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Abstract

Abstract harmonic analysis is well established on compact Hausdorff admissible right

topological (CHART) groups. Specifically these groups are one-sided analogues of topo-

logical groups, where the elements that multiply continuously on the other side are dense

in the group. The analytic theory of such groups was facilitated by strong topological

results that lead to the existence of a Haar measure. However, not much is known about

whether analogues hold in the non-admissible case, and the locally compact setting has

been left untouched. In this thesis our goal is to broaden the scope of the current

literature by considering these cases.

In particular, we first establish theory on locally compact right topological groups, in-

cluding a sufficient condition for the existence of a Haar measure. We then consider

analogues of various classical function algebras on these groups and discuss their proper-

ties. Then we introduce various measure algebra analogues on compact right topological

groups and use their properties to characterize the existence of a Haar measure. These

are also used to obtain hereditary properties - relating existence of a Haar measure on

substructures to that on the group itself. In the process we provide sufficient conditions

that do not rely on admissibility. The main challenge in this work lies in the lack of

nice algebro-topological properties on right topological groups, which makes classical

abstract harmonic analytic techniques unavailable for application. The lack of examples

of such groups also impacts empirical evidence to draw inspiration from.
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Chapter 1

Introduction

A right topological group is a group equipped with a topology that makes its right

multiplication continuous. This is a natural generalization of the extensively studied

classical case of locally compact topological groups. The theory of abstract harmonic

analysis on locally compact groups was initially inspired by traditional Fourier analysis

which is ubiquitously applied in various areas of science. Such an analysis is possi-

ble due to the inherent existence of a Haar measure, a non-zero left-invariant Radon

measure, on these groups. Abstract harmonic analysis has since vastly expanded to

include the more general structures of semigroups, locally compact quantum groups,

hypergroups and semi-hypergroups, and now right topological groups.

Interest in right topological groups however, arose not from harmonic analysis, but

from the theory of topological dynamics, which studies dynamical systems or flows.

A flow consists of a pair (S,X), where S is a semigroup, X is a compact Hausdorff

space and S acts continuously on X. Topological dynamics makes connections between

various algebraic and topological properties of the action and S itself, and studies the

asymptotic properties of the (S,X). In particular, distal flows form a special class

with nice asymptotic properties. For a flow (S,X), the closure of S in XX forms a

semigroup Σ, known as the enveloping semigroup of (S,X). Then, (S,X) is said to

be distal if the flow (Σ, X) satisfies cancellativity in Σ. Ellis beautifully characterized

distal flows by proving that these are exactly the flows whose enveloping semigroups are

compact Hausdorff (admissible) right topological groups [7]. An interest in such groups

has since followed in an attempt to better understand distal flows. Furstenberg, for ex-

ample, used Σ to give a fundamental structure theorem on minimal and distal flows [10].
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A second reason Ellis inadvertently provides for the study of such groups, is due to

his work on joint and separate continuity in[8]. Here he showed that any locally com-

pact Hausdorff semitopological group is topological, i.e. separate continuity on locally

compact groups naturally implies joint continuity of multiplication and continuity of

the inverse map. From an abstract harmonic perspective, if we consider weakening the

continuity requirements on locally compact topological groups and studying this gener-

alization, we naturally skip semitopological groups and jump to right topological groups.

Motivated by Furstenberg’s work, Namioka pioneered the study of right topological

groups from an analytic perspective in [37]. He introduced the σ-topology for a right

topological group, the quotient topology induced by the multiplication map, and showed

that the topology characterizes (in some sense) the degree to which the group has

left-continuity properties. Special focus has been given in the literature to admissi-

ble groups. The topological center of a right topological group G, denoted by Λ(G),

is defined to be the set of those elements with respect to which left multiplication is

continuous. Admissible right topological groups are precisely those that have a dense

topological center. Namioka showed that compact Hausdorff admissible right topolog-

ical (CHART) groups satisfy an analogue of Furstenberg’s structure theorem. This

theorem later turned out to be key in Milnes and Pym’s construction of a Haar measure

on these groups [31][32], which built the foundation for conducting abstract harmonic

analysis on them.

Lau and Loy initiated this abstract harmonic analytic study of compact right topologi-

cal groups in [20]. They constructed various measure and function algebra analogues on

such groups, defined convolution on these and studied their properties, comparing them

to the classical topological case. Further, in [21], they studied extensively the Fourier

algebra of CHART groups, proving that this is isomorphic to the Fourier algebra of a

compact topological group (thereby proving that these algebras are not complete in-

variants for right topological groups).

Other selected works on compact right topological groups include: work on repre-

sentation theory of these groups in [28][36], equicontinuous and distal compact right

topological groups in [30][29], generalizations of strong normal systems of subgroups in

[35] and group extensions in [38].
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Our work is divided primarily into two points of focus. Firstly, we are interested in

generalizing the existing theory on compact right topological groups to locally compact

right topological groups. This includes the works of Namioka [37], of Milnes and Pym

[31][32], and of Lau and Loy [20][21]. The difficulty in this generalization lies in the

fact that techniques from topological dynamics, including Furstenberg’s theorem, have

been developed for compact spaces and cannot be used in our work. Moreover, many of

the ideas used in these citations that do not rely on flows, strongly rely on compactness

anyway. As such, we often work with σ-locally compact right topological groups to

provide some extra structure.

For our second point of focus, we attempt to characterize the existence of a Haar

measure on compact right topological groups. The current literature only provides

admissibility as a sufficient condition. We therefore try to circumvent around this con-

dition. The challenge in dealing with the non-admissible case is the lack of pleasant

topological properties - in view of Ellis’ theorem, admissibility brings a right topological

group close to being topological (in fact, one may note from the literature that tacking

on additional nice properties almost always makes the group trivially topological). We

introduce new measure algebra analogues and use fixed point theory to link their non

triviality to the existence of a Haar measure.

In Chapter 2, we give basic definitions and notations that will be used in this thesis.

Further, we introduce background theory on locally compact topological groups and

existing results in the literature on compact right topological groups.

Chapter 3 generalizes some of Namioka’s work to locally compact right topological

groups. We then give a sufficient condition for the existence of a Haar measure on

these groups.

In Chapter 4, we discuss classical function algebras generalized to locally compact right

topological groups and their properties, including analogues of the Fourier and Fourier-

Steiltjes algebra.

We begin Chapter 5 by generalizing existing measure algebra analogues on compact

right topological groups to the locally compact case. We then introduce several new
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measure algebra analogues on compact right topological groups and characterize the

existence of a Haar measure using their non-triviality. This characterization provides

an alternative sufficient condition to admissibility for the existence of a Haar measure.

We also discuss various properties of these measure algebras.

Chapter 6 explores some hereditary properties of right topological groups, linking the

existence of a Haar measure on sub-structures to that on the group itself. Here we

apply some of the results from Chapter 5.

Lastly, we conclude this work with some open problems in Chapter 7.
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Chapter 2

Preliminaries

In this chapter, we will present the standard definitions and notation we will be using

in this thesis. In addition, we present the basic results that motivate our work as well

as the current research on right topological groups.

Note that in this work, we do not assume that topological spaces are Hausdorff unless

specified.

For any E ⊂ X, we will denote by E, the closure of E in τ . Further, if X is a locally

convex space, conv(E) will denote the convex hull of E.

Throughout, C(X) will indicate the continuous complex-valued functions on X. Sub-

spaces of C(X) we will be interested in include Cb(X), Cc(X) and C0(X), functions

in C(X) that respectively, are bounded, have compact support, and vanish at infinity

(given X is locally compact). Here, for any f ∈ C(X), the support of f is defined to be

supp(f) = {x ∈ X | |f(x)| > 0}, while f is said to vanish at infinity if, for every ε > 0,

there exists K ⊂ X compact such that |f(x)| < ε for all x ∈ X\K.

Equipped with ‖ · ‖∞, the the supremum norm, Cb(X) and C0(X) form C*-algebras,

while Cc(X) = C0(X). Clearly Cc(X) ⊂ C0(X) ⊂ Cb(X) = C(X). When X is

compact, this inclusion collapses to C(X) = Cb(X) = C0(X) = Cc(X). We will also

frequently use M(X), the space of all complex Radon measures on X. By the Riesz

representation theorem, this can be identified as the dual of Cc(X).
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Algebraic structures such as groups, and more generally semigroups may be equipped

with topologies that make the multiplication continuous to different degrees. A semi-

group S equipped with a topology τ is said to be

• Right topological if the right multiplication maps rs : S → S, x 7→ xs are

continuous for all s ∈ S.

• Semitopological if the multiplication map m : S × S → S, (s, t) 7→ st is

separately continuous

• Topological if the multiplication map m is is jointly continuous

The right topological definition has an obvious left analogue. Throughout, for each

s ∈ S we use ls and rs to denote the left, respectively right multiplication by s on S,

and Ls, Rs to similarly denote the left, right translations of functions on S by s. For

a measure µ ∈ M(G), we shall use the notation sµ and µs to denote the left and right

translations by s, respectively.

The above definitions apply ad verbum to groups, except a topological group G is

additionally required to have a continuous inverse map, G→ G, g 7→ g−1. Due to Ellis’

celebrated result however [6], this property is obtained for free for the most interesting

cases of groups; in fact, the semitopological and topological definitions coincide:

Theorem 2.1 (Ellis). Every locally compact Hausdorff semitopological group is topo-

logical.

For a right topological semigroup S, we denote by Λ(S) the topological center of S

i.e.

Λ(S) = {s ∈ S | ls : S → S is continuous }

Here S is said to be admissible if Λ(S) is dense in it. If S is a group, this essentially

makes it almost topological in a weak sense, wherein small assumptions about struc-

tures on S force it to be topological (see [37], [20]).

Due to Theorem 2.1, interest in generalizing the harmonic theory of locally compact

groups to less topologically restrictive structures naturally becomes focused on right

topological groups, the most specific and structured case being that of compact Haus-

dorff admissible right topological (CHART) groups. That being said, the study of
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such groups was initiated in topological dynamics due to their natural occurrence in

the theory of distal flows.

A flow is a pair (S,X) consisting of a semigroup S and a non-empty compact Hausdorff

space X, along with a map p : S ×X → X, satisfying the following conditions:

• p(s, ·) is continuous for all s ∈ S

• p(st, x) = p(s, p(t, x))

We simplify this notation by using p(s, x) = sx.

For every flow (S,X), S is naturally embedded in XX as a subsemigroup and thus

obtains the topology induced by the product topology on XX . The closure Σ(S) :=

S̄ ⊂ XX is then known as the enveloping semigroup of (S,X), and is easily checked

to be a CHART semigroup with topological center S ⊂ XX .

A flow (S,X) is said to be distal if for every net {sα}α∈A, and any x, y ∈ X, limα sαx =

limα sαy implies x = y. In other words the flow (Σ(S), X) satisfies cancellativity in

Σ(S). Ellis proved the following fundamental theorem characterizing these flows [7]:

Theorem 2.2 (Ellis). A flow is distal if and only if its enveloping semigroup is a group.

It follows that Σ(S) is a CHART group for every distal flow (S,X). This has made

CHART groups the focus of the study of right topological groups. In this thesis how-

ever, we try to be as general as possible, dealing with locally compact admissible right

topological groups, as well as compact right topological groups that are not admissible.

2.1 Locally Compact Groups

Part of the existing literature on right topological groups attempts to generalize the

standard results in abstract harmonic analysis of locally compact topological groups.

To give a better motivation of these concepts, we briefly introduce abstract harmonic

analysis on locally compact groups. Some excellent introductory references on this topic

include [9], [25], and [14].
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A topological space is said to be locally compact if every point has a base of neigh-

bourhoods consisting of compact sets. In case of ambiguity in the non-hausdorff case,

this is the definition we will always assume. A locally compact topological group

then is just a topological group (G, τ), where τ is locally compact.

Central to the building of harmonic analysis on locally compact groups is the notion of

a Haar measure. Let (G, τ) denote a locally compact Hausdorff topological group. A

measure λ on G is said to be a right Haar measure if it is a non-zero Radon measure

satisfying right invariance i.e. λ(E) = λ(Eg) for all g ∈ G, and E ⊂ G Borel. It is well

known that every locally compact topological group has a right (or left) invariant Haar

measure that is unique up to scalar multiplication. For a compact group, one usually

normalizes the Haar measure so that λ(G) = 1, and with this convention, the Haar

measure is uniquely determined. Additionally, the Haar measure on a compact group is

both left and right invariant. Familiar examples of locally compact groups include R or

C with the usual topology, where the Lebesgue measure forms a Haar measure, and the

(compact) circle group T with its usual topology and measures. A non-abelian example

of a (compact) topological group is given by SO3(R), the special unitary matrices on R.

The existence of a right Haar measure allows us to define convolution of functions.

Given f, g, Borel measurable functions on G, the convolution of f and g is defined by

f ∗ g(x) =

∫
f(xy−1)g(y)dλ(y)

The map f ∗ g need not be bounded in general, however, the following results are

standard [9]:

Proposition 2.3. Let G be a locally compact topological group and 1 ≤ p ≤ ∞. Then,

for any f ∈ Lp(G), and g ∈ L1(G), the following hold

1. f ∗ g ∈ Lp(G) and ‖f ∗ g‖p ≤ ‖f‖1‖g‖p

2. If 1 < p <∞ and 1/p+1/q = 1, then for any h ∈ Lq(G), f ∗h ∈ C0(G). Further,

‖f ∗ g‖∞ ≤ ‖f‖p‖g‖q.

From 1, it immediately follows that (L1(G), ∗) is a Banach algebra.
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Note that the order of convolution in 1 may be reversed to the same effect if f has com-

pact support or if G satisfies a property called unimodularity, where the left and right

Haar measure coincide (see [9]). Unimodularity trivially holds for compact topological

groups.

Convolutions generalize nicely to measures in M(G). The convolution of measures

µ, ν ∈M(G) is given by

〈µ ∗ ν, f〉 =

∫ ∫
f(xy)dµ(x)dν(y)

for each f ∈ Cb(G). The Haar measure of a locally compact topological group lies in

M(G) if and only if G is compact. However, we do have L1(G)dλ ⊂M(G).

With the nice properties of convolution, (M (G), ∗) is a unital Banach algebra with

identity δe and (L1(G), ∗) forms a two-sided ideal in M(G). Usual notions for Banach

Algebras may then be considered for L1(G) and M(G). For example, L1(G) is unital if

and only if G is discrete. However, any base of compact (symmetric) neighbourhoods

of U of e provides a bounded approximate identity for L1(G) via {χU/λ(U) | U ∈ U}.
The vital property that allows one to prove this is as follows;

Proposition 2.4. Suppose G is a locally compact topological group. Then,

1. If 1 ≤ p <∞, and f ∈ Lp(G), then ‖Lyf − f‖p, ‖Ryf − f‖p → 0 as y → e.

2. For all f ∈ C0(G), the same convergences hold in the uniform norm.

Unfortunately, Proposition 2.4 does not hold for right topological groups. In fact, an

inherent property of topological groups that does not hold for right topological groups

is the existence of a symmetric base of neighbourhoods of e (i.e. sets U ⊂ G satisfying

U−1 = U). If G is topological, a function in Cb(G) is called left or right uniformly

continuous if the respective one-sided convergence in 2 of Proposition 2.4 is satisfied

and uniformly continuous if both are. By 2, it follows that uniformly continuous

functions are topologically abundant, as C0(G) separates points from closed sets. Part

of the challenge in developing the research on right topological is to work around an

absence of this property.
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2.2 Compact right topological groups

In this section we will introduce the existing results on compact right topological groups.

Most of this theory is focused specifically on CHART groups. We attempt to generalize

much of this in the upcoming chapters.

Fundamental to studying the analytic theory of right topological groups is Namioka’s

pioneering work on the σ-topology [37]. Let (G, τ) denote a compact right topological

group. The σ-topology on (G, τ) is defined to be the quotient topology induced by

the multiplication map

(G, τ)× (G, τ)→ G

(x, y) 7→ x−1y

Namioka intended the σ in the nomenclature to indicate “symmetry”. The justification

for this is given by the following result:

Theorem 2.5 (Namioka). Let (G, τ) be a right topological group. Then,

• σ ⊂ τ and equality holds if and only if (G, τ) is topological

• (G, σ) is a semitopological group with a continuous inverse map

• (G, σ) is T1 if and only if (G, τ) is Hausdorff. Further, (G, σ) is Hausdorff if and

only if (G, τ) is topological

Observe that if G is locally compact, a lack of being Hausdorff is all that holds (G, σ)

(and therefore (G, τ )) from being topological. This also produces an interesting class

of semitopological groups.

One of the advantages of working with admissible right topological groups is the fol-

lowing theorem [37].

Theorem 2.6 (Namioka). Let (G, τ) be a admissible right topological group and let U
be a base of open neighbourhoods of e in τ . Then,

1. The quotient map φ : (G, τ)× (G, τ)→ (G, σ) is open

2. The family {U−1U | U ∈ U} forms a base of σ-open neighbourhoods of e in (G, σ)
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The second part clearly follows from the first. For general right topological groups,

it becomes hard to explicitly find the open sets in the σ-topology. For U,W ∈ τ ,

φ(U ×W ) = U−1W is open in the σ-topology if and only if ∆ · (U ×W ) is open in

(G×G, τ × τ), where ∆ = {(g, g) | g ∈ G} denotes the diagonal of G. As we shall see,

the known examples of compact right topological groups are either “twisted” products

of topological groups or enveloping semigroups of a flow, so that checking whether a set

is σ-open in these spaces becomes cumbersome or intractable. The result above comes

in handy.

Following Namioka, for subgroups K of G, we denote by G/K the left cosets of K i.e.

{xK | x ∈ G}. Namioka showed the following [37]

Proposition 2.7. G/K is Hausdorff if and only if K is σ-closed.

Recall that in the topological case it suffices for K to be closed (see [9]). We will use

(G/K, τ) and (G/K, σ) to mean the quotient topology on G/K induced by (G, τ ) and

(G, σ) respectively.

Let L ⊂ G be a closed normal subgroup. Let us denote by (L, σ), the relative topology

induced by (G, σ). We warn the reader that this does not always coincide with the

(finer) σ-topology of (L, τ) (work on this topology may be found in [35]). We define

N(L) to be the intersection of all σ-closed σ-neighbourhoods of e in G. The following

is a key result of Namioka that highlights the properties of N(L) [37];

Proposition 2.8. Let G be a compact Hausdorff right topological group. Then,

1. N(L) is a σ-closed normal subgroup of L

2. (L/N(L), τ) = (L/N(L), σ) and the resulting group is a compact topological group

3. The action map

(G/N(L), τ)× (L/N(L), τ)→ (G/N(L), τ)

([x], [y]) 7→ [xy]

is jointly continuous.

Via a quotient, one therefore obtains a topological group G/N(G) from the compact

right topological group G. However, when is L/N(L) non-trivial? Namioka showed
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the following result in the countably admissible case (i.e. when Λ(G) has a countable

subsemigroup that is dense in G) [37], and the result was later generalized to arbitrary

compact admissible groups by Pym and Milnes [32].

Theorem 2.9. Suppose G is a CHART group and L / G is a closed subgroup satisfies

L 6= {e}. Then, N(L) 6= L.

An alternate proof that does not use flows may be found in [34].

Central to the existence of a Haar measure on compact right topological groups is the

idea of a strong normal system of subgroups. A right topological group (G, τ ) is

said to have such a system if there exists a family {Lξ}ξ<ξ0 of σ-closed normal subgroups

of G, indexed by some ordinal ξ0 > 0, satisfying the following conditions:

1. Lξ0 = G, L0 = {e}

2. Lξ ⊃ Lξ+1 and for a limit ordinal ξ < ξ0, Lξ = ∩η<ξLη;

3. Lξ/Lξ+1 is a compact Hausdorff topological group;

4. the action map

G/Lξ+1 × Lξ/Lξ+1 → G/Lξ+1

([x], [y]) 7→ [xy]

is jointly continuous.

Pym and Milnes exploited Proposition 2.8 and Theorem 2.9 to obtain the following nice

theorem [31];

Theorem 2.10 (Milnes, Pym). Every compact Hausdorff right topological group G with

a strong normal system of subgroups has a unique right invariant Haar measure that is

left invariant with respect to Λ(G).

They then highlighted the importance of a strong normal system of subgroups is high-

lighted by providing the following result [31], using Namioka’s work in [37]:

Theorem 2.11 (Furstenberg-Namioka-Ellis Structure Theorem). Every CHART group

has a strong normal system of subgroups.
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The flavor of the proof is inspired by Furstenberg and Ellis’ work on flows. From this,

we have the obvious corollary:

Corollary 2.12. Every CHART group has a unique right invariant Haar measure that

is left invariant under Λ(G).

so that analysis may be considered on CHART groups.

The construction of a strong normal system of subgroups was done by using transfinite

induction, taking G ⊃ N(G) ⊃ N(N(G)) ⊃ . . . ⊃ {e}, highlighting the usefulness

of Namioka’s construction of the subgroup N(G). Note that Theorem 2.10 is the

only known sufficient condition for the existence of a Haar measure on compact right

topological groups.

Remark 2.13. It is important to note that the existence of a Haar measure on such

groups is highly non-trivial. The usual construct for a Haar measure on a compact

topological group makes use of continuity properties such as Proposition 2.4 that do not

hold for right topological groups. In fact, in [19], under the assumption of the continuum

hypothesis, Kunen proves the existence of a non-admissible compact Hausdorff right

topological group that cannot hold a right Haar measure. Explicit examples of such

groups are hard to obtain.

We end this section with some examples of compact right topological groups referenced

from [28], [31], [30].

Example 2.14. Consider G = T×E, where E is the group of all endomorphisms on T

(equipped with pointwise multiplication). We consider T with its usual topology and E

with the topology induced by the product topology on TT. G is then equipped with the

product of these topologies. For (u, h), (w, g) ∈ G, multiplication is defined as follows

(u, h)(w, g) = (uwRuh ◦ g(e2i), hg)

One easily checks that equipped with this, G forms a compact right topological group.

Continuity of left multiplication by (u, h) here requires h to be continuous, i.e.

Λ(G) = T× T̂ = {(u, h) ∈ G | h : t 7→ tn for some n ∈ N}

Note that E may be identified with the Bohr compactification of Z, and the topological

center is dense in G, i.e. G is a CHART group. The unique Haar measure on G is easily
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given by the product of the Haar measures on T and E respectively. The subgroup

N(G) is given by T× {1}. A strong normal system of subgroups on G as specified by

Theorem 2.9 is given by G ⊃ N(G) ⊃ {e}, where we observe that G/N(G) ∼= {1} × E
is a topological group.

The next example provides a compact right topological group that is not admissible.

Example 2.15. Consider T again and let φ be a discontinuous automorphism on it

with φ ◦ φ = 1. Milnes [30] constructs an example of such a map by considering T ∼=
Tor(T) ⊕ cQ, where Tor(·) indicates the torsion subgroup, and c is the cardinality of the

reals. Then φ may be defined to be the map that keeps Tor(T) fixed but switches two

fixed copies of Q (see also Example 6e of [29]). Here discontinuity occurs because Tor(T)

is dense in T. Now we define G = T × {φ, 1} with the multiplication (u, h)(v, g) =

(g(u)v, h◦g), and the product topology obtained by equipping T with its usual topology,

and {φ, 1} with the discrete topology. Then, G is a compact Hausdorff right topological

group with the topological center T×{1}, clearly not admissible. A Haar measure still

exists on G; if λ denotes the Haar measure of T, then, the Haar measure on G is given

by λφ/2 + λ1/2, where λφ denotes a copy of λ on T×{φ} and λ1 is one on T×{1}. In

fact, we have a strong normal system of subgroups given by G ⊃ N(G) ⊃ {e}, where

N(G) = T × {1}. We remark that admissibility is not a necessary condition for the

existence of a strong normal system or a Haar measure.

Lastly, we give an example where a non-admissible right topological group does not

possess a strong normal system of subgroups.

Example 2.16 ([28],[31]). Consider the set G = T×{−1, 1}, with the group multipli-

cation (u, ε)(v, δ) = (uδv, εδ) We equip G with the topology which has the closed and

open neighbourhood base for each (eia, 1), (eib,−1), a, b ∈ R, a < b of the form

Ua,b = {(eia, 1), (eib,−1)} ∪ {(eiθ, ε) | a < θ < b, ε = ±1}

Then, G forms a compact right topological group with the trivial topological center

{(1, 1)} and thus is not admissible. Further, it was shown in [31] that G cannot possess

closed normal subgroups N ⊂ G satisfying G/N is topological (i.e. satisfying Proposi-

tion 2.8). It follows that G has no strong normal system of subgroups. Additionally,

as it turns out, N(G) = G in this case so that G/N(G) is trivial. Despite this, G has

a unique Haar measure given by min(1, (b− a)/2π) on each neighbourhood Ua,b.
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Taking advantage of Milnes and Pym’s construction of the Haar measure, Lau and

Loy undertook abstract harmonic analysis on compact right topological groups [20][21].

They defined the analogues of the group algebras and measure algebras, and discussed

the function algebras on these groups, including the Fourier algebra. We will discuss

and generalize this work in Chapter 5.
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Chapter 3

Locally compact right topological

groups and the Haar measure

Analysis on compact Hausdorff right topological groups, particularly CHART groups is

well established. Motivated by the initial work of Namioka [37], Pym and Milnes proved

the existence of a unique Haar measure on these groups [31]. In this chapter we gen-

eralize some of this theory to the less topologically restrictive but still well-structured

case of σ-locally compact Hausdorff spaces, still working mostly with admissible groups.

We begin by generalizing some of Namioka’s fundamental result from [37], followed by

a proof of the existence of a Haar measure given the existence of a compact strong

normal system of subgroups.

A σ-locally compact right topological group is a right topological group (G, τ ) with

a σ-compact, locally compact topology τ . Here we use the usual definition of σ-

compactness i.e. a space which can be written as a countable union of compact subsets.

Remark 3.1. In order to avoid confusion with the σ-topology, we shall always refer to

a compact set in this topology by referring to it as being compact in the σ-topology, or

(G, σ) (as opposed to σ-compact).

As we shall see, admissibility plays a much more vital role in the locally compact case

compared to compact right topological groups.

We begin by establishing a standard result we will require, which will allow us to use

the σ-local compactness of the space in a similar manner to compactness in the original
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work.

Lemma 3.2 (Open mapping theorem for LCH right topological groups). Suppose (G, τ)

a σ-compact right topological group, and H is a Hausdorff right topological group with

the Baire property. If f : G→ H is a continuous surjective homomorphism, then it is

open.

Proof. As G is σ-compact, G = ∪n∈NCn for a sequence {Cn}n∈N of compact subsets

of G. As f is surjective, H = ∪n∈Nf(Cn). Without loss of generality, we assume that

f is injective (otherwise we consider the quotient homomorphism on G/Ker(f), where

we observe that the quotient map G → G/Ker(f) is open). Clearly for every n ∈ N,

f |Cn : Cn → f(Cn) is a homeomorphism, as a bijective map from a compact space into

a Hausdorff space. Since H has the Baire property, it follows that f(Cn) cannot be

nowhere dense for all n ∈ N. Therefore, there exists some m ∈ N such that f(Cm) has

a non-empty interior; let f(x) be an interior point for x ∈ Cm. It follows that Cm being

homeomorphic to f(Cm) has a non-empty interior as well.

We shall show that f−1 is continuous. Suppose now that f(gα) → f(g) for some net

{gα} ⊂ G, where g ∈ Cn for some n ∈ N. By continuity of right multiplication,

f(gα)f(g)−1f(x) = f(gαg
−1x)→ f(x)

where, since f(x) lies in the interior of f(Cm), it follows that a tail of {f(gαg
−1x)} is

contained in f(Cm). However, as f |Cm is a homeomorphism, we have, [f |Cm ]−1 is con-

tinuous so that gαg
−1x→ x whence gα → g holds by continuity of right multiplication.

This concludes the proof.

Lemma 3.3. If (G, τ) is a locally compact Hausdorff admissible right topological group,

then (G, σ) is a locally compact semitopological group that has the Baire property.

Proof. As (G, τ) is admissible, by Theorem 2.6, the continuous quotient map φ :

(G × G, τ × τ) → (G, σ) is open. Suppose U ∈ σ is an open neighbourhood of e.

Then, φ−1(U) is an open neighborhood of (e, e) in τ × τ , so that by local compactness

of the topology, there exists a compact neighborhood K ∈ τ × τ of (e, e) such that

K ⊂ φ−1(U). it follows that φ(K) ⊂ U , where by the openness and continuity of φ,
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φ(K) is a compact neighbourhood of e in (G, σ). It follows that (G, σ) is locally com-

pact.

Suppose {Un}n∈N ⊂ σ are σ-open sets dense in the σ topology. We claim that ∩n∈NUn
is dense in (G, σ). Indeed, {φ−1(Un)}n∈N are open and dense in G × G, so that by

G×G being locally compact Hausdorff (whence Baire), ∩n∈Nφ−1(Un) is dense in G×G.

Applying φ, by surjectivity, ∩n∈NUn is dense in (G, σ) as well.

The following proposition is a straightforward generalization of Namioka’s result for the

compact case [37].

Proposition 3.4. Suppose (G, τ) is a locally compact admissible Hausdorff metrizable

right topological group. Then, G is topological.

Proof. Suppose y ∈ G. Since G is admissible and metrizable, there exists a sequence

{yn}n∈N ⊂ Λ(G), such that yn → y. Consider ly : G → G, x 7→ yx. For any x ∈ G, by

the right continuity of G,

ly(x) = yx = lim
n∈N

ynx = lim
n∈N

lyn(x)

where {lyn}n∈N are continuous on G. However, by Osgood’s theorem (see 9.5 in [18]),

by the metrizability of G, it follows that {lyn}n∈N is equicontinuous at some residual

set A ⊂ G. By virtue of being locally compact Hausdorff, G is Baire, and thus, A has

non-empty interior. It follows that the set of points of continuity of ly is non-empty.

However, this then gives a common point of continuity for rz ◦ ly, for all z ∈ G. It thus

follows that ly is continuous on G. Since y ∈ G was arbitrary, we conclude that G is

semitopolological. By Theorem 2.1 then, G is topological.

This is one of the examples of instances where adding extra structure to an admissible

group makes it trivially topological.

Note however, that Ruppert [44] has given examples of metrizable non-admissible right

topological groups so that the above result need not hold without admissibility.

Ellis’ work on separate and joint continuity in [6], i.e. Theorem 2.1 was beautifully

generalized by Namioka to groups actions [38]. Namioka does this is a more general

setting than we state, but this version will suffice for our needs.
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Theorem 3.5 (Namioka). Let X be locally compact Hausdorff space and (G, τ) be a

locally compact Hausdorff right topological group acting on X. If the map

G×X → X, (g, x)→ gx is separately continuous, then it is jointly continuous.

Proposition 3.6. Let (G, τ) be a σ-locally compact admissible Hausdorff right topolog-

ical group. If L ⊂ G is a σ-closed subgroup, then

1. N(L) is a normal subgroup that is closed in (L, σ)

2. (L/N(L), τ) = (L/N(L), σ) is a σ-locally compact Hausdorff topological group

3. G/N(L)× L/N(L)→ G/N(L), ([x], [y]) 7→ [xy] is jointly continuous.

Proof. Part 1 follows easily as N(L) is the intersection of σ-closed neighbourhoods,

and normality is guaranteed by Corollary 1.1 in [37]. Further, this result also guaran-

tees that (L/N(L), σ) is Hausdorff, while local compactness of the space follows from

Lemma 3.3 as (L, σ) ⊂ (G, σ) is σ-closed while πN(L) : L 7→ L/N(L) is open and con-

tinuous.

Since (G, τ) is σ-compact, for any union of compact sets ∪n∈NCn = G, by continuity

and openness of the quotient map (G, τ) → (G/N(L), τ), {(L ∩ Cn)/N(L)} is a se-

quence of compact sets making (L/N(L), τ) σ-locally compact. Now the identity map

(L/N(L), τ) → (L/N(L), σ) is a continuous map from a σ-compact right topological

group into a locally compact Hausdorff right topological group, so that by Lemma 3.2,

it follows that the map is also open. Thus, (L/N(L), τ) = (L/N(L), σ) as claimed. As

(L/N(L), σ) is a locally compact Hausdorff semitopological group, by Ellis’ theorem, it

is a σ-locally compact topological group.

Lastly, let us prove 3. By continuity of right multiplication of G/N(L), it is clear that

G/N(L) × L/N(L) → G/N(L), ([x], [y]) 7→ [xy] is continuous in the first variable.

We will thus show continuity in the second variable. Let us fix x ∈ G. Then, the

map lx : L/N(L) → G/N(L), [y] → [xy] is a σ − σ homeomorphism so that by

(L/N(L), τ) = (L/N(L), σ), (xL/N(L), τ) is a σ-compact Hausdorff space. It follows

now that the following composition of open maps is also open:
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(L/N(L), τ)

(L/N(L), σ) (xL/N(L), σ) (xL/N(L), τ)
[y] [xy] [xy]

We claim that this composition is continuous and prove this analogously to the open

mapping theorem. Indeed consider the inverse map p : (xL/N(L), τ) → (L/N(L), τ),

[xy] 7→ [y]. The domain and co-domain spaces are both σ-locally compact Hausdorff and

thus have the Baire property. It follows (by a similar argument to Lemma 3.2) that there

exists a compact set C ⊂ xL/N(L), such that p(C) has an interior point p(c), with c ∈
C. If {gα} ⊂ xL/N(L) is a net such that x−1gα to x−1g for some g ∈ L/N(L), it follows

by continuity of right multiplication of (G/N(L), τ) that (x−1gα)(x−1g)−1p(c) → p(c)

and p(C) contains a tail of {(x−1gα)(x−1g)−1p(c)}. However, p|C : (C, τ) → (x−1C, τ)

is a homeomorphism so that applying [p|C ]−1, gαg
−1c → c. By continuity of right

multiplication, clearly gα → g and thus, p−1 is continuous. This concludes the proof

of the claim. We have thus shown that the map in 3. is separately continuous. Joint

continuity of the map then follows from Namioka’s Theorem 3.5.

We also obtain the following generalization from [37].

Proposition 3.7. If G is a σ-locally compact admissible right topological group and

f : G→ H is a continuous homomorphism into a Hausdorff topological group H, then

f factors through G/N(G).

Proof. Observe that f ◦ φ : (G × G, τ × τ) → H, (x, y) 7→ f(x−1y) = f(x)−1f(y)

is continuous as f is continuous and H is topological. By definition this implies σ-

continuity of f . By Namioka’s Corollary 1.1 in [37], the factorization follows.

Note here that homomorphisms into topological groups can thus never separate points

in G.

3.1 Existence of Haar measure

In this section, we will present the proof of the existence of a Haar measure provided a

compact strong normal system of subgroups exists.
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A locally compact right topological group (G, τ ) is said to have a compact strong

normal system of subgroups if there exists a family {Lξ}ξ<ξ0 of σ-closed normal

subgroups of G, indexed by some ordinal ξ0 > 0, satisfying the following conditions:

1. Lξ0 = G, L0 = {e}

2. Lξ are compact for all ξ 6= 0

3. Lξ ⊃ Lξ+1 and for a limit ordinal ξ < ξ0, Lξ = ∩η<ξLη;

4. Lξ/Lξ+1 is a compact Hausdorff topological group;

5. the action map

G/Lξ+1 × Lξ/Lξ+1 → G/Lξ+1

([x], [y]) 7→ [xy]

is jointly continuous.

We begin by presenting a lemma.

Lemma 3.8. Let G be a locally compact Hausdorff right topological group. Suppose L,

M are normal subgroups of G (not equal to G) satisfying the following conditions

• L, M are compact in (G, σ)

• M ⊂ L and L/M is a non-trivial topological group

• G/M × L/M → G/M , ([x], [y])→ [xy] is continuous.

Let ν be the unique Haar measure on L/M . Then, the map φ : Cc(G/M) → Cc(G/L)

given by φ(f) =
∫
L/M

f(·t) dλ(t), is a positive retraction such that if f ∈ Cc(G/M) and

supp(f) = K/M , then supp(φ(f)) ⊂ K/L. Moreover, for each g ∈ G, Rg ◦ φ = φ ◦Rg.

Proof. By the continuity of the map G/M × L/M → G/M , ([x], [y])→ [xy], it is clear

that the map
∫
L/M

f(·t) dλ(t) is well-defined. Moreover, if x ∈ L, by the left-invariance

of ν,

s 7→ φ(f)(sx) =

∫
L/M

f(sxt)dλ(t) =

∫
L/M

f(st)dλ(t) = φ(f)(s)
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so that φ(f) is constant on cosets of L implying that it is in C(G/L). Moreover, if

f ∈ Cc(G/L) ⊂ Cc(G/M),

s 7→ φ(f)(s) =

∫
L/M

f(st)dλ(t) =

∫
L/M

f(s)dλ(t) = f(s)

so that the map is a retraction.

If supp(f) = K/M , for s ∈ G,

|φ(f)(s)| =
∣∣∣∣∫
L/M

f(st) dλ(t)

∣∣∣∣ ≤ ‖f‖∞ ∫
L/M

1K/M(st) dλ(t) = λ((s−1K ∩ L)/M)

Here s−1K ∩ L is non-empty implies that s ∈ KL. In other words, the above quantity

is non-zero only when s ∈ KL, so that if we consider φ(f) ∈ C(G/L), it follows that

[s] ∈ K/L. This proves that supp(φ(f)) ⊂ K/L, and that f ∈ Cc(G/L).

Now, note that L/M → G/M → L/M , [t] 7→ [gt] 7→ [gtg−1] is continuous, the first

map being continuous by assumption, and the second being continuous due to G/L

being a right topological group. It is easy to observe that the map C(L/M) → C,

f 7→
∫
f(gtg−1)dµ(t) is right-translation invariant. However, since the Haar measure

on L/M is unique, it follows that
∫
f(gtg−1)dµ(t) =

∫
f(t)dµ(t). Using this fact, if

g, s ∈ G,

Rg[φ(f)](s) = φ(f)(sg) =

∫
L/M

f(sgt)dµ(t) =

∫
L/M

f(sgtg−1g)dµ(t)

=

∫
L/M

f(stg)dµ(t)

=

∫
L/M

Rgf(st)dµ(t)

= φ(Rgf)(s)

thereby proving the last claim.

We now present the main result of this chapter, a generalization of the theorem in [31].
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Theorem 3.9. Suppose G is a locally compact Hausdorff right topological group that

has a compact strong normal system of subgroups. Then, G has a right invariant Haar

measure.

Proof. Let {Lξ}ξ≤ξ0 be the given strong normal system of subgroups. For each ξ > 0,

we denote by φξ : Cc(G/Lξ+1) → Cc(G/Lξ), the map from Lemma 3.8, and by νξ the

Haar measure on Lξ/Lξ+1. Using transfinite induction, we construct for each ξ > 0, a

linear functional ψξ : Cc(G/Lξ)→ C, satisfying the following conditions:

1. ψξ is positive

2. ψξ is right-invariant

3. ψξ(f) = ψη(f), for all f ∈ Cc(G/Lη), for all 0 < η ≤ ξ.

4. For each K compact, ψξ(K/Lξ) ≤ ψ1(K/L1) <∞

By the Riesz representation theorem, each ψξ on Cc(G/Lξ), corresponds to a unique

regular Borel measure on G/Lξ, and 4 implies the existence of a common upper bound

for these applied to every fixed compact set of G. We shall show that ψ1 is non-zero, so

that by 3, it follows that for some f ∈ Cc(G/L1), 0 < ψη(f) = ψξ(f), i.e. ψξ is non-zero.

For the base case, we observe that G/L1 = L0/L1 by assumption is a locally compact

Hausdorff topological group. Thus, we may fix a Haar measure ψ1 on G/L1, so that

the map ψ1 : Cc(G/L1)→ C is the desired linear functional satisfying 1-4.

Suppose for ξ < ξ0, there exists a functional ψξ : Cc(G/Lξ) → C of the desired form.

Then, we define ψξ+1 : Cc(G/Lξ+1) → C to be given by ψξ+1 = ψξ ◦ φξ. Positivity

and right invariance are clear from Lemma 3.8 and the right invariance of ψξ. For any

0 < η ≤ ξ + 1, f ∈ Cc(G/Lη),

ψξ+1(f) = ψξ ◦ φξ(f) = ψξ(f) = ψη(f)

Here, since ξ+1 is the smallest ordinal following ξ, any ordinal η < ξ+1, satisfies η ≤ ξ,

so that the second equality follows from the retraction property of φξ (Lemma 3.8),

and the third equality follows from the induction assumption. Lastly, for any f ∈
Cc(G/Lξ+1) with support K in G and ‖f‖∞ ≤ 1, by Lemma 3.8, φξ(f) has support

K/Lξ, so that

ψξ+1(f) = ψξ ◦ φξ(f) ≤ ‖f‖∞ψξ(K/Lξ) < ψ1(K)
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and 4 holds for the successor case.

Suppose ξ ≤ ξ0 is a limit ordinal so that Lξ = ∩η<ξLη. Then, consider the subalgebra

D = ∪η<ξCc(G/Lη) ⊂ Cc(G/Lξ) ⊂ C0(G/Lξ). If [x] 6= [y], for [x], [y] ∈ G/Lξ, then

x−1y 6∈ Lξ = ∩η<ξLη, so that for some η < ξ, [x] 6= [y] in G/Lη. By local compactness

then, there exists some f ∈ Cc(G/Lη), such that f([x]) 6= f([y]). It follows that D

separates points in G/Lξ. Moreover, it is clear that D is vanishing nowhere. By the

Stone-Weierstrass theorem, D is dense in C0(G/Lξ). Now for each compact set K, we

fix an open neighbourhood UK of K such that UK is compact. Then, by Urysohn’s

lemma, for each ξ ≤ ξ0, there exists a function pKξ : G/Lξn → [0, 1], such that 1K/Lξn ≤
pKξ ≤ 1UK/Lξn . Consider any f ∈ Cc(G/Lξ) and let {fn}n∈N ⊂ D be such that fn → f .

Without loss of generality, we assume ‖f‖∞ ≤ 1 so that {fn}n∈N may be chosen to

satisfy ‖fn‖∞ ≤ 1. Let us denote by ξn, the ordinal corresponding to each fn ∈
Cc(G/Lξn). Suppose C = supp(f) in G. Then, {fnpCξn}n∈N ⊂ D, which we will write as

{fnpCn }n∈N have supports contained in UC/Lξn , for each n ∈ N, and clearly, converge to

f . Since ξ = supη<ξ η, and Cc(G/Lη1) ⊂ Cc(G/Lη2), for η1 ≥ η2, we may assume that

{ξn} is monotone increasing, so that for m ≥ n, by the induction assumption,

|ψξn(pnfn)− ψξm(pmfm)| = |ψξm(pnfn − pmfm)| ≤ ψξm(UC/Lξm)‖fn − fm‖∞
≤ ψξ1(UC/L1)‖fn − fm‖∞ → 0

as m,n → ∞. Thus, the sequence {ψξn(pnfn)}n∈N is Cauchy, so that we define

ψξ(f) = limn∈N ψξn(pnfn). It is easily checked that ψ is well-defined and does not

depend on the choice of specific choice of UK or the corresponding maps pKξ .

That ψξ is positive and linear follows from its definition and the induction assumption.

Right-invariance of ψξ also follows as {fn}n∈N from above satisfies, {Rg[fnpn]}n∈N ⊂ D,

Rg[fnpn]→ Rgf , so that

ψξ(Rgf) = lim
n∈N

ψLξn (Rg[fnpn]) = lim
n∈N

ψLξn (fnpn) = ψξ(f)

Regarding 3, one notes that if 0 < η ≤ ξ, then, for f ∈ Cc(G/Lη), one may consider

an arbitrary sequence {ξn} ≥ η, and take fn = f trivially, so that by the induction

assumption,

ψξ(f) = lim
n∈N

ψξn(fn) = lim
n∈N

ψη(fn) = ψη(f)
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Lastly, ψξ(K) ≤ ψ1(K) <∞, follows similarly from the induction assumption.

Since Lξ0 = {e}, there exists a linear functional ψξ0 on Cc(G) satisfying the criteria 1-4.

This provides the desired Haar measure.

Uniqueness of the theorem follows similarly.

Theorem 3.10. The Haar measure in theorem Theorem 3.9 is unique up to scalar

multiplication.

Proof. Let {ψξ}ξ≤ξ0 be the Haar measures on G/Lξ, 0 < ξ ≤ ξ0 and suppose µ is a

Haar measure on G. As before we denote by µξ the unique Haar measure on Lξ/Lξ+1.

We shall show that there exists c > 0 such that cµ(f) = ψξ(f), for all f ∈ Cc(G/Lξ),
for all ξ ≤ ξ0 using transfinite induction.

Since G/L1 is a locally compact topological group, and µ forms a Haar measure on it,

it follows that there exists some c > 0, such that cµ(f) = ψ1(f).

Assume the same induction hypothesis holds for ξ < ξ0, with the same constant c.

Then, for any f ∈ Cc(G/Lξ+1),

ψξ+1(f) = ψξ ◦ φξ(f) =

∫
φξ(s)dψξ(s)

= c

∫
φξ(s)dµ(s)

= c

∫ ∫
Lξ/Lξ+1

f(st)dµξ(t)dµ(s)

= c

∫ ∫
Lξ/Lξ+1

f(s)dµξ(t)dµ(s)

= c

∫
f(s)dµ(s)

= cµ(f)

where we made use of the right-translation invariance of µ. The successor case is hence

justified.
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Now suppose ξ is a limit ordinal and f ∈ Cc(G). Recall from the proof of theorem,

that ψξ(f) = limn∈N ψξn(fn), for fn ∈ Cc(G/Lξn), where ∪n∈Nsupp(fn) ⊂ U for some

compact set U ⊂ G and ‖fn‖ ≤ ‖f‖∞ for all n ∈ N. By the induction hypothesis,

therefore, ψξ(f) = c limn∈N µ(fn) = cµ(f), by the dominated convergence theorem.

This concludes the proof.

We shall conclude this chapter with some examples of σ-locally compact right topo-

logical groups. However, we shall first discuss a fundamental idea which has not been

touched upon in the current literature. Given a right topological group, one might

question when its quotient groups are topological (and thus automatically have a Haar

measure). In particular, when do results like Proposition 3.6 hold for general sub-

groups? To answer this question, we need the σσ-topology of (G, σ).

We define the σσ topology on G, to be the σ topology of the compact semi-topological

group (G, σ) i.e. induced by the quotient map (G, σ)× (G, σ)→ G, (g, h) 7→ g−1h.

By Theorem 2.5, σσ ( σ and (G, σσ) is a compact semitopological group with contin-

uous inverse. Furthermore, by [37], Corollary 1.1, N(G) is precisely {e}
σσ

.

Let H ⊂ G be a closed normal subgroup. Recall that (G/H, τ), (G/H, σ) denotes G/H

with the quotient topologies induced by (G, τ) and (G, σ) respectively, where we denote

the respective quotient maps by πτ , πσ. Let us further define (G/H, σG/H) to be the σ

topology induced by (G/H, τ ) i.e. by the quotient map φG/H : (G/H, τ)× (G/H, τ )→
G/H, ([x], [y]) 7→ [x−1y].

Lemma 3.11. Let G be a locally compact right topological group and let H be a σ-closed

normal subgroup of G. Then, (G/H, σG/H) = (G/H, σ), and (G/H, τ ) = (G/H, σ) holds

if and only if (G/H, τ ) is topological.

Proof. To prove the first claim, we consider the following commutative diagram

(G×G, τ × τ) (G, σ)

(G/H ×G/H, τ × τ) (G/H, σ)

φ

φG/Hπτ × πτ

πσ

g
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One easily checks that the diagram commutes and a function f : (G/H, τ )→ X, where

X is any topological space, is continuous on either of (G/H, σG/H), (G/H, σ) if and only

if f ◦ g is continuous. It follows that the two topologies coincide. Now by Theorem 2.5,

(G/H, τ ) is topological if and only if (G/H, τ) = (G/H, στ ), where the latter space

coincides with (G/H, σ). The conclusion follows.

Lemma 3.12. Let G be a σ-locally compact Hausdorff right topological group and H ⊂
G be a closed normal subgroup. If G is either compact or admissible, then, (G/H, τ ) is

a Hausdorff topological group if and only if H is σσ-closed.

Proof. By Proposition 2.7 (G/H, τ ) is Hausdorff if and only if H is σ-closed, so that we

may restrict the proof to this case. Suppose H is also σσ-closed. Then, by Lemma 3.3,

(G/H, σ) is locally compact Hausdorff. However, by Lemma 3.11, (G/H, σ) = (G/H, στ ),

so that (G/H, τ )→ (G/H, σ), g 7→ g, is a continuous homomorphism from a σ-compact

group into a Hausdorff Baire group, thus a homeomorphism by the open mapping theo-

rem. It follows by Lemma 3.11 that (G/H, τ ) is topological. Conversely, if (G/H, τ ) is a

Hausdorff topological group, we have (G/H, τ ) = (G/H, σ) = (G/H, σG/H) is Hausdorff

so that by Proposition 2.7 H must be σσ-closed. This concludes the proof.

An excellent source of examples in the compact case is [28], and our own examples

have been inspired by this paper. Additionally, [29] provides a general framework for

constructing such examples via the concept of Schreier products of groups.

Example 3.13. Consider the group C∗ × CAP = C∗ × Ĉd. We equip this group with

the following multiplication:

(w, h)(v, g) = (wv,Rvhg)

If G is further equipped with the product topology, one obtains a σ-locally compact

right topological group. Since C ↪→ Ĉ via z 7→ [t 7→ e2πizt] sits inside λ(CAP ), i.e is

the set of continuous characters on C, Λ(G) ∼= C × C. Further one notes that G is

admissible.

Consider the normal subgroup H = {1} ×CAP . Taking the quotient of G with respect

to this subgroup, one obtains an algebraic isomorphism onto C× 1, in fact, we get the

following composition

C∗ × CAP → C∗ × CAP/H → C
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(w, h) 7→ [w, 1]→ w

Since the above diagram commutes, it is clear that G/H → C is a continuous bijective

homomorphism. By Lemma 3.2, G/H ∼= C, whence by Lemma 3.12, H is σσ-closed

and thus contains N(G). One notes however, that no proper subgroup N ⊂ H provides

a topological quotient G/N so that H = N(G) as N(G) = {e}
σσ

. The hypothesis of

Theorem 3.9 is satisfied for G. Indeed, one gets a compact strong normal system of

subgroups given by G ⊃ N(G) ⊃ {e} as G×N(G)→ G, (w, h)(1, g) = (w, hg) is clearly

separately continuous, whence jointly continuous by Theorem 3.5. A Haar measure on

G is simply given by the product of Haar measures on C and CAP respectively.

Here we observe that G′ = T×CAP forms a subgroup of G that is also an admissible right

topological group (discussed in [28]) and further, N(G′) = N(G). An open question is

determining when subgroups of a σ-locally compact right topological group satisfy the

latter property.

Example 3.14. Let G be the group T × C × CAP = T × C × Ĉd with multiplication

given by:

(u, x, h)(v, y, g) = (uvh(y), x+ y, hg)

Along with the product topology and the specified multiplication, G becomes a σ-locally

compact right topological group. The topological center can be verified to consist of

the continuous elements of Ĉd i.e. Λ(G) = T × C × C, where, as before C ⊂ Ĉd via

z 7→ [t 7→ e2πizt]. G is hence admissible.

In this case, we may note that for H = T × {0} × {1}, G/H ∼= C × CAP is a locally

compact topological group. Further, no proper subgroup of H gives a topological quo-

tient with respect to G, so that by Lemma 3.12, H = N(G). Again, we have N(G) is

compact. A compact strong normal system is given by G ⊃ N(G) ⊃ {e}; the multipli-

cation map [T×C× Ĉd]× [T×{0}×{1}]→ T×C× Ĉd is clearly separately continuous

as N(G) ⊂ Λ(G), whence jointly continuous by Theorem 3.5.

Unlike the last example, N(G) ⊂ Λ(G) in this case. Observe that in both examples,

N(G) is a compact topological group.
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General examples of locally compact admissible topological groups are plentiful via tak-

ing products of admissible compact right topological groups and locally compact topo-

logical groups. In particular, for a locally compact topological group G, G × GD(G) is

usually non-trivially right topological, locally compact and admissible. Here by GD(G),

we refer to the distal compactification of G and the reader is referred to [3] for more

details.

If G is σ-compact, G×GD(G) is also σ-locally compact. In this case, note that a strong

normal system of subgroups and thus the existence of a Haar measure is guaranteed as

GD(G) is a CHART group (Theorem 3.9). However, it still remains an open question

as to whether every admissible σ-locally compact group possesses a Haar measure or a

strong normal system of subgroups. Further, is N(G) always compact for such a group?
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Chapter 4

Function algebras

In this chapter, we will discuss familiar function algebras from harmonic analysis, in-

cluding Fourier algebras, in the setting of locally compact right topological setting.

These algebras form an important part of the analytic theory over such groups and

their structure is fundamentally linked to the topological structure of the group itself

(see [14],[17]). As we shall see, unfortunately in the right topological setting, the theory

of these algebras is not as rich and these algebras may be degenerate in some sense (not

separating points for example).

Let G be a locally compact Hausdorff right topological group. Further, let A ⊂ C0(G)

be a non-trivial translation-invariant C*-algebra of C0(G). We then define

Fix(A) = {g ∈ G | Lgf = f , for all f ∈ A}

For every subgroup L of G, we shall denote by π̃L : C0(G/L) → C0(G) the map

f 7→ f ◦ πL, where πL is the quotient map from G into G/L.

Here we generalize a result in [20]. The proof follows with mild modifications and is

presented below.

Lemma 4.1. Let G be a locally compact Hausdorff right topological group. If A ⊂
C0(G) is a non-trivial translation invariant C*-algebra, then F = Fix(A) satisfies the

following;

1. F is a closed normal subgroup of G
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2. π̃F : C0(G/F )→ A is an isometric isomorphism, i.e.

A = {f ∈ C0(G) | Lyf = f for all y ∈ F}

3. G/F is a locally compact Hausdorff topological group, so that F is σ-closed.

Proof. It is straightforward to observe that F is a closed subgroup. Normality also

follows, as for any x, y ∈ G, g ∈ F ,

Lxgx−1f(y) = f(xgx−1y) = Lxf(gx−1y) = Lg[Lxf ](x−1y) = Lxf(x−1y) = f(y)

where the second last inequality follows because Lxf ∈ A by the translation invariance

of A, and g ∈ F .

To prove 2, we consider the map ψ : A → C0(G/F ), f 7→ f̃ , where f̃ ∈ C0(G/F )

is the unique function satisfying f̃ ◦ πF = f . Here, ψ(A) ⊂ C0(G/F ) is clearly a

C∗-subalgebra. Moreover, [x] 6= [y] in G/F implies that x−1y 6∈ F , so that by the

definition of F , there exist f ∈ A, g ∈ G such that Lx−1yf(g) 6= f(g) and thus,

ψ[Rgf ](x−1y) 6= ψ[Rgf ](e), where Rgf ∈ A due to the right translation invariance of A.

Hence, ψ(A) separates the points of C0(G/F ). It is also clear that ψ(A) is non-vanishing

everywhere by translations, as A contains a non-trivial function. By Stone-Weierstrauss

theorem, ψ(A) = C0(G/F ), and the map π̃F , the inverse of ψ, is an isometric isomor-

phism.

To show 3, first observe that for any f̃ ∈ C0(G/F ), x, y ∈ G,

Lxf(y) = f(xy) = f̃([xy]) = L[x]f̃([y])

where Lxf ∈ A by assumption, and so, L[x]f̃ = ψ[Lxf ] ∈ C0(G/F ). If [x] ∈ G/F and

{[gal]} → [g] in G/F , it then follows for every f ∈ C0(G),

f̃([xgα]) = L[x]f̃([gα])→ L[x]f̃([g]) = f̃([xg])

Since G/F is locally compact, whence completely regular, l[x] : G/F → G/F is continu-

ous. By Theorem 2.1, it follows that G/F is topological. Moreover, by Proposition 2.7

F is σ-closed.
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We note here that if we assume that G is σ-compact admissible, by Lemma 3.12, F is

additionally σσ closed. As a result of this, we obtain the following;

Corollary 4.2. Given a σ-locally compact Hausdorff right topological group, if G is

either compact or admissible,

Fix(C0(G, σ)) = N(G)

Proof. By Lemma 4.1, for F = Fix(C0(G, σ)), (G/F, τ) is a Hausdorff topological group,

so that by Lemma 3.12, F is σσ-closed. However, N(G) = {e}
σσ

implies N(G) ⊂ F .

Suppose that G is compact or admissible. If N(G) = G, F ⊂ N(G) is trivial. If

N(G) 6= G on the other hand, for any g 6∈ N(G), there exists some f̃ ∈ C0(G/N(G))

such that f̃([g]) 6= f̃([e]). By Proposition 3.6, f = f̃ ◦ πN(G) ∈ C(G, σ) and separates e

and g, which implies g 6∈ F and thus N(G) = F .

Let G be a right topological semigroup.

We define the left continuous functions on G to be given by

LC(G) = {f ∈ Cb(G) | Lgf ∈ Cb(G), for all g ∈ G}

and the left continuous functions vanishing at infinity to be

LC0(G) = {f ∈ C0(G) | Lgf ∈ C0(G), for all g ∈ G}

Note that the latter definition is somewhat artificial: LC0(G) ⊂ LC(G) ∩ C0(G), how-

ever, equality is not known, since our left multiplication is not continuous (and thus

compact sets need not be preserved by it).

We also define the standard spaces

AP (G) = {f ∈ Cb(G) | RO(f) is relatively compact in Cb(G)},
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the almost periodic functions on G, and

WAP (G) = {f ∈ Cb(G) | RO(f) is relatively weakly compact in Cb(G)},

the weakly almost periodic functions on G.

The following proposition is a standard result in harmonic analysis (see Theorem 1.8

of [3]).

Proposition 4.3. Given a non-empty set S, and a conjugate closed subspace E of

l∞(S), E∗ is the weak*-closed linear span of ε(S), where ε : S → E∗ is the function

sending s ∈ S to the evaluation functional ε(s) : f 7→ f(s).

Lemma 4.4. If G is a right topological semigroup, the following equalities hold

1. AP (G) = AP (Gd) ∩ Cb(G)

2. WAP (G) = WAP (Gd) ∩ Cb(G)

Proof. The first result is obvious. Let us prove 2. Suppose f ∈ l∞(G). Then, By

Grothendieck’s double limit theorem (see Theorem A.5 in [3]) and Proposition 4.3, for

any sequences {gn},{hn} ⊂ G, the following middle limits are equal when they exist

lim
m

lim
n
ε(gn)Rhmf = lim

m
lim
n
f(gnhm) = lim

n
lim
m
f(gnhm) = lim

n
lim
m
ε(gn)Rhmf

if and only if RO(f) is relatively weakly compact in l∞(G), i.e. f ∈ WAP (Gd). How-

ever, if f ∈ Cb(G), this is clearly equivalent to f ∈ WAP (G) by another application of

Proposition 4.3 and Grothendieck’s theorem.

Theorem 4.5. Let G be a locally compact Hausdorff right topological group. The fol-

lowing hold:

1. Cb(G, σ) ⊂ LC(G) and C0(G, σ) ⊂ LC0(G).

2. LC(G) separates points from closed sets in G if and only if G is topological.

3. If G is admissible, WAP (G) ⊂ LC(G) and WAP (G) ∩ C0(G) ⊂ LC0(G)
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If further G is σ-compact admissible or compact, then

4. LC0(G) = C0(G, σ)

5. If G is non-compact, AP (G)∩C0(G) = {0} so that AP (G)⊕C0(G, σ) ⊂ WAPG(G)

Proof. We first prove 1 and 4. Since (G, σ) is a semitopological group, it is clear

that Cb(G, σ) ⊂ LC(G) and that C0(G, σ) ⊂ LC0(G). Suppose in addition that G is

σ-compact admissible or compact. Since LC0(G) is a non-trivial closed, translation-

invariant subalgebra of G, by Lemma 4.1 and Lemma 3.12, Fix(LC0(G)) contains

N(G) = {e}
σσ

. On the other hand, Fix(LC0(G)) ⊂ Fix(C0(G, σ)) = N(G). It

follows that Fix(LC0(G)) = N(G), so that by Corollary 4.2 and 2 of Lemma 4.1,

C0(G, σ) = LC0(G).

If LC(G) separates points from closed sets, the initial topology of LC(G) coincides

with the original topology on G (see 8.15 in [51]). However, for all f ∈ LC(G), yα → y

in G implies f(xyα) → f(xy), since Lxf ∈ C(G) for all x ∈ G. Thus, G is a locally

compact semitopological group, and by [7], a topological group. The converse is clear

as LC(G) = Cb(G) in the topological case.

To prove 3, consider f ∈ WAP (G); by assumption, RO(f) is relatively weakly com-

pact in Cb(G). By Grothendieck’s double limit theorem (see Theorem A.5 in [3]) and

Proposition 4.3, for any sequences {gn},{hn} ⊂ G, the following middle limits are equal

when they exist

lim
m

lim
n
ε(hm)Lgnf = lim

m
lim
n
ε(gn)Rhmf = lim

n
lim
m
ε(gn)Rhmf = lim

n
lim
m
ε(hm)Lgnf

Consider the set {Lgf | g ∈ Λ(G)} ⊂ Cb(G). Then, the above equality certainly holds

for {gn} ⊂ Λ(G), {hn} ⊂ G when the limits exist. Therefore, by Grothendieck’s the-

orem again, {Lgf | g ∈ Λ(G)} is relatively weakly compact in Cb(G). For any g ∈ G
now, by admissibility there exists some net {gα} ⊂ Λ(G) such that gα → g, and thus

Lgαf → Lgf pointwise. However, by weak compactness, {Lgαf} has a weak cluster

point in Cb(G), which must coincide with Lgf . Thus, Lgf ∈ Cb(G) for all g ∈ G. If

in addition, f ∈ C0(G), then, {Lgαf} ⊂ C0(G) so that its weak limit Lgf ∈ C0(G),

whence f ∈ LC0(G).
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Lastly, if G is non-compact, σ-compact admissible, if f ∈ AP (G) ∩ C0(G), then by

3,4, and Corollary 4.2, f ∈ C0(G, σ) = C0(G/N(G)). If N(G) = G, the claim is

now obvious; otherwise by Proposition 3.6, G/N(G) is a non-trivial locally compact

topological group and the 5 follows from the classical result (see 4.2.2a of [3]).

In the case of a CHART group, it was shown in [20], and follows from Theorem 4.5

1 and 3,, that LC(G) = WAP (G) = AP (G) = C(G, σ). In fact, even if G is not

admissible, LC(G) = C(G, σ). We wonder if it is possible for LC(G) to separate points

in the locally compact case.

4.1 Fourier Algebras on G

The results presented on function algebras may be used to obtain some interesting

properties on the Fourier algebra analogues.

Suppose G is a locally compact Hausdorff right topological group. Let us denote G with

the discrete topology by Gd. The unitary representations on Gd correspond one-to-one

with the non-degenerate representations on l1(G), which we denote by Σ. Σ then in-

duces a norm on l1(G), namely ‖f‖∗ = supπ∈Σ ‖π(f)‖ for f ∈ l1(G). The completion

of l1(G) under this norm is then a C*-algebra, denoted by C∗(Gd) and known as the

group C*-algebra of Gd.

Consider the positive-definite functions on G, i.e. functions f : G → C satisfying∑n
i,j=1 cic̄jf(xix

−1
j ) ≥ 0 for all {ci}ni=1 ⊂ C and {xi}ni=1 ⊂ G. The span of P (G) can be

identified as the dual of C∗(Gd), and under this dual norm, forms a Banach algebra,

known as the Fourier-Stieltjes algebra, B(Gd) on the discrete group Gd. In the right

topological group setting the topological analogue has to be defined more carefully than

the classical case, due to a lack of continuous representations. For theory on these al-

gebras in the classical case, see [17].

Following [20], we define the Fourier-Stieltjes algebra of (G, τ), B(G) to given by

B(Gd)∩Cb(G). We further define the Fourier algebra on G, A(G), to be the closure

of B(Gd) ∩ Cc(G) in B(G). The σ- Fourier-Steiltjes and -Fourier algebras on G,
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will then respectively B(G, σ) = B(G) ∩ C(G, σ) and A(G, σ) = A(G) ∩ C(G, σ).

Lau and Loy have done some extensive work over the Fourier-Steiltjes algebra in the

compact setting in [21]. In particular, they showed the following characterization;

Theorem 4.6 (Lau,Loy). If G be is an admissible compact Hausdorff right topological

group, then

B(G) = B(G, σ) ∼= B(G/N(G))

Unlike the locally compact topological group setting, where B(G) completely identifies

G up to topological isomorphism, the above result indicates that this does not hold

for right topological groups. It however does follow that the quotient group G/N(G)

is uniquely identified by B(G) up to topological isomorphism. In the locally compact

setting we are unable to produce an analogue of this strong result and instead have the

following;

Corollary 4.7. Let G be an admissible σ-locally compact right topological group.Then,

B(G), A(G) are commutative Banach algebras satisfying the following:

1. B(G) is closed under translations on G

2. B(G, σ) = B(G/N(G)) and A(G) = A(G, σ)

3. B(G) separates points from closed sets implies that G is topological

4. A(G) separates points in G if and only if G is topological

Proof. That B(G) is closed in norm in B(Gd) follows from the fact that the norm on

latter bounds the uniform norm. Observe that B(G) = B(Gd) ∩ Cb(G) ⊂ WAP (Gd) ∩
Cb(G) = WAP (G), where the first containment is a classical result (see [4]), and

the equality follows from Lemma 4.4. By 3 of Theorem 4.5, B(G) ⊂ LC(G) so

that invariance under translations follows by 4.2.3 in [3]. Now using Corollary 4.2,

B(G, σ) = B(Gd) ∩ C(G, σ) ⊂ B(Gd) ∩ C(G/N(G)) = B(G/N(G)). The other inclu-

sion follows by Corollary 4.2 or Proposition 3.6.

For 4, we again obtain the containments B(Gd) ∩ Cc(G) ⊂ WAP (G) ∩ Cc(G) ⊂
LC0(G) = C(G, σ), where we used 3, 4 of Theorem 4.5 and Corollary 4.2. It fol-

lows that the closure of B(Gd)∩Cc(G) in B(G), namely A(G), is contained in B(G, σ),

whence A(G) = A(G, σ). The last two claims follows from 3 of Theorem 4.5.
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Unlike Theorem 4.6, where B(G) ∼= B(H) for a topological group H, it is possible

that there exist non-compact locally compact admissible, or compact non-admissible

right topological groups for which this property never holds. We wonder if such groups

possess any special properties.

We conclude with a result that shows the failure of a fundamental property of A(G)

occuring in the topological case.

Corollary 4.8. Let G be a σ-locally compact admissible right topological group. Then

A(G)∗ is a Von Neumann algebra corresponding to a faithful representation π of G,

with 〈π(x), f〉 = f(x) for all x ∈ G, f ∈ A(G) if and only if G is topological.

Proof. Suppose A(G)∗ is a Von Neumann algebra as described. By Corollary 4.7,

A(G) = A(G, σ), so that x 7→ 〈π(x), f〉 = f(x) is σ-continuous and factors through

N(G) by Theorem 4.5. Since V Nπ is determined by its evaluation on A(G), it follows

that π is N(G)-invariant. This contradicts faithfulness unless G is topological. The

converse is a standard result (see [17]).
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Chapter 5

Measure Algebras

In this chapter, we primarily discuss various measure algebra analogues on right topo-

logical groups, and their properties. As discussed in Chapter 1, on locally compact

topological groups, the space of complex Radon measures, M(G), naturally forms an

algebra under convolution. In the right topological case, due to the lack of conti-

nuity properties, and more generally, measurability properties of left translations, a

workaround is required for the formulation of a canonical measure algebra. In fact, as

we shall see, one obtains many measure algebra analogues which simply collapse to the

usual measure algebra for topological groups. Many of these are highly non-equivalent

in the (strict) right topological case. A lot of our work here is inspired by Lau and

Loy’s work on measure algebras in the compact setting in [20]. Much of this generalizes

well to the locally compact case and we take advantage of this.

An important goal in introducing the measure algebras that we do, is characterizing

the existence of a Haar measure on compact right topological groups, presented in

Section 5.1. Currently, admissibility and the existence of a strong normal system of

subgroups (Proposition 2.8,Theorem 2.9) are the only known sufficient conditions for

this. In view of there existing a compact right topological group with no Haar measure

[19], we hope our work will shed some light on the matter.

Suppose µ, ν ∈ M(G); note that for f ∈ Cc(G), the usual convolution of measures,∫ ∫
f(xy)dµ(x)dν(y), may not be defined, since the function f · µ : G 7→ R, y 7→∫

f(xy)dµ(x) is not necessarily Borel (let alone continuous like in the topological case).
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As such, let us define

MCb(G) = {µ ∈M(G) | f · µ ∈ Cb(G), for all f ∈ Cb(G)}

In the compact case, this reduces to

M(G) = {µ ∈M(G) | f · µ ∈ C(G), for all f ∈ C(G)}

as introduced by Lau and Loy in [20].

We may now define the convolution of measures as usual,

〈µ�ν, f〉 = 〈ν, µ · f〉 =

∫ ∫
f(xy)dµ(x)dν(y)

Further, we define L(G) =MCb(G) ∩ L1(G), whenever G has a Haar measure.

Lau and Loy’s result on M(G) for a compact right topological group G, works for

MCb(G) as well, presented as follows.

Proposition 5.1. Let G be a locally compact Hausdorff right topological group. Then,

(MCb(G),�) is a Banach algebra that is closed in M(G). Furthermore, l1(Λ(G)) ⊂
MCb(G), so that the space is non-trivial, and these are the only point mass measures

in MCb(G).

Proof. It is easily seen that MCb(G) is a subspace of M(G). If now µn → µ for

{µn} ∈ MCb(G), µ ∈M(G), for any f ∈ Cb(G), we have,

|f · µ(x)− f · µn(x)| =
∣∣∣∣∫ Rxf(y)dµ(y)−

∫
Rxf(y)dµ(y)

∣∣∣∣
≤ ‖Rxf‖∞‖µn − µ‖

= ‖f‖∞‖µn − µ‖ −→ 0

so that f · µn → f · µ uniformly. Since {f · µn} ⊂ Cb(G), it is clear that f · µ ∈ Cb(G),

so that µ ∈MCb(G) and MCb(G) is closed.

Let us show that MCb(G) is closed under �. Suppose µ, ν ∈ MCb(G) and f ∈ Cb(G).
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Then, we have,

f · [µ�ν](x) = 〈µ�ν,Rxf〉 =

∫ ∫
Rxf(yz)dµ(y)dν(z)

=

∫ ∫
Rzxf(y)dµ(y)dν(z)

=

∫
f · µ(zx)dν(z)

=

∫
Rx[f · µ](z)dν(z)

= [f · µ] · ν(x)

where, since f ·µ ∈ Cb(G) by assumption, it follows that [f ·µ] ·ν ∈ Cb(G). This proves

the claim.

To show associativity, consider again, µ, ν, γ ∈MCb(G) and f ∈ Cb(G), then,

〈[µ�ν]�γ, f〉 =

∫ ∫
f(xy)d[µ�ν](x)dγ(y) =

∫
〈µ�ν,Ryf〉 dγ(y)

=

∫ ∫ ∫
Ryf(xz)dµ(x)dν(z)dγ(y)

=

∫ ∫ ∫
f(xzy)dµ(x)dν(z)dγ(y)

=

∫ ∫
[f · µ](zy)dν(z)dγ(y)

= 〈ν�γ, f · µ〉

= 〈µ�[ν�γ], f〉

which proves the claim.

Further, also note that

| 〈µ�ν, f〉 | =
∣∣∣∣∫ ∫ f(xy)dµ(x)dν(y)

∣∣∣∣ ≤ ‖f‖∞‖µ‖‖ν‖
showing that ‖µ�ν‖ ≤ ‖µ‖‖ν‖.
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Now suppose x ∈ G, then

g 7→ f · δx(g) = 〈Rgf, δx〉 = Rgf(x) = Lxf(g)

is continuous for all f ∈ Cb(G) if and only if x ∈ Λ(G), so that Λ(G) ⊂ MCb(G). If∑∞
n=1 anδxn ⊂ l1(Λ(G)), then, for each f ∈ Cb(G), f · [

∑∞
n=1 anδxn ] =

∑∞
n=1 anLxnf is

clearly contained in Cb(G), so that l1(λ(G)) ⊂MCb(G) also holds. Since e ∈ Λ(G), the

space is always non-trivial.

Proposition 5.2. Let G be a locally compact Hausdorff right topological group. Then,

L(G) is a closed right ideal in MCb(G) containing all µ ∈ L1(G) such that x 7→
|µ|(Kx−1) is continuous for all K ⊂ G compact.

Proof. The first part of the proof follows similarly to Lau and Loy. It is easy to check

that L1(G) is closed in M(G). If f ∈ L(G) and µ ∈ MCb(G), then, given any K ⊂ G

compact Borel with λ(K) = 0, there exists an increasing sequence {gn} ⊂ Cc(G) such

that gn → 1K in L1 norm of f�µ, so that

〈1K , f�µ〉 = lim
n→∞

∫ ∫
gn(xy)f(x)dλ(x)dµ(y) ≤

∫ ∫
1E(x)f(xy−1)dλ(x)dµ(y) = 0

It follows that f�µ ∈MCb(G), i.e. L(G) is a right ideal of MCb(G).

Consider µ ∈ L1(G) such that x 7→ |µ|(Kx−1) is continuous for all K ⊂ G compact.

By the absolute continuity of |µ|, it is of the form fλ for some f ≥ 0 in L1(G). For any

Borel set E ⊂ G, by regularity of the measure, there exists a sequence of compact sets

{Kn} contained in E such that λ(E\Kn)→ 0. Then,

|µ(Ey)− µ(Kny)| ≤ |
∫

1E(xy−1)− 1Kn(xy−1)f(x)dλ(x)|

≤
∫
|1E(xy−1)− 1K(xy−1)|f(x)dλ(x)

≤
∫
|1(E\K)y−1(x)|f(x)dλ(x) −→ 0

uniformly for in y ∈ G, and thus, the continuous functions y 7→ µ(Kny) converge

uniformly to y 7→ µ(Ey). It follows that y 7→ 〈µ,Ryf〉 is continuous for all simple

functions f on G, whence for all f ∈ L∞(G). This proves the second claim.
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Suppose G is a locally compact Hausdorff right topological group with a Haar measure

λ. Let us consider the right regular representation of G, i.e. the representation

G → B(L2(G)), g 7→ Rg. In the topological case, this representation encodes impor-

tant information on the structure of the group. It is continuous in the weak-operator

topology, and its coefficient functions can be used to obtain the Fourier algebra of the

group, which uniquely identifies the group up to topological isomorphism (see [9]). The

following result shows an important divergence from this classical case. We shall use

“WOT” and “SOT” to indicate the weak- and strong- operator topologies respectively,

on B(L2(G)).

Theorem 5.3. If G is a locally compact Hausdorff right topological group with a Haar

measure, then the following are equivalent:

1. The right regular representation of G is continuous

2. Cc(G) ⊂MCb(G)

3. G is topological.

Proof. Suppose 1 holds and the right regular representation is continuous. Since the

inverse map on the unitary operators on a Hilbert space is WOT-WOT continuous, it

follows that G → B(L2(G)), x 7→ Rx−1 is WOT continuous, whence SOT continuous

by equivalence of the two topologies on the unitaries. Suppose f ∈ Cc(G) with support

K ⊂ G, and h ∈ l∞(G); then, if yα → y in G,∣∣∣∣∫ h(x) (f(xy−1
α )− f(xy−1)) dλ(x)

∣∣∣∣ ≤ ∫ ‖h‖∞ |f(xy−1
α )− f(xy−1)| dλ(x)

= ‖h‖∞
∫

1Kyα∪Ky |f(xy−1
α )− f(xy−1)| dλ(x)

≤ ‖h‖∞ ‖1Kyα∪Ky‖2 ‖Ry−1
α
f −Ry−1f‖

2

≤ 2‖h‖∞ λ(K) ‖Ry−1
α
f −Ry−1f‖

2
−→ 0

where the convergence follows from the SOT-continuity of the right regular representa-

tion of G. It thus follows that h · fdλ ∈ Cb(G), i.e. Cc(G) ⊂MCb(G).

Suppose now that 2 holds. We claim that Cc(G) ⊂ MCb(G) makes LC(G) into a set

that can separate points from closed sets. Consider any closed set M such that e 6∈M .
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Since G\M is open, there exist strict inclusions

e ∈ K ⊂ V ⊂ V ⊂ U ⊂ U ⊂ G\M

where V , U are open neighbourhoods of e, and K, V , U are compact neighbourhoods

of e. Since G is locally compact Hausdorff, by Urysohn’s lemma, there exist continuous

functions f, p : G→ [0, 1] such that 1K ≤ f ≤ 1V , and 1V ≤ p ≤ 1U so that h = 1− p
satisfies 1Uc ≤ h ≤ 1V c . Note here that V

c ⊃ U c ⊃ U
c ⊃M , so that V

c
is a neighbour-

hood of M .

Since f ∈ Cc(G), the map φ : y 7→
∫
h(xy)f(x)dλ(x) is continuous. Furthermore,∫

h(xy)f(x)dλ(x) =

∫
V ∩V cy−1

h(xy)f(x)dλ(x) ≤ ‖f‖∞‖h‖∞λ(V ∩ V c
y−1)

so that φ is non-zero at y implies that V ∩ V c
y−1 6= ∅. However, x ∈ V ∩ V c

y−1 =⇒
xy = vy ∈ V c

for some v ∈ V , which implies that y ∈ V −1V
c
, i.e. supp(φ) ⊂ V ∩V c

y−1.

Since V
c∩V ⊂ V c∩V = ∅, it follows that e 6∈ V −1V

c
, i.e. φ(e) = 0. On the other hand,

if y ∈ U c
, V ∩V c

y−1 ⊃ K∩U cy−1 is a neighbourhood of e, and thus, λ(V ∩V c
y−1) > 0,

so that φ(e) > 0. In fact, for y ∈ U c
,∫

h(xy)f(x)dλ(x) =

∫
V ∩V cy−1

h(xy)f(x)dλ(x) ≥
∫
K∩Ucy−1

h(xy)f(x)dλ(x)

= λ(K ∩ U c
y−1) > 0

Suppose, for some ε > 0,
∫
h(xy)f(x)dλ(x) > ε for all y ∈ U c

, whence for all y ∈ M .

Then, it is clear that φ|M > ε, φ(e) = 0. Thus, φ separates e from M . In other words,

the set D = {h · fdλ | h ∈ Cb(G), f ∈ Cc(G)} ⊂ Cb(G) separates points from closed

sets in G. Note however, that

Lx[h · fdλ](z) = [h · fdλ](xz) =

∫
h(yxz)f(y)λ(y) =

∫
h(y)f(yz−1x−1)λ(y)

=

∫
h(y)Rx−1f(yz−1)dλ(y)

is continuous in z since Rx−1f ∈ Cc(G) still holds. In other words D ⊂ LC(G), is a set

that separates points from closed sets on G. By Theorem 4.5, G is a topological group.
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Lastly 3 implies 1 follows from Proposition 2.4.

In the compact admissible case, it was shown in [28] that no continuous representation

of G may be faithful unless G is topological. This was used to prove Theorem 5.3 in

[20] for compact groups. We cannot rely on this in our more general setting, and our

proof is constructive. Whether faithful representations exist for general locally compact

admissible right topological groups remains an open question.

Following Lau and Loy, let us introduce the space

Lc(G) = {µ ∈M(G) | x 7→ µx−1 is norm continuous}

Then, we obtain the following result.

Proposition 5.4. Let G be a locally compact Hausdorff right topological group. Then,

Lc(G) is a closed left ideal in MCb(G) that is an L-space. Moreover, for all all µ ∈
Lc(G), y 7→ µ(Ey) is continuous.

Proof. It is straightforward to check that Lc(G) is closed. Suppose µ ∈ Lc(G) and

ν ∈MCb(G); for any f ∈ Cb(G), one then has,

y 7→ 〈Ryf, ν�µ〉 =

∫ ∫
f(xzy)dν(y)dµ(z) =

∫ ∫
f(xz)dν(y)dµy−1(x) = 〈Ryf, ν�µy−1〉

Uniform continuity of the map then follows by ‖ν�µy−1‖ ≤ ‖ν‖‖µy−1‖. Thus, Lc(G) is

a closed left ideal.

Clearly Lc(G) is a partially ordered vector space under the usual order of M(G). Fur-

thermore, it is a lattice, as µ ∈ Lc(G) gives

‖|µ| − |µx−1 |‖ = ||µ| − |µx−1 ||(G) =≤ |µ− µx−1 |(G) = |µ− µx−1 | → 0

as x→ e. It follows that Lc(G) is an L-space (as M(G) is one).

If µ ∈ Lc(G) and E ⊂ G is Borel, there exists a sequence {fn} ⊂ Cc(G) such that

fn → f in µ. We then have,

µ(Ey) =

∫
1Ey(x)dµ(x) =

∫
1E(x)dµy−1(x) ≤ ‖µy−1‖
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so that continuity clearly follows.

In the compact case, the presented algebras form analogues of the classical algebras on a

locally compact topological group, namely the group algebra L1(G), and the measure

algebra M(G), respectively. In fact on compact topological groups, Lc(G) = L(G) =

L1(G) is a two-sided ideal, while M(G) = M(G). We therefore have the following

generalization of Lau and Loy [20].

Corollary 5.5. Let G be a locally compact Hausdorff right topological group with a

Haar measure. If either one of L(G) = L1(G), Lc(G) = L1(G) or MCb(G) = M(G)

hold, then G is topological. If G is compact, the converse holds as well.

Proof. Since L(G),Lc(G) ⊂ MCb(G), and Cc(G) ⊂ L1(G) ⊂ M(G), by Theorem 5.3

the forward implication holds. The converse follows in the compact case from C(G)

being contained in the uniformly continuous functions on G when it is topological

[9].

Remark 5.6. We note here thatMCb(G) is not necessarily equivalent to M(G) in the

locally compact topological case. An appropriate analogue of the Measure algebra in

this case is yet to be found. Similarly, while Lc(G) = L(G) = L1(G) in the compact

topological case, these do not form analogues of the group algebra in the locally compact

case.

Since Lc(G) = L(G) in the compact topological case, we may ask what elements lie in

their intersection in general. Following Lau and Loy [20], let us denote by

D(G) = {f ∈ Cb(G) | g 7→ Lyf(g−1) is continuous for all y ∈ G},

. Then we get the following result.

Proposition 5.7. If G is locally compact then, L1(G) ∩WAP (G) ∩D(G) ⊂ L(G); in

particular, L1(G) ∩ AP (G) ∩D(G) ⊂ L(G) ∩ Lc(G).

Proof. Suppose f ∈ L1(G) ∩ WAP (G) ∩ D(G) ⊂ L(G) ∩ Lc(G). For each x ∈ G,

y 7→ f(xy−1) = Ry−1f(x) is continuous. If yα → y in G, then, f ∈ WAP (G) implies
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that every subnet of {Ry−1
α
f} has a weak cluster point in Cb(G) which, by pointwise

continuity coincides with Ry−1f . It follows that every subnet of {Ry−1
α
f} has a subnet

that converges to Ry−1f . Thus, y 7→ Ry−1f is weakly continuous. A similar proof shows

that for f ∈ L1(G)∩AP (G)∩D(G), y 7→ Ry−1f is uniformly continuous and the latter

claim follows.

5.1 Characterizing the existence of a Haar measure

in the compact case

In this section we shall introduce several subspaces of M(G) that form analogues of the

measure algebra in the compact topological case. There are clearly connections between

these algebras and the topological structure of the group itself. For the topological case,

all these algebras coincide. Further, as we shall see, some of these analogues may be

used to characterize the existence of a Haar measure.

In this section we assume that G is a compact Hausdorff right topological

group unless stated otherwise.

Let us denote by B(G), the set of bounded Borel functions on G with the uniform

norm. Further, Baξ(G), the bounded Baire functions of order ξ, for an ordinal

number ξ, are recursively defined to be functions that are pointwise limits of sequences

in the preceding classes, where we assume B(G) = Ba0(G). The last set in this recursion

will be denoted by Ba(G), and is referred to as the bounded Baire functions. It is

important to note that these spaces form Banach algebras and all coincide when the

underlying space is second countable. We refer the reader to [5] for further information

on these spaces.

Now let us define

• Mb(G) = {µ ∈M(G) | f · µ ∈ B(G), for all f ∈ C(G)}

• MBa(G) = {µ ∈M(G) | f · µ ∈ Ba(G), for all f ∈ C(G)}

• MB(G) = {µ ∈M(G) | f · µ ∈ B(G), for all f ∈ B(G)}
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Lemma 5.8. Suppose f ∈ Ba(G), and µ ∈ Mb(G) then, f · ν ∈ B(G). Further, if

µ ∈MBa(G), then f · ν ∈ Ba(G).

Proof. We shall show the statement for positive functions in Ba(G) as the complex

combinations of these generate Ba(G). We shall prove this by transfinite induction on

Baire class functions of ordinal ξ ≤ ω0, denoted by Baξ(G). The base case is clear for

both cases.

Suppose now that the statment holds for baire classe Baξ(G). Suppose f ∈ Baξ+1(G).

By definition, there exists a sequence {fn} ⊂ Baξ(G) such that fn → f pointwise.

Without loss of generality, we may assume that fn are real and bounded, as Re(f)→ f

is clear, and further, as the real part of B(G) is a Banach lattice, Re(fn) ∨ fn →
Re(f) ∨ f = f . Applying the dominated convergence theorem to {Ryfn} then, one

has, fn · µ(y) =
∫
fn(xy)dµ(x) →

∫
f(xy)dµ(x) = f · µ(y). As the sequence {fn} is in

Baxi(G), by our induction assumption, {fn · µ} ⊂ B(G) and as B(G) is closed point-

wise, it follows that f · µ ∈ B(G).

The limit case is similar. Suppose ξ0 ≤ ω0 is a limit ordinal. Assume that the statement

holds for all ξ < ξ0. Then, for each f ∈ Baξ(G), f is a pointwise limit of some sequence

{fn} ⊂ ∪ξ<ξ0Baξ(G). By a similar argument to the previous one, we may assume, {fn}
is bounded and real. Then, by dominated convergence theorem, fn · µ → f · µ, where

the sequence being in B(G) by assumption, converges in B(G).This concludes the proof

of the first statement. The second statement follows similarly from the Ba(G) being

pointwise closed.

Proposition 5.9. Let G be a compact Hausdorff right topological group. Then, under

the usual convolution “�”,

• MB(G) is a closed Banach algebra in M(G)

• MBa(G) is a closed Banach algebra in M(G) containing Mσ(G).

• Mb(G) is a left Banach module of MBa(G), containing MBa(G) and MB(G).

M(G) is a left Banach module of Mb(G). If Ba(G) = B(G), then Mb(G) is

a closed subalgebra of M(G). In particular, if G is second countable, this is the

case.
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Proof. Note that if µn → µ in M(G), then, for any f ∈ B(G), f · µn → f · µ in the sup

norm. Since Ba(G), B(G) and C(G), are norm closed, the norm closure of the three

spaces is clear.

Now suppose µ, ν ∈M(G). Then, (not necessarily defined)

f · [µ�ν](x) =

∫ ∫
Rxf(yz)dµ(y)dν(z) =

∫
f · µ(zx)dν(z) = [f · µ] · ν(x)

If µ, ν ∈ MB(G) and f ∈ B(G), then, f · µ ∈ B(G) so that it is clear from the above

that µ�ν ∈ MB(G) and that MB(G) is an algebra. If µ, ν ∈ Mb(G) and f ∈ C(G),

the f · µ ∈ Ba(G), so that by the lemma, [f · µ·]ν ∈ Ba(G), proving that MBa(G)

is an algebra. Similarly, lemma also shows that Mb(G) is a left module of MBa(G).

If µ ∈ Mb(G)(G), ν ∈ M(G), µ�ν(f) =
∫
f · µ(x)dν(x) is clearly well defined for

f ∈ C(G), so that M(G) is a left-module of Mb(G)(G). Continuity of convolution is

easy to check so that the algebras are Banach algebras and the modules are Banach

modules. The other claims are easy to see.

Corollary 5.10. If G is Borel, then M(G) =Mb(G) is a Banach algebra.

Proof. Let Inv denote the inverse map on G. Suppose G is Borel. Then, (x, y) 7→ x−1y

is a jointly Borel map on G×G. Now this gives us Borel measurability of x 7→ x−1 (set

y = e). Thus, for any U×V ⊂ G×G open, one has, [Inv × IdG]−1(U×V ) = Inv(U)×V
is Borel so that, Inv × IdG is a Borel map on G × G. Thus we have that the map

(x, y) 7→ (x−1, y) 7→ xy is Borel as a composition of Borel maps.

For f ∈ C(G) and µ ∈ M(G), f · µ(x) =
∫ ∫

f(xy)dµ(y). As the map x 7→ f(xy)

is Borel, by Fubini’s theorem, one obtains that the f · µ is Borel, thus, M(G) =

Mb(G). The proof is then concluded by noting that M(G) is a left module of itself by

Proposition 5.9.

We see that Borel properties are non-trivial and interesting in the right topological case.

Further exploration is necessary to see how these characterize the topological properties

of the group.
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Let us move on to introducing another measure algebra. Inspired by Lau and Loy’s

work, we define,

Mw(G) = {µ ∈M(G) | µG is relatively weakly compact}

Note that Lc(G) ⊂Mw(G) ⊂M(G).

Proposition 5.11. Mw(G) is a closed, left ideal of M(G) containing Lc(G) and left

and right invariant under Λ(G).

Proof. It is obvious that Mw(G) is a subspace of M(G). Suppose {µn} ⊂ Mw(G),

and µn → µ. We shall show that µG is relatively weakly compact. We shall use

Grothendieck’s double limit theorem (see Theorem A.5 in [3]) - suppose for a bounded

sequence {Tn} ⊂M(G)∗, limn limm Tn(µ(gm)) and limn limm Tm(µ(gn)) exist.

Note that, for each T ∈M(G)∗ and g ∈ G, T ◦R∗g ∈M(G)∗ and

T (µ(g))− T ((µk)g) = TR∗g(µ− µk) ≤ ‖T‖‖µ− µk‖ → 0

uniformly over g ∈ G, and uniformly over T for T contained in some normed bounded

subset of M(G)∗.

Using this, we have,

lim
n

lim
m
TnR

∗
gm(µ) = lim

n
lim
m

[TnR
∗
gm ](lim

k
µk)

= lim
k

lim
n

lim
m

[TnR
∗
gm ](µk)

=(∗) lim
k

lim
m

lim
n

[TnR
∗
gm ](µk)

= lim
m

lim
n

lim
k

[TnR
∗
gm ](µk)

= lim
m

lim
n

[TnR
∗
gm ](µ)

where we used at (∗) the fact that for each k, [µk]G is weakly compact, and that

limn limm[TnR
∗
gm ](µk) and limm limn[TnR

∗
gm ](µk) exist (since the limit of each iterated

limit exists as k →∞). The claim thus follows.
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Suppose now that µ ∈Mw(G), ν ∈M(G), then, and K ⊂ G is an arbitrary non-empty

set so that for each x ∈ K, T ∈M(G)∗,

〈[µ�ν]x−1 , T 〉 = 〈µ�νx−1 , T 〉 = 〈νx−1 , T�µ〉

Since νG is relatively weakly compact, {νx−1 | x ∈ K} has a weak cluster point, say

γ ∈M(G). Then, µ�γ is clearly a weak cluster point of {[µ�ν]x−1 | x ∈ K}. It follows

that [µ�ν]G is relatively weakly compact and µ�ν ∈Mw(G).

That Lc(G) is contained in Mw(G) is easy to see - for each µ ∈ Lc(G), x 7→ µx−1 is

norm continuous, thus weakly continuous, so that the image of the map, µG is weakly

compact.

AsM(G) is closed under right translation by Λ(G), and this does not change the right

orbit of an element of M(G), Mw(G) is closed under right translation. On the other

hand, if µ ∈Mw(G), and T ∈M(G)∗, for each g ∈ G, T (g−1µ) = T ◦L∗g ∈M(G)∗, one

sees that weak convergence of a net in µG implies weak convergence of a net in [−1
x µ]G.

Thus, g−1µ ∈ G.

We now obtain an important characterization of the existence of a Haar measure.

Proposition 5.12. The following are equivalent:

1. G has a Haar measure

2. Lc(G) contains a non-zero measure

3. Mw(G) contains a non-zero measure.

Proof. That 1 =⇒ 2 and 2 =⇒ 3 is trivial. We prove 3 =⇒ 1.

Suppose µ ∈ Mw(G) is non-zero. Then, by scaling, we may assume µ(G) = 1. By

assumption the weak closure of µG, is compact, thus, by Krein Smulian, it follows that

it’s closed convex hull, K, is also weakly compact. Note that for each g ∈ G, µg(G) = 1,

and thus, for all elements in ν ∈ K, ν(G) = 1.
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We claim that K is closed under translations. Indeed, suppose ν ∈ K, h ∈ G and

let ε > 0. For each T ∈ M(G)∗ exists some convex combination
∑n

i=1 αiµgi such that

| 〈TR∗h, ν −
∑n

i=1 αiµgi , |〉 < ε. Then, for any h ∈ G, | 〈T, νh −
∑n

i=1 αi(µgi)h−1〉 | =

| 〈T, νh −
∑n

i=1 αiµh−1gi〉 | < ε. As ε was arbitrary, it follows νh ∈ K.

Now G acts on M(G) isometrically i.e. for each g ∈ G, µ ∈ M(G), µ 7→ µg−1 is a

continuous isometry. Thus G is a group of isometries on K. By Ryll-Nardzewski fixed

point theorem, K has a fixed point of G. This is clearly a Haar measure on G. The

converse is trivial.

The main takeaway of this result is that the existence of a Haar measure seems equiv-

alent to the existence of a measure with pleasant topological properties.

One of the problems with the previous proposition is that, we are unsure apriori of what

elements are contained in Mw(G). We do however have C(G, σ)dλ ⊂ Lc(G) when G

has a Haar measure λ.

We now define,

Mσ(G) = {µ ∈M(G) | f · µ ∈ C(G, σ) for each f ∈ C(G)}

Clearly Mσ(G) ⊂ M(G). If G has a Haar measure and thus, L1(G) is defined, let us

set Lσ(G) =Mσ(G) ∩ L1(G).

Proposition 5.13. Mσ(G) is a closed left-ideal ofM(G) containing the Haar measure

on G (if it exists). Furthermore, Mσ(G) and Lσ(G) are closed under right translation.

Proof. Let us first show that Mσ(G) is closed. Indeed, suppose {µα}α∈A ⊂ Mσ(G)

such that µα → µ, µ ∈ M(G). Then, for any f ∈ C(G), {xβ}β∈B ⊂ G such that the

convergence xβ →σ x ∈ G holds in the σ topology,

|f · µ(xβ)− f · µ(x)|

=

∣∣∣∣∫ f(yxβ)− f(yx)dµ(y)

∣∣∣∣
≤
∣∣∣∣∫ f(yxβ)d(µ− µα)(y)

∣∣∣∣+

∣∣∣∣∫ f(yxβ)− f(yx)dµα(y)

∣∣∣∣+

∣∣∣∣∫ f(yx)d(µ− µα)(y)

∣∣∣∣
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≤ 2‖f‖∞‖µ− µα‖+ |f · µα(x)− f · µα(xβ)|

Fix ε > 0. Then, choosing an appropriate α ∈ A so that the former term is less than

ε/2 and an appropriate β for α so that the latter term is less than ε/2 (as f · µα is in

C(G, σ)), we have a bound of ε above which gives us our claim.

To see that Mσ(G) is a left ideal, suppose that µ ∈ M(G) and ν ∈ Mσ(G). For any

f ∈ C(G), we have,

[µ�ν] · f(x) = 〈µ�ν,Rxf〉 = 〈ν,Rxf · µ〉 = 〈ν,Rx(f · µ)〉 = [f · µ] · ν(x)

Since f · µ ∈ C(G), it follows that [µ�ν] · f ∈ C(G, σ). This proves our second claim.

Note that if λ is a Haar measure on G, then for any f ∈ C(G), f ·λ is always a constant

and thus, trivially in C(G, σ).

We will show the last claim for Mσ(G) and the claim for Lσ(G) will simply follow by

absolute continuity of translations of its elements. Suppose µ ∈ Mσ(G), x, g ∈ G, and

f ∈ C(G),

f · µg(x) =

∫
f(yx)dµg(y) =

∫
f(yg−1x)dµ(y) =

∫
Rg−1xf(y)dµ(y) = f · µ(g−1x)

Thus, f ·µg = R−1
g [f ·µ]. Now as f ·µ ∈ C(G, σ) and (G, σ) is a semitopological group,

it follows that f · µg ∈ C(G, σ) which concludes our claim.

For any right topological group G, we denote by Gd, the group with the discrete topol-

ogy. The almost periodic (weakly almost periodic) functions on Gd, AP (Gd)

(WAP (Gd)), are defined to be those bounded functions whose orbit {Rgf | g ∈ G}
is relatively compact (relatively weakly compact). Then, the almost periodic (weakly

almost periodic functions ) on G are simply defined by AP (G) = C(G) ∩ AP (Gd)

(WAP (G) = C(G) ∩ AP (Gd)).

In [20], it was shown that, for admissible groups, WAP (G) = AP (G) = C(G, σ). Using

this, we have the following result.
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Proposition 5.14. If G is admissible, then Mw(G) ⊂Mσ(G).

Proof. By Lau and Loy, if G is admissible, then WAP (G) = AP (G) = C(G, σ).

Suppose µ ∈Mw(G), then, µG is relatively weakly compact. Thus, for each f ∈ C(G),

〈µg−1 , ν · f〉 =

∫ ∫
f(xgy)dµ(x)dν(y) =

∫
Lg[f · µ](y)dν(y) = 〈Lg[f · µ], ν〉

As µG is relatively weakly compact, for each subset K of G, {µg−1 | g ∈ K} has a

weak limit point, thus {〈µg−1 , ν · f〉 | g ∈ K} has a cluster point over ν ∈ M(G),

and in particular over {δg | g ∈ G}. It follows that {Lg[f · µ] | g ∈ G} ⊂ l∞(Gg) is

relatively weakly compact in C(Gd), where Gd is G with the discrete topology. In other

words, f · µ ∈ WAP (Gd) (the left and right weakly almost periodic functions coincide

on a topological group, see [3] ). As WAP (G) = WAP (Gd) ∩ C(G), it follows that

f · µ ∈ C(G, σ), i.e. µ ∈Mσ(G).

Consider the flow (ρG, G), where ρG denotes the right translation action of G on itself.

An equicontinuous right topological group is defined to be a right topological group G,

satisfying the property that it’s right flow is equicontinuous i.e. all the maps ρG(g),

g ∈ G are equicontinuous. Milnes showed that G is equicontinuous if and only if

AP (G) = WAP (G) = C(G) (see [30]). As such, for such groups the previous result

looks very different - and we note that our proof of Proposition 5.11 is not redundant

to the following result.

Theorem 5.15. G has a right invariant Haar measure if and only if Mσ(G) contains

a non-zero measure.

Proof. Suppose µ ∈ Mσ(G) is non-zero. Then, by scaling it, we may assume that

µ(G) = 1. Consider K = {µg | g ∈ G}. Since g 7→ µg is w*-continuous, it follows that

K is compact. It is clear that K is invariant under right translations of G and that

K ⊂Mσ(G).

Consider C = convK. Note that since the set is bounded by ‖µ‖ and is w*-closed,

by the Banach-Alaogu theorem, it is compact. Furthermore, K ⊂ C. Note that Rg

still maps C into C for each g ∈ G, and furthermore, that this map is w*-w* -continuous.
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It is clear that right translates by G are affine maps on C. We will now proceed to show

that right translates by G are also distal on K. Indeed, suppose limα∈A µgα = limα∈A νgα

for some µ, ν ∈ K and some {gα}α∈A ⊂ G.

Since G is compact, {g−1
α }α∈A has some subnet {g−1

β }β∈A that converges to some g−1 ∈
G. Then, we have,

lim
β∈B

〈
µgβ , f

〉
= lim

β∈B

∫
f(xgβ

−1)dµ(x) = f · µ(g−1
β )→ f · µ(g−1) = 〈µg, f〉

It follows that µgβ → µg in the w*-topology. Similarly, νgβ → νg in the w*-topology.

By M(G) being Hausdorff, we have, in the weak* topology,

lim
α∈A

µgα = lim
α∈A

νgα = lim
β∈B

µgβ = lim
β∈B

νgβ = µg = νg

and thus, µ = ν.

By Namioka’s fixed point theorem then, G has a fixed point in the w*-closed convex

hull of K. Since µ(G) = 1, all the elements ν of C satisfy ν(1) = 1. It therefore follows

that G has a right invariant Haar measure.

Proposition 5.16. Let G be a compact hausdorff right topological group. For µ ∈
M(G), if RGµ ∈M(G), then µ ∈Mσ(G).

Proof. Suppose µ ∈ Mσ(G) is such a measure. Then, one has, f · µx is continuous for

all x ∈ G. However, f ·µx = Lx−1f ·µ. It thus follows that f ·µ ∈ Cc(G) = C(G/N(G)),

so that µx is N(G) invariant and in Mσ(G).

We conclude by summarizing the main theme of this chapter: if a compact right topolog-

ical group has a non-trivial measure with nice enough topological/continuity properties,

then it also possesses a Haar measure. This explains why the non-existence of a Haar

measure has been so difficult to prove for right topological groups. In particular the

various examples that have been constructed, are some type of twisted (Schreier- see

[29]) product of topological groups, and these underlying groups possess Haar measures.
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Chapter 6

Hereditary properties of G

Every locally compact topological group possesses a Haar measure. As such, hereditary

properties are not sought after in the classical case. However, if one looks instead at

the the existence of invariant means on G, i.e. its amenability, hereditary properties

do come into play, as the existence of such means is non-trivial for substructures. Ev-

ery compact topological group in particular, is amenable, as its Haar measure is an

invariant mean. It might thus make sense to view compact (and in general locally com-

pact) right topological groups possessing a Haar measure to be satisfying a property

analogous to amenability. Amenable locally compact groups have pleasant hereditary

properties with amenability passing down to quotients, closed subgroups and directed

unions.

The following are some of the easy analogues of this kind that follow; we refer the reader

to [40] for the proofs in the topological case;

Proposition 6.1. Let G be a locally compact Hausdorff right topological group with a

right invariant Haar measure. Then,

1. Every quotient group of G has a right invariant Haar measure

2. If a dense subgroup of G has a Haar measure in M(G), then so does G.

3. If G is compact and a directed union of right topological groups with Haar mea-

sures, then G has a Haar measure.

4. If G is the image of a right topological group with a Haar measure, then G has a

Haar measure.
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5. If G is the Schreier product of two compact topological groups, then G has a Haar

measure.

Proof. 1 follows trivially by considering the canonical map C0(G) 7→ C0(G/K), for a

normal subgroup K.

For the proof of 2, let H ⊂ G be a dense subgroup with a Haar measure λH ∈ M(G).

Then, for any x ∈ G, there exists some net {xα} ⊂ H converging to x, so that for

f ∈ Cb(G).∫
H

Rxf(g)dλH(g) = lim
α

∫
H

Rxαf(g)dλH(g) = lim
α

∫
H

f(g)dλH(g)

so that λH is a Haar measure on G.

Statement 3 follows from a standard proof (see Theorem 2.4 [41]) and 4 is similarly

easy to check.

Lastly, 5 follows by taking the product of the Haar measures on the underlying groups.

Here “Schreier product” refers to a generalization of a semidirect product that ensures

that the group is right topological. We refer the reader to [29] for details.

We now consider the existence of a Haar measure generalizing from a subgroup to the

whole group.

Theorem 6.2. Suppose G is a σ-locally compact admissible or compact Hausdorff right

topological group and H ⊂ Λ(G) is a normal compact topological subgroup. Then,

λH ∈ M(G). In the compact case, if H is σσ-closed, then λH ∈ Mσ(G) and G has a

Haar measure.

Proof. As multiplication is separately continuous on H, by Ellis’ theorem, H is a com-

pact topological group. Therefore, H has a unique invariant Haar measure and we may

define λH as above.
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We will show that λH ∈M(G). Firstly, note that H×G→ G, (h, g) 7→ hg is separately

continuous. By Namioka’s theorem, it is jointly continuous so that for any f ∈ C(G),

H×G→ C, (h, g) 7→ f(hg) is jointly continuous. We claim that {Lhf | h ∈ H} ⊂ C(G)

are equicontinuous on G.

As (h, g) 7→ f(hg) is continuous at every (m, g0) ∈ H ×G, there exist neighbourhoods

Um× Vm ⊂ H ×G of (m, g0), such that for all (h, g) ∈ Um× Vm, |f(hg)− f(mg0)| < ε.

As {Um}m∈H is an open cover for H, there exists a finite subcover {Umi}ki=1. Consider

V = ∩ni=1Vmi , also a neighbourhood of g0. Then, for any m ∈ H, m ∈ Umi for some

1 ≤ i ≤ n. Thus, for every g ∈ V , |f(mg) − f(mg0)| < ε, and as this holds for every

m ∈ H, supm∈H |f(mg)− f(mg0)| < ε. It follows that, supm∈H |f(mg)− f(mg0)| → 0

as g → g0. This proves the claim.

Now as {Lnf}n∈H are equicontinuous, note that,

f · λH(y) =

∫
H

Ryf |H(x)dλ(x) =

∫
H

f |x∈H(xy)dλ(x) =

∫
H

Lxf(y)dλ(x)

and yα → y implies Lxf(yα)→ Lxf(y) for all x ∈ H, thus, |Lxf(yα)−Lxf(y)| → 0 for

all x ∈ H, and

|f · λH(y)− f · λH(yα)| =
∣∣∣∣∫
H

Lxf(y)dλ(x)−
∫
H

Lxf(yα)dλ(x)

∣∣∣∣→ 0

Thus, f · λ ∈ C(G) and λ ∈M(G).

Now note that for n ∈ H and f ∈ C(G),

f · λ(ny) =

∫
H

Rnyf |H(x)dλH(x) =

∫
Hn

Ryf |Hn(x)dλH(xn−1) =

∫
Hn

Ryf |Hn(x)dλH(xn−1)

=

∫
H

Ryf |H(x)dλ(x)H(x)

= f · λ(y)

Thus, f · λ(y) ∈ C(G/H).

If H is σσ-closed, then, by Lemma 3.12, H ⊃ N(G) - thus for each f ∈ C(G), f · λH ∈
C(G/N(G)). As C(G, σ) = C(G/N(G)) by Lau and Loy, λH ∈ Mσ(G). A Haar
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measure then exists by Theorem 5.15.

Corollary 6.3. If G is σ-locally compact admissible or compact, and has a Haar mea-

sure, for every compact subgroup H ⊂ Λ(G), it has a left-H invariant right Haar

measure. In particular, if Λ(G) is closed, then, G has a two-sided invariant Haar

measure.

Proof. By Ellis’ theorem (see [7]), being semitopological, H is a compact topological

group and thus, has a Haar measure. By Theorem 6.2 then, λH ∈ M(G). Given a

Haar measure λ on G, λH�λ then gives the desired measure.

Example 6.4. Consider the group G = T×{1, φ} with the multiplication (u, ε)(v, δ) =

(uε(v), εδ) from Example 3.13. This satisfies Λ(G) = N(G) = T×{1}, so that λN(G) ⊂
M(G) by Theorem 6.2.

Proposition 6.5. Let G be a σ-locally compact admissible or compact Hausdorff right

topological group. If G has a σσ-closed, compact normal subgroup H ⊂ Λb(G) such that

H is metrizable and has a right invariant Haar measure, then G has a Haar measure.

Proof. Suppose H ⊂ Λb(G) is as given. By Lemma 3.12, (G/H, τ ) is a locally compact

topological group and thus has a Haar measure, say, λG/H . Let λH be a Haar measure

on H.

Fix f ∈ C(G). Note that the map H × G → C, (x, y) 7→ f(xy) is continuous in the

first variable, and Borel in the second variable (since y 7→ f(xy) is the composition of

Borel map y 7→ xy and continuous map f). Furthermore,H being compact Hausdorff

metrizable is separable. Thus, by a standard result in measure theory (see 4.51 of

[1]), the map is jointly measurable. Applying Fubni’s theorem to the clearly bounded

function, y 7→ F (y) =
∫
f |H(xy)dλH(x) is bounded Borel measurable. It is also clear

that this functions is H-invariant. We may thus integrate it with respect to λG/H , and

define λ ∈ M(G) in the standard way:
∫
f(x)dλ(x) =

∫ ∫
f |H(xy)dλH(x)λG/H(x). As

λG/N(G) is a G-invariant Haar measure, one easily notes that λ is a Haar measure on

G.
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Remark 6.6. Note that the above proof still works if one assumes that G/H has a

Haar measure instead of H being σσ closed. Morever, if H is a compact metrizable

topological group, the hypothesis is met. While the hypothesis on H is strong, we

note that since admissibility is not assumed, Theorem 3.5 does not come into play -

therefore, H may be non-trivially right topological.
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Chapter 7

Open Problems and Future Work

Due to one-sided continuity of multiplication, working with right topological groups

presents new challenges when generalizing ideas that work well for locally compact

topological groups. Moreover, a small list of examples that are challenging to work with

makes it difficult to empirically observe the properties of these groups for inspiration.

In this chapter we present some open problems in the literature, and some that we have

encountered ourselves. Some of these are fundamental in the sense that the analogues

in the locally compact case hold quite trivially. We present these in a chapter-wise

format, summarizing the contents of the chapter along the way.

7.1 Chapter 2: Locally compact right topological

groups and the Haar measure

Compact topological groups and more generally CHART groups always have a unique

Haar measure. However, due to the lack of counterexamples, the following problem is

still open.

Problem 7.1. If a (locally) compact right topological group G possesses a right Haar

measure, is it always unique (up to scalar multiplication)?

We suspect that in light of Kunen’s work [19], it may be possible to construct a non-

CHART group where the above fails. Further,

Problem 7.2. If a (locally) compact right topological group G possesses a right Haar

measure, when is it left Λ(G)-invariant?
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We were able to show in Corollary 6.3 that if G is compact, Λ(G) being closed guarantees

the existence of such a Haar measure.

In [31], the existence of a strong normal system was proven for CHART groups. Here,

we were unable to generalize their result. We thus pose;

Problem 7.3. Does a σ-locally compact admissible right topological group possess

a strong normal system of subgroups? Is this always compact (what are sufficient

conditions for this)?

Since the construction of a strong normal system of subgroups in [31] is done by consid-

ering N(G) repeatedly via transfinite induction, we may generalize the second question

as follows;

Problem 7.4. If G is locally compact admissible right topological, is N(G) compact?

In the compact case, since (G, σ) has a weaker topology and is thus compact, every

closed set in this space is compact. However, in the locally compact case, we cannot

deduce this. Further, while N(G) is the intersection of closed sets in σ, since (G, σ) is

non-Hausdorff, compact sets need not be closed and we obtain no information on the

compactness of N(G). The examples we have encountered (3.13, 3.14) do have N(G)

compact. A counterexample to this problem is thus currently unknown.

7.2 Chapter 3: Function Algebras

The first problem we pose is as follows

Proposition 7.5. Can Lemma 4.1 be generalized to invariant subalgebras of Cb(G)?

The two cases naturally coincide in the compact case. However, the result relies on

the Stone-Weierstrauss theorem which is only applicable to C0(G) in the non-compact

case (a generalization of this is available to Cb(G) but did not work out for us). If a

generalization exists, we may give results for A(G) ⊂ Cb(G), since Lemma 4.1 is not

applicable due to 5 of Theorem 4.5.

Again, in light of theorem 4.5, we pose the following problems

Problem 7.6. Can LC(G), AP (G) separate points of G if G is locally compact non-

compact and admissible?

61



In the compact case, the answer to this problem is in the negative as shown in [20].

In the section concerning Fourier Algebras, we were not able to derive much informa-

tion about B(G). In particular, we do not have a strong result such as theorem 4.6.

Therefore,

Problem 7.7. If G is non-compact, locally compact admissible, can B(G) separate

points of G? Are there subalgebras of B(G) that correspond to faithful representations

of G?

Note that A(G) may never separate points of G so that it does not fulfill the above

result (Corollary 4.7).

7.3 Chapter 4: Measure Algebras

Many open problems posed on M(G) in [20] still remain unanswered. A fundamental

one is as follows;

Problem 7.8. Suppose G is a compact right topological group. IsM(G) a dual Banach

space? More generally, are any of our measure algebra analogues dual spaces?

In the topological case, M(G) = M(G) = C(G)∗ (in fact all our measure algebra ana-

logues coincide with M(G)). In the admissible case, one easily notes that M(G) is not

weak* closed. Indeed, {δg | g ∈ Λ(G)} ⊂ M(G), and weak*-closedness would imply

that {δg | g ∈ G} ⊂ M(G), which is false unless G is topological.

Another problem we may raise is regarding Theorem 5.3. In the compact case, it was

shown in [28] that a right topological group has a continuous faithful representation if

and only if it is topological.

Problem 7.9. Can a faithful continuous representation exist on a locally compact right

topological group?

In general, we may raise the following problems regarding the algebras L(G), L(G);

Problem 7.10. Let G be a locally compact right topological group.

1. When is Lc(G) = L(G)?
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2. When do Lc(G), L(G) possess abounded approximate identity?

3. When are L(G), Lc(G) amenable?

4. When is L(G) an L-space?

When G is compact topological, it is well-known that Lc(G) = L(G) = L1(G) (see [42]).

Regarding 2, when G is topological, L1(G) naturally possesses a bounded approximate

identity (see Proposition 2.4 and the discussion prior). However, it was shown in [20]

that this construction does not work on right topological groups.

Although amenability is an important topic, we have not delved into this in this thesis.

This is partly due to the lack of results in the right topological case. A Banach algebra

A is said to be amenable if every derivation ∆ : A→ B∗, for a Banach A-bimodule B,

∆ is inner, i.e. of the form a 7→ ax − xa, for some x ∈ B∗. Johnson famously showed

that a locally compact group G is amenable (i.e. has a left-invariant mean on L∞(G),

if and only if L1(G) is amenable [16]. Every compact topological group is amenable

(as its Haar measure is the specified mean) and thus has an amenable group algebra.

On the other hand, every amenable Banach algebra must possess a bounded approx-

imate identity (see Proposition 2.2.1 of [43]), so that 2 and 3 are related open problems.

Lastly, although Lc(G) is an L-space, we do not know if the same holds for L(G).

Problem 7.11. What can we say about the structure of the Banach algebraMb(G) =

M(G) when G is Borel (Corollary 5.10)?

Since the algebras Mσ(G), Mw(G) characterize the existence of a Haar measure, it is

fundamental to ask:

Problem 7.12. When are Mσ(G), Mw(G) non-trivial (apriori to the existence of a

Haar measure)? What sufficient conditions ensure this?

7.4 Chapter 5: Hereditary Properties

Concerning hereditary properties, the most natural question we may raise is as follows

Problem 7.13. If a right topological group G has a Haar measure, do its closed normal

subgroups also possess one? What about open subgroups?
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Since it is hard to produce right topological groups that do not possess a Haar mea-

sure, this problem naturally remains open. In the case of amenability, even in the

non-locally compact topological case, the property passes down to at least open sub-

groups (see [41]). Unfortunately this proof does not generalize well to our setting.

While we gave a sufficient condition Theorem 6.2, in general;

Problem 7.14. For a closed subgroup H ⊂ G, when is λH ∈M(G)?

Also, since G/N(G) is always topological, it is natural to ask when we may leverage

this;

Problem 7.15. If G/H is non-trivial and has a Haar measure for a σ-closed normal

H ⊂ G, does G possess a Haar measure?

Problem 7.16. If H, G/H are topological, what conditions ensure that G is topolog-

ical?

This problem is listed in [20].

For more open problems, the reader is referred to [20], [21].

We hope to answer some of these open questions in our future work.
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