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Abstract 

    This thesis develops an optimal interpolation method that takes daily 

precipitation values collected from weather stations and produces precipitation 

estimates on a grid. The method, called Hybrid 2.0, combines EOF-based linear 

interpolation with the nearest-station method. Gridded monthly precipitation is 

first obtained via EOF, then distributed among days via nearest station. Hybrid 

2.0 builds on an earlier method, called Hybrid 1.0, that applies an inverse-distance 

weighting method to obtain gridded monthly values. Hybrid 2.0 uses these 

monthly Hybrid 1.0 values as inputs when constructing EOF functions. 

    The data used in this thesis were obtained from the Meteorological Service of 

Canada. Few weather stations were located in the northern and mountain regions 

of Alberta prior to 1950. As a result, the Hybrid 1.0 gridded results underestimate 

precipitation in these regions for that period. The main contribution of Hybrid 2.0 

is a substantial reduction in this bias, obtained by implicitly taking topographic 

elevation into account. Bias reduction is achieved by extracting EOFs from 

Hybrid 1.0 output for 1951-2002, when many more stations were present in the 

northern and mountain regions. Hybrid 2.0 is shown to be more accurate in 

interpolating both monthly and daily precipitation in Alberta, when compared 

with Hybrid 1.0 and other methods. The thesis also provides detailed analyses of 

precipitation trends and droughts using the gridded Hybrid 2.0 daily values. 

Optimality of the selected EOF modes and sensitivity to data error in the EOF-

based linear reconstruction are also discussed in this thesis. 



  

    Agricultural uses of historical climate data have become extremely important. 

Applications include: enabling prompt, optimal decisions on market prices and 

disaster aid, designing future agricultural practices such as adaptation to climate 

and technology changes, and managing risks for agricultural producers and 

governments in areas such as drought monitoring. Many applications require a 

reliable interpolation technique to accurately reconstruct daily climate estimates 

onto grids of various resolutions. The gridded Hybrid 2.0 daily precipitation 

values produced by this thesis satisfy this requirement and can be used as inputs 

for many agricultural applications. 
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Chapter 1  

Introduction 

 

1.1 Climate in Alberta 

Alberta is a Canadian Province located between the 49th and 60th parallels 

of the northern latitude and between 110°W and 120°W in longitude. Such 

northern location results in the cold winter in Alberta. Although the winter is very 

cold, the summer can be warm and most days throughout the year are sunny. The 

arctic air masses in the winter produce extreme minimum temperatures as low as 

-54°C in northern Alberta and -46°C in southern Alberta (Chetner et al., 2003). 

The continental air masses can produce maximum temperatures ranging from 

32°C in the mountains to more than 40°C in the southern plains. These air masses 

can move quickly in the spring and fall, resulting in rapid seasonal changes. A 

famous climate characteristic in Alberta is its chinook winds, which sweep into 

southern Alberta several times each winter. These dry, warm winds can rapidly 

lift Alberta out of a deep freeze. The warming effect of the chinook winds near 

the mountains produces a west-to-east trend in winter temperatures. Precipitation 

is generally highest along the mountains and in west central Alberta due to the 

combined effects of frontal and topographic precipitation. Precipitation from May 

1 to August 31 varies from slightly below 200 millimetres (mm) in the driest 
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prairie areas to more than 325 mm in the mountains. From September 1 to April 

30, precipitation varies from less than 150 mm in the driest prairie region to more 

than 275 mm in the mountains (Chetner et al., 2003).  

 

1.2 Measuring Precipitation 

As the glossary from National Climate Data and Information Archive 

described by Environment Canada, Rain, drizzle, freezing rain, freezing drizzle 

and hail are usually measured by using the standard Canadian rain gauge, a 

cylindrical container 40 cm high and 11.3 cm in diameter. The precipitation is 

funneled into a plastic graduate which serves as the measuring device. Snowfall 

is the measured depth of the newly fallen snow, measured by using a snow 

ruler. Measurements are made at several points which appear representative of 

the immediate area, and then averaged. "Precipitation" is the water equivalent 

of all the above types of precipitation.  

At most ordinary stations, the water equivalent of snowfall is computed by 

dividing the measured amount by ten. At principal stations, the water 

equivalent of snowfall is usually determined by melting the snow that falls into 

Nipher gauges. These are precipitation gauges designed to minimize turbulence 

around the orifice and to be high enough above the ground to prevent most 

blowing snow from entering. The amount of snow determined by this method 

normally provides a more accurate estimate of precipitation than that provided 

by using the "ten-to-one" rule. Even at ordinary climate stations, the normal 



 

3 
 

precipitation values will not always be equal to the rainfall plus one tenth of the 

snowfall. Missing observations are one cause of such discrepancies. 

Precipitation measurements are usually made four times per day at principal 

stations and usually once or twice per day ordinary stations. 

 

1.3 Some of the Existing Interpolation Methods 

        Precipitation is measured only at limited number of locations, while the 

practical applications require precipitation data on a dense grid. Thus, the 

mathematical interpolation of the observed station data onto a grid is necessary. 

Many methods are available to interpolate the station data onto grid points, such 

as nearest-station assignment, inverse-distance weighting (Jones et al., 1986), 

kriging (Hudson and Wachkernagel, 1994; Cressie, 1993), thin plate smooting 

splines (Hutchinson, 1995, 1998 a, b), and empirical orthogonal function (EOF) 

method (Smith et al., 1998). To make the materials of this thesis self-contained, 

these commonly used interpolation methods are recapitulated below as was done 

in Shen at al. (2001). 

 

(1). Nearest-station Assignment 

       The nearest-station assignment method is that each grid point is assigned the 

observed value of the nearest station that has data for a particular day. Since the 

nearest-station method uses only one station’s data for a grid for a given day, the 

interpolated grid should adequately preserve the variance of a single point, 

although the nearest station with observed data available may change from day to 
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day. This method assigns the observed climate data directly from the nearest 

station to a grid point and should not yield a large bias when the observational 

stations are sufficiently dense. However, this method is by no means optimal 

since no computational optimization is implemented. When the observational 

stations are very sparse and the climate conditions are complex, this method will 

result in substantial errors for a climate parameter which varies over short length 

scales. 

 (2). Inverse-distance Weighting  

 The inverse distance weighting (IDW) method is based on the assumption 

that the predicted location should be influenced more by the nearby points and 

less by the more distant points. The general formula of the IDW is as follows:  

( )
( )

N

k kk=1
N

kk=1

w x u
u(x)= ,                                     (1.1)

w x

∑

∑     

where 

( )
( )k

1
w x = ,                                    (1.2)

x, x
p

kd
 

x  denotes an interpolated grid point, kx  is an known station, d  is a given 

distance from the known station kx  to the unknown point x , N is the total 

number of known stations used in the interpolation, and p  is a positive real 

number used as the power parameter. The IDW estimates the predicted values 

by weighted averaging of the values of the known data points in the vicinity of 

the predicted location. The weight assigned to each neighbor point decreases as 
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the distance from the predicted point to the neighbor point increases. With 

IDW, we can control the significance of the known points upon the interpolated 

values based on their distance from the predicted point.  Usually, p is taken to 

be one. If a higher power is used, more emphasis will be placed on the nearest 

points, and the resulting surface will be less smooth. Using a lower power will 

put more emphasis on the farther points and result in a smoother surface. 

Another parameter that can control the characteristics of the interpolated 

surface is the search radius, which can be fixed or variable, and determines the 

number of known points that can be used for calculating the predicted value. 

Jones et al. (1986) used this method to interpolate the monthly mean 

temperature data onto the 5-by-10 degrees latitude and longitude grid points for 

the Northern Hemisphere over the period of 1851 – 1984. The obvious 

advantage of this method is that its computations are simple and efficient. For 

well-spaced data points, it is a good all-purpose interpolation method. 

However, for daily precipitation the resulting surface is too smooth. 

(3). Kriging  

Kriging is an interpolation method using geostatistics and based on statistical 

models that include autocorrelation – the statistical relationship among the known 

points. It has been accepted as a tool for interpolating many types of climate data 

including precipitation data (Daly et al., 1994). The kriging interpolation 

procedure consists of two steps: (1) calculating the semivariogram and modeling 

the spatial structure of the known station data, and (2) interpolating the values at 

the predicted points by using a fitted model for the spatial structure (Li et al., 
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2006). Similar to the IDW method, kriging also weighs the contribution of the 

surrounding station data based on the distance between the surrounding station 

and the predicted location. In IDW, the weight depends solely on the distance to 

the predicted point. However, with the kriging method, the weights are based not 

only on the distance between the known points and the predicted location but also 

on ambient covariance properties of the interpolated parameter (Conolly and Lake, 

2006). Hudson and Wachkernagel (1994) integrated the elevation information into 

the kriging to obtain an improved map of the January mean temperature in 

Scotland by comparing with the map interpolated by kriging based on the 

temperature data only.  However, as Shen et al. (2001) pointed out, kriging’s 

drawback is that it requires the studied field to be relatively stationary in time and 

homogeneous in space, so that the accuracy of the interpolation is questionable 

for daily precipitation data. 

(4). Thin Plate Smoothing Splines  

The original thin plate smoothing splines method was first described by 

Wahba (1979), who later provided a comprehensive introduction to its techniques, 

with various extensions in (1990). When bivariate thin plate splines are used, the 

climate surface is interpolated as a function of the latitude and longitude only, 

while with trivariate thin plate splines, the elevation information is included in the 

interpolation of the climate surface by a function with latitude, longitude and 

elevation as the independent variables. In the 1990s, Hutchinson extensively 

explored the meteorological applications of the method. Hutchinson (1995, 

1998ab) provided a theoretical description of their application to annual mean 
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rainfall data and the applications to the daily rainfall values.  

 (5). Empirical Orthogonal Function (EOF) Method  

       The empirical orthogonal function (EOF) Analysis (or principal component 

analysis - PCA) is a method to determine the main spatial patterns of variability, 

as well as their variation in time, and to measure the relative importance of each 

pattern. The EOF has been applied in meteorological research since 1950s. 

However, Kutzbach (1967) provided detailed explanations and demonstrations of 

the EOF analysis, and following their papers, the EOF technique became popular 

in climatological research after the 1970s.  

        EOF analysis is conventionally used in climatology for examining data 

sets of space - time - distributed observations because this analysis reduces large 

amount of temporal-spatial data to a smaller number of spatial patterns, termed 

EOFs, and their temporal coefficients. The EOF application to the data 

interpolation is an expansion of the climate data into a finitely many EOFs and an 

estimation of the expansion coefficients. This method has been used for various 

climate parameter reconstructions. Smith et al. (1998) successfully used this 

method to interpolate the tropical Pacific’s sea surface temperature (SST). Shen et 

al. (2004) used it to predict the SST anomalies from the land stations’ SAT 

(surface air temperature) anomalies, and Smith et al. (2008) extended this method 

to predict oceanic precipitation from land stations.  

The theory behind EOF computations is straightforward (see, for example, 

Lagerloef and Bernstein, 1988, for a particularly concise and lucid description).  

Basically, the eigenvectors of the data covariance matrix are calculated. Because 
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the covariance matrix is real and symmetric, the set of eigenvectors forms an 

orthogonal basis set. The norm of each eigenvector can be taken as any nonzero 

number and thus is usually taken as one so that the eigenvectors form an 

orthonormal basis for the data.  

 

1.4 Thesis Objective: Hybrid 2.0 Interpolation 

       Shen et al. (2001) developed a hybrid method which is named as Hybrid 1.0 

to interpolate daily precipitation data and produced the gridded climate data 

named ABClim 1.0. This method is a hybrid of inverse-distance-weight (IDW) 

interpolation for monthly data and a nearest-station assignment regression for 

redistributing the monthly total onto days. The procedure of Hybrid 1.0 is as 

follows. Firstly, we use IDW to interpolate the monthly data as 

N

k kk=1
grid N

kk=1

R ( ) d
R ( )= ,                              (1.3)

1 d

m
m
∑

∑
 

where gridR (m)is the estimated monthly precipitation at the grid point, kR (m) is 

the observed monthly data at the station k, kd is the distance between the grid 

point and the station k, and N is the total number of the stations nearest to the grid 

point. N stations are selected according to the distance between the station and the 

grid point. That is, the thi  station is the thi nearest station to the grid. No more 

than eight stations with kd 60km≤  are chose in Hybrid 1.0 method. If the grid 

point is on the station k, grid kR (m)=R (m). Secondly, the daily precipitation is 

computed by using the following nearest-station assignment method.  
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nearest
grid grid

nearest

R (d)
R (d)=R (m) ,                         (1.4)

R (m)
×

 

where nearestR (d) is the precipitation of the station nearest to the grid point for the 

given day and nearest nearest
all days in month

R (m)= R (d)∑ . When nearestR (m) was zero for a 

given month, gridR (d) is assigned the value zero. Thus (1.3) and (1.4) formulate 

the Hybrid 1.0 method. It is important to clarify a fact here that the nearest station 

method is different with the kernel_based smoothing method. The nearest station 

method searches the unknown grid’s nearest station with available observed 

precipitation for each individual day of the month and then assign this observed 

data onto the predicted grid. There is no smoothing function used in the prediction 

and the predicted result displays the variance nature of the true data. The 

kernel_based smoothing method uses a smoothing kernel function to predict the 

unknown grid value and results in a smooth result. The only similarity between 

both methods is that the predicted grid’s nearest station has most influence on the 

unknown grid. 

       In general, the Hybrid 1.0 method satisfies the mass conservation law 

                
grid grid

all days in month

R (d)=R (m),                                (1.5)∑    

that is, the monthly total precipitation for a grid is not changed after using the 

precipitation frequency formula.  
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       1901 – 1912                                                      1913 – 1942  

              

 

          1943 – 1972                                                      1973 – 2002  

              

 

Figure 1.1. Distributions of the Alberta precipitation stations in the periods of 

1901-1912, 1913 - 1942, 1943 - 1972, and 1973 - 2002. 
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Because of the sparse precipitation station distribution in high-elevation 

regions in the earlier period of the last century, the use of the IDW method can 

lead to serious underestimation of the precipitation over those regions in that 

period. Figure 1.1 shows the distribution of the precipitation stations in Alberta in 

four periods: 1901 - 1912, 1913 - 1942, 1943 - 1972, and 1973 - 2002. The figure 

indicates that only four stations (Fort Chipewyan, two stations in Fort Vermillion 

and Fort McMurray) were north of 56°N before 1912. Moreover, they had low 

elevations and, hence, did not measure the topographic precipitation over the 

mountain (i.e., Caribou Mountains, Buffalo Hills, Clear Hills, Birch Mountains) 

and the lake (i.e., Lake Athabasca and Lake Claire) regions. Thus, the results in 

the earlier part of the last century from the IDW interpolation method have a low 

precipitation bias in northern Alberta and the mountain area. To overcome this 

problem, an interpolation method needs to be developed to take topographic 

elevation and climatic variance into account. Hybrid 2.0, the second generation of 

Hybrid 1.0 is thus developed in this study to interpolate the daily precipitation 

over Alberta. The method is a hybrid of EOF-based linear reconstruction for 

monthly precipitation data and a nearest-station assignment regression for 

redistributing the monthly total onto each day of the month. 

 

1.5 Thesis Outline 

This thesis is organized as follows. Chapter 2 applies the EOF analysis to 

the 1961 – 2000 Hybrid 1.0 output and reconstructs the monthly precipitation 

data on the 0.25 by 0.5 degrees latitude and longitude grids by using the EOF-



 

12 
 

based linear interpolation method for the province of Alberta. Chapter 3 uses 

the developed Hybrid 2.0 interpolation method to estimate the daily 

precipitation data based on the results of Chapter 2 and interpolates both the 

monthly precipitation data and daily precipitation data onto a finer grid. 

Chapter 4 introduces some applications and analysis of the Hybrid 2.0 data 

obtained in Chapter 3. Chapter 5 discusses the optimal selection of EOF modes 

in the EOF-based linear reconstruction and the sensitivity of the observational 

error used in the calculation of the optimal weights. Conclusions and 

suggestions for the future work are presented in Chapter 6.  
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Chapter 2  

Spectral Method for Interpolating Monthly 

Precipitation Data over Alberta  

 

2.1 Introduction 

Alberta Agriculture, Food and Rural Development (AAFRD), a provincial 

government department, in partnership with the agriculture industry, has been 

developing a strategy for sustainable agriculture. AAFRD is committed to 

environmental sustainability and is working with researchers to develop 

quantitative measures of it. Climate data are particularly important to the 

sustainable agriculture and agricultural information technology (Changnon and 

Kunkel, 1999). 

Soil quality is one of the initial indicators of environmental sustainability 

being developed. One aspect of sustainability is to ensure that land-management 

practices maintain or improve soil quality. Soil organic matter is one of the key 

soil attributes associated with soil quality. Soils with higher levels of organic 

matter are generally considered to be of better quality than other soils and tend to 

have (i) better nutrient-retention characteristics for good crop growth; (ii) better 

water infiltration rates, resulting in slower rates of water erosion of soil; and (iii) 

better structure, reducing susceptibility to wind erosion. AAFRD is using several 

models, such as EPIC (Erosion / Productivity Impact Calculator), to assess soil 
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quality in Alberta. Most models need a complete, continuous climate data set at a 

given resolution and with no missing data as their input. The models 

quantitatively estimate the effect on soil quality due to changes in land 

management practices under the climate conditions used in the models. Therefore 

actual climate data are needed to use the models to compare their results with 

carefully measured soil data. 

Various applications of the climate data require improved accuracy of the 

gridded data. This Chapter will introduce the EOF interpolation method for 

interpolating the gridded monthly precipitation, which will be the Hybrid 2.0 

gridded monthly precipitation, over Alberta province.   

The EOFs are calculated as the normalized eigenvectors of the covariance 

matrix of the gridded Hybrid 1.0 monthly output. These projections are called the 

principal component (PC) time series or the expansion coefficients of the EOFs. 

Because the method finds a set of orthonormal basis vectors that maximizes the 

projection of the data onto the basis vectors, the EOF modes are uncorrelated over 

space, and the expansion coefficients are uncorrelated in time.  

        The discussion in this chapter takes elevation into account by using the EOF 

interpolation method to interpolate the station monthly precipitation data onto the 

grids in Alberta. The next chapter will use the nearest-station assignment method 

to redistribute the EOF-interpolated monthly data on each day. For this study, we 

developed hybrid 2.0, a hybrid of the EOF-interpolation method and the nearest-

station assignment method, and also the next generation of the hybrid method.  
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        This chapter is organized as follows. Section 2.2 describes the data used in 

this chapter. The detailed EOF- interpolation method is addressed in Section 2.3.  

Section 2.4 displays the reconstructed results of monthly data on the 0.25 by 0.5 

degrees latitude and longitude grids, and the accuracy of the interpolated monthly 

precipitation is assessed in Section 2.5. Section 2.6 presents our conclusions and 

discussion.  

 

2.2 Data 

        The dataset used in this study is the daily precipitation data at the 2645 

climate stations within Alberta and those outside Alberta but near its borders: o4  

of longitude to the east and west, o4  of latitude to the north, and o2  of latitude to 

the south. The time period is between January 1, 1901 and December 31, 2002. 

The data is from the Meteorological Service of Canada (MSC). The website of the 

data is http://climate.weatheroffice.ec.gc.ca/prods_servs/documentation_ 

index_e.html#dly. The daily data are in the following format.   

                          Monthly Record of Daily Data (DLY) - Length 233 

|    STN ID   | YEAR  |MO |ELEM |S|  VALUE  |F| 

|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| 

This 7-space data is repeated 31 times. Here, the legends are below. 

Abbrv Length Field Data Type 

STN ID 7 Station Identification alphanumeric 

YEAR 4 Year, e.g., 1998 Numeric 
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MO 2 Month, i.e., 01 = Jan. etc. Numeric 

ELEM 3 Element Number Numeric 

S 1 Sign 
‘-’ = negative 

‘0’ = positive 

VALUE 5 Data Value Numeric 

F 1 Flag alphanumeric 

        

Standard record formats have been adopted for climatological data, which 

are archived at fifteen-minute, hourly, daily or monthly intervals. Each record 

consists of station identification, date, and element number followed by the data 

repeated for each time interval. The datum for each time interval is recorded as a 

five-digit integer plus a leading sign field and a following flag field. The units and 

decimal position are implied by the assigned element number.  

  In the initial data preparation pre-process, all the daily precipitation data with 

flags A and F are removed, where A stands for accumulated amount, and F stands 

for the accumulated and estimated amount. These data are deemed unreliable, and 

to correct these data is the data homogenization task which is not the focus of our 

research here. The stations used in the interpolation are shown in Fig. 2.1. 

Southern Alberta has higher station density than northern Alberta, where the 

station distribution is very sparse. 

       In this study, the station data are interpolated onto the 0.25-by-0.5 degrees 

latitude and longitude grid points over Alberta. Figure 2.2 shows the distribution 

of grid points in Alberta. The EOF-interpolation method is used to generate the 
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monthly precipitation onto the grids.  Thirty years of daily precipitation data from 

January 1, 1961 to December 31, 1990 are used for computing the monthly 

precipitation mean (Figure 2.3).  

 

 

                      

                       

                       Figure 2.1. Precipitation station distributions in Alberta.  
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Figure 2.2. Distribution of the grid points (0.25-by-0.5 degrees latitude and 

longitude) over Alberta. 
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Figure 2.3. Distribution of the Alberta precipitation stations whose 1961-1990  

        monthly means were computed for each month: January to December. 
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Figures 2.4 and 2.5 show the daily and monthly series of the total number of 

precipitation stations in Alberta from 1901 to 2002, respectively. The seasonal 

fluctuations occurred because some stations were operating only in the growing 

season. Figure 2.6 shows the distribution of the precipitation stations within 

Alberta and those o4  of longitude to the east and west, o4  of latitude to the north, 

and o2  of latitude to the south in the time interval between January 1, 1951 and 

December 31, 2002. Figures 2.4, 2.5 and 2.6 reveal that the precipitation stations 

have a good coverage over Alberta between January 1951 and December 2002, 

and that precipitation stations existed in the mountain and lake regions. Therefore, 

we can take the elevations into account by extracting the important patterns in the 

mountain and lake regions from Hybrid 1.0 gridded monthly precipitation in the 

time interval between January 1951 and December 2002. Thus, the EOF-

interpolation method also can reliably interpolate the monthly precipitation in the 

mountain and lake regions.  
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Figure 2.4. The daily number of Alberta stations used in the precipitation data 

interpolation.  

 

Figure 2.5. The monthly number of stations used in the precipitation data  

               interpolation. The annual cycle indicate the seasonal variability of the 

number of stations: more in the summer and less in the winter. 
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Figure 2.6. Distribution of the precipitation stations for interpolation in the time 

interval between January 1, 1951 and December 31, 2002. 
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2.3 Interpolation Method 

2.3.1 The Definition of EOF 

      The precipitation anomaly field, or departure from the mean, is defined at 

( ,t)r  by 

( , ) ( , ) - ( ),R t P t µ=r r r                                                  (2.1) 

where r  is any spatial location, and t is the time. ( , )P tr  is the precipitation at 

( ,t)r , and ( )µ r  is the precipitation mean at .r  The covariance function is defined 

as 

                                     ( , ) ( , ) ( , )C R t R t′ ′=r r r r  ,                                        (2.2)  

where i  denotes the sample mean. The continuous EOFs ( )
m

ψ r  are the 

eigenfunctions of the covariance function (Shen, 1994):   

( , ) ( ) ( )C d
m m m

ψ λ ψ′ ′ ′ =∫Ω r r r r r ,                                     (2.3)       

where 
m

λ  is the m’th eigenvalue of ( , )C ′r r , and Ω  is the region being studied.  

These EOFs are orthonormal and complete: 

m n mn
Ω

1, m=n
ψ ( )ψ ( )d =δ =

0, m n


 ≠

∫ r r r  ,                                  (2.4) 

m m
1

ψ ( )ψ ( )=δ( )
m

∞

=

′ ′−∑ r r r r ,                                       (2.5) 

where mnδ  is the Kronecker delta, and δ( )x  is the Dirac delta , which is defined as    

                                                       0 0δ( )f( )d =f( )x x x x x
∞

−∞
−∫                               (2.6) 

for any sufficiently well-behaved function f( )x . 
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From the properties (2.4) and (2.5), the covariance function can be expanded as 

                                           m m m
1

( , ) ψ ( )ψ ( )
m

C λ
∞

=

′ ′=∑r r r r .                               (2.7) 

        However, in practice the data are discrete, and their corresponding EOFs 

should be discrete. A discrete approximation should thus be used. The 

discretization of the above continuous EOFs is described below. We denote the 

value of any anomaly field at the discrete grid point jr  and time nt  by jnR  for 

j=1, ,J⋯  and 1,n Y= ⋯ . Then the anomaly field can be represented by the data 

matrix  

11 12 1Y

21 22 2Y

J1 J2 JY

R R ... R

R R ... R
R=

... ... ... ...

R R ... R

 
 
 
 
  
 

.                                             (2.7)
 

The aim of EOF analysis is to find the linear combination of all grid points to 

explain maximum variance, that is, to find a direction ( )1( ), , ( )Jr rψ ψ ψ ′= ⋯  such 

that Rψ′  has maximum variability. Here the prime denotes the transpose of a 

matrix. We know that the anomaly field has a zero mean, so the variance of the 

time series Rψ′  is 

( )21 1 1
( ) ,Var R R R R RR C

Y Y Y
ψ ψ ψ ψ ψ ψ ψ ψ′′ ′ ′ ′ ′ ′ ′= = = =

                 
(2.8)  

where 

                                               
1

C RR
Y

′=                                                          (2.9)  
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is the covariance matrix. To make the above maximum variance problem 

bounded, we normally require the direction vector ψ  to be unitary.  The problem 

then becomes 

max( ),  . . 1.C s t
ψ

ψ ψ ψ ψ′ ′ =
                                        

(2.10) 

The solution to (2.10) yields the first EOF, i.e., an eigenvector corresponding to 

the largest eigenvalue. The remaining EOFs can be motivated by a similar 

optimization problem with additional orthogonality constraints. The EOFs are 

thus eigenvectors obtained by solving 

.Cψ λψ=
                                                          

(2.11) 

It is clear that the covariance matrix C
 
is symmetrical and therefore 

diagonalizable. The m’th EOF (or mode) is the m’th eigenvector mψ  of C  if the 

eigenvalues and the corresponding eigenvectors have been sorted in decreasing 

order. As well the covariance matrix C  is positive semidefinite, so all the 

eigenvalues are hence non-negative. The m’th eigenvalue (or variance) mλ  

corresponding to the m’th EOF mψ
 
gives a measure of the explained variance by 

mψ , 1, , .m J= ⋯  The explained percentage variance is  

1

100%.m
J

n
n

λ

λ
=
∑

                                                  
(2.12) 

 

2.3.2 EOF Calculation 

        In this study, the gridded Hybrid 1.0 output provided on a 0.25-by-0.5 
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degrees latitude and longitude grid are used to extract the EOF patterns. Clearly, 

the distribution of the Hybrid 1.0 output will be denser poleward. This non-

uniform distribution can influence the structure of the computed EOFs. In order to 

avoid the effect of this geometrical artifact, we normally weight the data prior to 

analyzing them. The simplest and most useful way is to weight each data point by 

the local area of its location.         

       The details of our calculations are described as follows. The discrete form of 

(2.3) is written as (Li 2001; Shen et al., 1998) 

 

J

ij m j j m m i
j=1

C ψ (r )A =λ ψ (r ) , i=1,2, ,J; m=1,2, ,J∑ ⋯ ⋯ ,              (2.13)                    

where  

2

1

y

ij i j i j
t=y2 1

1
C =C(r ,r )= R(r ,t)R(r ,t)

y 1y− + ∑                                  (2.14) 

is the covariance matrix, iR(r ,t)  is the Hybrid 1.0 precipitation anomaly at 

location ir  and time t , 

 
2

j j

∆θ ∆φ
A =R π π cosφ

180 180
  
  
  

                                     (2.15) 

is the area of the grid box j , ∆θ×∆φ  is the resolution of the grid, jϕ  is the 

latitude of center of the grid box j , R is the radius of Earth, approximately 6,376 

km, J is the total number of grid boxes, and 1y  and 2y  are the years that the 

Hybrid 1.0 output in the time interval between them are used to extract EOF 
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patterns. It is easy to find that (2.13) is equivalent to the following symmetric 

form  

J

i ij j m j j m m i i
j=1

( A C A )(ψ (r ) A )=λ (ψ (r ) A ), i=1, 2, , J∑ ⋯ .       (2.16) 

Therefore, we can solve the following new discrete eigenvalue problem  

J
(m) (m)

ij j m i
j=1

Ĉ υ =λ υ ,   i=1, 2, , J∑ ⋯                               (2.17) 

to obtain the eigenvalues mλ  and the area-weighted eigenvectors 

                                                      
(m) (m) (m) (m)

1 2 Jυ̂ ( ,  , , )υ υ υ ′= ⋯   

which are defined as the discrete EOFs, where 

ij i ij jĈ = A C A                                          (2.18) 

is the area-weighted covariance matrix, and the area-weighted eigenvectors 

(m)
j m j jυ =ψ (r ) A ,     j=1, 2, , J⋯                             (2.19) 

satisfy the normalization condition  

                                           
J

(m) 2
j

j=1

(υ ) 1=∑ .                                            (2.20) 

Then we have 

J J J
2 2 2 (m) 2

m m j j m j j j
Ω

j=1 j=1 j=1

(ψ ( )) d (ψ ( )) A (ψ ( ) A ) (υ ) =1≈ = =∑ ∑ ∑∫ r r r r .        (2.21) 

The eigenvalues mλ  and the continuous EOFs  

(m)
j

m j

j

υ
ψ (r )= ,     j=1, 2, , J

A
⋯                              (2.22) 
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are then obtained.  

      We denote the length of the observation data by Y , which is equal to 2y  

minus 1y  plus 1. Since the covariance matrix computed from insufficient 

observations is not of full rank, the calculations of the EOFs follow different 

algorithms which depend on the values of Y  and J .  In this study, the length of 

the Hybrid 1.0 data we used, Y , is much less than the total number of grid boxes, 

J . Hence, the spatial covariance matrix is not of full rank and its determinant will 

vanish. In such a case, we can compute the spatial EOFs indirectly through space 

and time exchange. From the following algorithm, two benefits can be found for 

this indirect method: one is that the determinant of the temporal covariance will 

not vanish, and the computation will be reduced greatly.  We know that different 

months have different physical patterns, so the EOFs have to be computed for 

each month. The detailed algorithm for calculating the EOFs is now described. 

       First, calculate the Y Y×  matrix with the area factor by transposing the data 

matrix:  

( ) ( )1
D̂ AR AR

Y
′= ,                                       (2.23)                     

where 

j j J Y 1 2AR=[ A R(r ,t)] , j=1,2, ,J , and t=y , ,y× ⋯ ⋯ .          (2.24) 

        Second, solve the eigenvalue problem 

Y
(m) (m)

nk k m n
k=1

D̂ = ,  n=1, 2, , Yu uλ∑ ɶ ⋯                                 (2.25) 



 

31 
 

to get the eigenvalues mλ
ɶ  and the eigenvectors (m) (m) (m) (m)

1 2 Yû (u ,  u ,  , u )′= ⋯ , 

which are normalized: 

Y
(m) 2
k

k=1

(u ) =1∑ .                                                     (2.26) 

        Third, multiply (2.25) by the matrix 
mλ

AR

Yɶ

 on the left, and compare the 

resulting equation with the spatial eigenvalue problem (2.17) to obtain the 

following relationships: 

                                                  m mλ =λɶ ,                                                          (2.27) 

 

(m) (m)

m

ˆ ˆυ = u ,  m=1, 2, , Y.
λ

AR

Y
⋯

ɶ
                                  (2.28) 

It is easy to find that (m)

m

û
λ

AR

Yɶ

 satisfies the normalization condition (2.20). 

       Finally, the continuous EOFs and the corresponding eigenvalues are obtained 

as 

m mλ =λɶ ,                                                         (2.29) 

(m)
j

m j

j

υ
ψ (r )= , j=1,2, ,J,and m=1,2, ,Y

A
⋯ ⋯ .                        (2.30) 

 

2.3.3 EOF Interpolation  

       The projection of the precipitation anomaly field R( ,t)r  onto the m’th 

continuous EOF mψ ( )r , i.e., 
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m m
Ω

R (t)= R( ,t)ψ ( )d∫ r r r                                            (2.31) 

is the m’th principal component (PC) or EOF coefficient. By the orthogonality 

property of the EOFs and the definition (2.31), it is clear that the EOF coefficients 

(PCs) are uncorrelated: 

m n m n
Ω Ω

m n
Ω Ω

m n
Ω Ω

m n
Ω

R (t)R (t) = R( ,t)ψ ( )d R( ,t)ψ ( )d

                     = R( ,t)R( ,t)ψ ( )ψ ( )d d

                     = ( , )ψ ( )ψ ( )d d

                    = ψ ( )ψ ( )d

            

m

C

λ

′ ′ ′

′ ′ ′

′ ′ ′

′ ′ ′

∫ ∫

∫ ∫

∫ ∫

∫

r r r r r r

r r r r r r

r r r r r r

r r r

       = ,m mnλ δ

                    (2.32)
 

where  mnδ  is the Kroneker delta that is equal to 1 when m n=  and 0 otherwise, 

mλ  is the eigenvalue corresponding to the m’th EOF, and i  denotes the 

temporal mean. The completeness and orthogonality properties of the EOFs lead 

to the expansion of the precipitation anomaly field:  

m m
m=1

R( ,t)= R (t)ψ ( )
∞

∑r r .                                             (2.33) 

        In this study, we use the observed station data in (2.31) to calculate the PCs 

)(tRm . As we know, the station data are discrete and incomplete, so we have to 

numerically compute the integral (2.31) through the discrete form 

N
(m)

m j m j j
j=1

ˆ (t)= R(r ,t)ψ (r )w (t)R ∑ ɶ ,                                   (2.34) 
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where jR(r ,t)ɶ  are the anomaly data on the station nearest to grid point j , N is the 

number of grid points assigned data from their nearest station, and (m)
jw (t)  are the 

weights assigned to each grid corresponding to mode number m  and month t , 

which satisfy the condition 

                                        

N
(m)
i

i=1

w =A∑
                                                       

(2.35)  

and can be computed by using the linear equations described in Shen et al. (2004), 

and A  is the area of Alberta. The detailed derivation of the weights equations will 

be described in the next subsection. When Mc  is the number of modes we 

retained in the calculations, we have the reconstructed anomalies as follows:
 

jR̂(r ,t)
Mc

m m j
m=1

ˆ= R (t)ψ (r ), j=1,2, ,J.∑ ⋯                        (2.37) 

 

2.3.4 Optimal Weights Calculation 

        In order to solve the optimal weights in (2.34), Shen et al. (2004) derived a 

linear equation by minimizing the total mean squared error (MSE) between the 

reconstructed data and the true data. The detailed derivation is addressed as 

follows.   

       The total MSE can be written as         

                  

( )2
2

Ω

2Mc

m m m m
Ω

m=1 m=1

ˆE  = R( ,t)-R( ,t) d

ˆ     = R (t)ψ ( )- R (t)ψ ( ) d
∞ 

 
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∑ ∑∫

r r r

r r r
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            (2.37) 

where 2 2
(m) m m

ˆ
ε = (R (t)-R (t)) .       

We also have 
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                       (2.38) 

and 
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where jE  is the random observational error at the location jr  and time t. It is 

impossible to compute the exact error jE , but some error statistics, such as the 

error variance, can be estimated. The systematic errors are assumed to have been 

removed from the observed data, and hence the remaining random error jE  has  
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the following properties (Shen 2004): 

                        jR( ,t)E 0=r  and i jE E 0,   .i j= ∀ ≠                                    (2.40) 

 By combining (2.38) and (2.39), we have 
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(2.41) 

Combining (2.32) and (2.37) leads to 

Mc
2 2

(m) m
m=1 m=Mc+1

E = ε + λ ,
∞

∑ ∑                                   (2.42) 

which means that minimizing 2(m)ε  for each m  is equivalent to minimizing the 

total MSE 2E .     

        In order to minimize each MSE 2
(m)ε  with constraint (2.35) for the weights, a 

Lagrange function is defined as  
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N
2 (m)

m (m) m i
i=1

J =ε +2Λ ( w -A)∑  ,                                   (2.43) 

where mΛ  is the Lagrange multiplier, whose unit is the square of the precipitation 

unit (mm). The critical point for the Lagrange function is determined by 

m m
(m)
j m

J J
=0    and    =0 .

w Λ

∂ ∂
∂ ∂                                   (2.44) 
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which is equivalent to 
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C ψ (r )ψ (r )w + E ψ (r )w +Λ =λ ψ (r ).                               (2.45)∑  

As well m

m

J
=0

Λ

∂
∂

 yields  

N
(m)
i

i=1

w =A,∑                                                         (2.46) 

where A  is the area of the region being studied as mentioned before. The 

equations (2.45) and (2.46) are used to solve the optimal weights in the EOF 

interpolation procedure (2.34).  As we said before, the random observational error 

iE  cannot be determined exactly, so the error variance 2
iE  in the equation 

(2.45) must be estimated in order to compute the optimal weights.    

 

2.4 Interpolation Results  

        In this study, 52 years of Hybrid 1.0 output are used to generate the EOF 

patterns, so at most 52 non-zero eigenvalues are obtained for each month. In 

Figure 2.7, the percentage variance explained of the spatial EOF modes as a 

function of the mode number is shown. In January, the first, second, third, and 

fourth mode explain 47.56%, 8.72%, 7.81%, and 5.00% of the monthly 

precipitation variance, respectively, and together explain a total of 69.08% of the 

monthly precipitation variance. In July, the first, second, third, and fourth mode 

explain 25.88%, 20.49%, 10.13%, and 6.71% of the monthly precipitation 

variance, respectively, and together explain a total of 63.21% of the monthly 

precipitation variance. Finally, the first ten modes together explain a total of 
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84.27% and 81.62% of the monthly precipitation variance in January and July, 

respectively. This finding indicates that the first ten modes can reasonably reflect 

the anomaly field’s physical patterns over Alberta without losing much variance. 

The computations will hence be reduced greatly.   

 

 

 

Figure 2.7. The percentage variance explained by the spatial EOF modes in (a) 

January, and (b) July, respectively. 
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Figure 2.8. (a) The first mode of spatial EOF in January, and (b) its corresponding 

standardized PC, which is non-dimensional.  
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                                                             (a) 

 
 

                                                             (b) 

 
 

                                                             (c) 

 
 

Figure 2.9. The observed January precipitation time series in (a) Edmonton, (b) 

Banff, and (c) Jasper.  
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       Figure 2.8 displays the first spatial EOF, which explains 47.56% of the 

monthly precipitation variance and its corresponding PC1 in January. Here, PC1 

is standardized by divided 1λ  to have zero mean and unit variance. The PC1 

reflects the time variation of the spatial pattern. The values associated with the 

first mode are almost positive everywhere in Alberta, so after multiplying the first 

mode by the PC1, the contribution of the first mode to the monthly precipitation 

without mean is positive (negative) when the PC1 value is positive (negative) and 

extreme when the PC1 values cross the horizontal lines ±1. For example, 

Edmonton, Banff, and Jasper have positive EOF1 values. The contribution of the 

first mode to the January drought in Edmonton, Banff, and Jasper is extreme 

when the PC1 values are greater than -1. Figure 2.9 shows the observed January 

precipitation time series in Edmonton, Banff, and Jasper. No observed 

precipitation data are available before 1961 in Edmonton and after 1995 in Banff. 

Continuous time series are available only in the time interval of 1938-1995 in 

Jasper. Figure 2.9 clearly shows that the PC1 captures the January drought event 

of 1979, 1981, 1993, 1995 and 2001 in the period of 1961-2002 in Edmonton, of 

1931, 1942, 1944, 1979, 1981, 1985, 1985, 1993 and 1995 in the period of 1901-

1995 in Banff, and of 1942, 1979, 1981, 1985, 1991, 1993 and 1995 in the time 

interval of 1938-1995 in Jasper.      

       The second spatial EOF, which explains 8.72% of the monthly precipitation 

variance, and the dimensionless PC2 in January are displayed in Figure 2.10. The 

values associated with the second mode are negative in the region along the 

Rocky Mountains and northern Alberta and positive in the other regions. Thus,  
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Figure 2.10. (a) The second mode of spatial EOF in January and (b) its 

corresponding standardized PC, which is non-dimensional.  
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Figure 2.11. (a) The first mode of spatial EOF in July and (b) its corresponding 

standardized PC, which is non-dimensional.  
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Figure 2.12. (a) The second mode of spatial EOF in July and (b) its corresponding 

standardized PC.  
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the contribution of the second mode to the January precipitation will be extreme 

when the PC2 values exceed 1 or -1, but opposite in the above two regions.        

        Figures 2.11 and 2.12 show the first two EOFs and their corresponding PCs 

in July. The PCs are also standardized to have zero mean and unit variance. The 

regions with larger absolute values of EOF1 and EOF2 are very sensitive to the 

variations of the PC1 values and PC2 values, respectively. The central Alberta has 

negative EOF1 values with large absolute values. Thus, the contribution of the 

first mode to the July drought event (or storm event) is relatively high when the 

PC1 values exceed +1 (or -1) in this region. Northern Alberta has negative EOF2 

values with large absolute values, and the region along the Rocky Mountains has 

large positive EOF2 values, which indicate that the second mode contributes 

highly to the July drought event (or storm event) when the PC2 values cross the 

horizontal lines +1 (or -1) in northern Alberta, and has the opposite contribution 

in the Rocky Mountain region.        

          The geographical variability is relatively large across Alberta, so the 

Alberta climate varies considerably from region to region: Precipitation is 

generally highest along the mountains and in west central Alberta due to the 

combined effects of frontal and topographic precipitation, and generally lowest in 

the southeastern Alberta. The climate change over time also differs from region to 

region in Alberta. The difference between the average annual precipitation (mm) 

in the time intervals of 1913-1942 and 1973-2002 is displayed in Figure 2.13. The 

values in the figure were obtained by the 1973-2002 average annual precipitation 

minus the 1913-1942 average annual precipitation. The figure shows that, over 60 
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years, the increase of annual precipitation over northern Alberta and central 

Alberta is higher than that over southern Alberta. For example, an increase of 60-

70 mm of annual precipitation in Edmonton, 20-30 mm in Calgary, 10-20 mm in 

Medicine Hat, and even over 100 mm in some areas in northern Alberta occurred 

over 60 years.  

     The weights are involved in the EOF-based linear interpolation and they have 

a key impact on the accuracy of the interpolation as shown in equation (2.34): 

weights with large absolute values would increase the effect of the corresponding 

observed station data regardless of the negative weights or positive weights, and 

vice versa. The relatively large (small) change of weight values would result in 

the relatively large change (small) of reconstructed precipitation values. That is, 

the accuracy of EOF-based interpolation rests with the values of weights. The 

needs of optimal weights thus arise, and the equations (2.45) and (2.46) are 

derived to compute the weights. There is an undetermined value, the value of data 

error variance 2
jE , in calculating the optimal weights. In practice, we have to 

choose a reasonable value of 2jE  in order to get an optimal weight then the 

accurate interpolation results. However, in a specific range of 2
jE  values such as 

from 0.001 to 10, the optimal weight values are almost unchanged with changing 

2
jE  values (the detailed analysis of this result is in Chapter 5.). So both the 

optimal weights and the interpolation results are insensitive to the choice of 2
jE  

in this range. In our calculation, the values of 0.5, 1.0, and 0.9 are assigned to  
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Figure 2.13.  The difference between 1973-2002 mean and 1913-1942 mean for 

annual precipitation (mm). 
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2
jE  and the interpolation results reveal the insensitivity to 2

jE  (detailed 

analysis, examples and figures are in Chapter 5). 

 

2.5 The Accuracy of the Interpolated Monthly Data: 

Cross-Validation (CV) 

   The most effective method now commonly used to assess the error of 

climate data estimation is cross-validation (Cressie, 1993). The procedure 

compares the estimated data for a point with the observed station data at that 

point. Of course, the station data are withheld from the estimation. The data from 

other stations are interpolated into the station location. The statistics for the 

difference, or errors, between the true data and the interpolated data are used to 

evaluate the accuracy of the interpolation scheme.  

To evaluate the interpolation accuracy of the spectral method, three types of 

errors were computed: 

(1). Root mean square errors (RMSE) 

 

1/2K
2

true estimate
t=1

1
RMSE= (X (t)-X (t))

K
 
 
 
∑ ,              (2.47) 

(2). Mean absolute errors (MAE) 

                                       

K

true estimate
t=1

1
MAE= X (t)-X (t)

K
∑ ,                       (2.48) 

(3). Mean biased errors (MBE)  

                                      [ ]
K

true estimate
t=1

1
MBE= X (t)-X (t)

K
∑ ,                        (2.49) 
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where K  is the number of months used for cross-validation studies, t  is the time 

with a unit of one month, and X  denotes a climate parameter (precipitation in this 

study) at a cross-validation location.  

       The RMSE and MAE measure the variation of the interpolated results away 

from the real data and are a kind of measure of the closeness of the fit. The MBE 

indicates whether the interpolation is biased toward or against one side. Thus, 

these three measures are routinely used in checking the quality of interpolated 

results in statistics.  

        We also consider the CV errors of the IDW method and compare them with 

those of the EOF - interpolation. Cross-validation stations are selected based on 

the principles of (i) long-term data stream and (ii) even distribution around the 

province, particularly in the north-south orientation. Eight stations are chosen here 

for Alberta. The eight cross-validation sites are listed in Table 2.1 in the order 

from south to north.  

       Table 2.2 shows the cross-validation results of the IDW method and the EOF 

interpolation method for the period of 1901-2002. Comparing the RMSE, MAE 

and MBE values of the two methods indicates that the EOF-interpolated monthly 

data have a smaller error than that of the IDW method, especially in the high 

elevation regions and northern Alberta region such as Banff, Jasper, and High 

level A. The reason is that Hybrid 2.0 takes the elevation into account by 

extracting the EOF patterns from 1951-2002 Hybrid 1.0 gridded output when 

many stations available in the mountain and high elevation regions.   

In Section 2.1, Figure 2.1 indicates only a small number of stations in 
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Table 2.1. Eight Alberta cross-validation sites 

 

Station Name Station ID Latitude Longitude Elevation [m] 

Medicine Hat A 3034480 50°01′ 110°43′ 716.90 

Calgary Int'l A 3031093 51°07′ 114°01′ 1084.10 

Banff 3050520 51°11′ 115°34′ 1383.70 

Jasper 3053520 52°53′ 118°04′ 1062.20 

Edmonton Int'l A 3012205 53°19′ 113°35′ 723.30 

Beaverlodge CDA 3070560 55°12′ 119°24′ 744.90 

Peace River A 3075040 56°14′ 117°27′ 570.90 

High Level A 3073146 58°37′ 117°10′ 338.30 
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Table 2.2. Monthly precipitation estimation errors accessed by cross-validation  

for eight long-term stations in Alberta from south to north (units:  

millimeters). The values in the round brackets are the cross validation errors  

for the IDW method, and the preceding values for the EOF method.  

Station Name RMSE MAE MBE 

Medicine Hat A 12.84 (13.52) 8.04 (8.49) 0.97 (-0.32) 

Calgary Int'l A 14.94 (15.61) 9.37 (9.94) -0.93 (-1.66) 

Banff 18.93 (22.65) 13.68 (15.86) -5.71 (-7.10) 

Jasper 19.68 (32.78) 14.20 (21.43) -9.40 (-13.49) 

Edmonton Int'l A 9.00 (9.45) 6.15 (6.13) -1.01 (-1.51) 

Beaverlodge CDA 12.49 (14.45) 8.73 (9.44) -1.23 (-1.34) 

Peace River A 8.25 (12.84) 5.84 (9.06) -1.16 (-4.18) 

High Level A 12.65 (18.57) 8.75 (12.69) -5.97 (-6.78) 
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northern Alberta and west central Alberta in the earlier period of 1901-1912. This 

factor would cause the IDW method to obtain inaccurate results over those 

regions and to seriously underestimate the precipitation over the high-elevation 

regions. In order to show the improvement of Hybrid 2.0, Figure 2.14 shows the 

difference between the July precipitation interpolated by using the EOF-

interpolation method and the IDW method in the periods of 1901-1912 and 1973-

2002, respectively. The values in the figure were obtained by using the EOF-

interpolated data minus the IDW-interpolated data. Fig 2.16 (a) indicates a 

difference of 10-50 mm in northern Alberta and west central Alberta because the 

IDW method underestimates the precipitation in those regions because of the 

sparsity of precipitation stations in the period of 1901-1912, and the EOF-

interpolation method overcomes this problem. Fig 2.16 (a) also indicates a very 

small difference in southern Alberta in the period of 1901-1912 because the 

stations were relatively dense in this region. Fig 2.16 (b) indicates a difference of 

near zero precipitation in most part of Alberta since the dense stations in the 

period of 1973-2002 enabled both methods to obtain more accurate interpolation 

results. 

 

2.6 Conclusion 

         This chapter used the EOF-interpolation method to reconstruct the monthly 

precipitation on the grids over Alberta, and our Hybrid 2.0 method, not the IDW 

method, to reconstruct the monthly precipitation from the Hybrid 1.0 method. The 
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purpose was to overcome the problem of the IDW method, which underestimates 

the precipitation in the high-elevation regions and northern Alberta because of 

scarcity of precipitation stations in those areas in the earlier period of the last 

century. The comparison of the results and the error analysis for both methods 

reveals that the EOF-interpolation method for reconstructing the monthly 

precipitation overcame the underestimation problem of the IDW method to a 

certain extent and obtained a more accurate result than that of the IDW method. 

As discussed above, the iterative nature of our EOF approach is using the Hybrid 

1.0 data - ABCclim 1.0 to build the basis functions (EOFs) for the Hybrid 2.0 

gridding. This is also why we named our developed method as Hybrid 2.0. The 

1951 – 2002 Hybrid 1.0 data was selected to calculate the EOFs as there were so 

dense precipitation station distribution in this time interval that the gridded 

Hybrid 1.0 data is accurate and is reliable to represent the precipitation patterns 

over Alberta. The above comparison was thus obtained. 

         However, some problems still need to be discussed, such as the problem of 

determining the number of modes to be retained in the EOF analysis, and the 

problem of estimating the error variance 2iE  in the linear equation (2.47) for 

computing the optimal weights. These problems will be discussed in Chapter 5.    
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Figure 2.14 The difference the interpolated July precipitation (mm) by EOF 

method minus the IDW method in the periods of (a) 1901-1912 and (b) 

1973-2002. 

 

 

 



 

56 
 

Chapter 3  

Hybrid 2.0 Interpolation for Daily 

Precipitation Data 

 

3.1 Introduction 

In the previous Chapter, we reviewed the Hybrid 1.0 method in detail and 

discussed its problem. Then the EOF-based linear interpolation method was 

developed in order to overcome the shortcoming of Hybrid 1.0. Hybrid 2.0, the 

next generation of Hybrid 1.0 method, is continued to be completed by using a 

nearest-station assignment regression for redistributing the monthly total onto 

days. In Chapter 2, we interpolated the monthly data onto the 0.25 by 0.5 degrees 

latitude and longitude grids over Alberta by using the EOF interpolation method, 

This chapter will use nearest-station assignment regression to distribute the 

monthly total obtained in Chapter 2 onto days to obtain the Hybrid 2.0 daily data 

over Alberta with applications of Hybrid 2.0 method on a more fine resolution 

grid. Various applications of these gridded data will be explored in Chapter 4, 

including the assessment of agroclimate changes, input climate data for soil 

quality modeling, and evaluation of drought indices. These data will be useful to 

Alberta Agriculture, Food and Rural Development, Agriculture and Agri-Food 

Canada, and other governmental and private agencies. The monthly data 
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interpolated onto the grids of 0.25 by 0.5 degrees latitude and longitude from 

January 1901 to December 2002 used in this chapter are calculated from the EOF 

interpolation method discussed in Chapter 2. The daily station data from January 

1, 1901 to December 31, 2002 used in this chapter are the same as the data used in 

Chapter 2.  

       The organization of this chapter is as follows. Section 3.2 describes the 

nearest-station assignment method for interpolating daily precipitation data. 

Section 3.3 displays the results of the Hybrid 2.0 interpolation onto the 0.25 by 

0.5 degrees latitude and longitude grids and assesses its error. Section 3.4 

conducts the Hybrid 2.0 interpolation method for the 0.1 by 0.2 degrees latitude 

and longitude grids. Section 3.5 compares the error with that of other interpolation 

methods. Section 3.6 presents our conclusions and discussion. 

 

3.2 The Method of Nearest-Station Assignment  

         The interpolation method used in this study is Hybrid 2.0, the next 

generation of Hybrid 1.0 (Shen et al., 2001). This method consists of two 

procedures: interpolating the monthly total first and then redistributing the 

monthly total to each individual day of the month. The monthly total was obtained 

by using EOF interpolation in Chapter 2, and here the redistribution will be 

realized by using the nearest-station assignment method discussed in Chapter 1 

(see the formula (1.4)).  

      As one of characteristic of daily precipitation data, precipitation frequency is 

very important for the decision makers in Agriculture. The precipitation 
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frequency is calculated by the average of the number of days with precipitation in 

a month in the discussed period. So the accuracy of the estimated precipitation 

frequency is an important factor to evaluate the interpolation accuracy and will be 

calculated for Hybrid 2.0 in this chapter. 

 

3.3 Hybrid 2.0 Results and Error Analysis 

3.3.1 Hybrid 2.0 daily data interpolated onto the grids of 0.25 by 

0.5 degrees latitude and longitude 

         The daily data are interpolated onto a total of 808 grid points with latitude 

interval 0.25° and longitude interval 0.5° over Alberta. The interpolation results 

for the daily precipitation are stored in one file with the format (I4, 2I3, I8, F6.1):  

                                                    1901  1  1   10001   0.0 

                                                    1901  1  1   10002   0.0 

                                                    ……………………… 

                                                    1901  1  1   10808   0.0 

                                                    1901  1  2   10001   0.0 

                                                    ……………………… 

                                                    1901  1  2   10808   1.4 

                                                    ……………………… 

                                                    ……………………… 

                                                    2002 12 31   10001   0.0 

                                                    ……………………… 

                                                    2002 12 31   10808   1.1 

where the first column is the year number, the second one is the month number, 

the third one is the date number, the fourth one is the grid ID, and the last one is 

the precipitation amount on the day. 
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Figure 3.1 The 30-year (1961-1990) mean for daily precipitation at (a) Edmonton, 

(b) Lethbridge and (c) Grande Prairie. 

 

Figure 3.1 shows the 1961-1990 daily precipitation mean in Edmonton, 

Lethbridge and Grande Prairie, respectively. The figure indicates the seasonal 

fluctuation in the daily precipitation for these three cities. The highest daily 

precipitation in Edmonton and Grande Prairie is higher than that in Lethbridge 

since southern Alberta is generally drier than central Alberta. Figure 3.2 displays 

the annual total precipitation normal in the time interval between 1961 and 1990. 

The highest annual precipitation amount of more than 600 mm occurs in the 

Rocky Mountain region, and the lowest annual precipitation amount of less than 

350 mm occurs in the south east Alberta region. As well, northern Alberta is drier 
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than central Alberta. Among the major cities in Alberta, Edmonton has an annual 

total precipitation of 500 – 550 mm, a little higher than Calgary. Lethbridge is a 

little drier than Calgary. Medicine Hat is the driest city with less than 350 mm 

annual precipitation. Figure 3.3 shows the May 1 to August 31 total precipitation 

normal from 1961 to 1990 with less than 200 mm in the driest areas and more 

than 325 mm over the high-elevation regions. In general, this period has about 60 

percent of the total annual precipitation over Alberta. Figure 3.2 indicates that this 

period’s total precipitation amount distribution over Alberta from lowest to 

highest is similar to that of the annual total precipitation amount distribution; i.e., 

the highest precipitation amount is in the central Alberta area and the mountain 

regions, and the driest area is south east Alberta and north Alberta. Figure 3.4 

displays the eight-month period total precipitation normal from September 1 to 

April 30 in the time interval between 1961 and 1990. The precipitation in this 

period varies from less than 150 mm in the driest areas to more than 275 mm in 

the high-elevation regions. More than 275 mm precipitation occurs along the 

Rocky Mountain region and 150-175 mm and even less than 150 mm 

precipitation occur in the south east Alberta during this period. Figure 3.3 and 

Figure 3.4 indicate that less precipitation occurs during the September to April 

period than in the May to August period.  

 

 

 



 

62 
 

 

 

 

Figure 3.2. The annual total precipitation normals (mm) in the period of 1961 – 

1990 onto the grids of 0.25-by-0.5 degrees lattitude and longitude over 

Alberta.  
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Figure 3.3. May 1 to August 31 total precipitation normals (mm) in the period of 

1961 – 1990 onto the grids of 0.25-by-0.5 degrees lattitude and longitude over 

Alberta.  

.  
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Figure 3.4. September 1 to April 31 total precipitation normals (mm) in the period 

of 1961 – 1990 onto the grids of 0.25-by-0.5 degrees lattitude and longitude 

over Alberta.  

.  
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3.3.2 The accuracy of Hybrid 2.0 daily data: cross-validation (CV) 

The previous CV error formulas in Chapter 2 are used here at the daily scale 

to assess the error of both Hybrid 2.0 and Hybrid 1.0 daily data, and the eight 

stations listed in Table 2.1 are selected as cross-validation stations. Table 3.1 

shows the cross-validation results of the Hybrid 2.0 method and the Hybrid 1.0 

method for the period of 1901-2002. Each target station is excluded from the 

interpolation. Comparing the RMSE, MAE and MBE values of the two methods 

indicates that the Hybrid 2.0 daily data have a smaller error than those of Hybrid 

1.0.  The RMSE, MAE and MBE values in the high-elevation regions, such as the 

Calgary Int’l A, Jasper and Banff stations, are higher than in the low-elevation 

areas. One reason for this difference is that the high-elevation regions receive 

more precipitation than the low-elevation regions; another reason is that fewer 

precipitation stations were located in the high-elevation areas than in the low-

elevation areas in the earlier period, or the period of 1901 – 1912 (Figure 2.1). 

        Figure 3.5 shows the difference between the arithmetic average of the station 

daily precipitation and the areal average of the Hybrid 2.0 gridded daily data over 

Alberta in the period of January 1, 1901 – December 31, 2002. The different data 

are obtained by using the station data minus the gridded data. The figure indicates 

that most different data are close to zero; that is, the areal average of the H2.0 

gridded daily data nearly agrees with  the arithmetic average of the station daily 

precipitation. Because more precipitation stations were used in the Hybrid 2.0 

interpolation, the difference in the period of 1901 – 2002 is smaller than in the 

earlier period. 
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Table 3.1. Daily precipitation estimation errors accessed by cross-validation for 

eight long-term stations in Alberta from south to north (units: millimeters). 

The values in the round brackets are the cross validation errors for the 

Hybrid 1.0 method, and the preceding values for the Hybrid 2.0 method.  

 

Station Name RMSE MAE MBE 

Medicine Hat A 3.07 (3.14) 0.93 (0.95) 0.04 (-0.01) 

Calgary Int'l A 3.54 (3.60) 1.13 (1.13) -0.03 (-0.05) 

Banff 3.77 (3.88) 1.46 (1.48) -0.19 (-0.23) 

Jasper 3.61 (4.04) 1.47 (1.59) -0.31 (-0.45) 

Edmonton Int'l A 2.98 (3.03) 1.00 (1.01) -0.04 (-0.05) 

Beaverlodge CDA 2.89 (3.96) 1.05 (1.37) -0.04 (-1.04) 

Peace River A 2.99 (3.15) 1.06 (1.13) -0.03 (-0.13) 

High Level A 2.99 (3.16) 1.13 (1.16) -0.19 (-0.22) 
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Figure 3.5. (a) The difference (mm) between the arithmetic average of station 

daily precipitation and the areal average of Hybrid 2.0 gridded daily data 

over Alberta in the period of January 1, 1901 – December 31, 2002, (b) 

Histogram of the differences.  
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3.4 The Hybrid 2.0 Results on a �� 2.01.0 × Grid 

      Many agriculture applications of historical climate data require the data to be 

available on the daily time scale and a spatial scale as fine as a township or a 10 

km spatial grid. In this section, Hybrid 2.0 daily data will be computed on a 

�� 2.01.0 ×  grid (approximately a 10 km by 10 km grid) over Alberta. The base 

point of the of the grid is the northwest corner of Alberta: )120,60( WN �� . 

 

3.4.1 Data 

        Like the data used in Chapter 2, the daily station data from January 1, 1901 

to December 31, 2002 obtained from MSC are used in this section. By using our 

Hybrid 2.0 method, these observed daily station data are to be interpolated onto 

the grid of 0.1 by 0.2 degrees latitude and longitude over Alberta. Figure 3.6 

shows the distribution of the grid points over Alberta. 

 

3.4.2 Interpolated monthly dataset and its accuracy 

        In this study, 52 years of Hybrid 1.0 data from 1951 to 2002 are used to 

extract the EOF patterns, so we can obtain at most 52 non-zero eigenvalues for 

each month. Figure 3.7 shows the explained variance of the spatial EOF modes as 

a function of the mode number. In January, the first, second, third, and fourth 

mode explain 47.84%, 9.30%, 7.61%, and 4.83% of the monthly precipitation 

variance, respectively, and together explain a total of 69.57% of the monthly 
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precipitation variance. In July, the first, second, third, and fourth modes explain 

26.29%, 

 

 

 

 

 

Figure 3.6. Distribution of the grid points (0.1-by-0.2degrees latitude and 

longitude) over Alberta. 
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Figure 3.7. Percentage variance explained by the spatial EOF analysis in (a) 

January and (b) July, expressed as percentage of total variance. 
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Figure 3.8. The first two modes of the spatial EOF in January and July. 
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20.63%, 10.38%, and 6.62% of the monthly precipitation variance, respectively, 

and together explain a total of 63.91% of the monthly precipitation variance. This 

figure indicates that the first eigenvalue seems separated from the rest in January, 

but for July and that the first three eigenvalues seem to be separated from the rest. 

In both months, the other eigenvalues appear to be generally continuous, and 

hence there is no clear natural cut for taking the EOF truncation. 

       Figure 3.8 shows the first two EOF modes in January and July. Figure 3.9 

shows the first two principal components (PC) of January and July. The PCs are 

standardized to have zero mean and unit variance. The PCs reflect the time 

variation of the spatial pattern. In January, the values associated with the first 

mode are almost positive everywhere, with the lower values in north Alberta and 

south Alberta, and the higher values in the Rocky Mountain regions. After 

multiplying the first mode by its PC, the contribution of the first mode to the 

monthly precipitation without the mean is positive (negative) when the PC value 

is positive (negative) and extreme when the PC values cross the horizontal lines 

±1 as the PCs have zero mean and unit variance. The values associated the second 

mode are negative in the region along the Rocky Mountains and positive in the 

other regions, so in the same year, the second mode has an opposite contribution 

in these two regions. In July, the values associated with the first mode are 

negative with high amplitude in central Alberta. The values associated with the 

second mode are negative in northern Alberta and nearly positive in the southern 

regions, so the contribution of the first mode is particularly high in the central 
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regions when the PC values cross the horizontal lines ±1. The second mode has an 

opposite contribution in the northern regions and southern areas.   

      The difference between the observed monthly precipitation data and the 

interpolated monthly precipitation data at the stations in Jasper, Banff, Peace 

River A, and Beaverlodge CDA and the corresponding histograms are shown in 

Figures 3.10 – 3.13. The figures indicate that the difference between the observed 

monthly data and the EOF-interpolation monthly data is closer to zero than the 

difference between the observed monthly data and the IDW-interpolated data 

since 1951 at each cross validation station. That is, the error of the EOF-

interpolated data is smaller than that of IDW-interpolated data at these four 

stations. Both sets of interpolated data have smaller errors at the Peace River A 

and Beaverlodge CDA stations than at the Jasper and Banff stations because of 

the high precipitation amount and sparse station distribution in the high-elevation 

regions.     

       The nearest grid point used to replace cross-validation station in the error 

evaluation and the distance between them are presented in Table 3.2. Table 3.3 

displays the monthly precipitation estimation errors accessed by cross-validation 

for eight long-term stations in Alberta from south to north. Each target station is 

excluded from the interpolation. Comparing this table with Table 2.4 indicates the 

EOF-interpolated monthly data have smaller RMSE, MAE and MBE values for 

the grids of 0.1 by 0.2 degrees latitude and longitude than for the grids of 0.25 

degrees latitude and 0.5 degrees longitude. That is, the EOF-interpolation method 
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provides more accurate estimations for the higher-resolution grids, even compared 

with to the IDW-interpolation method.  
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Figure 3.9. Principal components in the EOF analysis: (a) first mode in January, 

(b) second mode in January, (c) first mode in July, and (d) second mode in 

July. The components are nondimensional.  
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Figure 3.10. The differences between the observed monthly data and the 

interpolated monthly data at Jasper station (blank period indicates no 

observed data during that time period), and the corresponding histograms. 
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Figure 3.11. The differences between the observed monthly data and the 

interpolated monthly data at Banff station and the corresponding histograms.  

 



 

78 
 

 

 

 

Figure 3.12. The differences between the observed monthly data and the 

interpolated monthly data at Peace River A station (blank period indicates no 

observed data during that time period), and the corresponding histograms.  
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Figure 3.13. The differences between the observed monthly data and the 

interpolated monthly data at Beaverlodge CDA station (lank period indicates 

no observed data during that time period), and the corresponding histograms.  

 

 



 

80 
 

Table 3.2. The nearest grid point of the station & the distance between them for 

0.25-by-0.5 degrees and 0.1-by-0.2 degrees, respectively. The values in the 

round brackets is for the 0.25-by-0.5 degrees grid, and the preceding values 

for the 0.1-by-0.2 degrees grid.  

 

Station Name Nearest grid point  Distance (km) 

Medicine Hat A 

(50.02°, -110.72°) 

14624: 50.00°, -110.80° 

(10768: 50.00°, -110.50°) 

6.134 

(15.88) 

Calgary Int'l A 

(51.12°, -114.02°) 

14310: 51.10°, -114.00° 

(10706: 51.25°, -114.00°) 

2.626 

(14.52) 

Banff 

(51.18°, -115.57°) 

14270: 51.20°, -115.60° 

(10703: 51.25°, -115.50°) 

3.052 

(9.185) 

Jasper 

(52.88°, -118.07°) 

13606: 52.90°, -118.00° 

(10606: 52.75°, -118.00°) 

5.196 

(15.2) 

Edmonton Int'l A 

(53.32°, -113.58°) 

13445: 53.30°, -113.60° 

(10579: 53.25°, -113.50°) 

2.591 

(9.427) 

Beaverlodge CDA 

(55.20°, -119.40°) 

12452: 55.20°, -119.40° 

(10401: 55.25°, -119.50°) 

0 

(8.434) 

Peace River A 

(56.23°, -117.43°) 

11952: 56.20°, -117.40° 

(10321: 56.25°, -117.50°) 

3.817 

(4.864) 

High Level A 

(58.62°, -117.17°) 

10729: 58.60°, -117.20° 

(10133: 58.50°, -117.00°) 

2.822 

(16.59) 
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Table 3.3. Monthly precipitation estimation errors accessed by cross-validation 

for eight long-term stations in Alberta from south to north (units: 

millimeters). The values in the round brackets are the cross validation errors 

for the IDW method, and the preceding values for the EOF method.  

 

Station Name RMSE MAE MBE 

Medicine Hat A 11.96 (13.45) 7.56 (8.53) 0.58 (0.01) 

Calgary Int'l A 14.23 (15.85) 8.68 (10.30) 1.88 (-1.13) 

Banff 16.89 (22.24) 12.20 (16.05) 3.22 (-7.86) 

Jasper 
18.73 (29.52) 12.98 (20.17) 6.01(-11.98) 

Edmonton Int'l A 7.71 (9.76) 5.28(6.18) 0.51(-1.36) 

Beaverlodge CDA 11.98 (14.58) 8.24 (9.51) 0.67(-1.71) 

Peace River A 8.07 (12.62) 5.72 (8.87) 1.13 (-3.83) 

High Level A 11.06 (20.84) 7.89 (13.69) -5.82 (-7.77) 

 

 

3.4.3 Interpolated daily dataset and its accuracy 

        As Figures 3.2 - 3.4, Figures 3.14 – 3.16 also display the annual total 

precipitation normal, the May 1 to August 31 total precipitation normal and the 

eight-month period total precipitation normal from September 1 to April 30 in the 

time interval between 1961 and 1990, respectively. These two sets of figures 

display the almost identical precipitation distribution over Alberta except in a few 
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major cities. For example, the annual total precipitation normal in the Edmonton 

region is 500 – 550 mm in Figure 3.2 but 450 – 500 in Figure 3.14. The May 1 to 

August 31 total precipitation normal in Edmonton is 300 -325 mm in Figure 3.3 

but 275 – 300 mm in Figure 3.15. The September 1 to April 30 total precipitation 

normal in Edmonton is 200 -225 mm in Figure 3.4 but 175 – 200 mm in Figure 

3.16. As we discussed in Section 3.4.2, the EOF-interpolated data are more 

accurate on the grids of 0.1 by 0.2 degrees latitude and longitude than on the grids 

of 0.25 by 0.5 degrees. Thus, Figures 3.14 – 3.16 display more reliable maps than 

Figures 3.2 - 3.4.  

        The comparison of the RMSE, MAE and MBE values for the Hybrid 1.0 

daily precipitation data and Hybrid 2.0 daily data is displayed in Table 3.4. Each 

target station is excluded from the interpolation. Table 3.4 shows the Hybrid 2.0 

daily precipitation data have smaller errors than those of the Hybrid 1.0 daily 

data. 
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Figure 3.14. The annual total precipitation normals (mm) in the period of 1961 – 

1990 onto the grids of 0.1-by-0.2 degrees lattitude and longitude over Alberta.  
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Figure 3.15. May 1 to August 31 total precipitation normals (mm) in the period of 

1961 – 1990 onto the grids of 0.1-by-0.2 degrees lattitude and longitude over 

Alberta.  
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Figure 3.16. September 1 to April 30 total precipitation normals (mm) in the 

period of 1961 – 1990 onto the grids of 0.1-by-0.2 degrees lattitude and 

longitude over Alberta.  
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Table 3.4. Daily precipitation estimation errors accessed by cross-validation for 

eight long-term stations in Alberta from south to north (units: millimeters). 

 The values in the round brackets are the cross validation errors for the 

Hybrid 1.0 method, and the preceding values for the Hybrid 2.0 method.  

 

Station Name RMSE  MAE MBE 

Medicine Hat A 3.07 (3.11) 0.92 (0.94) 0.02 (0.0003) 

Calgary Int'l A 3.40 (3.51) 1.06 (1.11) 0.06 (-0.04) 

Banff 3.60 (3.88) 1.39 (1.48) -0.10 (-0.26) 

Jasper 3.51 (3.95) 1.41 (1.56) -0.19 (-0.39) 

Edmonton Int'l A 3.08 (3.15) 1.02 (1.04) -0.02 (-0.04) 

Beaverlodge CDA 2.80 (4.01) 1.02 (1.38) 0.03 (-1.06) 

Peace River A 3.03 (3.16) 1.08 (1.14) -0.03 (-0.12) 

High Level A 2.99 (3.31) 1.12 (1.18) -0.19 (-0.25) 

 

 

3.5 Comparison with Other Interpolation Results 

         ANUSPLIN is a multivariate non-parametric surface fitting approach to 

develop spatially continuous climate models and it makes use of thin plate-

smoothing splines. Thin plate smoothing splines method has been further 

developed and made operational as a climate mapping tool by Professor Michael 

Hutchinson at the ANU over the last 20 years. In this section, we compare our 
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interpolation results with those of other studies. The Hybrid 2.0, Hybrid 1.0, and 

ANUSPLIN methods are used to grid the monthly and daily precipitation data 

over Alberta at a spatial resolution of 300 arc seconds of latitude and longitude, 

for the period 1961-1990. We compare the gridded monthly precipitation, gridded 

daily precipitation, and daily precipitation occurrence at seven stations based on a 

cross validation procedure that withholds these seven stations’ data from the 

analysis. The period 1961 to 1990 is selected for the current comparison. The 

number of precipitation stations with available data in any year during this period 

ranged from 2000 to 3000 (Fig. 3.17). As an example, Figure 3.18 shows the 

stations used on March 31, 1977. According to the withheld station selection rule, 

these seven withheld stations have nearly complete daily observation data over 

the studied period of 1961 – 1990. The locations of the withheld stations are 

shown in Figure 3.19. The summaries of the comparison of the withheld data 

errors for the interpolated monthly total precipitation amount are presented in 

Table 3.5, which includes the RMSE, MAE and MBE of the monthly 

precipitation amounts. Comparison of the RMSE, MAE and MBE values for these 

three methods shows that the Hybrid 2.0 has much smaller errors than Hybrid 1.0 

and ANUSPLIN in interpolating the monthly total precipitation at the northern 

stations. And as the station changes from north to south, the differences between 

Hybrid 2.0 and other two methods changes from large to small, but Hybrid 2.0 

always has a more accuracy result. Compared with ANUSPLIN, Hybrid 2.0 has 

2.10mm – 5.73mm smaller values in RMSE and 1.17mm – 3.17mm smaller 

values in MAE. Compared with Hybrid 1.0, Hybrid 2.0 has 1.49mm – 9.41mm 
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smaller values in RMSE and 0.85mm – 6.97mm in MAE. Table 3.6 displays the 

compared summaries of the average precipitation frequency (days) in each month 

at the withheld stations. The comparison shows that Hybrid 2.0 has the 

comparable accurate results in estimating the precipitation frequency as Hybrid 

1.0 method. Both of them perform averagely better than ANUSPLIN when 

estimating the precipitation frequency. In general, ANUSPLIN overestimates the 

precipitation frequency and both hybrid methods underestimate the precipitation 

frequency.  

 

 

Figure 3.17. The number of precipitation stations with available observed data 

including the vicinity stations outside Alberta in each year over the period of 

1961 – 1990. 
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Figure 3.18. The locations of 678 precipitation stations with available observed 

data on March 31, 1977 as an example in Alberta.   
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Figure 3.19. The locations of the seven precipitation stations withheld in the 

comparion of Hybrid 2.0 and other interpolated methods. 
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Table 3.5 Compared summaries of withheld data errors (mm) for the monthly 

total precipitation amount at 6 selected withheld stations across Alberta. 

 

Station 
Hybrid 1.0 Hybrid 2.0 ANUSPLIN 

RMSE MAE MBE RMSE MAE MBE RMSE MAE MBE 

Fort 

McMurray 

A 

16.28 12.26 -4.37 6.87 5.29 -1.88 12.60   8.39 1.91 

Grande 

Prairie A 
13.30 8.83 -6.24 5.82 4.37 -1.67 10.96   7.30 -2.28 

Athabasca 

2  
8.89 6.07 1.43 5.32 3.64 0.06 9.08 6.19 1.65 

Cold Lake 

A 
14.37 9.19 0.93 5.90   4.32 0.95 12.35 7.49 1.63 

Edmonton 

Int’l A 
9.76   6.07 -1.01 5.10 3.58 0.06 9.99 6.34 0.51 

Lethbridge 

A 
7.81 5.22 -0.55 6.32 4.37 -0.88 8.42 5.54 0.30 
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Table 3.6 Compared summaries of the average precipitation frequency (days) in 

each month at 7 withheld stations across Alberta: (a). Fort McMurray A  

(ID: 3062693), (b). Grande Prairie A (ID: 3072920), (c). Athabasca 2  

(ID: 3060321), (d). Cold Lake A (ID: 3081680), (e). Edmonton Int'l A  

(ID: 3012205), (f). Nordegg RS (ID: 3054845), and (g). Lethbridge A 

 (ID: 3033880). 

 

(a). Fort McMurray A (ID: 3062693) 

Month Observation ANUSPLIN Hybrid 1.0 Hybrid 2.0 

JAN 12 15.1 8.3 8.1 

FEB 9.4 11.3 6.1 6.0 

MAR 9.7 10.8 7.0 6.5 

APR 7.3 7.8 6.2 6.2 

 MAY 9.8 12.8 10.1 10.0 

JUN 12.5 15.2 13.0 12.6 

JUL 14.4 17.1 15.0 14.7 

AUG 12.5 15.2 12.6 12.5 

SEP 11.2 14.0 11.4 10.9 

OCT 10.3 11.5 8.4 8.6 

NOV 11.9 14.1 8.2 8.4 

DEC 12.1 15.9 8.4 8.4 
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(b). Grande Prairie A (ID: 3072920) 

Month Observation ANUSPLIN Hybrid 1.0 Hybrid 2.0 

JAN 12.8 12.5 11.4 11.5 

FEB 9.3 9.4 8.2 8.2 

MAR 9.4 10.2 8.9 8.4 

APR 6.9 7.2 5.9 5.9 

 MAY 8.8 10.4 8.8 8.3 

JUN 11.3 13.2 10.6 10.6 

JUL 12.0 13.7 10.8 10.8 

AUG 11.4 12.9 10.7 10.4 

SEP 11.3 13.6 11.6 11.5 

OCT 8.4 8.6 7.9 7.4 

NOV 10.8 10.0 8.7 8.7 

DEC 11.1 12 9.9 9.9 
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(c). Athabasca 2 (ID: 3060321) 

Month Observation ANUSPLIN Hybrid 1.0 Hybrid 2.0 

JAN 9.5 12.4 9.3 9.3 

FEB 7.7 9.8 7.2 7.2 

MAR 8.0 9.9 6.0 6.2 

APR 6.3 7.2 4.9 4.9 

 MAY 9.3 10.9 8.0 8.0 

JUN 12.8 14.4 11.0 10.8 

JUL 14.1 16.1 13.2 13.2 

AUG 12.4 13.8 10.5 10.5 

SEP 10.3 12.7 9.0 9.0 

OCT 7.1 8.4 4.9 4.9 

NOV 7.6 9.7 6.8 6.8 

DEC 9.6 12.3 9.3 9.2 
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(d). Cold Lake A (ID: 3081680) 

Month Observation ANUSPLIN Hybrid 1.0 Hybrid 2.0 

JAN 10.5 10.3 7.2 7.0 

FEB 8.2 8.3 5.6 5.7 

MAR 7.7 8.0 5.8 5.6 

APR 6.7 7.1 5.7 5.8 

 MAY 9.3 10.9 9.1 8.8 

JUN 12.6 14.3 13.0 12.8 

JUL 13.8 15.8 14.7 14.5 

AUG 11.4 13.4 11.7 11.5 

SEP 10.1 11.8 9.8 9.5 

OCT 6.9 7.7 5.6 5.6 

NOV 9.1 9.6 5.6 5.5 

DEC 10.7 10.5 6.8 6.8 
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(e). Edmonton Int'l A (ID: 3012205) 

Month Observation ANUSPLIN Hybrid 1.0 Hybrid 2.0 

JAN 10.8 13.1 10.3 10.4 

FEB 7.8 9.8 7.9 7.7 

MAR 8.7 9.3 7.5 7.3 

APR 6.7 7.8 6.3 6.3 

 MAY 9.5 11.1 9.4 9.1 

JUN 12.7 15.1 13.0 13.1 

JUL 13.2 14.7 13.8 14.0 

AUG 11.6 13.8 12.8 12.8 

SEP 9.6 11.6 9.8 9.8 

OCT 5.6 7.1 5.0 4.9 

NOV 8.0 9.8 7.5 7.3 

DEC 9.7 10.9 9.3 9.2 
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(f). Nordegg RS (ID: 3054845) 

Month Observation ANUSPLIN Hybrid 1.0 Hybrid 2.0 

JAN 6.1 9.5 7.4 7.5 

FEB 4.6 7.3 5.6 5.5 

MAR 6.5 8.4 6.6 6.6 

APR 7.6 8.7 7.4 7.5 

 MAY 10.5 12.5 10.9 10.9 

JUN 12.8 15.3 13.8 13.9 

JUL 13.5 16.5 13.7 13.8 

AUG 12.2 14.8 12.3 12.3 

SEP 11.2 12.9 10.3 10.3 

OCT 6.7 7.4 6.8 6.8 

NOV 5.4 8.1 5.9 5.7 

DEC 6.0 8.7 5.8 5.8 
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(g). Lethbridge A (ID: 3033880) 

Month Observation ANUSPLIN Hybrid 1.0 Hybrid 2.0 

JAN 10.1 9.7 9.4 9.0 

FEB 7.1 7.2 6.8 6.5 

MAR 8.9 8.5 8.2 8.2 

APR 7.7 8.3 7.9 7.8 

 MAY 9.6 10.5 9.9 9.9 

JUN 9.1 10.0 9.4 9.2 

JUL 7.7 8.2 7.7 7.6 

AUG 7.4 8.2 7.7 7.7 

SEP 7.4 8.0 7.4 7.4 

OCT 5.4 5.5 5.1 5.0 

NOV 6.4 6.5 6.2 6.0 

DEC 9.3 9.3       9.0 9.1 
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3.6 Conclusion 

         We have used the Hybrid 2.0 method to grid the daily precipitation data 

over Alberta from January 1, 1901 to December 31, 2002. The resolutions of the 

two grids were 0.25° latitude by 0.5° longitude and 0.1° latitude by 0.2° 

longitude, respectively. The interpolated data were named ABClim2.0. The cross-

validations were used to do the error analysis of the interpolated monthly total 

data and daily data for two grid resolutions, respectively. The RMSE, MAE and 

MBE values were calculated for both the monthly data and the daily data on the 

two grids to compare Hybrid 2.0 and Hybrid 1.0. The comparison showed that the 

accuracy of the Hybrid 2.0 interpolation was higher than that of Hybrid 1.0 

interpolation, especially in the high-elevation regions and the regions with sparse 

station distribution in the earlier period of the last century. The interpolation 

accuracy of Hybrid 2.0, Hybrid 1.0 and ANUSPLIN was also compared. The 

results revealed that Hybrid 2.0 had comparable accuracy as Hybrid 1.0 and both 

of them are a little bit more accurate than ANUSPLIN in estimating the 

precipitation frequency in each month. Hybrid 2.0 also had more accurate results 

than ANUSPLIN and Hybrid 1.0 in interpolating the monthly total precipitation 

amount. Further improvements in the current methodology may be aimed at 

taking the elevation into account explicitly when redistributing the monthly total 

to each individual day of the month. The monthly total precipitation values of this 

study can be used with some confidence across Alberta. 
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Chapter 4  

Applications and Analysis of ABClim2.0 Data 

 

4.1 Introduction 

The gridded daily data -- ABClim 2.0 -- have numerous applications, ranging 

from soil quality models to crop models and to drought monitoring. Three 

applications will be discussed here: trend analysis of ABClim 2.0 data, historical 

flood monitoring by maps of the maximum number of consecutive wet days, and 

historical drought monitoring by maps of the maximum number of consecutive 

dry days and by the Standardized Precipitation Index (SPI) (Yin, 2005; Shen, 

2005 (a); Shen, 2005 (b)).  

Alberta is one of major agriculture provinces in Canada. Therefore, 

information on its precipitation trend is very important. In practice, some 

statistical methods such as linear regression, moving average, and the Mann-

Kendal test are usually used to analyze the trend of the climate time series. We 

will focus these three methods on the historic trend analysis of ABClim 2.0 data 

here. The linear regression analysis provides us an overall trend which is a clear 

picture of decreasing or increasing or unchanged line in the whole analysis period 

However, the moving average will show us the detailed trend, a clear picture of 

curve which reveals the trend in each shorter period not the overall trend in the 

whole analysis period. The non-parametric Mann-Kendall (M-K) test was used to 
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test randomness against trend. The advantage of this non-parametric test is that it 

does not assume any special form for the distribution function of the data while 

this test’s power is nearly as high as that of parametric tests. Therefore, this test 

was found to be an excellent tool for trend detection in different applications, such 

as detecting the trend in climatological time series (Goosens and Berger, 1986).  

Besides the information on the precipitation trend, the information on the 

historic flood monitoring and drought monitoring is also important for agriculture 

in Alberta. We will apply the maps of the maximum number of consecutive wet 

days and consecutive dry days and the SPI method to the ABClim 2.0 data here. 

A drought index value is typically a single number, far more useful than raw data 

for monitoring drought. Various indicators and climatic indices have been 

developed by water resource and climatological professionals for use in drought 

planning. McKee et al. (1993) developed the Standardized Precipitation Index 

(SPI) for the purpose of defining and monitoring drought. The nature of the SPI 

allows an analyst to determine the rarity of a drought or an anomalously wet event 

at a particular time scale for any location in the world that has a precipitation 

record. The SPI is better than other indexes, such as Standardized Anomaly Index 

(SAI), and Principal Component Index (PCI), in reflecting the intensity and 

duration of drought. The SPI can reflect different aspects of the condition of the 

water resources at different time scales (Yin, 2005).  

      The organization of this chapter is as follows. Section 4.2 uses the 

methods of linear regression, moving average, and the Mann-Kendal test to 

analyze the trend of ABClim 2.0 data in the period of 1901 – 2002 for some 
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stations in Alberta. The maps of consecutive dry days and of consecutive wet days 

in each decade from 1901 – 2002 are created from the ABClim 2.0 data for 

Alberta in Section 4.3 and Section 4.4, respectively. Section 4.5 uses the SPI as 

the drought index to detect the historic extreme events like drought and flood for 

some stations in Alberta from the ABClim 2.0 data. The conclusions and 

discussion are presented in section 4.6. 

 

4.2 Trend Analysis of Precipitation Data 

         The time series of the Hybrid 2.0 summer total (from May to August, i.e., 

MJJA) precipitation data has a trend. Three statistics methods are used to detect 

the trends. The methods are as follows. 

(1). Linear Regression Analysis 

        Let iR  denote the precipitation time series which has the sample size of ,n
 

and it  denote the corresponding time. The simplest linear regression equation 

between iR
 
and it  

is constructed as  

i i i
ˆ + , i=1,2, ,n,                            (4.1)R a bt ε= + ⋯

where a  and b  are the regression parameters for the above straight line model, 

iε  are the residuals. This simple linear regression model is based on the 

assumption that the residuals are independent and normally distributed. The null 

hypothesis of this linear regression based trend test is 0 :  0H b =  which states 

that variable iR  is independent of it  and there is no significant linear relationship 
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between the variable them. To test whether the slope b  significantly apart from 

0 , t-test is used and the test statistic is defined as  

( )
ˆ

,
ˆ

b
t

SE b
=  

where b̂  is the estimated slope of the regression line and ( )ˆSE b  is the standard 

error of b̂ . According to the value of above test statistic, we can reject or accept 

the null hypothesis at some significance level like 0.01, 0.05, and 0.10. 

 

(2). K-year Central Moving Average  

Moving average is a basic method of the trend analysis technique, which is 

equivalent to a low-pass filter. The trend is revealed by the smoothness of the 

time series data. k-year central moving average is used to detect the trend in the 

precipitation time series here and is expressed as follows. 

( 1) / 2

( 1) / 2

1
 , ( 1) / 2,  ..., n-(k-1)/2,           (4.2)

k

i i j
j k

MA R i k
k

−

+
=− −

= = +∑  

where k  is the moving length, iR  denotes the precipitation time series, and n  is 

the total number of years. Here we use 11-year central moving average to 

analyze the detailed trend of the ABClim 2.0 data in the period of 1901-2002.  

 

(3). Mann-Kendall Trend Test 

Considering the time series x  with sample size n , we define a statistic as  



 

104 
 

1

,  2,3, , ,                        (4.3)
k

k i
i

s r k n
=

= =∑ ⋯                                     

where ir  is the cumulative number of  ( 1,2, , 1)i jx x j i> = −⋯ :  

1,  if , 
, 1,2, , 1,

0,  otherwise,
i j

j

x x
y j i

>
= = −


⋯  

1

1
1

0 and ,  2,3, , .
i

i j
j

r r y i n
−

=

= = =∑ ⋯  

 Under the null hypothesis of no trend, the statistics ks  is distributed as a normal 

distribution with expected value ( )kE s  and variance ( )kVar s  as follows: 

                

( ) ( )

( ) ( )( )

1
,

4                       (4.4)
1 2 5

.
72

k

k

k k
E s

k k k
Var s

−
=


− + =



 

The statistics ks  is then standardized as 

                                     
( )
( )

,  1,2,3, , ,          (4.5)k k
k

k

s E s
UF k n

Var s

−
= = ⋯  

where 1 0,UF =  so kUF  has a standard normal distribution. The null hypothesis of 

no trend will be rejected at a significance level of α  if the absolute value of nUF  

is greater than 
2

zα . That is, a statistically significant trend exists in the time series. 

For example, 
2

1.96zα =  when 0.05,α =  and 
2

2.58zα =  when 0.01α = .  

         In order to localize the beginning of the trend, the same procedure applied 

for the kUF  statistic is also applied to the retrograde series 1 1, , ,n nx x x− ⋯  to get 
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kUB . The graphical representations of the series kUF  and  kUB  are denoted as 

UF  and UB , respectively. In the case of a significant trend, the intersection of 

these two curves localizes the time when the trend starts (Feidas, 2007).  

Figure 4.1 displays the positive and negative MJJA precipitation trends at 

four stations. The linear trend lines show a non-significant decreasing trend in 

Edmonton (0.3%) and Calgary (4%) but a significant increasing trend in Peace 

Rive (38%) and High Level (28%). The 11-year moving average lines give more 

details about the MJJA precipitation changing trend. For Edmonton, it is 

characterized by two obvious decreasing periods (the early 1910’s - the early 

1920’s, and the early 1950’s to the early 1960’s) and two obvious increasing 

periods (from the early 1920’s to the end of the 1940’s, and from the early 1960’s 

to the end of the 1970’s).  Calgary has a significant decreasing trend from 1906 to 

the early 1920’s and a significant increasing trend from the end of the 1930’s to 

the early 1950’s, and from the end of the 1980’s to the middle of 1990’s. One 

obvious decreasing period (from 1906 to the end of the 1920’s) and one 

increasing period (from the early 1940’s to the end of the 1990’s) are 

characterized for Peace River. A significant increasing trend is located in the 

period of the early 1940’s to the end of the 1950’s, and a decreasing trend is 

located in the 1960’s for High Level.  

       In order to identify the intersection of the curves and thus enable the detection 

of the beginning of the trend or the change, graphical analysis is applied to the 

Mann-Kendall statistics time series kUF  and  kUB  to create the curves UF  and 

UB  (Feidas, 2007). The plots for four stations in Alberta are given in Fig. 4.2. 



 

106 
 

The analysis of the full range of figures shows the decreasing or increasing trend 

per station, as well as the approximate year when an abrupt MJJA precipitation 

change occurred. In Fig. 4.2(a), UF and UB intersect in 1976, and after 1976, the 

curve UF increases to positive, indicating that the period of 1976 – 2000 was a 

relatively wet period for Edmonton. However, 102 0.51 1.96UF = < . This result 

means that no significant trend occurred in MJJA precipitation from 1901 to 2002 

for Edmonton at the 0.05 significance level. Fig. 4.2(b) locates the intersection of 

UF and UB in 1987, and then UF increases to positive. Figure 4.2 (b) shows that 

the period of 1987-1999 was a relatively wet period for Calgary. As well, 

102 0.38 1.96UF = <  shows that no significant trend occurred in MJJA 

precipitation from 1901 to 2002 for Calgary at the 0.05 significance level. In Fig. 

4.2(c), 102 1.97 1.96UF = >  reflects a statistically significant increasing trend in 

MJJA precipitation from 1901 to 2002 for Peace River at the 0.05 significance 

level. The intersection of UF and UB, located between the interval (-1.96, 1.96), 

reveals that this increasing trend was an abrupt change which started in 1977. In 

Fig. 4.2(d), 102 2.12 1.96UF = >  reveals a statistically significant increasing trend 

in MJJA precipitation from 1901 to 2002 for High Level at the 0.05 significance 

level. The location of the intersection of UF and UB identifies this increasing 

trend as an abrupt change which started in 1949. The M-K test’s detection of the 

trend in MJJA precipitation is summarized in Table 4.1 for the stations 

represented in Fig. 4.3. Table 4.1 displays whether a statistically significant trend 

at the 0.05 significance level occurred in the period of 1901 – 2002 as well as the 
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first year of the abrupt change for this trend.  

 

 

 

Figure 4.1. Observed values, trend line and 11-year moving average of MJJA 

precipitation in some stations for the period 1901–2002 (black line: observed 

values, red line: linear trend, green line: 11-year moving average).  
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Figure 4.2. Mann-Kendall test of MJJA precipitation at four stations in Alberta for 

the period 1901–2002: (a) Edmonton Int’l A, (b) Calgary Int’l A, (c) Peace 

River A, (d) High Level A (red line: UF, blue line: UB).  
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Figure 4.3. The stations to which the Mann-Kendall test was applied to detect the 

MJJA precipitation trend for the period 1901–2002.  
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Table 4.1. Significant trend analysis at the 95% significance level by the M-K test 

for 1901-2002 MJJA precipitation.  

Stations MJJA precipitation trend 

  

HIGH LEVEL A 1949 + 

FORT CHIPEWYAN A 1949 + 

FORT VERMILION CDA 1982 + 

FORT MCMURRAY A 1959 + 

PEACE RIVER A 1977 + 

BEAVERLODGE CDA   o 

GRANDE PRAIRIE A o 

COLD LAKE A o 

WHITECOURT A     o 

LLOYDMINSTER A o 

EDMONTON INT'L o 

RED DEER A o 

CALGARY INT’L A o 

MEDICINE HAT  A o 

LETHBRIDGE CDA o 

Note: 1). ‘o’ means no significant trend.  
          2). ‘+’ means increasing trend which is an abrupt change. 
          3). The year means the beginning year of the increasing trend. 
          4). The data of each station used here is the ABClim 2.0 data of the grid  
               point nearest to this station. 
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4.3 Historical Drought Monitoring: Maps of the 

Maximum Number of Consecutive Dry Days in 1951-2000 

      To calculate the maximum number of consecutive dry days in a certain 

time period, a decade is chosen here (Shen et al., 2005 (a)). A severe drought 

event is very likely to happen if the number is very large. The maximum number 

of wet and dry days depends on the chosen criteria. In this study, the criteria of 

0.5 mm is used; that is, if the daily precipitation amount is less than 0.5 mm, that 

day will be considered a dry day for the reason that the small amount of 

precipitation like 0.5 mm does not relieve the drought situations during the 

continuous dry days (Shen et al., 2005 (a)). This thesis does not use a rigorous 

estimate. We calculate the maximum number of dry days for every grid point in 

each decade period; that is, each grid point has a number for each decade. Five 

maps are generated for the ten decades: 1951-1960, 1961-1970, …, 1991-2000 

(Figs. 4.4 – 4.8). These maps help reveal the locations of historical severe drought 

events. More than 100 days without effective precipitation would certainly have a 

significant impact on the local agriculture and everything else related to the water 

supply. Figure 4.4 reveals that severe drought events happened mainly in a small 

region of southern Alberta. By comparing the corresponding maps of 

Saskatchewan and Manitoba in (Shen et al., 2005 (a)), Manitoba had more severe 

drought events than Alberta and Saskatchewan during 1951 – 2000. 
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Figure 4.4. Maximum number of consecutive dry days over Alberta during 1951-

1960. 
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Figure 4.5 Maximum number of consecutive dry days over Alberta during 1961-

1970. 

 

 



 

114 
 

 

 

 

 

 

Figure 4.6. Maximum number of consecutive dry days over Alberta during 1971-

1980. 
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Figure 4.7. Maximum number of consecutive dry days over Alberta during 1981-

1990. 
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Figure 4.8. Maximum number of consecutive dry days over Alberta during 1991-

2000. 
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4.4 Historical Flood Monitoring: Maps of the Maximum 

Number of Consecutive Wet Days in 1951-2000 

This section studies the maximum number of wet days in 1951 - 2002. As 

the station instrument’s common resolution is 0.2 mm a day, 0.2 mm is used as 

the wet-day criterion for the calculation here (Shen et al., 2005 (a)). We calculate 

the maximum number of days with a daily precipitation greater or equal to 0.2 

mm for each decade time window and for every grid point. Each grid point thus 

has a number for every decade.  Ten maps are generated for the ten decades: 

1951-1960, 1961-1970, …, 1991-2000 (Figs. 4.9 – 4.13). Comparing Figs. 4.9 – 

4.13 and Figs. 4.4 – 4.8, we find that the maximum numbers of consecutive wet 

days are much smaller than those of dry days.  Figures 4.4 – 4.8 demonstrate that 

the maximum number of consecutive wet days is relatively larger in the area 

along the Rocky Mountains and in part of central Alberta than that in other areas 

like southern Alberta and northern Alberta. The comparison to the corresponding 

maps of Saskatchewan and Manitoba in (Shen et al., 2005 (a)) shows that Alberta 

had larger numbers of consecutive wet days than Saskatchewan and Manitoba 

during the period of 1951 -2000.  
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Figure 4.9. Maximum number of consecutive wet days over Alberta during 

1951-1960. 
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Figure 4.10. Maximum number of consecutive wet days over Alberta during 

1961-1970. 
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Figure 4.11. Maximum number of consecutive wet days over Alberta during 

1971-1980. 
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Figure 4.12. Maximum number of consecutive wet days over Alberta during 

1981-1990. 
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Figure 4.13. Maximum number of consecutive wet days over Alberta during 

1991-2000. 
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4.5 Drought Monitoring: Standardized Precipitation 

Index Analysis 

Precipitation distribution is usually a skewed distribution, not a normal 

distribution, particularly in a short time scale. Thom (1966) found that the gamma 

distribution fits climatological precipitation time series well. The gamma 

distribution is used to construct a "Standardized Precipitation Index" (SPI); i.e., a 

transformation of precipitation amounts that approximates a standard normal 

distribution. The gamma probability density function is 

11
( | , ) ,  ( 0),                                                (4.6)

( )
xf x x e xα β

αα β
β α

− −= >
Γ

 

where 0α >  is the shape parameter, 0β >  is the scale parameter, x  is the 

precipitation amount, and ( )αΓ  is the gamma function which has the following 

form 

1

0
( ) .                                                       (4.7)yy e dyαα

∞ − −Γ = ∫
 

In the computation of SPI, the parameters α  and β  in (4.6) need to be estimated 

for each station, each time scale of interest, and each month of the year. The 

maximum likelihood estimate of α  and β  can be obtained by an iterative 

algorithm. We employ the following simple approximation of the maximum 

likelihood estimator proposed by Thom (1966):    

                                       
1 1 4 3

ˆ ,                                                       (4.8)
4

A

A
α

+ +
=                                                      
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ˆ ,                                                                        (4.9)
ˆ
xβ
α

=

                                                                          

where  

( ) ( )
1

ln ln ,                                               (4.10)
n

i
i

A x x n
=

= −∑

 

and n  is the length of the precipitation time series. Thus, the cumulative 

probability of an observed precipitation event for the given month and time scale 

for the station can be calculated as follows:  

( )
ˆˆ 1

ˆ0 0

1
( | , ) ,  for 0,

ˆ ˆ              (4.11)( )

0, for 0.

x x uf u du u e du x
F x

x

α β
α

α β
β α

− − = >= Γ
 ≤

∫ ∫

 

Let X  be a random variable denoting the amount of precipitation at a specified 

location over a specified period of time. There is a probability q > 0 of no 

precipitation. The Gamma cumulative distribution function F  is used to model 

the conditional distribution of X  given that X  is positive. Let Φ  be the 

cumulative distribution function for the standard normal distribution. A simple 

calculation shows that the conditional distribution ( )( )1 F X−Φ given 0X >  is 

standard normal. This result assumes only that F  is a continuous cumulative 

distribution function. The SPI is obtained using a similar transformation for the 

unconditional distribution of X ; i.e.,  

( ) ( )(1 ) ,  for 0,
                                         (4.13)

0,  for 0.

q q F x x
H x

x

 + − ≥
=  <

 

The unconditional distribution has a discontinuity at 0x = , so it is not possible to 
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obtain a transformation yielding exact normality. Thom (1966) introduced a 

transformation that approximates a standard normal. The detailed transformation 

and approximation was provided by Abramowitz and Stegun (1965) on Page 933 

as following: 

( ) ( )

( ) ( )

2
0 1 2

2 3
1 2 3

2
0 1 2

2 3
1 2 3

1

1

,   when 0 0.5,

, when 0.5 1,

c c t c t

d t d t d t

c c t c t

d t d t d t

t H x
SPI

t H x

+ +
+ + +

+ +
+ + +

− − < ≤
= 
 − < <


                (4.14) 

where 

            
( )( ) ( )

( )( )( ) ( )

2

2

ln 1 , when 0 0.5,

 ln 1 1 , when 0.5 1,

H x H x
t

H x H x

 < ≤= 
 − < <


                  (4.15) 

0

1

2

1

2

3

2.515517,

0.802853,

0.010328,

1.432788,

0.189269,

0.001308.

c

c

c

d

d

d

=
=
=
=
=
=

  

McKee et al. (1993) defined the criteria for a "drought event", which, occurs 

any time the SPI value is continuously negative and reaches -1.0 or less. The 

event ends when the SPI value becomes positive. Each drought event, therefore, 

has a duration defined by its beginning and end, and an intensity for each month 

that the event continues. The drought and flood levels determined by the SPI 

value are displayed in Table 4.2. The ABClim2.0 data on the nearest grid point of 

each station (Edmonton Int’l A, Calgary Int’l A, High Level A, and Peace River 

A) are used here to compute the SPI values and create the figures 4.14 – 4.21. 
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Figures 4.14, 4.16, 4.18, and 4.20 show that the SPI values for the time scale of 3 

months and 6 months have larger fluctuations of positive or negative but smaller 

fluctuations for 12-month and 24-month time scales. The SPI value for different 

time scales has different sensitivity to the precipitation amount. As the time scale 

becomes smaller, the SPI value has a larger change, even in the fluctuation of 

positive or negative for the changes in one month’s precipitation amount. In 

contrast, for the larger time scales, the SPI value responds more slowly to one 

month’s precipitation variation. Only many periods of continuous precipitation 

can make the SPI value fluctuate. Thus, there are fewer but longer periods with 

negative and positive SPI value. The SPI characteristics for the different time 

scales are highlighted by the results presented in Figures 4.14, 4.16, 4.18, and 

4.20. These results agree with the observations reported by McKee et al. (1993). 

Thus, it is reasonable to use SPI for the larger time scales for monitoring the long-

term water status (McKee et al., 1993 and Seiler et al., 2002).   

        Figures 4.15, 4.17, 4.19 and 4.21 demonstrate the comparison of the SPI 

values with the precipitation for the period of May to August in Edmonton, 

Calgary, Peace River and High Level, respectively. For Edmonton, the SPI can 

capture 19 drought events, which are in 1917, 1919, 1922, 1929, 1931, 1939, 

1945, 1948, 1950, 1957, 1958, 1961, 1963, 1967, 1968, 1969, 1984, 1992 and 

2002. As well, the drought events of 1950, 1967 and 2002 are extreme dry, as the 

SPI values for these years are less than -2.0. SPI can capture two extremely wet 

events as well, which were in 1901 and 1954. There were 494 mm and 451.5 mm 

precipitation in total for the period of May to August in those two years, 



 

127 
 

respectively (Fig 4.15).   

 

 

Table 4.2. Classification scales for the SPI values. 

SPI Values  Drought and Flood Level  

2.0+ extremely wet 

1.5 to 1.99 very wet 

1.0 to 1.49 moderately wet 

-.99 to .99 near normal 

-1.0 to -1.49 moderately dry 

-1.5 to -1.99 severely dry 

-2.0 and less extremely dry 
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Figure 4.14. SPI values calculated from the 1901 – 2002 precipitation time series 

for different time scales at Edmonton Int’l A station. 
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Figure 4.15. SPI values calculated from the 1901 – 2002 MJJA precipitation time 

series VS MJJA precipitation at Edmonton Int’l A station.  
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Figure 4.16. SPI values calculated from the 1901 – 2002 precipitation time series 

for different time scales at Calgary Int’l A station. 
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Figure 4.17. SPI values calculated from the 1901 – 2002 MJJA precipitation time 

series VS MJJA precipitation at Calgary Int’l A station. 
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Figure 4.18. SPI values calculated from the 1901 – 2002 precipitation time series 

for different time scales at High Level A station. 
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Figure 4.19. SPI values calculated from the 1901 – 2002 MJJA precipitation time 

series VS MJJA precipitation at High Level A station. 
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Figure 4.20. SPI values calculated from the 1901 – 2002 precipitation time series 

for different time scales at Peace River A station. 
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Figure 4.21. SPI values calculated from the 1901 – 2002 MJJA precipitation time 

series VS MJJA precipitation at Peace River A station. 
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At Calgary, 15 droughts are captured by SPI and the droughts of 1910, 1918, 

1920, 1922, 1929, 1933, 1936, 1967 and 1979 are severe events, as the 

corresponding SPI values are less than -1.50. The SPI also captures some of the 

extremely wet events of 1902 and 1951, with MJJA precipitation of 615.7 mm 

and 458.3 mm, respectively (Fig 4.17). Figure 4.19 represents some of the severe 

droughts of 1901, 1905, 1915, 1948 and 1961 ( 1.50SPI ≤ − ) and the very wet 

events of 1957, 1960, 1962, 1973, 1984, 1987 and 1997 ( 1.50SPI ≥ ) at High 

Level. The drought event of 1901 was extremely dry, as its MJJA precipitation 

was only 56.7 mm, and the corresponding SPI value is -3.97. The wet events of 

1957, 1962 and 1973 are extremely wet, as their MJJA precipitations were over 

400 mm, and the corresponding SPI values are greater than 2.0. For Peace River, 

the SPI captures some of the historic severe drought events of 1912, 1922, 1938, 

1940, 1945, 1958, 1967 and 1969 and the historic wet events of 1913, 1957, 1964, 

1973, 1988, 1996, 1997 and 2000, among which there are extremely droughts in 

1958 (the MJJA precipitation was 27.3 mm and its corresponding SPI is even less 

than -3.0) and 1967 (the MJJA precipitation was 63.6 mm and its corresponding 

SPI is less than -2.0), as well as extremely wet events in 1964 and 2000 (the 

MJJA precipitation was over 400 mm, and the corresponding SPI values are 

larger than 2.0 in these two years).  

 

4.6 Conclusions 

A trend analysis of the MJJA total precipitation time series for the period of 

1901 to 2002 at some stations in Alberta like Edmonton and Calgary was been 
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carried out by using the linear regression and moving average methods. In this 

study, the linear regression analysis showed that a slight decreasing trend for 

Edmonton and Calgary and an obvious increasing trend for Peace River and High 

Level in the MJJA total precipitation time series from 1901 to 2002. The detailed 

increasing or decreasing trend in each shorter time period was given by the 11-

year moving average. The graph of the moving average also showed the relatively 

dry and relatively wet periods, respectively. In this study, we also detected the 

trend in the MJJA total precipitation for the whole period from 1901 to 2002 at 

some stations in Alberta by using the Mann-Kendall test at the 5% significance 

level. Significant upward trends were found at High Level and Peace River, and 

no significant trends were found at Edmonton and Calgary. The results of the 

Mann-Kendall test were consistent with those of the linear regression. However, 

the Mann-Kendall test is still just a statistical method for processing data although 

it has been applied in many cases and been found to be an excellent tool for trend 

detection. Theoretical research work is needed in order to learn the physical 

meaning of the temporal and spatial patterns of the climatic data. 

        The maps of the maximum consecutive dry days for each decade were 

generated over Alberta to give the spatial distribution of the severe droughts in 

every decade. Southern Alberta had the largest number of maximum consecutive 

dry days and the smallest number of maximum consecutive wet days. Both results 

are consistent with each other and show that southern Alberta is drier than other 

areas in Alberta.   
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       In this chapter, we also used SPI to assess the Hybrid 2.0 data and then 

monitor the past drought conditions at some stations in Alberta. Most of the 

severely dry or wet events were captured by the SPI assessment. The advantage of 

using SPI is that its calculation is simple and it is easy to obtain the information 

needed in the calculation. One superior characteristic of SPI is that it can be 

computed at multi-time scales and, thereby, meet the needs of different water 

resource assessments and drought monitoring services. Thus, SPI provides a 

uniform drought indicator for various departments and areas like water-resources 

assessment and different time scales for drought-monitoring services.  
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Chapter 5  

Discussions on EOF Modes and the Sensitivity 

of Data Errors 

 

5.1 Introduction 

        Generally, a reduced set of EOFs is able to describe most of the variance in a 

data set, in particular those sets with the largest eigenvalues. The EOF method 

will fail to represent important characteristics of the low-frequency variability if 

too few EOFs are selected.  As well, if too many EOFs are retained, the statistical 

significance will be compromised due to the noise. The ability to represent a 

physical signal by a reduced set of EOFs, and to preserve the signal’s physical 

significance is the main advantage of using EOF analysis in practice, where such 

a reduction can significantly diminish the size of the algebraic calculations 

involved.  

Due to the fundamental characteristic of EOF analysis, the problem in using 

EOFs is how to distinguish the EOFs which represent physically significant 

modes from those purely noisy EOFs and then to retain the significant EOFs only. 

In general, three groups of methods are used for selecting the significant EOFs 

depending on whether they focus on the eigenvalues, the principal components or 

the EOFs. The first group contains the methods based on the amount of the data 
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variance explained, or on the size of the eigenvalues. North’s rule of thumb 

(North et al. 1982) belongs to this group. The second group includes the methods 

based on statistical hypotheses for separating signal and noise eigenvalues. The 

most often used of these methods is “Rule N” (Preisendorfer and Barnett, 1977; 

Overland and Preisendorfer, 1982; Preisendorfer, 1988). However, due to its 

statistical nature, this selection rule could fail when the sample size is small. The 

third group includes the spatial map methods based on the examination of the 

EOF patterns that should resemble some predefined or true signal mode patterns.  

         In our EOF-based linear interpolation, the random measurement error jE  

for a given location jr  and time t  are included. The error variance 2jE  is 

required in Eq. (2.48) for computing the optimal weights. Because the exact value 

of the random measurement error jE  is not available, the estimated error variance 

is used in our study. It is thus necessary to test if the optimal weights are sensitive 

to the exact size of the error variance.  

In this chapter, the Rule N and North’s rule of thumb are tested for selecting 

the significant EOFs, and the method for choosing the optimal set of EOF based 

on the EOF reconstruction is discussed. We also test the sensitivity of the EOF-

based linear reconstruction to the size of the error variance. The organization of 

this chapter is as follows. In Section 5.2, we discuss the rules for selecting the 

significant EOFs and apply them to the monthly total precipitation data in the 

period of 1961-2000. In Section 5.3, the optimal set of EOFs in the EOF 

reconstruction is selected for the same data set and time period. In Section 5.4, we 
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test the sensitivity of the EOF-based linear reconstruction to the size of the error 

variance. Our conclusions and discussion are presented in Section 5.5. 

 

5.2 Significance Test of EOF Modes 

       As we discussed above, several methods can be used to identify the 

significant EOFs. The Rule N and the North’s rule of thumb will be discussed 

here.  

 

5.2.1 Rule N Test 

         The Rule N technique for EOF mode selection is a dominant-variance rule 

which selects eigenvalues for which the geophysical signal is above the level of 

noise. The technique is based on a Monte Carlo experiment which simulated the 

sampling data from the standard normal distribution. The procedure of this 

significance test is as follows. First, we generate a floating-point, pseudo-random 

N P× data matrix R  with a standard normal distribution by a random generator. 

Second, the covariance matrix TC R R N=  and its eigenvalues 'd s  are computed 

and sorted in descending order. Third, the above two steps are repeated one 

hundred times. Fourth, we let rjd  denote the  ( 1,2, , )jth j P= ⋯  eigenvalue in the 

 ( 1,2, ,100)rth r = ⋯  Monte Carlo experiment. We compute the normalized 

eigenvalues produced by the rth  Monte Carlo experiment as 

                           
1

,  1,2, , ,
P

r r r
j j i

i

U d d j P
=

= =∑ ⋯                         (5.1) 
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which are sorted in ascending order; that is, for fixed j , we have 

1 2 100.j j jU U U≤ ≤ ≤⋯ Fifth, we compute the eigenvalues  ( 1,2, , )j j Pλ = ⋯  of the 

covariance matrix of the real data and sort them in descending order: 

1 2 .Pλ λ λ> > >⋯  Also, the normalized eigenvalues are computed as  

1

,  1,2, , .
P

j j i
i

T j Pλ λ
=

= =∑ ⋯                                       (5.2) 

Finally, for each 1,2, ,j P= ⋯ , the value jT  is compared with the value 95
jU . This 

latter value provides an estimate of the 95th percentile of the distribution of the jth 

eigenvalue when the data are white noise (no signal). The Rule N gives us a 

number cM  which is the largest integer m  such that 95
m mT U> . It means that the 

first cM  eigenvalues are selected for which the geophysical signal is above the 

level of noise, and the corresponding cM  EOF modes may contain physical 

meaning which can be interpreted. We thus retain only the eigenvalues for which 

the ratio 95 1.j jT U >  

Overland and Preisendorfer (1982) presented a table of 95
jU  values for 

different values of N  and P  which showed that the values of 95
jU  become 

smaller as the values of N  and P  become larger. Thus, if the length of the time 

series and the number of stations are smaller, the values of 95
jU  will be larger so 

that fewer eigenvalues will be retained. In this case, some eigenvalues may not be 

retained for which the ratio 95
j jT U  is not large enough to have physical meaning, 
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but they do contribute to the significant percentage of the total variance. The data 

record should therefore be reasonably long in an EOF analysis.  

Next, we apply the Rule N test to the monthly precipitation over Alberta for the 

period of 1961 - 2000. The Hybrid 1.0 data on the 0.25-by-0.5 degrees latitude 

and longitude grid and the 0.1-by-0.2 degrees latitude and longitude grid are used 

to this application, respectively. That is, we have 40 years’ data on 808 and 4862 

grid points, respectively. Tables 5.1 and 5.2 contain the normalized eigenvalues of 

the above two data sets. Rule N is satisfied with values of 95  >1.0j jT U . 

Therefore, for the resolution of the 0.25-by-0.5 degrees latitude and longitude 

grids, only the first 6 modes in January (representing 76% of the total variance), 

March (69%), April (72%), May (76%), June (77%), July (72%), August (75%), 

October (72%) and November (77%); the first 5 modes in February (72%) and 

September (77%); and the first 7 modes in December (76%) can be interpreted as 

signals. For the resolution of the 0.1-by-0.2 degrees latitude and longitude grids, 

only the first 8 modes in January (82%) and April (78%); the first 7 modes in 

March (73%), May (79%), August (78%), October (76%) and December (76%); 

and the first 6 modes in February (76%), June (77%), July (73%), September 

(81%) and November (77%) can be interpreted as signals. We can see that in this 

EOF analysis, the number of EOF modes which pass the Rule N test satisfy the 

hoc rule of thumb, that is, explain over 70% of the total variance for the analyzed 

data set.  

In applying Rule N to EOF analysis, some eigenvalues may not pass the Rule 

N test but do represent a significant percentage of the total variance. Another 
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Table 5.1. Normalized EOF eigenvalues for 1961-2000 Hybrid 1.0 data set on the 

0.25-by-0.5 degrees latitude and longitude grids: N=40, P=808 (Here 

95 and j jT U  are multiplied by 100.). The boldface values in the table indicate 

the smallest values of 95  >1.0j jT U . 

 

Month j=1         j=2        j=3       j=4        j=5        j=6         j=7        j=8        j=9          

 Tj         40.84      14.43     7.68      5.33       4.00       3.69       3.21      2.83      2.08 
95

U j       3.83        3.67      3.57      3.47       3.40       3.31       3.24       3.18       3.11    
95T Uj j 10.66       3.93      2.15     1.54        1.18       1.11       0.99       0.89       0.67  

 
JAN 

 

 
FEB 
 

Tj        43.31     5.08         5.63      4.63       3.81       3.08       2.69        2.26     1.95 
95

U j      3.83       3.67        3.57       3.47       3.40      3.31      3.24         3.18       3.11 
95T Uj j 11.31     4.11       1.58       1.33        1.12      0.93      0.83         0.71     0.63 

MAR 
 

Tj       30.91     16.87       6.86       5.59       5.04       4.16       3.17        2.81       2.61 
95

U j      3.83      3.67         3.57      3.47       3.40      3.31        3.24       3.18        3.11 
95T Uj j  8.07     4.60        1.92      1.61        1.48      1.26        0.98      0.88        0.84 

 
APR 
 

Tj       26.93    17.30        9.67      8.79       5.58       3.68        3.09      2.85         2.35 
95

U j      3.83     3.67         3.57      3.47       3.40        3.31        3.24        3.18        3.11 
95T Uj j 7.03    4.71         2.71       2.53       1.64        1.11        0.95       0.90       0.76 

 
MAY 
 

Tj        34.80   20.20        6.95       5.55       4.91       3.54        2.83       2.45        2.01 
95

U j      3.83      3.67        3.57       3.47        3.40       3.31       3.24        3.18       3.11 
95T Uj j 9.09      5.50        1.95       1.60        1.44       1.07       0.87        0.77      0.65 

 
JUN 

Tj         29.47   18.28       13.46       6.89       5.14       3.64       2.75       2.51        1.78 
95

U j        3.83    3.67          3.57       3.47       3.40       3.31       3.24      3.18         3.11 
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95T Uj j  7.69     4.98          3.77       1.99        1.51      1.10       0.85       0.79       0.57 

 
JUL 
 

Tj          22.29   19.91      12.85       7.69        5.06       4.64       2.67      2.53        2.41 
95

U j        3.83     3.67         3.57        3.47        3.40       3.31      3.24       3.18        3.11 
95T Uj j  5.82     5.43         3.60         2.21        1.49       1.40      0.82       0.80        0.77 

 
AUG 
 

Tj         37.47      14.59       8.78         6.03        4.30      3.44      2.95     2.61      1.97 
95

U j       3.83         3.67        3.57        3.47         3.40      3.31      3.24     3.18       3.11 
95T Uj j   9.78       3.98         2.46       1.74         1.26       1.04      0.91     0.82      0.63 

 
SEP 
 

Tj          41.42     17.48        7.13        6.18         4.73      3.31       2.65     2.33      1.77 
95

U j        3.83       3.67          3.57       3.47         3.40       3.31       3.24     3.18      3.11 
95T Uj j  10.81      4.76          2.0         1.78         1.39       1.0         0.82      0.73     0.60 

OCT Tj          32.36    15.33         8.33        6.86         5.59       4.01      2.90      2.66      2.23 
95

U j        3.83      3.67         3.57         3.47          3.40       3.31      3.24      3.18     3.11 
95T Uj j   8.45      4.18         2.33        1.98          1.64        1.21      0.90      0.84     0.72 

 
NOV 
 

Tj          41.29    15.55       7.26        4.60           4.31        3.60      2.77      2.02     1.90 
95

U j        3.83      3.67         3.57        3.47          3.40         3.31       3.24     3.18    3.11 
95T Uj j  10.78     4.24        2.03        1.33           1.27        1.09        0.85     0.64    0.61 

 
DEC 

Tj          32.45    17.75       7.03         5.91         5.26        3.77       3.57      2.68     2.29 
95

U j        3.83     3.67         3.57         3.47        3.40         3.31       3.24      3.18     3.11 
95T Uj j  8.47      4.84        1.97        1.70         1.55         1.14        1.10     0.84      0.74 
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Table 5.2. Normalized EOF eigenvalues for 1961-2000 Hybrid 1.0 data set on the 

0.1-by-0.2 degrees latitude and longitude grids: N=40, P=4862 (Here 

95 and j jT U  are multiplied by 100.). The boldface values in the table indicate 

the smallest values of 95  >1.0j jT U . 

 

Month j=1         j=2         j=3        j=4         j=5         j=6         j=7         j=8         j=9          

 Tj          41.31      14.30      7.71       5.26       4.13       3.64        3.12       2.82       2.05 
95

U j       3.04        2.99        2.95        2.92      2.88       2.86         2.83       2.81      2.79   
95T Uj j   13.59     4.78       2.61        1.80       1.43        1.27        1.10       1.01      0.73 

 
JAN 

 

 
 
FEB 
 

Tj        43.67       15.17      5.59        4.56       3.77        3.10        2.72       2.21     1.90 
95

U j      3.04        2.99         2.95        2.92      2.88         2.86        2.83      2.81      2.79 
95T Uj j 14.37     5.07        1.89         1.56       1.31         1.08        0.96      0.79     0.68 

 
MAR 
 

Tj        31.27      16.92      6.86        5.61        4.97        4.13         3.20      2.77     2.63 
95

U j      3.04        2.99        2.95        2.92        2.88       2.86         2.83     2.81      2.79 
95T Uj j 10.29     5.66        2.33        1.92        1.73        1.44         1.13      0.99     0.94 

APR 
 

Tj        27.28     17.19       9.56        8.81        5.56        3.63        3.12       2.84      2.29 
95

U j     3.04        2.99        2.95        2.92        2.88        2.86         2.83      2.81      2.79 
95T Uj j 8.97      5.75        3.24        3.02         1.93        1.27        1.10     1.01       0.82 

 
MAY 
 

Tj       35.13     20.40       6.88       5.51        4.95         3.49          2.89     2.38      2.04 
95

U j     3.04      2.99         2.95       2.92         2.88         2.86         2.83     2.81      2.79 
95T Uj j 11.56   6.82        2.33       1.89          1.72        1.22          1.02     0.85    0.73 

 
JUN 

Tj        29.84   18.25     13.44        6.84        5.16         3.60        2.71      2.53      1.75 
95

U j      3.04     2.99       2.95          2.92        2.88         2.86        2.83     2.81       2.79 
95T Uj j 9.82    6.10        4.56         2.34         1.79        1.26        0.96      0.90      0.63 
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JUL 
 

Tj        22.60    20.19    13.06        7.54        4.98        4.59         2.64       2.52       2.35 
95

U j      3.04      2.99       2.95         2.92        2.88        2.86         2.83       2.81      2.79 
95T Uj j 7.43     6.75       4.42        2.58       1.73          1.60         0.93       0.90      0.84 

 
AUG 
 

Tj       37.83      14.84       8.67       6.05      4.29        3.46       2.84      2.51        1.92 
95

U j     3.04         2.99        2.95       2.92      2.88        2.86       2.83      2.81        2.79 
95T Uj j 12.44      4.96        2.94       2.07    1.49          1.21       1.01     0.89        0.69 

 
SEP 
 

Tj       41.81        17.62     7.13        6.06      4.65        3.28       2.59      2.33       1.73 
95

U j     3.04          2.99       2.95        2.92      2.88        2.86       2.83      2.81      2.79 
95T Uj j 13.75       5.89        2.42       2.08      1.61        1.15       0.92      0.83      0.62 

 
OCT 

Tj       32.55       15.41       8.28        6.90      5.57       3.94        2.87       2.66       2.26 
95

U j    3.04          2.99        2.95        2.92       2.88       2.86        2.83       2.81       2.79 
95T Uj j 10.71      5.15        2.81        2.36       1.93       1.38        1.01       0.95       0.81 

 
NOV 
 

Tj        41.53      15.58       7.17        4.71       4.18       3.56        2.78       2.03      1.87 
95

U j      3.04        2.99        2.95         2.92       2.88        2.86       2.83      2.81      2.79 
95T Uj j 13.67     5.21        2.43         1.61       1.45        1.24        0.98     0.72        0.67 

DEC Tj       32.94     17.57       7.09          5.91       5.25        3.77        3.66      2.68       2.24 
95

U j     3.04       2.99       2.95            2.92      2.88         2.86       2.83      2.81       2.79 
95T Uj j 10.84   5.88        2.40           2.02        1.82       1.32       1.29       0.95      0.80 
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point worth noting is that some EOF modes may pass the Rule N test but 

represent a very low percentage of the total variance. In the latter case, these 

modes do not need to be analyzed, for the signal is very weak.  

 

5.2.2 North’s Rule of Thumb 

North et al. (1982) presented a “rule of thumb” by showing that the standard 

error in the estimation of the eigenvalues kλ  can be computed as 

2
,k k N

δλ λ≈                                                        (5.3) 

and the standard error of the corresponding EOF kψ  is then computed as 

k
k j

j k

δλδψ ψ
λ λ

≈
−

                                                  (5.4)  

if the space between kλ  and its closest neighbor is small and those between kλ  

and other eigenvalues are very large, where N  denotes the number of 

independent samples. North’s rule of thumb is very useful to decide whether an 

EOF is likely to be subject to large sampling fluctuations and to determine the 

maximum number of EOFs that are well separated from each other and are to be 

retained in an EOF analysis. North’s rule of thumb states that if the standard error 

kδλ  of kλ  is comparable or larger than the space between the eigenvalue kλ  and 

its closest neighbor, then the estimation error kδψ  of the corresponding EOF will 

be comparable to the size of the neighboring EOF. That is, only the EOF for 

which the standard error of the corresponding eigenvalue is less than the 
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difference between the eigenvalue and its closest eigenvalue will be retained in 

the EOF analysis. 

         Here, we use the same data sets as in Section (5.2.1) to test North’s rule of 

thumb for deciding on the number of EOFs to keep. Fig. 5.1 presents a schematic 

diagram of the first ten eigenvalues derived from the Hybrid 1.0 data set with the 

resolution of the 0.25-by-0.5 degrees latitude and longitude grids. If no overlap is 

found between the confidence intervals k kλ δλ±  of successive eigenvalues, then 

the corresponding EOF modes are not degenerated (Anderson, 1963). An overlap 

with successive mode is found from the third mode for January, February, March, 

April, May, August, September, October, November and December 

(JFMAMASOND), from the second mode for June and from the first mode for 

July. Therefore, the two leading patterns are well separated and potentially 

meaningful to keep for JFMAMASOND, which explain roughly 55%, 58%, 48%, 

44%, 55%, 52%, 59%, 48%, 57%, and 50% of the total variance, respectively, 

and the first leading patterns are significant for June, which represents 29% of the 

total variance. All modes are degenerated for July by North’s rule of thumb. Fig. 

5.2 shows a schematic diagram of the first ten eigenvalues derived from the 

Hybrid 1.0 data set with the resolution of the 0.1-by-0.2 degrees latitude and 

longitude grids. Figure 5.2 reveals that the same number of leading patterns are 

well separated and therefore significant, JFMAMASOND, as in Fig. 5.1, and that 

these patterns represent roughly 55%, 58%, 48%, 44%, 56%, 53%, 59%, 48%, 

57%, and 51% of the total variance, respectively. As well, the first leading 

patterns are significant for June, which represents 30% of the total variance, and 
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all EOF modes are non-significant for July. As no significant modes will be 

retained for July by this rule, we will not use North’s rule of thumb as the method 

for selecting the significant modes in our EOF based linear reconstruction. 

However, the Rule N test and North’s rule of thumb will be combined in the 

following section to define the lower threshold for the truncation level in our 

EOF-based linear reconstruction. 
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Figure 5.1. Schematic diagram of the first ten eigenvalues derived from the 

Hybrid 1.0 data set on the 0.25-by-0.5 degrees latitude and longitude grids: 

N=40, P=808. 
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Figure 5.2. Schematic diagram of the first ten eigenvalues derived from the 

Hybrid 1.0 data set on the 0.1-by-0.2 degrees latitude and longitude grids: 

N=40, P=4862. 
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5.3 Selection of the Optimal Set of EOFs  

       In the EOF-based linear reconstruction, the reduced number (M ) of EOFs is 

retained in order that the difference between the reconstructed data and the 

observed data is minimized and that the computation is reduced. In this section, 

our purpose is to find the optimal value of M  so that the signal of the lower 

orders  ( )M≤  can be used in the reconstruction while the noise of the higher 

orders  ( )M>  can be ignored. A criterion based on the analysis of the size of the 

eigenvalues and the interpolation errors (RMSE and MAE) between the observed 

data and the data reconstructed by the reduced set of EOFs will be used to decide 

whether a reduced set of EOFs is optimal, that is, to find the optimal set of EOFs. 

First, the North et al. (1982) error is combined with the Monte Carlo test to decide 

on the lower threshold for the truncation level, say 'M . Next, we choose a set of 

withheld stations that have complete daily observation data over the studied 

period and have been reasonably sampled in the studied area. Then we discard the 

selected stations from the data set and interpolate these values by using a reduced 

set of EOF modes. Lastly, we compare the interpolated values to the data we put 

aside and calculate the average interpolation error for these stations. Of course, 

the found optimal number of EOFs is the one that minimizes the interpolation 

errors, which are the RMSE and MAE between the interpolated fields at these 

stations and the observed data there. We first apply the EOF-based linear 

interpolation method with the 'M  EOFs retained and calculate the average of both 

the RMSE and MAE values for the withheld stations. Second, ( 'M +1)th EOF is 
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now taken into account in the interpolation method and used to interpolate the 

values on these stations. Third, we calculate the average RMSE and MAE values 

again and compare them with the last ones. If both the RMSE and MAE values 

start to increase at the first time, the procedure stops; otherwise, we continue with 

more and more EOFs and repeat the above three steps. With this cross-validation 

technique, we can thus find the optimal number, say M , of EOFs and an RMSE 

and MAE estimation of the interpolation procedure. Note that the number of 

modes in our reconstruction is varied from month to month.  

      In this study, the EOFs are calculated from the 1961 – 2000 dataset, and the 

interpolated period is also 1961 -1990. Twenty-two withheld stations across 

Alberta are selected to calculate the average RMSE values, and their locations are 

presented in Figure 5.3. Figure 5.4 shows the percentage of variance explained by 

the 20 leading EOF modes derived from the 1961 – 2000 Hybrid 1.0 dataset on 

the 0.25-by-0.5 degrees latitude and longitude grids. In Figure 5.4, the EOF 

modes error bars were estimated by using North et al. (1982)’s rule of thumb test, 

and the thick line represents the significance level obtained by using the Monte 

Carlo test (Li et al. 2000). Both tests have 95% confidence. The Monte Carlo test 

allows us to distinguish the explained variance obtained from the EOF analysis by 

testing it against a white noise null hypothesis. The significances of the EOF 

modes estimated by using North’s rule of thumb are based on comparing the 

separation among the neighboring eigenvalues with the sampling error (Taschetto 

and Wainer, 2008). By considering the EOF modes for which the North’s rule of 

thumb error bars are above the Monte Carlo test lines in Figure 5.4, we determine 
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the lower threshold for the truncation level, say 'M , for each month (Table 5.3). 

By comparing the average RMSE and MAE values of the interpolation and 

retaining one more EOF mode for each step starting from the 'M  EOF modes, we 

fixed the optimal number of EOFs in the interpolation for each month as shown in 

Table 5.3, which reveals a different truncation level for each month: more EOF 

modes are retained for the EOF-based linear reconstruction for the summer and 

autumn months than for the winter and spring months. Also, the fixed M EOF 

modes in Table 5.3 explain enough variances (over 90%) for each month. 

 

 

Figure 5.3. The locations of the 22 stations withheld across Alberta for this 

current study. 
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Figure. 5.4. Percentage of explained variance of the EOF modes derived from the 

Hybrid 1.0 data set on the 0.25-by-0.5 degrees latitude and longitude grids 

(N=40, P=808). Error bars estimated by using North et al.’s (1982) rule of 

thumb. The thick line represents the significance level obtained by using the 

Monte Carlo test.  
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Table 5.3. The determined lower threshold for the truncation level ( 'M ) 

and the optimal number (M ) of EOFs for each month ( 'M M≥ ).  

 

Month 'M  M  

JAN 5 15 

FEB 5 17 

MAR 6 18 

APR 6 18 

MAY 5 27 

JUN 6 31 

JUL 6 32 

AUG 5 28 

SEP 5 31 

OCT 6 26 

NOV 5 26 

DEC 5 15 

 

 

5.4 Test of Sensitivity to Data Errors 

In this study, the random measurement error jE  for a given location jr  and 

time t  are included in our EOF-based linear interpolation. The error variance 

2
jE  is required in Eq. (2.48) to compute the optimal weights. Because the exact 
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value of random measurement error jE  is not available, the estimated error 

variance is used in our study. It is thus necessary to test if the optimal weights are 

sensitive to the exact size of the error variance. It is obvious that Eqn. (2.48) and 

(2.49) are a linear system which can be re-written as  

m m m=A X b                                                   (5.5) 

where 1,2, , Cm M= ⋯  is the modes number,  

( )

( )

2 2
11 1 1 1 1

2 2
1 1

( ) ( ) ( ) 1

( ) ( ) ( ) 1

1 1 1 0

m N m N m

m

N m m N NN N m N

C E r C r r

C r r C E r

ψ ψ ψ

ψ ψ ψ

 +
 
 

=  
+ 

 
  

A

⋯

⋯ ⋯ ⋯ ⋯

⋯

           (5.6) 

is a symmetric matrix, 

( ) ( ) 2 2
1 1, , , ,  and ( ), , ( ),m m

m N m m m m m Nw w r r Aλ ψ λ ψ′ ′   = Λ =   X b⋯ ⋯ , the prime 

denotes the transpose of a vector, and A is the area of Alberta in this study.  

First, we test the sensitivity of the optimal weights to the exclusion and 

inclusion of the random measurement error jE . Without loss of generality, in the 

computation of the optimal weights for July 2000 as an example (Eqn. (2.48) and 

(2.49)), we exclude the error variance, that is, let 2 0jE =  in the matrix (5.6). 

Then for 1m =  as an example without loss of generality, the condition number of 

matrix mA , ( ) 1
m m mk A A A−= , is very large, and its determinant is close to zero; 

that is, the linear system (5.5) used to compute the optimal weights is ill-

conditioned when we exclude the random measurement error jE . The optimal 
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weights are thus highly sensitive to the values of the coefficient matrix mA : when 

we make a slight change in the coefficient matrix ,mA  for example, when we let 

2 0.001jE = , the change in the optimal weights is quite significant as follows. 

Let mX  be the solution of the original system of ,m m mA X b= and consider the 

coefficient matrix mA  is changed to ,m mA A+ ∆ and the solution changes from mX  

to .m mX X+ ∆  Meyer (2000) proved that with a small change mA∆ of mA , the 

relative change in mX and the relative change in mA  has the following 

relationship:  

                                       ( )m m
m

m m

X A
k A

X A

∆ ∆
≤                                            (5.7)  

Thus, the optimal weights are quite sensitive to the change of the coefficient 

matrix mA  when the linear system (5.5) is ill-conditioned. When we choose the 

value of the error variance 2
jE  in the range of a small number, like 0.001, to a 

reasonable size, like 10, the linear system (5.5) becomes well conditioned, and its 

optimal weight solution becomes non-sensitive to the small change of the 

coefficient matrix mA ; that is, it is non-sensitive to the exact size of the error 

variance 2
jE . However, when the value of 2

jE  goes to infinity, the linear 

system (5.5) goes to a form like 

1

1

0 0 0

... ...

0 0 0

0 0 0 0 0
n

n

x

x

x
−

∞     
    
    =
    ∞
    
     

⋯

⋯ ⋯ ⋯ ⋯

⋯

,                                      (5.8) 
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whose solution obviously goes to zero. The detailed example for July 2000 and 

the mode number 1m =  is shown in Figure 5.5. This figure shows the changes of 

the reconstructed anomaly data with changing the value of error variance 2
jE  in 

the weights equations. The changes of anomaly data rest with that of weight 

values, that is, big (little) changes of anomaly data come from big (little) changes 

of weight values. By comparing the graphs of 2 0jE = and 2 0.001jE = , it is 

clear to see there is a big change of reconstructed anomaly data, that is, a big 

change of weight values, although a very small change of error variance 2
jE . 

However, the second figure panel reveals the totally reversed results when the 

value of error variance 2
jE  changes from 0.001 to 10: a big change of error 

variance value results very little change of the reconstructed anomaly data or the 

weight solution. The third figure panel shows the reconstructed anomaly data or 

the weight solution goes to zero when the value of the error variance is very large. 

All above results of this figure are as expected to coincide with our previous 

analysis in this section.  

 

5.5 Conclusions 

In this chapter, we tested the North’s rule of thumb and Rule N on the 

explained variance of each mode. By combining the Monte Carlo test and North’s 

rule of thumb error bars, we identified the lower threshold for the truncation level 

in EOF analysis. The criterion based on the analysis of the size of the 

interpolation errors between the observed data and the data reconstructed by the 
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reduced set of EOFs on the stations we put aside in the interpolation was used to 

determine the optimal set of EOFs for each month. The result showed that more 

EOFs were taken into the EOF-based linear interpolation for summer and autumn 

than for winter and spring. However, the mode selection method varies from 

study to study. 

       Without loss of generality, July 2000 and the first mode were used as an 

example to test the sensitivity of the weight solution to the exact value of the error 

variance 2
jE  in equations (2.48) and (2.49). The result showed that the weight 

solution was non-sensitive to the value of error variance 2
jE  in the range of 

0.001 to 1.0, but went to zero as 2jE  went to infinity.  
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Figure. 5.5. The changes of the reconstructed anomaly data with changing the 

value of error variance 2
jE  in the equations (2.48) and (2.49). 
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Chapter 6 

Conclusions 

 

         In order to overcome the problem of the IDW method which underestimates 

the precipitation in Alberta’s high-elevation regions and northern Alberta because 

of the sparse precipitation station distribution in the lower elevation regions in the 

earlier period of last century, the EOF-interpolation method in our Hybrid 2.0 

method was used to reconstruct the monthly precipitation on the regular grids 

over Alberta. The comparison of the results of the EOF-based linear interpolation 

and the IDW method was compared by withholding eight stations for cross-

validation purposes. The criterion to select the cross-validation stations is that 

each station has nearly complete observations in the studied period and some 

stations are located in high-elevation area which aims to evaluate whether EOF-

based linear interpolation overcome the particular problem of Hybrid 1.0 as we 

stated before. It is happy that the cross-validation results at the high-elevation 

stations showed that the EOF-based linear interpolation method improved the 

accuracy of reconstruction of monthly total precipitation in the high-elevation 

regions greatly over the period of 1901 – 2002 for Alberta.    

        We have developed the Hybrid 2.0 method based on the Hybrid 1.0 method 

developed by Shen et al. (2001) to grid the daily precipitation data over Alberta 

from January 1, 1901 to December 31, 2002. The grid resolution was 0.25° 



 

166 
 

latitude by 0.5° longitude and 0.1° latitude by 0.2° longitude, respectively. The 

interpolated data were named ABClim 2.0. The interpolation accuracy of the 

Hybrid 2.0, Hybrid 1.0, and ANUSPLIN methods in the precipitation frequency 

and monthly total precipitation was also compared over the period of 1961 – 

1990. We selected seven withheld stations that had nearly complete observed data 

in the studied period and that were evenly distributed over Alberta. The predicted 

errors between the interpolated values and the observed data for these stations 

were compared for the monthly total precipitation amount and daily precipitation 

frequency. The results showed that the both Hybrid 1.0 and Hybrid 2.0 obtained 

the comparable average number of precipitation days for each month but more 

accurate than ANUSPLIN at some withheld stations for some month and less 

accurate than ANUSPLIN at other withheld locations for some month in 

estimating the precipitation frequency by comparing with the observed 

precipitation frequency. Hybrid 2.0 also had more accurate results than both 

ANUSPLIN and Hybrid 1.0 in interpolating the monthly total precipitation 

amount.   

The trend analysis of the MJJA total precipitation time series for the period 

of 1901 - 2002 at some stations like Edmonton and Calgary, carried out by using 

linear regression, the moving average method, and the Mann-Kendall test, showed 

that the significant upward trends were found at High Level and Peace River and 

that no significant trends were found at Edmonton and Calgary. SPI was also used 

to assess the Hybrid 2.0 data and then monitor the past drought conditions at some 

stations in Alberta.  
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North’s rule of thumb and Rule N were tested on the explained variance of 

each mode. A criterion based on the analysis of the explained variance of each 

mode and the size of the interpolation errors between the observed data and the 

data reconstructed by the reduced set of EOFs on the withheld stations was used 

to determine the optimal set of EOFs for each month. The result showed that more 

EOFs were retained in the EOF-based linear interpolation for the summer and 

autumn months than for the winter and spring months. The test of the sensitivity 

of the weight solution to the exact value of the error variance 2
jE  in the 

equations (2.48) and (2.49) showed that the weight solution was non-sensitive to 

the value of error variance 2
jE  in the range of 0.001 to 1.0, but the weight 

solution went to zero as 2
jE  went to infinity.  

The monthly total precipitation values obtained in this study can also be used 

with some confidence across Alberta. Based the facts that EOFs can be rotated 

without perturbing the total fit and the rotated EOFs often are in better agreement 

with physical patterns than the orthogonal EOFs,  the rotated EOFs will be used to 

represent the true patterns when we analyze the precipitation patterns in the 

regional area. Future improvement in our current methodology could be aimed at 

taking the elevation into account when redistributing the monthly total to each 

individual day of the month.  
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