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- ABSTRACT

v
\

In this thesis, we study operator geﬁeralizations of certain geometric prop-

erties of Banach spaces. The-definitions are extended in such a manner that the

S

identity map on a space possesses the operator generalization of a given property
precisely when the space it}self has this said property.
The ﬁrs.t’part of the thesis presents the definitions and basic analogical

features of some geometric properties of operators. In particulas, we first study
. : N .

strictly, locally unifornf% and uniformly convex operators. Subsequently, the no-

¢
tions of Giteaux differentiability, Fréchet differentiability and uniform smoothness

for operators are discussed. Finally, the concepts of extreme, denting, exposed and

-

strongly exposed peints are extended.

_— -
Much of the latter portion of this thesis is devoted to the study of the ex-

-

tremal structure of operators. Specifically, we show that locally uniformly convex

operators have operator weak-star strongly exposed points in weak-star compact

=

sets. It is also shown that an operator whose image of the unit ball has the As-

" plund property can be nicely char®terized by the extremal structure of its dual

\

operator. *
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NOTATION

B(X)={zreX :Ms 1}

B(X,Y) = the set of bounded linear operators from X into ¥
conv(S) = the cox;vex hull of S

v (S) %the norm closed convex hull of S

conv®" (S) = the weak®-closed convex hull of S

e = {6:;}52, where 6,; = 1 if i = j and 0 otherwise

M(S) = supfllall -z € S} L
M(g,S) = suplg(a):z € S)

N={1,23,...) , )

IR = the real numbers A

S = the norm ciosure of § N

5(9,8,C) = {z€ C: g(z) 2 M(g,C) - B)

S(X)={z e X |z} =1) o /
Si~S;={z€S :z¢ 5}

To — I Means Io convevées to z in the weak- topology

To ", z means Tq cc.mverg'es to z in the weak‘ topology

T, — T means ;:n converges to T in t_h’e norm

z, /4 z means z, does not converge to z

N

X* = the set of continuous linear functionals on X¥agndowed with the usual supre-

" mum norm

(X1 © Xa)g, = (21,20 X1 © X :g(m,_xn)u = llz1llx,» llzzllx, M, }

L)
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CONVENTIONS _ (

In this thesis, any Banach space is a real Banach space. All operators are assumed

to be bounded linear operators. The sequence spaces €y for 1 < p < oo and ¢

have the natural numbers for their index sets.

K

vill



?\J INTRODUCTION

»

Given a _properiy of a Banach space; one may ask/if a corresponding gen-
eralization of this property can l‘)e defined for bounded linear operators between
Banach spaces. Such a generalization would at least require the identity oper-
gtorron X to possess the generalized property as deﬁr;ed for operators precisely
when the space X has the given property. A common and important (topological)

N | |
example of such a situation is that’o compact operators which generalize locally
comiaact sp';ces. One can also extend geometric notions to the setting of operators,
in fact, B.' Beauzamy introduced uniformly cénvex and uniformly convexifiable op-
erg.tors in [1]. It is from this work of Beauzamy that the initial mptjvation for this
tResis ar_ose.' In addition to investigating operator analogues of cénvexity, this

- . - - (- 3

thesis will also study properties of smoothness and extremal points in the context

d
o

of operators. .

The material presented in Chapters One, Two and Three is quite straight-
(forward, nevertheless, much' of this material is referred ;.o‘i'n iqtter chapters. More- X
~over, when developing a parallel theory there are certain results iwhich' should’be‘
verified. We hope that the f;rst three chapters h’ave 'accomplish.ed.this with séme
degree of success. More speciﬁcally, in the first chapter, strictly, ioca]ly urﬁformly
and uniformly cox;vex operators are discussed. Sxpoothnas is the dual notion of
convexity in Banach spaces, this serves as our motivation for the-second chap-

* o, .
ter which gives generalizations of some notions of smoothness and shows. them

1
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to satisfy certain duality relationships with convex operators. The third chapter
introduces various extremal p;opert_ies of opergtors and provides some exaniples of -
results concerning extremal properties whiclr do not have an;jxlogucs for operators.
; S

Many of the theorems on extreme points in Banach spaces require complete-
ness, however, the preixnaée topology generated by a bounded linear operator on
a Bz;nach space is, in general, not complete. For instance, we cannot have an op-
erator analogue of Phelps’ resadt [12, Thm. 9] which shows that subset dentability
is equivalent to ha.;ring strongly exposed po;nts in bounded closed convex sets.‘
However, in our main result of Chapter Four, using techniques of J: Lindenstrauss
a.nd; R.R. Phelps we show that for a locally uniformly convex operator, say T, on
a dlua.l space, every w*-compact and convex set is the w*-closed convex hull of
its w*-T-strongly exposed points, that_is, points whic‘h_a.re strongly e);posed with
respect to T by w*-continuous functionals.

In the fifth and final chapter, Asplund operators (operators whose images
* of the unit ball have the Asplund property) are studied in connectioﬁ with many
of the notions introdiced in the first three chapters. In };articular, an Asplund
operator can be characterized by the strongly ekposed points of its dual oper-
ator. Moreover, for a given separable operator T, it i shown that T being.an
Asplund operator is equivalent to notions of Fréchet differentiability with respect
to T and separability of the range of its dual op&rator T*." ;Althoﬁgh these are

analogues of theorems from the theory of Banach spaces, they do provide us.with

new characterizations of Asplund operators.



Chapter One

CONVEX OPERATORS

In the paper [1], B. Beauzamy intfoduced uniform&com’exiﬁablc and uni-

-

~

formly convex operators. This chapter, in addition to discussing uniformly convex
operators as defined by Beauzamy, also introduces locally uniformly convex and

strictly convex operators. The definitions ar® given in Section 1.1. Sequence

o 4

characterizations of convex operators are given and used in the second section to
prove various facts about convex operators. A brief discussion on the possibility .
of non-trivial convex operators constitutes the third section. In Section 4.1, we

-discuss some elementary renormipgs via operators to obtain convex operators.

The list of people who have contributed to the st&iy of convex spaces is

& )
large. Unfortunately, we have not gone to the original sources of the theorgms for

which we, present operator analdgues. Because of this, the authors of the ideas

.
.

appearing here have not been credited; this is by no means an atterhpt by us to

. . ! L
receive such credit. :

. ' : . o
Y *\\ X . . A

" 1.1. Basic Notions.' N

DEFINITION 1.1.1¢ Let T-€ B(X,Y). We shall say T is Qtr.ictlyr convez if

Y

— . -

-

Izl = ||y|| = ”%”-”: 1 implies Tz = Ty.
. 7 : ‘
* In the case that for any fixed € > 0 and any fixed y € S{X) there exists |

§ = 8(e,y) » 0so that | =H2|| < 1 _ whenever z € S{X) and Tz — Ty|| > ¢, |

then T is said to be locally un‘ifo"rfnlﬁ convez. -

3

7



The operator T wall be called uraforidy converaf for anv e - 0 there exants
& My 0 Such that H ! ;y H -] Saf Iy SNy and Ylr ;"_"/H

Remnuak 117 (i) From the defimtion™ ot v dear that 1 e mfonhy
convex = s Jocally uniformly convex = Ths stnictly convex

(L) Observe that the adentity operator [0 X+ X s .\‘“1'(.”-\' convex af
and only of X s stoctly convex) this observation isoadso trae for local umform
. and amform convexity, For Banach spaces, X s stocetly convex A X s Jocally

.

umformly convex A X s umformly convex Henee, 1 ostnctly convex AT s
locally uniformly uvn\‘t'; A T s umformly convex

() If Xas uniformly convex, it is easy to se® that 77X+ Y as wiiformly
convex Sintlarly for local umform and strict convexaty

\

(DTN Y s amformly convex then 770N+ 2 s nmiformly convex

for 27 Y the same s true for stoetly and locally winformly convex operators

Example 1130 Let B {{roy) € IRxIR - Jyl < 1+ V1 25 jel o 1}

Let ff - | be the non-strietly convex norm on IR x IR whose ciosed umt badl 1s 13,

Define T (IRx IR, ) »Rby T(r.y) - 7 Then T is strictly convex since

Iz, v) 4 v,w)f =2 fandonlyif =9, |z =1and y,w € [-1,1],

and’far such (7,y) and (v,w), T(z,y) - T(v,w) = 1 — v-= 0.

e
&

L2



1.2. Some Properties of Convex Operators.

We bepan thas

operators

PROPOSITION 1 2
() T s wniformly convex

b2 ‘(/,,H: [ 4 unll® o Uamphes | 1,

(b) 2
sequences {r, } and {y, p i X

(T leall- 1|

Vand ||r, v ouldl » 2 unplhies

unll

> (b)) Suppose (b) s not true,
{rn} and {y.} in X with o]} lvall -

IES yn||2 » 0 but ||Tr, -

2lrall® + 2yal’
sequences, we may assuie that Tz,

R

Now, » 0 o JJuall

for some v ¢ IR Mradl HuadD

section with some uneful sequence characten,

M for all n and some M7

Tyall /+ 0.

T f()l' SO ¢

ations of conves

LAY

For T ¢ B{X, YY) the followinyg are equivalent

Uy > 0 for all bounded

N Tr Tl

that 15, we can find sequences

0 so that
By passing to sub

0 and a0

v roowhnch g turn unphes

»

ro 'le,ﬁ" 5 0. Henee we may assume o, £ 0 and y, £ 0 for all ng siee
Il e 14T Yn lI?
][ Y| A l S e ' 0
r ol r r
we have,
Tn In Yn ||
+ .
Hynl lzall Iyl

2
| — 4. However,

Hence ”TI%:H + ﬁﬁ

hmmf ”T(

lzall HynH

Therefore T is not uniformly convex.

)“ = - lmnnf Tz, — Ty,|| 2 - > 0.
r



(b)y > (¢) UM llenll < 1 Jual]l « 1 and |[o, ¢t vl » 2. then Z’H.r,,Hz {

'.‘;ly,,H: [, ¢ 3/””" » 0 and so || T, 'y, » 0 by (1)

i)

() > () 10T s not wmformly convex, find {r b {wa b o ST sothat
Now tya]l »2but [Tr,  Ty,| /0. Hence (¢) faals. ]
Prorosimion 12,2 For T ¢ B(X,}). the following are equivalent
-~
(a) T 1s locally unmiformly convex.
(b) Forfixedy ¢ X and {r,} ¢ X, 'JHI,,Hz ¢ '.’.Hg/,,[[x et wnll® » O nmphes
Wz, Tyul »+0

(¢) el < lvll - 1 and|lr, + y|| »2 unplies NTr, Tyl +0
Proof Sety, vy forall nm the proof of 1.2.1. |
ProrosrrioNn 1.2.3. Let T € B(X,Y), then the following are equivalent:
, SR

(a) T s strietly convex,

(b) 21”4 20y

I []; tyllt Oamplies Tr - Ty (for ooy € X))

() 2’4 2wl - llr £yl = 0 dmplies Tr - Ty (for g,y ¢ S(1))

’

i e 2 ~ .
Proof. (Outline) Observe that 2]|z]]” + 2yl = Il + yl|* = 0 if and only if

lzll - liyll and |z + y]| = |lz|| + |ly]]. Using the aforementioned fact, linearity and

homogeneity it is easy to establish the above equivalencies. . B
From Propositious 1.2.1(¢) and 1.2.2(c) we immediately have the

COROLLARY '1.2.4. (a) An operator T is uniformly convex if and only if for each
3

€ > 0 there exists § = §(¢) > 0 so that ”%!” < 1 -6 whenever z,y € B(X)

satisfy ||[Tz — Ty| > .



N
(b) The operator I s locally uniformly convex if and onlv af for fixed ¢ >~ 0

and y ¢ S(X), there exists O SeLu) - 0 o that

éN

‘] 'HH -1 & whenever

re BLX) and |[Te Tyl e
.. o )

Another result which can be quite casily proved usig Propositions 1.2.1

1 *

and 1.2.3 s .

PROPOSITION 1.2.5  Let X be finite dunensional. If T ¢ BOX, Y)Y s stoetly

convex, then T 1s uniformly convex.

- -

sequences {r,} and {y,} 1n X so that 2“1,,”2 t 2“3/,,”2 Al ‘7‘:71]2 — 0 but
Tz, Ty.| > € for all n. Since B(X) 1s compact, we choose subsequences {r,,, }

and {yn, } so that r,, -+ and y,, —» y for some r and y i X. Now

v

. N\

—

2 . . o A . p . .
2l + 20yl e byl > e 1 2y g v )0,

however, |T(r - y)| - llill [Tr., Tunll > ¢ Therefore Tas not strictly cpnvex,

as condition (¢) of Proposition 1.2.3 fails. |
!

X

Example 1.2.6. The operator given in Example 1.1.3 15 uniformly convex
L3

since it 1s strictly convex and IR x IR is finite dimensional.

(3

Locally uniformly convex operators possess some nice properties on dual

spaces. Two suah properties are demonstrated in the following propositions.

ProprosiTiON 1.2.7. If T : X* — Y is locally uniformly convex and z, LA

where z, € B(X") all a and z € S(X*), then ||Tzq — Tz|| — 0.

. w® w’
Proof. First, 2atf =, ¢ e To — z. Thence ||22t2|| — |z|| = 1
y . ’
because dual norms are w*-lower semicontinuous. Hence we can find a; so that

\

-

~ I - r N .
roof.  Suppose T 1s not uniformly convex. Then we can find bounded

[N



Hf“,)tl B { for all a > ax. Therefore, ||Tx, -~ Tx|| < E(i“l‘) for all o > ay

and ¢ (%,I) + O since T 1s locally uniformly convex. .

)

Prorosirion 1.2.8. If X is separable and 'F - X* -+ Y s locally umiformly

.
convex,‘then T X * is separable.

[N

P

can choose D = {d‘g tko= 1,2, € S(X7T) so that D is w® dense in S(X ). Tt

suffices to show%hat T(D) s dense in T(S(X *)); to this end we let y = Tt for some

£ € S(X*)and {zx} C D sothat ry LA By Proposition 1.2.7 || Tzx —Tx|| -+ 0,

therefore T(D) is dense in T(S(X*)). . n

The final gesult of this section is a proposition about convex operators on

direct sumns whose proof 18 expedited by the sequential characterizations of convex

. operators given at the beginning of t}&s‘sv(‘ti(m_

PROPOSITION 1.2.9. Let Ty ¢ B(X,,Y)), T, € B(X,Y,) and define
T:(X1®X2)e, = (Y10 Y2)e, by T(z,y) = (T]I,.Tgy). ‘
. (a) If T\ and T; are strictly convex, then-T is strictly convex. )
* (b) If Ty and T, are (locally) uniformly c:nvex, then'T 1s (Iié)cszy) uniformly

°

convex.

Proof. {b) Suppose T} and T, are uniformly convex. Let {z,} and {y,} be
P : , :
bounded sequences in (X; ® X3)s, where z,, = (2p1,n7) and y, = (yn,l,y,f;).

If

2lizall® + 2llyall* = llzn + yall* = 0,

- Q



then A

E | S
20z an I+ Hen2l®) 4 200y 1P 4 um 2B Ul + vl F oz + ynall?) o 0.

It follows that
2zl A 2yl e FyaaF =0,
w v
and . ) f

1+ 2yl < Nzaz + g2l 0.

2”1:11,'2

‘

By the nniform convexity of Ty and T,, we have that HTI‘I,].] ~ Tiyn1]| — 0 and

| T2zn2 — Toynzll — 0. Therefore || Tz, — Ty,,” —lfO, whichrin turn implies that

Y

T is uniformly convex. o

The proofs for the strict and local uniform convéexity cases are similar -
*

thus the reason for their conspicuous absence. ’ , ]
4

/
1.3. On ‘No-n—trivial Convex Opérators. R
Heretofore we have not demor‘;strated bherexistcncc of a uniformly convex
operator such tl\lat both X and X/ kerf ar’e not_ uniforml}.l convex, a'forti.ori, not
uniformly convexifiable. However, in this segtion, a one-to-one uniformly convex |
opefator on a space isomorpixi’c to co will be exhibited. N
Bef;re proving a proposition which will h'elp us in constructing uniform]y
agd locally uniformly convex operators, two definitions shoﬁld be given. Firstly, a
space\.X is said to be weakly locally uniformly convez if (zo—y) = 0 wht?hever
lzn + y[] — 2 for {z.}, y C B(X). Secondly, 1f (Tn —ya) — 0 yyﬂiznever
Hzn + yn)l = 2 where {zn},{y;.} C B(X), th‘en X is said to be. wc’a}:ly’uniférmly
‘ o L

conver.

)



| 10
PROPOSITION 1.3.1. (a%Lct X be weakly locally uniformly convex. If T X -» Y
is a compact operator, then T 1s locally uniformly convex.

(b) Let X be weakly uniformly convex. If T : X — Y 1s comp:&r(, then I’

> €

is uniforinly convex.

Proof. (a) Let {z,}, v CB(X). If |z, + y|| — 2 then (},, — y) - 0 and

so ||Tz, — Ty|| — 0 by the compactness of T. Therefore T 1s loglely ungforinly

convex.
(b) Suppose {z,}, {yn} C B(X) and ||z, +y,,|| — 2. Then (z, — yn) — 0
and so ||Tz,, — Tyn|| — 0 by the compactness of T. Therefore T is ﬁniformly

convex. . ‘ .

Remark 1.3.2 (a) Weak local uniform convexity cannot be replaced by
strict convexity in Proposition 1.3.1(a).
Counsider the strictly convexnorm |- ]| on C[0, 1] defined by |z} = (||z]]%, +

lz]|3) % Let T : (C[0,1],] - }) — IR be defined by T'f = f(0). This map is

/compact since it is a bounded functional, however, T -is not locally uniformly

’

convex. Let f = % and for n = 2,3,4,.:., define t

Observe that [fall <1, §f} = 1 and |fn + fl — 2 Qn the other hand,

[4

I ]

. 1
r f0<z< 4,

B

if

—

3=

<z<l -
Tfn = fa(0) =0forn=2,3,4,... and Tf = f(0)= 3. Therefore |Tfo~Tf|| = 1
for all n, so T is not locally uniformly convex.

(b) In Proposition 1.3.1(b). we cannot replace weak uniform convexity with

local uniform convexity.
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Consider (co, |- [|p) where || - ||p denotes Day’s norm defined by

211

Hallp = (}: (M>2>1/2 where  n(a,); > m(a,), > ...

. v . o) . -7 , .
and 7 is a permutation of IN. In [13] it is shown that Day’s norm is locally

uniformly convex on cy. Now let

n+1

a, = Z V3 €, and b;, = i V3 €,
1=2 =1

and suppose T : (co, || - llp) — & is given by T(a;) = {3 a,). Observe that T is

compact, |lan]lp < 1 and bb,,“D < 1. Fmally, ||Ta, — Tb.]» - H-‘2é e1]lz = 3@
) n 1/2
for all n whereas |la, + b,||p > ( > ‘}Z) — 2 as n — oo. Therefore T is not
1=1

unifofmly convex. ‘

As promised, we now give an example of a one-to-one uniformly‘convcx
opefator on a space isomorphic to cg.

Example 1.3.3. Since‘ca = ¢, is separable, there is an equivalent norm, say
N-- Il on ¢g such that (co, ] - |) is weakly uniformly convex (see [16, p. 200]). Now,
-T : (co, ﬂ’lj) — ¢ giv;en by T(a;) = (} ai) is comp;xct, so by Proposition 1.3.1(b),
g’ is\ uniformly convex. We point om;t that T 1s one-to-one, asoico/ ker T = 0.
Moreover, ¢p 1s not feﬂex!ve so it has no equiv;ient uniformly convex norms.

As was just shown, there ;),re ong-to-bne uniformly convex operators on
non—uniformly convex épaces. This is not the case for stnictly conile)f operators.

"Fact 1.3.4. A space X is strictl;' convex if and only if there isa o;xe-to-one'

|

, Proof. =:If X is strictly convex, then I: X — X<is a one-to-one strictly

strictly convex operator on X.

convex opera.tbr where 1 is the identity operator. N
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4.0 Suppose T+ X -+ Y is one to one and strictly convex. If ||z} = ||y]| =

”5%“” 1 then T -2 Ty since T is stnetly convex. Moreover, £ = y since Thas
7
~
B

one to one.

We will not abandon our study of convex operators on account of the re-

strictions of Fact 1.3.4. We hasten to add that in general, the operators studied

will@mot be one-to-one, morcover, locally uniformly convex operators will receive

- more attention.

\

1.4. Renorming and Convex Operators.

In the previous section we consitdered the convexity of a given operator
with respect to a given norm. Howevef, for the operator T : X — Y, one may ask
if there are conditions on’TX for whieh X has an equivalent normn J - || so that
T :(X,]-]) = Y has some prescribed convexity. This 1s precisely the type of

question nvestigated in the present section.

-

PROPOSITION 1.4.1. Suppose T : X — (Y, I-1I) and let (TX, |- Il).be the Banach
space with norm || - || inherited from Y.

(a) If (TX,]- ) has an equivalent norm which is strictly convex, then there is

an equivalent norm || - |} on X so that T : (X,ﬂ II) — Y is strictly convex.

| (b) If (TX,||-||) has an equivalent (Iéca.lly) uniformly convex norm, then X

has an equivalent nc;rm - BsothatT: (X, 1) = Y is (locally) uniformly

convex.

Proof. Since all arguments are similar and easy, only the prdof for uniform

‘convexity will be given here. Let || - ||, be an equivalent norm on (TX, |- 1l,) which

L
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is uniformly convex. Now, we define |- | on X by =] = (||z}}* + NTz||?)/2 If
2lzall? + 2Qyal? - IlIn + yull? - 0 for the bounded sequences {z,}, {yn} i.n X,
then 2| Tz ||? + 2]|Ty"||'f ~ Tz, + 'I'y,,||\'f‘ -» 0 and thus ||Tx, - Tyuljy -+ 0 by
the uaiform cdnvexity Qf\ - Thc;‘i‘,fonc Tz, — Tynll — 0, so T is uniformly
convex. ‘ \

y -

By a theorem of S.L. Troyanski in {15] and a theorem of P. Enflo in (7

respectively, we obtain

CQRéIf}iRY’T.’#.Q. Let T: X — Y be a continuous linear operator.
(a) If TX is weakly compact generated, then there is an eq;ziva]cnt n\orm I

, on X suchthat T:(X,] - |)—Y is‘ locally uniformly convex.
(b) If TX is uniformly convexifiable, then Ta:‘ (X, 1'h — Y 15 unifox;ml_y

convex for some equivalent norm || - |.on X.

’
It should be noted that, albext with more effort, B. Beafxzamy (1, p. 121]

proved a stronger result than Corollary 1.4.2(b), namely

THEOREM 1.4.3. (Beauzamy) For T € B(X,Y) there exists an equivalent norm

on which T 2 mfc;r y convex if and only if T(S?(’X)) does not have the finite

tree property. , - S

If a set A fails the finite tree property, then A is relatively weakly compact,

so from Beauzamy's work we also have

COROLLARY 1.4.4. Uniformly convex operators are weakly compact.

For the purposes of this thesis, Proposition 1.4.1 with its corollaries will be
- : - T.

enough. Moreover, the norm given in Propositiofi 1.4.1 is quite easy to work with.

t
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Example 1.4.5. Let T': co —» ¢, for p € (1,00) be defined by T(a;) -

(7’» (x,) and Jz|| = (”I”Zo t ||'1‘I||‘}Z,)I/YA Since £, 15 uniformly convex, from the

"

proof of Proposition 1.4.1 we see that | - ]| is an equivalent norm on ¢y for which

T (co, | 1) = ¢ is uniformly convex.

LEMMA 1.4.6. Let T:X* -+ Y" be w® " continuous. Then the norm [z =

(”x]lf + || Tz)|3)"/? is an cquivzdcnt.dua_l norm on X * if the norms || - “l-émd -1l

- are equivalent dual norms on X* and Y*.

Proof. Suppose z, 25 2. Then Tz, ., Tz. Now ' .
llzlf, < liminf ||z,}l; and 1Tzl < liminf ||Tr;,”2

since dual norms are w*-lower semicontinuous. Thus [z} < liminf jz,], that is
1 .

-

J-1:X — R is w"-lower semicontinuous. Therefore, - I is a dual norm. ||

Example 1.4.7. Consider T': £, — ¢, defined by T(a,) = (-2L a,»). Observe

that T is w*-w" continuous. By Lemma 1.4.6, |z]] = (H:J:HiO + ||Tz}|2)/? is an
-8
equivalent dual norm on £4. By the proof of Proposition 1.4.1(b), T : (boo, Il - 1) —

¢, is uniformly convex.® We remark that this 1s a one-to-one uniformly convex
operator on a sp‘)ape which does not have any equivalent weakly Iocaliy uniformly
convex norm, see [5, p. 120].

" The final results of this section deal' with dual renormings for dual ogérators

with separaBle range. First, we need a result which if"a slight modification of a

theorem pfoved independently by E. Asplund and M. Kadec. We, for the sake of

completeness, include the R;‘oof which utilizes techniques of K. John and V. Zizler.

L]
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LEMMA 1.4.8. Let X* be a dual space and Z a separable subspace of X*. Then
there exists an equivalent dual norm |- |} on X* so that jz,, — z]| = 0 whenever

{za} C X, z € Z are such that Jz,,} <zl =1 but fz,. + =[] - 2.

i A ‘ ‘ O
Proof. Define |- ] on . X* by =

; o ped = (e +Z~p(w W)

where {y;} is a dense subset of B(X)NZ, €y;) = {a';/i :a € IR} and p(a:,f(y,—)) =

inf {|]z - y|| .y € €(y;)}. The usual gual norm on X * is w*-lower semicontinuous so

’
-

.

z +— p(z,€(y;)) is a w*-lower semicontinuous mapping. Therefore, || - || is w*-lower
semitontinuous and hen(‘fe an equivalent dual norm on X*.
“ Suppose {z,} C X satisfies Jz.] <1, z€ Z with lzf = 1,and Jzn + 2| —
2. Then 2|l$n||2 + 2||z|]é - |]z,,~+ z||? ‘—+ﬂ0, anAdJso
‘ | oo

1) }:g—xn,e(y.mZ—(z oy)) — 3 55 (e 2a €3)) -

=1

and

(2) 2ltell” + 2llzall” -~ Irn+—zll2 —:0 as n — oo.

For each fixed 4, it follows from (1), that A \

®  em ) - s ) a8 msco.

From (2) it follows that | S ¢

@ . lzall = il
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Using (3), (4) and the triangle inequality we show that [|z,, — z|] — 0. Let ¢ > 0
be given, K == min{1,inf{||z]| : fzf = 1}}, and ¢ = min {£, %‘} By (3), (4) and

the fact that Jz,, + z]| — 2, we can choose m so that
p(za, 0(y;)) <26, |llzall = 2| <6 and flz, +2f > 2K & > 86

" for all n > m where y; is chosen so that p(z,#(y;)) < é. For any fixed n > m,

choose zg, zy € £(y,) so that -

lzn — 20]] €26 and |z — = 6.

Now, [llzoll = zall] < [lzoll = llzall] + [llzall = Bz} + 120 = zl] < 46. Becanse

L

z9, 21 € €(yj) the above inequality implies that either ||z, —zoll €46 or |21 4 2] <

44. Finally, observing
lzn & zl] < flzn = 2ol + ll20 & 21 [ 4[|z — 2],

we see that ||z, + z|| < 76 or ||z, — z|| < 78. However, ||z, + z|| > 86 since n > m,

therefore ||z, — z|| € 786 < € for any n > . » g [ |

-

COROLLARY 1.4.9. (a)IfT:X* = Y* is w*-w" continuous and TX* is separa-
ble, then there exists an .equivalent dual norm | -] on X* for which

L - .
T:(X*)-l) = Y" is locally uniformly convex.

!

(b) Suppase X is separable and T:X" > Y* is w*—w" continuous. Then

TX* is separable if and onlyi'if there exists an equivalent dual norm | - || on X*

ELEN

so that T: (X*,1-1) — Y is locally uniformly convex.

E oof.”- (a) By Lemma 1.4.8 let |- |}, be an eqmvalent dual norm on Y*

o ————

which is locally umformly convex on TX*. From ! Lemma 1.4. 6 it follows that
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[zl = (J|lz)|? + §Tz}?)"/? is an equivalent dual norm on X*. Now T : (X*, |- |) —
Y is locally uniformly convex as was seen in Proposition 1.4.1(b).

(b) This follows from part (a) and Proposition 1.2.8. . |
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S‘ Chapter Two
\‘, " SAMNOOTHNESS THROUGH OPERATORS
Ll ™

[n Chapter One we nany that conven n}u'x;xth-;\m\n e defined quate nat
uradlv I the present chapter we detine the notions of Gateanx difterentiabality
sioothoness, Fiéchet differentiabiity and umform smoothness of w space with 1e
spect to the r;m;',«"nf an °0}'»<‘x.’\fm The results pu‘.\‘("ntmi here are analopues of
standard results on smoothness of Banach spaces with particalar anterest m the

v
theorcins pertaming to the duality of smoothness and convexaty

The motivation fae the selection of the matenal presented here as based

mostly on Chapter Two of [5] The technigques used are the same as those winch

’

have been used m Banach spaces, many of which were mtroduced by D F Cudia

‘-‘ | A

2.1. Smoothness and Gateaux Differentiability.

i (3]

2N

This section mgroduces the concept of T smoothness and <hows the pa
tial duahty of strictly convex operators and T smoothness. Finally, T Gateaux
differentiability is defined and shown to be equivalent to T smoothness,

DEFINITION 2211 Let T € B(X,Y)andy #0, ye Y. lf foT =goT
whenever fig € S(Y°) and f(y) = ¢g(y) = |lyll, then y 1s said to be a T-smooth

point. Wesshall say ¥ 1s T-s1nooth if each y € S(Y') is a T-smooth po:nt.

)

L}ﬂunglc 2.1.2. (a) Let T : ¢ — ¢o be defined by T(ay) = (a,,0,az,0,
(z;;()‘ ) Leta= (a,) € B(co) be given by ay = ay =1, a, = 0forall 1 ¢ {2,4}.

«

18
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Taking f, ¢, and f, Yer b e we have fi(a) fola) 1 so aas not a

sinooth pomt However a nvoa T sivoath pomnt et £ fo ¢ S(6) be such that

fita)  fala) I Now f \, rye, and fy }

[ '

Yoty where }:!l,l \:|r/,[ 1

1
Swmcee fi(a) - fila), we have o, v oy o us oy I and thus oy, 0 for all

v f {2,4). Thercfore, f( Ty fo(T ) for adl e o

(l)) Consider T l.. s 6 detined }>_\' '1‘(”.) }: ey [et It
[
> 2"7(‘2, 1 T 1,100 ) Observe that pas not a smooth point of € how
[ |

ever, pis 1 smooths et h (a,) € S(€.) and suppose h(p) 1, then a, = 1

for all 1 - 21 - 1 where 1o ¢ IN Therefore f(p) - g(p) - 1 unphes f(T'(a,))

g(T'(a,)) - X 912*,** for all (a,)¢ €., f.gt SUL)
1= 1 N
(c) Consider T IR » (IR ¢ IR).., fo¥ which T(r) - (r,0). Obscrve that

p = (1,1) 15 not a T smooth pont, since fi(p) - fip) - 1 for fy — (%, %) and

/

fu (1,0) whereas f(T(1)) i, Ao fLU0() Thetefore (IR @ IR 15 not
T smooth However, IR T(IR) s 2 uniformly smooth space, so 1t 1s certainly
T smooth, i fact, IR 15 T-uniformly Smooth (see Definition 2.3.1).

Remark 2.1.3. As Example 2.1 .2(¢) illustrates, thereis a T € B(X, YY) such

[ 3

a
that Y is T-smooth but for some Z O Y, Z may not be T-smooth. Therefore,
T-smoothness is g property of the codomain space with respect to the umage of T'.

This is the reason we have chosen to call Y a T-smooth space rather than calling

‘

T a smooth operator. This remark will also apply to T-Fréchet differentiability
and T-uniform smoothness.
° e

4
The following generalizes a well known result of V. Klee to the setting of

£
linear operators.
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ProrosirtoNn 21 4 Let o BN YY) and T denote the dual operaton of T
)
(o) 117 a5 stictly convex, then Yos D sinooth )‘

(b)) 1If X s T smooth then 1 s stoetly conven

Proof. (a) Suppose Y s not T smooth, that s, there exasts vy € S(Y) and
flg € SO ) sothat f(ue)  alwe)  Tbut f(Tey) £ o Tey) for some oy ¢ B(X)
Now, 1 L) (B (o) Lowhile 777 Tl T @] 0
Therefore, T 1s not strictly convex -

(b) Suppose T 1s not strictly convex. Henee we can iind ooy ¢ S(Y) 5o that

1,3—1 H 1 but T(z - y) /0 Choose f ¢ S(X*) so that f({zy) - 1. Observe

that f(r) - f(y) = 1, thatis o(f)  y(f) - 1 where we consider riy ¢ X% Swice
T(r—y) #£0, for some h ¢ Y* we have 0 £ h(T(z — y)) < 20T (h) yol™(h)
Therefore, fis not a T smooth point. |

DrrinrrioNn 2,105 Let 7o BEX DY), we wall say the notm of Y s 7T

Gateaur differentiable at gy ¢ S(Y )

e 4t 4 Yy - tT ] 2
lim Y -
£-+0 t

for any fixed £ € B(X). Moreover, Y 15 said to be T-Gateauz differentiable if the

norm of ¥ 1s T-Gateaux differentiable at each y ¢ 5(Y). 7

PrRoOrOSITION 2.1.6. Let T € B(X,Y) and yo € S(Y). The norm of Y 15 T-

Gatcaux differentiable at yo if and only if yo 1s a T-smooth pont.

Proof. =: Suppose yo is not a T-smooth point. Then there exists f, ¢ €

S(Y*) and r € B(XY such that f(yo) = g(yo) = 1 but j;(Tl:r) —g(Tz) =6 >0, for

»



some ¢ - 0 Now, for t - 0

y

4

J]_rmf f!['_r“ e t11H 7 3 i f(yor t tr) toauo they -2

< -

{ {

(f(Tep g(T)) ot
Tt t

Thercfore, the norm of ¥ 1s not T Gateaux differentiable at v,
)

. . L Y. . .
< 1 Suppose the norm of Y s not T- Gateaux differentiable at yy. Hence,

we find A, 10, g € '\) and some 6 > 0 so that

U}{g} /\n,I‘I()“ + H;j() - /\n’I’I()” -2 S

(1) . s

.
Pick fi, 90 € S(Y*)sothat fo(yo+ ATxo) = |lyo+ ATzoll and ¢ (o ATry) -

1

llvo — AuTxo|] for all n. Observe ‘that f.(yo) > |lyoll — An

Troll - A I Tro] and
50 falye) = 1. Similarly, g,.(yo) -+ 1. By Alaoglu’s theorem, there are f ¢ €
B(Y ") so that fis aw® cluster pomnt of {fu.} and ¢ 15 a w® cluster pomt of {¢,,}.
Therefore, f(yo) = ¢(yo) = 1. Choose subsequences {f,, } and {g.,} so that

fui(Txy) — f(T1y) and g, (Txo) — g(Txo). 'Ul‘us, recalling (1),

et A Trol + vo — Aw Trof| - 2
&‘ h ’\n. D
; fn. (yO + /\n.TIO) + Un, (yO - ’\n. TIO) -2
_ -
. »
< AU = 9n ) (Rg)
= X ' |

- Taking the limit as k — oo, we have (f — g)(Tzo) 2> 6. 'Therefo’re,' Yo is not a =

T-smooth point. : |

X



2.2. Fréchet Differentiability.

As was the case with Gateaux differentiability, there 1s a natural way to
.

define Fréchet differentiability in the setting of operators. A particular interest of
AN
this section is the (partial) duality between T-Fréchet ditferentiabyfity and locally

: +
uniformly convex operators, -

DEFINITION 221 Let T e B(X,Y). We say the notmn of Y s T Fréchet

differentiable at 'y(, ¢ S(Y)af

\

lvo + tTz]| '+ flyo — tTz|) — 2

\ lim =0
S t

uniformly for z € B(X). If the ndrin of Y 1s T-Fréchet differentiable at every

y € S(Y), then Y is said to be T-Fréchet differentiable.
An element y € S(Y) is said to be a T-strongly smooth point if ||T*f, -
T fll -+ 0 whenever £ {f.) € S(Y*) satisfy fu(y) — f(y) = 1.

It 1s casy. to see that T strongly smooth pomnts are T-smooth points and

\
T-Fréchet differentiability immediately unplies T-Gateaux differentiabilify. A less

obwvious but useful relation which 1s analogous to the situation in Banach spaces

1S

PROPOSITION 2.2.2. Lety € S(Y), theny is a T—str.ongly‘smooth point if and

only if the norm of Y is T-Fréchet diffe®entiable at y.

3 .
Proof. =: If the norm of Y is not T-Fréchet differentiable at y, then there

exists {t,} CIR, t, |0, {z,} C B(X) and ¢ > 0 so that

ly + taTzoll + |ly — taTzal| > ety + 2.
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Choose f,,, ¢, € S(Y*) which for all n € IN satisfy
: 4

foly+ taTan) = |ly+ td'zall and  ga(y +taTrn) = |yt taTrall

Lot
Observe that f,(y) -+ 1 and ¢,,(y) — 1 since ¢, | 0. However,

P

fn(y + tnrlwl‘n) -+ gu(y - t"TI") 2 2 + Etﬂy

and therefore,

tnlljnfn - Y“gn” 2 (fn - gn)(tnTIn) 2 Etn-

[

So for any f € S(X*), in particular for f such that f(y) =1, we have
NTf =T fall + IT°f = Tgull 2 T o = T7gnll 2 €.

Now, either ||T*f — T*fu|l /2 0 or |T°f — T*9.|| /0, tMgefore g is not a T-
strongly smooth point. ” *
<: Let ¢ > 0. If the norm of Y is T-Fréchet differentiable at y, then we

can ﬁn‘d 6 > 0 so that

by + ATzl + lly - ATzl <2+ = 6
for all r € B(X) and all h € R satisfying |h] < é. Thus,
€

faly+Tz)+ fly—-Tz) <2+ 56

for all f, f € S(Y) and || < . Suppose that faly) = f(v) = 1. Choosing m so

that n > m implies fw — 6 for all n > m, we obtain
(Jn = FUBT2) S2= fuly) ~ f(4) + 5 6 S eb.
Taking the supremurm over z € B(X) and [h] < 6 yields
| IT*fo ~T*fl S €

for all n > m. Therefore, y is a T-strongly smooth point. ’ [
. b
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COROLLARY 2.2.3. If T € B(X,Y) and T* is locally uniformly convex, then Y

18 'I‘-I“I‘édn% differentiable.

Proof. Let y € S(Y) be arbitrary. (fhoo:s‘(: f € S(Y*) so that f(y) = 1.

~

If {fn} C S(Y*) and fu(y) -+ 1, then ||fu + fll 2 (fa + f)(y) -+ 2. Hence

IT*f—T*fu]] - 0 by the local uniform convexity of T*; therefore y is a T-strongly
~

smooth point. : [ ]

We have now developed cnough machin(:ry\mgly prove the mamm and

final result of this section.

THEOREM 2.2.4. Let T € B(X,Y.) and suppose T X is separable. Then the

following are equivalent: /

- (a) T*Y* is separable.
(b) Y* has an equivalent dual norm on which T* 1s locally uniformly convex.
(c) .r_rhcrc' is an equivalent norm on Y which 1s T-Fréchet differentiable.
(d) There is an equivalent norm on Y so that y is a T-strongly ‘smooth éoiht

for every y € S(Y).

-

Proof. By the virtues of Corollary 1.4.9, Proposition 2.2.2 and Corol-

3

lary 2.2.3, even when T'X is not separable, we have (a) = (b) = (& < (d). weAnO{

shov; (d) = (a). Since separability is 4somorphism invariant we assun;e ‘that every

y € S(Y) is a T-strongly smooth péint. Oﬁbserve further that if X; =TX C Y
|

then T* X} = T*Y", thus we may assume that Y is separable. Let D = {yk}‘be“

3 dense se't: in S(Y). Choose fr € S(Y*) so that fi(yi) = 1 for all k. It suffices

to show T*(D)) is dense in T*(S(Y*)) where Dy = {fx : fx is chosen as above}.
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Q :
By the Bishop-Phelps theorem, D, = {f € S(Y*): f(y) = 1 for some y € S(Y)}
is dense in S(Y*). Let fo € I)MH‘H fo(yo) = 1 for some yy € S()) Choose
{yn} C Dy sothat gy, — yo. Now f.(ye) — fo(ye), hence | T f,, T fy|| -+ 0 since

yo 1s g T-strongly smooth point. Therefore T* Dy 1s dense in T*(S(Y ")) since it

is dense 1n T (D). . |

2.3. Uniform Smoothness. N
The notion of T uniforin smoothness is defined and shown to be the dual
\nwtion of uniformly convex operators. )

DEFINITION 23.1. Let T € B(X,Y), then Y is said to be T-uniformly

smooth if given € > 0, there exists § = 6(¢) > 0 so that

P

ly + aTz|| dlly — aTz|| <2+ e€a
\

. / a 4
forall 0 < a <6, y € S(Y) and z € B(X).

LEMMA 2.3.2. Suppose T € B(X,Y) is uniformly convex, then X* is T* -uniformly

smooth. - +

Proof. Suppose X* is not T*-uniformly smooth, that is, there exists {f,} C
. -

S(X*), {9} C B‘(Y'){ and {t,} CIR; t, | 0 for which o~

o [ fn + taT"gull + fn — ta T gnll 2 2 + €t

Now choose Zn,yn € B(X) so that

1

. . . Ctn
(fn + tnT gn)(z") Z "j'l + t"T g"" - —4—;,’

[
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and
o
ety
(fu = tn’I f/yl)(!/rl) : ”fu ) tn] (/n” 447
are satistied for all 2, in which case we have
IgALl . e . E
(1) (fn+t711 91:)(I11)+(fvn - tn] gn)(yu)f\' Z+ 3 tn-

P
By (1), fu(zn + yau) — 2 since 2,, -+ 0, and thus ||r,, + ya] - » 2. Morcover, 1t
also follows from (1) that t,(T"g.(xn ~ yu)) > t,.%. Therefore, T is hot uniformly

convex since [Tz, — Ty, || > T gu(zn —yn) 2 5. n

LEMMA 2.3.3. Let T € B(X,Y). If Y 1s T-umformly smooth, then T 1s uni-

— AY
forinly convex.

Proof. Let g;,92 € S(Y ") and € > 0 be given. Suppose |19, —T"g2]| > €.

)y e S(Y)) \

= sup{{g:(y + 1T2) +.92(y — 9T2) ~ (92 ~ g2)(nTz)} -y € S(V)}

\()l)serve that

g1 + g2l = sup{[g1(¥) + y2(y

~. £
< sup{{lly + nTzol| +lly — nT=ol| — 4 51}

e .
52+_7D._6ﬂ:2__€29

4 2 4

where z9 € B(X) is chossn so that (y] — ¥3)(T'ze) > § and 7o is chosen, so that

lly +17Tx]|-+ ly —nTz|| <24+ $no forall 0 < p < ng, y € S(Y)and z € B(X)

by the T-uniform smoothness of Y. ‘From the above inequality, as desired, T is

. < ) :
uniformly convex. [ |
- .
k4



Now 1t 1s easy to prove

: ‘\'I‘H FOREM 2.3.4. (a) For T € B(X,Y), the following are equivalent:

~

~ we can prove the

(1) T is uniformly convex, «
(i1) X* 1s T*-uniformly s‘mooth,
(1) T is uniformnly convex.
(b) For T € B(X,Y), the following are equivalent:
(i) Y is T-uniforinly smooth,
(i1) T* 1s uniformly co.nv‘cx,
(iii) Y**is T_"-unifomzly smooth.
- Proof. (a) From Proposition 2.3.2 we have (i) = (ii). Using T = T° €
B(Y*, X*) in Proposition 2.3.3 it follows that (ii) = (in). We obtain (1) = (;)
as a consequence of the fact T**z = Tz for £ € X under the natural canonical

embedding of X into X**.

The proof of (b) 1s equally ensy. ]
2 We should remark that moduli of co~n‘vexity and smoothness can be defined
for 6p¢rators. °

DEFINITION 2.3.5. Let T € B(X,Y). The imod'ulu.s of convezsty of T is

-

defined as ’ b o

. 1
br(e) = inf{l ~ Sllz+yl - |l=l} = llyll = 1, || Tz - Tyl 2 e}.

- The modulus of smoothness for T is defined by ’

k]

ly + 7Tz|| + ||y — 7Tz| - 2.
2

pr(r) = sup { T €S(X), yeSy)}.

Proceeding in the same manner as J. Lindenstrauss did for Banach spaces,

N



THEOREM 2.3.00 Let T ¢ B(X,Y), then

(a) pr-(7) -sup{  or(e) 0 €< 2T}

.(b) pr(1) = sup { 5,25 = bpe(g) 0 < € <2

L}

From this one can also deduce the duality Theorem 2.3 4.

T }
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— N

We have not

included the details here, because, subsequent to verifying this result, we found it

in the Appendix of [§]. o

—



Chdpter Three

EXTREMAL PROPERTIES OF OPERATORS
\
This chapter serves as an introducti(L} Lo our study of extremal properties

of operators. Specifically, we will define extreme, denting, exposed and strongly

exposed points of operators and discuss some of their élementary properties in

\

the first section. In Section 3.2 we present examples which show that operator
analogues of some theotems on extreme points fail. The third section briefly

- A
examines the extremal structure of convex operators.

3.1. Definitions and Basic Facts.
" We begin this chapter by introducing the notions of extreme, denting, ex-

posed and strongly exposed points for operators.

L4

DEFINITION 3.1.1. For the following, let C be a bounded subset of X and

-~

as usual T € B(X,Y).

The T-diameter of C = T-diam(C) = sup{||Tz — Ty|| : z,y € b}

¥

"“An element z €C will‘be called a T-eztreme point of C if T(y) = T(z)

>~

whenever .z = 1—;’—' and y,z € C.

We shall say that z¢ is a T-denting péint f C if gi\;en any € > 0 thereds
' some g € X*, B>0and a.SIice .S = S5(g9,8,C)y={z € C~: g(z) 2 M(g,C) —)i}
'whgye M(g,C) = sup{g(z):z € C} s0 t-hgat z €5 and T-‘dia.r;x(S) <e. The' set C

2

is said to be T'-dentable if it has slices of arb'itrarily small T-diameter.

20 -
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The element € C is called a T-ezposed point of C if for some f € X* we

have f(r)>> f(y) whenever y € C and Tz # Ty,  this case, the functional f 1s
said to T-ezpose x in C.

If there exists f € X * such that f(z) > f(y)forally € Cand [Tz -Tz,| —

0 whenever f(z,) — f(z) for {z,} C C then r € C is a T-strongly exposed point

!

" of C; such an f is said to T-strongly ezpose € C.

The terminology w*-T-denting point will be used if the slices are given by
- u .
w*-continuots functi®Mls. Similatly for w*-T-(strongly) exposed points.
Remark 3.1.2. (a) In [2, p, 42,43] there are examples showing z is an
!
extreme point # z is'an exposed point # z is a.strongly exposed point. Therefore

letting T be the identity operator on X, we have that z is T-extreme # z is T-

exposed # z is T-strongly exposed. /

(b) Clearly if z is an extreme point of C, then z 1s a T-extreme point of C

for any 7I'; similarly for denting, exposed and strongly exposed points. .
) j;

Fact 3.1.3. (a) If T'1s 1-1, then  is an extreme point of C if and only if z -

s

is a T-extreme point-of C.

(b) Let = € C. Then z is a T-strongly exposed point of C = z is a |

T-exposed point of C = z is a T-extreme point of C.

}

(c) Suppose €, | 0 and the T-diameter of the slices Sn = S(g9,€n,C) — 0.

If zo € ()S(g,€n,C), then z4 is T-strongly expostd in C by g.
(d) Suppose T : X = Y an“d«\yo is an extreme (resp. denting) point of

\

TCCY. | z9 € C and Tz = Yo, then ;Ifg is a T-extreme (resp. T-denting) point

" of C. } _ ‘ N *

a
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(e) If T(B(X)) is subset dentable, then X is subset T-dentable.

() Suppose T : X — ¥ and f (strongly) exposes yo = Trq € TC for
C C X. Then zq is T (strongly) exposed in C by A — foT.

Proof. (a) This is clear since Tx = Ty if and only if = : y.

(b) Suppose f T-strongly exposes z € C and f(y) = f(z) for some y €
C. Setting yn = y for all n yields f(yn) — f(z), so [|[Tyn — Tz|| — 0, that is
ITy — Tz|| = 0.

. Suppose z € C is T-exposed by f. If % = z for some y,z € C, then
f(HEE) = f(=), so f(z) = f(y) = f(2) and hence Tz = Ty.

(c) Notice thatv g(zo) > M(g,C) — €, for all n. Since ¢,, — 0 we have
g(zo) = M(g,C). lNow suppose ¢(z,) — g(zo) and let;e > 0. Firrd N, so that
n > N, implies T-diam(S,) < €. Since g(zn) — M(g,C), we choose Ny so that
2 € S, = S(g.en,,C) whenever n > Na. Thus || Tz, ~Txol| < T-diam(Sn,) < ¢
for n > Ny. Therefore, |Tzn — Tzol| — 0. |

The proofs of (d) through (f) are a.JI similar and easy so we prove only (f) for
yo € TC which 1s strongly exposed by f. Set A = foTaand let Txy = yo. Clearly,

Az < Az for gz € _C, moreover, if Az, — Azo then ||f(Tz,) —‘f(T:cb)“ — 0.

Therefore, || Tz, — Tzo|| — 0 since f strongly exposes Tzo. - - |

Ex.a.%nple 3.14. (a) There exists T : X — Y and z € C C X which is
a strongly exposed point of C but T'z is not an extreme point of TC. Consider
T:(R®IR), R given by T(:z;y) = z. Then (0,1) is a strongiy exposed poixﬁ
of the unit ball of (IRéIR)[,, hp;;vever,’ ﬁ"(O, 1)=0is nbt;a strongly exposed point

_of [—i, 1] C IR. So the converses of 3.1.3(d) and (f) fail.
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W L) Constder 1 ¢ vy raven by Day) Nae, let a N oo, i
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NUaye where {00 o T a0 T ot landa, 0 Now, aisa

P 1 1
o bl
I, extieme point of Hieg) because (ro)o v (u), aou e Hieg) and ! by a
implies r, Y, O, for 1 1,2, 1 Therefore /’“(.r y) 0 In fact 1t as casy

to check that a € H{cy) s Poyostrongly exposed by f > MO B(f)) Notice,

L}
[

however, that a s not an extreme pomnt of U((“,.) SHce H((‘(,) his no extreme points

L

3.2. Some Remarks on Operator Extreme Points.

Until this juncture, things in the generalized setting of operators have be

“ haved essentially as they do in spaces However| the first example of this section

shows that the obvious operator analogue of the Krein Milinan theorem fails.

Ex ugwl(_‘ 321 (1\) Let 17 ¢y + €, be the one to one compact operator

i or
M N i (/
detined by 1(a,) (.,]; r.‘) By Fact 31 3(a), a ¢ B(cy) 15 a T extreme pormnt

A
i.l
of B(eof and onlvf a v an extreme pomt of B(og) Therefore Beq) has no

T extieme ponts.

(b) There are even linear functionals which have no extreme pomts on

SR

Beo). DetiT ¢y -+ R by T(a,) == 57 % Leta == (a,) € B(cy ,h(‘l‘l(‘(’ an,| <
_ 2

=]

for some n € IN. Choose b == (b)) and ¢ = (¢,) so that b, = ¢, = q, for 1 £ n,

b, - an t —} and £, - a, — %. Then, b, c € B(cyd and —b:f—c = q, but »
Tb-Tc = ! 0 .
B €= 2n+l > o
The f()ﬁbwing proposition is an analogue of a result of J. Lindenstrauss {10,
Lemma 1}. rYa

1.
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Prorvosriion 3.2 2 Let T e BN YY) and suppose K s a closed, bounded and

convex st of X I every closed convex subset of Kohas a T extreme point, then

W oas the closed convex hull of its I extreme pomts

Proof  Let T ext( /) denote the set of extreme pomnts of K Suppose [)
conv(T ext(N)) and )/ K. By the Hahn Banach separation and Bishop Phelps
theorems, we can chgose f ¢ X so that f(y)  sup{f(+s) o N} -~ sup{f(r).
r¢ Dyforsomey ¢ K. Let F' - {r ¢ K : f(r) - f(y)}; observe that Fis a
closed, convex and non empty subset of K. By the hypothesis) F has a T extreme
poin({suy Ig. Supp()sv‘ Iy - szi for some v,w ¢ K. Then f(ry) -~ f(v)  f(w)
so o,w € K and hence Tv = Tw.  Therefore we have a T extreme pont of K
which 1s not 1 D, a contradiction. ) |

- N -~ \ - s VAR
COROLLARY 3.2.3. Suppose T - X Y 15 a weakly compact operator, TC s
5

closed 1 Y whenever (R closed in X If F s a closed, bounded and convex

subset of X then £ onv(T ext(£7)).

Proof. Let F be a closed, bounded and convex subset of X, D a closed
»
convex subset of F. By the Krein-Milman theorem, T'D has an extreme point,

say yo = Txo. By Fact 3.1.3(d), zo is a T-extreme point of D. Finally, from

Proposition 3.2.2 it follows that F = conv(T-ext(F)). |

Because of the excessively demanding hypotheses of Corollary 3.2.3 there
is no claim it has any applicabje value. However, contrasting Corollary 3.2.3 with
Example 3.2.1 seems to indicate that because the images of complete sets may not

be complete for general operators, we cannot expect analogues of theorems which

.
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rely on the completeness of aspace to hold for operators Tn fact, one can check,
4 N
that of the mtersection of m':i(g‘(i shees S, was non cmpty when I «11:\111(.\'”) » 0,
\ .

(}1(‘11 cvery (I(v.ﬂ('(l‘ l)()llll(l('!l and convex .\H}):‘("} of \ \\’Ulll(l have a /1‘ extrene })Ulllt

if X was subsct T dentabler We do not include the details here, but provide an

example which unplicitly shows that if (15, can be empty for the nested shees S,

then we do not obtain the above analogue of the theorem of J. Lindenstrauss which
states that the Radon Nikodym property unphes the Kremn Miliman property

Exanple 324 Let T g+ €, be detined by T'(a,) (-,L (1,) Then

every bounded subset of ¢ 15 17 dentable by Fact 3.1.3(¢). However, B(¢y) has no

T extreme points as seen i Example 3.2.1.

3.3. Extremal Properties of Convex Operators.

As a prelude to the next chapter, this section presents a few clementary facts
' L 4
* .
concermny convex operators and the extremal properties of operators introduced

m Section 3.1
\
Fact 331 (a) Let T ¢ B(.X,Y), then the following are equivalent:
(1) T s strictly convex.

(i) 1f r € S(X), then 1 is a T-extreme point of B(X).

(i) M r ¢ S(X), then z is a T-exposed point™»{ B(X).

w . (b) f T € B(X,Y) is a locally uniformly convex ()p(?{ut():‘, then every z €
) ' ) - :
S{X) is a T-strongly exposed point of B(X). ~

Proof. (a) (i) = (ii1): Let z € S(X), choose f € S'(X') sothat f(z) = 1.

Suppose that f(y) = 1 for some y € B(X). Then H%—"” > f(%"‘) = 1. Thus

Tr = Ty by the strict convexity of T
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(in) > (1) This s in Fact-3.1.3(b).

(1) > () Let 54 Twherey s ¢ BV Now e “ 1w a T extreme
point, so T'r - Ty

(b) Let 7 € S(X), choose f ¢ S(X7) so that flr) 1 I f(ra) + L,

then

Li?i‘*” > f(igi‘*) -+ 1. Therefore, ||Tr,,  Trl] » 0 by the local umform

- ~
“convexity of T . |

4

Before proving the next proposition, we remind the reader that an element
1o € C C X isa farthest point of C if there1s a y € X such that flxg —yj] > |lc -yl

for all c € C.

» L}

ProprosiTioN 3.3.2. Let C C X, T € B(X,Y) apd 1o be a farthest point of C.
A(a)" If. T is strictly convex, then zg }s.. a T-exposed point of C.

(b) If T is locally uniforinly convex, then xy is T-strongly exposed in C.

Proof. Because the proofs of (a) and (b) are almost identical, we-prove
Q e
only (b). (h()()s( y € X sothat r = “J'*IQ” > [|J4~cj| formll c € ' ket fe S(X°) .
be chosen so that f(zo — y) =r. Now f((. ~y) < ||c —yll €7 = f(zo —y) for all
c € C, thus f(c) € f(xy). Suppose that {c,} C C zm(l flen) =+ f(2y). Note that
» : -~

len =l <7, llzo—ylf < rand

\
l(en — ¥) + (0 = W = flen — WNF f(zo — ¥) = 2(f(z0 ~ ) =

Thus, by the'local uniform convexity of T', we have

IT(en = )= IT(en < ) = T(zo = ¥}l =+ 0.

=

Therefore o is a T-strongly exposed point of C. i ]

.
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Y

For Banach spaces it 1s known that 1f X 1s umformly convex, then every
/

/

closed, bounded and convex set 1n X 1s the closed convex hull of ats st{’ongly

exposedhpoints. However, this is not the case for Thstrongly exposed points of

bounded, clos® and convex sets in a space X on which T 1s uniformly convex as

is made manifest by the

Example 3.33. In Example 1.4.5 1t was shown that T (co, ] - |) » €2 given
i A - YK 1 AN
by T'(a,) - (?a,-) is uniformly convex where {(a,)| = (”(a,)“00 + “77(“')”2) .

This 1s an equivalent norm on ¢g, so B(co ‘x a closcdl.boundcd andwonvex set in

(co,]- ). However, as was shown in Example 3.2.1(a), B(cy) has no T-extreme

E]

points, a fortiori no T-strongly exposed points. .

Indeed, Example 3.3.3 shows that the convex operators do not possc“s the

.

extremal structure of convex Banach spaces, however from Proposition 3.3.2 there

‘ : 4

15 hope that if a Banach space has enough extremyal structure, then a convex
operator on that space may have some extremal prdperties. In the next c}xa{)tgr

we investigate the extremal properties of convex operators on dual spaces.
’

v



Chapter Four - x
EXI’OSEI)&’()INTS OF CONVEX OPERATORS
ON w*-COMPACT SETS
<
There are basically two results in this chapter. The first 1s contained in ~
Section 4.1 where we proye, using farthest point techniques, that for strictly convex
operdtors T on duals to RNP spaces the convex w®-compact sets are the w*-closed

convex hulls of iheir T-exposed points. In the second section of this chapter, we

utilize techniques of J. Lindenstrauss and R.R. Phelps to show that convex w®-

<
L]

compact sets are the w*-closed convex hulls of their w*-T-strongly exposed points
\

whenever T is locally uniformly convex on the dual space.

~

| | X -

' -4.1. T-exposed Peints in Duals of RNK Spaces.

-

Before Ambling into the theorem of this section, some notation should be

T ——— \
established. For S a subset of some Banach space and T an operator, T-exp(S)

'S

denotes the set of all T-exposed points of SZ' and T-str exp(S) denotes the set of
T-strongly £xposed points of S. The notation M(f,S) = sup{f(z) X € S} and

M(S) = sup{|jz|| 'z € S} Wil also be employed.

\ .

The following result of R. Deville and V. Zizler [4, Pr;)position 3] was proven

recently and, thus may not be widely known, so for convenience of reférence, it is

% )

recorded here without proof| as . k
- S

37 &
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PROPOSITION 4 1.1. Let X be a Banach space with the RNP (Radon-Nikodym
property), X* be its dual space in its usual dual norm and C be a w*-compact

subset of X*. Then the set D of all points in X which have farthest points in C

AY
contains g subset dense and Gy in X*.

'~

Having Proposition 4.1.1 at our disposal, we are now able to prove

’ R

THEOREM 4.1.2. Let X have the RNP and let C be a convex and w*-compact
subset of X*.
(a) If T € B(X*,Y) is strictly convex, then C = conv‘”’(fop(C)).

(b) IfT € B(X",Y) is locally uniformly convex, then C = Tonv® (T-str exp(C)).
Proof. (a) Let D = conv® (T-exp(C)). If D # C, by the Hahn-Banach
separation theorem there exists a w‘~(‘on‘tinuous fugectional f f;uch that M(f,C) >
M(f,Dy+ 6 for some § > 0. Following #he technique of J. Lindenstraugs used in
Theorem 2.of [9], we define V : X* — (X* @ R),, by Vz = (g, f(z)). Now V -
is w*-w" continuous since the identity I : X* — X* is w*-~w" continuous and #*
f is a w*-continuous functional. Thus V(C) is a w*-compact and convex set in
(X* ®IR),,. Observe further that ('X"G) IR)¢, is a dual to a space with the RN}‘ .
since (X* @ IR‘),, = (X ®IR);, and X @R has the RNP since X and IR do. Now
let k = 6~Y(M(D) + 1)? .where- & > 0 is as above. By Proposition 4.1.1 we can

find (yo,r) € (X* ® IR)¢, so that (yo,r) has a farthest point in V(C) for some

vo such that |lyo|| < 1 and r < M(f, D) which satisfies M(f,D) —r > k. Let
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ky = M(f, D) —r; for z € D we have:

i\ 8

Hro, ) = Vall = i (wo,) = (2, f()]
: = (e =P s

; an1/2
< ((llwoll + 1=)* + &7)

< ((1+ MDY k)
.
Whence, ,
(15 syp{fl(yo,r) = Vzl||: z € D}}S (1 + M(D))* + k2)'". .
On the other hand,
sup{[|(vo,7) ~ V|| 1z € C} > (0% + (r — M(£,C))})"/"
> (MG, D)+
= ((k fﬂs)Q)‘“ = (k2 + 26k, + 6%)'/*
no> (kf‘+ 2(M(D) + 1)? +6"’)1/2 [since ky > (M—(%l—ﬂ)z]

> (& +(M(D) +1)%)"/?

> sup{ll(yo,r) — Vel :z € D} [oy (1))

- "
Thusif z € V(C)isa farthebst point to (yo,r) we must have z € V(C) ~ V(D).

Because (yo,r) has a farthest point in V(C), for some peEC~ D we have

p = {(yo,r) = Vpol| = sup{||(yo,r) - V| : c € C}.
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We are now in a position to show that pg 1s a T-exposed point of C which
will contradict the assumption that D = conv® (T exp(C)). Find ¢ € (X" @ IR);,
so that |[gl| - 1 and ¢(Vpo - (po,7)) — p. Define A € (X*)" by A — go V. For
c € C, we have

o 9(Vpo) = g(yo,m) = p 2 Ve — (vo,7)Il Z 9(Ve) = g(wo,7),
hence

A(po) = 9(Vpo) 2 g(Ve) = Mc)  forall ceC.
Suppose Mc) = A(po) for some ¢ € C. Then A(c) — g(yo,7) = A(po) - ¢(vo,7) and
s0 g(Ve) = g(yo,7) = g(Vpo) — 9(vo,7) = p. Whence,
Ve —(yo,7) + Vpo — (yo, )l = 2p.

From Proposition 1.2.9 it follows that T : (X*®IR),, — Y given by T\(z,r) = Tz
V\‘

is strictly convex since T is. Therefore, "

2 0= TV(Vec—(yo,7)) — Th(Vpo — (yo,7))]

1= IT(Ve) - Ti(Vpo)ll

™
]= 1 Tc—Tpoll-
So indeed, py 1s T-exposed. . ]

-~ rI_‘he proof of (b) has been omitted, because a stronger result will-be pre-
sented in the next section; moreover, the reader may have noticed that (b) can be
proved with only minbr modifications of the proof of (a). It should be emphasized
that' Y in general peed not be a dual space, héwever, the fact that T 1s strictly

convex on a dual norm was utilized (in the proof of Proposition 4.1.1).
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4.2. w*-T-Strongly Exposed Points in Dual Spaces.

Before attempting to prove that convex w*-compact sets are the w* ! losed
convex hulls of their w*-T-strongly exposed points for locally uniformly convex
operators on the dual norm, some preliminanes are i order.

Terminology. Consider the following condition (+):

(+) Forevery e > Oand g € X = (X w*)" with |lg|| = 1 aikl D =
Cng 1(0) with C ~ D # ¢, there exists a w*-slice S given by f € S(X) of C
with T-diam(S) < € and SN D = ¢ for a given operator T'.

We shall say that a Banach space X* with a T'ef B(X*,Y) has property (*)
if (*) is satisfied for all con\;ex w*-compact sets in X*. In this case we simply
write (X7, T) has property (*).

It should b.e noted that our motivation to consider the property (*) comes
from {12, Lemma 4). °

Notation. Similar to the notation of Section 4.1, we denote the set of
w*-T-strongly exposoed points of a s;et S by w*-T-str exp(S5).

The following elementary facts will be used in Lemma 4.2.2.

Fact 4.21. (a)Ifg € (X',w’)', A, B are bounded subsets of X*, and
C = conv” (AU B) then'M (g, C) = max{M(g, A), M(g, B)}.

(b) Let C be a bounded convex set, g be a functional so that M(g,C) > 0,

, : )
and C; = {z € C:¢9(z)20}. If S=5(f,¢,C1)isa slicg so that SNg¢g~1(0) = ¢
and M(f,C,) = M(f,C), then S(ﬁf,e,CH) = 5(f,¢,C).

(c) Suppose p > 0, |Ifl] = llgll = 1 and |¢(z)| < 7 whenever z € B(X) N

f£71(0), then either ||f —g|| < por |if + gl < p.
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The proof of Fact 4.2.1 has been omitted since (a), (b) are easy to observe

and well known, while (¢) is the clever lemma used in proving the Bishop Phelps

theorem and |5, p. 2] is one of many places in which a proof may be foudd. The
fy"‘»
Y

next two leminas are operator analogues of special cases of the beautiful geometric
lemias of R.R. Phelps and E. Bishop respectively, see [12, Lemmas 6 and 7}; the
proefs require only cosmetic modifications of those appearing in [12] to accomodate

a

for the added g,cnerallty 0[} pp< rators. All functionals are assuined to be of nmorm
one in the follown\g’mmmas Q

I,EMMA 4.2.2. Let X* be a dual space, T'¢ B(X*,Y) and (X*,T) have prop-
erty (+). Suppose further that S(f,a,C) is a w*-slice of the w‘-cdmpact convex
set C and 0 < e < 1. Then there exists a slice S(g,,C) of T-diam(S(g,3,C)) < €

such that g ¢ S(X), ||f - ¢|l <€ and S(¢,8,C) C S(f,,C).

(
\

Proof. By translation we may assume that the origin is in the hyperplane

<

“{z € X' f(z) = M(£,C) o).

That is, H = f 1(0) and M(f,C) = a > 0. Let M = M(C) and let C; =
conv [S(f,a,C) U (AB(X*) N H)] where A = 2Me~! + 1. Since (X*,T) has
property (#+) there is a w’-slice S(g,8, C;) of T-diameter less than € which misses

Cy 0 f71(0) = AB(X*YN H. By Fact 4.2.1(a), °
M(g,Cy) = max{M(g,S(f,a,C)), M(g,AB(X")N H)}.
However, g(z) < M(g,C,) - B forall z € AB(X*)n H, so

; M(Q,Cl) = M(Q,S(f:ohc))'
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Now, S(9,8,5(f,a,C)) 1s a shice of S(f,a,C). Since S(g,ﬁ,S(f,a,G),{ misses

“10)N C, Fact 4.2.1(b) implies that

AN

5(9,0,C) = 5(9,8,5(f, &, C)).

Therefore, S(g, 5, C)MC S(f,g, C) and T-dian(S(g, g, C)) < T-diam(S(g, 8, Cy)) <
€. ’

To show || f — g]| < €, we proceed exactly as in [12} and include the proof

he‘re for the sake of completeness. We may choose z € S(gfﬂ, C) so Ehat"
g(z) > M(g,C1) = B> M(g, \B(X*)N H) > 0.
The symmetry of AB(X*)N H also implies )
49(AB(X*) N H) C [-g(2), 9(2)].
Equivalently, by linearity, g[B(X*) n f"(O)-]' C [-A71g(z),A"'g(2)]. Using p =
2A™¢(z) in Fact 4.2:1(c), we have either |
(O M=ol o G IS 4ol S 227

Now, ||z]] < M since z € C and f(z) = a > 0 since z € §(¢9,8,C) C S(f,o:,C).~ If

-

(11) occurs, then

@ 9(2)

—>—‘Z

B 1E11 I 7 (£
Thus we would obtain 2M > ) which contradicts A =2Me~'+1 > 2M. Therefore,

279 2 If + ol 2 +9)(57) 2

(1) must occur, that is,

If - oll <2272 < 20
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LEMMA 4.2.3. Let X be a Banach sp‘ace, T € B(X",Y), and C be a convex
’ % -
w*-compact subset of X*. Suppose that for cach slice S(f,a,C) where f € S(X)

and for each 6 > 0 there exis(g a slice S = S(g9,B,C) with g € S(X) so that

T-diamn(S) < € and moreover

5(9,8,C)C S(f,0,0)  and  |If =gl <e

Then for every f 62()(), with a > 0 and B > 0 given, there ®xists g € S(X) so

%

that ||f — g]| < f and z¢ € S(f,a,C) which is T—stﬂrong‘ly exposed by g in C.

Proof. We assume without loss of generality that M(C) = 1. l\,et a,f >0
be given and consider the slice S(f,a,C) where f € S(X)\\.x Let go £ f and
Bo = min {g,ar}‘. Now construct, inductively, sequences {gx} C S(X) and {Be} C

(0, Bo) which satisfy ’
o

lgxsr — gxll < 27" B and Brer < 271 fy,
by using the hypothesis, gx, fx can be chosen so that

T—dia.m(S(gk,ﬂk,C)) < 2_lﬂk a‘nd S(gk+17ﬂk+l,c) Cvs(gk,ﬂk,c)- i

Observe that for all k,; we have

Ngx+s — 9xll = l9k+; — gr4j—1 + gk4j—1 — Gk4j—2 + -+ + gk41 ~ gk

S llgetsi = gras—all + Ngr4si—1 — grgj—2l + - + [lgr+1 — k]|

3

<G L p 2RI, prashy,

(1) - < 2__"“/91:-



, 45
Therefore, {gx} is norm Cauchy in §(X), and so gx — g for some ¢ € S(X).

Taking the limit j — oo in (1), we obtain
(2) ' lg — gxl] < 2~k+l[3k for all k.

In particular,

(29 llg = fll = llg — goll < 2P0 < B.

Since we assumed M(C) =1, by (2) we obtain
(3) lg(z) — ga(z)] <2758, forany z€C,  k=01,2,...
Furthermore, for z € C, M(g,C) > g(z) > gi(z) — 27518, so

()  M(,0) 2 M(94,C) -2, for k>3

Whence if z € S(g,é},C) and k > 3, we have

@) ze@) =26 by (3)

Bx

> [M(5,0)- 3

] —27%B,
Be\  Be)] B

> (M- F)-F|-T by @)

> M(gx, C) — Br.
Thus, S(g,%‘,C) C S(gx, Bk, C) for k > 3, and therefore T—dia.m(__S(g, %‘,C)) <
B, that is T-diam(S(g,%‘,C)) = 0. Now S5 = ) S(gk,%‘,C) is non-empty l

k>3 C

since it is a nested intersection of w*-compact sets. Choosing some. zo € S5,
Fact 3.1.3(c) guarantees that z, is T-strongly exposedin C by g. Finally, S5 C

$(3,8,C) C S(f,a,C) and ||f - g]| < B by (2). T "
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By dint of Lemmas 422 and 4.2 3 we obtain the following operator ana

logue of (12, Theorem l()]’ .

\

PHROPOSITION 4 2.4, Let T« B(X‘ , )') and suppose (,\",’1') has property (‘)

Then for any given w' -compact and convex set K 1 X*, the w* -continuous func-

tionals which T -strongly expose K are dense in X In particular,

K conv® (w*-T-str exp(K)).

Proof. Since (X*,T) has property (+), the conclusion of Lemma 422
applies to K, and hence the hypotheses of Lemma 4.2.3 are satisfied. Notice
that Lemma 4.2.3 implies that the T-strongly exposing functionals of K are, -

dense in X; thus, in particular, by the Hahn Banach separation theorem, K

conv’ (w*-T-str exp(H)). a

We should remark that the only reason we have restricted our attention to
w'-slices on w*-compact sets is because, in general, the intersection of nested slices
in Lemma 4.2.3 need not be nvon-empty. Other than that we have endeavored to

+avoid excessive‘tampering with the elegant and lucid proofs in [12].
Having proved Proposition 4.2.4, it is of interest to find a sufficiently large

class of operators so that (X*,T) has property (*) for a given T in such a class.

¢
°

Before we show that the locally uniformly convex operators form such a class, we
should indicate a result without proof which follows from obvious modifications of

[17, Proposition 4.
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Prorosirion 42050 Let T2 X° v YY" be a w’® w® continuous operator and

K be a w® compact subset of X° For any ¢~ 0, there v a w® w® continuous
/

operator S 0 X7 v YT such that |5 ) < ¢ and Sl - sup{}Se)l 0 o W}

for some rg € N,

PROPOSITION 126 Let T be a locally uniforialy convex operator on X* | then

(Y1) b property (+)

Proof. Let €7 be aw® compact and convex subset of X*. Suppose ¢ € S(X),

/
D - Cng Y0) with O~ D) f ¢, and ¢ - 0. We wish to find a w® shee § of
C with T-diam(S) < ¢ such that ;S NnD = ¢ We may suppose without loss of

generahty that T(C) # 0 and M(g, () - 0. Let

(i) M=

and using the mgenious method of J. Lindenstrauss [9, Theorem 2] we define
V:oX* - (X" ®BR), by V- (2, Mg(z)). Observe that V is w® w* continuous
since ¢ and the identity are. Therefore, by Proposition 4.2.5 there 1s a w® w?®

continuous operator V so that {
(i) IVzoll = sup{|[Vzl|:z€ C} and |V-V[<p

where p = min {4“ ICM(C)’W;}' Define Tya: (X* @ R)e, — Y by Ti(z,7) =
T(z). ¥rom Proposition 1.2.9(b) it follows that T, is locally uniformly convex.
Therefore we can choose é so that 0 <> 6 < % and “Tl‘?.’co - Tyl £ ¢ whenever

y € (X*@®R)y,, llyll < [Vzoll and ||Vrs + yl| > 2[|Vzo)l — 6. Now take f €
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SUX 1 IR)e, ) so that f(Virg) = ||V ol A‘ Let Ve X be defined by A~ fo 1%

;‘l S 5'(,\,(', (;) Notice that

sup{A(cr) 0 e ('} - NMuag) ™ ||Vl

S

Thus, for y ¢ 5, we have

>

(1) My) > A(ro) ,’; Vo]
Hence,
IVy + Vool > f(Vy + Vo) - Mu) + Azo) = 2|Vrol| - 6.

By our chowee of §, ||T) Vy -1 1710” S5 Therefore,

ot Ry LRy gy vy IRy €
(L)) “11‘.[ 11‘/}/” . HI]\/I 11‘/_1'(;”* Il]l"y 1]‘/.1'0”'}5
. A2
-
for all )y € S Finally, given any r,y ¢ S
ITx- Tyl = [ThVz - TWVyl|l »

=|T\V(z —y) - TWV(z —y) + i V(z — y)|

<DV ~TiV)(z - )| + 1T V(z - v)|

3

STV =Pz —vll+5 By (2)

‘ 6 E . . . N
S ey BIM(C) + 5 < e [“S‘ig (i) and noting | T1|| < ||T[]-
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Therefore, Todiam(S) < e, It remains to be shown that SN D = ¢, Let

r ¢ D) then

Vel < IV = Vel + 1Vl ’
) 1
= mTéjﬂf((/') t M((C) [by (1) and noting ||Vl .- |j«]] for = € D)
3) - M(C) + :
( SMO) 4 :
However,

. ”‘710” = sugﬂ]f/r“": € C}=sup{|[Vz-(V -~ {\/)I” sz € C}
j

> supfVzll ~ IV = V)all sz € €} —

e
> sup{||‘7x|l sz € C} - sup{||V - \7|| |z]|: x € C}

1 1
S M M(g,C) == M(C) - M- M(g,C) - =
> M- M(g,C) (O] (C) M(g,C) 1

(4) > (M(C)+1) -

= M(C) +

RN

Moreover, if z € S, then

[Pzl > §(72) > [Pz - 58 by (1)

Wit
ool w
=

(5) > Vool - 35 = IVzall = 3 2 MC) 45 [oy ()
« ' ¢

From (3) and (5) we have SN = ¢. Now by homogeneity, S = S(\,C, %) =

S(ﬁ“,C, 3"%“), therefore (X*,T) has property (#) _ | |
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[t 1s clear that Propositions 4.2.4 and 4.2.6 unmediately bestow upon us

THEOREM 4.2.7. Let T ¢ B(X",Y) be a locally uniformly convex operator
/“'II . - .
with respect to a dual norn of X*. Then for any w'-compact and convex subset
. .

K of X', the w'-continuous functionals which T-strongly expose K are dense

in X In particular, K conv®’ (w*-T-str exp(HK)).
Remark 4.2.8. (a) Theorem 4.2.7 may fail for strictly convex opcrators T ¢

.

"B(X*,Y). Consider-X* = (£,,]] - I) where ]

1/ \
O (s G =) )
follows from Fact 1.3.4 and Fxample 1.4.7 that -0l is astrictly convex dual norm

on €u,. Therefore I : X* » X*, where I is the identity, is a strictly convex oper-
AN

ator. Since X' does not havg the RNP (B(cp) ¢ X*h:

\

no extreme points),

it has a w'-compact convex set K such that K / conv?’
£

conv® (w*-I-str exp(K)) by the well known results of {12].
(b) It was already noted in Example 3.3.3 that if 7 ¢ B(X,Y) is uniformly

convex, then there may be a closed convex subset of X which has no T-extreme
n

points.

(c) Let X* = (£, } - ]) as in (a). By Examp]e’}./lf)’l' : X -+ £y given
by T(z,) = (%;I,) 1s a uniformly convex dual operator. However, B(co) has no
extreme points. Therefore, even for uniformly gonvex dual operators there is no

guarantee that closed convex sets have T-extreme points.

(d) We cannot replace K = conv¥’ (w*-T-str exp(K)) in the conclusion of

Theorem 4.2.7by K = conv(w‘-‘T-str exp(K)). To see this, recall that H.P. Rosen-

thal [14, p. 374] bas shown that £, has a w'-compact and convex set X so that

~
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K f.é conv(ext(K')). Hence for T as in (¢), K # conv(T-ext(K)) si'nrc T is one-to-
one, a fortiory, K # conv(w*-T-str exp(K)).

(¢) We have already seen [Examnple 3.2.4] that because the preimage topol
ogy of T 1s not complete, we cannot &ave a prCCisc analogue of [12, Theorem 9],
that is, X is subset T-dentable does not unply cVSry closed, bounded and convex
subset of X is the closed convex hull of its T-strongly exposed points. We however,
have not determined the truth of the statement:

Let T € B(X*,Y). If every w*-compact convex subset of X* is w*-T-
dentable, then every w*-compact convex set i1s the w*-elosed convex hull of its
w*-T-strongly exposed points.

In the next chapter it will be shown that the above statement 1s true for
dual operators. However, for the general case, we only mention that it does not

seem like the methods of [12, Lemma 4] can be easily adapted to show that if every
. o

3

w*-compact convex set is T-dentable, then (X*, T) has property (+). For instance,
consider C = {(z,y) @(IR®R)g, : —1<y <1, 2 =0} and T : (R R),, — IR
byﬂ}(z,y) =z Nov} S ={(z,y) € C:y > 1} is aslice of C, and T-diam(S) <
T-diam(C) = 0. Consider the isometry V = (IR ® IR),, — (IR ® R),, given by
V(z,y) = (y,z). Then T-diam(V(S)) = 1. So T-diam(V(S)) > K - (T-diam(S))
for any K in IR. This shows that the operator analogue of [12; Letha 3] fails;
note\;hat [12, Lemma 3] is-used in proving (12, Lemma 4].

v () Finally, we mention that if T is uniformly coﬁvex, then Proposition 4.2.6
can be proved without using Proposition 4.2.5. | |

.We close this chapter with an application of Theorem 4.2.7 to strongly

smooth points. As is our wont, we begin with a
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LEMMA 429, LetT € B(X,Y) andy € S(Y). If y 15 a w®-T"-strongly exposing

functional of B(Y*), then y is a T-strongly smooth point of B(Y').

v Proof. Let g be T*-strongly exposed in B(Y ") by y € B(Y). Then g(y) =
y(g) > sup{y(f) : f € B(Y*)} = 1. Now suppose f,(y) —» ¢(y) where {f,} C
B(Y"), that is y(fu) -» y(g). Since y T -strongly exposes g, we have |T*f, -

I'g” -».0. Thercfore, y1s a T strongly smooth point. n
N . .

PROPOSITION 4.2.10. Let T € B(X,Y) and suppose T* is locally uniformly
convex. If Yy = (Y,||-||;) where ||-||, is an equivalent norm on Y, then the

T-strongly smooth points are dense in S(Y1).

Proof. Let K = B(Y["), then K is a convex w*-compact subset of Y'*. By
Theorem 4.2.7 the functionals which T*-strongly expose K are dense in S(Y;).

Therefore the T-strongly smooth points are dense in S(Y]) by Lemma 428

As an mnmediate consequence of Proposition 4.2.9 and Theorem 2.3.4(b)

~

we have

COROLLARY 4.2.11. IfY is T-uniformly smooth and Yy = (Y, || - ||,) where || - ||,

Is an equivalent norm on 'Y, then the T-strongly siooth points are dense in S(Y}).

\
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Chapter Five

OF/ CHARACTERIZATIONS OF ASPLUND OPERATORS

This chapter presents some charactenzations of Asplund operators, that is,
operators T € B(X,Y) for which T(B(X.)).has the Asplund property. A well
known characterization 1s: T(B(X)) has the Asplund property if and only if
T*(B(X")) has the RNP. Using this, we are able to characterize Asplund op
erators in terms of extremal properties of T* on w*-compact sets (Theorem 5.2.2).

In the case that T is an Asplund operator with separable range, using the methods
) ,

b

of D. v. Dulst and I. Namioka [6], known facts about w*-compact RNP sets and

results on local uniforinly convex operators and T-Fréchet differentiability already

presented in this thésis, in Thedrem 5.2.4 we also characterize T by the T-Fréchet
-~

differentiability of Y and local uniform convexity of T* under certain equivalent

renormings.

5.1. Preliminaries.

The theorems we will prove in the next section utilize many properties of
Asplund and RNP sets which are the result of the work of many gathematicians.
This section has been set aslde to list such properties in an orderly fashion. Our
sc'>urce of enlightenment is Chapters Four and Five of {2].

DEFINITION 5.i.1. Let D C X be a bounded set.and F : X — IR any
functior._li We say that F is D-differentiable at z € X if there is an f € X* such

that
lm sup F(z +td) — F(z) _
t—0tgepl t

f(d)| =0.

53 .
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A bounded D ¢ X is said to have the Asplund property if each convex

continuous function £ : X —» R is D-differentiable on a residual sn.b:s‘ct of %, that
18, a subset that contains zf dense Gy subset of X

Operators T € B(X,Y) for which T'( B'(X)) has the Asplu‘nd property inay

be referred to as Asplund operators. Notice that if T(B(X)) has the Asplund

pr()pcrt); in TX then T(B(X)) has the Asplund property in Y 5TX by [2, The-

orem 5.2.5). : D

Y

Remark 5.1.2. (a) It is easy to see that a convex function F': X -» IR 1s

f

{d, —d} differentiable if and only if

p o F(z +td) + F(z - td) - 2F(a)

t-—0 t

=0

(b) Observe that || -], : (X,]|-|l;) -+ IR where ||-]l,, ||-]l, are equiva~
lent norms on X is a continuous convex real-valued function. Since T(B(X)) is
symmetMc it follows from (a) and the definitions givex; in this thesis that Y is

T-Fréchet differentiablc'g)n a residual set if T € B(X,Y) is an Asplund operator.

’

The following result is proved in [2, Section 5.2].

THEOREM 5.1.3. Let T € B(X,Y), then T(B(X)) has the Asplund propesty if

and only if T*(B(Y*)) has the RNP.

[}
-

One of the reasons for our interest in Asplund operators stems from the

fol®wing result which is Theorem 5.3.5 in [2].
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THEOREM 5.1.4. Let T € B(X,Y), if T(B(X)) has the Asplund property, then ’
T factors through an Aspluyd space, that is a space Z for which B(Z) has the

Asplund property.

We will also use some characterizations of w*-compact convex RNP sets.
First, recall that a tree in a Banach space E is a sequence {z,, :n == 1,2, .} C E

such that =, = %(12” + 22n41) for cach n; a §-tree is a tree for which

Nz2n — zall = 22041 — 20l > 6 \ for each n.

The following result is contained in [2, Theorem 4.2.3}.

THEOREM 5.1.5. Let C C X* be a w*-compact convex set. Then the following
are equivalent:
(a) C has t}ie RNP -
‘ (b) For each w*-compact convex subset K of C, K is the w®-closed convex hull
“of its w”-strongly exposed points.
(¢) Each w*-compact convex subset D of C has w*-slices of arbitrarily small
diameter.

| ~ (d) C contains no é-tree for any § > 0.

5.2. Characterizaj.ions of Asplund Operators.
The interplay between many of the concepts introduced in this thesis will
be seen in the two main results of this section which provide characterizations of

Asplund and separable Asplund operators respectively. Without further ado, we

state without proof a nice lemma which was used in the proof of (11, Thm. 12].
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LEMMA 5.2.1. LetT : X* +Y"' beaw' w' continuous operator and ¢ be
a w'-compact and convex subset of T(B(X")). Then there exists a convex w'-
compact subset K of 1)'(‘;\") so that T(K) ¢ but T(Ky) ¢/ C for any proper

convex w'-compact subset Ky of K.

We remark that Lemma 5.2.1 can be proved using Zorn’s lemma and a

. compactness argument; however, our present interest lies in proving

THEOREM _5.2..2. Let T ¢ B(X,Y), then the follow}'ng are equivalent:
(a) T(B(X)) has the Asplund property.
(b) T*(B(Y ")) has the RNP.
(c) T*(B(Y"*)) has no é-tree for any § > 0.
(d) K = conv® (w*-T"-str exp(K)) for all w*-compact convex K ¢ Y*.
(e) Everyrw®-compact convex set K ¢ Y* has w*-slices of arbitrarily small

T -diameter.

Proof. By Theorems 5.1.3 and 5.1.5 we have (a) <» (b) ¢ (¢). =
(b) = (d): Let D = conv? (w*-T*-str exp(K)) and suppose D # K. Once
again, the methods of J. Lindenstrauss [9] will be employed. By the Hahn-Banach

<@

separation theorem there exists a w*-continuous functional f such that

,sup{f(x):zE'K}Zsup{f(x):xED}+5 for some & > 0.

Let V:Y* = (X®R); = (X' @®R), be defined by Vz = (T"z, f(z)).. Of

course, V is w;w‘ continuous since f and T'* are. Moreover, T'(K) has the RNP

’ince T*(B(Y*)) has the RNP and f(K) has the RNP since it is a compact subset

.

-

*uw S .
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of IR. Therefore, V(K) = (T*(K), f(K)) has the RNP in (X* & R),,. Now, V(D)
is convex and w*-compact since V is w* w* continuous. Moreover, V (D) # V(K)

since f(D) £ f(K). By Theorem 5.1.4, V(K) is the w*-closed convex hull of

<,
“~

its w*-strongly exposed points, so there exists yo € V(K) ~ V(D) such that

Yo is strongly exposed by some g € (Y ® IR),_ . But now, yo = Vzo for some

~

o9 € K ~ D. By Fact 3.1.3(f), zo is V-strongly e);posed in K by go V. Observe

i

that ||[Vz, — Vxol| = [T 2z — T z0|| + |f(zn) — f(z0)], s0 ||VZn — Vo] — O
. L

implies |7z, — T"z0]| — 0. Therefore, zo € K ~ D is T*-strongly exposed by

~

the w*-continuous functional g o V', a contradiction which shows that D = K.
(d) = (e): Each w*-T"*-strongly exposed point is a w*-T*-denting point.

(e) = (b): Let € > 0 and C be a convex w'-compact subset of T*(B(Y")).
[ .

Lemma 5.2.1 asserts that there is a minimal w*-compact and convex subset K
of B(Y*) so that T"(K) = C. By hypothesis, K is w*-T*-dentable, so choose

S = §(f,a,K) a w'-slice of K with T*-diam(S) < ¢, Let F = {z € K :

f(z) 514{;%'([, K) — a}. Then F is a proper subset of K which is w*-compact and
N Ty
R DA Q , .
convex, hence T*(F) # T*(K) = C. Now, T*(F) is a w*-compact and convex

L]

. . /
proper subset of C, so by the Hahn-Banach separation theorem there exists a

w*-slice S(g,8,C) of C so that.S(g,8,C) N T(F) = ¢. Thus diam(S(g,4,C)) < /
T*-diam(S) ¢, which implies C is w*-dentable. Therefore T*(B(Y*)) has the

RNP by the provisions of Theorem 5.1.4. . [ |

-.
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COROLLARY 5.2.3. (a) Let T € B(X,Y), if Y* has an equivalent dual norm%o
that T* is locally uniformly convex, then cach of conditions (a) to (e) is satisfied
i Theorem §.2.2.

(b) Let T € B(X,Y), if T* is locally uniforinly convex with respect to some

equivalent dual norm, then T factors through an Asplund space.

Proof. (a) Observe that«if T* : Y* -+ X* is locally uniformly convex on
a dual norm, hence Proposition 4.2.6 implies that Y* has w*-slices of arbitrar-

ily small T*-diameter. So condition (E) and thus conditions (a) through (e) are

satisfied in Theorem 5.2.2. \

(b) This follows from part (a) and Theorem 5.1.4. |

The final objective of this section is to prove the following equivalencies for

an Asplund operator with separable range.

THEOREM 5.42._4. Let T € B(X,Y) and suppose that TX is separable, then the
following are equivalent:
(a) T(B(X)) has the Asplund property.
(b) T*(B(Y")) has the RNP.
(c) T*(B(Y")) does not coptajn a 6-tree for any 6§ > 0.
(d) K =Tomv® (w*-T*-str exp(K)) for all w*-compact convex K C Y*. .
(e) Each w‘—co;npact convex K C Y* is w*-T*-dentable. |
(f) T*Y™ is separable.
. (g) Y* has an equivalent dual norm on which T* is locally uniformly convex.
(h) There is an equivalent norm on Y<which is T-Fréchet differentiable.
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(i) There is an equivalent norm on Y, so that every y € S(Y) is a T-strongly

smooth point.

Proof. From Theorem 5.2.2 it is iminediate that (a) <» (b) <> (c) <> (d) <> (e)n
Also recall that (f) <» (g) <> (h) ¢ (i) is exactly what was pr;?wved in Theorem 2.2.4.
I\/\1.0reover, from Corollary 5.2.3 it. follows that (g) => (e). In order to complete t.hé
proof it suffices to show that (c) :>(f) We will proceed by producing an operator
version of thg very elegant construction of D. v. Dulst and 1. Namioka in (6]., The
construction will:t;e broken into ‘three steps with only technical modifications of

the arguments presented in [6].

-A. LEMMA. [v. Dulst, Namioka] Let {K, : n = 1,2,3,...} be a family of
’ ‘ ‘ ’

non-void compact convex subsets of a ﬁ&ear topological space E such that Kj, U

co - . . 4 - . :

Koy C Kp for each n. Then there is an infinite tree {zn} in_. F such that

~

z, € K, for each n. ‘ -

Proof. See |6, Lemma 1].

}he following is an opératof‘analogue of |6, Proposition 2].
A - .
B. PROPOSITION. Let T € B(X,Y). If there exists a bounded set B in'Y*
and ane > 0 s_uc}}» that diam(T"* (U)) > € whenever U is a non-empty relatively
4 -

w*-open subset of B, then T* (€onv*" {B)) contains an infinite Z-tree.

>

Proof. We ‘b:agin by constructing a.sequence U, of non-empty relatively
w'-open subsets of B and a sequence {z,} C’ X such that |
@) Jzali=1  (r=1,2,...),
(b) Usa u Uz..ﬁ C U,.. (n=1,2,...), and

A
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(¢ foreachnoat f o Upn and go Usgyy Dthea T°(f 0 ) (an) - e

Let U B Suppose for some positive integer e that U oas dedined for
Lo k- 2" and 1, tor 1o - 2700 w6 that (A}, (b)) and () are valid for Al
1< n< 2™ ' Leth besuchthat 270 - ko 2™ now diam(7T°(Ux)) - ¢ by the
hypothesis, so we can find by and Ay U so that o] Land T (Ao by )(rk)
¢t b for some ¢ -0 Let
b {roud e a0 Y e T Tk
,

and

' LR . . s
l/'lkfl {_(]( (/kjl /(IA)‘ ] ’ll(,lk)Q‘)} ig( (/ki’IIk(f/)< IIk(}Ll)f‘)}.

b

These sets are relatively w” open and non empty subsets of B, Clearly (a) and

(b) are satisfied for n k. moreover af f ¢ Uy and g ¢ Usgyy , then

(1" f T7g)(x4) ‘(T'hw(.'/k) t) <'1"hx(yk) ' f} IR I

- L

which shows that (¢) 1s satistied for vk As k runs through {k .21 < k.

27}, on o 2k and n 2k 4 1 exhausts {n 27 < oo 2L } so the construction

1s complete.

For each n, let Kp conv® (I',); now K, is non-empty, w'-compact and

convex. Moreover, (b) implies Ky, () K34y ¢ K,. By Lemma A, there is a tree
{fn} C X* such that f, € K, for all n. Clearly f;n - fan+1 18 the w'-limit of

{va} for some net {g,} C conv(Uzn  UUznyy ). Therefore,

T.(/2n - f2n+l )(In) == (f?n '\f2n+l )(TI,,)

—
L
~—

= limg,(Tza) = imT g, (z,) > €

) )



[ )

with the last mequality being true because of () Fanally, T f, ¢ T (1) and

Ve

(2) T (fon fa) T (S finnr) T (finna fon ).

Thus [T fou - T full T fonir T fall 5 by (1) and (2). Therefore, {71 f,}
is an infinite §-tree in T ((‘()nv“'. (1)), which completes the proof of Proposition B,
The following operator zum]n%c of ](3, (fnr()“ary 3] will for all intents and

purposes finish the proof of (c) > (f).

A
C.  COROLLARY. Let T ¢« B(X,Y) and suppose T X is separable. If T*Y " is

not separable, then for each & ¢ (0,1), T* (B(Y")) has an %»trm'.

Proof. Fix e sothat 0 < e < 1. If T*(B(Y ")) is not separable, there exists
an uncountable set A C B(Y ") such that ||T*f - T*g|| > € for any two distind f
and ¢ in A. We may assume Y is separable since if ¥,  TX and Y, ¢ Y, then
T (B(Y))) T*(B(Y')). ‘Because Y is separable, B(Y ') is w’-separable and
w'-metrizable so all but countably many points of A are w'—conmon points
of A. Let Ay = {z € A:1isaw’-condensation point of A}, notice that A, is
uncountable because A is. Moreover, if U is w*-open and U, = U N A; # ¢ then
there are at least two distinct elements in Uy, this guarantees that diam(T* (U,)) >
€. Finally, W"" (A1) € B(Y*), so by Proposition B, T*(B(Y*)) containé on £-

. 2

tree, thus Corollary C is proved. . \\‘
From Corollary C it vis clear that (c) = (f): since TX is separable and
T*(B(Y*)) does not contain any é-trees for § > 0, T*(B(Y*)) must be separable.

This completes the proof of Theorem 5.2.4. ' [
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