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ABSTRACT

Low-cost plastic land mines inflict hardship on civilians in war-torn lands
for decades after a conflict is over. Current mine-clearing technologies
are either too expensive or too slow and unreliable to find their way into

wide-spread use.

The following discussion describes an automated mechanical method for
land mine detection motivated by the hand prodder. The purpose of this
method is to remove the danger from hand prodding while retaining the
ability to determine the identity of hidden objects. To achicve this end.
the vibration in a mechanized prodder, produced by contacting a hidden
object. is recorded by a computer using an accelerometer mounted on the
end of the prodder. The vibration information is broken down into several
features which are indicative of the type of object struck. The objects
are classified using pattern recognition Adaptive Logic Network (ALN)
software which is a form of artificial neural network (ANN) software. The
entire process is intended to be automated. thus significantly reducing the

risk to field personnel.
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CHAPTER 1

INTRODUCTION

Land mines are tactical weapons of war designed to explode when their triggering
mechanism is set off. The most common trigger type is the pressure exerted when a
person or a vehicle passes over the surface of the mine. Typically. an anti-personnel
mine (AP mine) is designed to explode when forces greater than 30 to LOON force are
placed over its surface. Anti-tank mines (AT mines) will explode when over 900N of
force is placed on them.

It is estimated that there are 85 million uncleared landmines scattered in 56 coun-
tries around the world.[Hidden Killers, 33] This is only an estimate. however. Because
of poorly kept records (and in some cases, no records at all). it is impossible to pro-
vide an exact number. In fact, the majority of nations with a landmine problem
cannot determine the amount or location of landmines within their borders.[Hidden
Killers, 3] Over two million new mines are laid each year while fewer than one hundred
thousand are recovered. Thousands of people are maimed or killed each month as a
result.

In 1998, Canada initiated a moratorium on land mines. signed by most of the
world’s countries with the notable exceptions being Russia. China and the U.S. This
treaty calls for a complete ban on the production an use of AP land mines. Certainly
this treaty is a major step forward in ending the proliferation of AP mine devices.

However, it may be said that even if land mine deployment where to stop today.



current methods would require hundreds of years and billions of dollars to eliminate
the mines already in place. The cost of mine removal is estimated to be $1000 per
mine, and this does not include the additional fiscal demands on infrastructure and
health care.[Hidden Killers, 8] The cost of manufacturing a plastic type landmine can
be as low as $3 for an AP mine and $75 for an AT mine[Hidden Killers. 2]

Landmines are produced in a vast variety of shapes and sizes. Their construction
ranges from hand-made wooden mines to mass-produced plastic mines. Land ines
are commonly cylindrically shaped. The type of explosives contained in mines vary
and include TNT, RDX, EGDN and, PETN. The amount of explosives range from
tens of grams to a few kilograms.[McFee, 2|

The majority of landmines currently made may be defined as low metal content
mines. These are predominantly of nonmetallic (usually plastic) construction. having
at least one small metallic part such as a firing pin. spring or ball bearing.[McFee. 2|

Most new technologies are developed by the military. The primary objective of
the military is in breaching, which is the clearance of a parh through a minefield
to transport vehicles and troops. Other mines are typically left to humanitarian
demining efforts (which do not have the resources of the military) for removal and
mine disposal. Several of these methods are described in the following scction. This
is not intended to be a definitive list, but rather a description of several of the more

widely used and technologically promising devices.

1.1 Detection Technologies

Demining, defined as the complete removal of all landmines from an area in order
to safeguard civilian populations, aims at 100% accuracy in mine removal. It is
recognized that even a few uncleared landmines have potential to cause casualties over
time.[Hidden Killers, 16] The first stage in demining is the detection of landmines.
Detection schemes concentrate on identifying the difference between the mine and the

surrounding soil. Typical high-tech electronic systems include ground penetrating

N



radar (GPR), infra-red (IR) sensors, and magnetic resonance imaging techniques.
Other methods range from biological detection schemes (dog sniffers and insects or
bacteria) to simple brute force detonation methods (flails, rollers and plows) and the
use of hand-held prodders. These will be discussed in some detail in the following
section.

With the exception of the hand prodder, these methods of detecting land mines
are not 100% effective. Manual demining at present is considered the most common
and reliable means of land clearance. It will probably remain the basic framework for
future mine clearance operations.[Focsaneanu, S4.4| Typically. the high-tech solutions
do not have the accuracy needed to completely remove landmines. Furthermore, brute
force methods can be slow, and frequently destroy road systems as they work. Plows
and flails are designed by the military for the purpose of breaching a mine field to
allow the passage of military vehicles.

The following technologies are currently either in use or are being actively inves-
tigated as possible new methods of detecting land mines. This is not meant to be an
exclusive list: only those technologies most likely to produce a workable device were
examined. Many of the sensors developed could be used in unison with other sensors
to provide better detection when combined. This union is known as data fusion. and

appears to be the best solution for detecting both metal and non-metallic mines.

1.1.1 Electromagnetic (EM) Induction Metal Detector

Electromagnetic induction metal detectors were used extensively to detect land mines
during the years following World War II. Most land mines were made of ferrous metal,
making them relatively easy to detect from the background environment. In order
for this method to work, the target object must contain some amount of metal. The
EM detector’s sensitivity can be increased to detect the low metal content in some
plastic mines. However, the increased sensitivity creates many false alarms due to

other conductive debris. Even soils with a rich iron content can cause a sensitive



device to indicate a false alarm.

Metal detectors work on the eddy current principle. A weak. high frequency
electro-magnetic field is produced. This field is disturbed proportionally to the
amount of metal within the field. Typically, metal detectors consist of one or more
electric coils made to oscillate at a certain frequency. Changes to the oscillation am-
plitude give information regarding the metal objects detected. These disturbances are
electronically evaluated and the result is made visible by an indication meter and/or
an audible tone.

Another similar method is the electromagnetic pulse method.  Electromagnetic
pulses are emitted and a receiving coil measures how quickly the short-lived magnetic
field decays. Metal within the pulse field slows down the rate of decay. Differences
in the rate of decay are evaluated and indicated to the operator.[McFee. 21. Craib.
14-15]

1.1.2 Ground Penetrating Radar (GPR)

Currently a great deal of research is underway in which radar or low frequency electro-
magnetic waves are used to find hidden land mines. Ground penetrating radar (GPR)
involves sending an impulse of electromagnetic energy into the ground and recording
the amount of backscatter from a buried object. The backscatter signal is compared
with that of the surrounding environment. A metal object tends to scatter more than
the surroundings while a plastic object would scatter less. One problem with this
method is that the signal from plastic mines is obscured somewhat by background
noise, thus causing frequent false alarms. Reflections of the racdar energy off the
surface of the ground can also obscure some land mines. Another major difficulty in
the use of GPR is the large amounts of data processing required to successfully identify
a land mine target. Research in this area has been the focus of many organizations

including the US army.[McFee, 21-22. Craib, 19-20]



1.1.3 Infrared (IR) or Thermal Imzging (TI)

This method utilizes low frequency infrared light that is naturally given off by all
hot objects. The thermal characteristics of land mines are different than that of
their surroundings. The planting of land mines into the soil causes the flow of heat
through the soil to change. By observing the contrast in thermal images using infrared
cameras, land mines may thus be detected. However. these contrasts are not as
distinct as one would hope. The amount of time that the minc has been in the
ground and the depth of burial are factors which must be investigated. Research is
currently ongoing into target recognition software which will enhance the detection

abilities of this method.[McFee, 23. Craib, 16-18]

1.1.4 Optical Imaging

Visual Spectrum: Using a video cam.cra, target objects are located and classification
occurs. Characteristics such as polarization of reflected light and the amount of
vegetation growth in an area are recorded. This method is useful only for objects on
the surface of the ground and relies heavily on the training of the observer in detecting
land mines. By itself, this method has too high a false alarm rate to be justified. but
it may prove useful in conjunction with other detection methods.

Ultraviolet Detection: Ultraviolet light reflecting off the ground is observed and
is analyzed to locate any recent disturbances in the ground. This method would only
work for recently buried mines. It may also be used alongside other methods.[McFee.

95. Craib, 19

1.1.5 Photon (X-Ray) Backscatter

Photon (very high frequency electro-magnetic waves) backscatter can provide a high
resolution image of a buried object. A beam of X-rays sent into the ground is scattered
by a buried object and collected and analyzed. Since the wavelength is much shorter

than that of radar, the resolution of this method is much greater than for GPR
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methods. However, it is not clear how this system would be implemented in the field
and is still under investigation. X-ray equipment tends to be bulkv and potentially
dangerous to work with because of the high energy of the beams.[Craib, 20-21]

1.1.6 Acoustic and Seismic

There is current research in the detection of land mines using acoustic energy which
is injected into the soil. The amount of energy reflected from buried target objects
is recorded and analyzed. The acoustic impedance of a mine is significantly differ-
ent from that of most soils. The practical imaging of objects is difficult because of
naturally occurring inhomogeneities (holes and lumps) in the soil. The imaging re-
quires significant computational power to reduce these false alarms. Also. a significant
amount of time is required to adequately characterize the initial soil conditions. A

practical system has yet to be devised.[McFee, 26-27|

1.1.7 Nuclear Magnetic Resonance (NMR). Nuclear Quadropole Resonance (NQR),
Thermal Neutron Activation (TNA), Neutron Moderation

Although the principle of detection differs in these nuclear methods. the basic premise
remains the same. The detection device searches for differences in the chemical com-
position between the explosive component of mines and that of the surrounding soil.
These nuclear techniques analyze the air surrounding a mine and locate any explosive
chemicals contained therein. For example, explosives contain a high concentration of
nitrogen compared with normal soil.[McFee, 28

In general, the detection rate significantly degrades when the soil becomes damp.
The equipment required for this technology is currently very bulky and awkward to
maneuver. It is uncertain how a field ready model would be constructed. Also, the
NMR and NQR detectors cannot be used to detect metallic mines.[McFee. 28-30.
Craib, 22}



1.1.8 Biosensors, Trace Explosive Detection (TED)

Dogs have been widely used with a high degree of success for their ability to smell
explosives. The use of animals has shown some success in specific circumstances. In
Afghanistan, dogs are used as an effective mine detection method. In general, the
dogs must be very well trained anc cared for to provide effective detection. This
method does contain some element of danger since it is possible for the animal to
accidentally detonate a mine.

South Africa also employs dogs in detecting land mines. Samples of air are col-
lected while driving a protected vehicle over roadways with possible mines. These
samples are taken back to the dogs for analysis. This method has met with some
success. This method is meant to provide the location of the mine field rather than

of individual mines.[McFee, 33. Craib, 21-22]

1.1.9 Mechanical Detection Methods

Buried mines represent a relatively abrupt change in the mechanical properties of
the surrounding media (soil, sand. roots. etc.). Several different mechanical detection
systems have been developed which utilize this fact. Some mechanical methods which
have been proposed include the use of instrumented prods. accelerated surface erosion.
and vibrating rollers. Most mechanical devices in use are primarily concerned with
breaching a mine field rather than clearing one. Breaching involves the creation
of a path through a mine field allowing passage of a military convoy. The plough
and rotating flail methods are examples of these. All existing mechanical systems
currently do not have the reliability necessary to ensure 100% minc detection.[McFee,

38. Craib, 23-25]

1.1.10 Hand Held Prodding

The hand held prod is the only method in current use for mine field clearance which

has a near 100% detection rate. Personnel lie in a prone position prodding into the soil
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at an angle of approximately 30 degrees with a two foot long steel prodder. When the
operator feels he has encountered a solid object, the object is carefully removed and
examined. This method is very dangerous and suffers from a high rate of false alarms
caused by examining non-threatening objects such as rocks and debris. Instrumented
prodders have been devised which can assist the operator by eliminating some false

alarms. However, this is still a dangerous, time intensive search method.[McFee, 36}

1.1.11 Heated Probe Tip Prodders

Another interesting technique involves using the characteristic that plastic melts when
heated. Once contact has been made with a plastic mine. a heated tip prodder could
be observed to move into the plastic. This motion would not occur at the same rate

in other objects such as rocks or tree roots.

1.2 Summary and Motivation of Current Work

Of the detection methods currently in use. only the hand prodder can provide near
100% mine detection. The danger. cost and time required by hand prodding make
this method impractical for removing the vast majority of land mines laid in the field.
The following discussion describes an automated mechanical method for land mine
detection motivated by the hand prodder. The purpose of this method is to remove
the danger from hand prodding while retaining the ability to determine the identity of
hidden objects. To achieve this end, the vibration in a mechanized prodder. produced
by contacting a hidden object, is recorded by a computer using an accelerometer
mounted on the end of the prodder. The vibration information is broken down into
several features which are indicative of the type of object struck. Using pattern
recognition software in the form of an artificial neural network. the objects can be
classified. The entire process is intended to be automated thus significantly reducing
the risk to field personnel.

Automated prodding tests were performed on several objects buried beneath

8



The following chapters detail the process of striking objects. processing the vi-
bration signals, and determining the success of identifying the objects. Chapter 2
discusses the theoretical model used to describe the dynamic behavior of a prodder
impacting a hidden object. This model provides insight into the vibration charac-
teristics of signals recorded by an accelerometer attached to the prodder. Chapter 3
provides a detailed account of the procedure and equipment used during testing. The
following chapter explains how the data collected with the accelerometer was analyzed
for the purpose of classification. It will be shown how the raw data was reduced into a
series of quantifiable features used to identify the hidden object. Chapter 5 discusses
the application of pattern recognition software to correctly identify the hidden object

by analyzing these vibration features.



CHAPTER 2

MODELING OF OBJECT PRODDER IMPACT SYSTEM

In order to gain insight into the dynamic behavior of the prodder as it strikes an
object. a mathematical model is required. This model will provide information about
the types of vibration characteristics used to classify the objects. These character-
istics are specific, quantifiable features intrinsic to the object type. In particular.
the prodder and object system must be modeled to represent the contact observed
through experimentation. This involves a transient analysis of the initial impact with
the object. The model must be able to describe the behavior of the top of the prodder
where the accelerometer is mounted during impact. The type of system considered
is shown in Figure 2.1. This figure shows an AP land mine placed within a cavity in
the ground and surrounded by loose soil. The prodder penetrates the loose soil and
contacts the hidden mine.

The dynamic behaviour of an impacted object recoded with a load cell mounted
on an impacting hammer has been studied.[Slavin, 1065] The study concluded that
the frequency of vibration changed with the type of geometry of the specimen and
the type of material used. Since most land mines have a fixed geometry. this should
assist in classifying land mines apart from randomly sized debris. A study of the
vibration characteristics of the solid prodder located in Appendix B agrees with this
conclusion.

Another study on the dynamic behaviour of objects using an impacting instru-

10



ment is the study of human teeth and gum disease. An instrumented tapping rod
lightly strikes a tooth and a vibration signal is recorded using an accelerometer. The
tooth is struck repeatedly and the signals are averaged. The averaged signal was
reduced to a single value which represents the health of the tooth and gum system.
Several parameters of the time domain acceleration signal were examined in clinical
trials.[Lukas, 65]

The current chapter describes models of the prodder and object system. These
models are used to derive many of the features for object classification. The models
are used to explain specific features observed during testing. The single degree of
freedom model is used to define features in the time and frequency domain. Features
can be expected to follow specific trends depending on an object’s stiffness. A two
degree of freedom system includes the effects of the soil on the prodder and object

system.

2.1 Single Degree of Freedom Model

The simplest model of the prodder striking an object is the single degree of freedom
(SDOF) mass spring system. The assumptions are discussed in the section below.
The SDOF model is described in most elementary text books on mechanical vibra-
tions.[Rao, Thomson] This model consists of a mass connected to a spring and a

damper as shown in Figure 2.2.

2.1.1 SDOF Model Assumptions

In order to analyze the system, several assumptions must be made. The buried object
is assumed to deform elastically as a linear one-dimensional spring kq; when struck by
the object. This value is meant to be an average value over the object’s surface area.
The prodder acts as a point mass m, which undergoes deceleration due to object’s
restoring force. This assumes that the mass of the deforming mine is neglected.

Referring to Figure 2.2. the distance the prodder travels after contacting the object
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Figure 2.1: Schematic of the prodder and object system model.
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Figure 2.2: Single degree of freedom (SDOF) model of the prodder striking a
compressible object.
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spring is shown as the positive = direction. Analysis of the impulse caused by the
prodder’s impact reveals that the initial displacement immediately after contact will
be zero, but it will have an initial velocity. This velocity will be 14 which is caused by
the firing mechanism as described in Chapter 3, Section 3.2. Because gravity is not
considered an impulsive force (its magnitude is too small), the gravitational force will
be ignored in this analysis. The soil is considered to provide damping proportional
to the speed of the mass as Fyymp = cZ. The value of ¢ is dependent on the type and
condition (wet, dry, baked, etc.) of the soil. It is assumed that the tip of the prodder
will contact and remain rigidly attached to the object until the restoring force of the
spring is zero. This means that the prodder will rebound and separate from the object
at some point after the initial impact.

By performing a force balance on the mass, a single equation of motion can be

derived:
mp:'i'+c:i:+k,,bj.t=0

There are specific features of this motion which are important in understanding
the behavior of the system. These features occur in both the time domain and the
frequency domain. Time domain analysis refers to examining the mass™ acceleration
features directly. Frequency domain analysis uses a mathematical technique known
as a Fourier transform. This technique shows the relative contribution of various
frequency sinusoids which are superimposed on one another to create the signal. The

following subsections will discuss time and frequency domain analysis in more detail.

2.1.2 Time Domain Analysis and Features

The vibration behavior of the mass after impact is determined by the natural fre-
quency of vibration of the system and the initial conditions (initial displacement and
velocity) which cause the motion. The natural frequency of vibration for the SDOF
case is wy = wn \/-I-T(_2 where:
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wqg = damped natural frequency

wn = -2 undamped natural frequency
my
¢ = ci damping ratio

Cor = 2\/kobjrr; critical damping value

The prodder rebounds or bounces off the object after contact. As a result. only the
first half-cycle of the sinusoidal vibration response is observed as shown in Figure 2.3.
Figure 2.3 also shows two important time domain features: t,.q and A. The width
of the pulse, tyiq4, is the time which the prodder remains in contact with the object.
The amplitude of the pulse, A. is the maximum acceleration experienced from the
collision with the object. Its value is related to the initial velocity of the prodder just
prior to impact. Another feature for classification is the integral. /. of the signal over
the t,.q time period.

The amount of damping has a significant effect on the vibration characteristics.
As the damping ratio ( increases from 0 to 1, the width of the pulse (¢,.,4) increases.
and A decreases. If the value of ( is less than 1, the vibration is termed underdamped.
With ¢ equal to 1, the vibration is said to be critically damped. A ¢ value greater
than 1 is characteristic of an overdamped system. Both the underdamped and the

overdamped cases are shown in Figure 2.4.

2.1.3 Frequency Domain Analysis and Features

System responses may also be analyzed in the frequency domain by converting the
original vibration pattern into a summation of sinusoids. The Fourier transform is
a commonly used mathematical technique for determining the frequency and ampli-
tudes of these sinusoids.|Lynn, 211-246] The superposition of these sinusoids at the
correct amplitudes and phases will reconstruct the original signal. Therefore the orig-
inal signal can be represented by the characteristics of its composite sinusoids. The
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Figure 2.3: A single degree of freedom model vibration pattern. Only the
first half cycle of the response is shown. This mimics the behavior of the
prodder bouncing off the object after contact. Also shown are the time
domain features of ty;4 (the width of the pulse) and A4 (amplitude of the

pulse).
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Figure 2.4: The time domain vibration response of a SDOF model with
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17



frequency, phase and amplitude of the sinusoids are the frequency domain character-
istics of the original signal. Time domain signals h(t) are converted in this way to
frequency domain signals H(f).

The amplitudes of the sinusoids are of particular interest in frequency domain
analysis. The power spectrum is often used to visualize these amplitudes. It is
obtained by squaring the frequency domain signal H(f). A SDOF system with no
damping has one natural frequency. The power spectrum should consists of a single
frequency wy, centered at that frequency. For a SDOF system with damping. however,
the frequency domain is more complicated. Figure 2.5 shows the power spectrum of
an underdamped and an overdamper system, ( = 0.2 and 1.5. The single frequency
has changed to a wider, smeared-out spectrum with a peak value shifted to the left.
The shifting increases in magnitude as the value of ( increases to 1. For ( > 1. the

peak value reaches zero.

2.1.4 SDOF Results

Table 2.1 contains the values of features determined from the acceleration of the
prodder in a SDOF system striking an object which has the same stiffness as a VS-50
AP mine.

The time domain features t,.q. A, and I shown in Table 2.1 are the same as the
features defined in Section 2.1.2. The average acceleration amplitude contained in
twelve frequency bands are also provided. The feature fre.r represents the largest
amplitude found in the frequency domain.
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Table 2.1: SDOF features using VS-50 AP mine stiffness.

Feature Velocity

0.5m/s| 1.0 m/s { 2.0 m/s | 5.0 m/s
twid (ms) 12.67 12.67 12.67 12.67
A, Amplitude (g) | 12.43 24.86 49.72 124.3
I, Integral (g x s) | 0.102 0.204 0.408 1.02
F(1-25 Hz) (g) 0.038 0.157 0.606 3.79
F(26-50 Hz) 0.027 0.107 0.428 2.67
F(51-75 Hz) 0.012 0.046 0.185 1.15
F(76-100) 0.003 0.010 0.040 0.252
F(101-200) 0 0 0.002 0.011
F(201-300) 0 0 0 0.002
F(301-400) 0 0 0 0
F(401-600) 0 0 0 0
F(601-1000) 0 0 0 0
F(1001-1500) 0 0 0 0
F(1501-2000) 0 0 0 0
F(2001-3001) 0 0 0 0
Spear (8) 0.0415 0.166 0.665 4.154

Measured values for mp, Mobj, kopj and ke are found in Appendix A. For the
VS-50 AP mine trigger pad, the natural frequency based on a SDOF system model
is 38.8 Hz. This corresponds to a period of about 26 milliseconds. A half of a period
would then have a time span of almost 13 ms. This is the expected amount of time
that the prodder would take to rebound off the object and become separated.

The SDOF system shows that the amplitudes of the time and frequency domain

features, with the exception of t.q, are strongly influenced by the initial velocity of
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the prodder. The feature t,q is influenced by the system natural frequency which is
proportional to the square root of the object stiffness.

To reduce the sensitivity to changing velocities, the acceleration signal may be
normalized by dividing the signal by the maximum amplitude. Table 2.2 shows the
features after normalizing the time domain signals. The values of each feature remain
constant. Since the undamped SDOF system contains only one frequency component.

the features are directly proportional to the initial velocity of the prodder.

Table 2.2: SDOF features after normalizing the time domain signals.

Features Values
twia(ms) 12.67

A, Amplitude (Ef.,_k) 1.0

I, Integral ( ;ia—ks) 0.00820
F(1-25 Hz) (;!-‘.’_:) 2.45 x 107
F(26-50) 1.73 x 10~
F(51-75) 0.163 x 1074
F(76-100) 0.0069 x 10~*
F(101-200) 0.0010 x 10~*
F(201-300) 0.0001 x 10~*
F(301-400) 0

F(401-600) 0
F(601-1000) 0
F(1001-1500) 0
F(1501-2000) 0
F(2001-3000) 0

fpear (Z57) 2.69 x 10~*

The variability in the frequency domain features is removed by normalizing the

initial signal prior to signal processing. The time domain feature of t,.q is unaffected
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by normalization. By definition, the amplitude A will be 1.0 after normalization
takes place. While the variability in the signal due to velocity changes is reduced. the

information about the initial signal held in the features is also reduced.

2.2 2DOF System, Compressible Soil

The acceleration data collected from striking objects is more complicated than the
signals obtained using a SDOF model since the shapes are more complicated than
that of a pure half sine wave. The shape of the VS-50 AP mine acccleration data
shows that there are two peaks within the main signal pulse. As a result. the features
in the time and frequency domain cannot be described sufficiently by a SDOF model.
A two degree of freedom system (2DOF) introduces a second peak within the main
pulse.

The previous SDOF system assumed that the soil was solid and did not contribute
to the vibration of the prodder except as a damping mechanisimn. A comnpressible soil
would allow the object to move as the prodder impacts the soil heneath the object.
The simplest model for the soil is to consider it to be a one dimensional spring beneath
the object. As shown in Figure 2.6, the object and the soil have associated stiffnesses
kosj and k. The object sitting in the soil has a mass ma,. and the prodder has a
mass m, as in the SDOF case. The displacement of the prodder is .ry: displacement
of the object is ;. The positive direction is considered down.

Analysis of the force balance on each of the masses in this system provide the

equations of motion. In matrix form, the equations are as follows:
[m] {2} + [k] {z} = {0}
The mass matrix is defined for this system as:

m, 0

0 Mebj

o] =
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Figure 2.6: 2DOF model of the prodder and object impulse system.



and the stiffness matrix is:

k] = [ Kovj  —kob; }
—kobj  Kobj + kst

In the 2DOF model, secondary peaks are introduced into the pulse of the signals
when the spring constant k.; is of the same order of magnitude as the soil spring
constant k.. As the soil spring constant increases, the secondary peaks disappear.
When ko »kob;, the 2DOF model approaches the single pulse half sine wave as found
in the SDOF system. Given the soil and spring stiffness of the VS-50 mine trigger as
shown in Appendix A, the two natural frequencies of the 2DOF model are w; = 33.8
Hz and w» = 68.6 Hz. A more detailed analysis of the 2DOF model is available in
Appendix B.

One of the difficulties during modeling was the determination the spring constant
of the soil. The soil stiffness of 26.1 kN/m used in this model was determined ex-
perimentally by pressing on a 254 mm diameter disk onto the soil. For the 90 mm
diameter VS-50 mine, this makes the soil stiffness k,ou equivalent to 3.3 kN/m. This
values is assumed to be constant. However, the soil conditions during testing were
continually changing as the mine was repositioned and moved. For the purposes of
modeling, a constant value for ks, of 3.3 kN/m was used.

Using a constant soil stiffness and using the properties of the VS-50 AP mine.
signal features in the time and frequency domain were determined. Table 2.3 contains
features obtained using several different initial velocities. As in the case of the SDOF
model, the features were normalized by dividing each signal by the peak amplitude

prior to deriving the feature values. The features remain similar in magnitude to the
SDOF values.
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Table 2.3:

2DOF model features.

Features Initial Velocity

0.5 m/s 1.0 m/s 5.0 m/s 200 m/s
tuwiden (MS) 10.83 10.67 10.67 10.67
I, Integral () | 0.00694 0.00690 0.00687 0.00686
F(1-25 Hz) (F47) | L79x 10-* | 1.77 x 10~ 1.75 x 10°% | 1.75 x 10~*
F(26-50) 1.40 x 10~* | 1.39 x 10~* 1.38 x 10~1 | 1.38 x 10~*
F(51-75) 0.776 x 10™* | 0.777 x 10~* 0.777 x 107" | 0.777 x 10~*
F(76-100) 0.286 x 10™* ; 0.290 x 10~* 0.294 x 10=* 1 0.295 x 10"
F(101-200) 1.73 x 10~% | 1.79 x 107® 1.84 x 107" | 1.86 x 107¢
F(201-300) 0.10 x 10-% | 0.0011 x 10~® 0.11 x 107% | 0.11 x 107°
F(301-400) 0.02 x 10~¢ | 0.02 x 10~© 0.02 x 10~% | 0.02 x 1078
F(401-600) 0.01 x 107% | 0.01 x 107¢ 0.01 x 10=% | 0.01 x 10~°
F(601-1000) 0 0 0 0
F(1001-1500) 0 0 0 0
F(1501-2000) 0 0 0 0
F(2001-3000) 0 0 0 0
fpeak (;’E—k) 1.92 x 10™* | 1.90 x 10~* 1.80 x 10~* | 1.88 x 1074

Comparisons were made with results of the 2DOF model with actual signals ob-

tained from striking the objects. An overlay of the Runge-Kutta solution of the AP
mine VS-50 2DOF model and the VE-50 vibration signal is found in Figure 2.7. The

resulting vibration signal from the 2DOF model closely matches the experimental

pulse shape, but it does not represent the secondary peaks within the pulse of the

object signal. Assuming that the values ki and ko; are approximately correct. then

it is reasonable to assume that the soil does not introduce the secondary peaks in the

pulse of the experimental signal.
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Figure 2.7: Processed time signal output from accelerometer as prodder strikes the
VS 50 antipersonnel mine. Only the first half pulse is plotted.
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During the test procedures described in Chapter 3, the AT mines were placed
very low in the container and soil was distributed over top. As a result. it is unlikely
that there was enough soil underneath the AT mines to provide a significant flexure.
Thus, it may be assumed that k. should be modeled such that kou»ka;. When the
soil conditions are such that ks < kobj, then the soil has very little influence in the
vibration pattern observed at the prodder’s location.

It is worth mentioning that during testing, t,.q remained relatively constant de-
spite varying soil conditions such as compacted soil, stirred loose soil. or wet soil.
Since the object’s t.:q did not change significantly, it suggests that the object itself
may be contributing to the multiple peaks observed in a signal pulse.

2.3 Conclusions of Modeling

The goal to modeling is to gain an understanding of the dynamic behavior as the
prodder contacts objects. The SDOF model provides a uscful first approximation
to the contact observed through experimentation. The half sinusoid pulse provides
several quantifiable features in the time and frequency domain. In addition. knowledge
of the relative stiffnesses of the objects tested can be used to predict the values of these
features. Unfortunately, the SDOF model does not completely descibe the shape of
the observed signal. Secondary peaks are observed within the intial signal pulse.

In an attempt to further model the observed signals, a 2DOF model was created
that included the compressibility of the soil beneath the objects. This model did not
show additional peaks within the initial pulse. This 2DOF model indicates that the
soil does not introduce the additional peaks in the initial pulse. Since the prodder
is considered incompressible, this means that the secondary peaks are inherent prop-
erties of the objects themselves. Each of the different objects tested have different
vibration signals.



CHAPTER 3

TEST EQUIPMENT AND PROCEDURES

This chapter describes the test equipment and procedures used to collect vibration
data from the contact of the prodder with various buried objects. Through an au-
tomated process, a % inch diameter steel prodder was brought into coutact with a
buried object. The vibration in the prodder produced by this contact was recorded

by an accelerometer.

3.1 Data Acquisition Hardware and Software

Data acquisition and control was achieved using the National Instruments AT-MIO-
16E acquisition card and using LabVIEW 4.0 software. The data acquisition board
has 16 single ended analog input channels with a multiplexed sampling rate of 100.000
samples per second. The board also has 8 digital I/O channels. The digital output
channels were connected to solid state relays which toggled solenoid valves on and
off. In this way, control of the test procedure was completely automated.

LabVIEW software provided the triggering ability necessary to capture the tran-
sient vibration signature of each target struck by the prodder. LabVIEW is a graphi-
cally based computer language specifically designed for use with National Instrurnents’
hardware.[National Instruments| Using LabVIEW., the control sequence and the data
acquisition parameters were set.

By analyzing the frequency spectrums of the various objects. the vast majority
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of the spectral energy was located below 3000 Hz. As a result. the sampling rate
for accelerometer data acquisition was set to 6000 Hz. An anti-aliasing Krone-Hite
lowpass filter was set at 3000 Hz based on the Shannon sampling criteria.

The accelerometer used was a uni-directional PCB Piezotronics model Q353B13
which has a sensitivity of 5.44 mV/g and a linear frequency range from 1 to 10000 Hz.
This accelerometer was threaded into the top of the steel prodder. The specifications
of this device are found in Appendix C. Smaller range accelerometers were tried (50
and 100 g ranges), but the acceleration experienced by the prodder was seen to exceed
these limits. Solid state piezoresistive accelerometers manufactured by IC Sensors
(model 3032) did not withstand the rigors of the test procedures. Advantages of this
type of accelerometer are low cost, light weight design. and a small size. However,
after several hundred tests, the pins attached to the electronics at the base of the
accelerometer would shear off. The PCB Piezotronics model accelerometer is more
rugged in design. It is more expensive, but is similar in size and weight to the IC
Sensors accelerometer.

The vibration data was recorded into a datafile for analysis. Analysis was per-
formed using Matlab 5.0 software. Matlab was chosen for its programming case and

many built-in signal processing tools such as filters and Fourier transforins.

3.2 Apparatus and Procedure

All tests were performed in a wooden box constructed of % inch plywood with dimen-
sions 39 cm by 39 cm by 31 cm deep. The box was filled with 16.5 liters of soil. The
soil material tested was a clayey silt of low plasticity that is locally known as "Devin
silt". Additional details about this material have been reported by Konrad.[Konrad]
For wet soil tests, 1.65 liters (10% volume) water was added and stirred into the soil
until thoroughly mixed. Buried tests were conducted in both wet and dry soil condi-
tions. AP mines and the wood and steel objects were placed 30 mm under the soil.

Due to the constraints of the box used and the amount of soil available. AT inines
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were placed at the bottom of the wooden box and covered in 130 mm of soil.

3.2.1 Apparatus

The prototype used to investigate object vibration classification is shown in Fig-
ure 3.1. The design consists of a metal frame, a large pneumatic cylinder. a spring
firing mechanism, various solenoid valves, and a prodder with an attached accelerom-
eter. The design allows the prodder to contact objects at various angles and soil
burial depths. The large cylinder provides the means to move the prodder through
different .depths of buried soil. Attached to the end of this cylinder is the spring firing
mechanism containing the prodder and accelerometer.

The main cylinder would be used to lower the prodder into contact with a test
object. If no object was encountered, the cylinder would retract and rthe prodder or
object would be repositioned. Once an object was contacted. the main cvlinder would
hold the prodder and firing mechanism above the object. With the prodder held in
place above an object, several strikes in succession could be made in the same region

of the object. The number of strikes in succession were 2. 5. 10 and 20.

3.2.2 Striking Method

The prodder was fired at the test object to create an impulse vibration signal. The
custom-designed spring firing mechanism provided a consistent vels witv for the prod-
der. As seen in Figure 3.2, the mechanism uses a small pneumatic cylinder to move a
hook up and down. On the hook’s down stroke, it passes over a pin which is connected
orthogonally to the side of the prodder. This pin moves within a slot in the prodder’s
housing. As the hook moves upward, it pulls on this pin and lifts the prodder. As
the prodder lifts, it begins to compress a spring until the hook rides over a lip in
the housing which allows the pin to slip underneath the hook. The prodder fires at
approximately the same velocity each time. This firing mechanism allows the prodder

to be relatively uncoupled from the rest of the apparatus. The limited resistance of
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Figure 3.1: Schematic drawing of the apparatus use during testing.
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this method means that energy lost due to friction is minimized.

3.2.3 Test Objects

Tests were performed on various known objects. These included five plastic land-
mines, a block of wood, and a piece of steel. The landmines used in this study were
loaned from DRES (Defense Research Establishment Suffield) military establishment
in Suffield, Alberta. The mines were the AP mines: VS 50. and the PMA 1A: and
the AT mines: TMA-4. TMA-5A, and VS 2.2. A full description of the dimensions
of these objects is available in Appendix A.
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Figure 3.2: Prodder firing mechanism with hook that lifts the prodder.
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CHAPTER 4

DATA PROCESSING AND FEATURE EXTRACTION

This chapter discusses how the vibration signatures of various objects were analyzed
for the purpose of classification. The vibration signal contains information about the
properties of the object struck by the prodder. The specific features of the vibration
signal which distinguish one object from the next are discussed.

This chapter describes how the raw data recorded with the accelerometer from
each strike was used to extract features used in ALN pattern recognition. The raw
data was adjusted to capture only the pertinent information. Using the cleaned
signals, features were extracted from the time and frequency domains. How these

features are used for pattern recognition are discussed in the following chapter.

4.1 Raw data

The vibration signals were obtained by striking an object with a % inch steel prodder
through the automated process discussed in the Chapter 3. These signals were stored
into data files for analysis. From these data files. features were examined which could
be used to identify each object as unique. The bulk of this analysis was done using
Matlab software.

Figure 4.1 shows the voltage output recorded from the accelerometer after striking
a VS-50 AP mine. This is typical of the raw data provided by the accelerometer
without modification in any way. The signal includes the data from the hook pulling
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the prodder and release of prodder prior to striking object (as described in Chapter
3). Noise from external sources may also be present in the signal. In order to be
useful, relevant information must be separated from non-relevant information. The
following section will describe the ways in which pertinent information was extracted

from the raw data, and how noise was reduced in the signals.

4.1.1 Initial Noise Removal

The first step in cleaning the signal- prior to analysis was to remove the initial hook
release portion recorded by the accelerometer. The signals were also truncated to
remove noise after the initial transient event. Figure 4.2 shows the same data as
shown in Figure 4.1 after this action has been performed.

The truncation and removal of the hook release portion of the signal was done
with LabVIEW just after the object was struck on each run. If the strike missed
the intended target, no information would be recorded after the hook release. These
events would be removed from the test set and the strike would be repeated. Once
a pre-determined number of strikes were successfully recorded. the data from these
strikes would be saved in a data file for further analysis. Zeroes were also added before

and after the signal (zero padded) to improve the frequency domain resolution.

4.1.2 Averaging a Series of Prodder Strikes

In order to aid in noise reduction, truncated signals were averaged. Ten strikes of
the prodder were made in succession on a particular region of an object. A computer
algorithm developed using Matlab was used to average the signals (see Appendix C).
Each signal was positioned to line up the peak amplitude positions. The result of the

signals thus averaged was a single signal as shown in Figure 4.3.
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Figure 4.1: Time signal output from accelerometer as prodder strikes the VS 50
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Figure 4.2: Processed time signal output from accelerometer as the prodder strikes the
VS 50 antipersonnel mine.
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Figure 4.3: Averaged time signal output from the accelerometer as the prodder strikes
the VS-50 AP mine using 10 strikes in succession on a specific region of the mine.
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4.2 Signal Feature Extraction

During the averaging process, time and frequency domain features were obtained from

the signals.

42.1 Time Domain Features

The time domain features are the same features as described in section 2.12. This
includes the largest absolute acceleration of the signal (A). the time width of the
main pulse of the signal (£.:4), and the integral of the main pulse (/). The main pulse
refers to the time that the signal spends below a threshold voltage level. The main
pulse surrounds the minimum value of the signal. The threshold for determining the
starting and stopping times of the pulse were determined using trial and crror. The
pulse area feature is calculated by summing the values of the time domain signal
within the main pulse. The Matlab program to perform this function is provided in
Appendix C.

Each feature of an object was averaged during this ten strike averaging procedure
described earlier. At the same time, the standard deviations for cach feature were

determined. Thus, for the time domain, a total of six features were used.

4.2.2 Frequency Domain Features

After the signals of the objects were averaged, frequency domain characteristics were
obtained. A Fourier transform of the time domain signal was determined. The fre-
quency domain resolution is 1 Hz given that the sample length is 6000 data points,
the sampling rate was 6000 Hz. The frequency domain signal for the averaged VS-
50 AP mine is shown in Figure 4.4. The frequency domain was divided into twelve
unequal segments. The twelve segments were chosen to adequately break up the fre-
quency domain and provide consistent features. The frequency domain was observed

to be dominated by low frequencies. The twelve segments concentrate on the low
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frequency range of the vibration signals. The frequency amplitudes in each segment
were averaged, and this average value was used as a feature. The maximum fre-
quency component was also used as a feature. Thus a total of thirteen frequency

domain features was used for each signal.

4.3 Example of Feature Values

By way of example, the average of ten VS-50 AP mine signals will be used to assist
in describing these features. Table 4.1 shows the time and frequency domain features
of the average of ten VS-50 AP mine signals. The vibration features including ¢,.4-
I. A. and their standard deviations, and the frequency bands were obtained from the
data files collected during testing. After obtaining the features. each feature and the
object associated with those features was saved in a new database. This database
was the raw data upon which the pattern recognition software learned to associate

the hidden objects with the vibration features.
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Figure 4.4: Frequency domain features of the averaged time signal of the VS-50 AP
mine.
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Table 4.1: Features extracted from 10 averaged VS-50 AP mine signals

Feature Value
twia (S) 0.008467
A, Amplitude (g) | 617

I, Integral (g x s) | 0.2783
F(1-25 Hz) (g) 4.79
F(26-50 Hz) 2.87
F(51-75 Hz) 1.87
F(76-100) 0.753
F(101-200) 0.134
F(201-300) (.0088
F(301-400) 0.0145
F(401-600) 0.0116
F(601-1000) 0.0033
F(1001-1500) 0.0003
F(1501-2000) 0.0001
F(2001-3001) 0

[rear (8) 717

4.3.1 Feature Extraction Results

From the time domain, the features t..q, I, A and their standard deviations were
calculated. Figure 4.5 is a scatter plot of the feature t,,4 and the object from which
t.:q Was calculated. This plot shows the value of the feature t,.s as determined from
the signals of each of the different classes of objects tested. If the prodding tests could
be repeated exactly on the same spot on an object, one would expect that value of

twia for that object would be a single value. As can be seen. t,.4 takes on a range
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of values instead of a single value. Also, two or more different objects (for example
VS-50, TMA-4, wood) have t,;4 values which are approximately the same. Because
of this overlap, it would be impossibie to identify an object with certainty using the
feature t,:q exclusively. It is for this reason that several featurcs are required for
classification.

In contrast to Figure 4.5, Figure 4.6 displays the calculated value of the feature
oy, along with its associated object class. No clear patterns can be found using this
feature alone. Some information is available from even this type of feature. however.
There is a difference between the amount of variation in m,_, between the objects
VS-50 and TMA-4. This difference may be used to help distinguish the two classes.

In the frequency domain, most of the energy is concentrated below 1000 Hz. The
stiffer the object, the larger the higher frequency components of the signal. This
agrees with the SDOF with damping theory. The peak frequency of the signals
changes was observed to change in amplitude and frequency from one strike to the

next in contrast to the constant value predicted by the theory.

4.4 Summary of Feature Extraction

The raw signals from the accelerometer need to be processed hefore they can be
classified. First noise from the initial firing of the prodder onto the object must
be removed. To further reduce the influence of noise. several signals are averaged
together prior to extracting features. This requires that the signals are lined up by
their peaks and reduced to a single signal.

There were a total of six time domain and thirteen frequency domain features
are extracted from each signal. Thus the complex acceleration signal is reduced into
nineteen features that describe that signal. These features are stored in a database
to be used in classifying the objects. A complete list of the object features can be
found in Appendix D. The averaged acceleration signals are shown in Appendix E.
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CHAPTER 5

ARTIFICIAL NEURAL NETWORKS AND PATTERN

RECOGNITION

In order to correctly classify an object, it is necessary to discover the features of the
vibration signal which make it different. To assist in this process. a form of artificial
neural network (ANN) known as an Adaptive Logic Network (ALN) was employed.
An introduction to ANNs will be discussed along with the specific features of the
ALN type of network.

ANNs are computer algorithms derived from the model of neural svnapses of the
human brain.[Hagan. 1-8] The essential concept is to identify a certain output based
on a series of inputs. In order for learning to occur. the synapses need to be exposed
to inputs multiple times until the proper output is learned. Learning (or training)
is performed by reinforcing certain synaptic pathways and making other pathways
weaker. The decision for reinforcing or weakening is based on a prescribed learning

rule. The type of learning rule used identifies the type of ANN being used.

5.1 Feed-Forward Networks with Supervised Learning

Artificial Neural Networks such as the ALN network use a type of network called
a feed-forward network with supervised learning. The feed-forward network uses a

learning process to match a set of known input features to a known output state by
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a process of trial and error. The input features form what is called a training set.
Through training, the network learns to match the inputs to the correct outputs.
The best training result for correct classification is when small changes in the input
features cause only small changes in the output of the network. Learning occurs
after multiple recursive attempts to obtain the correct output as described by the
features of the training set. A process may be defined as supervised learning if. as
in the case of pattern recognition, the output is known during the training process.
The ANN software attempts to minimize the error between the solution (the correct
object classification) and the network output (the object classification learned by
the network). This is typically an iterative process which can be very slow for large
training sets of data.

Also, a solution is often not guaranteed. Usually the number of necessary features
to provide a solution is not known. If too few are used. the case may arise that iden-
tical input feature values represent different output values. In this case. no solution
can ever be found. If too many features are chosen. the speed of learning may be too

slow for many practical applications.

5.1.1 An Illustrative Example of Object Classification Using Input Features

The following is an example of how an ANN learns to associate an object type to a
set of input features. Consider two objects. a balloon and a baschall. The features
chosen must adequately define differences between the objects which makes each
object distinct. For instance, defininyg a feature to describe the roundness or curvature
of the object would not be very successful since both objects are roughly round. The
balloon and the baseball will respond quite differently to the application of an outside
force, however. One could hit the object with a baseball bat and measure the distance
the object travels. The measured feature would then be the distance. and it could
have ranges from 0 to 300 feet. Obviously the baseball (on average) will have values

significantly larger than the balloon. The exact distance the object travels will not
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be the same from hit to hit. Parameters such as the person hitting and wind will
influence the exact results, but clearly the baseball will travel much farther than the
balloon. Another parameter that could be chosen is the colour of the object. There
may be some instances where the balloon and the baseball are the same colour, but
the balloon can be many different colours while the typical baseball is white.

An ANN could be trained to distinguish the difference between balloons and base-
balls using the three features, roundness, distance and colour described previously.
In order to apply ANN software to the task of classification. physical features of the
objects must be reduced into numeric quantities. For the roundness feature. imag-
ing software may be used that captures an image and defines the curvature of the
surface. A value of 0 would be assigned to an object such as a box. and 1 would be
assigned a perfect sphere. Thus the feature would have values ranging from 0 to L.
The disténce variable would have values ranging from 0 to 300 as stated before. The
range of colour could be reduced to a table of assigned values. For instance. one could
limit the colours to 16 (white = 1, red = 2. blue = 3. etc.). The range for the colour
variable would be from 1 to 16. The choices of the order of colours and the values
assigned to them is arbitrary.

Numeric values could be assigned to the features once a series of experiments
were performed on each object. The only remaining numeric quantization is for the
objects themselves. One could assign the value of 0 to a balloon and 100 to a baseball.
The ANN would learn a function that has an output ranging from 0 to 100. During
supervised learning, the known network output would be 0 for a set of balloon features
and 100 for a set of baseball features. For example, consider the following table of

values which could represent the features and objects:
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Table 5.1 : Example of features used to train an ANN

Roundness | Distance | Colour | Object
0.95 3.5 3 0
0.98 210 1 100

During the learning phase, an ANN associates the three features of roundness. dis-
tance and colour to the output class. In the very beginning of learning. the associa-
tions are randomly initialized. The ANN begins to learn an appropriate association
through an iterative process. At the end of each iteration. the output of the ANN is
compared with the known object class number. The network typically responds by
minimizing the error between the known object class number and the network output.
As the iterations progress, the error petween the output and the known class number
is reduced.

Because the input features contain some amount of noise and variability. there
exists the potential for the network to learn the noise in the data. In this circumstance.
the network is said to be overtrained.[Armstrong. 67] An overtrained network may
have an overall network error that is very low. but will perform poorly when new
validation data is presented to the network. For example. an ANN may learn that
baseballs must have a distance variable that equals 210 exactly. When presented
with new data that has a distance value of 190, the network may wrongly classify
the object as a balloon. The best network is one that learns the underlying function
without memorizing the noise in the data set. Clearly this is a difficult and somewhat
arbitrary cbncept to apply to a data set which contains an unknown amount of noise.

Additional objects could be assessed by the ANN to determine if the object is
more like the balloon, or more like the baseball. If the object were a grapefruit. the
network may have difficulty deciding which class to which this new object belongs.

The distance variable may be closer to the baseball in range. but the colour variable
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would more closely resemble the balloon. It may turn out that two networks trained
from the same data set will produce different classifications of this new variable. A

new function may be required that is trained on data collected from this new object.

5.2 Adaptive Logic Network (ALN)

There are many types of Artificial Neural Networks which are applicable for pattern
recognition. These networks associate input features of the original signal to a known
output state by using a specified learning rule. It is this learning rule that makes

each type of network unique.

5.2.1 The ALN Function

The Adaptive Logic Network creates a function or algebraic equation. the output of
which is a number which is associated with an object. Continuing, the example of the
balloon and the baseball objects, a balloon may be assigned an ontput. y. of 0 while
a baseball may be assigned an output of 100. Each of the input features such as the
roundness, distance and colour (z,, z2, z3) is multiplied by a constant or weight (w;.

w,, w3) as in the following example equation:

W + UNT| + WoZo + W3T3 =Y

where y =  the output of the network function
w; = network weights
z; = numeric input features

More complex ALN networks implement several of these equations to describe the
whole function. Each individual equation may be called a linear piece of the total
function. In this way, functions with curvature can be approximated with piecewise
linear segments. Figure 5.1 shows the scatter plot of the feature f,.,4 and the object
associated with it. Each data point represents the average of ten strikes in succession

on a specific region of an object. Three lines are shown to represent the function that
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linear piece is used to provide the output y for the network. As training progresses. the
ALN software decides which line will be adjusted to reduce the error of the network
output when compared with the actual object identification number.

5.2.2 ALN Learning

The weights, w;, of the network are randomly set at the beginning of the learning
procedure. During learning, the weights are either strengthened or weakened to match
the output, y, with the known output. This process uses the ALN learning rule of
piecewise linear regression to minimize the error between the output of the network
and the known result. If there is only a single input feature z,. the error minimization
procedure is analogous to linear regression.

The decision of how to choose the linear piece’s range and how many pieces to
use is not arbitrary. The ALN decides where the boundaries of the picces helong by
adjusting the slopes of the line segments to minimize the overall crror in the output
of the function. As mentioned earlier, only one linear piece is active over a given
range of the input features. The weights of this linear piece are acjusted during error
minimization.

The specific type of function for classification of objects is not known before train-
ing the ALN network. To ensure that enough linear pieces are used to cover the input
feature space properly, a large network is recommended. The network should contain
multiple layers of linear pieces. This is called a ragged tree. and is used when the
shape of the function in question is not known.[Armstrong, 45|

Note that the weights w; correspond to the partial derivative of the function with
respect to that variable. Limits can be set on the partial derivative to apply real world
knowledge about a particular variable. By limiting the partial derivatives the user is
able to directly apply knowledge of how the input features should change when the
output changes. For the identification of the signals in this study. several relationships

between the output and the signal pattern were determined. For instance. when the

51



t.,q feature (ms)

VS-50 VS§-50

- : PMA-IA  TMA-1  TMA-SA TMAS  Wood  Steel
Trigger Side

Object classes

Figure 5.1: ALN classification using the variable t,,. Several lines are used to
approximate curvature of a function. The more lines that are used. the better the
approximation. Each data point represents the average of ten strikes in succession
on a specific region of an object.
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prodder struck a stiffer object, the width of the pulse was found to be narrower.
Thus the feature t,.q4, stiffer objects should have smaller t,;; values than less stiff
objects. By lining up the object classification numbers from less stiff to stiffest (1
being least stiff, 100 being most stiff), we know that this variable will decrease as the
output (the classification number) increases. Also, the peak frequency band location
should increase when the spring stiffness of the object increases. This information was
applied directly into the ALN. Thus, during the training phase. the network learned

the classification of the objects along a more specific (rather than general) approach.
5.3 ALN Training

In order to develop a classification function. a function must be trained with data sets
known to represent the correct output. This data set is known as the training set.
Some of the experimental data was reserved in a test set which was used to evaluate
the learned function. The success of this method lies in having cnongh points that
sufficiently describe the objects in question. Once the appropriate function has been
found. the evaluation of the function is performed very rapidly. For any given set of
input variables, the ALN function only uses one specific line segment to provide the
function output. Comparisons are made extremely quickly by the network to find

this line segment. This allows classification of signals to take place in near real time.

5.3.1 Object Classification Using an ALN Network

Objects were assigned class identification numbers from 1 to 110 for the purpose of
training the network. For instance, PMA-1A was assigned the number 20. TMA-4
was assigned 70. The reason for choosing a specific object number is discussed in the
following section on network optimization. The numbers chosen to represent an object
were chosen to assist the ALN network in learning the correct result for the input
features. The network had to learn a function which associated the input features of

each object with the number representing the proper class identification. The network
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output, y, should equal the assigned identification number for each object. That is,
y = 20 is the correct network output for PMA-1A input features. An ideal network
would produce a scatter plot where the network output exactly matches the assigned
object identification number. Because real networks do not perfectly conform to the
training set, there is some imprecision in the network’s output for a known object
identification number. Table 5.2 shows an ideal network output for exact object

classification.

Table 5.2 : Example of an ideal ALN network output.

Object and Class Number | ALN Output
VS-50 Trigger: 1 1
VS-50 Side: 10 10
PMA-1A: 20 20
TMA-1: 40 40
TMA-5A: 60 60
TMA-4: 70 70
Wood: 80 80
Steel: 110 110

5.4 Network Optimization

Several different networks were developed to find the best classification method. The
following section describes some of the methods pursued to arrive at the best results

when developing the ALN.

5.4.1 Number of strikes with prodder

The number of strikes in succession on a particular region of an object was adjusted

from 2, 5 and 10 strikes which were averaged together prior to extracting features. Of
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the databases created in this way, the best results came from the 10 strikes averaged
together database.

5.4.2 Overtraining the Network

The network overall RMS error was also used as a criterion for a successful network.
This value is determined during training as the overall network classification error. If
this error is too low, however, the ALN begins to learn the noise in the data rather
than a descriptive function for the data. This is not desirable since the network
function should not depend on an exact match to the training set data to provide
the proper output. Table 5.3 and Table 5.4 display an over-trained network output
using training data for the input and the evaluation of this network with test data.
The tables show the range of network output values that are determined from the
input data. This is also shown graphically in the scatter plots of Figure 5.2 and
Figure 5.3. The plots shows the object class against the network output. While the
trained network appears to have excellent results in Table 5.3 using the training data.
Table 5.4 shows the evaluation of this ALN on the test set is quite poor since several
classes of objects overlap.

Overtraining results when the training procedure is continued bevond the point
where the network is learning a representative function. This can occur during train-
ing when the desired network error is too small. It is a delicate balance to prevent
overtraining and still allow the learning to continue long enough to properly learn the

classification function. Only through trial and error is this balance established.
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Table 5.3 : An overtrained network response to training set data.

Object and Class Number | Range of ALN Output

VS-50 Trigger: 1 1.06 - 1.06
VS-50 Side: 10 9.97 - 9.97
PMA-1A: 20 19.9-21.1
TMA-1: 40 39.6 - 40.7
TMA-5A: 60 93.8 - 61.9
TMA-4: 70 66.9 - 75.2
Wood: 80 77.0 - 84.1

Steel: 110 108.0 - 110. O

Table 5.4 : An overtrained ALN response to the test data set.

Object and Class Number | ALN Output

VS-50 Trigger: 1 5.16 - 24.4
VS-50 Side: 10 28.6 - 45.0
PMA-1A: 20 20.1 - 25.2
TMA-1: 40 29.7 - 43.5
TMA-5A: 60 54.5 - 59.1
TMA-4: 70 66.3 - 75.3

Wood: 80 67.7 - 84.7

Steel: 110 81.3 114.6

5.4.3 Object Numbering and Order

The network will have the most success (lowest RMS error and best classification) if

the object classes are ordered in a meaningful way. The stiffness of the object is the
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most dominant variable for the objects. Arranging the objects in order of increased
stiffness improved the learning and evaluation of the network. By arranging the
objects in such an order, the knowledge gained from the theory could be directly
incorporated into the network learning. Random arrangement of the object classes
produced poor network learning with large overall errors.

Numbering the objects in even spacing from 1 to 8 was found to be: less successful
than the ordering shown in Table 5.2. The numbering chosen groups some of the
objects closer together than others. For example, the VS-50 mine trigger and side
and the PMA-1A mine were each separated by 10 points. whereas the steel object is

separated from the wood object by 30 points. This separation assists in classification.

5.4.4 Features Attempted and Rejected

Other features were attempted in addition to the 19 time and frequency domain
features discussed previously. These included the standard deviation of the frequency
band components and the location of the peak frequency component. ALNs were
formed with the inclusion of these features in the learning of a network function. It
was found that when these features were removed from the learning procedure. the
ALN overall error did not change. These particular features did not assist in forming
a meaningful function which could classify the objects.

Also attempted were evenly spaced frequency bands. Training was observed to
improve once the bands were chosen to emphasize the lower frequency range of the

acceleration signals.

5.5 ALN Results

After the ALN networks were trained, they were evaluated using the test set data.
The minimum separation between any two object classes was 10 units. An ALN
network was determined to be succassful if it could classify an object to within §

units of the actual class identification number. This would mean that no two objects
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would ever cross into the same object classification range. For instance, a VS-50 AP
mine was assigned the identification number 1.0. The network output (y) should then
be 1.0. Since the network is not perfect, an output of 1.0 to 5.0 may result.

After extensive experiments with different forms of ALNs. no ALNs trained could
distinguish all objects independently from the other objects to within the 5 point
criterion. All the trained networks classified at least one object as the wrong object.

The ALN networks frequently confused the object classes for TMA-1 and TMA-
5A. There was also some misclassification of AT mines as being wood objects. The
reason for this misclassification stems from the fact that the original vibration data for
these types of objects are very similar. As a result, the network attempts (and fails) to
distinguish very similar input features with distinctly different output values. Where
the vibration data is not as similar, the network has more success. Significantly. there

was no misclassification of any mines as being steel objects.

5.5.1 Results of the Best ALN Classification

The results of the best ALN network trained can be found in Table 5.5. One imnpor-
tant feature of this network is that no land mines were ever mistaken for the steel
object. There is a clear separation between the object classes with limited overlap
only between the AT mines TMA-4 and the TMA-5A. Table 5.5 shows the network
outputs representing TMA-1 and TMA-5A overlap. This is also shown in the scatter-
plot of Figure 5.4. For the TMA-1 and TMA-5A objects. the network has difficulty
correctly associating the input features with different objects. The input features for

these two objects are very similar wliich may explain the error in the network.



Table 5.5 : Results of the best ALN network evaluated on the test data sets.

Object and Class Number | Range of ALN Output

VS-50 Trigger: 1 1.07 - 3.44
VS-50 Side: 10 6.88 - 14.5
PMA-1A: 20 15.2-24.4
TMA-1: 40 28.2 - 53.2
TMA-5A: 60 27.9 - 60.6
TMA-4: 70 38.5-71.3

Wood: 80 80.9 - 87.8

Steel: 110 101.1 - 110.0

5.6 Conclusions of ALN Object Classification

Many attempts were made to create an ALN that could correctly classify each object
into its appropriate category. The best ALN results were from ALNs trained on
feature databases were 10 signals were averaged together. Also. the objects needed
to be arranged into an order which promoted the best ALN training. Typically this
meant arranging them from the least to the most stiff objects.

The best classification of objects could correctly identify most of the objects in-
dependently of the others. The TMA-1 and the TMA-5A AT mince could not be
uniquely distinguished. This is not considered to be a significant concern since the
joint class containing both mines could be formed. By doing this. the joint class is

identified independently of the other objects tested.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

There is an absence of safe, accurate and cost effective land mine detection technolo-
gies currently available. The preceding chapters describe a technique for the safe and
accurate detection of land mines based on the hand prodding technique. Automating
this process will provide increased safety and decrease the amount of time required
to locate each hidden land mine. The reduction of false alarms and faster detection
rates are the goals of this current work.

Ideally. an automated device will work with the capacity of many ficld personnel
with hand held prodders methodically striking the ground. Unlike non-contacting
devices. physically prodding the ground will ensure that cvery square inch of land
covered by the system have been passed over and tested. In this casc. if the device
should fail to detect the presence of a mine or should the mine be accidentally det-
onated, the automated prodder will be damaged. Human operators will not be in

direct contact with the exploding land mines.

6.1 Conclusions of Current Work

Automated prodder detection technology has been proven to work snceessfully in the
identification of hidden objects. Predictions using theoretical models of the prodder
and object system provided quantifiable features intrinsic to the tvpe of object. The

stiffness of the object in question plays a role in classification. but is not the only
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property of the mine which determines the vibration signal observed in the prodder
and object system.

The prototype used to evaluate the automated prodder struck buried objects with
approximately the same velocity. It was found that ten strikes taken on the same spot
of the hidden object and averaged together provided the best object classification.

The acceleration data from the prodder’s contact with the objects was reduced
into a series of features in the time and frequency domains. These features were used
by ALN artificial neural network software to create and evaluate learned functions
which identify the hidden object. The ALN function learned using this experimental
data was shown to successfully identify certain classes of hidden objects as distinct.

Artificial neural networks such as ALN’s are susceptible to overtraining. Over-
training results when training progresses too long and the noise in the input database
is memorized by the ALN. As a result, new data is poorly classified. Correct training
will prevent the overtraining of the ALN while allowing the reduction of the overall
network error to the lowest possible value. This balance is often difficult to achieve
and several attempts must be made before the best ALN function can be found.

The ALN that had the best evaluated results showed that no land mines were
ever classified steel debris. This means that false alarms due to contact with rocks
and steel debris will be nearly eliminated. While objects such as steel and the AP
mine VS-50 were easily classified, the ALN function had difficulty separating objects
with similar vibration characteristics. Similar object stiffnesses have similar object
feature values. This makes classification of similar objects difficult. For instance. the
AT mines TMA-1 and the TMA-5A could not be distinguished churing the evaluation
phase of classification. This is likely due to the fact that these two mines have very
similar stiffnesses. On the other hand, the dissimilar stiffnesses of the AP mine VS-50

and the steel block made separating these objects into separate classes successful.
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6.2 Future Research

A single prodder has been proven to successfully identify specific classes of hidden
objects in the lab. To make the device more useful, field trials will be necessary.
Different soil environments including soil types, gravel. moisture and vegetation need
to be investigated. Field test should consider uneven terrain and excessive vegetation
in the design of the prodder deployment. In order to accomplish this, some type of
portable device will be needed. Once this has been completed, an array of prodders
could be designed and tested by mounting them on a truck. all terrain vehicle or
armoured car. If this proved useful and live tests were considered appropriate. a
remotely controlled all terrain vehicle would remove the need for a lnunan operator
close to the mine field. Also. the armoured car could provide a shicld from any
accidental explosion from land mines.

The number of prodders in the array is flexible and can be adapted to suit the
requirements of a specific environment. It is conceivable that three. ten or dozens of
prodders could be joined together to detect land mines in a particular arca. As the
number of prodders grows. the computing power required to coutrol and evaluate the
acceleration data recorded must be considered.

This developed technology is not meant to be used as a stand alone detection
method. but rather to be used in conjunction with other mine detection devices as
outlined in Chapter 1. Integration with other detection devices will improve the
detection success rate to the near 100% required.[Hanshaw. 249-256. Garriott. 259
268. Chaudhuri, 187-204.] For instance, ground penetrating radar can be used to
first identify areas of land mine fields. The prodders could sweep the area in question
for land mine objects. Once a potential mine object is discovered. explosive detectors
and bio-sniffers can confirm the identity of the mine by locating concentrations of
explosives.

The ALN software used to develop the identification function can be used to adapt

to new types of objects as they are encountered in the field. This will require that the

64



vibration data is stored in the field computer and that the types of objects are known.
New training and evaluation databases can be created to form new identification
functions that are adapted to a particular region. Currently the signal processing to
accomplish this is done using Matlab software. This could be rewritten using C++
or a similar programming language to create faster feature reduction.

The ALN software was chosen for its ease of use and local support. There are
several artificial neural network types which are applicable for object classification
applications. Future work could determine which type of artificial neural network
was the ;nost appropriate for the types of input features used in this study.

The features chosen to represent each object have been shown to work in the lab
environment. It should be confirmed that these features are applicable for generic
conditions found in the field. It should also be discovered if the ALN trained in one
environment can be used to detect mines found in another environment. The ALN

may need to be retrained using specific tests performed in cach type of soil condition.
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APPENDIX A

OBJECT PROPERTIES

The stiffnesses in the following table were used in the modeling of the prodder and
object impulse system found in Chapter 2. The stiffness of the objects was determined
using an INSTRON testing instrument. The 7: inch steel prodder was attached to the
INSTRON test unit and was then moved at a constant displacement rate into the
various objects. The force required was simultaneously monitored. The stiffness of
each object was obtained by dividing the force by the distance the prodder pushed
into the object. The stiffness of the VS-50 AP mine was found for both the softer
trigger pad located in the center of the mine, and on the hard plastic side of the mine.
All objects were observed to elastically deform with the exception of the wood block.
As the prodder was forced onto the wood block, a hole was formed. Subsequent
stiffness tests on the same hole showed that the stiffness increased to about 7 times
the original stiffness. The steel block was not tested with the INSTRON. It is assumed
that the steel block is much stiffer than any of the other objects tested.

Note that the construction of the PMA-1A AP mine consisted of a box with a
lid. The initial applied force of the INSTRON machine caused the lid to close and
compress. After the slack was taken out of the system, the plastic lid was compressed.
A consistent stiffness value for the lower load region was not observed. The stiffness
value shown in Table A.1 was calculated for the plastic lid compression.
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Table A.1: Physical properties of the objects used during testing.

Object Diameter | Height | Width | Length | Mass Stiffness
(mm) (mm) | (mm) | (mm) | (kg) (kN/m)
5.60 (tri d
VS-50 90 5 | NA | NA |05 | >80 (frisger pad)
237 (plastic)
PMA-1A NA 33 68 143 | 0.400 1180
TMA-1 315 100 NA NA 6.50 4.2
TMA-5A NA 113 275 304 6.50 55.2
TMA-4 285 63 NA NA 6.30 34.2
Pine Wood 57.1 (soft)
NA 51 76 152 | 0.500
Block 416 (hard)
Steel NA 13 51 76 2.00 NA
. Using ‘
Soil NA NA NA NA 26.1
10" disk
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APPENDIX B

THEORETICAL MODELS FOR THE PRODDER AND

OBJECT IMPULSE SYSTEM

B.1 Two degree of freedom model eigenvalues

This more detailed model introduces a second natural frequency and natural mode
of vibration to the system. The mathematical term for mode is an cigenvector. while
eigenvalues correspond to the natural frequencies. An eigenvector is a displacement
configuration which shows how the masses are moving in relation to one another.
Each eigenvector has a corresponding eigenvalue. For a system with 2 degrees of
freedom, there will be 2 eigenvalues 2ach with its own eigenvector. If the system is
given an initial excitation in the form of an impulse. the svstem will vibrate at the
frequencies of the eigenvalues. The shape and amplitude of the vibration is described
by the eigenvectors. Eigenvectors are used to define the relative contributions each

of the eigenvalues have on influencing the shape of vibration.
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Analysis of the force balance on each of the masses in this system provide the
equations of motion used to determune the eigenvalues and eigenvectors. In matrix

form, the equations are as follows:

[m] {€} + [K] {z} = {0}

The mass matrix is defined for this system as:

m, 0
[m] =
0 Mob;
and the stiffness matrix is:
kaj — —Kob,

k] =
—kob] kob] + ksml

The characteristic equation for this system of equations is:
w"m,,m.,bj + (-—kob_,mobJ - mpkd,] - mpksm,) w2 + la'nhll\',.m,

It has has the following eigenvalues:

12
Koty Maby + Mpkopy + Mpkeeu £ \/ ((ko;,] My + Kty + Koy, )™ = i p oty Kol jl\:s,,,,)

LT

o -

2my Mo,

To find the system’s eigenvectors, we can assume a solution to the differential

equation in the form of:

I = Alei‘”‘, Iy = Age“"‘
Substituting these into the original equations of motion gives:

2 .
e""t mp 0 —Alw + kobj —k,,bj Al c"‘" _ {0}
0 Mgbj —Azu)z _kobj kob] + Ksou A,

Solving this equation for 4; and A, the following ratio is obtainecl:
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Ay kobj + Ksoit — Mopjws?®
L1 Dobi T Teedl ®1* w = the corresponding eigenvalue.
Az Kob;

The eigenvector is the ratio of amplitudes of the two vibrating objects. This
eigenvector depends on the eigenvalue. If the w is large, then the ratio becomes:
A —mapt?
Ay Kob;
For large w, the soil compression does not influence the vibration amplitude ratio
significantly. For small values of w, the eigenvector becomes:
A1 Kobj + Ksont
Ay~ kay
At small w. the mass of the object does not influence the vibration ratio. If the
soil spring constant k, is small compared to the object. this ratio becomes 1. This

means that the object and the prodder would be moving in unison.

B.2 Continuous System

This section will discuss the possibility of a compressible prodder. It will be shown
that the lowest natural frequency of the prodder depends on its length.

The prodder can be modeled as a homogeneous, isotropic elastic thin bar which
has an infinite number of DOF. Longitudinal vibrations of the bar can be studied by
performing a force balance on an infinitesimal longitudinal section (shown in Figure 8).
Such analysis is available in several t=xtbooks.[Timoshenko., Thompson| The natural
frequencies are found to depend on the boundary conditions of the bar. For this case,
the prodder can be modeled as free on one end and fixed on the other. This leads to

the following natural frequencies [Timoshenko, 302]:

Y= (2n+1)m [E
- 2L P

Where:



3
Il

0,1,2,...

L = Bar Length

E = Young’s Modulus
p = Density

An impulse excitation force in this system will cause all modes to vibrate si-
multaneously. These frequencies occur regardless of the object struck provided the
excitation and boundary conditions remain the same. The lowest frequency oceurs
at:

n [E
Wi =g ;

This is the lowest frequency vibration mode of the prodder. All other modes
occur at frequencies above this value. For the prodder used in these tests (a stainless
steel cylinder 0.320 m in length), w; = 24.6 x 10" rad/s. or 3.9 kHz. The prodder’s
vibration should only be noticed at frequencies at or above this valuc. Thus it should
be safe to assume that the prodder can be modeled as a rigid body for frequencies

below w;.
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APPENDIX C

SOFTWARE PROGRAMS USED TO IDENTIFY OBJECT

FEATURES

The following sections are computer programs written in LabVIEW and Matlab
programming languages. Included here are programs which remove noise from the raw
acceleration data, average the signals, and determine the features of the time and

frequency domain used in object classification.

C.1 Averaging the acceleration signals.

function [y, twid, stw,Awid, sAw, peak, speak] = avgpeak3{x,nsiznal)

$ x = raw data signals; not lined up

% 1500:nsignal size

% nsignal = number of signals of x we want to average
% {typically 5, 10 or 20)

& m = value of x minimums (peak)

% n = position of x peak

% y = average of these 'nsignal's

3 twid = peak width

% stw = standard deviation of twidth

% Awid = sum of peak amplitudes (normalized )
% sAw = standard deviation of Awidth

% peak = average of the peaks in samples

% speak = STD of peaks

[g,w] = size(x):

x(6000,w) = 0;

[m,n] = min(x);

peak = mean(m); 3peak found

speak = std(m);

nmin = min(n);
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prescan = 40;

if nmin < prescan
prescan = nmin-1

end

nb = 750-prescan;
init = 0.08; %picked after extensive trial and error

for 1 = l:nsignal;

a = n(i);
b = ones(l,nb-1).*init;
¢ = x{ (a-prescan):6000, i)./(-m(i));
nd = (a-nb-prescan):;
if nd <0
¢ = x{{a-prescan): (6000+nd),i)./(-m(i));
end
d = ones(l, nd).*init;
xn(i,:) = [ b, ¢', d}:
adone = 0;
bdone = 0;
sum = m(i);
j = 0;
counta = 0;
countb = 0;
while (~adone|~bdone)
=3+
threshold = -0.1; 3threshold arbitrary
if xn(i, nb+prescan-j) <= threshold i width refore peak
sum = sum + xn{i, nb+prescan-j);
counta = counta + 1;
else
adone = 1;
end
if xn(i,nb+prescan+j) <= threshold t width after peak
sum = sum + xn(i, nb+prescan+j);
countb = countb + 1:;
else
bdone = 1;
end
end
twidth(i) = counta + countb; % width of peak
Awidth(i) = sum/m(i); % peak width area
end

t xn contains all the lined up raw input signals

yn = mean(xn);
y = -yn;
twid = mean(twidth):

Awid = mean (Awidth):
stw std(twidth);
SAw std(Awidth);

i
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C.2 Determination and storage of time and frequency domain features.
function (x,twid, stw,Awid, sAw,B, fpeak] = featurefileS(object,nfiles)

Takes in raw datafile, nx6000 matrix

Sends out features of N averaged signals
--first average, then get features
--Saves in file

object = signal file name

X = object.dat loaded file

n 6000 ~-length of signal (< sec of data)
m = # of runs/signals in datafile

nfiles = # want to average together

N = # of groups of nfiles available in file

P oP 0 P gP OP P P P P O K

Calls Matlab file: avgpeak3.m

file = ['c:\david\thesis\data\objects\',object,'.dat'. L:-zz raw dat
eval('lcad(file);"');

vector = ['x = ',object,''’';']

eval (vector);

[n,m] = size(x):
N fix(m/nfiles)
x x./5.44e-3;

for i = 1: N
¢ Get features frcm time domain
y = x(:, ({i-1)"nfiles+1):(i*nfiles))};3subset of the cclec:t Iile

[yavg(i,:),twid(i),stw(i),Awid(i),sAw(i),peak({i),speas(i;} =
avgpeak3(y,nfiles);

% Now get frequency domain

F = (fft(yavg(i,:))./length(yavg(i,:}))) *2; % scaled
F(l) = F(1)/2; %Correct first sample

P = F.*conj(F) ; % Power Spectrum

B(i,1) = mean({ P(1:25) );
B(i,2) = mean( P(26:50) ):
B(i,3) = mean( P(51:75) j;
B{i,4) = mean{ P(75:100) ):;
B(i,S) = mean( P(101:200) ):
B(i,6) = mean( P(201:30Q0) );
B(i,7) = mean( P(301:400) );
B(i,8) = mean( P(401:600} );
B(i,9) = mean( P(601:1000) );

B(i,10) = mean( P(1001:1500) );
B(i,11) = mean( P{1501:2C00) );
B(i,12) mean( P(2001:3000) ),
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fpeak (i) = max(P);
end
x = yavg'; % N averaged signal groups --x(6000:N)

% Now save these features in a feature vector.
feature = zeros(N,19);
for i = 1: N
feature(i,:) = [twid(i),stw(i), Awid(i),sAw(i), peak(i),speakii),
B(i,:), fpeak(i)}:
end
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APPENDIX D

AVERAGED ACCELERATION PLOTS FOR EACH OBJECT

The following plots are the acceleration signals obtained after averaging ten strikes of

the prodder in succession on a particular region of an object.
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Figure D.1: Time domain averaged plot of AP mine VS-50.
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Figure D.2: Time domain averaged plot of AP mine VS-50 side.

79



Acceleration, (g)

Acceleration, (Q)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 008 009 01
Time, (seconds)

Figure D.3: Time domain averaged plot of AP mine PMA-1A.
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Figure D.4: Time domain averaged plot of AT mine TMA-1.
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Figure D.5: Time domain averaged plot of AP mine TMA-3A.

Acceleration, (g)

i

0 0.01 0.02 0.03 0.04 005 0.06 0.07 0.08 008 01
Time. (seconds)

Figure D.6: Time domain averaged plot of AT mine TMA-4.
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Figure D.7: Time domain averaged plot of wood object.
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Figure D.8: Time domain averaged plot of steel object.
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APPENDIX E

FEATURE VALUES FOR EACH OBJECT

The following tables contain the values of the time and frequency domain features
extracted from the raw acceleration signals. Ten strikes of the prodder were made in
succession on a particular region of an object. The acceleration signals resulting from
contact with the object were averaged together prior to calculating the features.
Features were then arranged in a database used to form a neural network function to

classify each object.
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Table E1: VS-50 AP mine trigger object features

Feature Values
twia (MS) 8.47,8.57, 8.13, 8.15, 8.13, 8.23, 7.55, 7.65. 6.85. 6.68. 7.30, 6.48
Giwid (MS) 0.57, 1.13,0.77, 0.59, 0.62, 0.50, 1.23, 1.34. 1.26. 1.04, 0.91, 0.80
A(g) 618, 627, 684, 688, 726, 662, 691, 691, 842, 814, 733. 792
ca (8) 36, 53, 35, 31, 82, 44, 74, 68, 110, 62. 54, 88
[ (g% fgpen) 0.278, 0.268, 0.235, 0.231,0.217, 0.242,0.224. 0.218. 0.172. 0.170.
0.197,0.174
o1 (2 S/tpen) 0.024, 0.034, 0.020, 0.015. 0.040. 0.027. 0.040. 0.035. 0.044. 0.024.
0.023, 0.036
F(1-25 Hz) 4.80, 4.56,4.33,4.22, 4.12, 4.29,3.99, 4.02. 3.58. 3.48. 3.75. 3.55
F(26-50 Hz) 2.87,2.69.2.38,2.37,2.31, 2.49, 2.29. 2.24, 1.86. 1.86. 2.03, 1.86
F(51-75 Hz) 1.87, 1.62, 1.35,1.52,1.34,1.48,1.43, 1.19,. 1.18, [.32. 1.35. 1.2

F(76-100 Hz)

0.754. 0.581, 0.487. 0.554.0.554. 0.605. 0.551. 0.554.0.669. 0.635.
0.642.0.777

F(101-200 Hz)

0.134.0.0990. 0.0635. 0.109. 0.125. 0.124. 0.0794. 0.0747. 0.133.
0.157.0.122.0.153

F(201-300 Hz) *10°

87.9. 50.0. 31.8, 32.5. 50.7, 38.2, 28.5.49.0. 65.6. 77.0. 58.3. 71.6

F(301-400 Hz) *10°

145, 200, 234, 228, 173, 149, 149,261, 220. 159.203. 179

F(401-600 Hz) *10°

116,96.3, 73.3, 124,162, 113, 108, 118, 167, 117. 130. 144

F(601-1000 Hz) *10°

33.4,38.9.31.5,40.2,36.5,34.8.12.4,12.7.22.2. 10.8.8.92. 11.8

F(1001-1500 Hz)

2.93,3.07,2.13,2.99, 2.53,2.57, 2.87, 2.55. 1.60. 1.89. 3.37. 1.04

*10*
F(1501-2000 Hz) _
. 0.68, 1.21, 0.60, 0.57, 0.53. 1.53. 0.58, 1.15. 0.84. 0.65. 1.30, 0.54
F(2001-3000 Hz)
.0 0.30, 0.32, 0.15, 0.22, 0.24, 0.68. 0.36. 0.36. 0.27.0.22.0.47, 0.3 1
Focak 717, 653, 686, 664, 671. 688, 632, 680. 640. 632. 642. 636
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Table E2: VS-50 AP mine side object features

Feature Values
twia (ms) 2.85,3.68,5.38,5.63, 3.88,5.17,3.27,3.97
Ciwid (MS) 0.267, 0.65, 0.962, 0.748, 1.13, 1.28,0.897,  0.407
A(g) 1702, 1430, 1059, 930, 1311, 1064, 1570, 1270
ca(g) 105, 67, 104, 128, 248, 161, 213, 107
1(g*s /gpeat) 0.0610, 0.0720, 0.104, 0.123, 0.0797, 0.102. 0.066. 0.081
Gy (8*S/8peak) 0.004, 0.004, 0.015, 0.023, 0.021, 0.021. 0.012. 0.007
F(1-25 Hz) 2.14,2.22,2.44,2.57,2.26,2.42.2.16, 2.31
F(26-50 Hz) 0.625, 0.787. 1.05, 1.24, 0.787, 1.03, 0.669. 0.882
F(51-75 Hz) 0.436, 0.537,0.787, 0.889, 0.561, 0.713, 0.470, 0.595

F(76-100 Hz)

0.348, 0.392, 0.480, 0.517, 0.405. 0.463. 0.375, 0.463

F(101-200 Hz)

0.264. 0.274, 0.267, 0.248. 0.245. 0.268. 0.242. 0.250

F(201-300 Hz)

0.115. 0.106.0.0906. 0.0804. 0.100. 0.0895.0.116.0.110

F(301-400 Hz) *10°

453,362, 284 226, 362. 299, 419. 301

F(401-600 Hz) *10°

75.7.39.2.24.4,29.6,44.3,24.2.67.2.39.5

F(601-1000 Hz) *10°

2.42,2.97,2.05,2.74, 3.41, 2.86, 1.90, 2.92

F(1001-1500 Hz)

0.61,0.44, 1.05, 1.16, 1.26, 1.29, 0.47. 1.64

*10°
F(1501-2000 Hz) _
o 0.272. 0.285. 0.534, 0.659, 0.500, 0.476. 0.308. 0.568
F(2001-3000 Hz) i
. 0.199. 0.151, 0.375, 0.274. 0.345. 0.261. 0.168. 0.334
Fpeak 540, 520, 494, 465, 515, 502, 529. 506
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Table E3: PMA-1A AP mine object features

Feature Values
twia (ms) 2.25,2.42,2.67,2.30,2.33,2.27,2.17,2.23.2.55. 2.92
Giwia (MS) 0.18,0.21,0.39,0.15,0.21, 0.21, 0.25, 0.23, 0.50. 0.80
A(g) 1836. 1756, 1597, 1763, 1726. 1750, 1752. 1814. 1651. 1443
oa (g8) 5,59, 153, 88, 123, 109, 95, 41, 166. 221
[ (g% /o) 0.0515, 0.0530, 0.0570, 0.0524, 0.0533. 0.0527. 0.0521. 0.0515.
0.0558, 0.0625
o1 (€ /o) 0.0007, 0.0019, 0.0052, 0.0022, 0.0023 0.0020. 0.0018. 0.0006.
0.0063, 0.0089
F(1-25 Hz) 2.03.2.04, 2.10, 2.05, 2.05, 2.04, 2.04. 2.04
F(26-50 Hz) 0.409, 0.443, 0.497, 0.433, 0.453, 0.439. 0.433.0.412
F(51-75 Hz) 0.304, 0.323, 0.358, 0.320, 0.324, 0.313. 0.301. 0.302

F(76-100 Hz)

0.226. 0.240, 0.243, 0.234, 0.227. 0.223, 0.206. 0.213

F(101-200 Hz)

0.182.0.177,0.172,0.171, 0.180, 0.179. 0.177. 0.179

F(201-300 Hz)

0.107. 0.102, 0.6370, 0.101, 0.111. 0.108. 0.112. 0.110

F(301-400 Hz) *10°

615. 568, 527, 588, 625, 605, 632. 632. 585. 608

F(401-600 Hz) *10°

226,202, 165, 170. 184, 196. 213. 200. 165. 137

F(601-1000 Hz) *10°

29.22.16.21.17,21.25.22,18.9

F(1001-1500 Hz)

3.38,1.26,0.72, 1.06, 1.25, 1.65. 2.20. 1.63. 0.83. 0.72

*10*
F(1501-2000 Hz)
"ot 0.41,0.31,0.30, 0.36, 0.26, 0.39, 0.38, 0.33. 0.46. 0.27
F(2001-3000 Hz)
. 0.20, 0.17, 0.15, 0.16, 0.14, 0.19, 0.16. 0.19, 0.22. 0.17
Focak 524. 526. 540. 535, 531, 524, 529, 537, 529. 540
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Table E4: TMA-1 AT mine object features

Feature Values
twia (MS) 1.82, 2.08, 2.00, 2.18, 2.00, 2.30, 2.67, 2.72
Oiwid (MS) 0.18,0.12, 0.14, 0.35, 0.26, 0.33, 0.67, 0.45
A(g) 1838, 1836, 1836, 1801, 1790, 1752, 1634, 1581
ca(g) 0,7,4,60, 149, 111,279, 115
1(g*s /gpeax) 0.0509, 0.0515, 0.0515, 0.0515, 0.0518, 0.0527, 0.0573, 0.0570
01 (g*S/8peak) 0.0009, 0.0006, 0.0006, 0.0012, 0.0027. 0.0029. 0.0104. 0.0046
F(1-25 Hz) 2.04,2.05,2.04, 2.05, 2.06, 2.04. 2.07 2.10
F(26-50 Hz) 0.389.0.419, 0.405, 0.412, 0.395. 0.443. 0.493, 0.503
F(51-75 Hz) 0.302. 0.327, 0.507, 0.302, 0.314, 0.328. 0.345. 0.348

F(76-100 Hz)

0.212,0.209, 0.219, 0.201, 0.196, 0.208. 0.220. 0.214

F(101-200 Hz)

0.185,0.176, 0.178,0.166, 0.168,0.161. 0.164. 0.160

F(201-300 Hz)

0.125.0.117, 0.118,0.109, 0.113,0.109. 0.105. 0.107

F(301-400 Hz) *10°

875, 750, 777, 686, 791, 672. 689. 632

F(401-600 Hz) *10°

285. 242. 271, 238. 234.207. 193,188

F(601-1000 Hz) *10°

14.1.11.2.12.0. 14.8. 15.1. [1.2.10.2. [ 1.8

F(1001-1500 Hz)

3.48,0.97. 1.94, 1.13, 1.36, 0.51.0.75. 0.71

=10
F(1501-2000 Hz) i
e 0.561, 0.291, 0.245, 0.246, 0.476, 0.258. 0.395. 0.322
F(2001-3000 Hz)
.10* 0.165, 0.159, 0.128, 0.119, 0.250, 0.188. 0.217, 0.195
Fpeak 333, 528. 535, 539, 546, 524, 533, 540
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Table E5: TMA-5A AT mine object features

Feature Values
twig (MS) 4.72,5.37,5.40,6.17, 6.15. 6.52, 2.40, 2.83
Gwid (Ms) 0.33, 1.32, 0.66, 1.32, 0.73, 1.03, 0.28, 0.41
A(g) 1105, 994, 923, 849, 813, 752, 1445, 1382
Ga(g) 78, 116, 101, 117, 58, 89, 300, 195
[(g*s /gpeak) 0.108, 0.126, 0.135, 0.158, 0.158, 0.181. 0.066. 0.069
G1 (8*S/8peax) 0.010, 0.029, 0.022, 0.053, 0.016, 0.035.0.015. 0.013
F(1-25 Hz) 2.78,2.92,3.01,3.12, 3.09. 3.33. 2.19. 2.23
F(26-50 Hz) 1.23, 1.34E, 1.42, 1.47, 1.57. 1.72,0.524. 0.564

F(51-75 Hz) 0.993, 0.997, 1.12, 1.17. 1.34,1.37.0.409. 0.436

F(76-100 Hz) 0.676, 0.676, 0.710, 0.710, 0.747, 0.740, 0.279, 0.301

F(101-200 Hz) 0.345, 0.348, 0.348, 0.327, 0.315.0.299. 0.229. 0.242

F(201-300 Hz) *10° | 635. 551, 544. 453, 422. 389. 1267. 1048

F(301-400 Hz) *10” | 23. 35.28. 40. 24, 39, 551. 416

F(401-600 Hz) *10° | 18.13.16.13.8, 16.64.33

F(601-1000 Hz) *10° | 6.45, 4.83. 8.25, 8.68, 3.45. 6.39.4.33. 6.96

F(1001-1500 Hz)
1.19, 1.45, 1.84,2.16, 0.85, 1.15, 1.52, 0.90

*10*
F(1501-2000 Hz)
ot 0.639, 0.487, 0.318, 1.399, 0.696, 0.872, 0.362. 0.372
F(2001-3000 Hz) R
. 0.195. 0.287, 0.138, 0.321, 0.255, 0.402, 0.198. 0.188
Focak 594, 601. 621, 603, 614. 660. 579. 583
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Table E6: TMA-4 AT mine object features

Feature Values
twia (MS) 1.33,1.67, 1.57, 0.95, 0.97, 0.95, 0.90, 1.20, 2.50. 1.45
Giwid (MS) 0.14,0.22,0.23,0.11,0.15,0.11, 0.09. 0.76,0.33. 0.16
A (g) 1369, 1259, 1305, 1553, 1430, 1585, i636. 1403. 618. 1305
ca (g) 35,116, 81, 248, 186, 104, 163, 298, 56, 87
0.0417, 0.0453, 0.0441, 0.0398. 0.0404. 0.0389. 0.0383. 0.0463.
[ (g*s /gpeak)

0.1026, 0.0441

01 (8*s/gpeak)

0.0009, 0.0028, 0.0020, 0.0035, 0.0024, 0.0014. 0.0014., 0.0199.
0.0130, 0.0021

F(1-25 Hz)

1.94,1.98.1.98, 1.95,1.96, 1.94. 1.92, 1.99. 2.38. 1.97

F(26-50 Hz)

0.165.0.189. 0.187. 0.150, 0.153. 0.141. 0.140. 0.180. 0.517. 0.185

F(51-75 Hz) *10°

966. 1115, 1064, 831, 868, 787, 757. 1044, 3582. 1091

F(76-100 Hz) *10°

531.656. 585,422,416, 416. 402, 585, 2419. 635

F(101-200 Hz) *10°

554, 659, 622, 463, 429. 456, 429. 527, 2024. 662

F(201-300 Hz) *10°

378, 405, 368, 355, 362, 362, 329. 375.977. 395

F(301-400 Hz) *10°

281, 300, 305, 351, 336, 335. 309. 333. 453. 325

F(401-600 Hz) *10°

154,166, 161,229, 221,219,210, 212, 115. 179

F(601-1000 Hz) *10°

82.74.75,104.97.101.102.91.10. 80

F(1001-1500 Hz)

22.6,20.0.20.5.21.8,23.3. 24.0. 25.5. 18.2, 1.4, 20.1

*10*
F(1501-2000 Hz)
. 6.35.6.12, 6.18. 3.10, 3.99, 4.22. 4.46. 2.48. 0.74. 4.73
F(2001-3000 Hz) i
10" 0.591, 0.419, 0.527, 0.257. 0.463. 0.228, 0.358. 0.345. 0.378. 0.331
Fpcak 586. 614, 621, 605, 608, 599, 585, 629, 732. 608
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Table E7: Wood object features

Feature Values
twia (mMs) 2.12,1.88,1.78, 1.92, 1.90, 2.02, 1.87,2.32, 2.07. 3.18. 2.50
Giwia (MS) 0.08, 0.16, 0.16, 0.16, 0.18,0.12, 0.11, 0.20. 0.58. 0.20, 0.52
A(g) 1717, 1676, 1748, 1724, 1746, 1800, 1765, 1408. 1638. 1191, 1478
ca(g) 200, 246, 155, 154, 155, 124, 174, 148, 166. 81.222
[ (g*s gpes) 0.0551, 0.0539, 0.0512, 0.0527, 0.0518, 0.0515. 0.0515. 0.0625.
0.0536, 0.0790, 0.0607
01 (€*5/goem) 0.0059, 0.0067, 0.0044, 0.0043, 0.0056, 0.0033. 0.0046. 0.0062.
0.0087, 0.0052, 0.0101
F(1-25 Hz) 2.01,2.00, 1.98, 1.99, 1.99, 1.99. 1.98, 2.06. 1.96. 2.17. 2.01

F(26-50 Hz)

0.429. 0.392, 0.375, 0.393, 0.402, 0.385. 0.385. 0.527. 0.405. 0.723.
0.483

F(51-75 Hz)

0.321, 0.292, 0.265, 0.284, 0.281, 0.281. 0.278. 0.385. 0.285. 0.554.
0.358

F(76-100 Hz)

0.228, 0.208, 0.180. 0.202, 0.195, 0.201. 0.195. 0.267. 0.198. 0.392.
0.255

F(101-200 Hz)

0.199.0.185,0.166. 0.186.0.169.0.180.0.172.0.211. 0.158. 0.278.
0.187

F(201-300 Hz)

0.125,0.116, 0.108,0.122,0.112. 0.116. 0.118, 0.136. 0.00980.
0.117,0.109

F(301-400 Hz) *10°

618, 666, 686, 723, 672, 689, 693, 706. 585. 382. 578

F(401-600 Hz) *10°

126, 178, 209, 197, 204, 203, 218, 146, 158. 43, 141

F(601-1000 Hz) *10°

6.15,10.0, 13.8,9.33, 13.9, 134, 13.7,7.54. 15.6. 2.18. 1 1.6

F(1001-1500 Hz)

0.500, 0.733, 0.395, 0.419, 0.524, 0.564. 0.547. 4.83.1.72. 0.490.

*10* 3.14
F(1501-2000 Hz) | 0.249, 0.275, 0.223, 0.202, 0.243. 0.276. 0.289. 0.433. 0.355. 0.245,
*10° 0.426
F(2001-3000 Hz) -
o' 0.15,0.15,0.15,0.15,0.17,0.16, 0.15, 0.28. 0.15. 0.15. 0.17
Fpcak 500. 498, 511, 513, 491, 502. 506, 489. 533. 443. 539
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Table E8: Steel object features

Feature Values
twid (Ms) 0.567, 0.650, 0.583, 0.633, 0.683, 0.800, 0.700
Owid (MS) 0.086, 0.095, 0.088, 0.070, 0.095. 0.312. 0.105
A (g) 1825, 1827, 1792, 1772, 1770, 1472, 1623
ca (g) 40, 34,106, 111, 85, 386, 152

I (g*s /gpeak) 0.0352, 0.0355, 0.0349, 0.0355, 0.0355. 0.0407. 0.0365

o1 (g%s/gpeak) 0.0005, 0.0004, 0.0005, 0.0007. 0.0006. 0.0133. 0.0009

F(1-25 Hz) 1.92, 1.89, 1.89, 1.91, 1.91.1.96. 1.91

F(26-50 Hz) 0.110,0.109,0.104,0.111.0.111.0.132. 0.117

F(51-75 Hz) 554, 551, 527, 568, 578, 747, 622

F(76-100 Hz) 243, 246, 230, 258, 269, 348, 288

F(101-200 Hz) | 266, 260, 238, 267, 269, 319, 287

F(201-300 Hz) 226.226.192. 216, 224. 245. 240

F(301-400 Hz) *10° | 230. 233. 204, 223. 227. 243. 242

(75 )

F(401-600 Hz) *10° | 174,173, 155, 167, 166. 157. 176

F(601-1000 Hz) *10° | 113, 108, 103, 105, 103, 89. 106

F(1001-1500 Hz)
47.0,40.5, 41.¢, 36.8, 36.5, 35.5, 35.5

*10°
F(1501-2000 Hz)
.o 12.4,9.7,12.7,10.4,10.3,9.7. 8.7
F(2001-3000 Hz) .
. 1.34.1.03. 1.69, 1.23, 1.33, 1.28.0.98
Fpeak 597, 568. 572, 586, 588,616, 575
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