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Abstract 

 

Obesity is a complex multifactorial disease that has a large array of direct (e.g. altered 

metabolic and inflammatory profile) and indirect (e.g. mental health concerns etc.) 

consequences on health and is associated with increased morbidity and mortality. Prader-Willi 

Syndrome (PWS) is the most common syndromic form of childhood obesity, characterized by 

abnormally increased and insatiable appetite (hyperphagia). The pathogenesis of hyperphagia 

and weight gain in PWS is poorly understood and management strategies have been met with 

limited success.  

The gut microbiome has been implicated in several metabolic disorders such as obesity 

and diabetes. Interest in the role of the gut microbiome in genetic forms of obesity has 

emerged, however the specific role of the gut microbiome in PWS and childhood obesity is not 

fully understood.  

This thesis work features a cross-sectional case-control study with two major objectives. 

The first objective was to characterise and compare the gut microbiome composition in 

children with and without PWS. The second objective was to determine if collected metadata 

could help to explain the compositional differences between groups.  

A total of fifty children (n=25 PWS and 25 Controls) aged 3-17 (male and female) were 

recruited for this study. For each participant, a stool sample, a 3-day dietary record, a 

hyperphagia questionnaire, and anthropometric measures were collected. For this work, both 

bacterial (16S rRNA via Illumina) and fungal (ITS2) sequences were considered. This is a novel 
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result as the fungal component of the gut microbiome in PWS has not been previously 

explored.  

The gut microbiome was compared both between PWS and control (CON) groups and 

between weight-classified subgroups (“overweight/obese” (OWOB) and “normal weight” (NW) 

subgroups). Assessments of alpha-diversity (Chao1, Shannon and Simpson indices), beta-

diversity (Bray-Curtis) and differential abundance (DESeq2) were performed. Spearman 

correlations and canonical correspondence analysis (CCA) were used to assess associations 

between the microbial community (bacterial and fungal) and collected hyperphagia and dietary 

intake information.  

Significant differences in fungal community structure (beta-diversity) were observed 

between the PWS and CON groups. These differences were observed when comparing PWS and 

CON individuals (PPWS vs CON < 0.001), as well as when comparing the PWS and CON groups in 

both the NW and in the OWOB weigh-class subgroupings (PNW PWS vs CON = 0.02 and P OWOB PWS vs 

CON < 0.001 respectively). Comparing within the PWS and CON groups for differences in NW and 

OWOB individuals did not yield any significant differences in beta-diversity. Unlike the fungal 

community, no differences were observed in the bacterial community structure between 

groups.  

Higher bacterial Shannon diversity was observed in the CON group compared to the 

PWS group (p=0.04). For the fungal alpha-diversity assessment, the OWOB PWS group was 

found to have increased Chao1 richness compared to the OWOB CON group (p=0.04). No other 

significant differences were observed in alpha-diversity metrics.  
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The PWS group was found to be characterized by an increased relative abundance of the 

genus Candida and relative decreased abundance of Saccharomyces relative to that of the CON 

group. No differentially abundant taxa were found in the bacterial profile of the PWS and CON 

groups (2 group analysis), however differences were observed in pairwise analyses.  

Group type (PWS vs CON) was found to have the greatest potential to explain variation 

in fungal communities in the CCA model. No statistically significant findings were observed 

between taxa and the hyperphagia and dietary intake data using correlations, however dietary 

components were a significant contributor to variation explained by the CCA model of fungal 

communities.  

The results of this thesis work provide a rationale for future exploration of the fungal 

component of the gut microbiome in PWS to further elucidate the clinical implications of these 

findings. Additionally, an understanding of the unique gut microbial profile of children with 

PWS has the potential to unveil more personalized approaches for effective treatment of 

excessive weight gain and hyperphagia, ultimately leading to improvements in overall health 

and quality of life. 
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Chapter 1: Introduction  

 

1.0 Background  

 

1.0.1 Obesity overview  

Obesity has been described as an accumulation of excess adiposity that often results in 

impaired health. The National Institutes of Health and the World Health Organization defines 

obesity as a Body Mass Index (BMI) of ≥30 kg/m2 (Harrison, 1985; Ulijaszek, 2003). BMI 

calculation measures an individual’s body weight adjusted for height squared [weight 

(kg)/height (m2)].  

Weight status for adults is determined using BMI, with ‘healthy’ body weight classified 

as a BMI between 18.5 and 24.9 kg/m2, ‘overweight’ ranging between 25.0 and 29.9 kg/m2, and 

obesity as ≥30 kg/m2 ("Clinical guidelines on the identification, evaluation, and treatment of 

overweight and obesity in adults: executive summary. Expert Panel on the Identification, 

Evaluation, and Treatment of Overweight in Adults," 1998; Jensen et al., 2014). For children 

over 2 years of age, weight status is determined using BMI percentiles, based on the Centers for 

Disease Control and Prevention (CDC) ‘BMI-for-age growth charts.’ In the pediatric population, 

‘overweight’ is defined as a BMI between the 85th -95th percentile for an individual of the 

same age and sex, and pediatric ‘obesity’ is defined as a BMI at or above the 95th percentile for 

an individual of the same age and sex. Current guidelines assess weight status by calculating 

and plotting weight for-length in children under 2 years old.  

Obesity is one of the largest global health problems of our time and is associated with 

significant detrimental health outcomes (including increased risk of developing type 2 diabetes 

mellitus, hypertension, non-alcoholic fatty liver disease, obstructive sleep apnea, cardiovascular 

complications, dyslipidemia and a variety of metabolic dysfunctions), as well as increased 

healthcare and economic costs. In Canada, approximately one in every three children meets the 

criteria of being overweight or obese, which greatly increases their risk for developing multiple 

comorbidities and their likelihood of maintaining obesity into adulthood. Insight into the 
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pathogenesis and treatment of childhood obesity is urgently needed. Obesity is undoubtedly 

multifactorial, and major contributing factors include genetic predisposition, diet, physical 

activity, environmental factors, as well as economic, psycho-social, and cultural factors. More 

recently, the role of the gut microbiome in the pathogenesis and etiology of obesity has 

emerged. Alterations of composition and subsequent functionality of the gut microbiome has 

been shown to play a role in the risk and pathogenesis of obesity and metabolic dysfunction 

(Singer-Englar, Barlow, & Mathur, 2019). The mechanisms of action through which the 

microbiota may influence obesity are still being elucidated, however links have been made 

between the gut microbiota and changes in GI tract physiology and function (including barrier-

function), influences in triglyceride  production and deposition in adipocytes, increases in 

lipogenesis, decreases in fatty-acid oxidation, alterations in immune function and regulation, 

changes in insulin sensitivity, and regulation of bile acid synthesis to name a few (Boulangé, 

Neves, Chilloux, Nicholson, & Dumas, 2016). More detailed mechanisms will be discussed 

further in this thesis work.  

Research into genetic or syndromic forms of obesity can provide unique insight into the 

pathophysiology of obesity and potential treatment. One of the most well-known obesogenic 

genetic syndromes is Prader-Willi Syndrome (PWS).  

1.0.2 Prader-Willi Syndrome overview 

Prader-Willi Syndrome (PWS) is the most common syndromic form of obesity. This rare 

genetic disorder occurs 1 in 10,000 to 1 in 15,000 live births and has no prevalence-bias to a 

particular sex or ethnicity (Irizarry, Miller, Freemark, & Haqq, 2016b). PWS results from an 

imprinting defect of the paternal genes on chromosome 15q11-q13; however the genetics of 

PWS is complex and the exact genes responsible for the PWS phenotype is not known (Irizarry 

et al., 2016b). Approximately 70% of cases of PWS attribute their origin to deletions of the 

paternal 15q11-q13. Maternal uniparental disomy (UPD) accounts for 20–30% of cases, and is 

caused by maternal meiotic nondisjunction followed postzygotic mitotic loss of a single paternal 

chromosome 15 (Cassidy, 1995). A minority of cases are due to imprinting defects (which can 

occur with no detectable mutation) and through microdeletions in the imprinting center of the 
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15th chromosome (Nicholls, Saitoh, & Horsthemke, 1998). Depending on the exact genetic 

origin, the symptoms and deficits in PWS may differ in severity (Nicholls & Knepper, 2001). 

Imprinting defects of the same region on chromosome 15 has been implicated for both Prader-

Willi and Angelman syndromes. It is the loss of the paternal contribution that is linked to PWS 

and the loss of the maternal contribution that is linked to Angelman syndrome (Gurrieri & 

Sangiorgi, 2011). In these syndromes, the presence of a second non-affected copy of the 

gene(s) on chromosome 15 does not correct the defect. 

PWS is characterized by a myriad of clinical features including distinct physical features, 

failure to thrive and low muscle tone during infancy, deficiencies in growth hormone (GH) 

secretion, delayed motor and cognitive development, behavioral difficulties, disrupted 

metabolic and endocrine function and sleep disturbances (Irizarry et al., 2016b). Of most 

relevance to this thesis work is the extreme food-seeking and insatiable hyperphagia 

(abnormally increased appetite for food) phenotype which begins to develop in childhood and 

carries through to adulthood (Irizarry et al., 2016b). This abnormal feeding behavior driven by 

insatiable appetite can lead to progressive weight gain (if the environment is not strictly 

controlled) and greatly increases the risk for developing severe obesity, metabolic dysfunction, 

cardiorespiratory difficulties, and other co-morbidities associated with excessive weight gain 

such as type 2 diabetes and negative psychosocial consequences at an early age (Butler, 

Manzardo, Heinemann, Loker, & Loker, 2017; McAllister, Whittington, & Holland, 2011).  

The need for strict control of access to food (Kayadjanian, Schwartz, Farrar, Comtois, & 

Strong, 2018) to control the food seeking characteristic of PWS is a source of stress for both 

individuals with PWS and caregivers. Physical and mental aspects of quality of life (QoL) have 

been shown to be impaired in individuals with PWS compared to individuals in a healthy 

population (Caliandro et al., 2007; Caliandro, Grugni, Taruscio, Kodra, & Padua, 2011). Of the 

factors studied, weight was the major component that negatively influenced the reported 

physical aspects of quality of life (Caliandro et al., 2007). Children and adolescents with obesity 

have been shown to have drastically lower QoL scores than the general population. 

(Schwimmer, Burwinkle, & Varni, 2003; Varni, Limbers, & Burwinkle, 2007). There is no doubt 
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that obesity greatly depreciates QoL for children and their caregivers. Parents of children with 

rare diseases tend to have more stress and report lower QoL scores (Dellve, Samuelsson, 

Tallborn, Fasth, & Hallberg, 2006). With a syndrome like PWS where obesity is usually observed, 

the QoL in both parents and children have been shown to be even lower than typically 

developing children with obesity (Wilson, Wiersma, & Rubin, 2016). In addition to the effects on 

QoL, there are also reported increased economic burden associated with PWS. For example, in 

Europe the estimated annual cost per PWS patient in 2012 ranged from € 3937 to € 67,484 

(depending on the country) (López-Bastida et al., 2016). This estimate included both direct 

healthcare and non-healthcare costs as well as loss of labour productivity.  

The combination of decreased QoL, higher economic burden and the complex clinical 

picture presented by PWS makes it clear that families affected by PWS would require more 

support. As the literature has identified behavioural issues (such as hyperphagia) and weight 

problems as a major source of decreased quality of life for patients with PWS, research aimed 

towards improving quality of life measures through inexpensive and non-invasive treatment 

and prevention programs are needed.  

Currently, treatment of the hyperphagia that is characteristic of PWS has been largely 

unsuccessful and attempts to control weight and prevent metabolic decompensation through 

dietary interventions have had limited success (Crinò, Fintini, Bocchini, & Grugni, 2018). In 

addition, the pathogenesis of hyperphagia and weight gain in PWS is poorly understood 

(Heymsfield et al., 2014). Because of this, a need to expand our focus and look for new 

treatment angles is paramount, especially for pediatric populations so we may intervene early 

and prevent future negative health outcomes.  

Early intervention in nutritional management has been shown to have potential benefits 

in impeding excessive weight gain (Pipes & Holm, 1973). In terms of nutritional management, 

the most success has been found by enforcing an energy restricted diet of 7kcal/cm per day to 

induce weight loss or 8-11 kcal/cm per day to maintain weight (Holm & Pipes, 1976; Irizarry, 

Miller, Freemark, & Haqq). These measures convert to daily intakes of 600-1300 kcal/day 

depending on the age of the patient. When limited to this level of intake, which is much lower 
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than that of healthy children, it is difficult to ensure proper nutrition is being maintained (Crinò 

et al., 2018), with previous studies indicating deficiencies in variety of essential nutrients 

including vitamin D, tocopherol, calcium, and iron (Lindmark, Trygg, Giltvedt, & Kolset, 2010; 

Mackenzie et al., 2018). In addition, the optimal nutritional balance for individuals with PWS is 

still a matter of debate and results from dietary interventions remain inconclusive (Tan et al., 

2019). Other interventions aimed at attempting to reduce hyperphagia include drug treatments 

and bariatric surgery. Several medical agents have been researched with varying levels of 

success ; however there is no currently approved drug treatment to treat hyperphagia in PWS 

(Crinò et al., 2018). Pharmaceutical approaches have included medications used to 1) target 

carbohydrate metabolism and insulin regulation (e.g. metformin), 2) improve lipid 

digestion/absorption (e.g. orlistat), 3) to increase energy expenditure (e.g. sibutramine, 

lorcaserin, bupropion, naltrexone), 4) to address hormonal disturbances in PWS such as 

hyperghrelinemia ( e.g. ghrelin O-acyltransferase (GOAT) inhibitors such as RM-853 by rhythm 

pharmaceuticals) and 5) reduce appetite/food seeking behavior (topiramate, rimonabant, 

somatostatin analog, exenatide, liraglutide) (Crinò et al., 2018). Bariatric surgery has been 

increasingly used as treatment of morbid obesity in the general population and has also been 

used in the PWS population (Crinò et al., 2018; Irizarry et al., 2015). Along with the limitation of 

being an invasive procedure, Obesity Canada reports that access to bariatric surgeries in 

Canada  is extremely limited and has very long wait times throughout the process; a process 

that is even more arduous for the PWS population as there are very few bariatric surgeons in 

Canada who are trained to do surgery in children or adolescents (Harwick, Iuppa, & Fekety, 

1969).  

As discussed, there are currently no effective treatment options for individuals with 

PWS that allow them to live independently. Since quality of life is drastically decreased with 

pediatric obesity and is even lower in PWS, research into new avenues for treatment is an 

important endeavor.  

Recent research suggest that the gut microbial community may play an important role 

in the etiology of obesity and maintenance of weight gain. Specifically, intervention trials have 
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been conducted to provide appetite regulating effects harnessing the potential of the gut 

commensals through several mechanisms including endocrine regulation and altered gastric 

motility (Boulangé et al., 2016). Gaining a better understanding of the gut microbiome could 

lead to potential new approaches for effective, non-invasive, and relatively inexpensive 

treatment of PWS and childhood obesity. 

 

1.0.3 Microbiome overview 

The human body is host to over 10–100 trillion microbes that colonize numerous body 

habitats including the skin, oral cavity, vagina and gastrointestinal (GI) tract. Specific microbial 

ecosystems have reliably been shown to differ between body sites, and each body site has been 

shown to have different potential implications for host health. There is a wealth of evidence in 

support of the theory that our ancestors have co-evolved with the microbial communities that 

inhabit our bodies and that these microbial communities play an important role in several key 

physiological processes of their hosts, including influencing immune development and 

regulating host metabolism (Singer-Englar et al., 2019). This thesis work focused on the gut 

microbiome, which encompasses the host’s largest and most diverse microbial network.  The 

human GI tract hosts a robust ecosystem composed of a dynamic microbial community of an 

estimated 1014 microbes, including bacterial, archaea, eukaryotes (such as fungi) and viral 

members (Hillman, Lu, Yao, & Nakatsu, 2017).   

The development of an individual’s gut microbial community is influenced by several 

factors. Among these factors, colonization history has been shown to have a major influence on 

the establishment of the gut microbiome. The GI tract is colonized at birth, and community 

development is affected by several factors such as mode of delivery (vaginal vs caesarean), diet 

(example: breastfed VS formula/bottle-fed), and antibiotic exposure (Mathur & Barlow, 2015). 

The environmental exposures in the first 3 years of life are crucial to the acquisition of an 

“adult-like” microbiome, which has been shown to remain relatively stable throughout life. The 

human gut microbiome generally reaches the characteristics of what is considered to be a 

stable adult microbiome after the age of 3 (Boulangé et al., 2016) . 



7 

As the industrialization of the world continues, there are certain changes in our 

environment and lifestyle that may impede the formation and sustainment of a mutualistic 

microbial community. While improvements in sanitation and hygiene (clean water, 

antimicrobial products, antibiotics, etc.) have significantly reduced microbial associated 

morbidity and mortality, it is worth noting that there has been a coinciding dramatic increase in 

the incidence of chronic non-communicable diseases such as inflammatory bowel diseases, 

cancers, autoimmune diseases, asthma, type 2 diabetes and obesity (Logan, Jacka, & Prescott, 

2016). This observed inverse relationship has led to the hypothesis that modern sanitization 

standards have had adverse effects on commensal microbes (Mathur & Barlow, 2015). In 

addition to the environmental triggers, there have also been notable changes in traditional 

dietary patterns that have had ill effects on our commensal microbes. Compared to the 

traditional ancestral diet, the “Western” diet of much of the industrialized world features a 

distinct reduction in fiber intake, amongst many other changes (E. C. Deehan & Walter, 2016). 

Diets low in fiber and other indigestible dietary carbohydrates, more generally categorized as 

microbiome-accessible carbohydrates or MACs, provides insufficient nutrients for the gut 

microbes. This may lead to several consequences, including a depletion of species reliant on 

these substrates and a subsequent reduction in important fermentation end products involved 

in physiological and immunological host functions (Sonnenburg & Sonnenburg, 2014). This 

“fiber gap” is a key factor that differentiates the ancestral GI environment, where the symbiotic 

partnership was co-evolved, to the present day(E. C. Deehan & Walter, 2016). This is suggested 

to be a major driving factor in the reduction of the beneficial gut microbiome(Gentile & Weir, 

2018).  

Disruptions of the microbial ecosystem such as shifts in the diversity and/or composition 

is often described using the term “dysbiosis”, particularly when characterizing a specific 

pathological condition (Singer-Englar et al., 2019; Sze & Schloss, 2016; Tseng & Wu, 2019).  

Dysbiosis in the gut microbiome has been linked to a variety of diseases and conditions, 

including inflammatory bowel disease, non-alcoholic fatty liver disease, as well as diabetes and 

obesity (Mathur & Barlow, 2015). While several studies have reported disease-associated 

changes in the gut microbiome when compared to healthy populations, further studies are 
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warranted to elucidate the importance of these observed associations. Caution must be 

executed when attempting to determine causality, and if these findings are directly or clinically 

relevant for the development or progression of a given disease (Haller, 2018). While much of 

the mechanisms have yet to be fully elucidated, it is clear that gut microbes contribute to 

human health through roles in host metabolism and energy homeostasis, including breaking 

down nondigestible foods, production of Short Chain Fatty Acids (SCFA), vitamin synthesis and 

energy harvest. In addition, the gut microbiome also contributes to the development and 

modulation of the host immune system and provides protection against enteric pathogens 

(Mathur & Barlow, 2015). Links between the gut microbiome and the central nervous system 

(CNS) have also begun to emerge and may be indirectly involved in appetite regulation 

(Niccolai, Boem, Russo, & Amedei, 2019).  

1.0.4 The gut microbiome, the immune system and metabolic dysfunction  

The gut microbiome associated with obesity is generally characterized by a combination 

of factors including: 1) a low degree of biodiversity, 2) an over-abundance in pathobiont 

bacteria, such as members of the family Enterobacteriaceae, the sulphate reducer 

species Bilophila wadsworthia (Turnbaugh et al., 2008) and other species associated with an 

inflammatory phenotype and 3) an underrepresentation of species associated with metabolic 

health such as Akkermansia muciniphila (Depommier et al., 2019).  

One major contribution to the obesogenic profile from the gut microbiome is the role of 

the microbiome on the host immune function. The gut has been well established as an 

important immune organ and the gut microbiome plays a key role in the development of the 

host innate immune system (Matam Vijay-Kumar, Chassaing, Kumar, Baker, & Singh, 2014). 

Disturbances in the gut microbial community may lead to increased intestinal permeability via 

weakened mucous layer and/or changes in tight-junction topography and functioning. This 

compromised intestinal barrier may lead to bacterial/bacterial product infiltration and a 

subsequent inflammatory response mediated in large part by Toll-Like Receptors (TLR), 

especially TLR4 and TLR5. For example, mice lacking the toll-like receptor TLR5 had an altered 

gut microbiome and developed obesity, hyperphagia, insulin resistance, and exhibited pro-



9 

inflammatory gene expression (M. Vijay-Kumar et al., 2010). Chronic low-grade inflammation is 

one hallmark of metabolic disorders such as obesity and Type 2 Diabetes (T2D).  

 

Individuals with PWS have been shown to have increased systemic low-grade 

inflammation, with some studies suggesting this inflammation is independent of adiposity 

levels and insulin resistance status (Viardot et al., 2010). However, other studies have found 

that compared to individuals with non-genetic forms of obesity, individuals with PWS have a 

paradocically increased insulin sensitivity, increased adiponectin, as well as decreased levels of 

pro-inflammatory adipokines and visceral fat (Haqq et al., 2011). As gut dysbiosis has been 

linked with low-grade inflammation, the possible connection and implications in the PWS 

population may be of even more clinical significance. The gut microbiota may be playing a role 

in the observed improved inflammatory profile in PWS, or might be able to provide insight on 

why there are mixed findings in the literature. The possibilities of using the microbiome as a 

biomarker for impaired metabolic health continues to be a future direction in the field.  

The bacterial product lipopolysaccharide (LPS) has been implicated in many models of how the 

microbiome interacts with the host in inflammatory disease states. Increased LPS levels and 

increased inflammation has been observed in patients with obesity and T2D (Creely et al., 2007; 

Dasu, Devaraj, Park, & Jialal, 2010), with LPS being largely implicated to contribute to the 

pathophysiology of weight gain and insulin resistance through LPS-mediated TLR4 signaling.  In 

addition, healthy subjects given LPS exhibited changes in insulin sensitivity (van der Crabben et 

al., 2009). 

 

1.0.5 Overview of appetite regulation  

The regulation of food intake and  appetite modulation is complex and involves 

communication between the CNS and circulating hormones produced by peripheral organs. 

Endocrine regulators of appetite include both orexigenic (appetite promoting) hormones such 

as ghrelin, and anorexigenic (satiety promoting) gut hormones, including cholecystokinin (CCK), 

peptide YY (PYY) glucagon-like peptide (GLP)-1, pancreatic polypeptide (PP), obstatin and 

oxyntomodulin (OXM). Leptin, another anorexigenic hormone, is expressed and secreted by 
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white adipose tissue adipocytes and impairements in leptin have been shown to directly 

influence obesity (Montague et al., 1997). Many studies have looked into the role of gut 

microbial-derived chemical signals in the activation and modulation of intestinal satiety 

pathways. For example, activation of enteroendocrine cells (EECs) by bacterial signals may 

directly or indirectly (via the enterocytes) trigger local and systemic release of PYY and GLP1, 

thereby inducing satiety (Fetissov, 2017). 

 

1.0.6 Hyperphagia and TLR4 signalling 

Hyperphagia is a major concern and a key characteristic in PWS. Disturbances in the intestinal 

feedback mechanisms involving the action of CCK and leptin on vagal afferent neurons have 

been linked to a hyperphagic phenotype (Covasa, 2010). LPS can trigger the activation of TLR4 

on vagal afferent neurons, reducing leptin sensitivity and ultimately influencing the ability of 

CCK action, which contributes to increased hyperphagia (De La Serre, De Lartigue, & Raybould, 

2015; de Lartigue, Barbier de la Serre, Espero, Lee, & Raybould, 2011).  

More recently, it has been shown that this LPS mediated TLR4 signalling can mediate the 

metabolic benefits of caloric restriction (Fabbiano et al., 2018; S. Wang et al., 2018); something 

that could prove to be of great clinical significance in the PWS population as the current most 

common and most effective management/treatment strategy for these individuals involve 

careful monitoring of dietary intake and caloric restriction (Crinò et al., 2018).  

 

The microbiome may also regulate host metabolism through the actions of SCFAs.  

SCFAs play a role as energy substrates for the host and for the microbial community and are in 

large part introduced to the lower intestinal tract through microbial fermentation of dietary 

fibers and starch (Ríos-Covián et al., 2016). They have several immunomodulatory effects 

including improving intestinal barrier function by promoting the production of antimicrobial 

peptides (pathogen exclusion)(Zhao et al., 2018), increasing mucin production (Willemsen, 

Koetsier, van Deventer, & van Tol, 2003) and upregulating tight-junction proteins(H.-B. Wang, 

Wang, Wang, Wan, & Liu, 2012). They also act as immune cell regulators by activating 

regulatory T cells and assisting in the attenuation of immune response (Smith et al., 2013). The 
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secretion of gut hormones, especially hormones involved with appetite regulation such as 

glucagon-like peptides (GLP-1, GLP-2) and PYY are affected by SCFAs through several 

mechanisms of action (Gill, van Zelm, Muir, & Gibson, 2018; Lin et al., 2012; Gwen Tolhurst et 

al., 2012). SCFAs have protective effects against the development of obesity and insulin 

resistance, with direct effects observed through dietary supplementation as noted by 

association studies (Makki, Deehan, Walter, & Bäckhed, 2018). Butyrate specifically has been 

shown to have many beneficial effects on the host including enhancing thermogenesis in brown 

fat and limiting the oxygen availability in the intestinal tract through β-oxidation by luminal 

microbes, which limits the proliferation of pathogenic microbial species, and ultimately protects 

against dysbiosis (Byndloss et al., 2017). Diets rich in MACs have been shown to improve 

metabolic outcomes, decrease risk of developing obesity and assist in the regulation of appetite 

(Ríos-Covián et al., 2016). 

In summary, gut microbes and their human hosts share an important mutualistic 

relationship that has evolved over time. The host affects the microbes through diet, 

environment factors and the use of antibiotics, and they in turn affect energy harvest, 

metabolism, gut permeability and nutrient uptake, as well as immune responses and 

inflammation, all of which may play roles in contributing to the development of obesity 

(Mathur & Barlow, 2015). As such, the gut microbiome has emerged as a novel target 

responsive to dietary manipulation that can be modulated rapidly to promote weight loss and 

satiety. 

1.0.7 Microbiome in PWS 

Few studies have examined the gut microbiome in children with obesity (Ajslev, 

Andersen, Gamborg, Sørensen, & Jess, 2011; Bergstrom et al., 2014; Bervoets et al., 2013; 

Kalliomaki, Collado, Salminen, & Isolauri, 2008; Karlsson et al., 2012; Nadal et al., 2008; Payne, 

Chassard, Banz, & Lacroix, 2012; Riva et al., 2017; Scheepers et al., 2014; Trasande et al., 2012; 

Vael, Verhulst, Nelen, Goossens, & Desager, 2011), and fewer still have looked to the gut 

microbiome as a potential therapeutic target for obesity in the pediatric population.  
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Attempts to characterize the dysbiosis present in the gut microbiome of pediatric 

individuals with obesity have had some varied results. For example, an increase in the 

Firmicutes-to-Bacteroides ratio has been suggested in several studies as a marker for dysbiosis 

in obesity, including in the pediatric literature (Bervoets et al., 2013); however this theory is 

highly contentious as results from studies vary greatly. In the studies by Bergström et al. 

(Bergstrom et al., 2014) and Ignacio et al. (Ignacio et al., 2016) obesity/overweight was found to 

be associated with an increase in taxa from the Firmicute phylum (Clostridium 

leptum, Eubacterium hallii, and Lactobactobacillus spp.) However other studies such as those 

conducted by Scheepers et al. (Scheepers et al., 2014) and Vael et al.(Vael et al., 2011) 

observed decreased levels of bacteria belonging to Firmicutes such as Clostridium difficile and 

the genus Staphylococcus in the higher BMI groups.  

Species/families such as Akkermansia muciniphila, Bifidobacteriaceae,  

Methanobrevibacter smithii, and Desulfovibrionaceae, were repeatedly associated with a lower 

BMI (Bergstrom et al., 2014; Borgo et al., 2017; Ignacio et al., 2016; Karlsson et al., 2012). 

Bacteroides fragilis was overrepresented in overweight groups (Ignacio et al., 2016; Scheepers 

et al., 2014; Vael et al., 2011) and findings for the associations between Enterobacteriaceae and 

BMI showed contradictory results (Bergstrom et al., 2014; Karlsson et al., 2012).  

 Only two studies to date have examined the microbiome of children with PWS. A 

hospitalized intervention trial conducted in China studied a group of patients with PWS (n=17) 

and simple obesity (n=21) using a diet rich in non-digestible carbohydrates (with significant 

increase in dietary fiber from 6 to 49g per day) over 90 days to induce significant weight loss 

and concomitant favorable structural changes of the gut microbiome. These changes were 

associated with reduced degree of hyperphagia , a 7.6 percent weight loss, reduced 

inflammation  and improved metabolic measures  (C. Zhang et al., 2015). Baseline dysbiosis was 

apparent in both the obese children with and without PWS, however the bacterial composition 

between the PWS and non-PWS groups was not statistically significant. When the pre-

intervention gut microbiome from a participant was transplanted into germ-free mice, it 
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induced higher inflammation and larger adipocytes compared with the post-intervention 

microbiome from the same individual (C. Zhang et al., 2015).  

An additional published abstract compared children and young adults with “simple” 

obesity (n = 17), hypothalamic obesity (n = 12 with Prader-Willi syndrome), hypothalamic lean 

(n = 10 with Prader-Willi) and healthy lean controls (n = 20). Obesity had significant effects on 

microbial community structure. Operational taxonomic unit (OTU) richness and diversity was 

lower in both obese groups compared to both lean groups. According to study authors, 5% of 

total variance was explained by PWS pathology (M. J. Khan et al., 2015).  

Finally, after the commencement of this thesis work, another study looking at the gut 

microbiome in PWS was published (Olsson et al., 2019). This work analyzed the gut microbiome 

of 17 PWS patients (average age 29.4) and 17 obese individuals with similar BMI, gender, and 

age. As their “non-obese control group” researchers in this study also analyzed samples from 

parents of PWS patients. In this work, individuals with PWS had higher diversity than individuals 

with common obesity, and community structure in the PWS group more closely resembled that 

of the PWS parents than the simple obesity group (Olsson et al., 2019). Finally, several 

differentially abundant taxa were identified between groups, including increases in abundance 

of the genus Akkermansia and Desulfovibrio and decreases in the genus Dorea in the PWS 

group compared to the simple obesity group (Olsson et al., 2019). Results from germ-free mice 

experiments as part of this study revealed improved insulin tolerance independent of fat-mass 

or body weight in the mice transplanted with fecal content of PWS patients compared to those 

transplanted with non-syndromic obesity (Olsson et al., 2019). Overall, study authors proposed 

that the gut microbiome in PWS may be metabolically protective compared to individuals with 

non-syndromic obesity.  

Together, these studies indicate an etiological contribution of dysbiotic gut microbiome 

in the metabolic derangements and obesity associated with PWS; however, the composition 

and the specific role of the gut microbiome in weight and metabolic control in PWS and 

childhood obesity is not fully understood.  
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1.1 Study Justification  

The previously described hospitalized intervention study with patients with PWS (C. 

Zhang et al., 2015) provides an excellent starting point for future research, however it is not 

without its limitations.  

First, this study accounts only for the bacterial component of the gut microbial 

ecosystem. The role of the fungal (mycobiome) component of the gut microbiome on human 

health remains poorly explored (Mar Rodríguez et al., 2015). Some links to specific over/under 

abundance of fungal species have been observed in studies comparing individuals with and 

without obesity, though these patterns are not as well established in the literature as the 

bacterial component of the microbiome. Study authors were able to discern between patients 

with and without obesity by their specific fungal composition and were able to further 

distinguish metabolically “healthy” from “unhealthy” obesity. Specific fungi were also 

associated with increases in metabolic markers (Mar Rodríguez et al., 2015).  

In addition, it has been suggested that attempting to infer possible cross-kingdom 

interactions between the bacterial and fungal components could also provide a more holistic 

and comprehensive understanding of how the robust ecological community of the gut 

microbiome can influence host physiology (Suhr & Hallen-Adams, 2015). Bacteria and fungi can 

interact in many ways, and an overrepresentation of some fungi may suppress the growth of 

certain beneficial commensal bacteria and vice versa. For example, an inverse association has 

been previously described between Candida (fungus) and Bacteroides (bacteria) (Hoffmann et 

al., 2013). Several bacterial species are capable producing antifungal molecules that affect 

morphology and virulence of Candida (Hogan, Vik, & Kolter, 2004). The bacterial microbiota 

reduces Candida albicans colonization by excluding and out-competing Candida for adhesion 

sites and producing inhibitory molecules (Kennedy & Volz, 1985). Short-chain fatty acids 

(specifically butyric acid) produced by lactic acid bacteria may also prevent pathogenic C. 

albicans from causing disease in the gut through mechanisms that inhibit filamentation of the 

fungus (Noverr & Huffnagle, 2004). The fungal community present in the gut of individuals with 
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PWS has yet to be characterized. This information could provide a foundation for novel 

treatment and prevention strategies to the excessive weight gain seen in this population.  

Another limitation of the study by Zhao et. al. (C. Zhang et al., 2015) was that it only 

assessed children with obesity. This paper did not characterize the gut microbiome of normal-

weight individuals with PWS, nor did it aim to determine whether the microbial profile differs 

between normal-weight and obese children with PWS. This is also a limitation of the study by 

Olsson et al. (Olsson et al., 2019). Additionally, the study population in the Chinese cohort was 

hospitalized for the entirety of the study period, making the findings less generalizable 

compared to a free-living population (C. Zhang et al., 2015).  

In addition to the lack of research on the mycobiome in PWS, previous reports of the gut 

microbiome in PWS have also not fully assessed potential associations between the gut 

microbiome, hyperphagia and dietary intake. Looking into these possible associations could 

provide further insight on how to most effectively modulate the gut microbiome to confer 

health benefits.  

Finally, participants in Zhao et. al underwent an additional 30% caloric restriction which 

could confound the results of the study. In addition, the intervention consisting of traditional 

Chinese medicine not necessarily easily accessible and is difficult to replicate in other 

populations. Future work described in the final chapter of this thesis work addresses these 

concerns and suggests substituting this traditional Chinese medicine dietary component with 

items more typical to the Canadian diet.  

 

1.2 Study objectives and hypotheses 

The prevailing goal of this thesis research is to identify interventions which favorably 

modify gut microbiome for dietary management of PWS and childhood obesity. Specifically, this 

work has the overall objective to explore the gut microbiome in children with Prader-Willi 

Syndrome (PWS) compared to controls. A novel aspect of this work is the analysis of the fungal 

component of the gut microbiome which has previously not been explored in the PWS 

population. This thesis work features a population that was under free-living conditions (not in 
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hospital). Subjects were not altering their core diets, restricting calories, or changing physical 

activity; therefore, results from this work are more generalizable.  

We hypothesized the gut microbiome would differ in composition, diversity, and 

community structure between PWS (normal weight and overweight/obese) and typically 

developing children (normal weight and overweight/obese). Differences were also expected 

within and between obese/nonobese subgroups. In other words, we hypothesized that there 

would be differences between the dysbiosis present in the overweight/obese PWS and the 

overweight/obese control groups. More specifically, differences in abundance of specific 

members of the bacterial and fungal community could contribute to phenotypic differences 

observed between the 4 subgroups. We also aimed to assess associations between hyperphagia 

phenotype and dietary intake and the gut microbiome composition.  

Identifying and characterizing the microbial composition present in children with PWS 

and obesity is an important first step to guide the design of effective therapies to achieve 

weight control and management of hyperphagia based on manipulation of the gut microbiome. 

This is especially pertinent as there is currently no established effective therapy for PWS-related 

hyperphagia and obesity.  

1.3 Thesis Outline  

This thesis work is part of an overarching research project which aims to gather and 

apply knowledge of the microbiome in PWS in order to provide a prebiotic intervention to 

favourably modify gut microbiome composition and subsequent metabolic health.  

Chapter two describes a cross-sectional study which sought to characterize and 

compare the gut microbiome profile of North American Children with and without PWS. This 

chapter contains our rationale, study design, results, and discussion of this research. Chapter 

two will conclude with a summary of the study results, as well as limitations and a brief 

discussion of impacts and considerations for future research.  
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Our goals for a fiber intervention in PWS will be further discussed in chapter three. 

Chapter three will also discuss methods to modulate the gut microbiome and will also briefly 

describe the creation of a pilot trial to assess tolerance to the fiber intervention trial.  
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Chapter 2: Profiling the gut microbiome in children with and without PWS 

 

2.1 Preface 

Research from that study was approved by the University of Alberta's Health Research 

Ethics Board: ‘Profiling of the gut microbiome in children with PWS: a fiber intervention to 

target hyperphagia (AIM 1)’ (ID: RES0033157).  

This work was funded in part by the Women Children Health Research Institute (WCHRI) 

and through a grant from the Prader-Willi Syndrome Association (USA). 

The analysis of data contained in this thesis has employed one set of statistical methods. 

Additional analyses, using different methods, are underway in the Haqq research group. 
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2.2 Background 

Prader-Willi Syndrome (PWS) is the most common syndromic form of childhood obesity, 

affecting approximately one in 15,000 live births (Irizarry et al., 2016b). PWS is characterized by 

failure to thrive and low muscle tone during infancy, followed by food-seeking and hyperphagia 

in childhood (Irizarry et al., 2016b). This abnormal feeding behaviour translates into increased 

risk for developing severe obesity, metabolic dysfunction, cardiorespiratory difficulties, and 

death (Butler et al., 2017; McAllister et al., 2011). The food seeking characteristic of PWS is a 

source of stress for both individuals with PWS and caregivers, especially related to the need for 

strict control of access to food (Kayadjanian et al., 2018). The pathogenesis of hyperphagia and 

weight gain in PWS is poorly understood (Heymsfield et al., 2014), and current treatment 

options have had limited success (Crinò et al., 2018; Tan et al., 2019). Imbalances in gut 

microbial composition have been linked to health and disease, including obesity and metabolic 

dysfunction. However, exactly how changes in gut microbial composition and function influence 

childhood obesity remains under debate (Collado, Isolauri, Laitinen, & Salminen, 2010; Galley, 

Bailey, Kamp Dush, Schoppe-Sullivan, & Christian, 2014; John & Mullin, 2016; Muhammad Jaffar 

Khan, Gerasimidis, Edwards, & Shaikh, 2016; Tun et al., 2018). 

 

To date,  a handful of studies on the gut microbiome composition of PWS have been 

published (M. J. Khan et al., 2015; Nicholls et al., 1998; Olsson et al., 2019; Wu et al., 2017; C. 

Zhang et al., 2015). Together these studies suggest that the gut microbiome may play a role in 

the metabolic derangements and obesity associated with PWS.  

 

Findings that specific fungi can modulate both local and systemic immunological 

responses in the host have led to increased interest in exploring the gut mycobiome (Wheeler 

et al., 2016). Furthermore, bacteria and fungi interact within the gut, influencing each other in 

several ways such as through mutualism, amensalism, commensalism, parasitism or 

competition (Richard & Sokol, 2019). These interactions additionally occur through a variety of 

mechanisms and could potentially result in a wide array of consequences on the host 

physiology and health. For example, by consuming oxygen present in the gut (through 
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mitochondrial activity), Candida spp. have been found to support the growth of and create a 

favourable environment for Clostridium difficile, a pathogenic anaerobic bacterium, in aerobic 

conditions (Lambooij, Hoogenkamp, Brandt, Janus, & Krom, 2017; van Leeuwen et al., 2016). 

The studies looking at the gut microbiome in PWS thus far have neglected to consider the 

fungal component of the microbiome and have not attempted to look at the differences 

between NW and OWOB members of this population.  

The current study aims to further contribute to this growing body of literature and 

provides novel findings on the gut mycobiome composition in PWS and how it differs from that 

of typically developing individuals. Additionally, this work will attempt to link information on 

hyperphagia and dietary intake with the microbiome data in this population.  

 

2.3 Materials and Methods: 

2.3.1 Study population and Study Design 

Children with confirmed diagnosis of PWS (ages 3-17 years, male and female, n=25) 

were recruited from endocrine clinics at the Stollery Children’s Hospital (Edmonton, Alberta, 

Canada) as well as remotely through collaboration with the Foundation for Prader-Willi 

Research (Canada/USA) and the USA-PWS association between February 2017 to July 2018. 

Age-, sex- and BMI-z scores matched controls (n=25) were recruited from advertisements 

through the University of Alberta bulletin boards and e-mail distribution lists. Participants were 

excluded from the study for the following reasons: (a) a pre-existing condition that could 

influence body weight; (b) prior antibiotic exposure within 30 days, or (c) administration of 

medications or supplements known to influence gut microbiota composition (e.g. probiotic 

supplements and antidepressants). Exceptions were made for children with PWS who were 

taking growth hormone, as this treatment is commonly used to counteract an endogenous 

deficiency of growth hormone in PWS (Irizarry, Miller, Freemark, & Haqq, 2016a). All patients 

were free-living and not in hospital.  

A stool sample, a 3-day dietary record, a hyperphagia questionnaire validated in PWS 

(Dykens, Maxwell, Pantino, Kossler, & Roof, 2007), and anthropometric measurements (height, 
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weight and waist circumference) were collected from each participant. This metadata will be 

discussed in more depth later in the methods.  

This was a cross-sectional case-control study with two major objectives. The first 

objective was to characterise and compare the gut microbiome composition in children with 

and without PWS. The second objective was to determine if collected metadata could help to 

explain the compositional differences between groups.  

In order to characterize and compare the microbiome of the PWS and CON groups, 

participants were subcategorized into 4 subgroups based on weight classification. Participants 

with a BMI percentile at or above 85% were placed in the “overweight/obese” (OWOB) 

subgroup and participants with a BMI % below this threshold were placed in the “normal 

weight” (NW) subgroup. This distinction is based on the Centers for Disease Control and 

Prevention (CDC) definitions of pediatric weight classification (Lau et al., 2007; Nihiser et al., 

2007).  By subcategorizing the groups, we aimed to 1) assess differences in microbiome 

composition both between and within the groups 2) specifically assess whether patterns in the 

microbiome composition differ with obesity phenotype comparing genetic and non-genetic 

derivations of OWOB. In addition, as weight status has been demonstrated as a factor that 

influences microbiome composition, we wanted to determine the role of weight status in 

differences observed in the microbiome between groups.    

Statistical assessments were performed for both the bacterial and the fungal 

communities. Comparisons were performed systematically, and alpha diversity, beta diversity 

and differential abundance tests were all assessed in A) 2 group (PWS vs CON), B) 4 subgroup 

(NW PWS, OWOB PWS, NW CON, OWOB CON), and C) pairwise subgroup analyses (NW CON vs 

NW PWS; NW OWOB CON vs OWOB PWS; NW PWS vs OWOB PWS;  NW CON vs OWOB CON). 

Pairwise analyses were used to gain insight between the effects of weight status (NW vs 

OWOB) and the effects of group type (PWS vs CON) (Appendix B).  
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2.3.2 Anthropometric measurements 

Height was measured to the nearest 0.1cm using a wall-mounted stadiometer for 

children. Weight was measured to the nearest 0.1kg using an electronic weighing scale. Waist 

circumference was recorded to the nearest 0.1cm with a non-stretch measuring tape between 

the bottom of the lower rib and the iliac crest. BMI percentile and BMI z-scores were calculated 

using the standardized procedure based on the Centers for Disease Control and Prevention 

Growth charts (Lau et al., 2007; Nihiser et al., 2007).  

 

2.3.3 Dietary intake and hyperphagia assessment 

A 3-day dietary intake record validated in children (Day, 2001) was completed by 

participants/parents to assess macro-and-micronutrient intake.  Particular attention was given 

to macronutrient and dietary fiber intake in the analysis. The dietary record was analyzed using 

Processor SQL (version 11.4, ESHA Research, Salem, OR, 2006). Diet data was adjusted using an 

energy-adjusted residual model to control for variation caused by total energy intake (Willett, 

Howe, & Kushi, 1997). A PWS-specific hyperphagia questionnaire containing questions about 

hyperphagic behavior (5 questions), drive (4 questions) and severity (2 questions) was also 

administered (Dykens et al., 2007). The “Dykens Hyperphagia Questionnaire” can be found in 

the Appendix under Appendix F. Differences in indices of dietary intake and hyperphagia scores 

between the PWS and the control groups, as well as between subgroups were tested using two-

sided Wilcoxon test and Dunn test, respectively. 

 

2.3.4 Molecular and statistical analyses of fecal microbiota    

Stool samples were collected by participants using the OMNIgene 200 stool collection 

kit (DNAGenotek, Ottawa, ON, CAN). DNA was extracted from the fecal homogenates 

combining enzymatic and mechanical cell lysis with the QIAamp DNA Stool Mini Kit (Qiagen, 

Valencia, CA, USA). In OMNIgene∙GUT kits, samples were diluted in a proprietary solution, 

which has been previously shown to keep microbial DNA stable (Anderson et al., 2016). 

Bacterial 16S rRNA V4 sequences and fungal ITS2 sequences were PCR-amplified with dual-
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barcoded primers, as per the protocol of Kozich et al. (2013) (Kozich, Westcott, Baxter, 

Highlander, & Schloss, 2013). Amplicons were sequenced with an Illumina MiSeq using the 300-

bp paired-end kit (v.3) by Microbiome Insights (Vancouver, BC, Canada). The potential for 

contamination was addressed by co-sequencing DNA amplified from specimens and from four 

each of template-free controls and extraction kit reagents processed the same way as the 

specimens. Two positive controls, consisting of cloned SUP05 DNA, were also included (number 

of copies = 2*10^6). Datasets containing less than 1,000 reads were excluded from all analyses.  

 

2.3.5 Processing of sequencing data   

Quality-controlled bacterial and fungal reads were taxonomically classified using 

Greengenes (v. 13_8) and UNITE as the reference databases, and then clustered into 97%-

similarity operational taxonomic units (OTUs) with the Mothur software package 

(v.1.39.5) (Schloss et al., 2009), following the recommended procedure 

(https://www.mothur.org/wiki/MiSeq_SOP).   

 

2.3.6 Data Filtering  

The purpose of the data filtering is to identify and remove features that are unlikely to 

be of use when modeling the data. Features having very few counts were filtered based on 

their abundance levels (minimum counts) across samples (prevalence). Details of the filtered 

data can be found in table 2. 

For the bacterial and fungal microbiome analyses, OTUs were retained if at least 15% of 

the samples had at least 4 counts. If an OTU did not meet this threshold, it was considered 

noise and filtered out from further analysis.  OTUs were also removed based on inter-quartile 

range (IQR) set at 10% for comparative analyses to minimize the influence of low variance OTUs 

to bias results.  

 

https://www.mothur.org/wiki/MiSeq_SOP
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2.3.7 Data Normalization  

Currently, there are no consensus guideline with regard to which normalization 

techniques should be used. The literature provides suggestions for researchers to explore 

different approaches based on specific characteristics in a given data set. Then it is suggested to 

visually examine the separation patterns (i.e. PCoA plot) to assess the effects of different 

normalization procedures with regard to experimental conditions of interest and biological 

probability (McMurdie & Holmes, 2013b; Thorsen et al., 2016).  

A recent publication assessing methods of normalizing microbiome data from an 

ecological perspective found that rarefied data outperformed all the other normalization 

methods (scaling and transformation based methods) for producing accurate Bray-Curtis 

dissimilarities, including subsequent PCoA visualization and PERMANOVA analysis (McKnight et 

al., 2019). Sequence data was normalized following rarefication due to differences in 

sequencing depth and the uneven skew of reads (Appendix C), as is the recommendation for 

samples that differ significantly (i.e. >10X) (Weiss et al., 2015). To stabilize the variance of the 

data, the centered log ratio (CLR), which is commonly used and recommended because of the 

compositionality of microbiome data was also applied to the fungal data (Gloor, Macklaim, 

Pawlowsky-Glahn, & Egozcue, 2017). Previous literature has also applied CLR normalization to 

fungal sequences before analysis (Tipton et al., 2018).  

2.3.8 Alpha diversity analysis 

This method is used to measure the diversity present within a sample or community. 

Alpha diversity can be characterized via the total number of species (richness), the abundances 

of the species (evenness) or measures that considered both richness and evenness. For our 

analysis, a combination of different indices was used to assess alpha diversity in order to get a 

more holistic view of this measure and because each measure emphasizes different factors in 

their respective assessments. The Chao1 index estimates richness, while also inferring the 

number of rare organisms that may have been lost due to under-sampling. Indices such as the 

Shannon and Simpson indices consider the number (richness) and the abundance of organisms 

(evenness) to describe the diversity of a community.  
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Alpha diversity analysis was performed using the phyloseq package (McMurdie & 

Holmes, 2013a) through the ‘MicrobiomeAnalyst’ web-based software program (Chong, Liu, 

Zhou, & Xia, 2020; Dhariwal et al., 2017). The results were plotted across samples and 

summarized as box plots for each group or experimental factor. Further, the statistical 

significance of grouping based on experimental factor was also estimated using both 

parametric (t-test/Anova) and nonparametric tests (Mann-Whitney/ Kruskal-Wallis) as 

appropriate based on the skew of the data. Significance was set at p<0.05. Both raw and 

normalized data was assessed. Alpha diversity was assessed at several taxonomic levels 

including OTU and genus level.  

 

2.3.9 Beta diversity:  

Beta-diversity measures provide a way to compare the diversity or composition 

between two microbial communities. These methods compare the changes in the 

presence/absence or abundance of all the taxa present in a dataset and summarize these into 

how ’similar’ or ’dissimilar’ the samples are. Each sample gets compared to every other sample 

generating a distance or dissimilarity matrix. Our Beta-diversity analysis involved two steps.  

First, the similarity or distance between sample was measured using the non-phylogenetic 

Bray-Curtis distance index. Next, the results from the matrix developed were visualized using 

the ordination-based method, Principle Coordinate Analysis (PCoA) in a 2-dimensional plot 

where each point represents the entire microbiome of a single sample. Each axis of the plot 

reflects the percent of the variation between the samples. The X-axis and Y-axis represent the 

highest and second highest dimension of variation, respectively.  

Beta diversity analysis was performed both at a feature and genus level using the 

Phyloseq package in R (McMurdie & Holmes, 2013a) through the ‘MicrobiomeAnalyst’ web-

based software program (Chong et al., 2020; Dhariwal et al., 2017). Figure 2 shows the Principle 

Coordinate Analysis (PCoA) derived ordination plot represented in 2 dimensions. Each point or 

sample displayed on PCoA plots was colored based on sample group (e.g. PWS vs CON). For the 

feature level or genus level analysis, statistical significance was tested using Permutational 
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ANOVA (PERMANOVA).  

 

2.3.10 Differential abundance testing  

Several differential analysis methods exist to identify features that are significantly 

different between conditions under study. These methods include classical parametric (T-

test/ANOVA) and non-parametric (Mann-Whitney/Kruskal-Wallis) univariate analyses, 

biomarker discovery tools such as Linear Discriminant Analysis (LDA) Effect Size (LEfSe) and 

more computationally demanding methods such as DESeq2. Each method considers and treats 

data differently, and considerations for each method must be applied. For example, when the 

number of samples is high (>50 samples), rarefying or proportion normalized data paired with 

non-parametric tests have been shown to yield as high sensitivity as other more robust 

methods for identifying differential features.  

Differential abundance results were assessed at a genus level using DESeq2. DESeq2 is 

considered to be a robust method to estimate differential features, with low false positive rates 

(Weiss et al., 2015). This method is considered to have the highest power to compare groups, 

especially for cases where there are less than 20 samples per group, as is the case with our 

data.  

The genus level was selected as the sequencing and taxonomical labeling methodology 

has an acceptable level of resolution at this level of classification. All analyses were adjusted for 

False Discovery Rate (FDR) using the ‘MicrobiomeAnalyst’ web-based software program (Chong 

et al., 2020; Dhariwal et al., 2017).  

 

2.3.11 Integrating metadata with microbiome sequence data 

To assess what collected factors could be contributing to the differences we observed 

between the microbial communities in PWS and CON groups, several methods were applied to 

integrate the collected metadata (see Appendix A) with the microbiome data.  
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I. 2.3.11.1 Univariate Analysis  

Spearman correlation coefficients were calculated to assess the correlation of dietary intake 

and hyperphagia scores with bacterial and fungal genera. Analysis was separated by group 

(PWS vs CON). Statistical significance of the correlations was determined after adjustment with 

the Bonferroni method for FDR, and correlations between genus level taxa and metadata 

variables were visualized using a heatmap. Significance was set at p<0.25 for q values (p values 

after FDR).  

 

II. 2.3.11.2 Multivariate analysis 

Any observed differences in overall gut microbiome composition for PWS and CON 

groups that is identified by the ordination analysis (PCoA) will be further evaluated to 

determine the percentage of variability that can explained using multivariate modeling. To 

further expand upon ordination results, the next step in our analysis was to perform a canonical 

correspondance analysis (CCA) to determine the contribution of collected metadata factors in 

shaping the microbiome differences between groups. First, CCA was used to determine how 

much the metadata variables collectively explain the variation observed between groups using 

the “cca” function in the vegan package in R. From there, the most strongly associated factors 

were determined using permutation tests.  

10,000 permutations were performed to evaluate the significance of each CCA model 

using “anova.cca” function in “vegan”. For all CCA models, the P values from the permutation 

tests were said to be significant if P was less than 0.05. This would suggest that the CCA model 

explained more variance of the gut microbiome than expected by chance.  

CCA can be used to identify and measure associations among two sets of variables. The 

outputted information from the CCA includes measures of variance or “inertia”. The quotient of 

the “constrained inertia” over the total inertia indicates how good the overall 'fit' was /how 

much variation could be explained by the model. Further, the amount of the constrained inertia 

expressed by each CCA axis can be determined.  
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CCA can therefore provide insight on how much variation the collected metadata can explain, 

and statistical testing can give an indication of which factors exert the most influence on 

shaping the microbiome.  

 

2.4 Results: 

The first step of our analysis was to evaluate if any significant differences were observed 

in the collected metadata between groups. This metadata included participant characteristics, 

hyperphagia assessment and dietary intake assessment (see Appendix A). Any differences 

observed were taken into further consideration when interpreting higher level of statistical 

analyses.  

 

2.4.1 Participants’ characteristics    

This study included a group of 25 children with PWS (14F:11M; median age = 6.3 (3-

17y); median body mass index (BMI) percentile = 79.3%; Genetic PWS subtype (15 deletion: 10 

uniparental disomy ) and a group of 25 children without PWS (9F:16M; median age = 8.8 (3 -

17y); median BMI percentile = 76.6%). Of the 25 PWS participants, 15 were classified as 

“normal-weight (NW)”, with the remaining 10 being classified in the over-weight/obese 

category (OWOB), as per the pediatric association guidelines (above the 85th BMI percentile) 

(Lau et al., 2007). For the 25 control (CON) participants, 17 were classified as NW and 8 OWOB. 

The details of the collected participants’ characteristics can be seen in Table 1.  

No significant differences were observed in the participant characteristics between the 

PWS and CON groups.  

 

2.4.2 Hyperphagia assessment  

 The median total hyperphagia score of individuals with PWS was 19/55 (Range: 12-39). 

A breakdown of the hyperphagia score subcategories can be found in Table 1. Hyperphagia 

total score (p=0.014) and the subcategorized ‘drive’ score (p=0.039) and ‘severity’ score 

(p<0.001) were significantly higher in PWS than in controls. No statistical significance between 
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groups was observed for the ‘behaviour’ subscore.  

 

2.4.3 Dietary intake 

After adjusting data for total energy intake (Willett et al., 1997), carbohydrate intake 

and total energy intake differed significantly between the PWS and CON groups (p<0.001 and p 

= 0.002 respectively), with the Control group having the higher intake for both measures. Full 

dietary intake information (adjusted and non-adjusted) can be found in Appendix A.   

 

2.4.4 Microbiome (bacteria and fungi) read data generated from amplicon sequencing  

An average of 57,133 and 5,732 quality-filtered reads were generated from the V4 

region of bacterial 16S rRNA and fungal ITS2. 13 samples from the ITS2 sequencing contained 

less than 1,000 sequences; these samples were excluded from downstream analyses, (6 

samples from PWS group and 7 from controls removed leaving total of 37 samples assessed). A 

total of 2,498 bacterial OTUs and 255 fungal OTUs were identified for the microbial 

communities.  

 

2.4.5 Fungal Microbiome Compositional Analysis Results  

Compositional assessments of the fungal component of the gut microbiome were first 

assessed between the PWS and CON groups. Further pairwise subgroup assessments were also 

performed and interpreted.  

 

2.4.5.1 PWS vs CON Group Fungal Analysis 

From the 37 samples used in this analysis, a total of 73 low abundance features were 

removed based on prevalence. 40 features remained after the data filtering step was 

performed.  Full filtering results for all pairwise test can be found in table 2. An overview of 

genus level taxonomic composition can be seen in Appendix D.  
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I. Alpha diversity results:  

No differences were observed in alpha diversity measures (Chao1, Shannon, Simpson) 

between PWS and CON groups, using either the original and filtered/normalized data and 

testing with parametric and non-parametric tests (figures 1-3).   

II. Beta diversity results:  

Beta diversity analysis was performed at a feature level using the phyloseq package in R 

(McMurdie & Holmes, 2013b). A summary of the beta diversity results can be found in figure 4. 

Figure 5 displays the Principle Coordinate Analysis (PCoA) ordination plot represented in 2 

dimensions for the 2-group analysis comparing the entire PWS and CON groups. For the feature 

level analysis, statistical significance was found using Permutational ANOVA (PERMANOVA) 

with an F-value: 4.2049; R-squared: 0.10725; p-value<0.001. The first PCoA dimension (PCoA 

Axis 1) explained 21.2% of variation in the data. The second PCoA dimension (PCoA Axis 2) 

explained 13.8% of variation in the data.  

III. Differential abundance testing:   

The genus level was selected as the sequencing and taxonomical labeling methodology 

has an acceptable level of resolution at this level of classification. Appropriate false discovery 

tests were applied to ensure identified features have the highest likelihood of being genuinely 

different between groups rather than an artifact of statistical testing procedures.  

After adjusting for FDR, three taxa were identified as differentially abundant between 

the PWS and CON groups (Figure 6). Saccharomyces, Candida, and unclassified Basidiomycota 

were identified as differential features (P<0.001 for all three taxa), with larger abundances of 

Saccharomyces in the Control group and higher abundances of Candida and unclassified 

Basidiomycota in the PWS group.  

The next step in our analysis was to compare subgroups in a pairwise fashion to look at 

the influence and group type and weight status on these overall differences.  
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2.4.5.2 Pairwise comparisons of fungal microbiome  

 

I. NW CON vs NW PWS Fungal analysis: 

No differences were observed in alpha diversity measures (Chao1, Shannon, Simpson) 

between NW PWS and NW CON subgroups at any taxonomic level, using either the original and 

filtered/normalized data and testing with parametric and non-parametric tests (figures 1-3 

indicate observed p-values). For the feature level analysis of Beta-diversity, statistical 

significance was found, with an F-value: 2.267; R-squared: 0.1066; p-value < 0.022. The first 

PCoA dimension (PCoA Axis 1) explained 26% of variation in the data. The second PCoA 

dimension (PCoA Axis 2) explained 23.6% of variation in the data (figure 7). No significant 

differences were found in differential abundance between the NW CON and NW PWS groups 

(Table 3). 

 

II. OWOB CON vs OWOB PWS Fungal analysis: 

The Chao1 richness measure of alpha diversity calculated from the OWOB PWS group 

was found to be higher than that of the OWOB CON group (figure 8) when using parametric test 

(t-test/ANOVA) on the filtered and normalized data at OTU level (p-value: 0.048733; [T-test] 

statistic: -2.1777). For the feature level analysis of Beta-diversity, statistical significance was 

found, with F-value: 4.0703; R-squared: 0.22525; p-value < 0.001. The first PCoA dimension 

explained 30.6% of variation in the data. The second PCoA dimension explained 20.9% of 

variation in the data (figure 9).  

A relative increase in Saccharomyces was observed in the OWOB CON group (p=0.003) 

and whereas Candida was more abundant in the OWOB PWS group (p=0.003) (figure 10).  

III. NW PWS vs OWOB PWS Fungal analysis:  

No statistically significance was observed between groups in any measure of alpha or 

beta-diversity (p>0.05) (figure1-4 and 11). Unclassified Basidiomycota was observed to be 
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differentially abundant with a greater abundance observed in the OWOB PWS group (p=0.03) 

(figure 12).  

IV. NW CON vs OWOB CON Fungal analysis:  

No significance was observed in measures of alpha-diversity, beta-diversity or 

differential abundance was observed (p>0.05) (figure1-4, 11 and table 4). 

In conclusion, only the NW: PWS vs CON and the OWOB: PWS vs CON pairwise analyses 

had significant differences in Beta-diversity. This finding may suggest that genotype rather than 

weight status has more of an impact on the observed fungal community differences. The 

differences in unclassified Basidiomycota are most strongly due to the contribution from the 

OWOB PWS group. There were no differences in differential abundance for the NW subgroup 

analysis, however there were differences with the OWOB subgroups. A graphical summary of 

differential features in the fungal communities can be found in figure 13. Additionally, there 

was higher Chao1 richness in the OWOB PWS group compared to the OWOB CON group.  

 

2.4.6 Bacterial Microbiome Compositional Analysis Results 

 

2.4.6.1 PWS vs CON Group Bacterial Analysis 

From the 50 samples used in this analysis, a total of 1719 low abundance features were 

removed based on prevalence and 39 low variance features based on IQR. 348 features 

remained after the data filtering step was performed. Full filtering results for all pairwise test 

can be found in table 2. An overview of genus level taxonomic composition can be seen in 

Appendix E.  

I. Alpha diversity results:  

No differences were observed in Chao1 richness or Simpson diversity between the two groups 

(figure14 and 17), however Shannon alpha diversity measures were higher in the CON group 

compared to the PWS groups using parametric tests (p=0.04) (figure15 and 16).  
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II. Beta diversity results:  

No statistical significance was found in beta-diversity between groups (Bray-Curtis PCoA, 

PERMANOVA with an F-value: 1.1449; R-squared: 0.023296; p-value = 0.309) (figure 18).  

III. Differential abundance testing  

After adjusting for FDR, there were no differentially abundant bacteria between the PWS and 

CON groups (table 5).  

 

2.4.6.2 Pairwise comparisons of bacterial microbiome  

 

No differences were observed in alpha diversity measures (Chao1, Shannon, Simpson) between 

the subgroups at any taxonomic level, using either the original and filtered/normalized data and 

testing with appropriate parametric and non-parametric tests (p>0.05, figures 14-17). No 

statistical significance was found in beta-diversity between subgroups (figure 18).  

Further pairwise subgroup analysis followed to see if group type or weight status affected the 

differential abundance. (figures 19-22).  

I. NW CON vs NW PWS Bacterial analysis: 

Staphylococcus (p=0.004), Lactobacillus (p=0.01), Escherichia (p=0.04) and unclassified RF39 

(p=0.04) were all found to be more abundant in the NW PWS groups (figures 19), whereas an 

increase in unclassified Bacteroidales (p=0.04) was observed in the NW CON subgroup.  

II. OWOB CON vs OWOB PWS Bacterial analysis: 

SMB53 (P<0.001) was more abundant in the OWOB CON group, whereas Lachnospira (p=0.04) 

was elevated in the OWOB PWS group (figure 20).  
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III. NW PWS vs OWOB PWS Bacterial analysis:  

Within the PWS group, a larger abundance of Escherichia (p=0.001) was observed in the NW 

subgroup compared to the OWOB subgroup (figure 21).   

IV. NW CON vs OWOB CON Bacterial analysis:  

5 taxa were identified as differentially abundant within the different weight classifications of 

the CON group. Bifidobacterium was found to be more abundant in the OWOB CON group 

(p<0.001) whereas Phascolarctobacterium, unclassified Bacteria, Alistipes and Haemophilus 

were more abundant in the NW CON group (figure 22).  

 

While no significance was seen in differential abundance between the two groups (PWS vs 

CON), there were significant features that were identified in the pairwise subgroup analysis. 

Other than higher abundance of Escherichia in the NW PWS compared to the NW CON group 

and the OWOB PWS group, there were no overlapping taxa that were differentially abundant 

between pairwise tests.  

2.4.7 Results of integrating metadata with microbiome sequence data 

 

2.4.7.1 Univariate Analysis 

 

2.4.7.1.1 Correlation between gut microbiota and hyperphagia 

After adjusting for FDR using the Bonferroni methodology, there were no significant 

correlations between either bacterial or fungal genus and hyperphagia questionnaire scores 

(total & subcategories) (figure 24).  

 

2.4.7.1.2 Correlation between gut microbiota and dietary intake 

The bacterial genus SMB53 was slightly positively correlated with polyunsaturated fat 

intake in the PWS group (p=0.23, Spearman correlation=0.65) (figure 24A) and the fungal genus 
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Alternaria was slightly positively correlated with saturated fat intake in the PWS group (p=0.16, 

Spearman correlation=0.73) (figure24C). No other genus was found to be significant after FDR 

adjustments (figure 24).  

 

2.4.7.2 Multivariate analysis 

Several CCA analyses were performed on fungal relative abundance count data and the 

collected metadata.  

Firstly, a CCA model incorporating all collected metadata (with the adjusted values for 

dietary intake) was performed using the “cca” function in the vegan package of R.  

Looking at the proportion of constrained inertia expresses how good the overall 'fit' of 

this model was. In other words, we can find that 58% of variance in the fungal abundance 

matrix can be explained by the model containing all collected metadata. Variables were then 

plotted onto a biplot of the first two most influential constrained axes. The amount of the 

constrained inertia expressed by each constrained axis (i.e. those that are linear combinations 

of the explanatory variables) were added to the plot and can be seen in the brackets of the 

CCA. The first CCA dimension (CCA Axis 1) explained 7.4% of variation in the data. The second 

CCA dimension (CCA Axis 2) explained 7.1% of variation in the data (figure 25).  

Next, statistical significance of the model was tested using ANOVA. The overall model 

using all collected metadata was not statistically significant (p=0.09). Testing the model by each 

metadata variable by term rather than the overall model using ANOVA found that “Group 

Type” (PWS vs CON, p=0.001), fat intake (p=0.003) and sugar intake (p=0.002) were all 

significant in describing the constructed CCA model.  

Specific hypothesis driven CCA models were then tested. Models testing the effects of 

hyperphagia scores (total score and subscores) were not found to be statistically significant 

after permutation analyses (ANOVA). Models testing the effects of dietary intake variables were 

significant using ANOVA (p=0.029). The model looking at dietary factors explained 36% of total 

variance, with the first CCA dimension explaining 7.2% of variation in the data and the second 
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CCA dimension explaining 6.7% of variation in the data. Energy intake (p=0.025), protein intake 

(p=0.019), fat intake (p=0.006) and cholesterol intake (p=0.005) being the factors having the 

most influence on the model.  

Models testing metadata factors that differed between the two groups were applied. 

This model consisted of testing “GroupType + Drive + Severity + Total + ENERGY_KCAL + Carbs + 

Fat + SatFat + Sugar” specifically with the abundance matrix. This model was found to be overall 

statistically significant (p=0.024), with Grouptype (p<0.001) Energy intake (p=0.045) and Fat 

Intake (p=0.013) being the factors that have the most influence on the model. The first CCA 

dimension (CCA Axis 1) explained 8.3% of variation in the data. The second CCA dimension (CCA 

Axis 2) explained 8.0% of variation in the data. These variables collectively explained 29% of the 

gut mycobiome variation.  

 

2.5 Discussion:  

In this study we demonstrate that the faecal microbiome of children with PWS differs 

significantly to typically developing children and explore the differences between NW and 

OWOB subcategories of these two populations. Overall, our analyses on the PWS and CON 

microbiome emphasize the importance of sequencing the fungal component of the microbiome 

alongside the more commonly explored bacterial component of the gut ecosystem.  

Significant differences in fungal community structure were observed between the PWS 

and CON groups. These differences were observed when comparing PWS vs CON in both the 

NW and in the OWOB weigh-class groupings. However, results of beta-diversity in the fungal 

community within different weight classifications of the PWS or CON groups did not reveal 

significant differences in overall community structure. The results of the pairwise beta-diversity 

tests suggest that genotype (PWS vs CON) rather than weight status (NW vs OWOB) is a more 

influential factor in the differences in mycobiome profiles. As the gut mycobiome of PWS has 

not previously been explored, this novel finding may initiate interest in further work exploring 

the mycobiome in PWS, including the potential impact on health and possible therapeutic 

manipulations.  
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The PWS group was found to be characterized by an increased relative abundance of the 

genus Candida and relative decreased abundance of Saccharomyces relative to that of the CON 

group. No significant differences were observed between the NW PWS and NW CON groups, 

conversely, increased relative abundance of Candida and relative decreased abundance of 

Saccharomyces was found in the OWOB PWS and OWOB CON groups. This may imply that the 

OWOB groups have a more significant impact on the overall observed differences in the relative 

abundance of Candida and Saccharomyces in the PWS vs CON comparison. In other words, it 

appears that within an obese profile, there are differences between fungal taxa abundance 

depending on genetic profile.  

While there is still much unknown as to what classifies as a clinically significant 

difference in taxa abundance, we can first begin by observing which taxa are over or 

underrepresented in disease populations and from there develop more insight on the 

pathophysiology of the organism-host interaction within the context of the greater microbial 

community. Interestingly, previous literature has found that Candida and Saccharomyces 

exhibit strong negative abundance correlations to each other. Candida are normally harmless 

commensals on many human body sites. However, when the host immunity or the normal gut 

microbial community is compromised, this fungus can become pathogenic (Enaud et al 2017). It 

has been suggested that a higher relative abundance of Candida, and a concurrent lower 

abundance of Saccharomyces may play a role in the dysbiosis of inflammatory diseases such as 

IBD (Hoarau et al., 2016; Sokol et al., 2016). Candida has been previously reported as the most 

abundant genera detected in obese patients (Borgo et al., 2017; Mar Rodríguez et al., 2015) and 

some studies have suggested a link between expansion in Candida (especially Candida albicans) 

with diabetes. Conversely, some fungal species such as Saccharomyces boulardii have been 

suggested to have potential gut health benefits or probiotic effects (Ward et al., 2017). Previous 

work with other rare genetic diseases has also noted differences in the gut mycobiome 

communities between affected individuals and typically developing controls. Children with Rett 

syndrome (a neurological disorder mainly caused by mutations in the MeCP2 gene) were found 

to have differences in fungal beta-diversity as well as an increased abundance of the genus 

Candida (Strati et al., 2016). This once again matches the pattern of findings from this work. 
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Twin research has demonstrated a heritable component exists for the gut microbiota 

composition (Julia et al., 2016), however additional research has suggested that when 

compared to host genetics, priority effects (ecology), diet and lifestyle may be the most 

influential factors that shape the human gut microbiome (Rothschild et al., 2018). While it may 

not be as strong of a factor, host genotype does factor into the composition of gut microbiota 

(Goodrich, Davenport, Clark, & Ley, 2017; Kreznar et al., 2017; Spor, Koren, & Ley, 2011; Tabrett 

& Horton, 2020).  

Saccharomyces, Basidiomycota, and Candida are three taxa that were observed to differ 

in abundance levels between groups. These species are known to dominate the GI tract of 

humans and are likely true members of the mycobiome (Nash et al., 2017). While evidence for a 

“core mycobiome” is lacking, a few species are more well characterized. Relatively commonly 

detected gut fungi such as Debaryomyces hansenii and multiple Penicillium species are not 

likely to be true members of the human gut as they do not grow at 37 C. These species are 

likely allochthonous and pass through the GI system from environmental or dietary exposure 

without colonizing the gut. It is also unclear if these taxa exert any influence on the host or the 

host’s gut microbiota (Suhr & Hallen-Adams, 2015). While these potentially allochthonous taxa 

were observed in the overall composition, they did not differ significantly in abundance 

between groups. We found the genus Alternaria was slightly positively correlated with 

saturated fat intake in the PWS group, however this genus is known to be a plant pathogen and 

it is likely that it may be found in the GI tract due to dietary consumption or environmental 

exposure rather than being a true member of the gut community (Suhr & Hallen-Adams, 2015).  

As was observed in previous reports looking at the gut mycobiome (Mar Rodríguez et 

al., 2015), no significant differences were detected in the alpha diversity between NW and 

OWOB subjects of this study. Although the results of Chao1 richness measure between overall 

PWS and CON was not statistically significant, there was a trend towards increased richness in 

the PWS group, with differences in richness being particularly relevant for individuals with 

OWOB. Within the OWOB classification, the PWS group was found to have increased Chao1 
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richness compared to the CON group (p=0.04). This may further suggest that genotype plays a 

more important role than weight status in differentiating mycobiome profiles.  

As discussed in the meta-analysis by Sze et. al 2016 (Sze & Schloss, 2016), alpha diversity 

metrics are able to distill complex data into a single value, however the potential applicable 

clinical significance of these metrics is not currently understood. High diversity of the gut 

microbiota is usually considered to be an indication of community stability and is more 

generally associated with a healthy gut ecosystem. While ‘differences in diversity’ was noted to 

be a significant discriminatory marker between health and disease in their meta-analysis, Sze. 

et al (2016) point out that caution must still be exercised when discussing these metrics. 

Additional context is needed to interpret the results of diversity metrics in a given population 

comparison.  

While our results found higher bacterial Shannon diversity in the CON group compared 

to the PWS group (p=0.04), it may be worth noting that the range of alpha-diversity scores on 

the PWS group were broader than that of the control group. No differences were observed in 

the pairwise comparisons of bacterial alpha diversity or in any other alpha diversity measure in 

the bacterial component of the gut microbiome. In their recent publication, study authors 

suggested that certain features of the microbiome profile observed in their PWS population 

such as increased phylogenetic diversity may be contributing to the more beneficial 

inflammatory profile seen in PWS (Olsson et al., 2019). However, it’s important to note here 

that this research only studied the bacterial component of the gut microbiome. Conversely, in 

the study on a Chinese pediatric cohort, no differences in alpha diversity metrics were found in 

the baseline microbiome of PWS and control groups (C. Zhang et al., 2015).  

In line with the results of Zhang et al. (C. Zhang et al., 2015), we found no significant 

differences in bacterial community structure (Beta-diversity) between PWS and CON groups. 

While there were no overall differences in bacterial differential abundance between PWS and 

CON groups, differences were observed in the pairwise analyses. Within the NW subgroups, the 

PWS group tended to have higher abundances of bacterial taxa often associated with 

inflammation and metabolic disorders. These include higher abundances of Staphylococcus and 



40 

Lactobacillus. Lactobacillus has been found to be more abundant in obese and overweight 

children (Bervoets et al., 2013), with study authors finding a positive-correlation between this 

species and BMI (Ignacio et al., 2016) and plasma hs-CRP (Bervoets et al., 2013). Positive 

associations between BMI and Staphylococcus have also been previously reported (Befus et al., 

2015). Children and adolescents with a high daily energy intake showed high faecal 

concentrations of Staphylococcus, and Staphylococcus aureus in feces was a marker for obesity 

risk during development (Bervoets et al., 2013; DiBaise, Frank, & Mathur, 2012). The bacterial 

genus SMB53 was slightly positively correlated with polyunsaturated fat intake in the PWS 

group and this taxon was found to be more abundant in the OWOB CON group compared to the 

OWOB PWS group. SMB53 may be important for the abnormal metabolism of type 2 diabetes 

(Horie et al., 2017), and is often reported in the obese microbiome profile. Conversely, the 

OWOB PWS group had higher abundance of Lachnospira compared to the OWOB CON group. 

Lachnospira has been shown to negatively correlate with BMI and diabetes incidence in adult 

populations (Del Chierico et al., 2018). Whether the observed differences in abundance 

between PWS and controls in our research are of clinical significance remains to be seen.  

Interestingly, bacterial genera that were increased in PWS were generally facultative 

anaerobes. There has been recent literature that has linked presence of oxygen in the adult gut 

with unfavourable health consequences and a “dysbiotic” microbial ecosystem composition 

that is overrepresented by more oxygen-tolerant microbes (Henson & Phalak, 2017; Litvak, 

Byndloss, Tsolis, & Bäumler, 2017). The SCFA butyrate plays an important role in intestinal 

permeability by both the upregulation of tight junction proteins and the promotion of mucin 

production (H.-B. Wang et al., 2012; Willemsen et al., 2003). β-oxidation of butyrate has also 

been recognized as an important regulator of oxygen availability (limiting the expansion of 

facultative anaerobic bacteria) and is known to drive energy metabolism in colonic epithelial 

cells (Vacca, 2017). The “oxygen hypothesis” posits that chronic inflammation of the GI tract 

may results in increased release of reactive oxygen species into the intestinal lumen (Zhu & Li, 

2012), which in turn creates an environment that favors facultative anaerobes (Albenberg et al., 

2014; Hartman et al., 2009). This environment promotes both a decrease in obligate anaerobes 

such as F. prausnitzii that have been shown to produce anti-inflammatory compounds (Miquel 
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et al., 2015) and causes increased inflammation through disruption of barrier function (Kelly et 

al., 2015). This combination is thought to establish a positive feedback loop that accelerates the 

inflammation and subsequent disease process (Miquel et al., 2015). As obesity is associated 

with chronic low-grade inflammation and disruption in intestinal barrier function, these 

microbial patterns, especially when seen in the NW subgroup may imply that the gut 

environment in PWS is potentially in a state of oxygen imbalance. While this theory of oxygen 

imbalance cannot be confirmed in the present study, this avenue of research could potentially 

lead to new biomarker discovery to provide insight on the health of individuals with PWS. It is 

also possible that designing interventions that promote butyrate production could assist in 

reversing the effects of the overly oxygenated gut.  In previous research, results of fecal 

transplantation to germ-free mice resulted in improved insulin tolerance in mice transplanted 

with the PWS microbiome compared to those mice transplanted with the microbiome of obese 

individuals, with no differences in their fat mass or body weight (Olsson et al., 2019). This result 

lead study authors to suggest that the gut microbiome in PWS may be contributing to the 

protective factors that are seen clinically in this population. Similarly, the differences in taxa 

between the OWOB PWS and OWOB CON group described above also hint at a more protective 

microbiome profile present in the PWS group. As the fungal component was not studied in the 

work by Olsson et al, it is less clear what contribution the mycobiome could be playing to these 

findings and future research should aim to see a more holistic view of the microbiome to 

further pinpoint what are driving these differences. 

Some literature has looked at interactions between bacteria and fungi in the gut 

microbiome. For example, Lactobacillus spp. has been shown to have a protective effect 

against C. albicans mucosal and systemic infections (Wagner et. al., 1997), and short-chain fatty 

acids (specifically butyric acid) produced by lactic acid bacteria may also prevent pathogenic C. 

albicans from causing disease in the gut through mechanisms that inhibit filamentation of the 

fungus (Noverr & Huffnagle, 2004). Whether other butyrate producing bacteria could have the 

same effect on Candida virulence remains to be seen at this time. It could be theorized that 

while Lactobacillus and Candida may both individually be associated with disease states, their 

interactions within the microbial community could play an important role in maintaining host 
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health and preventing disease. While this is hypothetical, further research into microbial 

interactions are warranted to help pull together the findings of abundance results.  

A previously published work describing the microbiome in PWS noted the lack of dietary 

assessment as a limitation of their work (Olsson et al., 2019). The current study collected 

dietary intake information using a 3-day dietary intake record to assess macro-and-

micronutrient intake. This tool is validated to assess dietary intake in children (Day, 2001). 

Consistent with previous findings (Mackenzie et al., 2018), the PWS group had a lower 

carbohydrate and total energy intake compared to the control group. Also, in congruence with 

previous findings, both total fat and saturated fat intake was lower in the PWS group, however 

these differences no longer remained after adjusting values for energy intake. Although 

Mackenzie et al. noted a greater fiber intake in PWS compared to controls (Mackenzie et al., 

2018), no differences were observed in fiber intake between the PWS and CON groups in this 

study. As fiber intake is strongly associated with microbiome composition, this could possibly 

be another factor partially explaining the lack of significantly different bacterial profiles 

between groups in this work. It is important to note that the population in our study may be 

biased in that participants were largely children of high socio-economic status and usually from 

a household with at least one parent with a high degree of education. The caregivers of children 

with PWS were often extremely diligent with the control of food intake and diet quality, thus 

the results of dietary intake from this population may not fully represent the general PWS 

population. Additionally, as the control group was recruited in large part through university 

channels, this population may also not be fully generalizable.  

The current study utilized canonical correspondence analysis (CCA) to assess the 

influence of multiple factors on the fungal microbial communities. While not statistically 

significant using correlations, dietary components were a significant contributor to variation 

explained by the CCA model with 36% of variation in fungal communities being explained by the 

dietary measures. The effect of specific dietary components in the model was secondary only to 

group type (PWS vs CON), which had the most potential to explain variation in samples. The 

literature has noted that the fungal community can also be largely influenced by diet (Richard & 
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Sokol, 2019) and additional research on how the mycobiome can be modulated with diet could 

lead to new therapeutics.  

How the gut microbiota interacts with the host may differ between individuals and 

therefore the same microbial profile in individuals with this altered genetic background may 

result in different effects. This may be especially pertinent in individuals with an altered 

immune profile such as individuals with PWS since the microbiome is known to play several 

immunomodulatory roles. Further studies are needed to elucidate potential effects of the 

microbiome in PWS individuals. While mouse models of PWS are still not ideal (as no single 

mouse model is able to encapsulate all the characteristics of the human syndrome) (Carias & 

Wevrick, 2019), one avenue for exploration could include fecal transplantation in germ-free 

PWS mouse models compared to mouse models for other forms of obesity and control mice. 

Having a better understanding of how the microbiome can affect clinically relevant parameters 

could ultimately help in the design of novel therapeutics for PWS.  

Some methodological strengths and limitations that can be observed include the 

stringent data filtering and normalization techniques applied. The rationale for the chosen 

methods is outlined in the earlier text, however it is worth noting that a consensus has not 

been reached on which methods are best for analysis of microbiome data. This is especially the 

case for the fungal component of the gut microbiome as research of the mycobiome’s role in 

human health is still in its infancy. Every method comes with its own series of pros and cons 

that must be evaluated and the specific nuances of the data must be considered as there is 

much variability in the features of microbiome sequence data. For example, rarefying count 

data helps to reduce false positive (type 1 error) results that could occur due to large 

differences in reads between samples, however as rarefied data represent only a portion of the 

original data, decreased sensitivity (type 2 error) could be more prominent.  As our interests are 

strongly aligned with finding factors that are most likely to have clinical significance, this work 

focused on findings with effect sizes large enough to be identified despite the stringent 

protocol. This is not to say that small changes or more rare taxa are less likely/unlikely to 

contribute significantly to the functional potential of the overall microbial community, however 
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by being more conservative in this initial observational study, we can focus on the few key 

findings and their possible clinical implications.  

Our samples were collected from a wide age range (3-17 years old), which could be 

considered another limitation. While the microbiome is considered to be “adult like” and stable 

after the age of 3, age can still be a factor shaping the gut microbiota profile. Additionally, 

because hyperphagic behavior in PWS varies in age of onset (Irizarry et al., 2016b), the results 

and associations between the microbiome and hyperphagic behavior may have been less 

apparent than if we had used a population that all exhibited this clinical feature. Despite this 

limitation, there was still a significant difference in hyperphagia scores between the PWS and 

control groups, with higher scores in the PWS group as would be expected.  

Another limitation of this work can be attributed to sample size, which is challenging as 

PWS is a rare disease. Due to the current sample size, the confidence of findings is somewhat 

limited. Additional work with a greater sample size would allow for further confidence in 

findings. Additionally, we conducted our differential abundance analyses at a genus level as this 

level of resolution can be analyzed with more confidence using the given sequencing methods. 

Emerging research has suggested that functional differences in the gut microbiome and its 

relationship with diseases might be strain-specific (Chenhong Zhang & Zhao, 2016), therefore 

future research using methodologies with higher resolution (e.g. shotgun metagenomic 

sequencing etc.) could be important in further elucidating findings and may also be an 

important step in moving towards clinical applications.  

Finally, a discussion of dysbiosis, causality and what claims can be made from this 

research is warranted. The term “dysbiosis”, while widely used in the microbiome field is 

ambiguously defined and often misused. Dysbiosis is typically used to describe whatever 

microbiome features are different between the group of interest (disease) and the control 

group which a) reduces the complexity of the microbiome to a binary categorization of 

“healthy” and “dysbiotic” b) makes the assumption that the microbiome of the control 

individuals is “healthy” or that there is a universally established “healthy” configuration of 

microbes c) implies something is imbalanced or dysfunctional with the microbiome and d) 



45 

implies that the observed differences in microbiome features are related and possibly causal to 

the disease state (Brüssow, 2020; Hooks & O’Malley, 2017; Olesen & Alm, 2016).  

Currently, it is unclear whether dysbioses may be a cause or consequence, or just a 

bystander of a disease state (Lynch, Parke, & O’Malley, 2019). The possible mechanisms by 

which “dysbiosis” could cause disease are still under investigation and most findings that 

attempt to ascertain the relevance of microbiome composition to disease remain speculative 

(Fischbach, 2018). Additionally, the term dysbiosis may erroneously imply that a universally 

accepted definition of a “healthy human gut microbiome” has been determined (McBurney et 

al., 2019). Because of this, some experts in the field caution against the use of the term and 

suggest that if this term is to be used that context is needed for interpretation of findings.  

There are several reasons why establishing what constitutes a “healthy human gut 

microbiome” in both composition and features (diversity, genetic potential, metabolic function, 

etc.) is extremely difficult, if not impossible. The healthy microbiome cannot be defined by a 

single ideal community composition and the effects of specific microbiome features on host 

health are often context dependent (McBurney et al., 2019). The presence/relative abundance 

of a given microbe may be associated with both a healthy or disease profile depending on the 

disease in question. For example, Akkermansia is associated with a metabolically healthy profile 

when looking into the microbiome literature on obesity (Dao et al., 2015; Schneeberger et al., 

2015). Contrarily, Akkermansia has been inversely associated with prevalence of multiple 

Sclerosis (Cantarel et al., 2015; Jangi et al., 2016).  

The differing microbial features discovered between the PWS and CON populations and 

weight-based subgroups in this research cannot establish causality or directionality. Caution 

must be exuded when attempting to interpret these results and the implications they may have 

for health and disease. As discussed earlier, the assessment of beta-diversity determined that 

there were significant differences in fungal community structure between PWS and CON groups 

regardless of weight-status, and that specific taxa differed in relative abundance in both two-

group and subgroup fungal analyses. Specific taxa also differed in relative abundance in the 
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subgroup bacterial analyses, however no differences were observed in overall bacterial 

community structure.  

There are numerous factors that could begin to explain why differences in microbial 

features were observed. It is known that human gut microbiome communities are highly 

individualized and show a high degree of interindividual variation. In the adult-like (after ~3 

years of age) microbiome, genetic and other host factors are said to account for ~10% of the 

microbiome variation, while specific environmental factors (e.g. diet, antibiotic/medication use, 

etc.) account for ~20% (Rothschild et al., 2018; J. Wang et al., 2016). This leaves a vast majority 

of the microbiome variation unexplained. These unaccounted-for differences are largely 

considered to be driven by stochastic elements and ecological processes, such as priority 

effects, that establish and shape the gut ecosystems (Martínez et al., 2018).   

When considering the potential implications of our results, context is important. For 

example, it was observed that the genus Saccharomyces (a commonly consumed yeast in food 

production) had a higher relative abundance in the CON group compared to the PWS group. 

Interestingly, the CON group also reported higher intake of carbohydrates. The fungal 

microbiome is affected by dietary intake (Chin et al., 2020; David et al., 2014) and it is possible 

that the relative increase in Saccharomyces found in the CON group is driven at least in part by 

the difference in diet between groups and the relative decrease of Saccharomyces in the PWS 

group may simply be the influence of diet (less carbohydrate intake) rather than a marker of 

disease or “dysbiosis”.  

As discussed in McBurney et al. 2019, ecosystem functions may also be an important 

avenue for consideration and the overall ecosystem may potentially be more influential to the 

host than the abundance/presence/absence of specific individual members of the gut 

microbiome (McBurney et al., 2019). Several factors highlight the likely importance of overall 

ecosystem health to the host well-being. First, there is a notable functional redundancy present 

in the gut microbiome and an established high degree of interindividual variation in community 

structure between individuals (Moya & Ferrer, 2016). The large range of what the microbiome 

in individuals without disease can encompass further emphasizes that it is likely not possible to 
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identify a specific microbiome feature that is universally healthy. Additionally, consideration 

should be made for the complexity of the potential interactions of the bacteria, archaea, fungi, 

viruses, and protozoa in the gut microbiome (within the ecosystem itself and with the host) and 

the potential effects these microbes and their metabolites could play on host health (alone or 

through community interactions). The inclusion of the fungal component of the gut microbiome 

in this thesis research may provide further insight to how the overall ecosystem interacts and 

its relationship with health host and disease, though this research is still in its infancy and no 

conclusions regarding causality or recommendations can be determined by the results of this 

work alone.   

Establishing causal relationships between microbiome features is exceedingly difficult and 

only a few cases such as Helicobacter pylori-associated peptic ulceration and gastric cancer 

(Parsonnet et al., 1991) and Clostridium difficile infection-associated diarrhea (Gupta, Allen-

Vercoe, & Petrof, 2015) have been extensively documented (Lynch et al., 2019). While the 

microbiome has been causally linked to obesity in mouse models (Turnbaugh et al., 2006) 

multiple meta-analyses have found little to no consistent difference in the gut microbiomes of 

obese and lean patients (Duvallet, Gibbons, Gurry, Irizarry, & Alm, 2017; Finucane, Sharpton, 

Laurent, & Pollard, 2014; Walters, Xu, & Knight, 2014).   

The use of animal models to gain insight on mechanisms of actions and possible causality in 

the microbiome field has been greatly improved with the introduction of germ-free and 

gnotobiotic organisms. Causal relationships between microbiomes and phenotypes such as 

obesity in germ-free mice are not however necessarily indicative of a causal relationship 

between microbiomes and these phenotypes in humans, or even within healthy colonized mice. 

It has been established that the lack of a microbiome during development has significant 

consequences for the maturation and function of the GI tract and the immune system 

(Tlaskalová-Hogenová et al., 2011). The current understanding of microbiome-mediated 

contributions to obesity are heavily intertwined with immune function (Singer-Englar et al., 

2019) and results obtained from germ-free mice should be interpreted with care.  



48 

In the previous studies of the PWS microbiome, germ-free mice models were used to 

suggest causality and/or to try and elucidate effects of the microbiome on health outcomes 

(Olsson et al., 2019; C. Zhang et al., 2015). There are several reasons why translating results 

from animal models and applying them to human disease can be challenging and must be done 

with caution. In addition to concerns about experimental design, control and rigor, there are a 

few elements that are often overlooked from consideration before conclusions are made. 

Historically in the microbiome field, there is sometimes an issue of pseudoreplication, where 

the ‘‘N’’ for statistical analyses and inferences is reported as the number of recipient animals 

instead of donor numbers. The low “N” for donors used in most studies is unlikely to capture 

the interindividual variability of the human gut microbiome, which is typically more prominent 

than the effect sizes caused by disease states (Lloyd-Price et al., 2019). Thus, even if differences 

in microbiome features did play a causal role in disease, a small donor group would likely not 

powered to reflect these differences, nor would the small donor pool be sufficiently 

representative of the larger group (Jens Walter, Armet, Finlay, & Shanahan, 2020). Appropriate 

power to account for real biological variation must be considered carefully before conclusions 

are drawn. Pooling donor samples is also of concern as it removes the component of 

interindividual variation and changes the true N for statistical interpretations. Finally, there is 

still a lack of mechanistic insight for the large majority of animal model research, with most 

studies in the microbiome field not attempting to identify causal components of disease states 

(Jens Walter et al., 2020).  

In the germ-free mouse experiment conducted by Olsson, the donors were not 

randomly selected but rather were chosen based on the abundance of what study authors 

called “key microbial taxa” that characterised the PWS gut microbiome (determined based on 

the differential abundance results of the same publication) (Olsson et al., 2019). Study authors 

reported that characteristics that differentiated the PWS and control patients in the study were 

reflected in the germ-free recipient mice and repeated the germ-free experiment with another 

specifically chosen donor-pair (total experiment n=2 PWS donors and n=2 control donors). In 

the germ-free mouse experiment from Zhang and colleagues, the gut microbiota from the same 

PWS volunteer (who was chosen as they had they most drastic improvement in tested health 
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parameters) was transferred to mice to compare the microbiome effects pre- and post high-

fiber intervention (C. Zhang et al., 2015). While Olsson and colleagues did repeat their 

experiment with a new donor-pair to try and confirm their finding on improved insulin 

tolerance, in the work by Zhang only a single donor was used to represent the entire 

population. In both studies, the donors were not randomly assigned but rather specifically 

selected based on their microbiome composition and health biomarkers. Interpretation of 

these results and what they could mean for the microbiome of the larger PWS population must 

be done with care, especially as results from a single donor is unlikely to fully represent the 

larger group and would likely not have the statistical power to make causal conclusions. PWS is 

a phenotypically heterogenous group with varying degrees of symptom severity which makes 

extrapolating findings to all individuals even more of a challenge. Individuals with PWS are 

known to have altered inflammatory, endocrine, and metabolic profiles (Irizarry et al., 2016b), 

thus the gut environment may already differ than that of the control group and these 

differences may influence the composition and function of the microbial ecosystem and 

microbe-host interactions.  

Some microbial features were identified as differing between the PWS and CON groups, as 

well as the NW and OWOB subgroups of this thesis work. The current case-control study does 

not have the capacity to determine if any of these microbial features may have a functional or 

causal role in pathology and health of our population. Animal models could be utilized as one 

potential avenue to try and elucidate the potential impact of our findings. Comprehensive 

recommendations for human microbiota-associated murine models to establish causal 

relationships between altered (dysbiotic) gut microbiomes and human disease have recently 

been suggested (Jens Walter et al., 2020). In addition to ensuring experimental rigor and 

standards are upheld and being cautious to avoid common misleading statistical inferences as 

described previously, future research to determine causality should aim to gain mechanistic 

insight whenever possible through the identification and functional testing of candidate “causal 

components”. We would also want to ensure that microbiome engraftment was successful (and 

not overlook the fungal component of the gut) and see whether ‘‘dysbiotic’’ patterns were 

transferred from our human cohort to the recipient animals before making any conclusions. 
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As suggested by Fischbach, research establishing causation and molecular mechanisms in 

the microbiome should emphasize findings that are practical and easy to measure for clinical 

translation, have a large effect size and have been shown to be unambiguously driven by the 

microbiota (Fischbach, 2018). To minimize technical artifacts, there is a need for more robust 

sampling protocols and standards in the microbiome field and consensus for experimental 

methodology to employ. In doing so, the aggregation of the data from many studies can 

become more feasible. Future hypothesis-driven clinical research is needed to determine 

causality between microbiome features (diversity/structure/functional changes) and validated 

markers of host health (McBurney et al., 2019). This could include large comprehensive, 

multidisciplinary multi-center prospective cohort studies that measure and record a variety of 

known factors of interest that may influence the microbiome including lifestyle and 

environmental factors (e.g. diet, antibiotic use, socioeconomic status, geography, education 

etc.) along with repeated biological samples (blood and fecal samples) over time. The repeated 

measures within subjects and the large sample size in this design may help to overcome 

intraindividual variability. The biological samples, additionally assessed with multiple “omic” 

platforms such as functional metabolomics and metagenomics, could then be combined with 

the collected metadata and the indicators of health that correlate with “microbiome features” 

can be identified and their relationship validated. This multiomic characterization of 

microbiome-related biomarkers can be then further explored with mechanistic studies the 

potential to devise microbiome-targeted strategies using the validated biomarkers can be 

applied. Ideally such trials would be run from an ecological perspective (Jens Walter, 

Maldonado-Gómez, & Martínez, 2018) using a multidisciplinary approach and attempts at 

personalizing the intervention approach could be made. Finally, once the metabolomic markers 

in biological samples (blood, feces, and urine) and host-specific indicators of health are 

systematically identified, validated, and agreed on, consensus statements can be devised and 

used to guide regulatory agencies.  

2.6 Conclusions:  

Despite the limitations of the present work, several novel findings have expanded our 

knowledge and understanding of the potential role of the microbiome in PWS. Here we have 
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shown a unique bacterial and fungal signature differentiates PWS from control individuals, as 

well as weight status within groups. Based on the results of this work, differences between the 

gut microbiome community in PWS and CON seem to be more strongly associated with 

differences in genotype (PWS vs CON) than weight status. Additionally, within NW and OWOB 

groups, different taxa are differentially abundant. These taxa may be contributing to the altered 

metabolic and inflammatory profile in PWS. Specifically, differences in microbiome profiles for 

OWOB individuals with or without PWS seem to differ the most. The significant differences in 

taxa abundance and community structure of the mycobiome in PWS compared to controls is a 

novel finding and has not been investigated previously.  

The knowledge that a unique microbial profile may be contributing to the specific 

pathogenesis of hyperphagia and obesity in PWS is an indication that research into a specific 

and more personalized intervention for this population may be efficacious. Therapeutic 

manipulation of the gut microbiome has strong potential for treatment of diseases. The 

specifics of how and if the mycobiome might contribute remains to be determined. 

Additionally, these findings bring up the question of whether a combination of host factors 

(such as GI motility, inflammation, and changes in endocrine and exocrine function) creates an 

environment that favours a particular microbial community, or if a microbial community 

confers a specific gut environment or a combination of the two.   

 Our understanding of how the genetic mutations that characterize PWS may influence 

the microbe-host interactions and their subsequent effects on obesity and metabolic 

complications is limited. The current literature currently lacks adequate validated biomarkers 

that can predict the development of obesity and in high-risk subjects. The gut microbiome has 

the potential to provide new insights not only for biomarker discovery but also as a potential 

target for intervention to safely and effectively modulate weight-gain and improve metabolic 

function. This is especially important in high risk pediatric populations as early intervention can 

greatly improve health outcomes. 

The study of the mycobiome in human health and disease is still in its infancy and there 

is limited knowledge on how various microbial communities interact within an ecosystem and 
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how these interactions may affect host health. Further gut mycobiome studies are needed to 

better understand and interpret the findings of this study, and more broadly to better 

understand what factors influence the composition, interactions, and functionality of the 

microbiome in different populations.  

Chapter 3: Summary and future directions  

 

Prader-Willi Syndrome (PWS) is the most common syndromic form of childhood obesity. 

The development and maintenance of PWS-associated obesity may involve several possible 

pathophysiological mechanisms. Previous research has implicated the gut microbiome in the 

development and pathology of obesity and metabolic dysfunction (Singer-Englar et al., 2019). 

PWS is a genetic disease, thus modulating the gut microbiome of these individuals is unlikely to 

completely reverse the pathophysiology associated with this disorder. Instead, the goal is to 

attempt to develop beneficial treatment and management strategies to try and minimize 

symptoms such as hyperphagia, improve metabolic health markers and prevent the 

development of obesity and subsequent detrimental health outcomes.  

The results from the present study provides evidence that there are notable differences 

in the gut microbiome between children with and without PWS. Specifically, this work unveiled 

that the gut mycobiome community could potentially be an important avenue for future 

exploration as differences in the fungal community between groups were more notable than 

those of the bacterial microbiome community. While differences in diet and hyperphagia scores 

were not significantly correlated with microbial community structure using Spearman’s 

correlations, dietary factors were found to be influential in CCA models of the mycobiome. 

Rather than being correlated with individual taxa, measures like hyperphagia and dietary intake 

may be more associated with overall community structure.  

This thesis work is the first to investigate the fungal community present in the gut 

microbiome in individuals with PWS. Future work can expand upon these findings for a better 

understanding of how this information could be applied towards new therapeutic options in 

this population. Additionally, more recent research may even suggest a role of the gut 
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microbiome in the interplay between energy metabolism, mood and cognitive function (Agustí 

et al., 2018). Behavioural concerns are also frequently cited as a concern for patients and 

caregivers of individuals with PWS (Wilson et al., 2016), thus modulating the gut microbiome 

may have the potential to impact both physical and mental health parameters. 

Several avenues to favourably modify the gut microbiome have been proposed and 

studied. This includes more direct methods such as probiotic supplementation and fecal 

microbiome transplants (FMT) as well as more indirect methods such as prebiotic 

supplementation and other dietary interventions.   

The use of probiotics is one popular option to influence the gut microbiome that has 

been studied extensively. The gut microbial population established in adults tends to be stable, 

resilient, and resistant to outside colonizers. Probiotic use in healthy adult populations does not 

generally alter the gut microbiome composition (Kristensen et al., 2016) and when it does, it 

has been noted that the microbes are usually transient/do not persist very long following 

cessation of probiotic use (Alander et al., 2001; Charbonneau, Gibb, & Quigley, 2013; Firmesse, 

Mogenet, Bresson, Corthier, & Furet, 2007). These observations may be in part explained 

through ecological theory. Firstly, an organism must be able to overcome the specific 

challenges faced in an environment in order to be established into that community. Many 

probiotics are not adapted to overcome the many challenges put in place by the host (immune 

system, other defenses) and/or may not be able to compete with the established microbiota (J. 

Walter, 2008; Jens Walter & Ley, 2011). Longer colonization has been observed when the 

species/strains in question are more core members (autochthonous) of the host microbiome 

(Maldonado-Gómez et al.). Autochthonous organisms are generally adapted for the host 

environment, and are more likely to fill an existing niche and therefore may persist for longer (J. 

Walter, 2008; Jens Walter & Ley, 2011). Additionally, previous colonization history affects the 

availability and types of niches (De Meester, Vanoverbeke, Kilsdonk, & Urban, 2016; Fukami, 

2015). Niche modification may also play a role in explaining the large inter-individuality in 

responses to probiotics in the literature, even if they contain autochthonous species. Ecological 

theory also suggests the presence of phylogenetically or functionally related organisms within 
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the resident microbiome could impede colonization through competitive exclusion mechanisms 

(Mayfield & Levine, 2010). This being said, there have been demonstrated benefits of 

consuming these probiotics even if the bacteria are only present transiently (Bermudez-Brito, 

Plaza-Díaz, Muñoz-Quezada, Gómez-Llorente, & Gil, 2012). While in the gut, these probiotic 

bacteria may use the resources to produce short chain fatty acids and other substrates that the 

resident microbiota may utilize. This cross-feeding ability can be beneficial to the metabolic 

function of the established microbiome (Ceapa et al., 2013; McNulty et al., 2011; Scott, 

Antoine, Midtvedt, & van Hemert, 2015). They may also act to prevent the invasion of 

potentially pathogenic bacteria from establishing (through their ability to improve the host 

barrier function, influence on host immune system and their use of available resources 

(Bermudez-Brito et al., 2012)) thus aiding the resident microbiota fend off competition. Finally, 

these bacteria can alter enzymatic activity of the resident microbiota (Ouwehand, Lagström, 

Suomalainen, & Salminen, 2002), both if they are established into the community or if they are 

transiently present. Several avenues for development of “next‐generation probiotics” are being 

explored including the creation of genetically modified microorganisms (Chang, Ruan, & Kao, 

2019) and selection of taxa that may have a stronger ecological potential to survive and provide 

benefits in the host.  

Fecal microbiota transplantation (FMT) is an even more direct procedure to manipulate 

the gut microbiota and is achieved by transferring fecal microbiota from donors into recipients 

with the end goal of ameliorating a “dysbiosis” present in the recipient. Clinically FMT is 

currently used as an effective approach to treatment of Clostridium difficile‐ associated diseases 

(Chang et al., 2019). Recently there have been a few trials assessing the use of FMT for therapy 

in other diseases including obesity and metabolic disorders that have had mixed results (Z. 

Zhang et al., 2019). Several concerns arise when discussing FMT for clinical application, 

especially uncertainty surrounding the complex and undefined microbiota composition. 

Although the short‐term adverse effects of FMT are generally reported to be relatively minor, 

the long‐term effects of these treatments will still need to be carefully evaluated. There are still 

many unknowns surrounding the most effective implementation of FMT as a potential 

therapeutic for obesity and metabolic dysfunction. Future mechanistic studies of FMT will 
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hopefully reveal more on which changes in composition and function of gut microbiome affect 

metabolic outcomes for patients. Additional insights on optimal fecal microbial preparation, 

effective dosage, duration of intervention and method of delivery are also needed to best 

implement this technique as a reliable therapeutic tool.   

Finally, dietary supplementation is another more indirect way of modulating the gut 

microbiome. Microbiome-accessible carbohydrates (MACs) are important in the diet to provide 

nutrients for gut microbes (Edward C. Deehan et al., 2017). Insufficient intake of MACs may 

lead to a depletion of species reliant on these substrates and a subsequent reduction in 

important fermentation end products involved in physiological and immunological host 

functions (Sonnenburg & Sonnenburg, 2014). Intake of MACs have been implicated in the 

reduction of chronic diseases (Dahl & Stewart, 2015; Delcour, Aman, Courtin, Hamaker, & 

Verbeke, 2016), low-grade systemic inflammation (Buyken et al., 2014), obesity (Armet, 

Deehan, Thöne, Hewko, & Walter, 2019; Du et al., 2009), metabolic syndrome (Chen, Chen, 

Wang, Qin, & Bai, 2017; Wei et al., 2018), type 2 diabetes (Yao et al., 2014), and CVD (Pereira et 

al., 2004; Veronese et al., 2018), as well as reduction in mortality rates (Yang, Zhao, Wu, Ma, & 

Xiang, 2015). Some mechanisms of action for these health-promoting effects of MACs have 

been studied more extensively. These include promotion of bile acids and cholesterol 

sequestration and excretion (Gunness & Gidley, 2010), reduction of glucose and lipid 

absorption (McRorie & McKeown, 2017)  and production of SCFAs (Ríos-Covián et al., 2016). 

SCFAs have a wide variety of immunological, metabolic, and endocrine effects including satiety 

promotion, improved inflammatory profiles, and ameliorating glucose and lipid metabolism 

(Koh, De Vadder, Kovatcheva-Datchary, & Bäckhed, 2016; Makki et al., 2018). 

Finally, combinations of these methods have been proposed to modify the microbiome. 

This includes “Synbiotics”; a combination of pre and probiotics with the end goal of providing a 

synergistic health benefit. A recent review concluded that dietary supplementation in 

populations with obesity and metabolic syndrome with synbiotics prepared using selected 

combinations of strains and prebiotics may provide anti-inflammatory effects and promote 

weight loss (Ferrarese, Ceresola, Preti, & Canducci, 2018). These observed effects were thought 



56 

to be in large part conferred due to SCFA production and modulation of the microbial 

community.  

Another important consideration for how to modulate the gut microbiome to confer 

health benefits is addressing specific considerations for the population of interest. Individuals 

with PWS are suggested to have some impaired gastrointestinal function; Gastric emptying in 

individuals with PWS has been reported to be relatively normal (Choe et al., 2005; Hoybye, 

Barkeling, Naslund, Thorén, & Hellstrom, 2007) or slightly slower than nonaffected individuals 

(Arenz, Schwarzer, Pfluger, Koletzko, & Schmidt, 2010). Individuals with PWS have increased 

frequency of constipation (Kuhlmann, Joensson, Froekjaer, Krogh, & Farholt, 2014) compared 

to the general population. Additionally, PWS patients often have difficulty interpreting body 

signals (such as mechanistic feedback responses to inhibit eating (Stevenson et al., 2007)) as 

well as expressing symptoms (Hurren & Flack, 2016). One mechanism by which dietary fibers 

can modulate appetite and promote satiety is dependant on the viscosity of the fiber and the 

subsequent slowing of gastric motility. However as gastric function is somewhat impaired in 

PWS, this mechanism for reducing hyperphagia may not be effective in this population.  

Based off the results from this thesis work, our research group led by Dr Andrea Haqq at 

the University of Alberta is currently working on a dietary fiber intervention in children with 

PWS (NCT04150991)(Haqq, 2020) that aims to take advantage of other mechanisms to achieve 

appetite reduction, such as the promotion of SCFA production. As described previously, SCFAs 

have a large range of beneficial effects and have been shown to modulate appetite in several 

ways. SCFAs may initiate stimulation of PYY and GLP-1 through SCFA mediated G-protein 

coupled receptors (GPCRs). Increased SCFA circulation is correlated with increases of anorectic 

gut hormones such as GLP-1 & PYY (G. Tolhurst et al., 2011; Zhou et al., 2006; Zhou et al., 2008) 

and increased leptin expression in adipocytes. MRI imaging shows SCFAs target appetite centers 

in the hypothalamus (Anastasovska et al., 2012; So et al., 2007). SCFAs have also been shown to 

improve glucose homeostasis, lipid metabolism and reduce insulin resistance (Delzenne & Kok, 

2001; Gao et al., 2009; Vadder et al., 2014). Together, the metabolic effects resulting from 

SCFAs point to a protective state against obesity.  
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To date, only one study specifically aiming to modulate the gut microbiome composition 

of children with PWS has been published. In a 90-day hospitalized intervention trial with PWS 

(n=17) and obese (n=21) children, a diet rich in non-digestible carbohydrates induced significant 

weight loss and resulted in structural changes of the gut microbiota that were associated with 

reduced inflammation (C. Zhang et al., 2015). The study authors also saw a statistically 

significant improvements in hyperphagia scores in the PWS children (assessed by the Dykens 

Hyperphagia Questionnaire). The planned study aims to replicate and improve upon the 

mixture of prebiotics and whole grains used in the Zhang (2015) study which included 

combination of whole grains, traditional Chinese medicinal foods and prebiotics (C. Zhang et al., 

2015). More specifically, this study will be using a mixture of fructo-oligosaccharides, digestion-

resistant maltodextrin, and resistant starch (RS4) along with adding whole food sources of 

insoluble fiber. A more in-depth review of the literature that provided rationale for the selected 

fibers and dosages and a summary can be found in Appendix G.  

An important factor for consideration of dosage and fiber selection for this intervention 

trial was tolerance to the intervention. Dietary fibers are often associated with undesirable 

gastrointestinal (GI) symptoms such as flatulence and abdominal pain, however the tolerability 

of a given fiber can vary greatly between individuals. The presence, frequency and severity of GI 

symptoms varies based on several factors, including properties of the fiber itself, the medium 

by which the fiber is consumed, and a combination of host factors including the resident gut 

microbiota (Grabitske & Slavin, 2009). A critical review of tolerance to dietary fiber intervention 

in pediatric populations was written and used as additional background for dosage rational. 

This work was written in 2017 and can be found in in Appendix H. Finally, a pilot study was 

developed to assess tolerability and the ease of the incorporation of the fiber intervention. A 

tolerance study journal (Appendix I) was completed by parents. In addition to daily assessments 

of tolerance, participants could indicate the amount of supplement consumed and write any 

additional comments they may have had in this journal. Results from this pilot study were taken 

into consideration for determining dosage and method of incorporation in the full clinical trial.  
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There are several challenges and hopes for this proposed intervention trial. High inter-

individual variability in responses to dietary intervention has been a longstanding issue in the 

development of effective treatment strategies for obesity. Several factors influence the 

response of the host to interventions and thus the ability to combine several measures to 

predict responses to interventions may lead to the development of personalized medicine. The 

gut microbiome could also be an important factor to consider in the development of 

personalized medical intervention. Previously, blood parameters, dietary habits, 

anthropometrics, physical activity, and gut microbiome features measured in a sample cohort 

were combined using machine-learning to create an algorithm that was able to accurately 

predict personalized postprandial glycemic response to meals (Zeevi et al., 2015). The algorithm 

was then further validated and applied in a blinded randomized controlled dietary intervention 

which resulted in significantly lower postprandial glycemic responses and consistent alterations 

to the observed gut microbiome composition. Together, these results led to study authors to 

suggest that future personalized diets may be able to successfully modify elevated postprandial 

blood glucose and subsequent metabolic outcomes.  

While there is still much work to be done, similar strategies could be developed for 

other factors that influence the development and progression of obesity (Bray et al., 2018). The 

PWS high fiber intervention study being conducted by our research group will be observing the 

relationship between changes in gut microbial composition and function with changes in 

hyperphagia, hormones (acylated-ghrelin, PYY, insulin, GLP-1, adiponectin, leptin), insulin 

sensitivity (HOMA-IR), inflammatory biomarkers (high sensitive C-reactive protein (hs-CRP), 

aspartate aminotransferase (AST), alanine aminotransferase (ALT), lipids) and metabolites 

(amino acids, branched chain ketoacids, acylcarnitines, ceramides, Trimethylamine N-oxide 

(TMAO), choline and betaine). The large amount of information gathered in this trial may 

provide valuable information for the development of even more personalized nutrition for the 

PWS population.  
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Overall, this future research aims to expand upon this thesis work to provide potential 

new approaches for effective and practical non-pharmacologic treatment of excessive weight 

gain and hyperphagia associated with PWS to improve overall health and quality of life.  

There is still much to be understood about the microbiome’s role in health and disease 

and additional research specifically considering the microbiome in PWS is warranted. There are 

many avenues for future interventions to harness the potential of the gut microbial ecosystem 

as a potential therapeutic target to ameliorate the lives of individuals with PWS. 
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Table 1. Participant Characteristics 

  PWS (n=25) Control (n=25) P-values 

Background Characteristics 

Sex (F/M) 14/11 9/16 0.162 

Age (Years) 6.2 (5.2, 12.9) 8.8 (6.4, 10.5) 0.800 

BMI %ile 79.3 (65.5, 94.1) 76.6 (51.2, 91.5) 0.507 

BMI z-score 0.8 (0.4, 1.6) 0.73 (0.02, 1.4) 0.588 

Weight Status (OWOB/NW) 10/15 8/17 0.565 

Genetic subtype 
15-DEL 

10-UPD 
- - 

Hyperphagia Data 

Hyperphagia Score 

Behaviour (/25) 
7 (5, 10) 6 (6, 8) 0.172 

Hyperphagia Score 

Drive (/20) 
8 (7, 11) 7 (6, 8) 0.019* 

Hyperphagia Score 

Severity (/10) 
4 (2, 4) 2 (2, 2) 0.000* 

Hyperphagia Score 

Total (/55) 
19 (16, 26) 15 (14, 18) 0.005* 

Dietary intake Data 

ENERGY (Kcal) 1360.69 (1175.7, 1499.8) 1911.5 (1540.4, 2064.4) 0.000* 

Fib (g) 18.50 (14.9, 21.78) 18.38 (15.3, 22.2) 0.945 

Prot (g) 61.41 (51.9, 71.3) 65.95 (58.6, 84.5) 0.058 

Carb (g) 149.24 (102.1,171.9) 254.25 (211. 7, 287.0) 0.000* 

Fat (g) 47.23 (28.4, 53.9) 63.21 (47.3, 77.4) 0.016* 

SatFat (g) 14.39 (9.6, 20.1) 25.2 (19.5, 31.1) 0.004* 

MonoFat (g) 15.31 (9.8, 23.4) 22.31 (13.7, 31.9) 0.155 

PolyFat (g) 6.6 (4.8, 10.0) 8.65 (7.3, 16.1) 0.486 

TransFat (g) 0.83 (0.2, 4.0) 1.24 (0.7, 2.8) 0.443 

Chol (mg) 160.34 (72.0, 273.0) 151.79 (129.8, 282.2) 0.334 

 Sugar (g) 52.63 (26.8, 69.4) 81.53 (51.1, 108.8) 0.022* 

Table 1. Participant Characteristics  

Data presented as Median (25th and 75th percentiles). Hyperphagia scores obtained from 

validated questionnaire containing questions about hyperphagic behavior (5 questions), drive 
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(4 questions) and severity (2 questions). Total Hyperphagia assessment scores ranged from 12 

to 39 out of a total of 55 for the PWS group and from 12 to 25 for the control group. Minimum 

possible score for the hyperphagia questionnaire is 11/55. *P-values for comparison between 

total PWS group (n = 25) and total control group (n = 25) determined using independent 

Student's t test (* indicates where p<0.05).  

Abbreviations: Deletion (DEL), Uniparental disomy (UPD), Overweight/Obese (OWOB), Normal 

weight (NW) 
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Table 2. Data filtering summary 

Table: Data filtering summary 

Data used: 
# of 

samples  

# of low 
abundance 

features removed 
based on 

prevalence  

# of low 
abundance 

features removed 
based on variance 

(IQR)  

# of 
features 

remaining 

  
Fungal:         

PWS vs CON 37 73 N/A 40 
NW: CON vs PWS 21 57 N/A 19 
OWOB: CON vs PWS 16 41 N/A 21 
PWS: NW vs OWOB 19 49 N/A 25 
CON: NW vs OWOB 18 45 N/A 21 

  
Bacterial:         

PWS vs CON 50 1719 39 348 
NW: CON vs PWS 32 1060 41 364 
OWOB: CON vs PWS 18 1480 43 378 
PWS: NW vs OWOB 25 1351 45 398 
CON: NW vs OWOB 25 1230 39 346 

 

Table 2. Data filtering summary 

Columns represent the number of samples in a given analysis, the numbers of features 

removed based on prevalence (minimum count of 4, 15% of samples), variance (IQR) and finally 

the number of features remaining for analysis. Rows indicate the group analysis performed and 

is separated by fungal and bacterial analysis.  

Abbreviations: Interquartile range (IQR), Overweight/Obese (OWOB), Normal weight (NW), 

Prader-Willi Syndrome (PWS), Control group (CON) 
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Figure 1. Fungal Chao1 alpha diversity 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Fungal Chao1 alpha diversity 

4-way ANOVA of fungal Chao1 alpha diversity index. Significance of pairwise tests indicated 

with p-values.  

No overall significance between the two groups (PWS vs CON, p>0.05).  

PWS vs CON 

p-value: 0.051291; [T-test] statistic: -2.0192 

A.  B.  

C.  
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The Chao1 richness was higher in the OWOB PWS group than the OWOB CON group (p-value: 

0.048733; [T-test] statistic: -2.1777).  No other significant differences in chao1 richness was 

observed. A) Chao1 alpha diversity of 4 subgroups. B) Chao1 alpha diversity of 2 groups. C) 

Chao1 alpha diversity of individual samples. 

Abbreviations: Overweight/Obese (OWOB), Normal weight (NW), Prader-Willi Syndrome (PWS), 

Control group (CON) 
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Figure 2. Fungal Shannon alpha diversity 

 

 

  

A.  B.  

C.  
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  Figure 2: Fungal Shannon alpha diversity 

4-way ANOVA of fungal Shannon alpha diversity index. Significance of pairwise tests 

indicated with p-values.  

No significant differences in fungal Shannon alpha diversity index were observed. A) Shannon 

alpha diversity of 4 subgroups. B) Shannon alpha diversity of 2 groups. C) Shannon alpha 

diversity of individual samples. 

Abbreviations: Overweight/Obese (OWOB), Normal weight (NW), Prader-Willi Syndrome 

(PWS), Control group (CON) 
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Figure 3. Fungal Simpson alpha diversity 

 

  

A.  B.  

C.  



69 

Figure 3: Fungal Simpson alpha diversity 

4-way ANOVA of fungal Shannon alpha diversity index. Significance of pairwise tests 

indicated with p-values.  

No significant differences in fungal Simpson alpha diversity index were observed. A) Simpson 

alpha diversity of 4 subgroups. B) Simpson alpha diversity of 2 groups. C) Simpson alpha 

diversity of individual samples. 

Abbreviations: Overweight/Obese (OWOB), Normal weight (NW), Prader-Willi Syndrome 

(PWS), Control group (CON) 



70 

Figure 4. Summary of Fungal beta diversity:   

 

 

PWS vs CON:  [PERMANOVA] F-value: 4.2049; R-squared: 0.10725; p-value<0.001 * 

    

NW PWS vs NW CON:  [PERMANOVA] F-value: 2.267; R-squared: 0.1066; p-value < 0.022 * 

    

OWOB PWS vs OWOB CON: [PERMANOVA] F-value: 4.0703; R-squared: 0.22525; p-value < 0.001 * 

    

NW PWS vs OWOB PWS: [PERMANOVA] F-value: 0.7229; R-squared: 0.04789; p-value < 0.649 

    

NW CON vs OWOB CON:  [PERMANOVA] F-value: 0.70381; R-squared: 0.042135; p-value < 0.671  

 

Figure 4. Summary of Fungal beta diversity:   

2D PCoA plot using bray-curtis distance (4 subgroups) 
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Each point displayed on PCoA plots was colour coded based on sample subgroup and the 

explained variances are shown in brackets. Significance of each pairwise subgroup analysis is 

listed in the table under the PCoA. Differences were found between the two-group analysis 

(PWS vs CON) and the two-weight adjusted group analysis (NW PWS vs NW CON and OWOB 

PWS vs OWOB CON). Overall statistical significance of the 4 subgroups at the feature level was 

found out using Permutational ANOVA (PERMANOVA), with an F-value: 2.4925; R-squared: 

0.18473; p-value < 0.001. The first PCoA dimension (PCoA Axis 1) explained 23.2% of variation 

in the data. The second PCoA dimension (PCoA Axis 2) explained 16.1% of variation in the data. 

Abbreviations: Overweight/Obese (OWOB), Normal weight (NW), Prader-Willi Syndrome (PWS), 

Control group (CON), PCoA- Principle Coordinate Analysis, PERMANOVA- Permutational analysis 

of variance   
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Figure 5. 2D PCoA plot using bray-curtis distance for PWS vs CON groups.  

 

Figure 5: 2D PCoA plot using bray-curtis distance for PWS vs CON groups.  

Each point displayed on PCoA plots was colour coded based on sample group (PWS vs CON) and 

the explained variances are shown in brackets. Statistical significance at the feature level was 

found out using Permutational ANOVA PERMANOVA, with an F-value: 4.2049; R-squared: 

0.10725; p-value<0. 001. The first PCoA dimension (PCoA Axis 1) explained 21.2% of variation in 

the data. The second PCoA dimension (PCoA Axis 2) explained 13.8% of variation in the data.  

Abbreviations: Prader-Willi Syndrome (PWS), Control group (CON), PCoA- Principle Coordinate 

Analysis, PERMANOVA- Permutational analysis of variance   
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Figure 6. Differential features identified by DESeq2 analysis at Genus level based on PWS 

samples vs CON samples as the grouping variable/experimental factor.  
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Figure 6: Differential features identified by DESeq2 analysis at Genus level based on PWS 

samples vs CON samples as the grouping variable/experimental factor.  

Features are considered to be significant based on their adjusted p-value (adj. p-value cutoff = 

0.05, significance indicated with *). Saccharomyces, Candida, and unclassified Basidiomycota 

were identified as differential features (P<0.001), with larger abundances of Saccharomyces in 

the Control group and higher abundances of Candida and unclassified Basidiomycota in the 

PWS group.  

Abbreviations: Prader-Willi Syndrome (PWS), Control group (CON), False discovery rate (FDR), 

log2FoldChange (log2FC), log fold change Standard Error (lfcSE) 

 

  

 

Genus log2FC lfcSE Pvalues FDR 

Saccharomyces -5.1935 0.96588 7.58E-08 6.06E-07 * 

Candida 6.0249 1.169 2.55E-07 1.02E-06 * 

Basidiomycota_unclassified 6.6992 1.8785 0.000362 0.000966 * 

Cyberlindnera -2.216 1.6009 0.16628 0.32242 

Ascomycota_unclassified -1.633 1.2785 0.20151 0.32242 

Alternaria 0.55258 2.9326 0.85054 0.95672 

Cladosporium 0.34449 1.8851 0.855 0.95672 

Fungi_unclassified 0.042957 0.79153 0.95672 0.95672 
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Figure 7. 2D PCoA plot using bray-curtis distance (NW CON vs NW PWS). 

 

 

 

Figure 7: 2D PCoA plot using bray-curtis distance (NW CON vs NW PWS).  

Each point displayed on PCoA plots was colored based on sample group and the explained 

variances are shown in brackets. Statistical significance at the feature level was found out using 

Permutational ANOVA (PERMANOVA), with an F-value: 2.267; R-squared: 0.1066; p-value < 

0.022. The first PCoA dimension (PCoA Axis 1) explained 26% of variation in the data. The 

second PCoA dimension (PCoA Axis 2) explained 23.6% of variation in the data.  

Abbreviations: Prader-Willi Syndrome (PWS), Control group (CON), Normal weight (NW), PCoA- 

Principle Coordinate Analysis, PERMANOVA- Permutational analysis of variance  
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Table 3. Differential features identified by DESeq2 analysis at Genus level based on NW PWS 

samples vs NW CON samples as the grouping variable/experimental factor.  

 

Genus log2FC lfcSE Pvalues FDR 

Candida 4.5516 1.8313 0.012942 0.10353 

Ascomycota_unclassified 3.262 2.226 0.14281 0.55219 

Cyberlindnera -3.3304 2.6397 0.20707 0.55219 

Saccharomyces -1.1851 1.4699 0.42012 0.77146 

Rhodotorula -1.7011 2.9271 0.56113 0.77146 

Fungi_unclassified 

-

0.53205 1.1067 0.63068 0.77146 

Cladosporium -1.0533 2.9217 0.71845 0.77146 

Alternaria 

-

0.85501 2.9435 0.77146 0.77146 

 

Table 3: Differential features identified by DESeq2 analysis at Genus level based on NW PWS 

samples vs NW CON samples as the grouping variable/experimental factor.  

Features are considered to be significant based on their adjusted p-value (adj. p-value cutoff = 

0.05, significance indicated with *). No significantly differential fungal genus identified between 

groups.  

Abbreviations: Prader-Willi Syndrome (PWS), Control group (CON), Normal weight (NW), False 

discovery rate (FDR), log2FoldChange (log2FC), log fold change Standard Error (lfcSE) 
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Figure 8. Fungal alpha diversity index Chao1 between OWOB PWS and OWOB CON groups.  

 

 

Figure 8: Fungal alpha diversity index Chao1 between OWOB PWS and OWOB CON groups.  

 A) Sample level chao1 alpha diversity scores and B) group level comparisons between the PWS 

and CON groups. Higher chao1 diversity was observed in the PWS group compared to the CON 

group (p=0.04) using parametric tests (t-test/ANOVA) on the filtered and normalized data at 

OTU level (p-value: 0.048733; [T-test] statistic: -2.1777). 

Abbreviations: Prader-Willi Syndrome (PWS), Control group (CON), Overweight/Obese (OWOB) 
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Figure 9. 2D PCoA plot using bray-curtis distance (OWOB CON vs OWOB PWS). 

 

Figure 9: 2D PCoA plot using bray-curtis distance (OWOB CON vs OWOB PWS).  

Each point displayed on PCoA plots was colored based on sample group and the explained 

variances are shown in brackets. Statistical significance at the feature level was found out using 

Permutational ANOVA (PERMANOVA), with an F-value: 4.0703; R-squared: 0.22525; p-value < 

0.001. A) Feature level: The first PCoA dimension (PCoA Axis 1) explained 30.6% of variation in 

the data. The second PCoA dimension (PCoA Axis 2) explained 20.9% of variation  

Abbreviations: Overweight/Obese (OWOB), Prader-Willi Syndrome (PWS), Control group (CON), 

PCoA- Principle Coordinate Analysis, PERMANOVA- Permutational analysis of variance   
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Figure 10. Differential features identified by DESeq2 analysis at Genus level based on OWOB 

PWS samples vs OWOB CON samples as the grouping variable/experimental factor.  

 

 

Genus log2FC lfcSE Pvalues FDR 

Saccharomyces 

-

4.4034 1.3096 0.000772 

0.00309 

* 

Candida 4.9947 1.5872 0.001651 

0.003302 

* 

Fungi_unclassified 1.7538 1.5359 0.2535 0.338 

Basidiomycota_unclassified 2.4069 2.5252 0.34052 0.34052 

 

Figure 10: Differential features identified by DESeq2 analysis at Genus level based on OWOB 

PWS samples vs OWOB CON samples as the grouping variable/experimental factor.  

Features are considered to be significant based on their adjusted p-value (adj. p-value cutoff = 

0.05, significance indicated with *). Saccharomyces and Candida were identified as differential 

features (P=0.003), with larger abundances of Saccharomyces in the OWOB CON group and 

higher abundances of Candida in the OWOB PWS group.  
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Abbreviations: Prader-Willi Syndrome (PWS), Control group (CON), Overweight/Obese (OWOB), 

False discovery rate (FDR), log2FoldChange (log2FC), log fold change Standard Error (lfcSE) 

 

Figure 11. 2D PCoA plot using bray-curtis distance for within grouptype analysis  

 

B) [PERMANOVA] F-value: 0.70381; R-squared: 0.042135; p-value < 0.671  

A) [PERMANOVA] F-value: 0.7229; R-squared: 0.04789; p-value < 0.649 
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Figure 11. 2D PCoA plot using bray-curtis distance for within grouptype analysis 

Each point displayed on PCoA plots was colored based on sample group and the explained 

variances are shown in brackets. No significant differences were found for the bacterial 

communities for either the A) NW and OWOB PWS subgroups or B) NW and OWOB CON 

subgroups.  

Abbreviations: Overweight/Obese (OWOB), Normal weight (NW), Prader-Willi Syndrome (PWS), 

Control group (CON), PCoA- Principle Coordinate Analysis, PERMANOVA- Permutational analysis 

of variance   
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Figure 12. Differential features identified by DESeq2 analysis at Genus level based on NW 

PWS vs OWOB PWS samples as the grouping variable/experimental factor. 

Genus log2FC lfcSE Pvalues FDR 

Basidiomycota_unclassified 6.3788 2.1518 0.003032 0.03032 * 

Ascomycota_unclassified -5.433 2.4315 0.025457 0.12728 

Clavispora 2.2341 2.8068 0.42607 0.84667 

Saccharomyces -1.4405 1.9469 0.45937 0.84667 

Cyberlindnera -1.1816 2.2398 0.59782 0.84667 

Fungi_unclassified 0.6436 1.2699 0.61228 0.84667 

Mrakia -1.1781 2.3749 0.61986 0.84667 

Alternaria -1.1782 2.8315 0.67733 0.84667 

Cladosporium -0.66642 2.5983 0.79758 0.8862 

Candida -0.07855 1.4791 0.95764 0.95764 
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Figure 12: Differential features identified by DESeq2 analysis at Genus level based on NW 

PWS vs OWOB PWS samples as the grouping variable/experimental factor.  

Features are considered to be significant based on their adjusted p-value (adj. p-value cutoff = 

0.05, significance indicated with *). Higher abundances of unclassified Basidiomycota were seen 

in the OWOB PWS group (P=0.03).  

Abbreviations: Prader-Willi Syndrome (PWS), Control group (CON), Overweight/Obese (OWOB), 

Normal weight (NW), False discovery rate (FDR), log2FoldChange (log2FC), log fold change 

Standard Error (lfcSE) 
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Table 4. Differential features identified by DESeq2 analysis at Genus level based on NW CON 

samples vs OWOB CON samples as the grouping variable/experimental factor. 

Name log2FC lfcSE Pvalues FDR 

Rhodotorula -5.1067 3.0691 0.096125 0.5722 

Candida -2.6171 2.1506 0.22364 0.5722 

Cyberlindnera -2.5867 2.6174 0.32302 0.5722 

Fungi_unclassified 0.91695 1.1289 0.41666 0.5722 

Ascomycota_unclassified -1.2419 1.7456 0.47683 0.5722 

Saccharomyces 0.087262 1.0319 0.93261 0.93261 

 

Table 4: Differential features identified by DESeq2 analysis at Genus level based on NW CON 

samples vs OWOB CON samples as the grouping variable/experimental factor.  

Features are considered to be significant based on their adjusted p-value (adj. p-value cutoff = 

0.05, significance indicated with *). No significantly differential fungal genus identified between 

groups.  

Abbreviations: Prader-Willi Syndrome (PWS), Control group (CON), Overweight/Obese (OWOB), 

Normal weight (NW), False discovery rate (FDR), log2FoldChange (log2FC), log fold change 

Standard Error (lfcSE) 
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Figure 13.  

 

 

 

Figure 13. Graphical summary of fungal 

differential features identified by DESeq2 

analysis at Genus level for the 4 subgroups. 

Percentage abundance in each subgroup 

displayed.  
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Figure 14. Bacterial Chao1 alpha diversity  

 

 

  

A.  B.  

PWS vs CON 

p-value: 0.51637; [T-test] statistic: 0.65388 

 

C.  
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  Figure 14: Bacterial Chao1 alpha diversity 

4-way ANOVA of bacterial Chao1 alpha diversity index. Significance of pairwise tests 

indicated with p-values.  

No significant differences in chao1 richness were observed. A) Chao1 alpha diversity of 4 

subgroups. B) Chao1 alpha diversity of 2 groups. C) Chao1 alpha diversity of individual 

samples. 

Abbreviations: Overweight/Obese (OWOB), Normal weight (NW), Prader-Willi Syndrome 

(PWS), Control group (CON) 
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Figure 15. Pairwise Bacterial Shannon alpha diversity 

 

 

  

Figure 15: Bacterial Shannon alpha diversity 

4-way ANOVA of bacterial Shannon alpha diversity index. Significance of pairwise tests 

indicated with p-values.  

No significant differences in Bacterial Shannon alpha diversity index in pairwise subgroup 

tests.   

Abbreviations: Overweight/Obese (OWOB), Normal weight (NW), Prader-Willi Syndrome 

(PWS), Control group (CON) 
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Figure 16. Bacterial Shannon alpha diversity index for PWS vs CON 

 

  PWS vs CON: p-value: 0.045437; [T-test] statistic: 2.0752 

Figure 16: Bacterial Shannon 

alpha diversity index for PWS vs 

CON 

A) Sample level shannon alpha 

diversity scores and B) group 

level comparisons between the 

PWS and CON groups. Higher 

Shannon diversity was observed 

in the CON group compared to 

the PWS group (p=0.04) using 

parametric tests.  

Abbreviations: Prader-Willi 

Syndrome (PWS), Control group 

(CON) 

A.  

B.  
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Figure 17. Bacterial Simpson alpha diversity 

 

  

Figure 17: Bacterial Simpson alpha diversity 

4-way ANOVA of bacterial Shannon alpha diversity index. Significance of pairwise 

tests indicated with p-values.  

No significant differences in bacterial Simpson alpha diversity index were observed.  

Abbreviations: Overweight/Obese (OWOB), Normal weight (NW), Prader-Willi Syndrome 

(PWS), Control group (CON) 

P=0.14 
P=0.41 

P=0.51 

P=0.64 

PWS vs CON 

p-value: 0.22371; [Mann-Whitney] statistic: 376 
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Figure 18. Summary of Bacterial beta diversity: 

 

  

[PERMANOVA] F-value: 0.84533; R-squared: 0.05225; p-value < 0.696 

Figure 18. Summary of Bacterial beta diversity:  2D PCoA plot using bray-curtis distance (4 

subgroups) 

Each point displayed on PCoA plots was colour coded based on sample subgroup and the 

explained variances are shown in brackets. Significance of each pairwise subgroup analysis is 

listed in the table under the PCoA. No statistical significance was found for any measures of 

beta diversity (P>0.05). 

 

Abbreviations: Overweight/Obese (OWOB), Normal weight (NW), Prader-Willi Syndrome 

(PWS), Control group (CON), PCoA- Principle Coordinate Analysis, PERMANOVA- 

Permutational analysis of variance   

 

 

PWS vs CON:  [PERMANOVA] F-value: 1.0771; R-squared: 0.021947; p-value < 0.359 

    

NW PWS vs NW CON:  [PERMANOVA] F-value: 0.93137; R-squared: 0.030111; p-value < 0.469 

    

OWOB PWS vs OWOB CON: [PERMANOVA] F-value: 0.83274; R-squared: 0.049471; p-value < 0.516 

    

NW PWS vs OWOB PWS: [PERMANOVA] F-value: 0.52002; R-squared: 0.02211; p-value < 0.884 

    

NW CON vs OWOB CON:  [PERMANOVA] F-value: 0.92354; R-squared: 0.038604; p-value < 0.533 
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Table 5. 

Genus log2FC lfcSE Pvalues FDR 

SMB53 -1.5271 0.5833 0.008844 0.4422 

Anaerostipes -1.6409 0.78553 0.03671 0.5756 

Escherichia 1.8146 0.89268 0.042079 0.5756 

Oscillospira -0.61325 0.32035 0.055577 0.5756 

Bacteria_unclassified -1.2547 0.68696 0.067786 0.5756 

Akkermansia 2.1464 1.2628 0.089179 0.5756 

Prevotella 2.1919 1.331 0.099609 0.5756 

 

Table 5. Differential abundance assessment with DESeq2 at bacterial genus level for 2 group 

(PWS vs CON) analysis.  

Features are considered to be significant based on their adjusted p-value (adj. p-value cutoff = 

0.05, significance indicated with *). No significantly differential fungal genus identified between 

groups.  

Abbreviations: Prader-Willi Syndrome (PWS), Control group (CON), False discovery rate (FDR), 

log2FoldChange (log2FC), log fold change Standard Error (lfcSE) 
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Figure 19. Bacterial DESeq2 Differential Abundance Analysis NW CON vs NW PWS 

  

Name log2FC lfcSE Pvalues FDR 

Staphylococcus 3.6372 0.91725 7.3296E-5 0.0040313 

Lactobacillus 3.6462 1.0425 4.6956E-4 0.012913 

Escherichia 2.9845 1.0019 0.0028943 0.042875 

RF39_unclassified 4.9039 1.6753 0.0034216 0.042875 

Bacteroidales_unclassified -5.231 1.8123 0.0038977 0.042875 

Holdemania 1.7646 0.75925 0.020117 0.18441 

Anaerostipes -1.5881 0.72301 0.028057 0.19943 

Adlercreutzia 1.7381 0.79604 0.029008 0.19943 

Bacteria_unclassified -1.6674 0.78125 0.032823 0.20059 

Lachnobacterium -3.1867 1.5439 0.039012 0.20367 

Oscillospira -0.82303 0.40222 0.040734 0.20367 
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Figure 19: Bacterial DESeq2 Differential Abundance Analysis NW CON vs NW PWS 

Features are considered to be significant based on their adjusted p-value (adj. p-value cutoff = 

0.05, significance indicated with *). Staphylococcus (p=0.004), Lactobacillus (p=0.01), 

Escherichia (p=0.04) and unclassified RF39 (p=0.04) were all found to be more abundant in the 

NW PWS groups, whereas  an increase in unclassified Bacteroidales (p=0.04) was observed in 

the NW CON subgroup.  

Abbreviations: Prader-Willi Syndrome (PWS), Control group (CON), Normal weight (NW), False 

discovery rate (FDR), log2FoldChange (log2FC), log fold change Standard Error (lfcSE) 
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Figure 20. Bacterial DESeq2 Differential Abundance Analysis OWOB CON vs OWOB PWS 

 

 

 

 

 

 

 

 

 

Figure 20: Bacterial DESeq2 Differential Abundance Analysis OWOB CON vs OWOB PWS 

Features are considered to be significant based on their adjusted p-value (adj. p-value cutoff = 

0.05, significance indicated with *). SMB53 (P<0.001) was more abundant in the OWOB CON 

group, whereas Lachnospira (p=0.04) was elevated in the OWOB PWS group.  

Abbreviations: Prader-Willi Syndrome (PWS), Control group (CON), Overweight/Obese (OWOB), 

False discovery rate (FDR), log2FoldChange (log2FC), log fold change Standard Error (lfcSE) 

  

Name log2FC lfcSE Pvalues FDR 

SMB53 -2.8255 0.64105 1.0453E-5 4.8086E-4 

Lachnospira 1.8269 0.59452 0.0021197 0.048754 

Turicibacter -3.3086 1.2251 0.0069185 0.10387 

Enterobacteriaceae_unclassified 2.3378 0.89541 0.0090326 0.10387 

Alistipes 1.577 0.71129 0.026613 0.19483 

Bacteria_unclassified 2.2345 1.0189 0.0283 0.19483 

Lachnospiraceae_unclassified 0.71645 0.32944 0.029647 0.19483 

 

* 

* 
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Figure 21. Bacterial DESeq2 Differential Abundance Analysis NW PWS VS OWOB PWS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Bacterial DESeq2 Differential Abundance Analysis NW PWS VS OWOB PWS 

Features are considered to be significant based on their adjusted p-value (adj. p-value cutoff = 

0.05, significance indicated with *). Within the PWS group, a larger abundance of Escherichia 

(p=0.001) was observed in the NW subgroup compared to the OWOB subgroup.  

Abbreviations: Prader-Willi Syndrome (PWS), Control group (CON), Overweight/Obese (OWOB), 

Normal weight (NW), False discovery rate (FDR), log2FoldChange (log2FC), log fold change 

Standard Error (lfcSE) 

 

* 

Name log2FC lfcSE Pvalues FDR 

Escherichia -4.3764 1.0551 3.3582E-5 0.0017799 

RF39_unclassified -5.6725 2.0655 0.0060261 0.11476 

Turicibacter -3.258 1.1971 0.0064958 0.11476 

SMB53 -1.7398 0.75318 0.020888 0.27677 

Dialister 2.7637 1.2492 0.026941 0.28558 

Eubacterium -2.7212 1.3234 0.03977 0.33145 
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Figure 22. Bacterial DESeq2 Differential Abundance Analysis NW CON VS OWOB CON 

 

 

 

 

 

 

  

  Name log2FC lfcSE Pvalues FDR 

Phascolarctobacterium -8.1775 1.7305 2.2965E-6 1.1023E-4 

Bifidobacterium 2.7405 0.64198 1.9647E-5 4.7153E-4 

Alistipes -1.7547 0.58048 0.0025038 0.034881 

Bacteria_unclassified -2.7547 0.92519 0.0029068 0.034881 

Haemophilus -2.581 0.98257 0.0086199 0.082751 

Collinsella 3.3516 1.369 0.014356 0.11485 

Lachnospira -1.403 0.662 0.034062 0.2044 

Christensenellaceae_unclassified -2.261 1.0669 0.034067 0.2044 

Lachnospiraceae_unclassified -0.90611 0.44811 0.043168 0.23023 
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Figure 22: Bacterial DESeq2 Differential Abundance Analysis NW CON VS OWOB CON 

Features are considered to be significant based on their adjusted p-value (adj. p-value cutoff = 

0.05, significance indicated with *). Bifidobacterium was found to be more abundant in the 

OWOB CON group (p<0.001) whereas Phascolarctobacterium, unclassified Bacteria, Alistipes 

and Haemophilus were more abundant in the NW CON group  

Abbreviations: Prader-Willi Syndrome (PWS), Control group (CON), Overweight/Obese (OWOB), 

Normal weight (NW), False discovery rate (FDR), log2FoldChange (log2FC), log fold change 

Standard Error (lfcSE) 
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Figure 23. Correlation between gut microbiota and hyperphagia scores. 
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Figure 23: Correlation between gut microbiota and hyperphagia scores.  

 
Spearman’s correlations were calculated and tested for significance, then adjusted for FDR 
using the Bonferroni methodology. Results were then plotted onto a heatmap. The heatmap 
legend represents spearman correlation scores.  

(A) Correlation of hyperphagia scores with bacterial genus-level abundance in the PWS group. 
(B) Correlation of hyperphagia scores with bacterial genus-level abundance in the CON group. 
(C) Correlation of hyperphagia scores with fungal genus-level abundance in the PWS group. (D) 
Correlation of hyperphagia scores with fungal genus-level abundance in the CON group. No 
significant differences found after FDR adjustments.  

* indicates the p values less than 0.05. + indicated a p-value less than 0.25.  

Abbreviations: Prader-Willi Syndrome (PWS), Control group (CON), False discovery rate (FDR)  
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Figure 24. Correlation between gut microbiota and dietary intakes. 
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D) 

 

Figure 24: Correlation between gut microbiota and dietary intakes.  

Spearman’s correlations were calculated and tested for significance, then adjusted for FDR 

using the Bonferroni methodology. Results were then plotted onto a heatmap. The heatmap 

legend represents spearman correlation scores.  

(A) Correlation of dietary intakes with bacterial genera in the PWS group. (B) Correlation of 
dietary intakes with bacterial genera in the CON group. (C) Correlation of dietary intakes with 
fungal genera in the PWS group. (D) Correlation of dietary intakes with fungal genera in the CON 
group.   
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* indicates the p values less than 0.05. + indicated a p-value less than 0.25.  

The bacterial genus SMB53 was slightly positively correlated with polyunsaturated fat intake in 
the PWS group  (p=0.23, Spearman correlation=0.65) and the fungal genus Alternaria was 
slightly positively correlated with Saturated fat intake in the PWS group (p=0.16, Spearman 
correlation=0.73). No other genus was found to be significant after FDR adjustments. 

Energy-adjusted intake: Diet data adjusted using the "Nutrient residual (energy-adjusted) model" 
to control for variation caused by total energy intake. Residual calculation utilized the mean 
dietary intake values as described in the methodology of Willett et. al (1997). Nutrients of interest 
selectively presented here from the 3-day dietary records analyzed using Processor SQL (version 
11.4, ESHA Research, Salem, OR, 2006)  

Abbreviations: Prader-Willi Syndrome (PWS), Control group (CON), False discovery rate (FDR)  
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Figure 25. CCA model using all collected metadata 

 

              Inertia Proportion Rank 
Total         12.1267     1.0000      
Constrained    7.1193     0.5871   20 
Unconstrained 5.0074     0.4129   16 
 

Figure 25: CCA model using all collected metadata.  

The amount of the constrained inertia expressed by each constrained axis was noted on the 

axis labels. The first CCA dimension (CCA Axis 1) explained 7.4% of variation in the data. The 

second CCA dimension (CCA Axis 2) explained 7.1% of variation in the data. 58% of variance in 

the fungal abundance matrix can be explained by the model containing all collected metadata. 

Vector arrows displayed for only significantly contributing factors as assessed by ANOVA 

(P<0.05).  

 



110 

Bibliography  

 

Agustí, A., García-Pardo, M. P., López-Almela, I., Campillo, I., Maes, M., Romaní-Pérez, M., & Sanz, Y. 
(2018). Interplay Between the Gut-Brain Axis, Obesity and Cognitive Function. Frontiers in 
neuroscience, 12, 155-155. doi:10.3389/fnins.2018.00155 

Ajslev, T. A., Andersen, C. S., Gamborg, M., Sørensen, T. I. A., & Jess, T. (2011). Childhood overweight 
after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and 
early administration of antibiotics. International Journal of Obesity, 35(4), 522-529. 
doi:10.1038/ijo.2011.27 

Alander, M., Mättö, J., Kneifel, W., Johansson, M., Kögler, B., Crittenden, R., . . . Saarela, M. (2001). 
Effect of galacto-oligosaccharide supplementation on human faecal microflora and on survival 
and persistence of Bifidobacterium lactis Bb-12 in the gastrointestinal tract. International Dairy 
Journal, 11(10), 817-825. doi:10.1016/s0958-6946(01)00100-5 

Albenberg, L., Esipova, T. V., Judge, C. P., Bittinger, K., Chen, J., Laughlin, A., . . . Wu, G. D. (2014). 
Correlation between intraluminal oxygen gradient and radial partitioning of intestinal 
microbiota. Gastroenterology, 147(5), 1055-1063.e1058. doi:10.1053/j.gastro.2014.07.020 

Anastasovska, J., Arora, T., Sanchez Canon, G. J., Parkinson, J. R. C., Touhy, K., R. Gibson, G., . . . Frost, G. 
(2012). Fermentable Carbohydrate Alters Hypothalamic Neuronal Activity and Protects Against 
the Obesogenic Environment. Obesity, 20(5), 1016-1023. doi:10.1038/oby.2012.6 

Anderson, E. L., Li, W., Klitgord, N., Highlander, S. K., Dayrit, M., Seguritan, V., . . . Jones, M. B. (2016). A 
robust ambient temperature collection and stabilization strategy: Enabling worldwide functional 
studies of the human microbiome. Sci Rep, 6, 31731. doi:10.1038/srep31731 

Arenz, T., Schwarzer, A., Pfluger, T., Koletzko, S., & Schmidt, H. (2010). Delayed Gastric Emptying in 
Patients with Prader Willi Syndrome. Journal of Pediatric Endocrinology and Metabolism, 23(9). 
doi:10.1515/jpem.2010.140 

Armet, A. M., Deehan, E. C., Thöne, J. V., Hewko, S. J., & Walter, J. (2019). The Effect of Isolated and 
Synthetic Dietary Fibers on Markers of Metabolic Diseases in Human Intervention Studies: A 
Systematic Review. Advances in Nutrition, 11(2), 420-438. doi:10.1093/advances/nmz074 

Bergstrom, A., Skov, T. H., Bahl, M. I., Roager, H. M., Christensen, L. B., Ejlerskov, K. T., . . . Licht, T. R. 
(2014). Establishment of Intestinal Microbiota during Early Life: a Longitudinal, Explorative Study 
of a Large Cohort of Danish Infants. Applied and Environmental Microbiology, 80(9), 2889-2900. 
doi:10.1128/aem.00342-14 

Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., & Gil, A. (2012). Probiotic 
Mechanisms of Action. Annals of Nutrition and Metabolism, 61(2), 160-174.  

Bervoets, L., Van Hoorenbeeck, K., Kortleven, I., Van Noten, C., Hens, N., Vael, C., . . . Vankerckhoven, V. 
(2013). Differences in gut microbiota composition between obese and lean children: a cross-
sectional study. Gut Pathogens, 5(1), 10. doi:10.1186/1757-4749-5-10 

Borgo, F., Verduci, E., Riva, A., Lassandro, C., Riva, E., Morace, G., & Borghi, E. (2017). Relative 
Abundance in Bacterial and Fungal Gut Microbes in Obese Children: A Case Control Study. 
Childhood Obesity, 13(1), 78-84. doi:10.1089/chi.2015.0194 

Boulangé, C. L., Neves, A. L., Chilloux, J., Nicholson, J. K., & Dumas, M.-E. (2016). Impact of the gut 
microbiota on inflammation, obesity, and metabolic disease. Genome Med, 8(1), 42. 
doi:10.1186/s13073-016-0303-2 

Bray, G. A., Heisel, W. E., Afshin, A., Jensen, M. D., Dietz, W. H., Long, M., . . . Inge, T. H. (2018). The 
Science of Obesity Management: An Endocrine Society Scientific Statement. Endocrine Reviews, 
39(2), 79-132. doi:10.1210/er.2017-00253 



111 

Brüssow, H. (2020). Problems with the concept of gut microbiota dysbiosis. Microbial Biotechnology, 
13(2), 423-434. doi:10.1111/1751-7915.13479 

Butler, M. G., Manzardo, A. M., Heinemann, J., Loker, C., & Loker, J. (2017). Causes of death in Prader-
Willi syndrome: Prader-Willi Syndrome Association (USA) 40-year mortality survey. Genetics in 
medicine : official journal of the American College of Medical Genetics, 19(6), 635-642.  

Buyken, A. E., Goletzke, J., Joslowski, G., Felbick, A., Cheng, G., Herder, C., & Brand-Miller, J. C. (2014). 
Association between carbohydrate quality and inflammatory markers: systematic review of 
observational and interventional studies. The American Journal of Clinical Nutrition, 99(4), 813-
833. doi:10.3945/ajcn.113.074252 

Byndloss, M. X., Olsan, E. E., Rivera-Chávez, F., Tiffany, C. R., Cevallos, S. A., Lokken, K. L., . . . Bäumler, A. 
J. (2017). Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. 
Science (New York, N.Y.), 357(6351), 570-575. doi:10.1126/science.aam9949 

Caliandro, P., Grugni, G., Padua, L., Kodra, Y., Tonali, P., Gargantini, L., . . . Taruscio, D. (2007). Quality of 
life assessment in a sample of patients affected by Prader–Willi syndrome. Journal of Paediatrics 
and Child Health, 43(12), 826-830. doi:10.1111/j.1440-1754.2007.01200.x 

Caliandro, P., Grugni, G., Taruscio, D., Kodra, Y., & Padua, L. (2011). Quality of Life Assessment in Prader–
Willi Syndrome. In V. R. Preedy, R. R. Watson, & C. R. Martin (Eds.), Handbook of Behavior, Food 
and Nutrition (pp. 3153-3162). New York, NY: Springer New York. 

Cantarel, B. L., Waubant, E., Chehoud, C., Kuczynski, J., DeSantis, T. Z., Warrington, J., . . . Mowry, E. M. 
(2015). Gut microbiota in multiple sclerosis: possible influence of immunomodulators. Journal of 
investigative medicine : the official publication of the American Federation for Clinical Research, 
63(5), 729-734. doi:10.1097/JIM.0000000000000192 

Carias, K. V., & Wevrick, R. (2019). Preclinical Testing in Translational Animal Models of Prader-Willi 
Syndrome: Overview and Gap Analysis. Molecular therapy. Methods & clinical development, 13, 
344-358. doi:10.1016/j.omtm.2019.03.001 

Cassidy, S. B. (1995). Genetics of Prader—Willi Syndrome. In Management of Prader-Willi Syndrome (pp. 
18-31): Springer US. 

Ceapa, C., Wopereis, H., Rezaïki, L., Kleerebezem, M., Knol, J., & Oozeer, R. (2013). Influence of 
fermented milk products, prebiotics and probiotics on microbiota composition and health. Best 
Practice & Research Clinical Gastroenterology, 27(1), 139-155. 
doi:https://doi.org/10.1016/j.bpg.2013.04.004 

Chang, C.-S., Ruan, J.-W., & Kao, C.-Y. (2019). An overview of microbiome based strategies on anti-
obesity. The Kaohsiung Journal of Medical Sciences, 35(1), 7-16. doi:10.1002/kjm2.12010 

Charbonneau, D., Gibb, R. D., & Quigley, E. M. M. (2013). Fecal excretion of Bifidobacterium infantis 
35624 and changes in fecal microbiota after eight weeks of oral supplementation with 
encapsulated probiotic. Gut Microbes, 4(3), 201-211. doi:10.4161/gmic.24196 

Chen, J.-P., Chen, G.-C., Wang, X.-P., Qin, L., & Bai, Y. (2017). Dietary Fiber and Metabolic Syndrome: A 
Meta-Analysis and Review of Related Mechanisms. Nutrients, 10(1), 24. 
doi:10.3390/nu10010024 

Chin, V. K., Yong, V. C., Chong, P. P., Amin Nordin, S., Basir, R., & Abdullah, M. (2020). Mycobiome in the 
Gut: A Multiperspective Review. Mediators of inflammation, 2020, 9560684-9560684. 
doi:10.1155/2020/9560684 

Choe, Y. H., Jin, D.-K., Kim, S. E., Song, S. Y., Paik, K. H., Park, H. Y., . . . Lee, K. H. (2005). 
Hyperghrelinemia Does Not Accelerate Gastric Emptying in Prader-Willi Syndrome Patients. The 
Journal of Clinical Endocrinology & Metabolism, 90(6), 3367-3370. doi:10.1210/jc.2004-1651 

Chong, J., Liu, P., Zhou, G., & Xia, J. (2020). Using MicrobiomeAnalyst for comprehensive statistical, 
functional, and meta-analysis of microbiome data. Nature Protocols. doi:10.1038/s41596-019-
0264-1 

https://doi.org/10.1016/j.bpg.2013.04.004


112 

Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: 
executive summary. Expert Panel on the Identification, Evaluation, and Treatment of 
Overweight in Adults. (1998). The American Journal of Clinical Nutrition, 68(4), 899-917. 
doi:10.1093/ajcn/68.4.899 

Collado, M. C., Isolauri, E., Laitinen, K., & Salminen, S. (2010). Effect of mother's weight on infant's 
microbiota acquisition, composition, and activity during early infancy: a prospective follow-up 
study initiated in early pregnancy. The American Journal of Clinical Nutrition, 92(5), 1023-1030.  

Covasa, M. (2010). Deficits in gastrointestinal responses controlling food intake and body weight. 
American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 299(6), 
R1423-R1439. doi:10.1152/ajpregu.00126.2010 

Creely, S. J., McTernan, P. G., Kusminski, C. M., Fisher, f. M., Da Silva, N. F., Khanolkar, M., . . . Kumar, S. 
(2007). Lipopolysaccharide activates an innate immune system response in human adipose 
tissue in obesity and type 2 diabetes. American Journal of Physiology-Endocrinology and 
Metabolism, 292(3), E740-E747. doi:10.1152/ajpendo.00302.2006 

Crinò, A., Fintini, D., Bocchini, S., & Grugni, G. (2018). Obesity management in Prader-Willi syndrome: 
current perspectives. Diabetes, metabolic syndrome and obesity : targets and therapy, 11, 579-
593. doi:10.2147/DMSO.S141352 

Dahl, W. J., & Stewart, M. L. (2015). Position of the Academy of Nutrition and Dietetics: Health 
Implications of Dietary Fiber. Journal of the Academy of Nutrition and Dietetics, 115(11), 1861-
1870. doi:10.1016/j.jand.2015.09.003 

Dao, M. C., Everard, A., Aron-Wisnewsky, J., Sokolovska, N., Prifti, E., Verger, E. O., . . . Clément, K. 
(2015). Akkermansia muciniphilaand improved metabolic health during a dietary intervention in 
obesity: relationship with gut microbiome richness and ecology. Gut, 65(3), 426-436. 
doi:10.1136/gutjnl-2014-308778 

Dasu, M. R., Devaraj, S., Park, S., & Jialal, I. (2010). Increased Toll-Like Receptor (TLR) Activation and TLR 
Ligands in Recently Diagnosed Type 2 Diabetic Subjects. Diabetes Care, 33(4), 861-868. 
doi:10.2337/dc09-1799 

David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., . . . Turnbaugh, 
P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 
559-563. doi:10.1038/nature12820 

Day, N. (2001). Epidemiological assessment of diet: a comparison of a 7-day diary with a food frequency 
questionnaire using urinary markers of nitrogen, potassium and sodium. International Journal of 
Epidemiology, 30(2), 309-317. doi:10.1093/ije/30.2.309 

De La Serre, C. B., De Lartigue, G., & Raybould, H. E. (2015). Chronic exposure to Low dose bacterial 
lipopolysaccharide inhibits leptin signaling in vagal afferent neurons. Physiology & Behavior, 
139, 188-194. doi:10.1016/j.physbeh.2014.10.032 

de Lartigue, G., Barbier de la Serre, C., Espero, E., Lee, J., & Raybould, H. E. (2011). Diet-induced obesity 
leads to the development of leptin resistance in vagal afferent neurons. American Journal of 
Physiology-Endocrinology and Metabolism, 301(1), E187-E195. doi:10.1152/ajpendo.00056.2011 

De Meester, L., Vanoverbeke, J., Kilsdonk, L. J., & Urban, M. C. (2016). Evolving Perspectives on 
Monopolization and Priority Effects. Trends in Ecology & Evolution, 31(2), 136-146. 
doi:10.1016/j.tree.2015.12.009 

Deehan, E. C., Duar, R. M., Armet, A. M., Perez-Muñoz, M. E., Jin, M., & Walter, J. (2017). Modulation of 
the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve 
Human Health. Microbiol Spectr, 5(5). doi:10.1128/microbiolspec.bad-0019-2017 

Deehan, E. C., & Walter, J. (2016). The Fiber Gap and the Disappearing Gut Microbiome: Implications for 
Human Nutrition. Trends Endocrinol Metab, 27(5), 239-242. doi:10.1016/j.tem.2016.03.001 



113 

Del Chierico, F., Abbatini, F., Russo, A., Quagliariello, A., Reddel, S., Capoccia, D., . . . Putignani, L. (2018). 
Gut Microbiota Markers in Obese Adolescent and Adult Patients: Age-Dependent Differential 
Patterns. Frontiers in Microbiology, 9, 1210-1210. doi:10.3389/fmicb.2018.01210 

Delcour, J. A., Aman, P., Courtin, C. M., Hamaker, B. R., & Verbeke, K. (2016). Prebiotics, Fermentable 
Dietary Fiber, and Health Claims. Advances in nutrition (Bethesda, Md.), 7(1), 1-4. 
doi:10.3945/an.115.010546 

Dellve, L., Samuelsson, L., Tallborn, A., Fasth, A., & Hallberg, L. R. (2006). Stress and well-being among 
parents of children with rare diseases: a prospective intervention study. J Adv Nurs, 53(4), 392-
402. doi:10.1111/j.1365-2648.2006.03736.x 

Delzenne, N. M., & Kok, N. (2001). Effects of fructans-type prebiotics on lipid metabolism. Am J Clin Nutr, 
73.  

Depommier, C., Everard, A., Druart, C., Plovier, H., Van Hul, M., Vieira-Silva, S., . . . Cani, P. D. (2019). 
Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a 
proof-of-concept exploratory study. Nature Medicine, 25(7), 1096-1103. doi:10.1038/s41591-
019-0495-2 

Dhariwal, A., Chong, J., Habib, S., King, I. L., Agellon, L. B., & Xia, J. (2017). MicrobiomeAnalyst: a web-
based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic 
Acids Research, 45(W1), W180-W188. doi:10.1093/nar/gkx295 

DiBaise, J. K., Frank, D. N., & Mathur, R. (2012). Impact of the Gut Microbiota on the Development of 
Obesity: Current Concepts. The American Journal of Gastroenterology Supplements, 1(1), 22-27. 
doi:10.1038/ajgsup.2012.5 

Du, H., van der A, D. L., Boshuizen, H. C., Forouhi, N. G., Wareham, N. J., Halkjær, J., . . . Feskens, E. J. M. 
(2009). Dietary fiber and subsequent changes in body weight and waist circumference in 
European men and women. The American Journal of Clinical Nutrition, 91(2), 329-336. 
doi:10.3945/ajcn.2009.28191 

Duvallet, C., Gibbons, S. M., Gurry, T., Irizarry, R. A., & Alm, E. J. (2017). Meta-analysis of gut microbiome 
studies identifies disease-specific and shared responses. Nature Communications, 8(1), 1784. 
doi:10.1038/s41467-017-01973-8 

Dykens, E. M., Maxwell, M. A., Pantino, E., Kossler, R., & Roof, E. (2007). Assessment of Hyperphagia in 
Prader-Willi Syndrome*. Obesity, 15(7), 1816-1826. doi:10.1038/oby.2007.216 

Fabbiano, S., Suárez-Zamorano, N., Chevalier, C., Lazarević, V., Kieser, S., Rigo, D., . . . Trajkovski, M. 
(2018). Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced 
Metabolic Improvements. Cell Metabolism, 28(6), 907-921.e907. 
doi:10.1016/j.cmet.2018.08.005 

Ferrarese, R., Ceresola, E. R., Preti, A., & Canducci, F. (2018). Probiotics, prebiotics and synbiotics for 
weight loss and metabolic syndrome in the microbiome era. Eur Rev Med Pharmacol Sci, 22(21), 
7588-7605. doi:10.26355/eurrev_201811_16301 

Fetissov, S. O. (2017). Role of the gut microbiota in host appetite control: bacterial growth to animal 
feeding behaviour. Nature Reviews Endocrinology, 13(1), 11-25. doi:10.1038/nrendo.2016.150 

Finucane, M. M., Sharpton, T. J., Laurent, T. J., & Pollard, K. S. (2014). A taxonomic signature of obesity in 
the microbiome? Getting to the guts of the matter. PLoS One, 9(1), e84689-e84689. 
doi:10.1371/journal.pone.0084689 

Firmesse, O., Mogenet, A., Bresson, J.-L., Corthier, G., & Furet, J.-P. (2007). Lactobacillus rhamnosus R11 
Consumed in a Food Supplement Survived Human Digestive Transit without Modifying 
Microbiota Equilibrium as Assessed by Real-Time Polymerase Chain Reaction. Journal of 
Molecular Microbiology and Biotechnology, 14(1-3), 90-99. doi:10.1159/000106087 

Fischbach, M. A. (2018). Microbiome: Focus on Causation and Mechanism. Cell, 174(4), 785-790. 
doi:10.1016/j.cell.2018.07.038 



114 

Fukami, T. (2015). Historical Contingency in Community Assembly: Integrating Niches, Species Pools, and 
Priority Effects. Annual Review of Ecology, Evolution, and Systematics, 46(1), 1-23. 
doi:10.1146/annurev-ecolsys-110411-160340 

Galley, J. D., Bailey, M., Kamp Dush, C., Schoppe-Sullivan, S., & Christian, L. M. (2014). Maternal obesity 
is associated with alterations in the gut microbiome in toddlers. PLoS One, 9(11), e113026.  

Gao, Z., Yin, J., Zhang, J., Ward, R. E., Martin, R. J., Lefevre, M., . . . Ye, J. (2009). Butyrate improves 
insulin sensitivity and increases energy expenditure in mice. Diabetes, 58(7), 1509-1517. 
doi:10.2337/db08-1637 

Gentile, C. L., & Weir, T. L. (2018). The gut microbiota at the intersection of diet and human health. 
Science, 362(6416), 776-780. doi:10.1126/science.aau5812 

Gill, P. A., van Zelm, M. C., Muir, J. G., & Gibson, P. R. (2018). Review article: short chain fatty acids as 
potential therapeutic agents in human gastrointestinal and inflammatory disorders. Alimentary 
Pharmacology & Therapeutics, 48(1), 15-34. doi:10.1111/apt.14689 

Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., & Egozcue, J. J. (2017). Microbiome Datasets Are 
Compositional: And This Is Not Optional. Frontiers in Microbiology, 8(2224). 
doi:10.3389/fmicb.2017.02224 

Goodrich, J. K., Davenport, E. R., Clark, A. G., & Ley, R. E. (2017). The Relationship Between the Human 
Genome and Microbiome Comes into View. Annual Review of Genetics, 51(1), 413-433. 
doi:10.1146/annurev-genet-110711-155532 

Grabitske, H. A., & Slavin, J. L. (2009). Gastrointestinal Effects of Low-Digestible Carbohydrates. Critical 
Reviews in Food Science and Nutrition, 49(4), 327-360. doi:10.1080/10408390802067126 

Gunness, P., & Gidley, M. J. (2010). Mechanisms underlying the cholesterol-lowering properties of 
soluble dietary fibre polysaccharides. Food Funct, 1(2), 149. doi:10.1039/c0fo00080a 

Gupta, S., Allen-Vercoe, E., & Petrof, E. O. (2015). Fecal microbiota transplantation: in perspective. 
Therapeutic Advances in Gastroenterology, 9(2), 229-239. doi:10.1177/1756283X15607414 

Gurrieri, F., & Sangiorgi, E. (2011). Genetic Imprinting in the Prader-Willi and Angelman Syndromes. In 
eLS: John Wiley & Sons, Ltd. 

Haller, D. (2018). Intestinal Microbiome in Health and Disease: Introduction. In The Gut Microbiome in 
Health and Disease (pp. 1-3): Springer International Publishing. 

Haqq, A. M. (2020). University of Alberta. Fiber intervention on gut microbiota in chil-dren  with  Prader-
Willi  Syndrome.  Available  from  https://14TAN ET AL. 

clinicaltrials.gov/ct2/show/NCT04150991. ClinicalTrials.gov Identi-fier: NCT04150991. Accessed March 
12, 2020.  

Haqq, A. M., Muehlbauer, M. J., Newgard, C. B., Svetkey, L. P., Sharma, A. M., Richer, L. P., . . . Freemark, 
M. (2011). Unique metabolic profile in children with Prader-Willi Syndrome: Heightened insulin 
sensitivity relative to body mass index. 35(2), 145. doi:10.1016/s1499-2671(11)52031-3 

Harrison, G. G. (1985). Height-Weight Tables. Annals of Internal Medicine, 103(6_Part_2), 989. 
doi:10.7326/0003-4819-103-6-989 

Hartman, A. L., Lough, D. M., Barupal, D. K., Fiehn, O., Fishbein, T., Zasloff, M., & Eisen, J. A. (2009). 
Human gut microbiome adopts an alternative state following small bowel transplantation. 
Proceedings of the National Academy of Sciences of the United States of America, 106(40), 
17187-17192. doi:10.1073/pnas.0904847106 

Harwick, H. J., Iuppa, J. B., & Fekety, F. R. (1969). Microorganisms and amniotic fluid. Obstet Gynecol, 33.  
Henson, M. A., & Phalak, P. (2017). Microbiota dysbiosis in inflammatory bowel diseases: in silico 

investigation of the oxygen hypothesis. BMC Systems Biology, 11(1), 145. doi:10.1186/s12918-
017-0522-1 

https://14tan/


115 

Heymsfield, S. B., Avena, N. M., Baier, L., Brantley, P., Bray, G. A., Burnett, L. C., . . . Zinn, A. R. (2014). 
Hyperphagia: current concepts and future directions proceedings of the 2nd international 
conference on hyperphagia. Obesity (Silver Spring), 22 Suppl 1, S1-S17. doi:10.1002/oby.20646 

Hillman, E. T., Lu, H., Yao, T., & Nakatsu, C. H. (2017). Microbial Ecology along the Gastrointestinal Tract. 
Microbes and environments, 32(4), 300-313. doi:10.1264/jsme2.ME17017 

Hoarau, G., Mukherjee, P. K., Gower-Rousseau, C., Hager, C., Chandra, J., Retuerto, M. A., . . . 
Ghannoum, M. A. (2016). Bacteriome and Mycobiome Interactions Underscore Microbial 
Dysbiosis in Familial Crohn’s Disease. mBio, 7(5). doi:10.1128/mbio.01250-16 

Hoffmann, C., Dollive, S., Grunberg, S., Chen, J., Li, H., Wu, G. D., . . . Bushman, F. D. (2013). Archaea and 
fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One, 
8(6), e66019. doi:10.1371/journal.pone.0066019 

Hogan, D. A., Vik, Å., & Kolter, R. (2004). A Pseudomonas aeruginosa quorum-sensing molecule 
influences Candida albicans morphology. Molecular Microbiology, 54(5), 1212-1223. 
doi:10.1111/j.1365-2958.2004.04349.x 

Holm, V. A., & Pipes, P. L. (1976). Food and children with Prader-Willi syndrome. Am J Dis Child, 130(10), 
1063-1067.  

Hooks, K. B., & O’Malley, M. A. (2017). Dysbiosis and Its Discontents. mBio, 8(5), e01492-01417. 
doi:10.1128/mBio.01492-17 

Horie, M., Miura, T., Hirakata, S., Hosoyama, A., Sugino, S., Umeno, A., . . . Koike, T. (2017). Comparative 
analysis of the intestinal flora in type 2 diabetes and nondiabetic mice. Exp Anim, 66(4), 405-
416. doi:10.1538/expanim.17-0021 

Hoybye, C., Barkeling, B., Naslund, E., Thorén, M., & Hellstrom, P. M. (2007). Eating Behavior and Gastric 
Emptying in Adults with Prader-Willi Syndrome. Annals of Nutrition and Metabolism, 51(3), 264-
269. doi:10.1159/000105447 

Hurren, B. J., & Flack, N. A. M. S. (2016). Prader-Willi Syndrome: A spectrum of anatomical and clinical 
features. Clinical Anatomy, 29(5), 590-605. doi:10.1002/ca.22686 

Ignacio, A., Fernandes, M. R., Rodrigues, V. A. A., Groppo, F. C., Cardoso, A. L., Avila-Campos, M. J., & 
Nakano, V. (2016). Correlation between body mass index and faecal microbiota from children. 
Clinical Microbiology and Infection, 22(3), 258.e251-258.e258. doi:10.1016/j.cmi.2015.10.031 

Irizarry, K. A., Bain, J., Butler, M. G., Ilkayeva, O., Muehlbauer, M., Haqq, A. M., & Freemark, M. (2015). 
Metabolic profiling in Prader-Willi syndrome and nonsyndromic obesity: sex differences and the 
role of growth hormone. Clinical Endocrinology, 83(6), 797-805. doi:10.1111/cen.12766 

Irizarry, K. A., Miller, M., Freemark, M., & Haqq, A. M. Prader Willi Syndrome. Advances in Pediatrics, 
63(1), 47-77. doi:10.1016/j.yapd.2016.04.005 

Irizarry, K. A., Miller, M., Freemark, M., & Haqq, A. M. (2016a). Prader Willi Syndrome. Advances in 
Pediatrics, 63(1), 47-77. doi:10.1016/j.yapd.2016.04.005 

Irizarry, K. A., Miller, M., Freemark, M., & Haqq, A. M. (2016b). Prader Willi Syndrome: Genetics, 
Metabolomics, Hormonal Function, and New Approaches to Therapy. Advances in Pediatrics, 
63(1), 47-77.  

Jangi, S., Gandhi, R., Cox, L. M., Li, N., von Glehn, F., Yan, R., . . . Weiner, H. L. (2016). Alterations of the 
human gut microbiome in multiple sclerosis. Nature Communications, 7, 12015-12015. 
doi:10.1038/ncomms12015 

Jensen, M. D., Ryan, D. H., Apovian, C. M., Ard, J. D., Comuzzie, A. G., Donato, K. A., . . . Yanovski, S. Z. 
(2014). 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults. 
Journal of the American College of Cardiology, 63(25), 2985-3023. 
doi:10.1016/j.jacc.2013.11.004 

John, G. K., & Mullin, G. E. (2016). The Gut Microbiome and Obesity. Current oncology reports, 18(7), 45.  



116 

Julia, Emily, Beaumont, M., Matthew, Knight, R., Ober, C., . . . Ruth. (2016). Genetic Determinants of the 
Gut Microbiome in UK Twins. Cell Host & Microbe, 19(5), 731-743. 
doi:10.1016/j.chom.2016.04.017 

Kalliomaki, M., Collado, M. C., Salminen, S., & Isolauri, E. (2008). Early differences in fecal microbiota 
composition in children may predict overweight. Am J Clin Nutr, 87(3), 534-538.  

Karlsson, C. L. J., Önnerfält, J., Xu, J., Molin, G., Ahrné, S., & Thorngren-Jerneck, K. (2012). The Microbiota 
of the Gut in Preschool Children With Normal and Excessive Body Weight. Obesity, 20(11), 2257-
2261. doi:10.1038/oby.2012.110 

Kayadjanian, N., Schwartz, L., Farrar, E., Comtois, K. A., & Strong, T. V. (2018). High levels of caregiver 
burden in Prader-Willi syndrome. PLoS One, 13(3), e0194655.  

Kelly, C. J., Zheng, L., Campbell, E. L., Saeedi, B., Scholz, C. C., Bayless, A. J., . . . Colgan, S. P. (2015). 
Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF 
Augments Tissue Barrier Function. Cell Host & Microbe, 17(5), 662-671. 
doi:10.1016/j.chom.2015.03.005 

Kennedy, M. J., & Volz, P. A. (1985). ECOLOGY OF CANDIDA-ALBICANS GUT COLONIZATION - INHIBITION 
OF CANDIDA ADHESION, COLONIZATION, AND DISSEMINATION FROM THE GASTROINTESTINAL-
TRACT BY BACTERIAL ANTAGONISM. Infection and Immunity, 49(3), 654-663. 
doi:10.1128/iai.49.3.654-663.1985 

Khan, M. J., Gerasimidis, K., Edwards, C. A., & Shaikh, M. G. (2016). Role of Gut Microbiota in the 
Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. Journal of obesity, 
2016, 7353642.  

Khan, M. J., Quince, C., S, V., Ijaz, U. Z., Loman, N., Calus, S. T., . . . Gerasimidis, K. (2015). A detailed 
analysis of the gut microbial diversity and metabolic activity in children with obesity of different 
aetiology and lean controls. Proceedings of the Nutrition Society, 74(OCE1), E75. 
doi:10.1017/S0029665115000907 

Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From Dietary Fiber to Host 
Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165(6), 1332-1345. 
doi:10.1016/j.cell.2016.05.041 

Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a 
Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on 
the MiSeq Illumina Sequencing Platform. Applied and Environmental Microbiology, 79(17), 5112-
5120. doi:10.1128/aem.01043-13 

Kreznar, J. H., Keller, M. P., Traeger, L. L., Rabaglia, M. E., Schueler, K. L., Stapleton, D. S., . . . Rey, F. E. 
(2017). Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced 
Metabolic Phenotypes. Cell Reports, 18(7), 1739-1750. doi:10.1016/j.celrep.2017.01.062 

Kristensen, N. B., Bryrup, T., Allin, K. H., Nielsen, T., Hansen, T. H., & Pedersen, O. (2016). Alterations in 
fecal microbiota composition by probiotic supplementation in healthy adults: a systematic 
review of randomized controlled trials. Genome Med, 8(1), 52. doi:10.1186/s13073-016-0300-5 

Kuhlmann, L., Joensson, I. M., Froekjaer, J. B., Krogh, K., & Farholt, S. (2014). A descriptive study of 
colorectal function in adults with Prader-Willi Syndrome: high prevalence of constipation. BMC 
Gastroenterology, 14(1). doi:10.1186/1471-230x-14-63 

Lambooij, J. M., Hoogenkamp, M. A., Brandt, B. W., Janus, M. M., & Krom, B. P. (2017). Fungal 
mitochondrial oxygen consumption induces the growth of strict anaerobic bacteria. Fungal 
Genetics and Biology, 109, 1-6. doi:10.1016/j.fgb.2017.10.001 

Lau, D. C. W., Douketis, J. D., Morrison, K. M., Hramiak, I. M., Sharma, A. M., & Ur, E. (2007). 2006 
Canadian clinical practice guidelines on the management and prevention of obesity in adults and 
children [summary]. Canadian Medical Association Journal, 176(8), S1-S13. 
doi:10.1503/cmaj.061409 



117 

Lin, H. V., Frassetto, A., Kowalik, E. J., Jr., Nawrocki, A. R., Lu, M. M., Kosinski, J. R., . . . Marsh, D. J. 
(2012). Butyrate and propionate protect against diet-induced obesity and regulate gut 
hormones via free fatty acid receptor 3-independent mechanisms. PLoS One, 7(4), e35240-
e35240. doi:10.1371/journal.pone.0035240 

Lindmark, M., Trygg, K., Giltvedt, K., & Kolset, S. (2010). Nutritient intake of young children with Prader–
Willi syndrome. Food & Nutrition Research, 54(1), 2112. doi:10.3402/fnr.v54i0.2112 

Litvak, Y., Byndloss, M. X., Tsolis, R. M., & Bäumler, A. J. (2017). Dysbiotic Proteobacteria expansion: a 
microbial signature of epithelial dysfunction. Current Opinion in Microbiology, 39, 1-6. 
doi:https://doi.org/10.1016/j.mib.2017.07.003 

Lloyd-Price, J., Arze, C., Ananthakrishnan, A. N., Schirmer, M., Avila-Pacheco, J., Poon, T. W., . . . 
Investigators, I. (2019). Multi-omics of the gut microbial ecosystem in inflammatory bowel 
diseases. Nature, 569(7758), 655-662. doi:10.1038/s41586-019-1237-9 

Logan, A. C., Jacka, F. N., & Prescott, S. L. (2016). Immune-Microbiota Interactions: Dysbiosis as a Global 
Health Issue. Current Allergy and Asthma Reports, 16(2). doi:10.1007/s11882-015-0590-5 

López-Bastida, J., Linertová, R., Oliva-Moreno, J., De la Paz, M., Serrano-Aguilar, P., Kanavos, P., . . . 
Fattore, G. (2016). Social/economic costs and health-related quality of life in patients with 
Prader-Willi syndrome in Europe (Vol. 17). 

Lynch, K. E., Parke, E. C., & O’Malley, M. A. (2019). How causal are microbiomes? A comparison with the 
Helicobacter pylori explanation of ulcers. Biology & Philosophy, 34(6), 62. doi:10.1007/s10539-
019-9702-2 

Mackenzie, M. L., Triador, L., Gill, J. K., Pakseresht, M., Mager, D., Field, C. J., & Haqq, A. M. (2018). 
Dietary intake in youth with prader-willi syndrome. American Journal of Medical Genetics Part A, 
176(11), 2309-2317. doi:10.1002/ajmg.a.40491 

Makki, K., Deehan, E. C., Walter, J., & Bäckhed, F. (2018). The Impact of Dietary Fiber on Gut Microbiota 
in Host Health and Disease. Cell Host & Microbe, 23(6), 705-715. 
doi:10.1016/j.chom.2018.05.012 

Maldonado-Gómez, María X., Martínez, I., Bottacini, F., O’Callaghan, A., Ventura, M., van Sinderen, D., . . 
. Walter, J. Stable Engraftment of <em>Bifidobacterium longum</em> AH1206 in the Human 
Gut Depends on Individualized Features of the Resident Microbiome. Cell Host & Microbe, 20(4), 
515-526. doi:10.1016/j.chom.2016.09.001 

Mar Rodríguez, M., Pérez, D., Javier Chaves, F., Esteve, E., Marin-Garcia, P., Xifra, G., . . . Fernández Real, 
J. M. (2015). Obesity changes the human gut mycobiome. Scientific Reports, 5, 14600. 
doi:10.1038/srep14600 https://www.nature.com/articles/srep14600#supplementary-
information 

Martínez, I., Maldonado-Gomez, M. X., Gomes-Neto, J. C., Kittana, H., Ding, H., Schmaltz, R., . . . Walter, 
J. (2018). Experimental evaluation of the importance of colonization history in early-life gut 
microbiota assembly. eLife, 7, e36521. doi:10.7554/eLife.36521 

Mathur, R., & Barlow, G. M. (2015). Obesity and the microbiome. Expert Review of Gastroenterology & 
Hepatology, 9(8), 1087-1099. doi:10.1586/17474124.2015.1051029 

Mayfield, M. M., & Levine, J. M. (2010). Opposing effects of competitive exclusion on the phylogenetic 
structure of communities. Ecology Letters, 13(9), 1085-1093. doi:10.1111/j.1461-
0248.2010.01509.x 

McAllister, C. J., Whittington, J. E., & Holland, A. J. (2011). Development of the eating behaviour in 
Prader-Willi Syndrome: advances in our understanding. International Journal of Obesity (2005), 
35(2), 188-197.  

McBurney, M. I., Davis, C., Fraser, C. M., Schneeman, B. O., Huttenhower, C., Verbeke, K., . . . Latulippe, 
M. E. (2019). Establishing What Constitutes a Healthy Human Gut Microbiome: State of the 

https://doi.org/10.1016/j.mib.2017.07.003
https://www.nature.com/articles/srep14600#supplementary-information
https://www.nature.com/articles/srep14600#supplementary-information


118 

Science, Regulatory Considerations, and Future Directions. J Nutr, 149(11), 1882-1895. 
doi:10.1093/jn/nxz154 

McKnight, D. T., Huerlimann, R., Bower, D. S., Schwarzkopf, L., Alford, R. A., & Zenger, K. R. (2019). 
Methods for normalizing microbiome data: An ecological perspective. Methods in Ecology and 
Evolution, 10(3), 389-400. doi:10.1111/2041-210x.13115 

McMurdie, P. J., & Holmes, S. (2013a). phyloseq: an R package for reproducible interactive analysis and 
graphics of microbiome census data. PLoS One, 8(4), e61217-e61217. 
doi:10.1371/journal.pone.0061217 

McMurdie, P. J., & Holmes, S. (2013b). phyloseq: An R Package for Reproducible Interactive Analysis and 
Graphics of Microbiome Census Data. PLoS One, 8(4), e61217. 
doi:10.1371/journal.pone.0061217 

McNulty, N. P., Yatsunenko, T., Hsiao, A., Faith, J. J., Muegge, B. D., Goodman, A. L., . . . Gordon, J. I. 
(2011). The Impact of a Consortium of Fermented Milk Strains on the Gut Microbiome of 
Gnotobiotic Mice and Monozygotic Twins. Science Translational Medicine, 3(106), 106ra106.  

McRorie, J. W., & McKeown, N. M. (2017). Understanding the Physics of Functional Fibers in the 
Gastrointestinal Tract: An Evidence-Based Approach to Resolving Enduring Misconceptions 
about Insoluble and Soluble Fiber. Journal of the Academy of Nutrition and Dietetics, 117(2), 
251-264. doi:10.1016/j.jand.2016.09.021 

Miquel, S., Leclerc, M., Martin, R., Chain, F., Lenoir, M., Raguideau, S., . . . Langella, P. (2015). 
Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium 
prausnitzii. mBio, 6(2), e00300-00315. doi:10.1128/mBio.00300-15 

Montague, C. T., Farooqi, I. S., Whitehead, J. P., Soos, M. A., Rau, H., Wareham, N. J., . . . O'Rahilly, S. 
(1997). Congenital leptin deficiency is associated with severe early-onset obesity in humans. 
Nature, 387(6636), 903-908. doi:10.1038/43185 

Moya, A., & Ferrer, M. (2016). Functional Redundancy-Induced Stability of Gut Microbiota Subjected to 
Disturbance. Trends Microbiol, 24(5), 402-413. doi:10.1016/j.tim.2016.02.002 

Nadal, I., Santacruz, A., Marcos, A., Warnberg, J., Garagorri, M., Moreno, L. A., . . . Sanz, Y. (2008). Shifts 
in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss 
in obese adolescents. International Journal of Obesity, 33(7), 758-767. doi:10.1038/ijo.2008.260 

Nash, A. K., Auchtung, T. A., Wong, M. C., Smith, D. P., Gesell, J. R., Ross, M. C., . . . Petrosino, J. F. (2017). 
The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome, 5(1), 153. 
doi:10.1186/s40168-017-0373-4 

Niccolai, E., Boem, F., Russo, E., & Amedei, A. (2019). The Gut⁻Brain Axis in the Neuropsychological 
Disease Model of Obesity: A Classical Movie Revised by the Emerging Director "Microbiome". 
Nutrients, 11(1), 156. doi:10.3390/nu11010156 

Nicholls, R. D., & Knepper, J. L. (2001). GENOMEORGANIZATION, FUNCTION,ANDIMPRINTING INPRADER-
WILLI ANDANGELMANSYNDROMES. Annual Review of Genomics and Human Genetics, 2(1), 153-
175. doi:10.1146/annurev.genom.2.1.153 

Nicholls, R. D., Saitoh, S., & Horsthemke, B. (1998). Imprinting in Prader–Willi and Angelman syndromes. 
Trends in Genetics, 14(5), 194-200. doi:10.1016/s0168-9525(98)01432-2 

Nihiser, A. J., Lee, S. M., Wechsler, H., McKenna, M., Odom, E., Reinold, C., . . . Grummer-Strawn, L. 
(2007). Body Mass Index Measurement in Schools*. Journal of School Health, 77(10), 651-671. 
doi:10.1111/j.1746-1561.2007.00249.x 

Noverr, M. C., & Huffnagle, G. B. (2004). Regulation of <em>Candida albicans</em> Morphogenesis by 
Fatty Acid Metabolites. Infection and Immunity, 72(11), 6206. doi:10.1128/IAI.72.11.6206-
6210.2004 

Olesen, S. W., & Alm, E. J. (2016). Dysbiosis is not an answer. Nature Microbiology, 1(12), 16228. 
doi:10.1038/nmicrobiol.2016.228 



119 

Olsson, L. M., Poitou, C., Tremaroli, V., Coupaye, M., Aron-Wisnewsky, J., Bäckhed, F., . . . Caesar, R. 
(2019). Gut microbiota of obese subjects with Prader-Willi syndrome is linked to metabolic 
health. Gut, gutjnl-2019-2319. doi:10.1136/gutjnl-2019-319322 

Ouwehand, A. C., Lagström, H., Suomalainen, T., & Salminen, S. (2002). Effect of Probiotics on 
Constipation, Fecal Azoreductase Activity and Fecal Mucin Content in the Elderly. Annals of 
Nutrition and Metabolism, 46(3-4), 159-162. doi:10.1159/000063075 

Parsonnet, J., Friedman, G. D., Vandersteen, D. P., Chang, Y., Vogelman, J. H., Orentreich, N., & Sibley, R. 
K. (1991). Helicobacter pyloriInfection and the Risk of Gastric Carcinoma. New England Journal 
of Medicine, 325(16), 1127-1131. doi:10.1056/nejm199110173251603 

Payne, A. N., Chassard, C., Banz, Y., & Lacroix, C. (2012). The composition and metabolic activity of child 
gut microbiota demonstrate differential adaptation to varied nutrient loads in an in vitro model 
of colonic fermentation. FEMS Microbiology Ecology, 80(3), 608-623. doi:10.1111/j.1574-
6941.2012.01330.x 

Pereira, M. A., O'Reilly, E., Augustsson, K., Fraser, G. E., Goldbourt, U., Heitmann, B. L., . . . Ascherio, A. 
(2004). Dietary Fiber and Risk of Coronary Heart Disease. Archives of Internal Medicine, 164(4), 
370. doi:10.1001/archinte.164.4.370 

Pipes, P. L., & Holm, V. A. (1973). Weight control of children with Prader-Willi syndrome. J Am Diet 
Assoc, 62(5), 520-524.  

Richard, M. L., & Sokol, H. (2019). The gut mycobiota: insights into analysis, environmental interactions 
and role in gastrointestinal diseases. Nature Reviews Gastroenterology & Hepatology, 16(6), 
331-345. doi:10.1038/s41575-019-0121-2 

Ríos-Covián, D., Ruas-Madiedo, P., Margolles, A., Gueimonde, M., de los Reyes-Gavilán, C. G., & Salazar, 
N. (2016). Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. 
Frontiers in Microbiology, 7, 185. doi:10.3389/fmicb.2016.00185 

Riva, A., Borgo, F., Lassandro, C., Verduci, E., Morace, G., Borghi, E., & Berry, D. (2017). Pediatric obesity 
is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. 
Environ Microbiol, 19(1), 95-105. doi:10.1111/1462-2920.13463 

Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., . . . Segal, E. (2018). 
Environment dominates over host genetics in shaping human gut microbiota. Nature, 555(7695), 
210-215. doi:10.1038/nature25973 

Scheepers, L. E. J. M., Penders, J., Mbakwa, C. A., Thijs, C., Mommers, M., & Arts, I. C. W. (2014). The 
intestinal microbiota composition and weight development in children: the KOALA Birth Cohort 
Study. International Journal of Obesity, 39(1), 16-25. doi:10.1038/ijo.2014.178 

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., . . . Weber, C. F. (2009). 
Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for 
Describing and Comparing Microbial Communities. Applied and Environmental Microbiology, 
75(23), 7537-7541. doi:10.1128/aem.01541-09 

Schneeberger, M., Everard, A., Gómez-Valadés, A. G., Matamoros, S., Ramírez, S., Delzenne, N. M., . . . 
Cani, P. D. (2015). Akkermansia muciniphila inversely correlates with the onset of inflammation, 
altered adipose tissue metabolism and metabolic disorders during obesity in mice. Scientific 
Reports, 5, 16643-16643. doi:10.1038/srep16643 

Schwimmer, J. B., Burwinkle, T. M., & Varni, J. W. (2003). Health-related quality of life of severely obese 
children and adolescents. JAMA, 289(14), 1813-1819. doi:10.1001/jama.289.14.1813 

Scott, K. P., Antoine, J.-M., Midtvedt, T., & van Hemert, S. (2015). Manipulating the gut microbiota to 
maintain health and treat disease. Microbial Ecology in Health and Disease, 26, 
10.3402/mehd.v3426.25877. doi:10.3402/mehd.v26.25877 



120 

Singer-Englar, T., Barlow, G., & Mathur, R. (2019). Obesity, diabetes, and the gut microbiome: an 
updated review. Expert Rev Gastroenterol Hepatol, 13(1), 3-15. 
doi:10.1080/17474124.2019.1543023 

Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly-Y, M., . . . Garrett, W. S. 
(2013). The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell 
homeostasis. Science (New York, N.Y.), 341(6145), 569-573. doi:10.1126/science.1241165 

So, P.-W., Yu, W.-S., Kuo, Y.-T., Wasserfall, C., Goldstone, A. P., Bell, J. D., & Frost, G. (2007). Impact of 
Resistant Starch on Body Fat Patterning and Central Appetite Regulation. PLoS One, 2(12), 
e1309. doi:10.1371/journal.pone.0001309 

Sokol, H., Leducq, V., Aschard, H., Pham, H.-P., Jegou, S., Landman, C., . . . Beaugerie, L. (2016). Fungal 
microbiota dysbiosis in IBD. Gut, 66(6), 1039-1048. doi:10.1136/gutjnl-2015-310746 

Sonnenburg, Erica D., & Sonnenburg, Justin L. (2014). Starving our Microbial Self: The Deleterious 
Consequences of a Diet Deficient in Microbiota-Accessible Carbohydrates. Cell Metabolism, 
20(5), 779-786. doi:10.1016/j.cmet.2014.07.003 

Spor, A., Koren, O., & Ley, R. (2011). Unravelling the effects of the environment and host genotype on 
the gut microbiome. Nature Reviews Microbiology, 9(4), 279-290. doi:10.1038/nrmicro2540 

Stevenson, D. A., Heinemann, J., Angulo, M., Butler, M. G., Loker, J., Rupe, N., . . . Scheimann, A. (2007). 
Gastric Rupture and Necrosis in Prader-Willi Syndrome. Journal of Pediatric Gastroenterology 
and Nutrition, 45(2), 272-274. doi:10.1097/mpg.0b013e31805b82b5 

Strati, F., Cavalieri, D., Albanese, D., De Felice, C., Donati, C., Hayek, J., . . . De Filippo, C. (2016). Altered 
gut microbiota in Rett syndrome. Microbiome, 4(1). doi:10.1186/s40168-016-0185-y 

Suhr, M. J., & Hallen-Adams, H. E. (2015). The human gut mycobiome: pitfalls and potentials--a 
mycologists perspective. Mycologia, 107(6), 1057-1073. doi:10.3852/15-147 

Sze, M. A., & Schloss, P. D. (2016). Looking for a Signal in the Noise: Revisiting Obesity and the 
Microbiome. mBio, 7(4), e01018-01016. doi:10.1128/mBio.01018-16 

Tabrett, A., & Horton, M. W. (2020). The influence of host genetics on the microbiome. F1000Research, 
9, F1000 Faculty Rev-1084. doi:10.12688/f1000research.20835.1 

Tan, Q., Orsso, C. E., Deehan, E. C., Triador, L., Field, C. J., Tun, H. M., . . . Haqq, A. M. (2019). Current and 
emerging therapies for managing hyperphagia and obesity in Prader-Willi syndrome: A narrative 
review. Obesity Reviews, n/a(n/a). doi:10.1111/obr.12992 

Thorsen, J., Brejnrod, A., Mortensen, M., Rasmussen, M. A., Stokholm, J., Al-Soud, W. A., . . . Waage, J. 
(2016). Large-scale benchmarking reveals false discoveries and count transformation sensitivity 
in 16S rRNA gene amplicon data analysis methods used in microbiome studies. Microbiome, 
4(1), 62. doi:10.1186/s40168-016-0208-8 

Tipton, L., Müller, C. L., Kurtz, Z. D., Huang, L., Kleerup, E., Morris, A., . . . Ghedin, E. (2018). Fungi 
stabilize connectivity in the lung and skin microbial ecosystems. Microbiome, 6(1), 12. 
doi:10.1186/s40168-017-0393-0 

Tlaskalová-Hogenová, H., Stěpánková, R., Kozáková, H., Hudcovic, T., Vannucci, L., Tučková, L., . . . Funda, 
D. P. (2011). The role of gut microbiota (commensal bacteria) and the mucosal barrier in the 
pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free 
and gnotobiotic animal models of human diseases. Cellular & molecular immunology, 8(2), 110-
120. doi:10.1038/cmi.2010.67 

Tolhurst, G., Heffron, H., Lam, Y. S., Parker, H. E., Habib, A. M., Diakogiannaki, E., . . . Gribble, F. M. 
(2011). Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein-
Coupled Receptor FFAR2. Diabetes, 61(2), 364-371. doi:10.2337/db11-1019 

Tolhurst, G., Heffron, H., Lam, Y. S., Parker, H. E., Habib, A. M., Diakogiannaki, E., . . . Gribble, F. M. 
(2012). Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-
coupled receptor FFAR2. Diabetes, 61(2), 364-371. doi:10.2337/db11-1019 



121 

Trasande, L., Blustein, J., Liu, M., Corwin, E., Cox, L. M., & Blaser, M. J. (2012). Infant antibiotic exposures 
and early-life body mass. International Journal of Obesity, 37(1), 16-23. 
doi:10.1038/ijo.2012.132 

Tseng, C.-H., & Wu, C.-Y. (2019). The gut microbiome in obesity. Journal of the Formosan Medical 
Association, 118, S3-S9. doi:10.1016/j.jfma.2018.07.009 

Tun, H. M., Bridgman, S. L., Chari, R., Field, C. J., Guttman, D. S., Becker, A. B., . . . Canadian Healthy 
Infant Longitudinal Development Study, I. (2018). Roles of Birth Mode and Infant Gut Microbiota 
in Intergenerational Transmission of Overweight and Obesity From Mother to Offspring. JAMA 
pediatrics, 172(4), 368-377.  

Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, R. E., . . . Gordon, J. I. 
(2008). A core gut microbiome in obese and lean twins. Nature, 457(7228), 480-484. 
doi:10.1038/nature07540 

Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An 
obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 
444(7122), 1027-1031. doi:10.1038/nature05414 

Ulijaszek, S. J. (2003). Obesity: Preventing and Managing the Global Epidemic. Report of a WHO 
Consultation. WHO Technical Report Series 894. Pp. 252. (World Health Organization, Geneva, 
2000.) SFr 56.00, ISBN 92-4-120894-5, paperback. Journal of Biosocial Science, 35(4), 624-625. 
doi:10.1017/s0021932003245508 

Vacca, I. (2017). The microbiota maintains oxygen balance in the gut. Nature Reviews Microbiology, 
15(10), 574-575. doi:10.1038/nrmicro.2017.112 

Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., & Duchampt, A. (2014). 
Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell, 
156. doi:10.1016/j.cell.2013.12.016 

Vael, C., Verhulst, S. L., Nelen, V., Goossens, H., & Desager, K. N. (2011). Intestinal microflora and body 
mass index during the first three years of life: an observational study. Gut Pathogens, 3(1), 8. 
doi:10.1186/1757-4749-3-8 

van der Crabben, S. N., Blümer, R. M. E., Stegenga, M. E., Ackermans, M. T., Endert, E., Tanck, M. W. T., . 
. . Sauerwein, H. P. (2009). Early Endotoxemia Increases Peripheral and Hepatic Insulin 
Sensitivity in Healthy Humans. The Journal of Clinical Endocrinology & Metabolism, 94(2), 463-
468. doi:10.1210/jc.2008-0761 

van Leeuwen, P. T., van der Peet, J. M., Bikker, F. J., Hoogenkamp, M. A., Oliveira Paiva, A. M., Kostidis, 
S., . . . Krom, B. P. (2016). Interspecies Interactions between Clostridium difficile and Candida 
albicans. mSphere, 1(6), e00187-00116. doi:10.1128/mSphere.00187-16 

Varni, J. W., Limbers, C. A., & Burwinkle, T. M. (2007). Impaired health-related quality of life in children 
and adolescents with chronic conditions: a comparative analysis of 10 disease clusters and 33 
disease categories/severities utilizing the PedsQL™ 4.0 Generic Core Scales. Health and Quality 
of Life Outcomes, 5, 43-43. doi:10.1186/1477-7525-5-43 

Veronese, N., Solmi, M., Caruso, M. G., Giannelli, G., Osella, A. R., Evangelou, E., . . . Tzoulaki, I. (2018). 
Dietary fiber and health outcomes: an umbrella review of systematic reviews and meta-
analyses. The American Journal of Clinical Nutrition, 107(3), 436-444. doi:10.1093/ajcn/nqx082 

Viardot, A., Sze, L., Purtell, L., Sainsbury, A., Loughnan, G., Smith, E., . . . Campbell, L. V. (2010). Prader-
Willi Syndrome Is Associated with Activation of the Innate Immune System Independently of 
Central Adiposity and Insulin Resistance. The Journal of Clinical Endocrinology & Metabolism, 
95(7), 3392-3399. doi:10.1210/jc.2009-2492 

Vijay-Kumar, M., Aitken, J. D., Carvalho, F. A., Cullender, T. C., Mwangi, S., Srinivasan, S., . . . Gewirtz, A. 
T. (2010). Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5. 
Science, 328(5975), 228-231. doi:10.1126/science.1179721 



122 

Vijay-Kumar, M., Chassaing, B., Kumar, M., Baker, M., & Singh, V. (2014). Mammalian gut immunity. 
Biomedical Journal, 37(5), 246. doi:10.4103/2319-4170.130922 

Walter, J. (2008). Ecological Role of Lactobacilli in the Gastrointestinal Tract: Implications for 
Fundamental and Biomedical Research. Applied and Environmental Microbiology, 74(16), 4985-
4996. doi:10.1128/aem.00753-08 

Walter, J., Armet, A. M., Finlay, B. B., & Shanahan, F. (2020). Establishing or Exaggerating Causality for 
the Gut Microbiome: Lessons from Human Microbiota-Associated Rodents. Cell, 180(2), 221-
232. doi:https://doi.org/10.1016/j.cell.2019.12.025 

Walter, J., & Ley, R. (2011). The Human Gut Microbiome: Ecology and Recent Evolutionary Changes. 
Annual Review of Microbiology, 65(1), 411-429. doi:10.1146/annurev-micro-090110-102830 

Walter, J., Maldonado-Gómez, M. X., & Martínez, I. (2018). To engraft or not to engraft: an ecological 
framework for gut microbiome modulation with live microbes. Current opinion in biotechnology, 
49, 129-139. doi:10.1016/j.copbio.2017.08.008 

Walters, W. A., Xu, Z., & Knight, R. (2014). Meta-analyses of human gut microbes associated with obesity 
and IBD. FEBS letters, 588(22), 4223-4233. doi:10.1016/j.febslet.2014.09.039 

Wang, H.-B., Wang, P.-Y., Wang, X., Wan, Y.-L., & Liu, Y.-C. (2012). Butyrate Enhances Intestinal Epithelial 
Barrier Function via Up-Regulation of Tight Junction Protein Claudin-1 Transcription. Digestive 
Diseases and Sciences, 57(12), 3126-3135. doi:10.1007/s10620-012-2259-4 

Wang, J., Thingholm, L. B., Skiecevičienė, J., Rausch, P., Kummen, M., Hov, J. R., . . . Franke, A. (2016). 
Genome-wide association analysis identifies variation in vitamin D receptor and other host 
factors influencing the gut microbiota. Nature genetics, 48(11), 1396-1406. doi:10.1038/ng.3695 

Wang, S., Huang, M., You, X., Zhao, J., Chen, L., Wang, L., . . . Chen, Y. (2018). Gut microbiota mediates 
the anti-obesity effect of calorie restriction in mice. Scientific Reports, 8(1). doi:10.1038/s41598-
018-31353-1 

Wei, B., Liu, Y., Lin, X., Fang, Y., Cui, J., & Wan, J. (2018). Dietary fiber intake and risk of metabolic 
syndrome: A meta-analysis of observational studies. Clinical Nutrition, 37(6), 1935-1942. 
doi:10.1016/j.clnu.2017.10.019 

Weiss, S. J., Xu, Z., Amir, A., Peddada, S., Bittinger, K., Gonzalez, A., . . . Knight, R. (2015). Effects of library 
size variance, sparsity, and compositionality on the analysis of microbiome data. PeerJ.   

Wheeler, M. L., Limon, J. J., Bar, A. S., Leal, C. A., Gargus, M., Tang, J., . . . Iliev, I. D. (2016). 
Immunological Consequences of Intestinal Fungal Dysbiosis. Cell Host Microbe, 19(6), 865-873. 
doi:10.1016/j.chom.2016.05.003 

Willemsen, L. E. M., Koetsier, M. A., van Deventer, S. J. H., & van Tol, E. A. F. (2003). Short chain fatty 
acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) 
and E(2) production by intestinal myofibroblasts. Gut, 52(10), 1442-1447. 
doi:10.1136/gut.52.10.1442 

Willett, W. C., Howe, G. R., & Kushi, L. H. (1997). Adjustment for total energy intake in epidemiologic 
studies. The American Journal of Clinical Nutrition, 65(4), 1220S-1228S. 
doi:10.1093/ajcn/65.4.1220s 

Wilson, K. S., Wiersma, L. D., & Rubin, D. A. (2016). Quality of life in children with Prader Willi Syndrome: 
Parent and child reports. Research in Developmental Disabilities, 57, 149-157. 
doi:10.1016/j.ridd.2016.06.016 

Wu, G., Zhang, C., Wu, H., Wang, R., Shen, J., Wang, L., . . . Zhang, M. (2017). Genomic Microdiversity of 
Bifidobacterium pseudocatenulatum: Underlying Differential Strain-Level Responses to Dietary 
Carbohydrate Intervention. mBio, 8(1).  

https://doi.org/10.1016/j.cell.2019.12.025


123 

Yang, Y., Zhao, L.-G., Wu, Q.-J., Ma, X., & Xiang, Y.-B. (2015). Association Between Dietary Fiber and 
Lower Risk of All-Cause Mortality: A Meta-Analysis of Cohort Studies. American Journal of 
Epidemiology, 181(2), 83-91. doi:10.1093/aje/kwu257 

Yao, B., Fang, H., Xu, W., Yan, Y., Xu, H., Liu, Y., . . . Zhao, Y. (2014). Dietary fiber intake and risk of type 2 
diabetes: a dose–response analysis of prospective studies. European Journal of Epidemiology, 
29(2), 79-88. doi:10.1007/s10654-013-9876-x 

Zeevi, D., Korem, T., Zmora, N., Israeli, D., Rothschild, D., Weinberger, A., . . . Segal, E. (2015). 
Personalized Nutrition by Prediction of Glycemic Responses. Cell, 163(5), 1079-1094. 
doi:10.1016/j.cell.2015.11.001 

Zhang, C., Yin, A., Li, H., Wang, R., Wu, G., Shen, J., . . . Zhao, L. (2015). Dietary Modulation of Gut 
Microbiota Contributes to Alleviation of Both Genetic and Simple Obesity in Children. 
EBioMedicine, 2(8), 968-984. doi:10.1016/j.ebiom.2015.07.007 

Zhang, C., & Zhao, L. (2016). Strain-level dissection of the contribution of the gut microbiome to human 
metabolic disease. Genome Med, 8(1). doi:10.1186/s13073-016-0304-1 

Zhang, Z., Mocanu, V., Cai, C., Dang, J., Slater, L., Deehan, E. C., . . . Madsen, K. L. (2019). Impact of Fecal 
Microbiota Transplantation on Obesity and Metabolic Syndrome-A Systematic Review. 
Nutrients, 11(10), 2291. doi:10.3390/nu11102291 

Zhao, Y., Chen, F., Wu, W., Sun, M., Bilotta, A. J., Yao, S., . . . Cong, Y. (2018). GPR43 mediates microbiota 
metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via 
activation of mTOR and STAT3. Mucosal Immunol, 11(3), 752-762. doi:10.1038/mi.2017.118 

Zhou, J., Hegsted, M., McCutcheon, K. L., Keenan, M. J., Xi, X., & Raggio, A. M. (2006). Peptide YY and 
proglucagon mRNA expression patterns and regulation in the gut. Obesity (Silver Spring), 14. 
doi:10.1038/oby.2006.77 

Zhou, J., Martin, R. J., Tulley, R. T., Raggio, A. M., McCutcheon, K. L., & Shen, L. (2008). Dietary resistant 
starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in 
rodents. Am J Physiol Endocrinol Metab, 295. doi:10.1152/ajpendo.90637.2008 

Zhu, H., & Li, Y. R. (2012). Oxidative stress and redox signaling mechanisms of inflammatory bowel 
disease: updated experimental and clinical evidence. Experimental Biology and Medicine, 
237(5), 474-480. doi:10.1258/ebm.2011.011358 

 

 

 

 

 



124 

Appendix



125 

Appendix A – Participant Characteristics  

Supplementary Table 1 

 Sex Age BMI% 
Weight 
group 

Genot
ype 

Subgroup Hyperphagia score Nutrition intake 

 se
x                    

mont
hs 

            Behavi
our 

Drive Severity Total 
Energy 
(kcal) 

Fib 
(g) 

Prot 
(g) 

Carb 
(g) 

Fat 
(g) 

Sat Fat 
(g) 

Mono 
Fat (g) 

Poly 
Fat (g) 

Trans 
Fat (g) 

Chol 
(mg) 

S005B-
0001 F    146 78.5 NW PWS 

NW 
PWS 7 7 2 16 1814 16 58 271 184 189 180 186 193 154 

S005B-
0002 M   74 98.9 OWOB PWS 

OWOB 
PWS 5 7 4 16 1244 18 65 189 214 193 186 188 194 172 

S005B-
0003 M   36 52.6 NW PWS 

NW 
PWS 5 5 2 12 1118 16 64 211 201 195 188 188 195 122 

S005B-
0004 F 79 94.8 OWOB PWS 

OWOB 
PWS 5 8 4 17 1202 25 82 206 198 192 186 188 194 206 

S005B-
0005 F 181 65.5 NW PWS 

NW 
PWS 11 6 11 28 1652 22 60 258 188 191 175 184 194 107 

S005B-
0006 F 67 86.2 OWOB PWS 

OWOB 
PWS 8 10 3 21 1361 14 81 198 203 204 183 185 194 346 

S005B-
0007 F 213 86.2 OWOB PWS 

OWOB 
PWS 9 8 2 19 1480 19 64 211 204 196 179 182 194 196 

S005B-
0008 F 159 72.2 NW PWS 

NW 
PWS 11 11 4 26 1810 18 76 189 211 202 182 183 194 428 

S005B-
0009 F 65 83.3 NW PWS 

NW 
PWS 6 14 6 26 847 24 97 175 205 198 187 189 194 293 

S005B-
0010 M 182 70.6 NW PWS 

NW 
PWS 7 7 2 16 1058 17 68 195 205 193 187 187 195 216 

S005B-
0011 F 42 41.5 NW PWS 

NW 
PWS 14 6 4 24 1046 19 76 159 222 203 202 187 195 383 

S005B-
0012 M 183 87.3 OWOB PWS 

OWOB 
PWS 5 7 2 14 1500 14 51 152 240 239 183 186 194 178 

S005B-
0013 M 66 95.9 OWOB PWS 

OWOB 
PWS 12 14 4 30 1503 20 96 113 236 213 192 189 197 351 

S005B-
0014 M 91 98.8 OWOB PWS 

OWOB 
PWS 5 10 4 19 1299 21 71 195 209 206 181 183 194 364 

S005B-
0015 F 200 83.9 NW PWS 

NW 
PWS 8 14 6 28 847 12 65 148 226 204 199 190 195 290 

S005B-
0016 M 38 71.1 NW PWS 

NW 
PWS 5 8 4 17 1205 27 71 147 232 208 196 188 194 341 

S005B-
0017 F 155 28.5 NW PWS 

NW 
PWS 19 13 7 39 1429 12 64 217 200 197 181 184 194 162 

S005B-
0018 F 70 40.8 NW PWS 

NW 
PWS 9 13 4 26 1922 32 70 101 137 175 246 298 229 17 

S005B-
0019 M 39 30.8 NW PWS 

NW 
PWS 5 5 2 12 1395 26 75 109 160 183 214 265 224 44 
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S005B-
0020 M 54 70.5 NW PWS 

NW 
PWS 5 6 3 14 1395 19 93 113 157 189 223 261 218 57 

S005B-
0021 M 98 95.4 OWOB PWS 

OWOB 
PWS 5 9 5 19 1644 19 73 129 158 183 208 273 224 12 

S005B-
0022 F 123 34.2 NW PWS 

NW 
PWS 10 10 3 23 1327 18 72 192 208 195 190 187 196 306 

S005B-
0023 F 40 79.3 NW PWS 

NW 
PWS 5 5 2 12 1176 14 66 149 170 192 219 248 220 70 

S005B-
0024 F 62 94.1 OWOB PWS 

OWOB 
PWS 11 13 4 28 1390 23 79 196 210 200 193 186 194 119 

S005B-
0025 M 69 96.5 OWOB PWS 

OWOB 
PWS 9 10 3 22 1127 28 65 230 177 193 257 212 200 57 

S005B-
0026 M 192 81.8 NW CON 

NW 
CON 5 7 2 14 1048 12 66 225 171 195 304 206 201 62 

S005B-
0027 M 111 96.7 OWOB CON 

OWOB 
CON 5 7 2 14 1147 12 76 181 209 208 183 184 195 199 

S005B-
0028 M 180 51.2 NW CON 

NW 
CON 5 6 2 13 2043 12 99 172 205 198 174 180 195 475 

S005B-
0029 M 78 0.9 NW CON 

NW 
CON 5 7 2 14 1366 15 64 213 202 202 185 185 194 399 

S005B-
0030 M 127 65.9 NW CON 

NW 
CON 7 11 2 20 2446 31 73 228 131 195 322 256 225 -34 

S005B-
0031 M 106 97 OWOB CON 

OWOB 
CON 12 11 2 25 1914 14 55 243 197 192 187 187 193 267 

S005B-
0032 M 24 44.6 NW CON 

NW 
CON 6 5 2 13 826 12 60 189 211 202 190 188 195 221 

S005B-
0033 M 103 99.6 OWOB CON 

OWOB 
CON 5 7 2 14 1961 10 67 224 202 197 189 183 193 137 

S005B-
0034 M 91 82.3 NW CON 

NW 
CON 6 5 2 13 1889 22 56 243 197 205 181 181 194 115 

S005B-
0035 F 120 74 NW CON 

NW 
CON 6 5 2 13 2014 21 61 230 201 205 178 182 195 163 

S005B-
0036 F 126 86 OWOB CON 

OWOB 
CON 8 7 3 18 1864 14 49 194 219 200 194 184 193 128 

S005B-
0037 M 194 49.4 NW CON 

NW 
CON 9 6 3 18 2672 21 46 241 206 197 178 177 194 66 

S005B-
0038 F 100 83 NW CON 

NW 
CON 8 8 2 18 2064 20 31 237 212 194 194 189 195 109 

S005B-
0039 M 53 74.1 NW CON 

NW 
CON 7 12 4 23 1480 18 96 177 205 204 187 186 194 344 

S005B-
0040 M 76 57.1 NW CON 

NW 
CON 6 8 2 16 2074 19 57 240 198 194 175 178 193 147 

S005B-
0041 M 105 26.7 NW CON 

NW 
CON 6 10 2 18 1564 21 51 244 169 214 238 230 216 25 

S005B-
0042 F 61 76.6 NW CON 

NW 
CON 11 7 2 20 1101 28 73 378 226 203 195 193 194 181 
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S005B-
0043 F 89 56.4 NW CON 

NW 
CON 7 5 2 14 1540 20 64 219 202 196 184 187 194 171 

S005B-
0044 M 117 78.6 NW CON 

NW 
CON 6 4 2 12 3382 15 109 57 263 218 210 194 191 335 

S005B-
0045 F 108 91.5 OWOB CON 

OWOB 
CON 10 10 4 24 2247 16 65 185 223 195 204 195 195 226 

S005B-
0046 M 152 98.2 OWOB CON 

OWOB 
CON 6 6 2 14 1912 17 69 222 208 192 194 191 195 524 

S005B-
0047 M 130 93.9 OWOB CON 

OWOB 
CON 7 8 3 18 2673 14 92 228 190 194 176 177 193 458 

S005B-
0048 F 59 35.4 NW CON 

NW 
CON 7 6 2 15 2051 23 46 289 182 187 176 183 194 49 

S005B-
0049 F 48 98.1 OWOB CON 

OWOB 
CON 5 6 2 13 1642 18 73 229 196 200 184 186 194 151 

S005B-
0050 F 73 19.5 NW CON 

NW 
CON 8 7 2 17 1722 16 60 193 157 217 238 254 215 26 
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Appendix B - Graphical depiction of subgroups and pairwise analysis 

 

 

A)                    B)  

 

Supplemental figure 1. Graphical depiction of subgroups and pairwise analysis.  

A) 4 subgroup (NW PWS, OWOB PWS, NW CON, OWOB CON were considered for pairwise 

analysis. B) pairwise subgroup analyses (NW CON vs NW PWS; NW OWOB CON vs OWOB PWS; 

NW PWS vs OWOB PWS; NW CON vs OWOB CON). Pairwise analyses were used to try and gain 

insight between the effects of weight status (NW vs OWOB) and the effects of group type (PWS 

vs CON).  

Abbreviations: Overweight/Obese (OWOB), Normal weight (NW), Prader-Willi Syndrome (PWS), 

Control group (CON) 
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Appendix C - Sequence read depth summary for A) fungal and B) bacterial sequences    

A) Fungal read depth 
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B) Bacterial read depth 

 

Supplemental figure 2. Sequence read depth summary for A) fungal and B) bacterial 

sequences    
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Appendix D - Fungal genus level taxonomic composition 

 

 

Supplemental figure 3. Fungal genus level taxonomic composition using Stacked bar/area plot 

Abbreviations: Prader-Willi Syndrome (PWS), Control group (CON) 
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Appendix E - Bacterial genus level taxonomic composition 

 

 

Supplemental figure 4. Bacterial genus level taxonomic composition using Stacked bar/area plot 

Abbreviations: Prader-Willi Syndrome (PWS), Control group (CON)  
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Appendix F - Hyperphagia Questionnaire (Dykens et al., 2007) 

 

Items on the Hyperphagia Questionnaire were rated on a five-point scale (1- not a problem to 

5- severe and/or frequent problem).  

 

Date: ________________________________    Study ID#: 

 

EATING BEHAVIORS QUESTIONNAIRE 

 

(1). How upset does your child generally become when denied a desired food?  

 

____ Not particularly upset at all 

____ A little upset 

____ Somewhat upset 

____ Very upset 

____ Extremely upset 

 

 

(2). Once your child has food on their mind, how easy is it for you or others to re-direct your 

child away from food to other things?  

 

____ Extremely easy, takes minimal effort to do so 

____ Very easy, takes just a little effort to do so  

____ Somewhat hard, takes some effort to do so 

____ Very hard, takes a lot of work to do so  

____ Extremely hard, takes sustained and hard work to do so  
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(3). How persistent is your child in asking or looking for food after being told “no” or “no 

more”?  

 

____ Lets go of food ideas quickly and easily  

____ Lets go of food ideas pretty quickly and easily 

____ Somewhat persistent with food ideas 

____ Very persistent with food ideas 

____ Extremely persistent with food ideas 

 

 

(4).  How often does your child currently get up at night to food seek? 

 

____ 4-7 nights a week 

____ 1-3 nights a week 

____ 1-2 nights a month 

____ A few nights a year 

____ Never 

 

 

(5). How often does your child currently forage through the trash for food? 

 

____ 4-7 times a week 
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____ 1-3 times a week 

____ 1-2 times a month 

____ A few times a year 

____ Never 

 

(6). How often does your child currently try to bargain or manipulate to get more food at 

meals? 

 

____ Several times a day 

____ Several times a week 

____ A few times a week 

____ A few times a month 

____ A few times a year 

 

(7). How often does your child currently try to steal food (that you are aware of)? 

 

____ Several times a day 

____ Several times a week 

____ A few times a week 

____ A few times a month 

____ A few times a year 

 

(8).  How “clever” or “fast” is your child at obtaining food?  
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____ Extremely clever or fast 

____ Very clever or fast 

____ Somewhat clever or fast 

____ A little clever or fast 

____ Not particularly clever or fast 

 

(9). How variable is your child’s preoccupations or interests in food?  

____ Goes up and down all the time 

____ Goes up and down quite a lot 

____ Goes up and down occasionally  

____ Usually stays about the same 

____ Hardly ever varies  

 

(10). Outside of normal meal times, how much time does your child spend talking about 

food or engaged in food-related behaviours?  

 

____ Less than 15 minutes a day 

____ 15 to 30 minutes a day 

____ 30 minutes to 1 hour a day 

____ 1 to 3 hours a day 

____ more than 3 hours a day 

 

(11). When others try to stop your child from talking about food or engaging in food-related 

behaviours, it generally leads to:  
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____ No distress or upset 

____ Mild distress or upset 

____ Moderate distress or upset 

____ Severe distress or upset 

____ Extreme distress or upset 

 

(12). To what extent do food-related thoughts, talk, or behaviour interfere with your child’s 

normal daily routines, self-care, school, or work?  

 

____ No interference 

____ Mild, occasional food-related interference in completing school, work or hygiene tasks 

____ Moderate, frequent food-related interference in completing school, work of hygiene 

tasks 

____ Severe, almost daily food-related interference in completing school, work of hygiene 

tasks 

____ Extreme, often unable to participate in hygiene tasks or get to school or work due to 

food-related interference 
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Appendix G – Summary of dietary fiber selection and dosage rational 

 

Fiber selection rationale 

 

Fiber choice and dosage was determined through extensive review of the literature for 1) 

benefits of fiber on host and microbiome 2) mechanisms of action of fiber 3) tolerability of fiber 

4) ease of incorporation 5) similarity to the previous beneficial PWS intervention. Responses to 

prebiotic interventions are highly individualized [1, 2]. To maximize the number of responders, 

a combination of soluble and insoluble fibers will be used, providing a complex and diverse 

source of nutrients to the gut microbiota and, consequently, to the host [3]. Oligofructose, 

digestion-resistant maltodextrin, acacia gum and RS2 have all been examined for their ability to 

promote satiety, elevate circulating anorexigenic hormones, as well as confer other health 

benefits. These fibers are also associated with alterations in the gut microbiota and increased 

production of SCFAs which provide system wide benefits to the host. Insoluble fibers found in 

whole food products such as oat bran and legumes are also well known to aid in appetite 

regulation and the food matrix provides additional phytochemicals and confers improved 

tolerability.  

Soluble Fibers:  

❖ Oligosaccharides: Oligofructose & Oligoisomaltose: Oligofructans have been well 

documented to provide appetite reducing and anti-obesogenic functions in both adult and 

pediatric populations. Oligofructose promoted favourable microbial shifts in taxa that 

promoted SCFA production such as increased abundance of Bifidobacterium & Lactobacillus 

and decreased taxa associated with inflammation and disruptions of intestinal barrier 

function such as Bacteroides vulgatus and Clostridium clostridioforme. This prebiotic 

supplementation improved appetite regulation, metabolic & inflammatory outcomes and 

weight loss in children with overweight and obesity independent of other lifestyle changes 

[4-6].  Various studies have found improvements of appetite regulation, satiety hormone 

levels and reduced energy intake [7]. In the Previous PWS intervention trial, these 

oligosaccharides were consumed daily, providing additional rationale for its selection in the 

current study [8].  

❖ Digestion-Resistant Maltodextrin: Used in the previous PWS intervention. May improve 

intestinal functions such as GI tolerability, colonic transit time, stool volume and stool 

consistency [9-11], all of which would aid the digestion of children with PWS. In addition, 

10-15 g of maltodextrin has been shown to have satiating effects, and increased levels of 

PYY and GLP-1 [12]. Promotes increased Lactobacillus and Bifidobacterium [13] both 

bacteria implicated in improvement of obesity phenotype through decreasing inflammation 

and improved glycemic control.  
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❖ Acacia gum [Gum Arabic; Acacia Senegal]: Studies have found consumption of acacia gum 

decreased caloric intake and increased subjective ratings of satiety [14]. Other studies have 

also found weight loss, decreased fat percentage, improved glycemic control, and improved 

lipid profile benefits to this fiber [15, 16]. The microbiome modulating effects are well 

established and consumption leads to more beneficial microbial profiles [17].  

Insoluble Fibers:  

❖ Resistant starch (Hi-maize RS2): Consumption of RS2 is associated with reduced abdominal 

fat, improved insulin sensitivity, increased serum glucagon-like peptide 1 (GLP-1), increased 

fasting PYY, lower leptin concentrations, and improved glucose homeostasis [18, 19]. RS2 

also reliably modulates the gut microbiome and is shown to promote butyrate production 

[20, 21].  RS2 is also well tolerated and aids digestion.  

❖ Whole food sources of insoluble fiber: Several systematic reviews of the literature 
consistently find improvements in satiety using non-soluble fibers such as B-glucans [22]. 
These fibers are better tolerated as whole foods products and whole foods provide a 
mixture of various non-soluble fibers as well as additional beneficial nutrients, lipids and 
phytochemicals.  The PWS intervention used a partial whole food mixture and the current 
study aims to adapt this to fit a more Canadian diet; specifically using whole grains, oat 
bran, legumes, beans, and lentils found in Alberta.  

Table: Tolerance data of fibers with limited GI side-effects chosen for the fiber intervention 

trial  

Reference  Population  Type of fiber Dose  Tolerence outcomes Summary 

Calame et 
al., (2011) 

Adults Acacia Gum 5, 10, or 40 
g/d 

No reported GI discomfort  

Babiker et 
al., (2018) 

Adults Acacia Gum 30 g/d Minor side effects during the first 
week of the intervention (viscous 
sensation (32%), diarrhea (11%), 
nausea (8%), and abdominal 
bloating (6%)) 
 
 Symptoms subsided within the 
second week of intake, with only 
the discomfort of viscous 
sensation continuing  

Babiker et 
al., (2012) 

Adults Acacia Gum 30 g/d Side effects were mild, 
experienced only in the first 
week and then resolved 
 
They included unfavorable 
viscous sensation in the mouth 
(100%), early morning nausea 
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(81.7%), mild diarrhea (90%) and 
bloating abdomen (15%) 

Cherbut et 
al., (2003) 

Adults Acacia Gum 10-70 g/d No difference in tolerance ≤30 
g/d. Above this dose, the main 
complaint was excessive 
flatulence. However, the mean 
degree of severity remained mild 
(<1), even at doses >50 g/d. Other 
intestinal events were rarely 
reported.  

Weber et 
al., (2014) 

Children 10.5% 
Oligofructose, 
12.5% Inulin, 
24% Acacia Gum,  
9% Resistant 
Starch, 
33% Soy 
Polysaccharide, 
12% Cellulose 

3.8 and 7.6 
g/d  
(based on 
participant 
weight; 
3.8g/d when 
<18kg, 7.6 
g/d when 
>18kg) 

Adverse events were not 
observed for either group, and 
the products were well tolerated 

Pedersen 
et al., 
(2013) 

Adults Oligofructose  15, 25, 35, 45, 
and 55 g/d 

All doses were well tolerated with 
no apparent dose–response 
effect on GI symptom or general 
wellbeing scores. 

Holscher 
et al., 
(2014) 

Adults Oligofructose  5 and 7.5 g/d ≤7.5 g/day led to minimal GI 
upset, with no change in diarrhea, 
and improved laxation 

Liber et 
al., (2014) 

Children Oligofructose   8 g/d for 
children 7–11 
ys  
15 g/d for 
children 12–
18 ys 

Adverse effects measured 
including abdominal pain, 
flatulence, diarrhoea/loose stool, 
borborygmi, nausea, and 
heartburn, did not differ 
statistically from placebo 
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Nicolucci 
et al., 
(2017) 

Children  Oligofructose -  
enriched inulin  

8 g/d  No gastrointestinal side effects 
were experienced by 70% of the 
prebiotic group and 61% of the 
placebo.  
 
A mild ↑ in flatulence and 
bloating was experienced by 25% 
and 28% of subjects in prebiotic 
and placebo, respectively.  
 
A moderate ↑ in flatulence and 
bloating was reported by 5% and 
11% of subjects in prebiotic and 
placebo, respectively.  
 
No reports of severe effects in 
either group. 

Pasman et 
al., (2006) 

Adults Resistant 
Maltodextrin 

30 or 45 g/d Both doses were very well 
tolerated, and GI complaints did 
not differ greatly from the 
placebo treatment. Some 
habituation and adaptation of the 
GI symptoms occurred 

Ye et al., 
(2015) 

Adults Resistant 
Maltodextrin 

5 or 10 g/d None reported 

van den 
Heuvel 
(2004) 

Adults Resistant 
Maltodextrin 

10, 30, and 60 
g/day OR 
10, 15, 45, 
and 80g/day 

Well tolerated up to a dose of 45 
g daily. Higher daily dosages (60 
and 80 g) may result in flatulence 
but did not result in diarrhea. 

Fastinger 
et al., 
(2008) 

Adults Resistant 
Maltodextrin 

15 g/d Very minor effects in 
gastrointestinal tolerance 

Vuksan et 
al., (2009) 

Children PolyGlycopleX 
(PGX) 

5g No differences in gastrointestinal 
tolerance between groups 

Carabin et 
al., (2009) 

Adults PolyGlycopleX 
(PGX) 

2.5-10g/day Well tolerated with only mild to 
moderate adverse 
gastrointestinal effects that did 
not differ from those seen in the 
control groups.  

 
Our targeted supplemental fiber mixture (35 g total) will be composed of 6g of fiber from 

oligofructose + 10g from resistant maltodextrin + 12g from acacia gum + 4g from whole foods + 

3g from RS2; and will be split into three meals each day. 
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Appendix H – Pediatric dietary fiber tolerance critical review  

 

Preface:  

The following review was written as part of the AFNS 675 course requirement in the Fall 2017 

semester at the University of Alberta. Knowledge derived from this critical review informed the 

rational of fiber selection for an upcoming clinical trial (NCT04150991)(Haqq, 2020).  

 

Tolerance of Dietary Fiber Supplementation in Pediatric Populations 

Increasing evidence suggests that dietary fiber can be an important factor in the promotion of 

health and the prevention of disease. Dietary fiber has been shown to have many downstream 

mediating effects on gastrointestinal (GI) health such as its role in the gut microbiome and 

modulation of metabolic activity. Unfortunately, there is less known about dietary fiber 

interventions in children and adolescents, with very few studies having been done on these 

populations. Dietary fiber recommendations for the pediatric population have been extrapolated 

from adult energy intake data rather than meticulous evidence-based criteria. In addition, there 

are several different fiber recommendations that currently exist for pediatric populations 

including the ‘dietary reference intakes’ that set the ‘adequate intake’ levels, the ‘American 

Health Foundation’ recommendations and finally the suggestions from the American Academy 

of Pediatrics[1]. These recommendations vary greatly making it very hard for translation to 

pediatric populations. Additionally, there are several subcategories that fall under the umbrella 

of “Dietary Fiber”, each with unique properties that may affect both function and tolerability [1, 

2]. The age-based fiber recommendations for children based off adult data do not specify the 

type or properties of the fibers included which may be necessary to support specific health 
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benefits at the suggested amount of intake. Observational studies have also shown that 

regardless of the intake guidelines used, a large majority of the pediatric population fail to meet 

the fiber recommendations. Dietary fibers (especially fermentable fibers) are often associated 

with undesirable GI symptoms [2]. In adult studies, support has been shown for using tolerance-

based recommendations for specific dietary fibers. Tolerance, as described in this review (no 

significant increase in GI distress/symptoms) is often overlooked in the few fiber intervention 

studies of the pediatric population. To determine the type and dosage of fiber for intervention 

studies, several factors must be considered, such as feasibility of administration and tolerance of 

the fiber. This critical review will review the studies that have fed fiber to pediatric populations 

and assess how these fibers have been tolerated with the overall purpose of making 

recommendations for the design of future trials.  

Fiber type and dosage: An overview- When reviewing the literature, it is apparent that 

comparing the tolerance of different fiber types and different doses of these fibers is a 

complicated and challenging issue. As described by Gabritske et al., (2009) [2] several host factors 

and features of the fiber itself can influence tolerance. Because of differences in manufacturers 

and overall composition, one may see variance in the chemical and physical properties of a given 

fiber. There is also the potential of additional ingredients in a mixture that could influence the 

purity and properties of the fiber content. For example, the glucomannan supplements used in 

the Horvath, et al. (2013) [3] and Chmielewska, et al., (2011) [4] studies were in a soluble powder 

format derived from the same source and had the same dosage. In contrast, the glucomannan 

used in the Martino et al., (2015) [5] study was in capsules made by a different manufacturer and 

thus precautions must be made when comparing these studies.  Maltodextrin or cellulose were 
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selected as the placebo/control fiber in the majority of studies; these are considered to be 

suitable control fibers as they are non-fermentable and pass through the digestive tract relatively 

unchanged. For these reasons, they have been repeatedly found to not lead to GI distress [1, 2].  

The objectives of the study ultimately decide the choice of fiber type; the benefits that have been 

shown or suggested by using the type of fiber, the feasibility of implication and the tolerance are 

all important factors to consider. Dosages used in the literature were provided as a g/day amount 

that was supplemented into the diet of participants. The rationale provided for the dosages used 

in the reviewed pediatric literature was often simply using the same doses as a previously 

published study of an adult population that had similar primary outcomes, or by using the same 

dose as another pediatric study that used the aforementioned rationale. Additionally, other than 

adjusting the doses for different age ranges within the study, no other considerations were 

mentioned to potentially standardize dosages based on a kg body weight or kcal basis. 

Determining appropriate dosage is a challenge with the current state of the literature and this is 

further complicated because different fiber types cannot be easily compared.  In this review of 

tolerance in the pediatric population, oligofructuse supplemented into a participant’s diet has 

been dosed as high as 15g/day (with apparently high tolerance for the measures of tolerance 

collected), whereas glucomannan is dosed no higher than 5g/day for the same age range (with 

similar tolerance outcomes). For example, if you compare the Liber[6] and Horvath[3] studies, 

the measures of abdominal pain (something both studies measured) was 30% and 32% for 

oligofructose and glucomannan groups respectively; this was using a daily dose of 8-15g of 

oligofructose compared to 2.5g of glucomannan. This is an indirect comparison as there are 

several other confounding factors that could impact this result [2], however this example is 
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meant to exemplify the limitation of assuming at a given dose that all fibers are equals in terms 

of their tolerability.  

Overall, the ranges of doses for a given fiber type in the pediatric studies described were 

relatively narrow (0.75-15g/day oligofructose; 2-5g glucomannan, see table 1 or 2). This is in 

contrast to adult studies that have started to attempt to push the upper limits of dosages to the 

maximum of what can be tolerated comfortably [2, 7]. Taken as a whole, with the limited number 

of studies, it would not be appropriate to draw any conclusions regarding the tolerable dosages 

for any of the fiber types discussed in this review. The rationale for dosage in future studies needs 

to be more robust. Dosages used in the literature will be discussed further in the sections to 

come.  

Measures and definitions of tolerance- A noteworthy obstacle in reviewing the literature is the 

varied ways of defining and measuring tolerability of the dietary fiber interventions that are 

presented in each study. In several papers, tolerance was compared between an experimental 

fiber group (prebiotic group) and a placebo control fiber group. For a robust measure of 

tolerability, several factors may be considered; the presence of a given symptom, the frequency 

in which a symptom occurs, the severity of the symptom, and when during the intervention does 

this symptom occur/for how long of a period does this symptom persist (temporality). Identifying 

these factors allows for a better understanding of the tolerability, which can be used when 

planning future trials. Hume et al., (2017) [8] (fed 8g of oligofructose-enriched inulin each day) 

was one of only three studies to look at tolerance in terms of the severity of symptoms (rankings 

of either mild, moderate, or severe). In this double-blind placebo-controlled study, only two 
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measures of tolerance were used, (flatulence and bloating) and these items were not separated 

when analyzed. Additionally, these measures did not account for the frequency of the GI 

symptoms and had no temporal component to determine when throughout the intervention 

these symptoms occurred. The double-blind, randomized, placebo-controlled crossover trial by 

Francois et al., (2014)[9] also assessed the severity of GI distress (fed 5g of wheat bran extract 

each day, which contained 3.95g of the active fiber component, arabinoxylan-oligosaccharides) 

through a daily self report (that was later aggregated into weekly averages for analysis). Three 

criteria: flatulence, urge to vomit, and abdominal pain/cramps were all assessed on a 5-step scale 

ranging from no (0), minimal (1), mild (2), moderate (3) and severe (4) distress. Unlike the Hume 

et al., (2017) study, these items were analyzed and presented separately in the results. Bowel 

habits were also assessed in this study by monitoring stool frequency, stool consistency, and 

using the composite Bristol stool scale [10]. Additional adverse effects were identified and 

categorized according to the ‘National Cancer Institute Common Terminology Criteria for Adverse 

Events (version 3.0)’. These measures (GI distress, bowel habits and adverse effects) were 

measured during the run-in/baseline period and during the last week of the three-week 

treatment periods (fiber treatment period and placebo treatment period). Previous reviews of 

the adult literature suggest the first two weeks of a supplemental fiber intervention is when the 

most GI symptoms seem to be observed [11]. By only collecting measures during the final week 

of a three-week intervention, the study authors are observing the tolerance once this predicted 

period of adjustment has passed and are really studying if the treatment would be tolerated or 

adapted to in the long-term rather than if it is tolerable earlier in the intervention (when 

compliance is critical). Thus, the scope of the study is limited in this regard. The use of objective 
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and standardized measures, such as the Bristol stool scale, and the criteria for adverse events are 

a strong point of this study and future studies could benefit from similar standardization of 

measures. In a double-blind, randomized, crossover design trial by Vuksan et al., (2009) [12], 

subjects were told to consume three different beverages, which varied in fiber type. The 

beverages contained 5 g of either PGX (combination of xanthan, glucomannan, and sodium 

alginate dietary fibers), glucomannan (alone) or cellulose. Severity of bloating, belching, diarrhea, 

flatulence, and nausea were rated on a physical comfort visual analog scale (‘‘low’’ at one end 

(0) and ‘‘high’’ at the other (100)). An average score was calculated for each gastrointestinal 

symptom. These measures were taken before drinking the fiber supplemented beverage and in 

15-minute intervals for 90 minutes (6 assessments) after consuming the beverage. After the 90 

minutes, participants ate an ad libitum lunch and were asked to complete the physical comfort 

measure again. This procedure was repeated in three study visits (one for each fiber type). With 

further validation for the pediatric population, the use of a visual analog scale could be a useful 

alternative to written questionnaires, especially in younger children who would need parents to 

complete questionnaires for them.  A major drawback of this study is that the very short time 

frame only provides us with an acute look at tolerance of the PGX and glucomannan fibers. More 

frequent/prolonged use of these fibers at the current dose (5g/day) may have differing GI side 

effects. Using the information recorded in a daily diary, Chmielewska et al.[4] reported the stool 

consistency (using the Bristol stool scale), stool frequency, abdominal pain, number of episodes 

of fecal soiling, number of episodes of painful defecation, and number of episodes of flatulence 

per week. This paper was one of the only studies to have both a frequency and temporal 

component to their data reporting, however the investigators did not record the severity of the 
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GI discomfort experienced (for those measures where this would be applicable). Both the 

Chmielewska [4] and Horvath [3] studies fed 2.52g of glucomannan daily to the participants. The 

Horvath [3] study looked at abdominal cramps, abdominal bloating/gassiness, number of 

episodes of nausea, vomiting, and changes in stool consistency (loose stools & constipated 

stools). These items are similar to those of the Chmielewska study however the way they are 

presented/categorized differs and thus the way subjects and researchers interpret these 

symptoms may differ (example of lack of standardization). The Martino et al., (2015) study with 

glucomannan (ranging from 2-4.5g/day based on age) did not specify any tolerance measures but 

instead asked participants to “report any adverse effects”, of which none were reported.   Liber 

et al., (2014)[6] (fed 8-15g of oligofructose or maltodextrin control fiber each day, with the dose 

depending on the age of the participants) considered and measured the following items as 

adverse effects to be monitored as tolerance measures: abdominal pain, flatulence, 

diarrhoea/loose stool, borborygmi, feeling of fullness, loss of appetite, nausea, and heartburn. 

This study also encouraged the participants to report any additional symptoms experienced, 

though no such additional symptoms were reported by the study authors. The Liber (8-15g/day 

oligofructose) [6] and the Horvath (2.25g/day glucomannan) [3] studies reported on a larger 

variety of tolerance measures, however there was no indication to the severity, frequency or 

temporality of these symptoms). The Moore (2003) study (0.75-3g/day oligofructose) provided a 

standardized (within the study) daily record log to each parent or caregiver with several GI 

symptoms to assess and rate (‘less than usual’, ‘about usual’ or ‘more than usual’ for each day of 

the study). This record was reviewed by the study coordinator during phone interviews each 

week. These specific results were not provided in the publication. Interestingly, while Liber et al., 
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(2014) [6] indicates loss of appetite and feelings of fullness as adverse effects, these are beneficial 

outcomes for the Hume [8] and Vuksan [12] studies. In summary, there is a large amount of 

variation in measures and tools used to assess tolerance (see table 3), and several differences in 

how the same symptoms are categorized and presented. This exemplifies the lack of 

homogeneity in reports of tolerance in the literature. The lack of standardized and/or validated 

questionnaires/measures in the majority of studies makes comparison between studies 

especially challenging.  

Tolerance outcomes- All withdrawals from the studies discussed were reported to be unrelated 

to intolerance of the treatment. No statistical difference between the experimental and control 

groups in terms of tolerance measures were found in the majority of studies, and all the 

fermentable fiber interventions (2-5g/day of glucomannan, 0.75-15g/day oligofructose, 

3.95g/day arabinoxylan-oligosaccharides; dosages ranging by age groups) were reported to be 

well tolerated [3, 5, 6, 8, 9, 12-15]. For example, the Hume et al. (2017)[8] study reported no 

gastrointestinal side effects (flatulence and bloating) were experienced by 70% of the prebiotic 

group (8g/day of oligofructose-enriched inulin) and 61% of the placebo group (3.3g/day of 

maltodextrin). There were no reports of any severe ratings of GI distress (only mild and moderate 

ratings) and there were no statistically significant differences between the study groups. A 

prominent obstacle in the analysis of the current literature is that several studies do not provide 

a full breakdown of the analysis of individual tolerance outcome measures. The Moore [15] and 

Martino [5] studies simple state that there were no significant differences in the tolerance 

measures between study groups. Conversely, each measure of tolerability was analyzed 

individually and compared between the prebiotic and placebo groups in the Liber (8-15g/day 
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Oligofructose), Horvath (2.25g/day glucomannan), and Vuksan (5g/day PGX or 5g/day 

glucomannan) studies[3, 6, 12]. Very few reported incidents occurred in each of these studies 

and no significant differences were found between experimental and control groups. The only 

study that did report differences between the prebiotic and placebo groups was Chmielewska et 

al. (2011)[4] who found that abdominal pain episodes were more frequent in the glucomannan 

group (2.52g/day) at week 1 (P = 0.04) and week 4 (P < 0.0001) but were similar between groups 

at weeks 2 and 3. Post-hoc analysis determined that the risk of abdominal pain was greater 

(statistically significant) in the first 2 weeks of treatment for the Glucomannan group. Previous 

trials with fermentable fibers have shown a greater increased risk for GI distress in the first few 

weeks of intervention and thus, the result from the post-hoc analysis indicating greater risk in 

the first two weeks for the glucomannan group are not without precedent[11]. Nonetheless, no 

difference was found in the frequency of any other GI events measured in this study (episodes of 

fecal soiling, episodes of painful defecation, and episodes of flatulence). Additionally, despite 

reaching statistical significance, the incidence rate of the abdominal pain was very low and may 

not necessarily be biologically/functionally relevant. The other studies using glucomannan (with 

a dosage range from 2-5g/day in similarly aged populations) did not find significant differences 

in tolerance outcomes between groups. Several factors may influence the tolerability of dietary 

fiber. The following sections provides considerations and critical analysis of these additional 

factors. 

Method of administration- The way the fiber is administered is another important factor of the 

tolerability of a fiber intervention. This can include the time of day, how the fiber is spread 

throughout the day, the time before/after a meal, if it is given as part of a meal (during), whether 
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adequate liquid is ingested alongside the fiber, and whether there is a period of time where the 

dose is reduced from the full dose to ease the participant into the intervention. Hume et al. 

(2017) [8] standardized the time of administration as well as the amount of liquid consumed 

along with the fiber across all the participants. They also gave a half dose for the first two weeks 

of the intervention to help minimize GI distress. Several studies split the dose to be taken twice 

daily (breakfast and dinner) [3-6, 9]. This has been shown to improve the tolerability of prebiotic 

interventions [2]. 

Because of the limited number of studies, it is hard to determine whether the method of 

administration played a significant role in the reported tolerability of the fiber. Despite 

differences in administration, 8g/day of oligofructose was tolerated well in overweight 7-11-year-

old children. Despite having the exact same administration procedure and dosage (2.52g/day) as 

the Horvath study, an increase in abdominal pain was noted in the Chmielewska study.  These 

two contrary examples emphasize that methods of administration are only one of many that may 

impact tolerance.  

Compliance- Compliance and tolerance are two variables that are highly interconnected. Without 

knowing the compliance of the participants to the intervention, it is not possible to accurately 

make conclusions on the reported overall tolerance to the supplement. Reciprocally, if a 

treatment is difficult to tolerate, one could expect a decrease in participant compliance to the 

intervention. Hume et al., (2017) [8] and Liber et al., (2014) [6] assessed compliance by asking 

participants to return the packages of the fiber. While Hume et al., (2017) [8] asked for both 

empty and unused/partially used packets to be returned, Liber et al., (2014) [6] only asked for 
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the empty packets to be returned. In both these studies, compliance was high (87%-90%), 

indicating a strong adherence to study protocol and suggesting that either the treatments were 

tolerated, or the GI effects did not impact compliance. Hume et al., (2017)[8] took the tolerance 

and compliance measures one step further by assessing how participants felt about the ease of 

incorporation of the fiber into their everyday diet, with 61% reporting it to be very acceptable 

and 39% reporting it to be moderately acceptable; further supporting the idea that the 

administration of oligofructose-enriched inulin is tolerable at 8g/day for the population studied 

(7-12 year old male and female children with BMI-z scores over 85%). This additional survey 

provides a measure that can be used in the future to support additional intervention trials of this 

nature. In Horvath et al., (2013) [3] compliance was assessed by direct questioning of the subjects 

or their caregivers during clinic visits halfway through the study at 2 weeks and again after the 

full 4 weeks. Similar interview or verbal checks of compliance were done in the Moore, 

Chimiedwska and Martino studies [4, 5, 15], however the Martino study also had parents confirm 

that capsules were taken in the daily study diary. The percentage of subjects that complied to 

the study protocol was not reported in these studies; however, it was said to be statistically the 

same in both experimental and control groups. This method of measurement is less objective 

and makes it hard to compare to other studies.  There is a widespread continuum of the depth 

and objectivity of compliance measures used throughout the studies, making it difficult to 

compare between studies; future trials would benefit from reporting of standardized compliance 

measures.  

Study designs and populations: Other considerations- As with administration, other factors of 

study design can influence tolerance. The populations used in the reviewed literature vary 
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greatly (see table 2). Attempting to compare tolerance of a fiber type (e.g. glucomannan) 

between a healthy population [12] and a population with abdominal pain-related functional 

gastrointestinal disorders [3] for example, is not a one-to-one comparison and must be done 

with precaution. Duration of the interventions were long enough to determine if a fiber 

treatment was tolerated in all studies except for Vuksan et al., (2009)[12] who only had data 

from a single day (which is not enough to establish long term tolerance)[2, 11, 12]. Sex is 

another factor that has been identified as influencing tolerability of interventions. Sex 

differences were accounted for in the majority of studies by trying to have an equal number of 

males and females in the study groups and checking for sex related differences in outcomes. 

Again, the Vuksan group had almost 5 times more females to males in their study (25:6, F:M), 

which may potentially skew tolerability results (may mask potential differences in tolerance) 

[12]. Doses were not adjusted for weight or sex of participants and only Hume et al. (2017) 

ensured all participants were in the same pubertal stage (shown to influence tolerance). The 

sample sizes of the reviewed literature were relatively small, and more data is needed before 

set conclusions are drawn on tolerability of any doses of fiber presented in this review. Another 

potential confounding factor is the amount of dietary fiber already in the participant’s diet. The 

only study that looked at baseline fiber intake (through weighed 3-day food records) was Hume 

et al., (2017) who collected baseline, midpoint, and final fiber intake measures. No statistically 

significant differences were found between groups. While they did not collect baseline fiber 

intake, Francois et al., (2014) prohibited the intake of foods containing probiotics and/or 

prebiotics and participants and their caregivers were asked to read product labels carefully to 

check for the presence of pro/prebiotics. This was the only study to have this stipulation in their 
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protocol. This precaution aided to minimize possible confounding factors. In addition, the cross-

over designs of the Francois and Vuksan studies minimizes the confounding host factors that 

may impact tolerability and is therefore an excellent study design for the assessment of 

tolerance [2, 9, 12].   

Conclusions and Future directions- In the reviewed pediatric literature, glucomannan was used 

and tolerated (as described by study authors) at the following doses: 2-2.25g/day for 3-6-year-

old children and 2-5g/day for 7-18-year-old children. Oligofructose was used and tolerated at 

3g/day for infants, 8g/day for 7-12-year-old children and at 15g/day for 12-18-year-old children. 

Wheat bran extract containing arabinoxylan-oligosaccharides was tolerated well at 5g/day 

(3.95g/day of the oligosaccharide). The lack of congruity between studies makes it difficult to 

draw conclusions on the tolerance of these fibers at these doses. Even when comparing the 

same type of fiber, differences in study design and populations make it difficult to aggregate 

and compare data. The rationale used for dosage is not standardized and often does not 

consider potential confounding factors (baseline fiber intake, age, sex, etc.). Evaluation of 

tolerance outcomes is often minimized, and the breakdown of data is not always provided, 

making it hard to interpret these results fully. Future studies would benefit from standardized 

and validated daily measures of tolerance to evaluate [2, 7] (for presence, frequency, severity 

and temporality, with the option to add other symptoms and comments) and a more 

standardized presentation of tolerance results, all of which could be added to supplementary 

material if not a primary outcome of the study in question. The standardized daily record log 

supplied to each participant, parent or caregiver should be reviewed by the study coordinator 

during phone interviews each week as was done in the Moore study [15]. Ideal measures of 
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compliance would be similar to Hume et al., (2017) [8] and would include indicating how much 

of the package participants consumed each day, the ease of incorporation, and the return of all 

the packets (both fully or partially consumed). Parental verification of the treatment would also 

be beneficial, especially along-side weekly phone calls to review the tolerance data collected 

thus far. Repeated trials with the same study design (preferably double-blind randomized 

placebo-controlled crossover trials) and populations are needed to establish the best methods 

of administration and to determine tolerable doses of a given fiber. Overall, a better 

understanding of tolerance can help with future study design and potentially influence future 

pediatric guidelines.  
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Study Population Age Prebiotic fiber of interest Prebiotic dose Control used Control dose used
Intervention 

Duration

Horvath et al., (2013)

Male and female children (7-17) with abdominal pain-

related functional gastrointestinal disorders 

classified according to the Rome Ⅲ diagnostic 

criteria. 

7-17 years old Glucomannan 2.25g/day Maltodextrin 2.25g/day 4 weeks

Chmielewska et al., (2011)

Male and female children (3-16) with functional 

constipation classified according to the Rome Ⅲ 

diagnostic criteria. 

3-16 years old Glucomannan 2.25g/day Maltodextrin 2.25g/day 4 weeks

4-6 years old Glucomannan
<6 years old: 2 (lunch) x 2(dinner) x 

0.5g/capsule =2g /day

Diet plan without 

glucomannan
0g/day

7-12 years old Glucomannan

>6 years old: 3(lunch) x 3(dinner) x 

0.5g/capsule = 4.5g /day
Diet plan without 

glucomannan
0g/day

15-18 years old Glucomannan 5 g Cellulose 5g

1 study day for each 

fiber (total of 3 

study days)

15-18 years old
PGX (xanthan, glucomannan, and 

sodium alginate)
5 g Cellulose 5g

1 study day for each 

fiber (total of 3 

study days)

7-11 years old Oligofructose 8g/day Maltodextrin

3.3g/day

*energy equivalant dose (kcal/day) to the 

prebiotic

12-18 years old Oligofructose 15g/day Maltodextrin

6.2g/day

*energy equivalant doses (kcal/day) to the 

prebiotic

Hume et al., (2017)

Male and female children (7-12) with overweight or 

obesity but otherwise healthy and  Tanner 

developmental stage ≤ 3 

7–12 years old Oligofructose-enriched inulin 8g/day Maltodextrin

3.3g/day

*energy equivalant doses (kcal/day) to the 

prebiotic

16 weeks

Moore et al., (2003) Male and female healthy term infants (4-12 months) 4-12 Months Oligofructose 

minimum of 0.75g/day with a resulting range 

of 

0.75-3.00g/day 

Cereal without oligofructose 0g/day 28 days

Francois et al., (2014) Healthy male and female children (8-12) 8-12 years old
Wheat bran extract containing 

arabinoxylan-oligosaccharides 

5 g/day of Wheat bran extract 

3.95g/day of the active arabinoxylan-

oligosaccharide ingrediant 

Beverage without prebiotic 0g/day 3 weeks

Table 2: Specific extraction table view

Martino et al., (2015)

Vuksan et al., (2009)

8 weeks

Liber et al., (2014) 12 weeks
Male and female children (7-18) with overweight or 

obesity 

Hypercholesterolemic male and female children (4-

12)

Male and female healthy weight adolescents (15-18)
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Study
Prebiotic fiber of 

interest

Abdominal 

bloating

Abdominal 

pain/cramps
Flatulence 

Stool 

frequency

Changes in stool 

consistency 

(constipation)

Changes in stool 

consistency (loose 

stools/diarrhea)

Borborygmi 
Feeling of 

fullness 

Loss of 

appetite 
Nausea Heartburn Vomiting Belching

Fecal 

soiling

Painful 

defication 

Crying

/colic

Undefined 

adverse 

effects 

Horvath et al., (2013) Glucomannan

Chmielewska et al., 

(2011)
Glucomannan

Martino et al., (2015) Glucomannan

Vuksan et al., (2009)

PGX (xanthan, 

glucomannan, 

and sodium 

alginate) and 

Glucomannan

Liber et al., (2014) Oligofructose

Moore et al., (2003) Oligofructose 

Hume et al., (2017)

Oligofructose-

enriched inulin

Francois et al., (2014)

Wheat bran 

extract 

containing 

arabinoxylan-

oligosaccharides 

Table 3: Measures of tolerance considered in each study 
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Supplementary material 

Inclusion criteria:  

1) Added fiber types that had the potential to cause gastrointestinal effects when consumed 

in excess were identified (based on clinical evidence in the scientific literature.)  

2) Studies had to report tolerance in some way.  

3) research had to be using a pediatric population (0-18 years old).  

 

The following information was extracted and analyzed to critically review the tolerance outcomes 

of each study (table1).   1) Overall study Design & Population used, 2) Fibers Used/Assessed, 3) 

Dosage of fiber, 4) Duration of intervention, 5) Compliance measures, 6) Administration method, 

7) Definition of “Tolerance outcomes”, 8) Method used to evaluate Tolerance. 
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Appendix I – Tolerance pilot study journal  

 

 

Version 2 - December 20, 2018 
 
 
 
 

The Gut Microbiome in PWS 
Fiber Intervention Study 

 

Study Journal 
 

Please use this journal to help you keep track of everything you need to do throughout this study. 
 

Thank you for your help! 
 

Date Range of Study:  / / To / /   Fiber dose:    g/day 
    (mm/dd/yy)    (mm/dd/yy)       

 
If at any time you have questions, issues, or would like something explained further, 
please feel free to contact:  

Shima Afhami  

Telephone Number: 780-707-1787 (text/call) or Email Address: afhami@ualberta.ca 
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