by the length and the sum. The length of s, ⌈s⌉, is akin to a

projection of the total sequence on the time axis while the sum of s, s⃗, is akin to the projection on

the space axis. However the length of an object is only indirectly a measure of temporal extension.

The length is actually the total number of events from which the all the information of the object

can be obtained. The sum is the net cells the object traverses given the length as defined and
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related to duration. Thus the velocity which is a parametrization of motion is such that

v(s) =
s⃗

⌈s⌉
(3.11)

in units of the velocity of light. Clearly s⃗ ≤ ⌈s⌉ for any sequence as all motions have velocity less

than or equal to that of light and the equality only holds for sequences characteristic of photons.

It is clear that by these measures the object s when divided into any number of components

preserves these measures. In particular the sequence s may be decomposed into a resting sequence

sm = {+−+−} and a pure sequence sp = {++}. Pure sequences will be termed photonic. Given

this decomposition of s→ sm + sp it follows that ⌈s⌉ = ⌈sm⌉+ ⌈sp⌉ and similarly s⃗ = s⃗m + s⃗p.

Figure 3.6: Exhibition of the path given by the sequence s = {+−+−++} quantified by the
length of the sequence and the sum of the sequence in one dimension. Shaded in diamonds show
the path of the object for one pass through the sequence.

We now consider the notions of length and sum as related to conventional properties of objects

namely mass, energy, and momentum. The resting sequence sm has length but no net sum while

the photonic sequence sp has a length equal to its sum. Thus sm has a velocity of zero while sp

has a velocity equal to the speed of light. With a little imagination the conversion between the
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sequence s
 sm + sp has the basic form of an emission of a photon from a moving particle or the

absorption of a photon by a resting particle pending on if the forward arrow or backward arrow

is taken as the direction of time. Accordingly the total energy of s equals the total energy of sm

and sp together. Although this requirement is met by both the sum and the length separately

the sum assigns sm to have a value of zero which is false as a measure of energy. According to

special relativity the energy of an object is equivalent to its mass if it has no velocity in the frame

of reference. [84] Thus the real mass and equivalently the energy of the sequence is better given

by the length of the sequence. By hypothesis, let the length of the sequence be a measure of the

energy. Thus length is identified with a scalar non-negative measure of motion. Consider an object

with conventional mass. As a massive object the resting mass energy dominates the total energy

content. In other words the mass is proportional to the total energy. Then ⌈s⌉ is a measure of the

mass and momentum may be taken as

p = m · v = E · v = ⌈s⌉ · s⃗

⌈s⌉
= s⃗ (3.12)

in which case the resting sequence sm has no net momentum pm = s⃗m = 0 while the photonic

sequence has a momentum directly proportional to its energy pp = s⃗p = ⌈sp⌉. These results agree

with the energy-momentum relation of special relativity given in natural units

E2 = p2 +m2 (3.13)

such that equation 3.13 reduces to E = m when p = 0 and reduces to E = p when m = 0. The

special property of the photonic sequence is such that if a sequence is photonic

x ∈ sp → x−1 ∈/sp (3.14)

Whereas for a massive object i.e. any object with a velocity less than the speed of light x ∈ sm →

x−1 ∈ sm. Thus massive objects may be represented by sequences which contain inverse action

pairs while photons do not. For multiple dimensions the sum produces a vector. For example if there

are three dimensions and thus three inverse action pairs and s = { x x−1 y z z } then s⃗ = (0, 1, 2).

In these cases the same condition holds for photonic sequences in that x ∈ sp → x−1 ∈/sp and the
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sum of the components of s⃗ equals ⌈s⌉.

Before any further effort is spent on analyzing this sequence representation of objects, we

must first ask if there is any good reason for doing so? Aside from the obvious reason for which

the representation was constructed, i.e. being for cellular automata, the objects entail an utter

simplicity. On the philosophical side this is a monism where there is no fundamental difference

between the mass, energy, or momentum of an object. An object is a composition of actions

while energy and momentum are different means of quantifying the motion of the object in the

event-lattice. All objects consist of the same ‘substance’ which is the action set which comprises

the structure of the space. Where an object given by a single symbol of the action set would

correspond to a particle moving the speed of light with no mass like a photon. In which case the

energy equals the momentum which equals the action. The actual occurrence of an object is what

the object does through the sequences of actions. Thus the total object is always in a process of

becoming as a recognizable pattern.

If the action of an object in a cell is taken as the action of the cell given by the object then

the ‘states’ of the automaton play the dual role of representing objects and giving the structure of

the space. Thus there does not exist a strict differentiation between substance and space. Or as

Schrödinger said it “What we observe as material bodies and forces are nothing but shapes and

variations in the structure of space.” [85]. On the relativistic side of things for objects moving

at velocities much slower than the speed of light the mass must dominate the total energy of the

object. All objects are acting in events at the speed of light such that there is no proper reference

frame to take, as in the sense of special relativity, since the speed of light cannot be taken as the

reference frame. If an object has mass, i.e. there is at least one inverse action for a given action in

its action sequence then its mass (energy) will tend to infinity before it can reach the speed of light.

Furthermore there exists a definite concept of the inertia of an object, or resistance to change of

motion, proportional to the mass of an object in a plain way.

On the quantum side these objects never have a definite position nor a definite momentum.

Position and momentum are properties of the total object and cannot be realized at an instant

and so the relative parameters can be selected to satisfy the Heisenberg uncertainty principle. In

that sense an object is said to have a given momentum and position does not require the object to

follow a definite path over short intervals but will follow a general path over long intervals. The
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basic form of the event-lattice is very similar in likeness to the checkerboard model devised by

Feynman in the 1940s in the development of the path integral formulation of quantum mechanics.

Feynman showed in his checkerboard model that if at each time step δt the particle moves δtc to

the right or left and each turn is weighted by −imδtc2/} then in the limit of infinitesimal time steps

which correspond to infinitely small distances between the lattice points the sum over all possible

paths gives a propagator which satisfies the one dimensional Dirac equation. [86,87] Thus Feynman

directly associated the turns of the object in the sequence, i.e. an inverse action pair, with mass

as was found here. Further ’t Hooft found that in quantum field theory fermions obtain mass if

one allows for leftward propagating massless particles to turn into rightward propagating massless

particles when studying fermionic gases on a lattice. [88]

Interestingly if we take the cellular automaton interpretation of Quantum mechanics by ’t Hooft

seriously and apply it to Feynman’s path integral formulation directly then a valid interpretation

would not be that the object takes every path but that the object can take any path but we do

not know which path due to lack of information about the object. [89] This is nearly identical to

this conception. Although Feynman and ’t Hooft differ about the interpretation of the quantum

mechanical formulation both agree that a finite volume of space-time should contain a finite amount

of information and the result of this when applied gives a possible synthesis of their formulations

of quantum mechanics. [3, 90]

Objects have interesting properties. For instance this formulation automatically requires that

an object which has been deemed to have a certain form must change energy in discrete levels in

order to maintain that form. For example in an appeal to intuition if

s1 = {+−+−+−+−+−+−} (3.15)

let this sequence be represented as s1 = {+−}6. Clearly this sequence differs from

s2 = {++−−++−−++−−} = {++−−}3 (3.16)

as each has a characteristic form. If either s1 or s2 were to change energy but maintain their form

it would have to occur in an amount in accordance with the form. If frequency is considered a
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form then objects must change energy at levels appropriate to their frequency in order to remain at

that frequency. Thus there are a number of agreeable properties of the objects which make them

worthwhile for analysis. The case of an object as a repeating sequence is only one possibility of

formulations that an object could take. In fact a sequence as a string of symbols is a an example

of a maximally ordered evolving topology on a set partitioned with the action set S. Objects may

instead be defined as a set and evolving topology directly.

Let an object be a set of actions A and a collection of subsets of A called the form of the object

Aτ . Each action in A can be mapped to a member of the action set. That is each action in the

action set defines an equivalence relation on the set of actions which make up the object. We now

borrow Whitehead’s terminology to make a clear distinction between an object, its occurrence as

an actual entity, and its actions.

An actual entity is the occurrence of a sequence of actions in the event-lattice. Actual entities

are unique and exist over a definite extension in time and a definite extension in space. Actual

entities are not recognizable by virtue of their novelty as a new occurrence. Further, each actual

entity is composed of actions which are themselves actual entities and each actual entity is part of

larger actual entities. Since S is a finite set of symbols and

(x ∈ S) → (x−1 ∈ S) (3.17)

a sequence of actions from S may be expressed as the concatenation of symbols of S such that the

set of all actual entities as occurrences for single objects is given by the free group, FS , generated

by S. [91]

Let A denote a set of actions composing the object. Note that the elements of A are not directly

actions of S but every member of A belongs to an equivalence class given by S so that each member

of A has an associated action as given by S. This is necessary because sets are not permitted to have

repeated elements and thus a distinction must be made in order to impose a topological structure

on the object as a set. The form of the object Aτ is a collection of subsets of A which includes A

and the empty set. The form designates which actions can be taken and which actions cannot be

taken in order for the actual entities to retain the form of the object. An action ai can only be
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taken by an occurrence of the object A if

∀Z ∈ Aτ : (∃ai ∈ Z and Z ̸= {}) (3.18)

where {} is the empty set. Put another way, Aτ is a topology on A and an action can only be

taken if it is an element of every member of Aτ aside from the empty set. Once the action is taken

the form evolves. Let T denote an evolution operator corresponding to the object taking the action

ai. Then the new form of the object is the collection of subsets of A such that

T (Aτ ) = {Z ′|∀Z ∈ Aτ : (Z ′ = Z − ai)} ∪ {A} (3.19)

Note that it is not A being joined with each Z ′, A is one of the sets in the collection. This

description is very abstract but a simple example which satisfies equations 3.19 and 3.18 should

make things clear. Let the object be A = {a, b, c, d, e} and let Aτ = {{A}, {c, d}, {}}. The next

action of the object can only be given by the action of c or d because only c and d are in every

member of Aτ aside from the empty set. Suppose the action of c is taken. Then a new Aτ is

generated such that the form becomes A1
τ = {A, {a, b, d, e}, {d},{}} as per equation 3.19. Now the

only action which is in every member of A1
τ aside from the empty set is d so that is the only action

the object can take. In taking action d the form becomes A2
τ = {A, {a, b, c, e} {a, b, e},{}}. Now

the object can take actions a, b, or e and so forth.

This formulation of objects ensures that each action which composes the object receives equal

use so that momentum is conserved but does not determine the exact path of an object in the

event-lattice. An object designated as a repeating sequence also satisfies this conception and is

the maximally ordered topology. The maximally order topology is more useful because the next

action is always determined. The general topological form was presented for completeness of the

Whiteheadian conception of an object as more than a mere string. However, we shall only make

use of the maximally order topology, i.e. a repeating sequence. Further, if the maximally ordered

topology is taken then objects may be represented by subsets of the free group generated by the

action set where members of the subset are related by left and right permutations. To be clear if

abbc ∈ FS then bbca and cabb are also in FS and are all actual occurrences of the same object,
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where bbca is a left permutation and cabb is a right permutation of abbc respectively.

With the notion of objects in hand the event-lattice can now be used as a basis for a cellular

automaton. Each cell in the event-lattice is then an automaton with states being the possible forms

of objects which reside at the cell. Thus the states are the free group generated by action set S such

that Q = FS . Normally this would be absolutely detrimental to a cellular automata model since

the possible set of inputs into the transition function is the number of states raised to power of the

neighborhood FS
N which is infinite. But since each automaton can only instantiate one member of

the action set the only relevant aspect of the object is the action which will be instantiated next.

Thus while the states of the automaton are practically unlimited the cases are finite.

When the automaton updates it executes the next action of the object. Since each action has

a designated neighboring cell given by σ which it acts upon the set of inputs X is one-to-one with

the power set of the action set P (S). Thus the transition function δ : X×Q→ Q may be expressed

instead as δ : P (S) × S → FS . Supplementary functions such as R : FS → S which reads the

next action from the object string and L : FS → FS which permutes the object string such that

L(abc) = bca are necessary ingredients in the transition function but are not difficult to select and

are application specific.

The objects themselves are liable to interesting mathematical analysis granted their simplistic

structures as free groups and topologies but it may be long and arduous before any conclusions

or applications may be obtained. Furthermore, the small and simple sequences which we may

indeed compute would correspond to objects so foreign to us that our physical intuition would

provide no basis for evaluating them. Accordingly we concern ourselves with reformulating these

objects in terms of tools available to us so that we can evaluate their merit and determine if further

investigation is warranted. A peculiar feature of these objects is that there is implicit in them dual

types of momenta as given by the inverse action pair such that for a D dimensional system there

are 2D degrees of freedom with respect to motion. This has actually arisen before for Succi and

Benzi when extending the LBM to the Dirac equation, and was also noted by Meyer in developing

quantum lattice gas automata. It is also certainly in the works of Feynman and ’t Hooft who did

not reject it but found it to be associated with mass. Special attention will be paid to this property

as it is not commonly discussed yet not without support from authoritative figures.
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Chapter 4

Point Particle Model

There is arguably no object as important and productive as the point particle. The remainder

of this thesis, aside from the conclusions is an attempt to evaluate the merit of the sequence

representations of objects by developing and analyzing a conception of point particle objects. Point

particles have the virtues of (i) retaining their identity via spatial extension, (ii) not disappearing

and (iii) interacting with one another. A point particle is completely characterized by its position

and motion. The particles retain their identity by virtue of having unique coordinates from every

other particle. Classically this is achieved through repulsive potential energy which tends to infinity

as particles tend to the same coordinate. In this conception, position is a cell and motion is an

action sequence.

In this chapter an algorithm will be presented that is suitable for use with full detail sequence

objects in cellular automata. This algorithm is then used as a basis for subsequent investigations.

First we generalize two-body the interactions of the objects in a discrete space by integrating

interactions over short durations. With these in hand a momentum balance is conducted over

a volume element which suggests some general features the objects should exhibit. Lastly these

generalized interactions are used as the basis for an algorithm which closely resembles the famous

Lattice Boltzmann Method. In the following chapter the Lattice Boltzmann method is retrofitted

and an algorithmic implementation is devised. The chapter after that one presents some simulation

results from this retrofitted algorithm.
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4.1 Sequence Detail Point Particle Algorithm

In this section a sequence detail resolution algorithm is constructed to produce a point particle

model. In a typical cellular automaton the next state of the entity is dependent on the states

of the surrounding cells. These surrounding cells are termed the neighborhood. It results that

the subsequent state of the cell is dependent on the states of all the surrounding cells. For a

modest two state system with a neighborhood of 14 members there are 214 = 16384 required

transition rules. In growing the number of states to be sufficiently descriptive for realistic systems,

the number of transition rules required grows exponentially with the number of states raised to

a power proportionate to the neighborhood size. Accordingly a determinate set of computations

is used in continuous valued state models which utilize an infinite variety of states such as in the

Lattice Boltzmann Method. In this way the next state is determined by the state of neighboring

cells, but each neighbor can be dealt with separately.

The sequence object has this same property in that for each action only two cells are rele-

vant for a given object and has a vector character of always acting from one cell upon another.

Accordingly the actions of the objects act on restricted neighborhoods. This is one of the key

advantages of the sequence representations of objects that was used in its development. With a

restricted neighborhood as given by the state of the object, where state is current action, the cel-

lular automaton framework becomes exceptionally more friendly to problems of a physical nature.

The main issue was that if one were to use a cellular automaton to represent a physical system

there are strict conservation laws which must be met. The most critical being that of substance or

mass which usually takes the form in the cellular automaton as a cell being in an ‘ontological’ or

‘occupied’ state. For every transition of a state from an occupied to an unoccupied state requires

a corresponding transition of some neighboring cell from an unoccupied state to an occupied state.

However since these transition functions are limited to the neighborhood and the neighborhoods

are overlapping but not covering each other completely it becomes inevitable that there will be an

incident where a cell may be occupied by more than one particle. If this is admitted a new state

must be part of the system, which then creates the probability that three may be represented by the

same occupied cell and so on ad infinitum. Asynchronous automata and alternating neighborhoods

are work-arounds for this problem, but these solutions are external to the descriptive framework,
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artificial, and ad-hoc.

With a sequence representation available this problem is trivialized. This of course admits that

each cell can be in a near infinite set of states, but the existence of the sequence known and defined

allows the constructions of algorithms which require a finite set of rules in order to resolve the states

of all the objects with each object having a unique cell. Consider a one dimensional event-lattice

as a row of zeros acting as cells

... 0 0 0 0 0 0 0 ... (4.1)

let s1 indicate the presence of an object in a lattice. The s1 indicates the base cell from which the

next action will be taken.

... 0 s1 0 0 0 0 0 ... (4.2)

If the next action is a {+} then the following is an event

... 0 s1 + 0 0 0 0 ... (4.3)

the cell being acted upon, designated with a +, becomes the new base cell for the object

... 0 0 s1 0 0 0 0 ... (4.4)

If the next actions of the sequence were {++−+ ...} then the object would move around the
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lattice as follows,

t∗ : ... 0 0 s1 0 0 0 0 ...

t1 : ... 0 0 s1 + 0 0 0 ...

t∗ : ... 0 0 0 s1 0 0 0 ...

t2 : ... 0 0 0 s1 + 0 0 ...

t∗ : ... 0 0 0 0 s1 0 0 ...

t3 : ... 0 0 0 − s1 0 0 ...

t∗ : ... 0 0 0 s1 0 0 0 ...

t4 : ... 0 0 0 s1 + 0 0 ...

t∗ : ... 0 0 0 0 s1 0 0 ...

(4.5)

Note that only those instances in 4.5 of ti are events while the instances of t∗ are not events and

are only shown for clarification to identify the base cell and next cell of the object. In the formal

conception of an event-lattice 4.5 would appear as

t1 : ... 0 0 s1 s1 0 0 0 ...

t2 : ... 0 0 0 s1 s1 0 0 ...

t3 : ... 0 0 0 s1 s1 0 0 ...

t4 : ... 0 0 0 s1 s1 0 0 ...

(4.6)

Thus the object is extended in the space by virtue of participating with cells via actions. Two

objects interact if the set of cells which constitute each of their events have a non-zero intersect.

Thus consider the objects in the circumstance where both take {+} as their next action.

t∗ : ...0 s1 0 s2 0 0 0 ...

t1 : ...0 s1 + s2 + 0 0 ...

t∗ : ...0 0 s1 0 s2 0 0 ...

(4.7)

The objects move but they do not interact since their events do not overlap. If they go in
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opposite directions they will have overlapping events i.e. contact or a collision.

t∗ : ...0 s1 0 0 0 s2 0

t1 : ...0 s1 + 0 − s2 0

t∗ : ...0 0 s1 0 s2 0 0

t2 : ...0 0 s1 ± s2 0 0

(4.8)

In this case two objects acted on the same cell and thus their events have a non-zero intersect. At

this point it can be decided by virtue of the algorithm what will occur. Similarly there can be a

collision of the type where one object acts on the base cell of another object. Suppose s1’s next

actions are {++ ...} and s2’s are {−+ ...}. Such that

t∗ : ...0 s1 0 0 s2 0 0

t1 : ...0 s1 + − s2 0 0

t∗ : ...0 0 s1 s2 0 0 0

t2 : ...0 0 s1 −s2 + 0 0

(4.9)

In this case s1 has acted on s2 and their events have a non-zero intersect. It follows that with this

arrangement many algorithms could be devised such that the objects maintain separate identities

thereby satisfying condition (i). Conditions (ii) and (iii) are met by the fact that the algorithm

must allow some interactions to result in a transmission of action from object to object and some

actions an object has simply cannot be transmitted, respectively. These non-transmittable actions

are like the rest mass of the object.

An example of an algorithm which meets these conditions is presented below and supplemented

with Figure 4.1. It is in no sense unique. Before proceeding note that the goal of the algorithm over

each time step is to resolve every object in terms of action and location. Resolved means that the

cell for the object has been determined for the next time step and the action in the current time

step is either kept by that object or passed to another object. Even if a given object is resolved, it

is still considered present in a cell if it began the time step in that cell. When an object is resolved

it can no longer be involved in a cell other than the cell that it acted from i.e. its base cell. The

algorithm begins by initializing all the cells and their action sequences. It then iterates through
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the objects working to resolve each one. Algorithms such as these can be difficult to conceptualize

without relevant images. The following enumeration entails the algorithm to be discussed. Read

through it once and then pass directly to the examples following it which work to elucidate its

character and function.

Point Particle Sequence Algorithm

1. Initialize all objects in distinct cells with individual sequences and with a next action selected.

Go to step 2.

2. The next action of all objects are executed as the current action, and the next action for each

is selected. Go to step 3.

3. Select an unresolved object. Go to step 4.

4. Does any other object act on the same cell as the given object or is present in it? Yes: Go to

step 6. No: Go to step 5

5. The cell the object acted upon becomes the new base cell for the next action and the object

keeps its action. Go to step 15.

6. Do any of the involved objects have an inverse as their next step? Yes: Go to step 7 to resolve

each involved object that meets the condition. No: go to step 8.

7. The involved object remains in the cell which it acted from and it keeps its action. Go to

step 15.

8. Is there an object present in the cell which the current object is acting on? Yes: Go to step

9. No: go to step 10.

9. The object remains in its cell and gives its action to the object present in the cell it acted on.

Go to step 15.

10. Is there more than one other object acting on the cell? Yes: Go to step 12. No: Go to step

11.

11. Each object remains in its cell and gives its action to the other object. Go to step 15.
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12. Are there any involved objects with opposite action to one another. Yes: Go to step 13. No:

Go to step 14.

13. The objects with opposite action pass their actions to one another and remain in their cells.

They are then resolved. Go to step 15.

14. All objects keep their actions and remain in their cells and are resolved. Go to step 15.

15. Are all object resolved for the time step? Yes: Go to step step 2. No: Go to step step 3.

Figure 4.1: A process diagram for the sequence detail algorithm as a visual aid for the algorithm
steps outlined in the text.

Figure 4.2 is a pictographic example of the algorithm in a two dimensional lattice structure.

There are 8 cases shown each consisting of three images which correspond to a full time step
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plus the beginning of the next step. The grids indicate cells and shaded grid squares indicate

the presence of an object in the cell. More specifically it indicates that an object will be acting

from that cell over the time step. The triangle within the shaded square is the next action. It

indicates which cell the object will act on in the time step by pointing to that cell. The action of

the object is indicated by the triangle moving from the object into the next cell, but the cell the

object acts from remains shaded. At the same time the next action of the object is introduced in

the cell the object acts from. Case 1 exemplifies the simple case where two objects move around

without collision. Thus the objects span through the algorithm from (2),(3),(4),(5),(15) and back

to (2). In case 2, the two objects collide and each object has an inverse action as their next

action. Accordingly they keep their actions. Thus the algorithm over the first time step would

go (2),(3),(4),(6),(7),(15), and back to (2). Case 3 is similar to case 2 except that only one of the

objects has an inverse action as its next action. Thus the algorithm over the first time step would

go (2),(3),(4),(6),(7),(15),(3),(4),(5),(15), and back to (2). It does not matter which object was

selected first because steps (6) and (7) resolve all objects with an inverse regardless of the object

selected. Three objects are involved in case 4. None of the involved objects has an inverse action

as their next action. The two objects opposite to one another are resolved first as per step (12),

while the other object is not resolved. It then gets resolved by step (5). Thus the algorithm over

the first time step would go (2),(3),(4),(6),(8),(10),(12),(13),(15),(3),(4),(5),(15) and back to (2).

Note that the two objects opposite to one another exchanged an action with one another. In case

5 an object attempts to move into the cell where another object is present. Thus the algorithm

over the first time step would go (2),(3),(4),(6),(8),(9),(15),(3),(4),(5),(15) and back to (2) if the

leftmost object was selected first. If the other object was selected first the algorithm over the first

time step would go (2),(3),(4),(5),(15),(2),(3),(4),(6),(8),(9),(15) and back to (2) but the end result

is the same. Note that the leftmost object transmitted action to the rightmost object in step (9).

The order of which objects are selected is immaterial to the outcome. Case 6 shows a similar

arrangement to case 5 except that the leftmost object has an inverse. Thus the algorithm over

the first time step would go (2),(3),(4),(6),(7),(15),(3),(4),(5),(15) and back to (2). No transfer of

action between objects took place in this case. In case 7 the algorithm over the first time step

would go (2),(3),(4),(6),(7),(15),(3),(4),(5),(15), and back to (2). Case 8 is similar to case 7, the

algorithm over the first time step would go (2),(3),(4),(6),(8),(10),(11),(15) and back to (2).
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Note that step (15) acts as a catch all in the algorithm for the case in which three objects act

on the same cell but none of them have the inverse actions of the others nor opposites involved.

This case arises in three dimensional event-lattice structures and would be a rare occurrence.

Figure 4.2: A pictographic representation of the example algorithm in a two dimensional lattice
structure.

4.2 Generalized Interactions

The example algorithm above is just one in a family of algorithms which satisfy the point particle

conditions given at the beginning of the chapter. In this section the interactions of point particle

objects are generalized to better represent this family of algorithms. The fundamental character of

the objects in the algorithm is how the object retains action i.e. the inverse rule in steps (6) and

(7). This rule allows the actions which constitutes the object to be divided into two components,

namely a massive component as action that cannot be transmitted and a kinetic component as

action that can be transmitted. Thus an object s may be decomposed as s→ sm + sT . Recall ⌈s⌉

to be the total action comprising the object as before and let sk be the total amount of actions

k ∈ S comprising the object such that

⌈s⌉ =
∑

(k,−k)∈S

sk + s−k (4.10)

Thus ⌈sm⌉ and ⌈sT ⌉ are the amounts of actions in s which have an immediate inverse and those

which do not respectively. We will consider massive particles i.e. particles such that ⌈sm⌉ >> ⌈sT ⌉.

Massive in this context does not necessarily mean heavy, massive particles are just not photons and

42



have velocities v << c, and so have many inverse action pairs.

Consider two objects, call them a and b, and let them be adjacent to one another in the lattice

such that they are one action away from another of type k and −k respectively. The probability

over a given time step dt that object a transfers a unit action of type k to b is

P (k|ab) =
akT
⌈a⌉

(4.11)

That is, it is the probability that a executes a k action without an inverse action immediately after.

Equivalently the probability that b transfers the inverse action −k to a is

P (−k|ba) =
b−k
T

⌈b⌉
(4.12)

In a similar way, for two objects c and d acting on the same cell but arriving by two different

actions, k1 and k2, the probability of transmission of action k1 from c to d is

P (k1|cd) =
ck1T
⌈c⌉

dk2

⌈d⌉
(4.13)

and the probability that d transfers the action k2 to c is

P (k2|dc) =
dk2T
⌈d⌉

ck1

⌈c⌉
(4.14)

Since the mass denominates the total action of an object i.e. ⌈si⌉ ≈ ⌈sm⌉ because ⌈sT ⌉ << ⌈sm⌉,

and the objects are spherically symmetric it follows that for any object under our consideration

∀k ∈ S : sk ≈ ⌈s⌉
|S|

(4.15)

Where |S| is the cardinality of the action set. Inserting 4.15 into 4.13 and 4.14 we obtain,

P (k1|cd) =
ck1T

|S| ⌈c⌉
(4.16)

P (k2|dc) =
dk2T

|S| ⌈d⌉
(4.17)
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Thus the transmission probability of adjacent particles differ in magnitude from those which

collide by moving into the same cell by a finite constant. Now since the mass dominates the action

content of the object then ⌈s⌉ ≈ ⌈sm⌉ ≈ constant. Thus, irrespective of the collision type the rate

at which an object loses transmittable action to another object in a two body interaction may be

expressed as

dskT
dt

= − 1

α
skT (4.18)

Where α >> 1 and is an object and relation specific constant. Integrating with respect to time

from t0 to t equation 4.18 becomes

skT (t) = [skT (t0)] exp

(
− t

α

)
(4.19)

For small t we may approximate exp (− t
α) ≈ (1− t

α) and rewrite 4.19 as

skT (t) = [skT (t0)](1−
t

α
) (4.20)

The amount of action an object would transmit to another object given their specific relation by

the lattice over a time step ∆t would be the difference in skT at t and skT at t+∆t such that

skT (t)− skT (t+∆t) =
∆t

α
skT (t) (4.21)

where α is both object and relation specific.

4.3 Momentum Balance

With these generalized interactions in hand we can analyze the behaviour of a particle in a large

group of particles as in a fluid by conducting a momentum balance on a volume element of the

particles. Let there be a volume element, Ω of dimensions ∆x1∆x2∆x3. The objects themselves

define the boundary so that the only means by which the element gains or looses momentum

is through the exchange of actions with objects which are not part of the element. The total

momentum of the element is the sum of the momentum of all the objects within the element. The

change in the momentum of the element over a duration dt is proportional to the flux of the actions
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transmitted through the surfaces of the element to objects outside of the element. For a given

dimension k where pΩk denotes the total k momentum of the element Ω,

dpΩk
dt

=
∑
∂Ω

Jk
∂Ω − J−k

∂Ω (4.22)

where ∂Ω is a boundary of Ω, while k and −k refer to an inverse action pair, and J denotes the

flux of transmitted actions through a surface ∂Ω. The summation is only over the boundary as the

objects within the boundary will exchange action with other objects within the element and thus

do not change the net momentum of the element. For simplicity we let the density of the particles

in space be constant such that the probability that an object is in a given cell or acting onto a

given cell is ρ.

There are principally two processes of action transmission to be accounted for. Those of a

flux direction perpendicular to k and those parallel to k. Let xk denote the center of Ω such

that each boundary is given by the area ∆xi∆xj at xk ± ∆xk/2 where i ̸= j ̸= k. Accordingly

xk ±∆∆xk
2 − dxk denotes the region of lattice cells directly within boundary of ∂Ω over the area

∆xi∆xj where i ̸= j ̸= k. Similarly let the region of lattice nodes at xk ±∆∆xk
2 + dxk denote the

set of cells just beyond the boundary δΩ of area ∆xi∆xj where i ̸= j ̸= k. A diagram of the cross

section of the element is shown with associated notation in Figure 4.3 where the dimension k is

perpendicular to the plane of the page.

Thus the exchange of momentum pΩk over the boundary consists of the action transmitted from

the objects at xi ±∆∆xi
2 ∓ dxi to objects at xi ±∆∆xi

2 ± dxi and the gain of action from objects

at xi ±∆∆xi
2 ± dxi by objects at xi ±∆∆xi

2 ∓ dxi for i = 1, 2, 3. In order to compact the notation

let the following identifications be made for use in equations.

xi +
∆xi
2 ≡ [+]i

xi − ∆xi
2 ≡ [−]i

xi +
∆xi
2 + dxi ≡ [++]i

xi +
∆xi
2 − dxi ≡ [+−]i

xi − ∆xi
2 + dxi ≡ [−+]i

xi − ∆xi
2 − dxi ≡ [−−]i

(4.23)
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Figure 4.3: Cross section of the volume element Ω in the xi and xj plane along with associated
notation.

The six surfaces of the element are then denoted as [+]i, [−]i, [+]j, [−]j, [+]k, and [−]k. Let sk

refer to the actions of an object s with respect to dimension k such that the sign of the superscript

differentiates the action from its inverse action s−k. Using this k as a form of index notation the

momentum of an object s is

s⃗ = sk − s−k (4.24)

Since only some of the actions are transmittable and those which are not transmittable are equally

balanced i.e. the actions which constitute the mass the object have no net momentum, the mo-

mentum can also be written as

s⃗ = skT − s−k
T (4.25)

First consider the case of i ̸= k i.e. a surface which is parallel to the dimension k or in another

way, the k unit vector is tangent to this surface. For the objects at xi +
∆xi
2 − dxi the change in

momentum of the element is given by skT and s−k
T actions resulting in transmission of action to and

from objects not in the element. Assuming constant density of objects in the lattice the probability

that an object is present for such an interaction is ρ. For each action k and its inverse there is

the potentiality for both the gain of actions from other objects and the loss of actions to other

objects. In accordance with the algorithm the object can only lose an action granted it executed

that action and the action was transmittable i.e skT , and can only gain an action granted another
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object executed that action and it was transmittable. Thus for the actions skT the flux is given by

the loss of actions by transmission which the object within the element executes and the gain of

actions by receiving transmittable actions from another object outside the element.

Jk|[+]i =
∑

∀s∈ [+]i

−ρω1s
k
T |[+−]i + ρω2s

k
T |[++]i (4.26)

Where ωi = dt/αi for αi defined when generalizing the interactions. The expression under the

summation symbols means for all objects s on the boundary of the element at xi +
∆xi
2 but within

the element. An identical process occurs for s−k
T

J−k|[+]i =
∑

∀s∈ [+]i

−ρω3s
−k
T |[+−]i + ρω4s

−k
T |[++]i (4.27)

Taking all interactions as equally probably i.e. ω = ω1 = ω2 = ... the flux over the surface is then

given as

Jk − J−k|[+]i =
∑

∀s∈ [+]i

ρω

[(
skT − s−k

T

)
|[++]i −

(
skT − s−k

T

)
|[+−]i

]
(4.28)

The total amount of particles on this surface is given as ρ∆xj∆xk(2dxi). Using the fact that

vk = skT − s−k
T /⌈s⌉ then the total momentum flux over this side of ∂Ω can be expressed as

Jk − J−k|[+]i = ∆xj∆xk(2dxi)ρ
2ω⌈s⌉

[
vk|[++]i − vk|[+−]i

]
(4.29)

An identical analysis can be carried out on the opposing surface of xi − ∆xi
2 to yield

Jk − J−k|[−]i = ∆xj∆xk(2dxi)ρ
2ω⌈s⌉

[
vk|[−−]i − vk|[−+]i

]
(4.30)

Since dimension i was arbitrarily selected 4.29 and 4.30 equally apply if xi is in the place of xj

and xj in the place of xi. Thus there are four equations which describe the action flux over the

four sides parallel to the dimension k of the element Ω.

The two boundaries perpendicular to k are different than the others just described. In those

boundaries both skT and s−k
T could be transmitted through the surface. However on the perpendic-
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ular boundary only the skT can be transmitted from the element to the surrounding at xk +
∆xk
2 .

Similarly only s−k
T can be transmitted from the element to the surrounding at xk − ∆xk

2 . Accord-

ingly only s−k
T can be transmitted from the surrounding to the element through xk +

∆xk
2 and only

skT can be transmitted from the surrounding to the element through xk − ∆xk
2 . Thus the flux at

xk +
∆xk
2 is given by the loss of skT at xk +

∆xk
2 − dxk which is

Jk|[+]k =
∑

∀s∈ [+]k

−ρω1s
k
T |[+−]k (4.31)

and the gain of s−k
T at xk +

∆xk
2 + dxk is such that

J−k|[+]k =
∑

∀s∈ [+]k

ρω2s
−k
T |[++]k (4.32)

Thus for the surface at xk +
∆xk
2 taking all interactions equally probable

Jk − J−k|[+]k =
∑

∀s∈ [+]k

−ρω(skT |[+−]k + s−k
T |[++]k) (4.33)

and similarly the flux at xk − ∆xk
2 is given by the loss of s−k

T at xk − ∆xk
2 + dxk as

J−k|[−]k =
∑

∀s∈ [−]k

−ρω3s
−k
T |[−+]k (4.34)

and the gain of skT from xk − ∆xk
2 − dxk such that

Jk|[−]k =
∑

∀s∈ [−]k

ρω4s
k
T |[−−]k (4.35)

Thus for the surface at xk − ∆xk
2 taking all interactions equally probable

Jk − J−k|[−]k =
∑

∀s∈ [−]k

ρω(skT |[−−]k + s−k
T |[−+]k) (4.36)

At this point all of the flux terms in 4.22 over surface ∂Ω have been obtained. However we

desire to express the flux equations in 4.33 and 4.37 as much as possible in terms of velocity in order
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to compare with classical fluid concepts. Let the sum of the particles on the surfaces perpendicular

to k be equal to ρ∆xi∆xj(2dxk). Take the sum of the flux on the surfaces perpendicular to k such

that

ψ = (Jk − J−k)[−]k + (Jk − J−k)[+]k = ∆xi∆xj(2dxk)ρ
2ω

[
skT |[−−]k + s−k

T |[−+]k

− (skT |[+−]k + s−k
T |[++]k)

] (4.37)

Note that ψ has been introduced for convenience. This expression is resistant to ready formu-

lation in terms of velocity because the inverse action is not present for each term. For example

skT |[−−]k is present but the inverse action s−k
T |[−−]k is absent from the expression. Approximate the

complementary exterior terms i.e. the inverse action terms at xk +
∆xk
2 + dxk and xk − ∆xk

2 − dxk

in terms of the other components. Thus we approximate s−k
T |[−−]k to the first order using a first

order Taylor series expansion such that f(a+ h) = f(a) + hf ′(a) as

s−k
T |[−−]k = s−k

T |[−+]k − 2dxk
(s−k

T |[++]k − s−k
T |[−+]k)

∆xk
(4.38)

and similarly approximate skT |[++]k as

skT |[++]k = skT |[+−]k + 2dxk
(skT |[+−]k − skT |[−−]k)

∆xk
(4.39)

Move the left side terms of equation 4.38 and 4.39 to the right hand side such that the equations

are set to zero. Then add them to equation 4.37 such that the exterior terms become

skT |[−−]k − s−k
T |[++]k = skT |[−−]k − s−k

T |[−−]k + s−k
T |[−+]k −

2dxk
∆xk

(s−k
T |[++]k − s−k

T |[−+]k

)
−
(
s−k
T |[++]k − skT |[++]k + skT |[+−]k +

2dxk
∆xk

(skT |[+−]k − skT |[−−]k

)
(4.40)

These terms can be rearranged as

skT |[−−]k − s−k
T |[++]k =

[
skT |[−−]k − s−k

T |[−−]k

]
+

(
1 +

2dxk
∆xk

)
s−k
T |[−+]k −

2dxk
∆xk

s−k
T |[++]k

+

[
skT |[++]k − s−k

T |[++]k

]
+

(
1 +

2dxk
∆xk

)
(−skT |[+−]k) +

2dxk
∆xk

skT |[−−]k (4.41)
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These terms may then be further grouped together as follows

skT |[−−]k − s−k
T |[++]k = β − 2dxk

∆xk
s−k
T [++]k +

2dxk
∆xk

skT [−−]k (4.42)

where

β = (skT − s−k
T )|[++]k − (1 +

2dxk
∆xk

)(skT |[+−]k − s−k
T |[−+]k) + (skT − s−k

T )|[−−]k (4.43)

Substituting these results back into 4.37 we obtain

ψ = ∆xi∆xj(2dxk)ρ
2ω

[
β + s−k

T |[−+]k − skT |[+−]k +
2dxk
∆xk

(
− s−k

T |[++]k + skT |[−−]k

)]
(4.44)

We now work with the remaining four terms. Take the actions from 4.44 and double them while

dividing by two such that

− s−k
T |[++]k + skT |[−−]k =

−s−k
T |[++]k + skT |[−−]k − s−k

T |[++]k + skT |[−−]k

2
(4.45)

we then take by definition that s⃗ = skT − s−k
T . In order to avoid using index notation at the same

time as vector notation let the sum of s, s⃗ be given explicitly in indext notation as sk such that

sk = skT − s−k
T . Then using the definition of momentum

s−k
T |[++]k = skT |[++]k − sk|[++]k (4.46)

and in a similar way

skT |[−−]k = sk|[−−]k + s−k
T |[−−]k (4.47)

Combining 4.46 and 4.47 into 4.45

− s−k
T |[++]k + skT |[−−]k =

−(skT + s−k
T )|[++]k + (skT + s−k

T )|[−−]k

2
+
sk|[−−]k + sk|[++]k

2
(4.48)

The same manipulations can be carried out on the first two terms after β in equation 4.44 such

that

s−k
T |[−+]k − skT |[+−]k =

−(skT + skT )|[+−]k + (skT + s−k
T )|[−+]k

2
−
sk|[+−]k + sk|[−+]k

2
(4.49)
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We can now aggregate all of the terms of the flux on all the boundaries and take the limit that

as ∆x→ 2dx. In this limit it follows that dxi =
∆xi
2 and the boundaries of the element Ω become

xi +
∆xi
2

− dx = xi

xi −
∆xi
2

+ dx = xi

xi +
∆xi
2

+ dx = xi +∆xi

xi −
∆xi
2

− dx = xi −∆xi

(4.50)

Thus for the fluxes on opposing surfaces parallel to xk we apply the limits of 4.50 to 4.29 and 4.30

add them together

(Jk − J−k)|[+]i + (Jk − J−k)|[−]i = ∆xj∆xk∆xiρ
2ω⌈s⌉

[
vk|[++]i − vk|[+−]i + vk|[−−]i − vk|[−+]i

]
= ∆xj∆xk∆xiρ

2ω⌈s⌉
[
vk|xi+∆xi − 2vk|xi + vk|xi−∆xi

]
(4.51)

and the same is true when each xi becomes xj and each xj becomes xi. In a similar way the β

given in equation 4.43 when taken in the limit reduces to an identical form as 2dxk
∆xk

→ 1 such that

∆xj∆xk∆xiρ
2ωβ = ∆xj∆xk∆xiρ

2ω

[
(skT − s−k

T )|[++]k

− (1 +
2dxk
∆xk

)(skT |[+−]k − s−k
T |[−+]k) + (skT − s−k

T )|[−−]k

]
= ∆xj∆xk∆xiρ

2

[
(skT − s−k

T )|xk+∆x − 2(skT − s−k
T )|xk

+ (skT − s−k
T )|xk−∆xk

]
= ∆xj∆xk∆xiρ

2 ⌈s⌉
[
vk|xk+∆xk

− 2vk|xk
+ vk|xk−∆xk

]
(4.52)

Where the definition of velocity was used in the final step. This expression along with the other

expressions of identical form in 4.51 can be expressed compactly as

∆xj∆xk∆xi
∑

l=i,j,k

ρ2ω ⌈s⌉
[
vk|xl+∆xl

− 2vk|xl
+ vk|xl−∆xl

]
(4.53)
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The remaining terms are those in 4.44, i.e. ψ −∆xj∆xk∆xiρ
2ωβ, which were re-expressed in

4.48 and 4.49. Now in the limit imposed

ψ −∆xj∆xk∆xiρ
2ωβ = ∆xj∆xk∆xiρ

2ω

[
s−k
T |[−+]k − skT |[+−]k +

2dxk
∆xk

(
skT |[−−]k − s−k

T |[++]k

)]
= ∆xj∆xk∆xiρ

2ω

[
s−k
T |[−+]k − skT |[+−]k +

(
skT |[−−]k − s−k

T [++]k

)]
= ∆xj∆xk∆xiρ

2ω

[−(skT + s−k
T )|[+−]k + (skT + s−k

T )|[−+]k

2

−
sk|[+−]k + sk|[−+]k

2

+
−(skT + s−k

T )|[++]k + (skT + s−k
T )|[−−]k

2

+
sk|[−−]k + sk|[++]k

2

]
(4.54)

As the two terms in the fourth and sixth lines of 4.54 are an average at the same point xk they

approximate one another

sk|[+−]k + sk|[−+]k

2
≈
sk|[−−]k + sk|[++]k

2
(4.55)

and can be cancelled out of the final expression of 4.54. Each of the remaining terms may be paired

with the components on the same side and act as an average in a similar way. Rearranging the

final expression of 4.54.

ψ −∆xj∆xk∆xiρ
2ωβ = ∆xj∆xk∆xiρ

2ω

[−(
(skT + s−k

T )|[+−]k + (skT + s−k
T )|[++]k

)
2

+
(s+k + s−k )|[−+]k + (s+k + s−k )|[−−]k

2

] (4.56)

Making use of the limit the terms in equation 4.56 can be re-expressed as

(skT + s−k
T )|[+−]k + (skT + s−k

T )|[++]k

2
=

(skT + s−k
T )|xk

+ (skT + s−k
T )|xk+∆xk

2

(skT + s−k
T )|[−+]k + (skT + s−k

T )|[−−]k

2
=

(skT + s−k
T )|xk

+ (skT + s−k
T )|xk−∆xk

2

(4.57)
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and then treating them as averages over an intermediary point yields

(skT + s−k
T )|xk

+ (skT + s−k
T )|xk+∆xk

2
= (skT + s−k

T )|xk+∆xk/2

(skT + s−k
T )|xk

+ (skT + s−k
T )|xk−∆xk

2
= (skT + s−k

T )|xk−∆xk/2

(4.58)

Applying the results of 4.58 to 4.56 we obtain

ψ −∆xj∆xk∆xiρ
2ωβ = ∆xj∆xk∆xiρ

2ω

[
−
[
(skT + s−k

T )|xk+∆xk/2 − (skT + s−k
T )|xk−∆xk/2

]]
(4.59)

All flux terms can now be collected from 4.53 and 4.59 to be expressed as

dpΩk
dt

=

(
∆xj∆xk∆xi

∑
l=i,j,k

ω ⌈s⌉
[
vk|xl+∆xl

− 2vk|xl
+ vk|xl−∆xl

])
−
[
(skT + s−k

T )|xk+∆xk/2 − (skT + s−k
T )|xk−∆xk/2

] (4.60)

Since ∆xi = 2dxi and 2dxi is the smallest extension between in the event lattice ∆xi may be

taken as unity. In this case the element refers to a single cell of unit volume. We may express

the element as a collection of particles of size ρ∆xi∆xj∆xk and allow a characteristic particle

momentum sΩk such that

ρ∆xi∆xj∆xk
dsΩk
dt

=

(
∆xj∆xk∆xi

∑
l=i,j,k

ρ2ω ⌈s⌉
[
vk|xl+∆xl

− 2vk|xl
+ vk|xl−∆xl

])
−∆xj∆xk∆xiρ

2ω
[
((skT + s−k

T )|xk+∆xk/2)− (skT + s−k
T )|xk−∆xk/2

] (4.61)

Cancelling the common terms on both sides

dsΩk
dt

= ρω ⌈s⌉
( ∑

l=i,j,k

[
vk|xl+∆xl

− 2vk|xl
+ vk|xl−∆xl

])

− ρω

(
((skT + s−k

T )|xk+∆xk/2)− (skT + s−k
T )|xk−∆xk/2

) (4.62)

As this is a discrete space we do not take the limit as ∆x→ 0. However the first term has the clear

structure of a symmetric discrete second derivative, the second the form of a first order discrete

derivative. The missing denominators are ∆x2i and ∆xi respectively which both equal unity and

so have no effect on the assertion of these terms as proper discrete derivatives. For demonstration
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we re-write 4.62 as

dsΩk
dt

= ρω

(
⌈s⌉ ∇̃2vk − ∇̃((skT + s−k

T )

)
(4.63)

where the discrete derivatives are rewritten as their continuous counterparts with a tilde to indi-

cate that they are improper. In making the identification of the transmittable action for a single

dimension akin to pressure Pk = skT + s−k
T we obtain

dsΩk
dt

= ρω

(
⌈s⌉ ∇̃2vk − ∇̃Pk

)
(4.64)

Where the k subscript is an index and so the above represents three equations, one for each

dimension. This analysis reveals in a very plain way that we should expect a collection of these

point particles to behave like a classical fluid. This analysis is only preliminary in the fact that it

heavily rests on making all the interactions equally probable, assuming constant density, and use

of first order approximations. However these assumptions are not unreasonable and this general

behaviour should be realizable in a suitable algorithm which utilizes the generalized interactions.

4.4 Vector Formulation of Generalized Interactions

In the sequence formulation of point particles mass containing objects moving at velocities much

smaller than the speed of light are primarily composed of non-transmitting actions. That is inverse

actions pairs where a particular action is followed by its inverse thereby causing the object to move

back and forth between two cells. These action pairs are critical for the object to maintain mass or

bounded action. Accordingly over a duration smaller than the time for the object to execute all its

actions it would consistently return to the same cell. This cell would then change periodically with

an action which is transmittable, i.e. not followed by an inverse. Accordingly there is a cell which

the object could be said to reside within as it executes a long series of non-transmitting actions,

and this resident cell would change periodically in accordance with the net momentum given by the

transmitting actions. Since the great majority of actions would be non-transmitting, simulating

the algorithm devised in full detail would be highly unproductive. Not to say that sequence detail

algorithms would not be productive for other objects. For example an object which moves very

fast and appears well extended in space such as an electron may very well require a sequence detail
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algorithm. However to continue the analysis of the point particle envisioned here another approach

is desirable. Preferably one which allows us to use computational tools already available.

This behaviour can be achieved by allowing objects to have definite positions in a real space

and allow that definite position to evolve according to the velocity of the object as given by its

action composition. The space which this position is within can be partitioned into cells, such that

each real position can be mapped to a specific cell. All interactions can then be carried out through

the cellular structure as given by the action set of the event-lattice, but the real space underneath

it is used to periodically change the resident cell of the object in accordance with its velocity, i.e.

its composition of transmittable actions. In the following such an approach is presupposed and a

computational framework is obtained which is very similar to the Lattice Boltzmann Method, but

differs fundamentally in that each object is a discrete and separate entity independent of the cells.

Consider a set of objects N enumerated such that

N = {i : i = 1, 2, 3, ..., n} (4.65)

where n is the number of objects. In preparation for simulation consider the particles to be in

a d dimensional space with periodic boundaries such that the total width of the box is lb for each

dimension. Each particle i has a position ri ∈ Rd. Let this box undergo cellular decomposition into

the the set of cells Γ which make up the cells of the event-Lattice Γ. We require that the length of

the sides of any given cell be the same length lc and for any given domain and cells it is required

that

lb
lc

∈ N (4.66)

In order to organize the interaction of the particles their location must be known. There is a map

L : R → Γ called the indexing function. A particle i ∈ N with position rik ∈ R is said to occupy,

or be an occupant of, or reside in, a given cell γ ∈ Γ if

L(ri) = γ (4.67)
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Similarly if one were to check cell γ ∈ Γ there is a check function C : Γ → N ∪ {0} such that

C(γ) =

⎧⎪⎪⎨⎪⎪⎩
i, if L(rik) = γ

0, otherwise

(4.68)

where ri ∈ Rd.

To facilitate the generalized interaction over the cellular domain the set Γ is endowed with an

extended action set Sx of actions with an external binary operation σ : Sx × Γ → Γ. This is

a different action set then the one outlined in the event-lattice in that it accounts for relations

between particles that may act on the same cell. Thus it is extended beyond those cells which may

participate in direct actions of a single object. The extended action set defines the neighborhood

of γ as the subset of Γ which if an object is present in γ, the object can transmit action to other

particles in or acting on cells in the neighborhood of γ. The neighborhood of the cell γ ∈ Γ is then

the set

Γ = {ν : ∀s ∈ Sx (ν = σs(γ))} (4.69)

Hereafter j = σs(i) refers to j ∈ Γ as a neighbor of i obtained through the member s ∈ Sx.

Furthermore let i and j denote the particles in those cells called i and j. For convenience we define

the occupancy of a neighboring cell j of i to be given by the function φij such that

φij =

⎧⎪⎪⎨⎪⎪⎩
1, if S(L(σs(i)) = j ∈ N

0, otherwise

(4.70)

Accordingly φij = φji. This function is defined for convenience and will not be used after this

discussion. This cellular structure constitutes the framework which can be used to exchange actions

between objects. Accordingly the action set of an object can be described by a vector with as many
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components as the action set S (not extended). Each object i is endowed with an action-state

|sT ⟩i =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s1T

s2T
...

s
|S|
T

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.71)

In order to make use of this action-state, we must be able to extract the resulting particle momentum

from |s⟩i to compute the velocity of i. This is obtained by taking the inner product with a vector

which describes the orientation of each action relative to its inverse

|κ̂⟩ (4.72)

The notation indicates this to be a vector of vectors. For example |κ̂⟩ for a three dimensional

system is

|κ̂⟩ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(−1, 0, 0)

(0,−1, 0)

(0, 0,−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.73)

Notice that there are three inverse action pairs and so each vector of |κ̂⟩ has three components.

Since each dimension has an inverse action pair there are six vectors for |κ̂⟩ in total. Ultimately

the net momentum will have one definite direction. The total momentum of a point particle object

is given by the inner product

s⃗i = ⟨κ̂|sT ⟩i (4.74)

An interaction of one particle with another entails a transmission of action. In order for an

action to be transmitted the action must have been executed. Accordingly actions can only be

transmitted in the direction of which it acts. Let Wk be a diagonal matrix which specifies the

actions particle i transmits to particle j when related by a member of the extended action set
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k ∈ Sx. At the same time j transmits action to i thus there is another transmission matrix Wk−1 .

The total change in action state of particle i is then the action it transmits to other particles in its

neighborhood and the action it receives from those particles.

|∆sT ⟩i =
∑

∀k∈Sx

φij
(
Wk−1 |sT ⟩j −Wk|sT ⟩i

)
(4.75)

and

j = C(σk(L(i))) (4.76)

If |∆sT ⟩ij denotes the change of the action state of i due to j we readily see that for a pairwise

interaction

|∆sT ⟩ij = φij(Wk−1 |sT ⟩j −Wk|sT ⟩i) (4.77)

and additionally

|∆sT ⟩ji = φij(Wk−1 |sT ⟩i −Wk|sT ⟩j) (4.78)

which clearly indicates

|∆sT ⟩ij = −|∆sT ⟩ji (4.79)

In making the identification between a change in momentum with a force as given by Newtons

equations of motion equation 4.79 is the equivalent of Fij = −Fji and the net momentum will

always be conserved. Each action at a given instant may give rise to classical kinetic energy or it

may not depending on the quantity of inverse actions in the same particle. It is essential that a

particle does not transmit more action than it possesses such that

∑
∀k∈Sx

Wk ≤ δmn (4.80)

where δmn is the Kronecker delta

δmn =

⎧⎪⎪⎨⎪⎪⎩
1, if n = m

0, if n ̸= m

(4.81)

it is then that the result of a collision yields a new action state for particle i. If an interaction were
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to occur over a time step ∆t it would follow that

|sT ⟩i(t+∆t) = |sT ⟩i(t) + |∆sT ⟩i (4.82)

which requires |∆sT ⟩i = f(∆t). Let us parametrize Wk with W̄k such that

∑
∀k∈Sx

W̄k = δmn (4.83)

and then

ωW̄k =Wk (4.84)

Allowing particles to interact over a time step ∆t in equation 4.82 suppose there is a characteristic

time τ such that all the transmittable action of a particle i is transmitted to its neighbors. If in

a given time step all transmittable action is transmitted in accordance with 4.82 then ω of 4.83

equals unity. In a time step of ∆t < τ not all action will be transmitted. Accordingly ω < 1. If

no time passes such that ∆t = 0 then every element in Ws equals zero then it must be that ω = 0.

Substituting 4.84 into 4.75 we obtain

|∆sT ⟩i = ω
∑

∀k∈Sx

φij

(
W̄k−1 |sT ⟩j − W̄k|sT ⟩i

)
(4.85)

identifying |∆s̄T ⟩i with the summation portion of 4.85 such that

|∆s̄i⟩ =
∑

∀k∈Sx

φij(W̄k−1 |sT ⟩j − W̄k|sT ⟩i) (4.86)

the compact form

|∆sT ⟩i = ω|s̄T ⟩i (4.87)

is obtained which is the change in momentum of particle i during a time step ∆t. The momentum

of particle i at time t is s⃗i(t) = ⟨κ̂|sT ⟩i and the momentum at t+∆t is then

s⃗i(t+∆t) = ⟨κ̂|sT +∆sT ⟩i (4.88)
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or by distributing ⟨κ̂| and substituting in equation 4.87 for |∆sT ⟩i = ω|s̄T ⟩i it follows

s⃗i(t+∆t) = ⟨κ̂|sT ⟩i + ω⟨κ̂|∆s̄T ⟩i (4.89)

using the inner product defined in 4.74

s⃗i(t+∆t) = s⃗i(t) + ω∆s⃗i (4.90)

If the time step occurs such that ∆t = τ then ω = 1 and we have

s⃗i(t+ τ) = s⃗i(t) + ∆s⃗i (4.91)

multiplying equation 4.91 by ω and subtracting it from 4.90 and rearranging we obtain

s⃗i(t+∆t) = s⃗i(t)(1− ω) + ωs⃗i(t+ τ) (4.92)

Since s⃗i(t+∆t) = s⃗i(t) when ∆t = 0 and s⃗i(t+∆t) = s⃗i(t+ τ) when ∆t = τ it follows that

ω =
∆t

τ
(4.93)

substituting equation 4.93 into 4.92

s⃗i(t+∆t) =

(
1− ∆t

τ

)
s⃗i(t) +

(
∆t

τ

)
s⃗i(t+ τ) (4.94)

which has identical form to the Lattice Boltzmann Collision step 2.2. Accordingly we should be

able to use a framework like the Lattice Boltzmann Method to create a point particle algorithm

in order to exhibit their general character. We are then free to select the elements of Wk so long

as they only transmit action in the direction of the action. This framework can be used for either

discrete amounts of action or continuous actions.

The translation of a given particle i can then be achieved by incrementing the particle position
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with its momentum through first order integration

rik(t+∆t) = rik(t) + ∆t
s⃗i
mi

(4.95)

where ∆t is the time step and mi is the mass of particle i. As it is more convenient the framework

will be used with a continuous action spectrum and a unit mass.
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Chapter 5

Algorithmic Implementation of the

Point Particle Model

This chapter describes how to implement the vector formulation of the point particle model devel-

oped in the previous chapter. It is given due weight as it is effectively the apparatus which allows

us to experiment with the model. Figure 5.1 is a flow diagram for a generic simulation and serves

to guide the following discussion. The flow diagram is endowed with an entry point on the left and

an exit point on the right. Two gray regions partition the flow diagram into a setup component

and a main simulation loop. The white boxes are categories of operations that are carried out in

succession as indicated by the arrows which join them. In the programming side we shall frequently

be using arrays, many variables stored together in succession in memory. The general form of an

array shall be A[ : ] for a one dimensional array, A[ : ][ : ] for a two dimensional array and so forth.

For a given array r[ : ][ : ], r[i][j] refers to the element in the ith row and jth column. Each time

an array is first introduced the size of the array dimensions will be directly stated with the array

such that the position array would be introduced as r[n][d] which is a two-dimensional array with

size n × d. When referring to arrays in general discussion r[n][d] will be preferred to r[ : ][ : ] as

it reminds the reader of the details of the array. It does not mean the value in the last element.

When referencing specific elements in arrays as in formulas, effort will be made to use i, j, and k.

However k will generally be used for components related to spatial dimensions such as in positions

and velocities. When referring to action types in vector form they will sometimes be accessed with
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Figure 5.1: A general flow diagram for the simulations

k and sometimes with κ depending on how it is being used. Use of i and j will occur for counters,

particular cells, and objects in general. Use of nx is for counts of things x such as the number

of cells as nc where c indicates cells. The context for its use, or its relevance, is indicated by the

subscript. When conducting calculations about a given particle i it is imperative that i be used in

the referencing of the array for that particle however, intermediate calculations do not need specific

reference to i as the intermediate variables are used for all particles so the i will often be omitted

from intermediate steps.

5.1 Setup Procedure

5.1.1 Assign Parameters

Beginning the simulation requires a great many parameters be assigned. The single most important

parameter is the dimensionality of the system. It is often useful to be able to run simulations in

both two and three dimensions. Although it can be a little more difficult it is possible to leave

the dimensionality of the system as an input parameter. If one is to have dimensionality as an

input it is better to decide sooner than later as it has significant consequences. Even if one were

to only use a certain dimensionality it is still better to specify the dimensionality as a variable and

pass it as an argument to subsequent functions. The reason is that computational expense greatly

increases with an increase in dimension. This is especially the case in simulations which discretize
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the domain into cells. When debugging such a program some errors will only become apparent

after long times. Accordingly to debug with a full scale model can take a very long time. Thus

the dimensionality should always be an assigned parameter when possible. Here d refers to the

dimensionality of the system.

Following the dimensionality the number of cells is assigned albeit indirectly. Instead of the

total number of cells the number of cells per side of the simulation box is assigned as an integral

number nw which indicates the number of cells along a specific wall of the simulation box. The

total number of cells is also the cardinality of the set Γ as defined as the cells of the event lattice.

Accordingly

|Γ| = nc = nw
d (5.1)

It is most convenient to set the box length equal to the number of cells along a wall such that

lb = nw (5.2)

resulting in lc to take a value of unity, and since nw ∈ N equation 4.66 is immediately satisfied.

In order to construct the external binary operation σ the extended action set Sx must be

assigned in some way so as to generate a list of neighboring cells which an object will interact with.

The assigned parameter which is used to generate σ is termed a shift vector set. Each shift vector

specifies a relation from a given cell to a specific neighbor cell. The general form of a shift vector is

ck = (c1, c2, ..., cd) (5.3)

where the components of ck are elements from the set D where

D = {x : x = ±λlc, λ = 0, 1, 2, ..., r, r ∈ N, 0 < r < nw} (5.4)

For example if r = 2 and lc = 1 then

D = {−2,−1, 0, 1, 2} (5.5)

Some example shift vectors are (0, 1, 0), (1,−1, 0), (−2, 0,−1) and so forth. No two shift vectors
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should reference the same cell with respect to a given cell as that would be redundant. As one

would expect the shift vector of (1, 0, 0) applied to a given cell in a three dimensional model refers

to the cell directly adjacent to the given cell in the positive x-direction. The actual construction of

the map which gives the relation of cells by shift vectors and thus σ is the subject of the following

section. Let nσ denote the number of cells indicated by the extended action set. The shift vector

set can be conveniently packaged in an array c[nσ][d] where each row corresponds to a shift vector.

The set of all cells given by the shift vectors in relation to a given cell define the neighborhood of

that cell. It is convenient to enumerate these neighbors in accordance with the order in which the

corresponding shift vectors appear in c[nσ][d].

In addition to the assignments already mentioned the number of particles, velocity of the par-

ticles, transmittable actions, time step, and transmission coefficients must all be assigned. The

effects of these parameters vary according to the investigation and will be discussed when relevant.

5.1.2 Construction of the σ Mapping

Although σ : S × Γ → Γ is useful for clear mathematical formulation the implementation in a

program is quite different and takes the form of a 1-dimensional array σ[nσnc] and a function

which generates an index for this array. This map is constructed from the shift vector set c[nσ][d].

The first step is to enumerate the cells which compose the simulation box. The case of three

dimensions will be discussed as the case of two dimensions is a simplification. Figure 5.2 shows the

resulting enumeration of the cells from the following process when nw = 3. The function consists of

three nested loops, one for each dimension, in opposite order of a standard vector i.e z then y then

x such that x is the inner most loop. Each loop is a for-loop with a counter that increments each

counter from 1 to nw. Call these counters ix, iy, and iz. Since ix is the innermost counter when

iterated we move along a given z-plane i.e. at a fixed iz value, and a given y-plane i.e. a fixed iy

value. Thus in incrementing ix we are incrementing along the intersect of these two planes. When

the ix = nw the y-plane shifts such that iy = iy + 1 and we again increment through the intersect

of the iz and iy planes. This continues until iy = nw at which point iz = iz + 1 and the process

repeats on the new iz plane. In this way we loop through all the cells in the domain sequentially.

The two dimensional case is obtained by dropping the z component.

As each cell is sequentially incremented through they are assigned names in accordance with
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Figure 5.2: Enumeration of the cells as given by the algorithm in the text for nw = 3.

the counters which correspond to that cell’s position. A simple equation to assign a name γ to each

cell given by ix, iy, and iz is just like one used to flatten a three dimensional array

γ = 1 + (ix − 1) + (iy − 1)nw + (iz − 1)n2w (5.6)

which corresponds exactly to the naming scheme of 5.2. Now the cells have been enumerated. We

now want to create a map such that by using a given cell name γ ∈ Γ and the jth shift vector

c[j][d] = (c1, ..., cd) the name of the jth neighbor cell β ∈ Γ relative to γ is obtained.

We create an array σ[nσnc] such that the first nσ entries of the array contain the nσ neighbors

of cell 1, the following nσ entries of the array contain the neighbors of cell 2, and so forth. In this

way the jth neighbor cell of γ is obtained by giving the index (γ − 1)nσ + j to σ such that

β = σ[(γ − 1)nσ + j] (5.7)

Where β is the jth neighbor of γ. A very smooth method to populate σ[nσnc] for periodic

boundary conditions has been presented by Allen and Tildesly. [92] Let ic designate the name of a
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cell given by its indexes such that

ic = 1 + (ix − 1)%nw + [(iy − 1)%nw]nw + [(iz − 1)%nw]n
2
w (5.8)

where % is the modulo operator. To obtain the jth neighbor of ic add the jth shift vector c[j][d] =

ck = (cx, cy, cz) to the ik values of ic i.e. if β is the jth neighbor of γ and the indexes which yield

ic given equation 5.8 are ix, iy, and iz then β is obtained as

β = 1 + (ix + cx − 1)%nw + [(iy + cy − 1)%nw]nw + [(iz + cz − 1)%nw]n
2
w (5.9)

Thus σ may be populated while enumerating the cells such that for every unique ix, iy, and iz we

loop over all j neighbors and populate σ[nσnc] as

σ[(γ−1)nσ+j] = 1+(ix+c[j][1]−1)%nw+[(iy+c[j][1]−1)%nw]nw+[(iz+c[j][3]−1)%nw]n
2
w (5.10)

In this way the map may be constructed for any neighborhood defined by a shift vector set. Be

sure to remove the initial 1 of both equations if the array counts from zero in the programming

language being used and keep it if otherwise.

5.1.3 Place Particles

The following describes how to place particles in a domain such that they are spaced from one

another in a Cartesian lattice with a small perturbation so that they are not perfectly spaced. The

positions of these particles are stored in a two dimensional array r[n][d] where n is the number of

particles in the system. First calculate the expected number of particles to align along a wall of

the domain as an integral number for example the number of particles along a side of the box can

be computed as

ns =
⌈
n1/d

⌉
(5.11)

Where ⌈x⌉ is a ceiling function which rounds x ∈ R to the next highest integer. The spacing

between the particles, rs, in the Cartesian lattice is then
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rs =
lb
ns

(5.12)

Initialize a counter j which will be used as a reference for the particles. Loop over each dimension

with ik = 1 to ns nesting each subsequent dimension inside of the previous as in section 5.1.2 except

here the order of the dimension is unimportant. The index k refers to each dimension. Inside the

innermost loop evaluate the counter j with the conditional j > n. If the conditional returns true all

particles have been assigned a position, else particle j and potentially subsequent particle positions

are yet to be assigned according to the following

rk = (ik −
1

2
)rs + h̃ k = 1, ..., d (5.13)

where rk is the k component position of particle j, and h̃ is a small random number selected at each

instance of assignment as desired. Each rk is assigned to the position array for each dimension k

r[j][k] = rk (5.14)

After assigning the position to a particle increment the counter j = j+1 and continue looping.

Once the conditional in the loop is true i.e. j > n the loops are all terminated, as all particles have

been assigned a position. This technique is best suited when the total amount of particles is an

integral number to the power d but will work otherwise. This method is a bit excessive for these

objects as they have no interaction potential and will not give a catastrophic failure if the particles

are placed randomly but in doing so this routine can be used for other simulations.

5.1.4 Set Actions

For a d dimensional system there are 2d members in the action set S (not extended). In order

to start the simulation these actions need to be assigned. This is achieved in three parts. First,

choosing an initial velocity |v| for the particles. Second, setting the transmittable action for each

action type designated s±k
T0

where

⌈sT ⌉ =
∑

(k,−k)∈S

skT + s−k
T = 2ds±k

T0
(5.15)
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Third, modifying the initial transmittable actions skT0
and s−k

T0
to reflect the desired velocity as skT

and s−k
T for each dimension k.

In order to conduct equilibrium simulations for measuring transport coefficients it must be

ensured that the system has no net momentum. It is also desirable that there are no correlations

in the velocity distribution. An array is created to store velocity of each particle u[n][d]. An array

A[n][2] is created. In the first column of A[n][2] all rows are assigned an integral value equivalent

to their row number

A[i][1] = i, ∀i ∈ N (5.16)

These values are to be used to represent the particle indexes. In the second row random numbers

are assigned from a random number generator.

A[i][2] = h̃i, ∀i ∈ N (5.17)

The subscript of h̃i indicates that each entry i is receiving its own random number h̃. Next the

rows of array A[n][2] are sorted so as to order the second column in some way. Thus the particle

indexes in the first column have been shuffled. Next the first column of A[n][2] is looped through

beginning with the second entry, skipping every other entry, and finishing on the second last entry.

Define this with an index j = 2, 4, 6, ..., n−1. For each iteration d random numbers are drawn from

the set (0, 1) and 0.5 is subtracted from these numbers to create a random vector ṽk where each

component k is in the range (−0.5, 0.5). Then a scaling parameter is obtained

α =

√
ṽk · ṽk
|v̄|2

(5.18)

and a velocity is obtained

vk = αṽk (5.19)

this velocity is assigned to the particle given by A[j][1]

u[A[j][1] ][k] = vk (5.20)
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the equal and opposite velocity is assigned to the next particle of the shuffled list

u[A[j][1] + 1 ][k] = −vk (5.21)

After all these are set two particles remain, namely the particles of j = 1 and j = n. The velocity for

these particles is set the same way as above by letting u[A[1][1] ][k] = vk and u[A[n][1] ][k] = −vk.

In this way the net momentum is zero and the particle velocities are uncorrelated. A net momentum

or velocity can be set later as desired.

With velocities available the transmittable action s±k
T0

is used to to construct the action vector

|sT ⟩i. Construct the array s[n][2d]. Looping through the set of all particles j = 1, 2, 3, ..., n.

skT = s±k
T0

+
vk
2

(5.22)

s−k
T = s±k

T0
− vk

2
(5.23)

These actions are then assigned to the action array

s[j][k] = skT = s±k
T0

+
1

2
u[j][k] (5.24)

s[j][k + d] = s−k
T = s±k

T0
− 1

2
u[j][k] (5.25)

for k = 1, ..., d. Note that as the loop continues skT and s−k
T are reassigned for each j. The

velocity of a given particle i in direction k is readily recovered from the action vector as

u[i][k] = s[i][k]− s[i][k + d] (5.26)

with a unit mass assumed. Note that if a unit mass was not assumed the above equations would

need to be modified.
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5.2 Main Simulation Loop

5.2.1 Translation Routine

The translation step in the simulation has three components, first the particle’s positions must be

incremented in accordance with their velocities, second the proper cell must be determined, third

this particle-cell relation must be later stored for the collision routine. An array is created to store

the cell indexes of the particles z[n]. Another array q[nc] is created to store the contents of each

cell. This process is carried out in a loop. There is first a counter i for i = 1, 2, 3, ..., n looping

through all the particles. The translation is carried out via equation 4.95 but instead in terms of

the arrays

r[j][k] = r[j][k] + ∆tu[j][k] (5.27)

At this instant the positions are already nearby in terms of the computer memory so it is best to

immediately obtain the cell index of the particle. First normalize the particle position then scale

it by the box length. This can be done in one operation

r′k = r[j][k]
nw
lb

(5.28)

The values r′k now represent the position in lattice units. This process is already achieved when

lb = nw. Next floor r′k to round it to the next lowest integer where ⌊x⌋ is the floor of x. The cell

index must then be determined in terms of how the domain was discretized. Identifying ⌊r′k⌋ = ik

for all k equation 5.6 can then be used to obtain the cell index. Equation 5.6 can be implemented

in a dimension agnostic way. Initialize ic = 1 then loop over k = 1, .., d such that

ic = ic + r′k · nwk−1 (5.29)

then store this index

z[j] = ic (5.30)

finally use the cell index ic to reference that particular cell’s entry in q[nc] and store the particles

identity in q[nc] such that

q[ic] = j (5.31)
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The array q[nc] can now play the role of the check function of equation 4.68. Once all of the

particles have been incremented, indexed, and surveyed, the translation process is complete.

5.2.2 Collision Routine

The collision routine is the true work horse of the algorithm as it handles all particle-particle

interactions. The general functioning of the collision routine is to save the current action states of

all the particles, then compute the amount of action each particle will transmit to its neighbors.

Since the initial action state of all particles defines the amount of action a particle can transmit, this

data must not be tampered with. Accordingly the final action state of the particles is a separate

array, which is initialized as an identical copy of the initial action state. As each interaction is

computed this second array is modified leaving the initial action state unaltered. Once all the

interactions have been computed the final state becomes the new initial state. The translation

process ensues, boundary conditions are enforced, and then the collision process begins once again.

In detail, an array s2[n][2d] is made as an exact copy s[n][2d]. Thus s[n][2d] is the initial action

state of all the particles and must not be changed as the interactions are computed. Array s2[n][2d]

is altered by each interaction to obtain the final state.

After creating s2[n][2d] the interactions are computed by looping through all of the particles

i = 1, 2, 3, ..., n. For each particle i the cell index is identified using the cell index array

ic = z[i] (5.32)

This index is used to generate a reference point for the map σ[nσnc]. Recall that σ[nσnc] stores

all of the neighbors of a cell in an ordered fashion. The precise entry where the neighbors of cell

i begins is 1 + nσ(i − 1). Given particle i and the list of its neighbors in σ[nσnc] loop through all

the neighbors for each i and compute the interactions. Thus for particle i

i0 = nσ(ic − 1) (5.33)

is taken as the reference point for σ[nσnc]. Looping through iσ = 1, 2, 3, ...nσ the neighbor cells are
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obtained as

β = s[i0 + iσ] (5.34)

That is, β is the ithσ neighbor of cell ic which may contain a particle for interaction. The cell β may

then be queried such that

q[β] =

⎧⎪⎪⎨⎪⎪⎩
j, if ∃j such that z[j] = β

0, otherwise

(5.35)

If the query yields a particle j an interaction is carried out. This conditional just expressed

is equivalent to the occupant function φij of equation 4.70. This is done for all neighbor particles

j given by σ, and done for all particles i. One will of course notice that when the relationship

between a given i and j is found, and the interaction is carried out, it is an ideal time to carry out

the inverse interaction where particle j transmits action to i. Indeed it would be a waste to wait

until j is in the place of i and i in the place of j to carry out Wk−1 . For this reason only half of

the shift vectors need to be specified for all interactions in the neighborhood to be accounted for.

The nature of how Wk is effected is specific to the model and will be deferred for now. Ultimately

the effect of each interaction is to create a change of the final action state of the form

|∆sT ⟩i = (Wk−1 |sT ⟩j −Wk|sT ⟩i) (5.36)

granted i and j are neighboring. The change represented by 5.36 is achieved by looping through

each action κ = 1, 2, ..., 2d. Since Wk are diagonal and of size 2d× 2d each κ can refer to a specific

element along the diagonal of Wk the content Wk may be represented as a one dimensional array

of form w[2d]. It follows that the change in action due to interaction is then

s2[i][κ] = s2[i][κ] + w[k]s[j][κ]− w[κ]s[j][κ] (5.37)

and

s2[j][κ] = s2[j][κ] + w[κ]s[i][κ]− w[κ]s[i][κ] (5.38)

Note that the w[κ] are applied to the actions antecedent to any interaction namely the initial

action state s[n][2d] otherwise the nature of the interaction between i and neighbors j will be order
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specific which should not be the case. This is done for all particles.

In the final step of the collision routine the final action state array s2[n][2d] is redefined as

s[n][2d] which is essentially an update of the actions. If we implement the parametrization of Wk

such that Wk = ωW̄k then W̄k may be applied as w[2d] in equations 5.37 and 5.39 but the final

step of replacing s[n][2d] with s2[n][2d] can be replaced with

s[j][κ] = s[j][κ](1− ω) + (ω)s2[j][κ] (5.39)

In this way ω and thus the transmission coefficients of Wk can be altered in magnitude but their

relative values remain unchanged.

The exact implementation details of the collisions for point particle objects which interact over a

neighborhood restricted to those cells which are in direct contact with a given cell are now discussed

as this case was heavily used. The approach here is specific to this case. For different neighborhoods

other approaches may be more effective. Direct contact refers to the case where D is limited to

the set D = {1, 0,−1} in 5.4 designating the Moore neighborhood in cellular automata. As point

particles lack shape the interactions should be spatially isotropic. Thus in three dimensions there is

only three unique relations which two cells may have when within each others Moore neighborhood.

They may share a face, share an edge, or share a corner. Examples of the first kind are shift vectors

like (0,−1, 0) and (0,−1, 0), examples of the second kind are (1,−1, 0) and (1, 0, 1), and examples

of the third kind are (1, 1,−1) and (−1,−1,−1). Thus there are only three principle relations and

each of these relations is the same for every action due to isotropy of the point particle. Select the

transmission coefficients that each of these principle relations will have and place them in a one

dimensional array with the number of entries proportional to the number of principle relations no

as w∗[no]. We may then construct another array which organizes these transmission coefficients

as w[nσ/2][no]. Each shift vector must then be associated to one of these principle relations. For

example in the case of a neighborhood defined by direct contact this can be achieved by taking the

dot product of the shift vector with itself. The array w[nσ/2][no] can then be populated by looping

through each neighbor iσ such that

w[iσ][k] = w∗[c[iσ][k] · c[iσ][k]]× |c[iσ][k]| (5.40)
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For each dimension k. The last term |c[iσ][k]| is multiplied to the transmission value so that

w[nσ/2][no] only has non-zero values for those neighbors which the actions should be transmitted

to. This method can only be used here because the number of principal relations is equivalent to

the dimensionality of the system.

The array w[nσ/2][d] is then readily implemented in the collision routine. Looping through the

neighbors iσ = 1, 2, ..., nσ/2. For each neighbor iσ loop over dimensions k = 1, ..., d. At neighbor

iσ for dimension k of particle i

∆s[i][k] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
w[σ][k]s[j][k], if c[iσ][k] < 0

0, if c[σ][k] = 0

−w[σ][k]s[i][k], if c[iσ][k] > 0

(5.41)

and

∆s[i][k + d] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−w[σ][k]s[i][k + d], if c[iσ][k] < 0

0, if c[iσ][k] = 0

w[σ][k]s[j][k + d], if c[iσ][k] > 0

(5.42)

Accordingly for particle j which particle i interacts with,

∆s[j][k] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−w[σ][k]s[j][k], if c[iσ][k] < 0

0, if c[σ][k] = 0

w[σ][k]s[i][k], if c[iσ][k] > 0

(5.43)

∆s[j][k + d] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
w[σ][k]s[i][k + k], if c[iσ][k] < 0

0, if c[iσ][k] = 0

−w[σ][k]s[j][k + k], if c[iσ][k] > 0

(5.44)

Equations 5.41 to 5.44 look horrid but only because they are forced into this format. Each

equation has three cases which are determined with the same conditional, c[σ][k] is >,=, or < 0.

This conditional enforces that the transmission of the action of type κ only takes place if it is

positive and non-zero with respect to the direction of the neighbor. It would be redundant to
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check each action for the condition when it is known that if one action does not meet the condition

then the inverse action does. Thus only half the actions need to be computed. Consequently this

condition can be checked once and the results implicated for both j and i where j is the ithσ neighbor

of i. If i is passing action k to j it follows that j cannot be passing the same action to i but j is

definitely transmitting the inverse action k−1 to i. Thus the total change of action in j for action

k of i is the negative of the change of action k of i. Thus each action being exchanged is only

computed once for the pair. They are not computationally burdensome equations even though

they may look it. Once ∆s[i][2d] and ∆s[j][2d] are obtained the new action in equation 5.37 is

s2[i][k] = s2[i][k] + ∆s[i][2d] (5.45)

and equation 5.46 as

s2[j][k] = s2[j][k] + ∆s[j][2d] (5.46)

all else being the same. These final states can then be implemented as described earlier. It is

possible to make an entirely generalized process for any number of principle relations however it

was not sought here. The Moore neighborhood was sufficient to provide interesting behaviour.

5.3 Boundary Conditions

In order to investigate the continuum like properties of the model the point particle model will

be implemented to solve a couple conventional flow problems. What characterizes these problems

is that the particles undergo exchange with the surfaces in order to enforce certain boundary

conditions by altering the velocity of the particle adjacent to the surface. This section is concerned

with how to carry out this process. During the simulation a boundary causes a distinct change in

the velocity of the particle adjacent to it. Prior to carrying out this change there must be first a

decision to make the change. As there is already a cellular structure available which designates the

absolute resolution of the system in terms of particle-particle interaction it is appropriate to use

this same structure for enforcing the boundary conditions. To do this create an array B[nc]. Each

element in this array is associated with a cell in the domain and is used to enforce a boundary

condition. The elements of the array are to be such that the cell index of the particle as given
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by ic = z[i] for particle i can be used to check the boundary condition array to produce a value

b = B[ic]. The value b may be an instruction in which case it will usually be a small integer

value or it may be a real number such that it is used in a subsequent computation for enforcing

the boundary condition or it may be either depending on the problem at hand. However it must

at least have a value that designates that there is no boundary condition to be enforced on that

particle. The ideal time to enforce a boundary condition is immediately after the cell index of the

particle is identified in the translation step. At this point the cell index ic is readily available such

that B[nc] can be checked and the boundary condition enforced.

The walls of the simulation box may be either solid or periodic but any internal boundaries are

always considered solid. For the flow geometries which are to be analyzed the boundary surface

will always be parallel to the z axis. Thus the orientation of the surface will be characterized by an

angle θ where 0 ≤ θ ≤ 2π. Figure 5.3 displays four surfaces and the corresponding θ which begins

at the x axis and is measured counter clockwise from it.

Figure 5.3: Images displaying the meaning of θ as regards the orientation of a solid surface.

When a particle is adjacent to a surface which is not parallel to one of the axes of the system

it is most convenient to change the basis of the velocity vector such that there is strictly tangent

and normal components. Given the coordinate system displayed in 5.3 the vector normal to the

surface is obtained with the rotation matrix R

R =

⎡⎢⎣ cos θ − sin θ

sin θ cos θ

⎤⎥⎦ (5.47)

However this rotation itself is composed of the x and y unit vectors upon rotation in the first

and second columns of R respectively. Thus the inverse of the rotation matrix can be used to
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change the basis of any velocity vector into the basis of the rotated vectors.

v̂k = R−1vk (5.48)

The transformed velocity v̂k is now in terms of a component normal to the surface and parallel to

it in the x and y components respectively. The parallel component is then assigned the desired

velocity as given by the boundary condition. With the new velocity v̂′k obtained use the rotation

matrix to convert it back into the original basis.

vk = R−1v̂′k (5.49)

These new velocities are to be implemented by changing the actions of the particles. This process

can be demonstrated by considering the flow past an infinite cylinder in a periodic channel with

solid walls. Figure 5.4 displays the system just mentioned. A cross section of the domain is shown

with the x and y dimensions as indicated while the z dimension is perpendicular to the page. Since

the z boundary is periodic the B[nc] for those cells which lie along the z walls have the default

condition of no boundaries. Cells shaded in light gray are cells which in the array B[nc] should

contain an instruction for a boundary condition to be implemented. Cells along the left most wall

at x = 0 have a flow condition to maintain the inlet velocity but the conditions are still periodic for

the x walls. As the system is not periodic in the y boundaries there should be specific instructions

for the cells at y = lb and different instructions for y = 0. The cells near the cylinder also have

their own instruction which handles the interaction of particles with the cylinder.

Figure 5.4: Cells overlaying a cylinder in a channel for boundary condition calculations.
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As an example let the instructions for the left x wall boundary, bottom y wall boundary, top

y wall boundary, and the cylinder boundaries be 1, 2, 3 and 4 respectively. These are the values

of B[nc] which will be returned for particles in any of those cells. Let 0 denote the default case

that no boundary conditions need to be applied. Once a particle’s position has been incremented

as usual and the new cell is obtained as ic then the boundary condition for the cell of ic is obtained

as b = B[ic]. A conditional is then used. If b does not equal zero a boundary condition function

is called which takes b along with any other necessary parameters such as the position and action

of the particle and implements the boundary condition indicated by b. This function will return

the new positions and actions of the particle in accordance with the boundary condition. A simple

way to implement this condition is through the use of a switch-case procedure. The basic idea of

a switch-case procedure is that there is a switch-statement and a number of case-statements. If

a given case-statement is equal to or matches the switch-statement then the code associated with

the case-statement is executed. The switch-statement is set by the function calling the switch-case

procedure.

5.4 Methods of Analysis

In order to characterize the behavior of the point particle model some techniques of analysis are re-

quired. The primary means of characterization will be the transport coefficients of self-diffusion and

viscosity as well as the radial distribution function. The following sections explain the algorithmic

techniques to measure these quantities for particles without interaction potentials.

5.4.1 Self-Diffusion Coefficients

The Einstein method will be used to obtain the self-diffusion coefficiet as implemented by Frenkel

and Berend. [93] In the Einstein method the diffusion coefficient is given by

∂⟨r2(t)⟩
∂t

= 2dDs (5.50)

On the left side ⟨r2(t)⟩ is the mean-squared displacement of the particle in a time interval. On

the right hand side Ds is the diffusion coefficient, and d is the dimensionality of the system. This
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equation comes directly from Fick’s Law and relates the width of the the concentration profile of

a particle diffusing from a single point to the self-diffusion coefficient. To obtain this for the point

particles we plot ⟨r2(t)⟩ as a function of time intervals t− t0 and obtain the self-diffusion coefficient

from the slope. The squared distance a particle travels over an interval is given by

∆r2(t− t0) = [r(t)− r(t0)]
2 (5.51)

Obtaining this for all particles and a sufficiently long time interval the mean square displacement

(MSD) of a particle as a function of time interval is obtained

⟨∆r2(t− t0)⟩ =
1

Nm

Nm∑
i=1

∆r2(t− t0) (5.52)

where Nm is the number of measurements for that particular time interval t− t0. The slope of this

plot at sufficiently long times is constant and can be taken to obtain the self-diffusion coefficient

with 5.50. To calculate it in practice a time tc is selected which represents the longest time interval

for which ⟨∆r2(t− t0)⟩ will be computed. Note that if tc is the length of the simulation then only

one set of |N | measurements will be available for that time interval i.e. one for each particle. The

asymptotic behavior is acquired reasonably fast that tc can be much less than the total simulation

time. Also we must have stored positions and times throughout the simulation such that we have Nt

sets of positions with associated times for those positions. For convenience do not iterate through

the actual time steps but use integral time τ = 1, 2, ..., τf which enumerates the actual time steps

t = 0,∆t, 2∆t, ..., tf where ∆t is the time step of the simulation and tf is the final time of the

simulation. Thus τ represents time but as an integral number can be used to reference arrays.

Accordingly τc =
tc
∆t .

Create arrays mr[τc] and n̂[τc] to store the mean square displacements and normalizing factors

Nm respectively. Begin the outer loop using τ0 as the counter for τ0 = 1, 2, ..., τf . Extract the

positions of all particles at time τ0 as array r(τ0)[n][d]. Next loop through the times intervals

beginning at the current τ0 and ending at the smaller of either the final time τf or τc + τ0. That is

to say nest an inner loop which iterates with τ = τ0, τ0 + 1, τ0 + 2, ...,min (τf , τc + τ0). For each τ

of the inner loop obtain r(τ)[n][d]. Compute the distance travelled over the time interval τ − τ0,
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by first subtracting each component k of r(τ0)[n][k] from r(τ)[n][k], square the result and sum over

all k. Then sum over all particles, divide by the total number of particles, and store the result i.e.

mr[τ − τ0 + 1] = mr[τ − τ0 + 1] +
1

|N |

n∑
j=1

d∑
k=1

[
r(τ)[j][k]− r(τ0)[j][k]

]2
(5.53)

since there will be more short time intervals in a given c than long intervals the results have to

be normalized. For each data point added to array mr[τc] increment a normalizing array n̂[τc] the

same size as m[τc]r such that

n̂[τ − τ0 + 1] = n̂[τ − τ0 + 1] + 1 (5.54)

Once all loops are complete normalize the mean square distances obtained

mr[τi] =
mr[τi]

n̂[τi]
, τi = 1, 2, 3, ..., τc (5.55)

The entries of mr[τi] are now the ⟨r2(t)⟩ for times t = 0,∆t, 2∆t, ..., tc. Plot and observe the region

in which the ⟨r2(t)⟩ is linear and use a linear regression to obtain the slope. This slope corresponds

to the left hand side of 5.50 and the diffusion coefficient is readily obtained with the dimensionality d.

5.4.2 Obtaining Viscosity through Relaxation Measurements

Without interaction potentials Green-Kubo relations cannot be implemented to extract the viscosity

as a stress correlation. Instead we will utilize relaxation measurements by perturbing the fluid with

a wave and tracking its return to equilibrium as was done by McNamara and Zanetti in measuring

the viscosity for the first implementation of the Lattice Boltzmann Equation. [67]

Beginning with the Navier-Stokes Equation in the absence of external forces

ρ
Du

Dt
= −∇p+ µ∇2u , (5.56)

where µ is the viscosity, and ρ is the mass density. With no pressure gradient, consider a small
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transverse momentum field as a velocity plane-wave at t0

ui(ri, t0) = (0, uy(x, t0), 0) (5.57)

uy(x, t) = ut0y e
ikxx (5.58)

For this initial condition the Navier-Stokes equation may be reduced to the one dimensional

diffusion equation

∂uy
∂t

=
µ

ρ

∂2uy
∂x2

(5.59)

which yields the general solution [94]

uy(x, t) = ut0y e
ikxxe

−µk2x
ρ

t
(5.60)

That is to say the transverse momentum decays exponentially with a decay constant propor-

tional to the viscosity. This method is generally not used because of the amount of time it takes

for the wave to relax to equilibrium but this is not a concern here as the algorithm is sufficiently

fast. Set-up and run a simulation to equilibrium. Next the system is perturbed with a shear wave.

Pick a dimension for which the wave is to be defined on, k∥, and another dimension k⊥ in which

the velocity of the particles are actually perturbed. Let 2π
lb
n∥ be the wave number in dimension k∥

where n∥ is an integral number and all other dimensions of the wave number are zero.

The perturbation can then be applied to the actions of the particles i = 1, 2, ...N

s[i][k⊥] = s[i][k⊥] +
u0
2

sin

(
2π

lb
n∥r[i][k∥]

)
(5.61)

s[i][k⊥ + d] = s[i][k⊥ + d]− u0
2

sin

(
2π

lb
n∥r[i][k∥]

)
(5.62)

After perturbation continue the simulation collecting position and velocity data throughout the

relaxation process. Next the decay of the amplitude must be obtained as a function of time. Select

a spacing δr and partition the domain into layers perpendicular to k∥. For clarification see Figure

5.5 where x is the dimension k∥ and z is k⊥. The perturbation is shown for 3 values of n∥ and the

layers are clearly defined as perpendicular to the dimension of k∥.
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Figure 5.5: Depiction of three shear waves yielding different velocity profiles in a cubic element of
fluid.

The particles are going to be partitioned in terms of these layers. There are

Nl =
lb
δr

(5.63)

layers in total. Since this process is computationally intensive enumerate the simulation times as

τ = 1, 2, ..., τf and introduce a ∆τ ≥ 1, ∆τ ∈ N such that not all time steps need to be used.

Begin the outer loop τ = τp, τp + ∆τ, τp + 2∆τ, ..., τf . The initial τp corresponds to the time of

perturbation. The total τ ’s for which an analysis will be conducted is

Nτ =
τf − τp
∆τ

(5.64)

Create an amplitude array A[Nτ ] and begin looping through τ = τp, τp + ∆τ, τp + 2∆τ, ..., τf . At

each new τ create a velocity distribution array vd[Nl] and a normalizing array n̂[Nl]. Then loop

through all particles i = 1, 2, ...n to determine the average velocity of each layer. The appropriate

layer l to which a particle contributes is obtained as

l =

⌈
r[i][k∥]

δr

⌉
+ 1 (5.65)

then the velocity of particle i is added to the appropriate velocity distribution array element and
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the addition is counted in the normalizing array

vd[l] = vd[l] + v[i][k⊥] (5.66)

n̂[l] = n̂[l] + 1 (5.67)

after all particles are accounted for the velocity distribution for the given τ is obtained

vd[i] =
vd[i]

n̂[i]
, ∀i ∈ N (5.68)

This distribution should be the form of a sine wave. Fit vd[Nl] as a function of r = 0, δr, 2δr, lb as

a sine wave with fitting parameters of amplitude α, and phase shift but fixed wave-number 2π
lb
n∥.

Having the phase shift as a fitting parameter allows for variation via rounding when segregating

the particles into the respective layers but is not used otherwise. The amplitude is then stored as

A

[
τ +∆τ + 1

∆τ

]
= α (5.69)

and this is done for all τ such that the amplitude is then known as a function of time. This amplitude

function can be fitted with an exponential decay function to obtain the viscosity. However, the

fitting process to obtain the amplitude as a function of time was only valid near the time of

perturbation. Once the particles have relaxed to equilibrium the amplitude obtained from fitting

the sine wave is small but meaningless. Accordingly the exponential fit is conducted in two passes.

A preliminary fitting is done to obtain a rough but sufficient estimate of the time constant and

then used for a weighted fitting which removes the meaningless amplitudes. First the original time

values are recovered by constructing an array t[Nτ ]. Using the simulation time step the times are

determined which correspond to the amplitudes post perturbation stored in A[Nτ ] thus

t[j] = j∆t∆τ, j = 0, 1, 2...Nτ (5.70)

Then A[Nτ ] is fit as a function of t[Nτ ] with the form of an exponential decay

A[j] = u0 exp(−ηt[j]), j = 0, 1, 2...Nτ (5.71)
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Where u0 is fixed and is the magnitude of perturbation while η is the fitting parameter. From this

a rough η is obtained. Next an array of weights is constructed w[Nτ ] where

w[j] = exp(−ηt[j]) (5.72)

then normalize the weights

w[j] =
w[j]∑Nτ
j=1w[j]

(5.73)

These weights can now be used for a weighted non-linear fitting of the same form as equation 5.71

where the meaningless amplitudes at equilibrium have no weight. The viscosity is then determined

through relation 5.60 as

µ

ρ
=

(
η1/2lb
2πn∥

)2

(5.74)

5.4.3 Radial Distribution Function

The radial distribution function gives the probability of finding another particle a distance r from

the given particle relative to the probability of finding the particle if they were non interacting as in

an ideal gas. The method used here closely follows that of Allen and Tildesley. [92] Obtaining the

radial distribution function is a computationally demanding task as it is in essence equivalent to the

naive implementation of a molecular dynamics force routine. Accordingly for a set of positions as a

function of time t = 0,∆t, 2∆t, ...tf it is appropriate to skip many of the instances. The calculated

radial distribution function Gr(r) for a fluid is the probability one will find a particle a distance

between r and r + δr from another particle relative to an ideal gas. To obtain Gr(r) we record

the number of particles in spherical shells with thickness δr around a given particle and divide

this number by the volume of the shell. In doing so we obtain the average density of particles in

the range r to δr around the given particle. By dividing this density by the average density of all

particles in the volume we obtain the radial distribution function.

First we select a δr smaller than lc and create a set of bins to partition the distances between

particles into groups according to their size. Since the maximum distance obtainable with the

minimum image convention is lb/2

Nb =

⌊
lb/2

δr

⌋
(5.75)
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bins will be required. Thus the bins take particle-particle distances 0 to δr, δr to 2δr , ...., Nbδr to

lb/2. Create an array Gr[Nb] to store the radial distribution function. Enumerate every sth time

step t = 0, s∆t, 2s∆t, ...tf where s is a small integral number with τ = 0, 1, 2, ..τf such that only

every sth time step is analyzed. Loop through τ and at each instance of τ use two more loops to

loop through all pairs of particles. That is, at each τ loop through particles i = 1, 2, ..., N − 1 and

for each instance i loop through all particles j = i+1, i+2, ..., N . In this way all pairs are obtained.

For each instance of i and j in the innermost loop calculate the distance between i and j

∆rij [k] = r[i][k]− r[j][k]− lb round

(
r[i][k]− r[j][k]

lb

)
(5.76)

The last term of equation 5.76 ensures the minimum image convention for periodic boundaries.

The total distance is then

|rij | =
[ d∑
k=1

(∆rij [k])
2

]1/2
(5.77)

determine the appropriate bin as

b = Nb =

⌊
|rij |
δr

⌋
+ 1 (5.78)

Using the index b increment the the appropriate bin of array Gr[Nb] to indicate a particle was found

within the shell r to δr of another particle.

Gr[b] = Gr[b] + 1 (5.79)

After all the loops have completed an array of values Gr[Nb] is obtained. The the number of

particles in the shell defined by the bin b is then normalized by the number of particles in the

system and the number of instances used such that

Gr[b] =
2Gr[b]

τfN
, ∀b ∈ Nb (5.80)

Where a factor of 2 is needed since each distance from i to j is also a distance from j to i.
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For the subsequent computation the ideal gas density is required and is obtained as

ρ =
N

ldb
(5.81)

We obtain the density of particles in the shell by dividing the number of particles in the shell by

the shell volume such that

V [b] =
4π

3

([
bδr

]3 − [
(b− 1)δr

]3)
(5.82)

The number density in the shell of bin b is the ratio of Gr[b] to V [b]. The radial distribution function

is then this density relative to the ideal density ρ such that

Gr[b] =
Gr[b]

ρV [b]
, ∀b ∈ Nb (5.83)

gives Gr[Nn] as the radial distribution function for radii r = 0, δr, 2δr, ..., lb/2.
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Chapter 6

Point Particle Results and Discussion

As with the great multiplicity of sequences of objects that could be investigated there is also a

large variety of parameters that could be explored when experimenting with the algorithm devised

in the previous chapter. Ultimately we must be selective and explore those instances which will

be productive and interesting. On the productive front it was decided that the set of interactions

to be considered are those interactions between particles that are in cells which contact each other

in some fashion, in cellular automata this neighborhood is known as the Moore neighborhood. [95]

This case is productive by virtue of its convenience of formulation and computation. In the Moore

neighborhood the cells which make up the neighborhood of a given cell are either in contact by

sharing a face, sharing an edge, or sharing a corner.

In the sake of interest the exact ways in which sequence objects interact entirely depends on the

rule set of the algorithm. This feature was abstracted from individual algorithms by considering

generalized interactions later resulting in transmission coefficients which may be set freely. In doing

so another feature arose which was related to but different from the transmission coefficients. This

feature was parameterized as τ and it was the length of time that if a point-particle object is

in direct relation with another object, it would exchange all of its transmittable action to that

object in accordance with their spatial relation. This feature τ is interesting in that it relates to

the subjective form of an object i.e. it expresses the character of an object in how it interacts

with others. Thus it does not refer to a specific algorithm in the sense of resolving objects as per

their sequence but instead expresses a subjective form in the object in its participation with other

objects. Secondly when put into vector form this feature crops up in the exact same form as the

88



collision step of the Lattice Boltzmann Method in the place of the relaxation time. It is suggestive

then that the parameter τ along with the time step ∆t should exhibit time step invariance like the

relaxation parameter of the Lattice Boltzmann Method. For these reasons an emphasis was put on

this parameter τ in the simulations where it manifests as ω = ∆t/τ .

A note on Figure Interpretation

The majority of the results are presented using the same figure format. This format was selected

in order that the results are not clustered and easy to interpret. To avoid further repetition, the

way to interpret the figures from their introduction will be discussed. For each figure there is an

x-axis corresponding to the independent X variable, a y-axis corresponding to the responding Y

variable, and a Z variable which is also independent and represents different cases in which the

X variable was tested and Y data was obtained. Since the results of different cases are similar

they can usually all be shown in one figure. Each case then corresponds to a set of Y data as a

function of X data as a line or set of points. Cases are differentiated by being different shades of

gray. Accordingly figures will be introduced as “ Figure A shows Y as a function of X for the cases

of Z = z1, z2, ... , zn.” Indicating that the variable referred to as X corresponds to the x-axis, Y

corresponds to the y-axis and Z corresponds to the different cases represented as data sets. The

color scheme to identify the cases is such that the lightness of the shade corresponds to the lowness

of the case value z. That is to say if there are three cases Z = z1, z2, z3 and z1 < z2 and z2 < z3

the lightest line is for the case of z1 since it is numerically the lowest and the darkest line is for

case z3 since it is numerically the highest. Case z2 will have a line darker than case z1 and lighter

than case z3 because it has a numeric value greater than z2 but less than z3.

6.1 Parameter Selections

For a three dimensional system there are six unique actions and thus three inverse action pairs. In

the Moore neighborhood described above each action may only be transmitted into a subset of the

neighborhood. These subsets are indicated in Figure 6.1.

As point particle objects have no specific orientation beyond position there is only three unique

types of neighbors which the action of an object can transmit into. This isotropy is depicted

pictographically in Figure 6.2 where the number on each cell indicates the type of neighbor relations.
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Figure 6.1: Depiction of the Moore neighborhood. Shaded regions of the neighbors indicate the
subset of the neighborhood which an object can transmit action into given other objects reside in
that subset.

Of the 9 neighbors in the three dimensional Moore neighborhood for a single action 1 has an adjacent

face, 4 have a single adjacent edge, and 4 have a single adjacent corner. Suppose that during a

given time step each of these neighbors has an object within it. The algorithm must not transmit

more action than the object has available and at the same time neighbors of the same relation

type should receive the same amount of transmittable action as the point particles have no specific

orientation. Furthermore it is reasonable to suppose that the neighbor which has a contacting

face would receive and transmit more action than the others, similarly those with a contacting

edge should receive and transmit more than those of contacting corners. The transmission values

w∗ = [3/133/261/26] satisfy these ideals. They were selected arbitrarily but the consequences of

this selection will be addressed.
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Figure 6.2: Exemplification of the three unique cells which an object can act on given a specific
action.

A suitable shift vector set for defining the Moore neighborhood is

|ck⟩ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1, 0, 0)

(1, 1, 0)

(0, 1, 0)

(−1, 1, 0)

(1, 0, −1)

(1, 1, −1)

(0, 1, −1)

(−1, 1, −1)

(1, 0, 1)

(1, 1, 1)

(0, 1, 1)

(−1, 1, 1)

(0, 0, 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.1)

Note that only half the neighboring cells need be specified as discussed in section 5.2.2.

In order to avoid wandering in the dark in search of functional parameter values the famous

1964 study of liquid argon by Rahman [96] was used for guidance. In that work 864 Lennard-Jones

particles were studied in a domain of 10.299σ where σ is the particle radius. The non-dimensional

velocity of the particles is approximately 1.5 with a time step of 0.005. The magnitudes of the

time step and velocity were found to work well and were adhered to. Unless specified otherwise the
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dimensions of the simulation box are such that nw = 20 and lb = nwlc = 20 to give a total of 8000

cells with periodic boundary conditions. A unit mass is used and the time step is t. = 0.005∆t.

6.2 Equilibrium Results

We begin by looking at the relaxation process of 1000 particles initiated with a point velocity

distribution such that each particle has the same velocity of |vi| = 0.5 lc/∆t but with random

direction. The transmittable action for each inverse action pair is set as s±k
T0

= 1. The simulation

was started and the particles were then left to relax to equilibrium. Every time step the velocity of

the particles are computed from the actions and stored in a histogram of bin resolution δv = 0.05

lc/∆t for v = 0, δv, 2δv, ...10. This relaxation-collection procedure was repeated 10000 times. The

large magnitude of simulations gives smooth distributions. Figure 6.3 displays the scaled and

normalized frequency as a function of velocity for many time steps. In order that each velocity

distribution be visible in the figure the distribution of each time step was scaled by dividing it

by the maximum value in the distribution at that instant and then scaling those distributions by

their time divided by the time of the last distribution shown. At |v| = 0.5 lc/∆t the initial point

distribution is visible. Note that if this point was not scaled it would be much like a Dirac function

such that δ(|v|− 0.5). The distribution quickly spreads and tends to a distribution of the Maxwell-

Boltzmann family. The distribution does not appear to converge in the figure because of the scaling

applied so as to make the distributions distinguishable from one another. The system undergoes

a clear increase in mean velocity as the mean velocity for the starting value was 0.5 lc/∆t but

converges to a finite value.
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Figure 6.3: Relaxation of the point particle velocities from a initial Dirac distribution δ(|v| − 0.5)
with random velocity orientations

Using the same simulation setup as above the mean velocity of all particles in the system, |v|,

are obtained as a function of time for varying s±k
T0

and ω. Figure 6.4 displays the |v| as a function

of time for s±k
T0

= 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 6.5 displays the |v| as a function of time for ω = 0.2,

0.4, 0.6, 0.8, 1.0. It is clear that both s±k
T0

and ω effect the resultant mean velocity of the system.

It is seen that |v| converges to a finite value for all s±k
T0

tested. As s±k
T0

increases the variance of |v|

also increases. Figure 6.5 shows the mean velocity as a function of time for each ω factor. Each

ω yields a different mean velocity. Figure 6.7 shows the equilibrium distribution function for the

various ω factors.
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Figure 6.4: Mean velocity as a function
of simulation time for various amounts of
transmittable action.
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Figure 6.5: Mean velocity as a function of
simulation time for different ω.

The corresponding velocity distributions for Figures 6.4 and 6.5 are shown in Figures 6.6 and

6.7 respectively, and reflect the increased velocity with transmittable action. The distributions

follow a Maxwell-Boltzmann distribution regardless of the transmittable action. It was found by

the same means that altering the initial magnitude of velocity has no effect on the resultant mean

velocity i.e. the equilibrium mean velocity which the point particles exhibit depends directly on

the amount of action, and the way that action is transmitted.
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Figure 6.6: Velocity distributions for differ-
ent amounts of transmittable action.
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Figure 6.7: Velocity distributions for differ-
ent ω.

The above results captured in Figures 6.3 to 6.7 indeed indicate that the particles have properties

which would typically be associated with a classical fluid i.e. the relaxation of the system of particles

to have a distribution of the Maxwell-Boltzmann form. With the above results in mind a more

detailed data set was obtained relating the s±k
T0

, ω and |v|. Figure 6.8 shows the equilibrium mean

velocity as a function of s±k
T0

for values of ω = 0.05, 0.10, 0.15...1.00. It is seen that for low s±k
T0

the

change in ω has small effect on the overall mean velocity but its effect becomes significant at higher

s±k
T0

. Isotherms were obtained between s±k
T0

and ω in the range of 0.5 < |v| < 2.5 lc/∆t as shown in

Figure 6.9.

Using the isotherms just developed in Figure 6.9 the velocity distribution and total transmittable

action distributions are shown for the case of constant velocity of |v| = 1.5 lc/∆t in figures 6.10

and 6.11 obtained over a period of 20000 time steps with a 5000 time step equilibriation period.

The velocity distribution clearly maintains around v = 1.5 lc/∆t showing slight deviations. The

corresponding ω values range as 0.1, 0.2, 0.3, 0.4, ..., 1.0. The corresponding average s±k
T from the

isotherms are 1.1907, 1.0264, 0.9658, 0.9342, 0.9134, 0.8963, 0.8830, 0.8704, 0.8562, and 0.8450.

Since an increase in ω increases the mean velocity of the system the initial transmittable action

has to decrease to keep the mean velocity constant. The distribution is practically symmetric for

the case of ω = 0.1 but becomes more more skewed as ω increases.
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Figure 6.8: Mean velocity as a function of
transmittable action for different ω values.
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Figure 6.9: Lines of constant mean velocity
for transmittable action as a function of ω.
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Figure 6.10: Velocity distribution functions
for ω = 0.1, 0.2, ... 1.0. Each result is for a
constant mean velocity of |v| = 1.5 lc/∆t.
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Figure 6.11: Distributions of total trans-
mittable actions for ω = 0.1, 0.2, ... 1.0.
Each result is for a constant mean velocity
of |v| = 1.5 lc/∆t.

Figure 6.12 shows distributions of transmittable action for s±k
T0

= 0.50, 0.75, 1.00, 1.25, 1.50 over

the course of 10000 time steps after a 5000 time step equilibriation period with ω = 0.5. Figure 6.12

shows that for increasing initial transmittable action s±k
T0

there is an overall increase in resulting
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transmittable action s±k
T . Figure 6.13 shows the corresponding component velocity distributions

for increasing transmittable action. The velocity is seen to be distributed around zero and increases

in width with transmittable action.
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Figure 6.12: Distributions of transmittable
actions for initial transmittable actions of
0.50, 0.75, 1.00, 1.25 and 1.50.
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Figure 6.13: Corresponding component ve-
locity distributions for the results of Figure
6.12.

How this distribution relates to ω can be determined by checking the transmittable action

distributions for different ω at the same mean velocity. Figures 6.14 and 6.15 show the distributions

of transmittable action and component velocity for ω = 0.1, 0.2, ..., 1.0 at a mean velocity of |v| = 1.5

respectively. The initial transmittable actions were selected from the isotherms obtained earlier.

Results were obtained over a period of 20000 time steps with a 5000 time step equilibriation period.

It is seen that the lower the ω the greater the transmittable action, though the change is much

smaller than the changes due to changes in initial transmittable action. These results mimic the

general trends of the isotherms. For low ω the transmittable action distribution fades before

reaching the origin at 0 transmittable action. With the change in transmittable action there is

a corresponding change in the component velocity distributions. As ω increases the peak of the

distribution at vk = 0 also increases but widens at the tails.
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Figure 6.14: Distributions of transmittable
action for ω = 0.1,0.2,...,1.0.
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Figure 6.15: Corresponding velocity distri-
butions for the results of Figure 6.14.

The ability for the model to maintain finite size of the particles can be ascertained using the

radial distribution function. Figures 6.16, 6.17, and 6.17 show the radial distribution functions for

ω = 0.1, 0.5 and 1.0 respectively. Each figure displays the case of |v| = 0.5, 1.5, and 2.5 lc/∆t.

In each figure the Gr corresponding to |v| = 0.5 has the smoothest curve. The Gr becomes more

pronounced and jagged for larger ω and |v|. Each distribution has peaks at r = 2.3 lc. This is

the average distance from particle position to particle position. Thus the effective radius of the

particles is 1.15 lc. Taking attention now to the origin it is seen that the higher ω is the finite size

of the particles is better respected. At each ω the |v| = 0.5 case shows clear existence of particles

in the same cells. The relative amount of this occurrence is very small nonetheless. From these

observations it is clear that the impact of the cellular structure is less pronounced for smaller ω

and |v|. It is clear that in this range the model is respecting the finite size of the particles and

indeed shows a primitive liquid structure. With a particle radius of 1.15 lc the total volume of the

particles is

Vp = N
4

3
πr3 (6.2)

Thus the volume of the particles is 6370 l3c whereas the volume of the box is 8000 l3c cells corre-

sponding to a very high particle fraction of approximately 80% as an upper bound. It is worth
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noting that no means were taken to prohibit particles from entering the same cell.
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Figure 6.16: Radial distribution functions for ω = 0.1 for velocities of |v| = 0.5, 1.5 and 2.5 lc/∆t
shown from left to right respectively.
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Figure 6.17: Radial distribution functions for ω = 0.5 for velocities of |v| = 0.5, 1.5 and 2.5 lc/∆t
shown from left to right respectively.
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Figure 6.18: Radial distribution functions for ω = 1.0 for velocities of |v| = 0.5, 1.5 and 2.5 lc/∆t
shown from left to right respectively.
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Whether or not the radius just obtained was dependent on the packing density is ascertained

by looking at the radial distribution functions for particles at different densities with ω = 1 and

s±k
T0

= 0.9134. With number of particles in the simulation of 400, 500, 800, 1000, 1333, 1600, and

2000. The corresponding radial distribution functions are shown in Figure 6.19. In each case the

peak of the radial distribution function is at approximately 2.3 lc such that this may be taken as the

general radius of the particles granted this implementation. At high densities there is significant

interpenetration of the particles and the radial distribution function is very jagged.
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Figure 6.19: Radial distribution functions for varying particle density. Distributions are shown from
left to right of 400, 500, 800, 1000, 1333, 1600, and 2000 particles in the a domain of 20 × 20× 20
cells.

Using the techniques outlined in section 5.4 the transport properties of self-diffusion and vis-

cosity were investigated for varying mean velocity and ω. Specifically ω = 0.1, 0.2, ..., 1.0 and

|v| = 0.5, 1.0, ...2.5 lc/∆t. Each instance of an (ω, |v|) was repeated 10 times for a total of 500

simulations.

Selections of the mean square displacement (MSD) as a function of time interval for the cases

of ω = 0.1, 0.2, ..., 1.0 for the mean velocity of |v| = 1.0 lc/∆t and |v| = 2.0 lc/∆t are presented in

Figures 6.20 and 6.21 respectively. The mean square displacement for for velocities |v| = 0.5, 1.0,

... 2.5 for ω = 0.3 and ω = 0.7 are shown in Figures 6.22 and 6.23 respectively. These MSD results

are representative of the results for all combinations of ω and |v|. The maximum error of the MSD

over ten runs was 1.1%.

The general trends among these results is presented in Figures 6.24 and 6.25 which display the

self-diffusion coefficient, Ds as a function of ω for each |v| and the Ds as a function of |v| for each

ω respectively. Rather surprising is the familiar form of the self-diffusion coefficient in Figure 6.24.

100



0.0 1.0 2.0 3.0

0.0

0.5

1.0

1.5

2.0

Figure 6.20: Mean square displacements for all ω
for |v| = 1.0 lc/∆t.
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Figure 6.21: Mean square displacements for all ω
for |v| = 2.0 lc/∆t.
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Figure 6.22: Mean square displacements for all |v|
for ω = 0.3.
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Figure 6.23: Mean square displacements for all |v|
for ω = 0.7.
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Applying the multi-scale technique, also called the Chapman-Enskog expansion, to the Lattice

Boltzmann Equation recovers the kinematic shear viscosity as [77]

ν =
kBT

m

(
1

ω
− 1

2

)
(6.3)

The lines of 6.24 were fitted using

Ds = a

(
1

ω
− b

)
(6.4)

Clearly this is not 6.3 but the similarity is worth noting. It is clearly seen that as ω increases Ds

decreases for each |v|. This makes sense since ω is the rate at which particles can exchange their

momentum. The faster the particles can exchange momentum the less they can use momentum for

translation and thus have a smaller diffusivity. Secondly Ds exhibits a quadratic relation with the

mean velocity. Although diffusivity would increase with mean velocity the quadratic form of this

result is in direct disagreement with experiment. The closest system to having such basic properties

would be that of spherically symmetric molecules in liquid form. Naghizadeh and Rice measured the

self diffusion coefficients of Argon, Krypton, Xenon, and Methane. [97] The characteristic relation

which fit all data in their experiments is of the form

Ds = A exp(−B/T ) (6.5)

where A and B are fitting parameters and T is the temperature. For the spectrum of temperatures

equation 6.5 states that the diffusivity is practically zero for small temperatures, as T increases

exp (−B/T ) approaches unity implying a maximum value for the Ds which is given by A. That

the point particle model does not follow equation 6.5 is not surprising. All particle interaction is

carried out through ω and which has not been programmed to change under any conditions. In

a real fluid as temperature increases the interaction of the molecules change thus changing the

transport properties.

The same set of data is displayed for the viscosity in Figures 6.26 and 6.27 which display the

kinematic viscosity, µ/ρ as a function of ω for each |v| and the µ/ρ as a function of |v| for each ω

respectively. Viscosity shows a clear non-linear increase with ω. This is actually the near opposite

behaviour to the Lattice Boltzmann Method. In the LBM the viscosity is related to ω through 6.3.
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Figure 6.24: Self-diffusion coefficient as a
function of ω for varying velocity.

0.0 1.0 2.0 3.0

0.0

1.0

2.0

3.0

4.0

5.0

Figure 6.25: Self-diffusion coefficient as a
function of velocity for varying ω.

It is important to note that the collision process of the LBM does not cause a change in the velocity

or momentum of a node in the LBM. It re-distributes the momentum among the components of the

discrete distribution function. The value of ω determines how quickly this proceeds in accordance

with the time step, still in the form ω = ∆t/τ . If ω is unity the equilibrium distribution function

is obtained in a single time step. In the particle model however, ω determines how much of the

action a particle has is transferred to another particle within its neighborhood. Thus ω is directly

proportional to the rate at which the point particles change momentum. The increase in viscosity

with an increase in ω was predicted by the momentum balance since an increase in ω corresponds

to an overall increase in transmission probability which was the main ingredient in the generalized

interactions. The increase in viscosity with mean velocity is characteristic of gases and reflects the

fact that the faster the particles are moving the faster momentum can be transversely transported.

In the above results the transmission coefficients were selected arbitrarily. The consequence of

this selection can be determined by changing the relative values of the transmission coefficients.

First the neighborhood is reduced by removing the neighboring cells which are contacting by virtue

of sharing a corner. Thus a single action type may project into five members of the neighborhood

as shown in Figure 6.28.

Four of these neighbors have identical relations to the base cell as shown in Figure 6.29. With
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Figure 6.26: Kinematic viscosity as a func-
tion of ω for varying mean velocity.
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Figure 6.27: Kinematic viscosity as a func-
tion of velocity for varying ω.

only the two types of neighbors and the isotropy of the particles the relative value of transmission

coefficients can be reduced to a single parameter.

Over a single time step the object must not transmit more action than it has, accordingly the

total transmission values may be written as w∗ = [wf (1 − wf )/4]. Where the first element of

w∗ is the action transmitted to the single neighbor which shares a face and the second element

of w∗ is the action transmitted to the remaining four neighbors. In the limit as wf approaches

unity the model becomes insufficiently symmetric such that we would not be able to derive all the

components of the stress tensor in the Navier-Stokes equation in considering momentum exchange

through action transmission alone. [77] However there is still a transverse flux of momentum as the

particles are still free to move in any direction. Properties were collected as a function of wf =

0, 0.1, 0.2, ..., 1.0 for three ω values of 0.2, 0.5, 0.8 in the same way the properties were collected

previously. The mean velocity as a function of wf for the three ω values are shown in Figure 6.30.

The mean velocity decreases abruptly from wf = 0 to wf = 0.1 and then decreases steadily from

wf = 0.1 to wf = 0.7. For all three ω the mean velocity spikes as wf approaches unity as particles

can no longer exchange action to the majority of the neighboring particles around them.
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Figure 6.28: Shaded regions of the neighbors indicate the subset of the Moore neighborhood which
an object can transmit action into other objects in that subset.
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Figure 6.30: Mean velocity as a function of
wf for ω = 0.2, 0.5, and 1.0.
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Figure 6.31: Velocity distributions corre-
sponding to the wf values of Figure 6.30
for ω = 0.2.

Figures 6.31, 6.32,and 6.33 are the velocity distributions of the particles for ω = 0.2, 0.5, and

0.8 respectively. In each case the distributions are typical for the range of wf = 0.0 to wf = 0.9.

When wf = 1 the distribution becomes atypical. The atypical distribution of ω = 0.2 differ from

those of ω = 0.5 and ω = 0.8. Whereas the atypical distribution of ω = 0.2 maintains that most
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Figure 6.29: Exemplification of the different relations which the subset of neighbors relative to a
given action can have.

particles have some velocity, the other distributions exhibit a maximum at |v| = 0. Each of the

atypical distributions also exhibit increasing maximum velocity beyond the typical distributions.

The non-isotropic behaviour characteristic of wf = 1 clearly destroys the capability of these point

particles to exhibit primitive fluid behaviour.
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Figure 6.32: Velocity distributions corre-
sponding to the wf values of Figure 6.30
for ω = 0.5.
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Figure 6.33: Velocity distributions corre-
sponding to the wf values of Figure 6.30
for ω = 1.0.

Figures 6.34 and 6.35 show the diffusivity and viscosity as a function of wf respectively. As

the wf progresses from zero to unity the diffusivity slightly decreases and then rises again. As wf

approaches unity there is an increase in Ds and once wf = 1 the Ds spikes to approximately three
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times the Ds compared to the Ds in the range of wf < 1 for all ω tested. Throughout the range of

0 < wf < 1 the same trend is observed that the higher the ω the lower the diffusivity which was

found earlier. The viscosity was found to decrease for ω = 0.2 from wf = 0 to 0.8 afterwards it

slightly increases but with significant error. For ω = 0.5 and 0.8 the viscosity first increases in the

change from wf = 0 to wf = 0.1 then decreases until wf = 0.9. The error then becomes large for

wf = 1 but the three ω cases converge to the same viscosity within error. Importantly this value

is not zero and is representative of the transverse momentum flux due to particle translation.
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Figure 6.34: Self-diffusion coefficient as a
function of wf for ω = 0.2, 0.5, and 0.8.
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Figure 6.35: Kinematic viscosity as a func-
tion of wf for ω = 0.2, 0.5, and 0.8.

Due to the similarity of ω with the relaxation time of the LBM it should exhibit time-step

invariance such that there is a characteristic time τ which is a property of the particles and not of

the simulation time step. Taking twice the time step i.e. dt = 0.010∆t the viscosity is computed

for ω = 0.2, 0.4, 0.6, 0.8 1.0 and compared with the viscosities found in the results section for the

same ω. The results are depicted in a calibration curve in Figure 6.36. It is clear that this viscosity

does not agree with the same ω at alternate time steps. Computing the equivalent τ for each case

and plotting the calibration curve again in Figure 6.37 the viscosities show agreement.

Figures 6.38 and 6.39 show the MSD as a function of time interval for both the original and

doubled time time steps from the smallest mean velocity |v| = 0.5 lc/∆t, to the largest mean

velocity |v| = 2.5 lc/∆t. The smaller time step is plotted as lines while the larger time step is
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Figure 6.36: Calibration curve of kinematic
viscosity for two different time steps param-
eterized with ω.
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Figure 6.37: Calibration curve of kinematic
viscosity for two different time steps param-
eterized with τ .

plotted as points. The ω factor was calculated so that the particles in both cases had the same

characteristic time τ . Agreement was found. No agreement was found if the time step was changed

and ω was left unchanged.

6.3 Flows In Conventional Geometries

In conducting the momentum balance on a volume element of particles it was found that the

particles should exhibit flow behaviour similar to the Navier-Stokes equation. In addition the

pressure was found to be a function of the sum of the inverse action pairs, an interesting result.

This section evaluates the reasonableness of those results by using the point particle model in

classical flow geometries. Two conventional geometries were used to study the point particles. The

first geometry is shearing of the fluid between two plates with a non-zero relative velocity. The

second is forced flow through an array of circular cylinders. The first case was conducted in a

thorough manner and used to study the effects of different boundary conditions on the fluid. The

second case was conducted in a qualitative manner and was used to see if the particles would exhibit

a pressure drop when flowing through a confined geometry.

In consideration of the spectrum of surface interactions two types of interaction will be inves-

108



0.0 1.0 2.0 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.38: Mean square displacement for
both time steps, for all ω when |v| = 0.5
lc/∆t.
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Figure 6.39: Mean square displacement for
both time steps, for all ω when |v| = 2.5
lc/∆t.

tigated, that of a total adsorption condition and that of a bounce back condition. These types

represent polar ends of the adsorption spectrum, namely indefinite adsorption and infinitesimal

adsorption. In the indefinite adsorption case the fluid layer is adsorbed to the surface and that

layer of particles will work to dissipate action from the bulk fluid into the surface. Essentially the

adsorbed particles become the means by which the surface interacts with the bulk fluid. The sec-

ond arrangement is related to the conventional Lattice Boltzmann Method bounce back condition.

When a particle collides with a surface the velocity component of the particle perpendicular to the

surface is reversed causing the particle to bounce back off the surface.

6.3.1 Enforcing Boundary Conditions

The only way to change the velocity of a particle is to change the transmittable actions of the

particle. Three methods of altering the action, called the conservative, maximally conservative,

and non-conservative methods were investigated. Let (skT + s−k
T )0 denote the transmittable action

of an inverse action pair for dimension k prior to enforcing the boundary condition and let vk be

the desired k component of the velocity for the boundary condition.

In the conservative method only the transmittable action from an inverse action pair may be

used to set the velocity of the particle. The new actions when enforcing the boundary conditions
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in the conservative method is then

skT =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(skT+s−k
T )0+vk
2 , if |vk| ≤ (skT + s−k

T )0

(skT + s−k
T )0, if vk > (skT + s−k

T )0

0, if vk < −(skT + s−k
T )0

(6.6)

and for the inverse component

s−k
T =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(skT+s−k
T )0−vk
2 , if |vk| ≤ (skT + s−k

T )0

0, if vk > (skT + s−k
T )0

(skT + s−k
T )0, if vk < −(skT + s−k

T )0

(6.7)

In the conservative cases of 6.6 and 6.7 the assigned velocity will not be obtained if it is beyond

the range of the transmittable action available.

In the maximally conservative case action is permitted to be added to the particles to obtain

the velocity but only in the direction in which the surface is moving relative to the fluid such that

skT =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(skT+s−k
T )0+vk
2 , if |vk| ≤ (skT + s−k

T )0

vk, if vk > (skT + s−k
T )0

0, if vk < −(skT + s−k
T )0

(6.8)

and for the inverse component

s−k
T =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(skT+s−k
T )0−vk
2 , if |vk| ≤ (skT + s−k

T )0

0, if vk > (skT + s−k
T )0

vk, if vk < −(skT + s−k
T )0

(6.9)

In the non-conservative case the action of the particles is set for the boundary condition in

the same way that the actions of the particles are initialized in the simulation. It requires that

the action assigned to the particle be greater than or equal to the velocity. The non-conservative
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method is enforced by the following equations.

skT = s±k
T0

+
vk
2

(6.10)

s−k
T = s±k

T0
− vk

2
(6.11)

6.3.2 Shearing Between Plates

Consider the classical case of a fluid in between two plates with non-zero velocities relative to each

other. The Navier-Stokes equation when solved under these conditions with a constant pressure

field yields a linear velocity profile where the fluid velocity at the plate boundaries is equal to the

plate velocities. This system is recreated here. Boundary conditions are placed on the lattice such

that if the particles are in the top layer of cells or bottom layer of cells the actions are changed to

enforce the boundary conditions. The parameters of the system were set at s±k
T0

= 0.9134, ω = 0.5,

and ∆t = 0.005. The system box is 200 × 20 × 20 and contains 10000 particles. The z-axis is

perpendicular to the plates and denotes the height of the particle within the system. The plate

velocities at are vz=0
k = (0,−1.5, 0) lc/∆t and v

z=lc
k = (0, 1.5, 0) lc/∆t for the bottom and top plates

respectively.

We begin by implementing the total adsorption case where the velocity to be enforced is the

plate velocities. First the completely conservative method of equations 6.6 and 6.7 are analyzed.

Figures 6.40 and 6.41 display the evolution of the velocity and relative density as a function of

height over multiple time steps respectively. The velocity and density profile are obtained precisely

as described in section 5.4.2 except that the layers are cut along the z-axis and are the width of

the cells. The reported density is relative to the ideal gas density as in the radial distribution

function. The evolution in time is indicated by the shade of the line. The lightest line corresponds

to the earliest time step and the darkest line is the latest. The solution to the Navier-Stokes

equation is also plotted in the velocity profile as a black line diagonally across the figure. The

velocity profile does not tend to the solution of the Navier-Stokes equation. The particles appear

to have insufficient transmittable action to meet the velocity of the boundary conditions. Extreme

structuring is seen in the density profile. The relative density is highest at the boundaries where

adsorption is occurring. The density oscillates throughout the height of the channel and is minimal
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only at the middle of the channel.
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Figure 6.40: Velocity profile evolution for
point particles between two shearing plates
with adsorption boundary conditions en-
forced using the conservative method.
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Figure 6.41: Relative density profile evo-
lution for point particles between two
shearing plates with adsorption boundary
conditions enforced using the conservative
method.

Next the maximally conservative method is tested which implements equations 6.8 and 6.9. The

velocity profile evolution is shown in Figure 6.42. The velocity of the particles meets the bounds

but the entire profile does not tend to the Navier-Stokes solution. The relative density, not shown,

is identical to the result of Figure 6.41 displaying significant liquid structuring. Lastly the non-

conservative method is tested which implements equations 6.10 and 6.11. The transmittable action

for which the simulation was started is implemented as the transmittable action of the boundary

conditions. The velocity profile evolution is shown in Figure 6.43 and the relative density profile is

not shown because it is the same as the others. The results of the total adsorption case are abysmal

in the context of the Navier-stokes solution. None of the three methods return the Navier-Stokes

solution. In general, the less conservative the approach the closer the velocity profile comes to the

Navier-Stokes equation.
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Figure 6.42: Velocity profile evolution for
point particles between two shearing plates
with adsorption boundary conditions en-
forced using the maximally conservative
method.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0

5

10

15

20

Figure 6.43: Velocity profile evolution for
point particles between two shearing plates
with adsorption boundary conditions en-
forced using the non-conservative method.

We now turn to the condition of infinitesimal adsorption i.e. bounce back conditions. In the

previous adsorption condition once the particle was within a lc of a moving plate the boundary

condition was imposed for all velocity components. In the bounce back condition if the particle

comes into contact with a boundary plate the velocity of the particle perpendicular to the plate

is reversed by interchanging the inverse action pairs. Since z is perpendicular to the plates the

bounce back condition enforces that

szT =

⎧⎪⎪⎨⎪⎪⎩
s−z
T , if 0 ≤ rz ≤ lb

szT , otherwise

(6.12)

s−z
T =

⎧⎪⎪⎨⎪⎪⎩
szT , if 0 ≤ rz ≤ lb

s−z
T , otherwise

(6.13)

For the dimensions parallel to the surface the x component of the action will not undergo any

changes when in contact with the plate because the plate has no net velocity in the x direction.

Only changes to the action will be imposed on the y component with the conservative, maximally
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conservative and non conservative methods. Figure 6.44 and 6.45 show the velocity and relative

density as a function of height for multiple time steps with the conservative method used to enforce

the bounce back condition. As before, if the action is insufficient the velocity cannot tend to the

Navier-Stokes solution. However the profile is more linear than any of the total adsorption results.

The density profile indicates that the structuring of the particles was not due to the adsorption

condition but rather the presence of solid boundaries.
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Figure 6.44: Velocity profile evolution for
point particles between two shearing plates
with bounce back boundary conditions en-
forced using the conservative method.
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Figure 6.45: Relative density profile evolu-
tion for point particles between two shear-
ing plates with bounce back boundary
conditions enforced using the conservative
method.

Results of the maximally conservative method and the non-conservative method for the bounce

back condition are shown in Figures 6.46 and 6.47. In the maximally conservative method the

solution approaches the Navier-Stokes better than the rest so far. In the non-conservative case the

Navier-Stokes equation is nearly obtained and is the best result.

It is difficult to ascertain from the velocity profile evolutions whether or not the simulation has

converged to a final solution. This information can be indirectly obtained by evaluating the mean

velocity of particles as a function of time. Figure 6.48 displays the mean velocity as a function of

time for each of the methods with the adsorption boundary condition along with a simulation with

no plates under free evolution acting as a control. The mean velocity of the conservative method
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Figure 6.46: Velocity profile evolution for
point particles between two shearing plates
with bounce back boundary conditions en-
forced using the maximally conservative
method.
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Figure 6.47: Velocity profile evolution for
point particles between two shearing plates
with bounce back boundary conditions en-
forced using the non-conservative method.

tends to a finite value slightly higher than the mean velocity of 1.5 lc/∆t of the free evolution

case. The maximally conservative method shows a consistent increase in mean velocity for the time

range tested. This result is not surprising in that if the total action is insufficient, then more is

added. If the action is in excess nothing is removed. In the non-conservative method the mean

velocity converges to a finite value slightly above the control case and greater than the conservative

method. The mean velocity of the non-conservative method converges to a finite value as it has

the capacity to add action and remove action but acts independently of the action of the particle

at the boundary. Figure 6.49 shows the mean velocity as a function of time for the bounce back

conditions enforced with the three methods and instead of the control as a free evolution with no

plates the control consists of a case where there are plates but with zero velocities. The mean

velocity of the control case with bounce back conditions is a little higher than the free evolution

control case of Figure 6.48 which suggests that the boundaries themselves may be the reason for

the increase in mean velocity observed in the completely conservative methods. The general trend

remains the same between the total adsorption and bounce back conditions. The mean velocity

of the non-conservative method converges to a finite value but is greater than the conservative
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method. The mean velocity of the maximally conservative method continues to increase steadily

over the period tested.
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Figure 6.48: Mean velocity as a function
of time for adsorption boundary conditions
enforced using the conservative, maximally
conservative, and non-conservative methods
along with a control case of no periodic
boundary conditions with no plates.
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Figure 6.49: Mean velocity as a function of
time for bounce back boundary conditions
enforced using the conservative, maximally
conservative, and non-conservative methods
along with a control case of plates with zero
velocity.

A more direct method of analyzing the convergence of the simulation can be achieved by defining

an error function E(t) such that

E(t) =

∫ z=lb

z=0

[
vNS(z, t)− v̄(z, t)

]2
dz (6.14)

which defines the square deviation of the point particle velocity profile from the Navier-Stokes (NS)

solution at each time step. The error function does not need to be rigorously integrated over ever

point in z but can be done by subtracting the array of the velocity profile from an array of Navier-

Stokes solutions, squaring the elements of the resultant array, and summing the resulting elements

together. Figures 6.50 and 6.51 show the results for the adsorption and bounce back conditions.

None of the adsorption condition results tend to the Navier-Stokes equation within the time the

simulation was carried out. In the bounce back condition the non-conservative method displayed

the closest approach to the Navier-Stokes solution.
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Figure 6.50: Square deviation from the
Navier-Stokes solution as a function of time
for the adsorption boundary condition en-
forced using the conservative, maximally
conservative, and non-conservative meth-
ods.
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Figure 6.51: Square deviation from the
Navier-Stokes solution as a function of time
for the adsorption boundary condition en-
forced with the conservative, maximally
conservative, and non-conservative meth-
ods.

It is interesting to compare the density profile of particles in periodic boundary conditions and

the bounce back control density profiles which are shown in Figures 6.52 and 6.53 respectively. The

periodic boundary shows virtually no density profile whereas the bounce back certainly does. The

structuring is highest right at the plates and diminishes in the middle between the plates. The

lack of structuring at the height farthest from the plates suggests that if there is a larger spacing

between the plates there will be regions which do not exhibit significant structuring.
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Figure 6.52: Density profile of particles in
periodic boundary conditions exhibiting no
significant structuring.
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Figure 6.53: Density profile of particles in
between stationary plates with bounce back
conditions.

Lastly we investigate a domain with greater spacing between the plates. The domain was defined

as 20 × 20 × 80 cells in the x, y, and z directions. Shearing was implemented via plates with the

bounce back non-conservative condition where vS,z=0
k = (0,−1.5, 0) lc/∆t and v

S,z=lb
k = (0, 1.5, 0)

lc/∆t. The simulation was ran for 40000 time steps, all else the same as the previously tested cases.

The mean velocity of the layers of the cells were collected for the last 10000 time steps every 1000th

time step to yield ten data points per layer of cells. Figure 6.54 shows the average of these ten

data points along with their standard deviations as error bars as a function of height. Figure 6.55

shows the relative density as a function of height using the same data collection scheme. The line

connects the points in order that the profile may be traced. Significant structuring is seen at the

box edges and persists approximately 10 lc into the fluid. Beyond that region the fluid does not

show significant structuring behaviour.
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Figure 6.54: Mean velocity as a function of
height with standard deviations in a larger
domain with bounce back conditions en-
forced using the non-conservative method.
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Figure 6.55: Relative density as a func-
tion of height with standard deviations in
a larger domain with bounce back condi-
tions enforced using the non-conservative
method.

6.3.3 Flow Through an Array of Circular Cylinders

The shearing studies provide good reason to suspect that the point particle model can be used in

the context of more complex flow domains. Four simulations were conducted for flow through an

array of circular cylinders.

It was not clear how best to implement the inlet velocity of the particles in a flowing arrange-

ment. As success was found with the non-conservative method of section 6.3.2 it was decided that

the same method could be used for the first slab of cells at the inlet of of the domain thereby setting

the velocity with the corresponding transmittable action that tends to that velocity at equilibrium.

This approach was first tested using the simpler case of flow between stationary parallel plates

which should exhibit a parabolic flow profile with zero velocities at the boundaries. The domain

consisted of 88 × 22 × 22 cells with periodic boundary conditions on the x and z sides and the

bounce back boundary condition at y = 0 and y = lb enforced with the non-conservative method.

A total of 5324 particles were flown through the channel with an inlet velocity of vx=0 = 1.5 lc/∆t

and s±k
T0

= 0.9134. Figure 6.56 shows the evolution of the flow profile at four equally distributed

points along the channel. The left-most profile is closest to the inlet while the rightmost is farthest
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from the inlet. At each point a parabolic profile is obtained but is shaped differently depending

on the distance from the inlet which has a uniform distribution. Nonetheless this inlet condition

works satisfactorily.

Figure 6.56: Evolution of velocity profiles for forced flow between two stationary plates.

The domain for the cylinder array was rectangular with 168 × 42 × 42 cells in the x, y, and z

dimensions respectively. A cylinder was placed with its center at x = 63 lc and y = 21 lc. This gives

3/8 of the domain in the x dimension before the cylinder and 5/8 of the domain in the x dimension

after the cylinder. All boundaries are periodic making the system an infinite array of cylinders.

Four cases were simulated. Cases (i) and (iii) entail a fluid with ω = 0.5 and an inlet velocity

of v = 1.5 lc/∆t with s
±k
T0

= 0.9134. These cases represent high viscosity at low flows thus creating

low Reynolds numbers. Cases (ii) and (iv) entail a fluid with ω = 0.1 and an inlet velocity

of v = 2.5 lc/∆t with s±k
T0

= 2.2920. These cases entail low viscosity in high flows and thus

obtain higher Reynolds numbers. The transmittable actions were set to maintain an equilibrium

velocity equivalent to the inlet so that the inlet boundary condition does not create a gradient in

transmittable action on its own. Cases (i) and (ii) are for a cylinder with a radius of five cells and

cases (iii) and (iv) are for a cylinder with a radius of 10 cells. The approximate Reynolds numbers

for the cases are 4, 18, 7 and 36 where the Reynolds number is defined as Re = 2|v|rcρ
µ and rc is the

cylinder radius. [98] The details of the simulation cases are summarized in Figure 6.57.
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Figure 6.57: Summary of the cases tested for flow through an array of cylinders.

The particle density was the same as the majority of the simulation results with one eighth of

the cells occupied by particles. Thus the simulation consisted of 37044 particles in 296352 cells.

The simulation was ran for 5000 time steps as an equilibrium period and then data was collected

for 20000 time steps. As the geometry of the domain is invariant with respect to the z dimension

all data was stored for each time step after the equilibration period with respect to the location

of cells in the x-y plane. Thus although the simulation is three dimensional the results may be

represented in two dimensions. The data that was collected includes the x and y velocities of the

particles with respect to x-y position, the sum of the transmittable action of the particles, ⌈sT ⌉

with respect to x-y position, and a count of all the particles that are used for the previous data

sets in order to normalize them. As these are particles interacting with a cylinder of a radius their

own magnitude or one magnitude larger we do not expect to see anything beyond Stokes flow.

The flow results are shown in Figures 6.58, 6.59, 6.60, 6.61. Each figure has three sections. The

top section is a stream-line plot which shows the path a small object would trace if carried by the

flow. The middle section is a skewed quiver plot. Each line of the quiver plot is a vector indicating

the velocity at the root of the vector. It is skewed in order to making the velocity profile along

the boundary easier to discern. The quiver plot also supplements the stream plot in the regions

where the streamlines are absent. The bottom section is a contour plot of the relative pressure of

the fluid with a scale bar indicating the relative pressure. The flow enters from the left and exits

on the right.

While the velocity is the average velocity of a particle if it belongs in given cell the pressure
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is a measure of the transmittable action within a given cell regardless of direction. For example if

there were two particles in the same cell the velocity would refer to the most likely velocity of each

of those particles while the pressure would refer to the sum of the action of both those particles.

Thus for an ideal gas, i.e. uniformly distributed particles, the pressure for a cell is proportional to

the average transmittable action s±k
T multiplied by the average particle density. This pressure is

not used in the figures below. Instead the relative density of the cell is used to normalize the total

transmittable action. The total transmittable ⌈s⌉ is also divided by the cardinality of the action

set, and then divided by the average transmittable action of an ideal gas i.e s±k
T0

. This way the

contour plot shows a value of unity if the pressure is equivalent to an ideal gas of the same density

at equilibrium.

In each case the stream lines are well formed passing around the cylinder. They do return to each

other in the same way which they split in approaching the cylinder differing from the potential flow

solution of a single cylinder. The boundary layer around the cylinder surface exhibits a parabolic

profile. No evidence of re-circulation is seen around the cylinder which would be characteristic

for higher Reynolds numbers. The pressure is higher at the inlet and drops when passing the

cylinder array. The pressure is also seen to be higher in the middle of the channel on the approach

to the cylinder obtaining peaks at the cylinder surface. The lowest pressure is found behind the

cylinder extending for a while afterwards. Various lattice artifacts can be seen around the cylinder

in the pressure contour plots of all cases and in the stream plots of cases (i) and (ii). These are

characterized by irregular straight lines and corners. There is evidence of liquid structuring at the

inlet as given by the vertical lines of higher pressure in the contour plot.
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Figure 6.58: Velocity stream line plot, skewed velocity quiver plot, and relative pressure contour
plot for case (i) of flow through an array of cylinders.

Figure 6.59: Velocity stream line plot, skewed velocity quiver plot, and relative pressure contour
plot for case (ii) of flow through an array of cylinders.
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Figure 6.60: Velocity stream line plot, skewed velocity quiver plot, and relative pressure contour
plot for case (iii) of flow through an array of cylinders.

Figure 6.61: Velocity stream line plot, skewed velocity quiver plot, and relative pressure contour
plot for case (iv) of flow through an array of cylinders.
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The characteristic result and the one for which this study was conducted was to see if the

pressure as transmittable action, as suggested by the derivation in the momentum balance, corre-

sponds to what would be observed in an actual system and this is indeed what is observed. The

sum of the action inverse action pairs behaves qualitatively as classical pressure does. This can be

further seen by looking at the pressure along the surface of the cylinder for case (iv). Figure 6.62

shows the relative pressures of the cells near the surface of the cylinder as a function of the angle,

where θ = 0 is the point of the cylinder surface opposite of the inlet flow. These results exhibit

qualitative agreement with typical results of the pressure distribution characteristic of flow around

cylinders. [98]
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Figure 6.62: Pressure of cells as a function of angle around the cylinder for case (iv) where θ = 0
is the point on the cylinder surface furthest from the inlet of the flow.

6.4 Discussion

The vector formulation of the algorithm proved to work well as a point particle model. The critical

feature which differentiates it from other models is that there are two separate components for each

momentum which have been consistently referred to as inverse action pairs.

This feature allowed the particles to essentially have both active and passive actions, momenta,

or energy, similar to the notions of kinetic and potential energy. One will notice that there was never

any reference to potential energy in the development of the event-lattice or objects. This was due

to Feynman’s condition that a computational method must scale with the space-time volume for
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which it simulates, or more directly stated, all interactions are local. Potential energy is completely

antagonistic to this ideal and had to be abandoned. Not to say that potential energy cannot

describe various phenomena. The ability of having inverse action pairs allows objects to maintain

an internal energy or passive action, which is not the typical mass since it can be exchanged but

neither is it a potential energy because it is not position dependent. It can however be released

through interactions with other objects. Potential energy is itself a non-local concept in that it

presupposes a direct spatial relation between objects and an energetic dependence on that spatial

relation. Potential energy is originally a notion from Newtonian mechanics which has survived into

quantum mechanics. The passive action intrinsic in these objects is similar to potential energy in

the fact that both can be transformed into a kinetic form of energy, but only through interaction.

If one forgoes the concept of force, since it is only a part of a systematic framework of description,

there is plenty of empirical evidence for considering inverse action pairs as a physical reality. For

example take the case of a creature standing still then walking to the right and stopping. At first

the creature is stationary but soon it will be in a state of translation, thus the momentum which

is necessary for the creature’s translation is implicit in it while stationary. Secondly, in order to

begin the translation process the creature must somehow take the still energy and convert it into

rightward momentum. As momentum is conserved it cannot simply create the rightward and only

rightward momentum, but must create momenta of both the direction it goes and the opposite.

Thus there was in the creature when still both the momenta for the direction it walks and the

inverse, or opposite momenta. Third, having released these momenta it discards the leftward into

the ground yielding a net momentum and thus translation. Then, in order to stop and become

still once again the creature discards that rightward momenta which made the translation possible.

Thus the momenta as equal and opposite are separable. Another example would be the problem of

describing a rotating collection of objects while translating in space, such that it rotates much faster

than it translates. The path of an object on the edge of this rotating object would be far from linear

yet could easily be described as a sequence without reference to force or interaction. This is because

it admits inverse action pairs. It was not clear at the outset how this pair arrangement would behave

for many point particles like in a fluid. The most striking result of all was the form of the velocity

distribution function exhibiting such classical properties of the Maxwell Boltzmann distribution

even though the collisions of the particles are characteristically different from classical scattering
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theory. For instance consider two particles with relatively low velocities but large amounts of

transmittable action. If these two particles collide by travelling directly at one another they can

both increase in velocity due to the collision. The fact that this still gives the classical velocity

distribution at equilibrium was interesting.

Classically the momentum is the product of both the mass of the particle m and its velocity v

such that

p = mv (6.15)

The classical picture of momentum is however incomplete. A prime example is that photons also

have momentum but no mass such that the the momentum of a photon is a function of the photon’s

wave number.

p = }k , (6.16)

where } is the reduced Planck constant and k is the wave number of the photon. It is well known

that the wave picture suggested by equation 6.16 also applies to particles of mass as per the de

Broglie hypothesis. Consider momentarily the free propagation of a particle in one dimension in

the framework of quantum mechanics. The momentum operator may be defined as

p̂ =
}
i

d

dx
, (6.17)

while the corresponding kinetic energy operator is

T = − }2

2m

d2

dx2
, (6.18)

These operators are applied to ψ the wave-function to yield the observables momentum and kinetic

energy as eigenvalues. The time independent Schrödinger equation Hψ = Eψ is then

− }2

2m

d2

dx2
ψ = Eψ , (6.19)

As the particle is free there is no potential energy operator for the Hamiltonian. Equation 6.19 has
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the solution

ψ(x) = Aeikx +Be−ikx

k =

(
2mE

}2

)1/2 (6.20)

An alternative solution in real terms is

ψ(x) = C cos kx+D sin kx

k =

(
2mE

}2

)1/2 (6.21)

The momentum operator can be used to obtain the momentum given by the wave function as

p̂ψ = pψ. However this can only be obtained when applied to one of the terms of equation 6.20

such that in the case B = 0

p̂ψ(x) =
}
i

d

dx
Aeikx = k}Aeikx = k}ψ (6.22)

or in the case where A = 0

p̂ψ(x) =
}
i

d

dx
Be−ikx = −k}Beikx = −k}ψ (6.23)

Which have the results of a momentum in the positive direction and a momentum in a negative

direction respectively. If A ̸= 0 and B ̸= 0 then p̂ψ = pψ does not have an eigenvalue solution. This

is however, the linear momentum operator. But linear momentum is actually a highly idealized

concept and likely as fictional as perfect circle. Planets are always orbiting other objects in a

helical fashion. Atoms constantly shake back and forth, elementary particles all spin and do not

have enough of a well defined position to even be travelling in straight line, space-time is itself

curved, and the biological world is always wiggling. Not a scientific description for sure, but

not devoid of truth either. It is interesting to note then, that the energy operator does have an

eigenvalue solution when A ̸= 0 and B ̸= 0 as

− }2

2m

d2

dx2
ψ = − }2

2m

(
d2

dx2
Aeikx +

d2

dx2
Be−ikx

)
(6.24)
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applying the differential once

− }2

2m

d2

dx2
ψ = − }2

2m

(
d

dx
ikAeikx +

d

dx
−ikBe−ikx

)
(6.25)

and then applying it again

− }2

2m

d2

dx2
ψ = − }2

2m

(
(ik)2Aeikx + (−ik)2Be−ikx

)
(6.26)

Since (−ik)2 = (ik)2 = −k2 we can factor both (ik)2 and (−ik)2 to get

− }2

2m

d2

dx2
ψ =

}k2

2m

(
Aeikx +Be−ikx

)
=

}k2

2m
ψ (6.27)

thus yielding an eigenvalue solution. This net energy does not depend on A nor B and they may

be set arbitrarily in terms of the energy. Plotting this function in time where A > B or B > A

gives a natural motion of an object such as the translation of a foot while walking, or a worm when

slithering.

Another benefit of the inverse action pairs was found in the stability of the simulation technique.

Regardless of the initial conditions the mean velocity of the particles was always found to converge to

a finite value and fluctuate around it. In the field of molecular dynamics many different techniques

are applied to scale the velocity of particles or the size of the system to operate in different ensembles.

[99] With inverse action pairs one would be able to easily scale the energy in the system without

disrupting the immediate trajectories of the particles. Furthermore the stability was found to be

robust through experimenting with atypical parameter settings.

Despite no direct processes being used to ensure that the particles maintain their separation

the action exchange process maintained an acceptable degree of spatial separation between the

particles. It was already known that the sequence detail algorithm would respect the fact of having

at most one particle per cell. This result showed that the generalized interactions also exhibit this

behaviour and that their use in the subsequent momentum balance was justified as far as the point

particle model is concerned.

The selection of the parameters which consisted of the bulk of the analysis were arbitrary. Ex-

perimentation with the wf parameter confirmed that this selection does not bear any significant
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consequences which make the results unreliable due to this arbitrary selection. However, the pa-

rameters of action transmission do have important consequences on the emergent behaviours of

the system of particles. For example the particles did not exhibit the typical transport properties

that would be expected of spherical atomic species. The self-diffusion did not scale like actual gas

species and the viscosity of a dense fluid scaled more like a gas, increasing with an increase in mean

velocity. In order to obtain the actual behaviour of atomic species would require finding rules of

action exchange with these properties. The rules would have to account for changes in behaviour

with changes in transmittable action. Of these an infinite variety could be explored. One par-

ticular interaction of significant consequence that the generalized interactions and the algorithms

considered do not provide any means of implementing is attractive interactions between particles.

It is possible for attraction to be described using inverse action pairs and objects that interact

only locally. Consider two objects A and B separated at a distance. If all interactions are entirely

local how could the presence of A be known to B such that B can be attracted to A? For B to know

about A, or to feel A so to say, there must be a transmission from A to B. However the transmission

of something from A to B would require that the something has momentum directed from A to

B. If B is to respond to this something attractively then the momentum for this attraction cannot

be derived from the something that was transmitted from A to B since the momentum is directed

from A to B this momentum would act as a repulsive interaction between A and B, not attractive.

If B could however emit momentum, like emitting a photon, pointing in the same direction as the

vector from of A to B then the inverse action of this photon would yield a net attraction between

A and B.

The particles exhibited a characteristically physical feature that there needs to be energy ex-

change with the surface in order for the correct form of the Navier-Stokes equation to be obtained.

That the particles would not exchange energy with the surface in a real system is non-physical.

The objects that make up the surface would have the same action exchange ability as the objects

making up the fluid. In forbidding this process and finding the Navier-Stokes equation to be un-

satisfied, but then satisfied from allowing this exchange process is a positive result in favour of the

algorithm. These results were only done qualitatively as finding the exact form of the solution in the

more complex flows would require the derivation of the momentum balance to keep all generalized

interaction terms.
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It was inferred from the results of the momentum balance that the sum of the inverse action

pairs plays the same role as pressure in the Navier-Stokes equation. It is well know that the pressure

of fluid drops when flowing through a confined structure such as an orifice or a grating. This same

behaviour was seen in the simulations conducted. It is not to say that each particle can have an

independent pressure which is solely the sum of its inverse action pairs. This relation to pressure

was obtained by summing all the actions over surfaces along an element and so it was derived as a

collective property as opposed to a particle property. A more in depth thermodynamic analysis is

wanting based on these observations and would justified given the positive results.
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Chapter 7

Summary, Conclusions, and

Directions for Future Research

The product of this thesis is a set of ideas and an associated mathematical structure constituting a

novel framework. The sole conclusion is that frameworks for representing objects may be created.

A brief summary of the thesis will be given first, elucidating the process by which the framework

was produced. Conclusions relevant to this framework will then be given in terse form. In closing,

important directions for further research are presented.

Automata as mathematical models of computation have exceptionally general frameworks for

description. Cellular automata in particular can have a structure similar to physical space and so

have been used to tackle a variety of physical modelling challenges. Unfortunately there did not yet

exist a means for constructing arbitrary objects in cellular automata. Accordingly their applicability

to physical modelling has been greatly hindered as they lack this important ingredient for physical

description. In an effort to create a framework for objects in cellular automata a conception

of objects that did not rely on other objects i.e. substance, was required. Such a conception

was found in Whitehead’s process philosophy where objects are understood as recognizable forms

derived from series of actual occasions. In addition, the history of the lattice gas automaton was

reviewed as it is a cellular automaton model which has the ability to represent primitive objects

and has found wide application.

A mathematical structure called an event-lattice was developed which uses some of the special
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features of the lattice gas automaton. The characteristic feature of the event-lattice was in the

definition of an event so that extension in time and extension in space were derivative notions of

events as opposed to the converse. It furthermore imposes a symmetry that as there cannot be

absolute translation in space with no translation in time, there is no translation in time without

translation in space. This result was obtained by reasoning through operational definitions for

measuring the passage of time. Investigations of the world-line of objects in a partitioned one

dimensional space-time with appropriately chosen spatial and temporal resolutions lead to the

conclusion that objects may be represented as finite sequences. The objects that were constructed

in the event-lattice were found to have a number of agreeable properties. Using the event-lattice

as a basis a cellular automaton with the ability to implement objects was devised.

In order to evaluate the merit of the concept all attention was focused on constructing a sequence

model of point particles. A sequence detail algorithm was devised which allowed these objects to

maintain identity by virtue of never occupying the same cell. The basic functioning of this model

was then generalized so that the interactions of the particles could be put into analytical form.

With the generalized interactions in hand a momentum balance could be conducted on a volume

element of fluid. Assuming constant density and equal probability of interactions an equation with

similar structure to the Navier-Stokes equation was obtained. The characteristic features being that

the change in momentum is proportional to the second derivative of the velocity and the negative

gradient of transmittable action. An identification was suggested between the transmittable action

of the particles and the pressure. This derivation did not require the Boltzmann equation and thus

did not require the Chapman-Enskog expansion. These interactions were then put into vector form

and it was shown that an algorithm akin to the Lattice Boltzmann Method could be created to

investigate the predicted characteristics of the point particle model. A retrofitted Lattice Boltzmann

Method was devised and described in detail. Using the retrofitted model simulations could be

conducted with particles which should behave like the sequence point particle objects. Various

equilibrium properties were obtained. The critical features was that particles always relax to

velocity distribution of the Maxwell-Boltzmann family. The mean velocity of the particles was found

to be a function of the total transmittable action and the nature by which action was exchanged

between particles. The particles remained spatially extended even though no algorithmic processes

were in place to forbid it. A characteristic time was found for the interactions and was shown to
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exhibit time step invariance with respect to transport coefficients of kinematic viscosity and self-

diffusion. The particles were used in conventional flow geometries. Shearing between two plates was

used to investigate the effects of different boundary conditions. Flow through an array of cylinders

showed that the particles could be used in more complex geometries and that there is a definite

association between pressure and the transmittable action of the particles.

The conclusions of this work center upon the mathematical structure which was devised, the

main conclusion being that representations of objects in cellular automata are indeed possible to

obtain. In general each state of an automaton should have a direct relevance to its neighborhood,

otherwise there is no means by which to reduce the complexity of the automaton. The event-

lattice is based on this fact. Rejection of the identity element is paramount for actions which are

considered as events. Inclusion of an identity action admits asymmetrical treatment of space and

time with respect to events and diverges from bare fact. Objects are representable as sequences

of actions. It is imperative to not differentiate between the doing of an object and the object

itself. Action itself can be a basis of what is conventionally termed substance. Strict differentiation

must be maintained between actual occurrences and objects. Topology may be used to describe

objects more generally. Free groups generated from the action set may be used for representing

the actual occurrences of objects. The length of a sequence as representing an object provides an

adequate measure of what is conventionally termed energy and its interpretation in the framework

yields many agreeable properties. The fact that there are two degrees of freedom for motion in

each dimension does not produce alarmingly divergent results from expected behaviour of massive

point particles. An equation of similar form to the Navier-Stokes equation can be obtained from

the consideration of these two degrees of freedom granted useful assumptions. Useful simulation

techniques can be constructed from these basic notions. Further enquiry into representing objects

as sequences is warranted.

The results are stimulating but only preliminary and much more work needs to be conducted on

the theoretical aspect of this representation. Relations among sequence objects should be studied

in the context of elementary transformations of free groups as found in combinatorial topology. [91]

An entirely different avenue of future research may be to utilize sequences in the classical form

of cellular automata. The sequence detail algorithm is already sufficient to construct reversible

cellular automata which is one of the main challenges in this area of research. In this realm focus
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could be placed on searching for rules in which classical objects emerge instead of attempting to

define them directly.

The main drawback and perhaps debilitating feature of the sequence representations of common

objects i.e. those with mass, is that they require incredibly large sequences. The most important

future work directly relevant to the conception outlined in this thesis would be in studying the

compact representations of sequences. As much as those studies would be practical they are also

fundamental. The sequence representation of objects does not put any constraint on the path that

an object follows in the lattice, yet freely propagating objects tend to travel in straight lines. If

the composition of the actions which the object consists of were considered to be the informational

content about the object, then the straight line path would be the most compact representation

of the object. That is, an object travelling in a straight line with a sequence, has the highest rate

of information release about the object. Thus an object exhibiting this sequence is in a state of

maximal entropy in the sense that a gas at equilibrium has maximum entropy because any part of

the gas can be measured to give the properties of the whole gas. In the same way, objects which

travel on the same line exhibit the maximum information about the composition of the object in

the minimal time. That is, maximal entropy as it relates to a sequence may be summarized by the

dictum that the whole may be characterized by the part. This is stimulating in the sense that if

there is a principle of maximally compact sequences it could replace the principle of least action in

that it causes objects to travel in straight lines in accordance with their momentums. This whole

conception can be rephrased in a way sympathetic to quantum mechanics in that the the most

observable path an object takes is the path that reveals the most information about the object. Or

perhaps on a more human level it is the actions we take that reveal the most about ourselves.
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