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Abstract 
 

A number of architectures and time series forecasting algorithms use complex fuzzy sets, which 

are extensions of type-1 fuzzy sets. In the complex fuzzy set literature, the two most common 

forms of fuzzy sets are sinusoidal membership functions and complex Gaussian membership one. 

However, there have been no studies that combine both forms, either separately or in combination, 

to allow a direct comparison of their respective merits. Therefore, the first goal of this dissertation 

is to construct a suitable architecture to test both membership function forms, as well as their 

combination, on the time series forecasting task.  

Previous architectures such as the Adaptive Neuro-Complex Fuzzy Inferential System 

(ANCFIS) have been shown to be accurate and compact forecasting algorithms. The Fast ANCFIS 

architecture was designed to speed up learning, and apply ANCFIS for data stream mining, by 

applying a fast Fourier transform to determine the parameters of sinusoidal membership functions. 

Randomized learning was proposed instead as an alternative strategy for speeding up learning in 

ANCFIS-ELM and RANCFIS. However, the learning algorithms and accuracy remained 

insufficient; none of the architectures were suitable for working with big data, which is an integral 

part of the real world today. Therefore, our second goal in this dissertation is to design a new CFS-

based architecture that, while taking advantage of previous architectures, can also learn to forecast 

large-scale datasets efficiently and accurately. 

We address both goals in this thesis by designing a new neuro-fuzzy architecture and 

evaluating it on multiple medium-to-large scale univariate and multivariate datasets (including a 

new condition-monitoring dataset for electric motors developed in the course of this dissertation 

work). It should be noted that one of the remarkable aspects of this thesis is that all our experiments 
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on large-scale datasets are based on real sensor data. The Randomized Complex Neuro-Fuzzy 

Inferential System (RCNFIS) is a complex fuzzy set-based model implemented in three variants; 

we will furthermore discuss two stages in the design of this model. Our initial model focused on 

modelling univariate time series problems, using sinusoidal membership functions, complex 

Gaussian ones, or a combination of both. Our experiments with this model indicated that the 

complex Gaussian fuzzy sets led to a superior forecasting model than the sinusoidal ones, or their 

combination, across all datasets and all variants of the architecture. We then extended this model 

to forecast an arbitrary number of variates. We again found that, for all variants and all datasets, 

the complex Gaussian fuzzy sets led to superior forecasting models than the sinusoidal ones or the 

combination of both types. Additionally, we have applied statistical tests to prove all these claims 

(Z-test and Friedman). Finally, we found that these best RCNFIS models were more accurate than 

our previous architectures, while also being faster to train. They were furthermore more accurate 

than competing results on these datasets, either from the literature or our own experiments. 
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1.  Chapter I: Introduction 

1.1. Complex Fuzzy Sets and Logic 

The concept of Complex Fuzzy Sets (CFS) is an extension of the standard theory of type-1 fuzzy 

sets, in that their membership functions have a unit disc of the complex plane as the codomain 

instead of a codomain of [0,1] in type-1 fuzzy [1-5]. The related Complex Fuzzy Logic (CFL) is 

an infinite-valued logic whose truth values are again complex numbers from the unit disc. In a 

systematic review of Complex Fuzzy Sets and Logic (CFS&L) [5], Yazdanbakhsh and Dick found 

that there were seven main open-ended questions being followed by researchers. Amongst these, 

the third question asks: "What are the functional forms for complex fuzzy memberships that have 

been investigated?”. This is a vital question, which is directly dealt with in this dissertation, and it 

will be discussed in more detail in subsequent chapters. However, we can briefly say that 

parameterized functions fall into two categories: sinusoidal CFS were proposed for the Adaptive 

Neuro-Complex Fuzzy Inferential System (ANCFIS) architecture [3], while Gaussian CFS were 

proposed for the Complex Neuro-Fuzzy System (CNFS) architecture [4]. Our study examines 

these two forms of fuzzy membership functions and compares the models created separately from 

each (and in combination) on a common architecture (something never done before). This goal has 

been achieved by introducing a new architecture, based on CFS&L and inspired by ANCFIS, and 

evaluating it on large-scale time series forecasting datasets. 
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1.2. Time Series Forecasting (TSF) 

Time Series Forecasting (TSF) is, of course, a significant part of predictive analytics, which finds 

application in fields from sensor-based condition monitoring [6], to stock market analysis [7]. TSF 

has thus been widely studied in a variety of fields. There is, for example, an extensive literature on 

statistical time series forecasting; however, these models commonly require a fixed model form 

(e.g. ARIMA [8] models assume a linear correlation structure). In contrast, machine learning 

approaches can implicitly detect complex nonlinear relationships between predicted and predictor 

variables or between predictor variables.  

Artificial Neural Networks (ANNs), in particular, have been especially successful in recent 

years. Among numerous design approaches, research in the past decade has shown that neuro-

fuzzy systems based on Complex Fuzzy Sets (CFS) are particularly accurate and parsimonious 

forecasters in small-scale time series. As mentioned in the previous section, there are two 

architectural approaches that dominate this literature: the ANCFIS family first introduced in [3], 

and the CNFS family introduced in [4]. Both are based on the well-known Adaptive Neuro-Fuzzy 

Inferential System (ANFIS) architecture [9]. However, there has been no previous work in 

adapting these designs for large-scale time series forecasting. 

Therefore, in this dissertation we propose a new CFS-based architecture designed for large-

scale time series forecasting. We will show that, across multiple univariate and multivariate 

datasets, this new architecture learns faster and is more accurate than our previous CFS&L-based 

architectures. This includes two large-scale datasets collected at the University of Alberta 

(focusing on solar power forecasting, and condition monitoring of electric motors, the latter having 

been collected in the course of this dissertation); a medium-scale multivariate chaotic dataset (for 
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which we model a single or multiple variates); and a benchmark sensor-data problem, for which 

we again model a single or multiple variates. Furthermore, compared to other shallow learning 

algorithms, this algorithm is more accurate on all of the datasets.  

1.3. Statement of the Problem 

The CFS&L-based models discussed in previous sections have yielded accurate and parsimonious 

results in multiple applications, including TSF as discussed in this dissertation. This includes both 

univariate and multivariate [10] variants of ANCFIS, Fast ANCFIS (FANCFIS) and Randomized 

ANCFIS (RANCFIS). However, modeling large-scale multivariate datasets remained infeasible 

with the se architectures. Additionally, the design and implementation of CFS&L models are 

dependent on several parameters, of which the most important is what the complex membership 

function is selected. The design space of possible CFS functional forms has been explored 

empirically, but there has never been a systematic comparison of different CFS forms within a 

single architecture. 

1.4. Dissertation Objectives and Contributions 

The objective of this dissertation is to design and implement a new CFS&L-based architecture that 

can, despite the limitations of previous architectures of this type (mentioned in previous sections) 

or even those of deep learning architectures (which can accurately model large multivariate 

datasets, but face problems such as structural complexity and the need for expensive hardware), 

easily and cheaply deal with large multivariate datasets. Moreover, we will compare two types of 

complex membership functions, namely, sinusoidal CFS and Gaussian CFS, as well as their 

combination, to determine whether any of these approaches is significantly superior to the others.  
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A typical forecasting methodology is used to evaluate our architecture (RCNFIS) in all 

modes (different types of complex membership function) and methods (SISO (Single Input Single 

Output), MISO (Multiple Input Single Output) and MIMO (Multiple Input Multiple Output)): a 

one-step-ahead prediction, with all training data chronologically earlier than the test data. The 

performance of the univariate/multivariate RCNFIS is evaluated on a variety of chaotic and large-

scale time series datasets. 

1.5. Outline of the Dissertation 

Following the Introduction Chapter, the remainder of this dissertation is organized into six 

chapters:  

 Chapter II: In this chapter, a literature review is presented covering statistical forecasting 

methods, randomized learning, type-1 fuzzy set and logic (FS&L), ANFIS, complex fuzzy 

logic (CFS&L), and their related concepts. The concepts of XAI and Brittleness will also 

be reviewed. 

 Chapter III: In this chapter, we study the literature of CFS&L-based neuro-fuzzy systems 

applied to time series forecasting.  

 Chapter IV: The purpose of this chapter is to address an important industrial research topic: 

condition monitoring of small electric induction motors. Our discussion in this chapter 

focuses on the steps relating to obtaining, extracting, and producing the relevant dataset 

(which also used in our subsequent experiments in this dissertation (chapters 5 and 6) as 

well as designing a new anomaly detection model to deal with large-scale data. 

 Chapter V: Our contributions in this chapter are first, to design and evaluate a new CFS-

based neuro-fuzzy architecture (RCNFIS) for large-scale time series forecasting 
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applications to produce accurate and compact time-series forecasting models; and second, 

the first direct empirical comparison of sinusoidal vs. complex Gaussian CFS in three 

different modes of our architecture. 

 Chapter VI: The contribution we make in this chapter is the further development of the 

architecture proposed in Chapter V, so that it can support large-scale multivariate time 

series and deliver accurate and promising results while maintaining its compact structure. 

For this purpose, we evaluate our SISO, MISO and MIMO designs in different modes of 

complex membership functions. 

 Chapter VII: A summary, conclusion, and discussion of future work are presented in this 

chapter. 
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2.  Chapter II: Literature Review 

2.1. Introduction 

Studies on Time Series Forecasting (TSF), which led to the creation of many classical algorithms 

and models divide into two groups: classical statistical methods and machine learning algorithms. 

The first models developed for TSF were based on univariate statistical models, often inspired by 

the auto-regression principle, such as the Auto-Regressive (AR) [11], Auto-Regressive Moving 

Average (ARMA) [12], and the Auto-Regressive Integrated Moving Average (ARIMA) models 

[13]. For many applications, however, the process data takes the form of a multivariate time series. 

Thus, multivariate forecasting models were developed, including the extended version of the AR 

model such as Vector Auto-Regressive (VAR) models [14] and the Vector Error Correction Model 

(VECM) [14]. A principal drawback of these methods is that these models usually require a fixed 

model form; for example, some assume a linear correlation structure. Nonetheless, researchers and 

practitioners still find the useful and interesting for certain applications, in part because they are 

relatively easily explained to a user. 

  In contrast, machine learning approaches can implicitly recognize complex nonlinear 

relationships between dependent and independent variables or between the independent variables 

themselves. A very broad range of machine learning algorithms have been applied to the time 

series forecasting problem; this usually requires some form of preprocessing to embed the 

sequential data of a time series into the tabular format expected in machine learning (e.g. [15]). 

Artificial neural networks in particular have received considerable attention as forecasting 

algorithms.   
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Fuzzy logic has also seen considerable use in time series forecasting (commonly in the 

guise of neuro-fuzzy or genetic-fuzzy hybrid systems). A great deal of progress has been made in 

the research and applications of type-1 fuzzy logic since Zadeh published his first paper on fuzzy 

set [1]. The type- 1 membership function allows the gradual evaluation of elements' membership 

in a set based on the two-dimensional membership function (MF). Linguistically, it provides an 

organized calculus for representing vague and incomplete information. Using linguistic labels 

specified by MFs, the linguistic information is converted into numerical values [16-18]. This 

approach allows type-1 fuzzy inference systems to use fuzzy if-then rules to model human 

expertise in specific applications. In this thesis, we discuss an extension of type-1 fuzzy set called 

complex fuzzy set. It was first defined in [2], which the co-domain of the membership function 

was the unit disc of the complex plane. In spite of earlier explorations of complex-valued 

memberships [19-21], Ramot, et al.’s paper on Complex Fuzzy Logic (CFL) [22] became the 

inspiring work on Complex Fuzzy Sets and Logic (CFS&L). A number of early theoretical results 

were published in [23, 24], and the first applications of CFS&L began to appear in [4, 25]. 

In the remainder of this chapter, we first study statistical forecasting methods. We then 

review the literature on randomized learning, and then we examine fuzzy sets and logic (FS&L) 

and complex fuzzy sets and logic (CFS&L). 

2.2. Statistical Forecasting Methods 

Forecasting is the use of past data to predict future events. In planning and decision making 

processes, prediction of future events is very critical and forecasting can help in making rational 

decisions [26]. In general, there are two main approaches in forecasting: qualitative methods and 

quantitative methods [27]. Qualitative forecasting methods involve human experts using their 
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experience and judgment in specific fields to make forecasts. On the other hand, quantitative 

forecasting methods use historical data and forecasting models to infer future behaviours from past 

and present ones. There are two types of quantitative forecasting methods: time-series methods 

and econometric methods. In this review, we just focus on time-series methods. There are also two 

approaches for analyzing time series: time-domain approaches and the frequency-domain 

approach [28]. The time-domain approach is supported by assuming a correlation between adjacent 

points in time in terms of the dependence of the current value on past values. On the other hand, 

the frequency-domain approach treats a time series as a collection of superimposed wave shapes. 

The most common of these is to assume a time series is a collection of superimposed sinusoids, 

which can be determined via the Fourier transform. Numerous other waveforms are possible; this 

is the topic of e.g. wavelet transforms (these can also mix time- and frequency-domain 

approaches). In this thesis, we focus our attention on time-domain approaches and frequency-

domain approaches using sinusoids and the Fourier transform. We examine both linear and non-

linear models in these domains [29]. 

2.2.1. Linear Models 

Linear models predict future values xt based on observations at p previous points of time t by 

developing a function f  [30]: 

                                                     𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−𝑝)                                           (1) 

In [31], the concept of stochasticity in time series was introduced. A number of time series 

methods have been developed since then based on this idea. In [32], the notion of autoregressive 

(AR) models was introduced, which expressed the series at time t as a linear regression of previous 

p observations [30]: 
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                                                        𝑥𝑡 = 𝑤0 + ∑ 𝑤𝑖𝑥𝑡−𝑖 + 𝜀𝑡
𝑝
𝑖=1                                              (2) 

Here, 𝜀𝑡 is the residual error term from the AR model. By using polynomial notation, the auto-

regressive model is defined as AR (p), where p refers to the order of the AR component. 

The first-order AR model is denoted by AR (1): 

                                                                  𝑥𝑡 = ∅𝜀𝑡−1 + 𝜀𝑡                                                      (3) 

The second-order AR model is denoted by AR (2): 

                                                         𝑥𝑡 = ∅1𝜀𝑡−1 + ∅2𝜀𝑡−2 + 𝜀𝑡                                                   (4) 

The pth order AR model is denoted by AR (p): 

                                                 𝑥𝑡 = ∅1𝜀𝑡−1 + ∅2𝜀𝑡−2 + ⋯+ ∅𝑝𝜀𝑡−𝑝 + 𝜀𝑡                                (5) 

Here, ∅ is the model coefficient, 𝜀𝑡 is an error in time t, and p is the order of the AR model. 

 

Another concept introduced in [32] was the moving average (MA) model. The moving 

average models use dependency between residual errors to forecast values in the next time period. 

The notation MA (q) refers to the moving average model of order q: 

                                                 𝑥𝑡 = 𝜇−𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯− 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡                            (6) 

Here, μ is the mean of the series, the θ1, ..., θq are the parameters of the model and the εt, εt−1,..., 

εt−q are white noise error terms. The value of q is called the order of the MA model. 

To evaluate whether the time series signal consists of an MA or AR component, 

autocorrelation (ACF) and partial autocorrelation (PACF) is used [30]. The ACF is given by: 

https://en.wikipedia.org/wiki/Polynomial_notation


10 
 

 𝐴𝐶𝐹 =
𝑐𝑜𝑣(𝑥𝑡,𝑥𝑡−ℎ)

𝑣𝑎𝑟(𝑥𝑡)
                                 (7) 

The numerator in the preceding equation is covariance between the time series signal at 

time t and t-h where h is the lag in the time series signal. The PACF is also computed similarly as 

ACF except that correlation is computed by removing the already explained variation between 

intervals. This is also defined as conditional correlation. 

                                                  𝑃𝐴𝐶𝐹 =
𝑐𝑜𝑣(𝑥𝑡,𝑥𝑡−2|𝑥𝑡−1)

√𝑣𝑎𝑟(𝑥𝑡|𝑥𝑡−1) .√𝑣𝑎𝑟(𝑥𝑡−2|𝑥𝑡−1)
                              (8) 

The AR (p) models tend to capture the mean reversion effect (systems that deviate from 

their mean behavior tend to return to the mean over time), whereas MA (q) models tend to capture 

“shock effects” in model error, which are abnormal or unpredicted events. Thus, [33] combined 

both AR and MA models and showed that ARMA processes can be used to model all stationary 

time series as long as the appropriate order was specified. An ARMA (p, q) time series forecasting 

model incorporates the pth order AR and qth order MA model, respectively. The ARMA (p, q) model 

is denoted as follows: 

         𝑥𝑡 = 𝜇 + ∅1𝑥𝑡−1 + ∅2𝑥𝑡−2 + ⋯+ ∅𝑝𝑥𝑡−𝑝−𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯− 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡         (9) 

Here, ∅ and 𝜃 represent AR and MA coefficients. The 𝜇 and 𝜀𝑡 captures the intercept and error at 

time t.  

There are multiple methods to select p and q. For instance, in ARMA (1,1) time series data 

[30], as both ACF and PACF have shown sine-wave pattern, p and q both parameters are affecting 

the time series signal. 
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Later, the use of ARIMA models and their extensions became popular. ARIMA [30], also 

known as the Box-Jenkins model, is a generalization of the ARMA model by including integrated 

components. The integrated components are useful when data has non-stationarity, and the 

integrated part of ARIMA helps in reducing the non-stationarity. The ARIMA applies differencing 

on time series one or more times to remove non-stationarity. The ARIMA (p, d, q) represent the 

order for AR, MA, and differencing components. The major difference between ARMA and 

ARIMA models is the d component, which updates the series on which forecasting model is built. 

The d component aims to de-trend the signal to make it stationary, after which an ARMA model 

can be applied to the de-trended dataset. ARIMA forecasting can be written as follows: 

        �̂�𝑡 = ∅1�̂�𝑡−1 + ∅2�̂�𝑡−2 + ⋯+ ∅𝑝�̂�𝑡−𝑞+𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯+ 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡                  (10) 

Depending on the order of p, d, and q, the model behaves differently. For example, ARIMA (1, 0, 

0) is a first-order AR model. Similarly, ARIMA (0, 0, 1) is a first-order MA model. 

A list of different cases of using ARIMA models are given in [29], and we briefly discuss a few in 

the following. In [34] an alternative to the Box-Jenkins methodology proposed that is called the 

ARARMA methodology which transforms time series from a large lag AR filter to a short lag 

filter.  ]35[ studied annual sugarcane production of India for the period of 1950-51 to 2002-03, 

using an ARIMA (2, 1, 0) model to forecast for next three years. ]36[ studied farm price, wholesale 

price and pure oil price of palm oil data of Thailand for the period of 2000 to 2004 and concluded 

that ARIMA (2,1,0), ARIMA (1,0,1) and ARIMA (3,0,0) models are the best for the farm price, 

whole sale price and pure oil price respectively. [37] studied monthly data of whole sale prices of 

Rohu fish in west Bengal for the period of 1996 to 2005 and concluded that ARIMA (2, 1, 1) 

model applied to the seasonally adjusted data captures the variation in the data efficiently. [38] 
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studied monthly wholesale price data of coriander in the Kota market of Rajasthan for the period 

of April 2000 to May 2011 and compared the performance of an exponential smoothing model, 

ARIMA model, and ANN model and concluded that an ARIMA (1, 1, 1 ) model performed better 

than the other models. [8] used time series data from 1950- 51 to 2011-12 and developed different 

ARIMA models to forecast the rice yield during 2012-13 in India, observing that out of eleven 

ARIMA models, ARIMA (1, 1, 1) is the best fitted model in predicting efficiently the rice yield. 

[39] studied daily wholesale prices of pigeon pea in the markets of Amritsar and Bhatinda and all 

India maximum, minimum and modal prices for the period of 2012-2013 and used Autoregressive 

fractionally integrated moving-average (ARFIMA) model (a generalization of ARIMA where d 

can be a non-integer) to forecast prices for the period of January 1, 2014 to February 28, 2014. 

[40] studied uranium prices from 2000 to 2015, comparing ARIMA to the escalation rate model. 

An ARIMA (2, 1, 2) performed best. 

2.2.2. Non-linear Models 

A nonlinear process requires a different analytical approach than linear ones. Nonlinear time series 

analysis began with [41], showing that using the finite Volterra series, continuous nonlinear 

performance in time could be approximated [29]. Then, [42] proposed the threshold autoregressive 

(TAR) model and this model noted a simple departure from the linear time-series models which 

were popularized in [43]. After that, [44] introduced the smooth transition autoregressive (STAR) 

model which is a non-linear autoregressive time series model.  

Suppose we rewrite Equation 5 as follows for a time series yt [45]: 

                                           𝑦𝑡 = 𝜇 + ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 + ⋯+ ∅𝑝𝑦𝑡−𝑝 + 𝜎𝜀𝑡                           (11) 
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Here, ∅i (i =  1, 2,· · · , p) are the AR coefficients, 𝜀𝑡 is an error in time t, and σ > 0 is the standard 

deviation of disturbance term. The model parameters ∅ = (μ, ∅1, ∅2, … , ∅p) and σ are independent 

of time t and remain constant. To capture nonlinear dynamics, TAR models allow the model 

parameters to change according to the value of a threshold variable zt: 

                                              𝑦𝑡 = 𝑋𝑡∅
(𝑗) + 𝜎(𝑗)𝜀𝑡     𝑖𝑓   𝑟𝑗−1 < 𝑧𝑡 ≤ 𝑟𝑗                                 (12) 

Here, Xt = (1, yt−1, yt−2, · · · , yt−p), j = 1, 2, · · · , k, and −∞ = r0 < r1 <· · · < rk = ∞. In essence, the 

k − 1 thresholds (r1, r2, · · · , rk−1) divide the domain of the threshold variable zt into k different 

regions. In each different region, the time series yt follows a different AR (p) model. 

When the threshold variable zt = yt−d, with the delay parameter d being a positive integer, 

the dynamics of yt is determined by its own lagged value yt−d and the TAR model is called a self-

exciting TAR or SETAR model. For the ease of notation, let SETAR (1) denote the one-regime 

linear AR model with k = 1, SETAR (2) denote the two-regime TAR model with k = 2, etc. 

In [46], the Auto-Regressive Conditional Heteroscedasticity (ARCH) model was 

introduced. This was the first model to provide a volatility measure; it describes the changes in 

conditional variance as a function. The chosen form of the conditional variance function is 

quadratic in the past values of the time series. [47] were the first to study the effect of ARCH on 

forecasting. To model a time series using an ARCH process we have: 

                                                                             𝜀𝑡 = 𝜎𝑡𝑧𝑡                                                      (13) 

Here, 𝜀𝑡 denotes the error terms. The model is split into a stochastic piece 𝑧𝑡 and a time-dependent 

standard deviation 𝜎𝑡 characterizing the typical size of the terms. Thus, the series is given by: 
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                                 𝜎𝑡
2 = 𝛼0 + 𝛼1𝜖𝑡−1

2 + ⋯+ 𝛼𝑞𝜖𝑡−𝑞
2 = 𝛼0 + ∑ 𝛼𝑖𝜖𝑡−𝑖

2𝑞
𝑖=1                          (14) 

Here, 𝛼0 > 0 𝑎𝑛𝑑 𝛼𝑖 ≥ 0, 𝑖 > 0. 

If an autoregressive moving average model (ARMA) model is assumed for the error 

variance, the model is a generalized autoregressive conditional heteroscedasticity (GARCH) 

model [48]. In that case, the GARCH (p, q) model (where p is the order of the GARCH terms 

𝜎2 and q is the order of the ARCH terms 𝜀𝑡
2, following the notation of the original paper, is given 

by 

                                                                                     𝑦𝑡 = 𝑥𝑡
′𝑏 + 𝜀𝑡                                              (15) 

𝜎𝑡
2 = 𝑤 + 𝛼1𝜖𝑡−1

2 + ⋯+ 𝛼𝑞𝜖𝑡−𝑞
2 + 𝛽1𝜎𝑡−1

2 + ⋯+ 𝛽𝑞𝜎𝑡−𝑞
2 = 𝑤 + ∑ 𝛼𝑖𝜖𝑡−𝑖

2𝑞
𝑖=1 + ∑ 𝛽𝑖𝜎𝑡−𝑖

2𝑝
𝑖=1   

                                                                                                                                              (16) 

[49] studied the behavior of exchange rate data using GARCH models and concluded that 

these models could not capture adequately the statistical properties of non-linearity present in the 

series. [50] showed that the ARCH and GARCH models are successful in risk management 

analysis of financial data and used a GARCH (1, 1) model to calculate value at risk (VaR) of three 

indexes (NASDAQ, Dow jones and long bonds). In a meta-study [51] examined 93 papers and 

found that GARCH models tend to be more parsimonious than ARCH models, but the result 

varied. [52] suggested that different data, sampling periods, sample frequency, forecast horizon, 

distribution used and the loss function can influence the result. [53] studied daily stock prices from 

Shanghai and Shenzhen using GARCH (1, 1) model with normal and skewed generalized error 

distributions and found the latter was superior. [54] studied volatility forecasting performance of 

real estate investment trust (REIT) using symmetric GARCH (1, 1) model with normal, student-t 

and skewed generalized error distributions respectively and showed  the latter was best. [55] 
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studied three sets of monthly price data viz domestic edible oils, international edible oils and 

international raw cotton. GARCH models outperformed ARIMA on the first two; the third was 

more asymmetric, and an exponential GARCH model was found to be best.  

2.3.  Randomized Learning 

Modern deep neural networks can have a huge number of adaptable parameters, with the largest 

ones (currently Google’s PaLM) having over 540 billion parameters1. Such large networks require 

large amounts of training data to learn a vector of parameter values that are adequately generalized 

for the application domain. However, research has shown that, while there is only one global 

optimum in parameter space, in practice there are many of these parameter vectors that yield 

desirable solutions for a given problem. We can thus reframe learning as a search for a satisfactory 

parameter vector – with optimization only one of the possible paths to conducting this search. One 

possible approach is to fix the values of some parameters as randomly-chosen constants, and only 

optimize the others. Therefore, it may be possible to set the values of a few parameters as 

randomly-selected constants, and just learn the optimal values for the rest. For example, in the 

Single Hidden Layer Feed-forward Network (SLFN, see Figure 1), hidden-layer logistic neurons 

are fully connected to the input layer, and to summation neuron(s) in the output layer. The hidden-

layer weights are randomly-chosen constants, while the output weights are learned via least-

squares optimization [56].   

                                                           
1 https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html 
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Figure 1 - The SLFN architecture [56] 

The Random Vector Functional Link Network (RVFLN) [57-60] is another fast learning 

algorithm based on randomized learning, which is known to be a universal approximator in the 

probabilistic sense. The transfer function can be expressed as [60]: 

                                                 𝐺𝐿(𝑥; 𝑎, 𝑏) = ∑ 𝛽𝑗𝑔(𝑎𝑗
𝑇𝑥 + 𝑏𝑗)

𝐿
𝑗=1                                    (17) 

where L is the number of hidden nodes, x is the input vector, 𝐠 is the activation function, 𝑏𝑗 is the 

bias, 𝑎𝑗 is the input weight, and βj is the output weight connecting the j-th hidden node and the 

output node. Given a training set {𝑥𝑖, 𝑦𝑖} with N samples of the target function (i = 1, 2,…, N), and 

given that aj and bj are randomly selected and fixed, learning consists of a least squares 

optimization [61, 62]:  

                                            𝑚𝑖𝑛
𝛽1…𝛽𝐿

∑ (∑ 𝛽𝑗𝑔(𝑎𝑗
𝑇𝑥𝑖 + 𝑏𝑗) − 𝑦𝑖

𝐿
𝑗=1 )2𝑁

𝑖=1                                 (18) 

which can be converted into a matrix expression, i.e. [61, 62], 

                                                  𝛽∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝛽∈ℝ𝐿

||𝐻𝛽 − 𝑌||2
2                                                    (19) 

where H is the hidden layer output matrix [61, 62]: 
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                                  𝐻 = (
𝑔(𝑎1

𝑇𝑥1 + 𝑏1) … 𝑔(𝑎𝐿
𝑇𝑥1 + 𝑏𝐿)

⋮ ⋱ ⋮
𝑔(𝑎1

𝑇𝑥𝑁 + 𝑏1) … 𝑔(𝑎𝐿
𝑇𝑥𝑁 + 𝑏𝐿)

)                                   (20)    

A closed form solution for the output weights can be obtained by using the pseudoinverse 

method [63], i.e., β∗ = H†Y. RVFLNs for robust learning were developed in [62, 64, 65]. The 

Stochastic Configuration Network (SCN) [66] was another shallow network using randomized 

learning. It has been extended to form deep SCNs [67], robust SCNs [60, 64], SCN ensembles 

[68], and 2D SCNs for image analytics [69].    

The Liquid State Machine (LSM) architecture [70] takes a different approach to 

randomized learning. An LSM is made up of a large set of Leaky Integrate and Fire (LIF) neurons 

in a “reservoir.” Each reservoir-layer neuron receives inputs from an input layer as well as other 

reservoir-layer neurons (making the LSM a recurrent network). The recurrent connections in the 

reservoir are the random elements; they approximate the idea of free-moving molecules in a liquid, 

as opposed to a rigid structure. The LSM can thus be viewed as a three-layer system: there is an 

input layer, a reservoir, and a memoryless readout circuit (also made up of LIF neurons, but 

without inter-layer connections) [70-76]. A number of similar algorithms have been developed 

(prominently including Echo-State Networks [77]); the central feature of these “reservoir 

computing” architectures is the randomly-connected recurrent layer. 

 

2.4. Type-1 Fuzzy Sets, Logic, Relation, and Reasoning 

“Fuzzy sets" was introduced by Zadeh as a new method to describe non-probabilistic uncertainties 

with the formal definition of multi-valued (fuzzy) sets in 1965 [1]. By changing the two-valued 

characteristic function into a multi-valued membership function, he extended traditional set theory. 
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The degree to which an element belongs to a fuzzy set is described by the membership function, 

which in general is a set of ordered pairs: 

                                          𝐴 = {𝑥, 𝜇𝐴(𝑥)|𝑥 ∈ 𝑋}       𝜇𝐴: 𝑋 → [0,1]                                     (21) 

where 𝜇𝐴(𝑥) maps elements of X (the universe of discourse) into the interval [0,1], representing 

their membership in the fuzzy set A. Fuzzy logic is an infinite-valued logic that is isomorphic to 

fuzzy set theory, with truth values drawn from [0,1]. Parameterized membership functions, being 

relatively easy to compute, are quite common; some examples include Triangular, Trapezoidal, 

and Gaussian fuzzy sets, as follows [78]: 

I. Triangular MFs: 

 
Figure 2 - Triangular MF 

 

 

    (22) 

where 𝑥 ∈ 𝑋 and the underlying triangular MF has three corners determined by the parameters 

{a, b, c}. 
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II. Trapezoidal MFs: 

 
Figure 3 - Trapezoidal MF 

 

 

    
 (23) 

 

where 𝑥 ∈ 𝑋 and  the underlying trapezoidal MF has four corners determined by the parameters {a, 

b, c, d}. 

 

III. Gaussian MFs:  

 
Figure 4 - Gaussian MF 

 

 

 
   (24) 

 

where 𝑥 ∈ 𝑋 and  c and 𝜎 are the Gaussian MF center and the Gaussian width, respectively.  

The fuzzy set operations of union, intersection, subsethood and complement, as well as their 

counterparts in the isomorphic fuzzy logic, were first defined as follows [78]: 
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I. Union (Disjunction): Union of two fuzzy sets A and B is a fuzzy set C that the membership 

C value of two fuzzy sets is the maximum of their membership values at any given x:                                              

                         𝜇𝐶(𝑥) =  𝜇𝐴∪𝐵(𝑥) = max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) , 𝑥 ∈ 𝑋                             (25) 

 where max is the classical maximum operator. 

II. Intersection (Conjunction): The intersection of two fuzzy sets A and B is a fuzzy set C such 

that the membership C value at any x value is the minimum of the membership values of 

the two fuzzy sets: 

                                     𝜇𝐶(𝑥) =  𝜇𝐴∩𝐵(𝑥) = 𝑚𝑖𝑛(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) , 𝑥 ∈ 𝑋                              (26) 

 where min is the classical minimum operator. 

III. Subset (Containment): The set A is a subset of the set B when: 

                                                     𝐴 ⊆ 𝐵 ⇒ 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥) , 𝑥 ∈ 𝑋                                       (27) 

IV. Complement (Negation): The complement of fuzzy set A, represented by �̅� is defined as: 

                                                       𝜇�̅�(𝑥) =  1 − 𝜇𝐴(𝑥) , 𝑥 ∈ 𝑋                                             (28) 

A fuzzy relation represents the degree to which two or more crisp sets are associated, 

interconnected, or interdependent. Assuming U and V are two crisp sets, then the fuzzy relation R 

(U, V) is a fuzzy subset of a Cartesian product of U×V, which is stated as: R: U×V→[0,1]. The 

membership function of R is μR(x, y) with x ∈ U and y ∈ V [79]. The relationship between x and 

y is fully related if R(x, y) = 1, and if R(x, y) =0, these two elements are not related at all. As a 

result, the values between zero and one for R(x, y) indicate partial association. 
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Approximate reasoning is a method of inference based on a set of fuzzy if-then rules, which 

will be combined as a fuzzy relation. A fuzzy if-then rule has the basic form:  

                                                          IF x is A THEN  y is B      

 (29) 

 where A and B are linguistic variables defined by fuzzy sets over the sets U and V respectively. A 

linguistic variable is variable relating linguistic values  (i.e. words in natural language) to fuzzy 

sets that provide a mathematical semantics to the inherently vague meanings of natural language). 

For instance, Speed can be a linguistic variable with values very low, low, high, very high, etc., 

rather than numeric values such as 20, 40, 60, 80, etc.. In Formula (29)  “x is A” is called the 

“antecedent” or “premise” of a rule, while “y is B” is called the “consequence” or “conclusion” 

[80]. Multiple antecedents or consequents can be joined together in a rule using logical operations. 

For example, we can have an if-then rule stating IF the speed is low AND the distance is small, 

THEN the braking force should be low).  

The steps of fuzzy reasoning can be given as follows [9]: 

A. Input variables are mapped to a fuzzy set representing them (very commonly a singleton 

fuzzy set).  

B. To obtain the membership values of each linguistic label, fuzzified input variables are 

compared with MFs for each premise. 

C. The firing strength (weight) of each rule is computed as the conjunction of the 

memberships for each premise.. 

D. The consequence of each rule is weighted by the rule’s firing strength, and then all rules 

are combined together (commonly by a disjunction).  
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E. Using defined methods, such as centroid of area, the bisector of area, mean of maximum, 

smallest of maximum, and largest of maximum, the combined consequents are mapped to 

a crisp output (Defuzzification). 

2.5. Type-1 Fuzzy Inferential Systems 

The Fuzzy Inference System (FIS) [9, 81] is based on the concepts of fuzzy set theory, fuzzy if-

then rules, and fuzzy reasoning. The system consists of four basic functional blocks, as illustrated 

in Figure 5. 

I. Knowledge Base: This component itself contains two sub-components, namely the rule 

base and database. The rule base contains the fuzzy rules and the database includes the 

membership functions used in fuzzy rules. Generally, this block regulates or controls FIS 

decision-making. 

II. Fuzzification: This block provides membership degrees for the fuzzy set antecedents by 

transforming crisp raw data inputs. 

III. Inference Engine: This block executes the compositional rule of inference, resulting in a 

fuzzy output. 

IV. Defuzzification: In this block the fuzzy sets is transformed into an explicit output (in the 

form of crisp inputs).  
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Figure 5 - Fuzzy Inference System (FIS) [16] 

Mamdani and Takagi-Sugeno-Kang (TSK) are the principal designs for fuzzy inference 

systems [82-85]. They differ mainly in the way their fuzzy rules are applied, how they are 

aggregated, and how they are defuzzified. The first application of the Mamdani fuzzy inference 

system was the control of a steam engine and boiler combination using linguistic rules derived 

from human operators [83]. Several defuzzification methods are available in this model, the most 

famous of which is Center of Area (COA). The center of an area ZCOA is denoted as follows: 

                                                              𝑍𝐶𝑂𝐴 =
∫ 𝜇𝐴(𝑧)𝑧𝑑𝑍𝑍

∫ 𝜇𝐴(𝑧)𝑑𝑍𝑍

                                                       (30) 

where 𝜇𝐴(𝑧) is the aggregated output membership function. 

The Takagi-Sugeno-Kang (TSK) fuzzy inference system was first introduced by Takagi, 

Sugeno and Kang in 1985 [84, 85]. In TSK model, each rule has a crisp output, and the overall 

output is determined as a weighted average of each rule’s output and represented as: 

                                                                   𝑍 =
∑ 𝑤𝑖𝑧𝑖

𝑁
𝑖=1

∑ 𝑧𝑖
𝑁
𝑖=1

                                                           (31) 

where zi  is a polynomial function of the inputs (most commonly a linear function). 
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A. Mamdani FIS B. TSK FIS 

Figure 6 - Examples of FISs [83-85] 

2.6. Neuro-Fuzzy Systems 

Neuro-fuzzy systems are artificial intelligence approaches that combine fuzzy logic and neural 

networks in a hybrid system. This system has the advantage of tuning fuzzy rules using learning 

algorithms applied to neural networks. By taking into account rule-based fuzzy reasoning in its 

construction, the neural network can improve transparency [86]. Several neuro-fuzzy systems have 

been presented in the literature, including Fuzzy Adaptive Learning Control Network (FALCON) 

[87], Fuzzy Net (FUN) [88], Adaptive Neuro-Fuzzy Inference System (ANFIS) [9], etc. Amongst 

these, perhaps the most well-known is ANFIS. Yet ANFIS is actually a class of adaptive networks, 

so first we will review these networks and then study ANFIS. 

2.6.1. Adaptive Network 

The adaptive network consists of numerous nodes connected by directed links. A node represents 

a process unit, and a link represents a communication link between nodes. The transfer function 

of some or all of the nodes are adaptive, which means their parameters can be modified. To 
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minimize the system error measure, which can be the difference between the desired and actual 

output, a learning rule defines the way these parameters should be updated. There are two types of 

adaptive networks: feedforward and recurrent [89]. Adaptive networks are called feedforward if 

their output is spread from input to output. Alternatively, we have a recurrent adaptive network 

when we have feedback links which cause a circular path or loop within the graph of 

communication links. 

 
A. A feedforward adaptive network B. A recurrent adaptive network 

Figure 7 - Types of adaptive networks [89] 

2.6.2. ANFIS 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a five-layer feedforward adaptive 

network which is equivalent to a TSK FIS [9]. The network combines the ability of ANNs to adapt 

and learn, and the linguistic nature of fuzzy logic to provide transparency. Depending on the rule, 

the output can be either a linear combination of input variables plus a constant term or just a 

constant term [78]: 

IF x1=A1 and x2=B1, THEN y = ax1 + bx2 + c   

Or   

 IF x1=A1 and x2=B1, THEN y = c 

where {a, b, c} is a parameter set.  
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An outline of the basic structure of ANFIS can be seen in Figure 8, which shows two 

inputs and one output. 

 

Figure 8 - Basic structure of ANFIS [78] 

 

Each layer performs the following functions [90]: 

 Layer 1 (Membership Layer): In this layer, each node represents a fuzzy membership 

function with adaptive parameters: 

                     𝑂1,𝑖 = 𝜇𝐴𝑖
(𝑥1) , 𝑖 = 1, 2              𝑎𝑛𝑑             𝑂1,𝑖 = 𝜇𝐵𝑖−2

(𝑥2) , 𝑖 = 3, 4            (32) 

where x1 and x2 are input values drawn from universes of dicourse U1 and U2, Ai or Bi-2 is 

a linguistic label associated with a fuzzy subset of Ui, and  𝑂1,𝑖 is the membership value 

of the input in that fuzzy set. 

 Layer 2 (Firing Strength Layer): In this layer, the output of each node represents the firing 

strength of a rule as a product of its incoming signals. The output of each node in this layer 

is given by: 

                                              𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖
(𝑥1)𝜇𝐵𝑖

(𝑥2) ,           𝑖 = 1, 2                               (33) 
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 Layer 3 (Normalized Firing Strength Layer): Every node in this layer calculates a 

normalized firing strength, �̅�𝑖 as follows: 

                                              𝑂3,𝑖 = �̅�𝑖 =
𝑤𝑖

∑ 𝑤𝑖
𝑛
𝑖=1

 ,      𝑖 = 1, 2                                                  (34) 

 Layer 4 (Consequent Layer): This layer consists of adaptive nodes that implement the 

linear consequent function: 

                                   𝑂4,𝑖 = �̅�𝑖𝑓𝑖 = �̅�𝑖(𝑝𝑖𝑥1 + 𝑞𝑖𝑥2 + 𝑟𝑖),    𝑖 = 1, 2                                (35) 

where �̅�𝑖 is the normalized firing strength given by layer 3 and pi, qi, ri are consequent 

parameters (CPs). If the consequent is a constant value, only ri is nonzero. 

 Layer 5 (Summation Layer): The single node in this layer sums all incoming signals to 

compute the overall output as: 

                                                               𝑂5,𝑖 = 𝑦 = ∑ 𝑓𝑖
𝑛
𝑖=1                                                     (36) 

The adaptive parameters in ANFIS are the layer 1 MF parameters, and the layer 4 CPs. In 

order to speed up learning, Jang [78] on a hybrid of least-squares estimation and gradient descent 

as the learning algorithm, as follows [78]: 

a. Forward Pass: During the forward pass, MF parameters are held constant and node 

outputs are propagated up to layer-4, and the consequent parameters then are identified by 

least-squares estimation. Considering that the premise parameters are fixed, the output can 

simply be expressed as a linear combination of their values. 

𝑓 = �̅�1𝑓1 + �̅�2𝑓2 = (�̅�1𝑥1)𝑝1 + (�̅�1𝑥2)𝑞1 + (�̅�1)𝑟1 + (�̅�2𝑥1)𝑝2 + (�̅�2𝑥2)𝑞2 + (�̅�2)𝑟2  

                                                                                                                                               (37) 
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which is linear in terms of consequent parameters p1, q1, r1, p2, q2, and r2. 

            𝑓 = 𝑋𝑍 {
𝐼𝑓 𝑋 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 𝑡ℎ𝑒𝑛,                                                            𝑍 = 𝑋−1𝑓

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑎 𝑝𝑠𝑒𝑢𝑑𝑜 − 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑠𝑜𝑙𝑣𝑒 𝑍,        𝑍 = (𝑋𝑇𝑋)−1𝑋𝑇𝑓
          

                                                                                                                                                  (38) 

b. Backward Pass: During the backward pass, the CPs are held constant and errors propagate 

backward to layer-1. MF parameters are updated in layer-1 using gradient descent. The 

parameters are updated according to the following rule: 

                                                               𝑎𝑖𝑗(𝑡 + 1) = 𝑎𝑖𝑗(𝑡) − 𝜂.
𝐸

𝑎𝑖𝑗
                                       (39) 

which 𝜂 is the learning rate for 𝑎𝑖𝑗 (a parameter of the network) and can be expressed as: 

                                                                              𝜂 =
𝑘

∑(
𝛿𝐸

𝛿𝑎𝑖𝑗
)2

                                                 (40) 

where k is the step size (Gradient transition length in parameter space) that can affect 

convergence speed. To update the parameters of the membership function, the chain rule 

is used to calculate partial derivatives. 

                                                                
𝛿𝐸

𝛿𝑎𝑖𝑗
=

𝛿𝐸

𝛿𝑓
.
𝛿𝑓

𝛿𝑓𝑖
.
𝛿𝑓𝑖

𝛿𝑤𝑖
.
𝛿𝑤𝑖

𝛿𝜇𝑖𝑗
.
𝛿𝜇𝑖𝑗

𝛿𝑎𝑖𝑗
                                      (41) 

2.7. Complex Fuzzy Sets 

Complex Fuzzy Sets (CFSs) are an extension of type-1 fuzzy sets, in which the co-domain of the 

membership function is some subset of the complex plane, i.e. , μ(x)  ℂ for some x drawn from a 

universal set U. While there were some earlier investigations of this concept (e.g. [19, 91]), the 

current understanding of CFS comes from Ramot et al. [2]. They defined a membership function 

to be μ(x) = rs(x)e(jw
s
(x)), where 𝑟𝑠 ∈ [0,1] is the magnitude and  ws(x) is the phase of the complex 
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fuzzy set S, and j =√−1. Clearly, this means that a complex fuzzy set has a two-element 

membership vector for every object x  U. A CFS from [2] has a co-domain as shown in Figure 9. 

In this graph, the complex plane Re×Im is located at right angles to the universe of discourse U 

and the unit disc D is projected along U, forming a cylinder. A CFS will then be a trajectory within 

this cylinder.  

 
Figure 9 – Codomain for a Complex Fuzzy Set [5] 

In a review of CFS [5], there are seven main open questions being pursued by researchers. 

Two of these (Q3: What functional forms for complex fuzzy memberships have been investigated? 

Q7: How are complex fuzzy sets operationalized?) are directly addressed by the current 

dissertation, and we discuss them in more depth below. It is also, however, worthwhile to recall 

the first question posed in that review:  “In what ways and for what phenomena is CFS&L a more 

effective framework for reasoning under uncertainty than existing fuzzy logics?” [5]. One answer, 

proposed first by Ramot et al. [2], is that CFS might be a good model for periodic phenomena, as 

the phase dimension of the membership vector is unbounded. Dick [23] expanded on this idea, 

suggesting that CFS might capture regularity, which refers to approximately periodic phenomena 

that do not precisely repeat. This was a concept suggested by Zadeh (unpublished) as a 
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generalization of stationarity. Dick went on to suggest that, since time series forecasting often 

deals with such approximately periodic observations, CFS might be a good candidate for 

developing forecasting algorithms. The studies investigating this possibility form the bulk of the 

answer to Q7 above.  

2.7.1. Complex Fuzzy Membership Functions 

As pointed out in [5], type-1 fuzzy memberships are most commonly parameterized functions (e.g. 

Gaussian, triangular, trapezoidal, etc.) This is particularly important for learning algorithms, as 

those parameters can be optimized to fit a dataset. The development of CFS has likewise focused 

on two families of parameterized functions: sinusoidal CFS were proposed as a part of the ANCFIS 

architecture, while Gaussian CFS were proposed for the CNFS family. These are two very different 

approaches to modeling uncertainty, which we further explore below. 

The sinusoidal CFS has the general form [3]: 

                                           𝑟 = 𝑑 ∙ 𝑠𝑖𝑛(𝑎 ∙ (𝜃 = 𝑔(𝑥)) + 𝑏) + 𝑐                                         (42) 

where r is the magnitude of the CFS,  is its phase, 𝑔():𝑈 → [0,2𝜋] relates the phase of the CFS 

membership to the object x, sin() is the familiar sine wave function, and a, b, c, d are adaptive 

parameters. To this point, the only form used for 𝑔() has been the identity function, so 

effectively 𝜃 = 𝑥. The sine function was chosen as the functional form to serve as an idealized 

prototype of a regular (approximately periodic) phenomenon; the degree to which observations 

match the prototype is then the membership of the phenomenon in the CFS (this is computed by 

convolving the sampled CFS against a window of observations in ANCFIS). Furthermore, as is 

well known, any periodic function can be approximated by a Fourier series, each term of which is 

a sine wave. Thus, a rule-base formed of sinusoidal CFS could be an effective, and compact, model 

for arbitrary regular phenomena [3, 23]. A sinusoidal CFS is depicted in the 3-dimensional plot of 
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Figure 10, in which we see a repeating heart-shaped trajectory in the complex plane (Re×Im) traced 

along the independent variable X.  

 
Figure 10 - Sinusoidal CFS: a=5, b=0, c=0.5, d=0.5 

The complex Gaussian membership function is an extension of the Gaussian function into 

complex numbers, again in polar form. The general form of this membership function is [92]: 

                            𝜇(𝑥;𝑚, 𝜎, 𝜆) = 𝑟𝜇(𝑥;𝑚, 𝜎) ∙ 𝑒𝑥𝑝(𝑗 ∙ 𝜔𝜇(𝑥;𝑚, 𝜎, 𝜆))                                   (43) 

                                        𝑟𝜇(𝑥;𝑚, 𝜎) = 𝑒𝑥𝑝 [−0.5 ∙ (
𝑥−𝑚

𝜎
)
2

]                                                  (44) 

                            𝜔𝜇(𝑥;𝑚, 𝜎, 𝜆) = −𝑒𝑥𝑝 [−0.5 ∙ (
𝑥−𝑚

𝜎
)
2

] ∙ (
𝑥−𝑚

𝜎2 ) ∙ 𝜆                                   (45) 

where x  U is the object, m is the mean of the Gaussian, 𝜎2 its variance, and  modifies the phase 

of the CFS.  

For a Gaussian-type complex fuzzy set S, the membership function 𝜇𝑠(𝑥;𝑚, 𝜎, 𝜆) can also 

be written in Cartesian form as follows [92]: 
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𝜇𝑠(𝑥;𝑚, 𝜎, 𝜆) = 𝑅𝑒(𝜇𝑠(𝑥;𝑚, 𝜎, 𝜆)) + 𝑗𝐼𝑚(𝜇𝑠(𝑥;𝑚, 𝜎, 𝜆))

= 𝑟𝑠(𝑥;𝑚, 𝜎)𝑐𝑜𝑠 (𝜔𝑠(𝑥;𝑚, 𝜎, 𝜆)) + 𝑗𝑟𝑠(𝑥;𝑚, 𝜎)𝑠𝑖𝑛 (𝜔𝑠(𝑥;𝑚, 𝜎, 𝜆))

=  𝑒𝑥𝑝 [−0.5 ∙ (
𝑥 − 𝑚

𝜎
)
2

] 𝑐𝑜𝑠 (−𝑒𝑥𝑝 [−0.5 ∙ (
𝑥 − 𝑚

𝜎
)
2

] ∙ (
𝑥 − 𝑚

𝜎2
) ∙ 𝜆)

+ 𝑗𝑒𝑥𝑝 [−0.5 ∙ (
𝑥 − 𝑚

𝜎
)
2

] 𝑠𝑖𝑛 (−𝑒𝑥𝑝 [−0.5 ∙ (
𝑥 − 𝑚

𝜎
)
2

] ∙ (
𝑥 − 𝑚

𝜎2
) ∙ 𝜆) 

                                                                                                                                                  (46) 

where 𝑗 = √−1, 𝑟𝑠(𝑥;m, σ) is the amplitude function of the complex membership, and 

𝜔𝑠(x;m, σ, λ): 𝑈 → [0,2𝜋] is the phase function. A Gaussian CFS is depicted in Figure 11; unlike 

the sinusoid, the Gaussian CFS has a single teardrop-shaped loop centered at its mean value, and 

approaches a value of 0+0j otherwise.  

 

Figure 11 - Gaussian CFS: m=5, =1, =1.5 

Note that the Gaussian CFS is a unimodal curve near its mean and elsewhere nearly zero – 

inspired our interest in combining the sinusoidal and Gaussian CFS in a single system. Very few 

realistic time series are purely periodic signals, and we have observed difficulties in modeling 

outliers with the ANCFIS architectures. A Gaussian CFS could be a better model for such rarer 

events. Therefore, in the experiments of this dissertation, we hypothesized that adding Gaussian 



33 
 

CFS neurons to a neuro-fuzzy architecture for time series forecasting will improve its accuracy 

compared to the same architecture using only sinusoidal CFS.   

2.7.2. Complex Fuzzy Set Operations 

Suppose we have two complex fuzzy sets, A and B, with membership degrees 𝜇𝐴(𝑥) =

𝑟𝐴(𝑥)𝑒
(𝑗𝑤𝐴(𝑥)) and 𝜇𝐵(𝑥) = 𝑟𝐵(𝑥)𝑒(𝑗𝑤𝐵(𝑥)), respectively. Following is the definition of the union, 

intersection, and complement of these two complex fuzzy sets [2]: 

 Union 𝐴 ∪ 𝐵: 

                                              𝜇𝐴∪𝐵(𝑥) = [𝑟𝐴(𝑥)⨁𝑟𝐵(𝑥)]. 𝑒𝑗𝑤𝐴∪𝐵(𝑥)                                        (47) 

 Intersection 𝐴 ∩ 𝐵: 

                                              𝜇𝐴∩𝐵(𝑥) = [𝑟𝐴(𝑥) ⋆ 𝑟𝐵(𝑥)]. 𝑒𝑗𝑤𝐴∩𝐵(𝑥)                                       (48) 

where the ⨁ and ⋆ are some t-conorm and t-norm operators respectively. It remains to define 𝑤𝐴∪𝐵 

and 𝑤𝐴∩𝐵. The following are several possibilities for their calculation [2]: 

Sum:  𝑤𝐴 + 𝑤𝐵                                                                                              (49) 

Difference: 𝑤𝐴 − 𝑤𝐵                                                                                   (50)       

Max:  max (𝑤𝐴, 𝑤𝐵)                                                      (51) 

Min: min (𝑤𝐴, 𝑤𝐵)                                                                 (52) 

‘Winner Take All’:  {
𝑤𝐴:     𝑟𝐴 > 𝑟𝐵
𝑤𝐵:     𝑟𝐵 > 𝑟𝐴

                                        (53) 

Average:  
𝑤𝐴+𝑤𝐵

2
                                           (54) 
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Weighted Average: 
𝑟𝐴𝑤𝐴+𝑟𝐵𝑤𝐵

𝑟𝐴+𝑟𝐵
                                                                     (55) 

 Complement �̅�: 

     𝜇�̅�(𝑥) =  𝑟�̅�(𝑥). 𝑒𝑗𝑤�̅�(𝑥) = (1 − 𝑟𝐴(𝑥)). 𝑒𝑗𝑤�̅�(𝑥)                            (56) 

Additionally, [1] introduced three other new operators on CFS as follows: 

 Reflection: 

                                                     𝑅𝑒𝑓(𝜇𝑆(𝑥)) =  𝑟𝑆(𝑥). 𝑒−𝑗𝑤𝑆(𝑥)                                           (57) 

where S is a complex fuzzy set on U, and  𝜇𝑆(𝑥) =  𝑟𝑆(𝑥). 𝑒𝑗𝑤𝑆(𝑥). 

 Rotation: 

                                                     𝑅𝑜𝑡𝜃(𝜇𝑆(𝑥)) =  𝑟𝑆(𝑥). 𝑒𝑗(𝑤𝑆(𝑥)+𝜃)                                     (58) 

where S is a complex fuzzy set on U, 𝜇𝑆(𝑥) =  𝑟𝑆(𝑥). 𝑒𝑗𝑤𝑆(𝑥), and 𝜃 is the rotation 

(anticlockwise) of S. 

 Directional Complex (DC) Fuzzy Complement (The combination of rotation and 

complement):  

                                                      𝜇�̅�𝜃(𝑥) =  𝑐(𝑟𝑆(𝑥)). 𝑒𝑗(𝑤𝑆(𝑥)+𝜃)                                         (59) 

where c is any complement function, c:[0,1]→[0,1]. 

In [23] Dick showed that considering the phase as a relative quantity in [2, 22] can be 

interpreted as rotational invariance, meaning that if two vectors undergo rotation by ϕ radians 
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about the origin, their union, intersection, or complement will be rotated by the same amount. 

Figure 12 illustrates this point. 

 

Figure 12 - Rotational Invariance [23] 

The images of A and B after a rotation by ϕ radians are denoted A’ and B’. Rotational 

invariance states that e.g. A’∩B’ is the image of A∩B, rotated by ϕ radians, as shown in Figure 10. 

Thus, the image of an operation after its arguments are rotated by a phase of ϕ is the image of the 

same operation on the original arguments, rotated by ϕ. 

It was shown that the algebraic product and the traditional complement, f(x) = −x, are not 

rotationally invariant. Instead, Dick [23] proposed a new formulation of membership degree by 

considering amplitude and phase simultaneously. The algebraic product was shown to be a 

conjunction operator, and the existence of a dual disjunction operator was proved. (However, note 

that Dai [93] showed that the proposed lattice was incorrect and corrected it). He then argued that 

capturing the behavior of approximately periodic phenomena was a possible application for CFL, 

and sinusoidal functions were suggested as appropriate complex fuzzy membership functions. 

Also, in [22], an aggregation operation was proposed to combine several complex fuzzy 

sets with unit circle codomain:  
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                                 𝑣: {𝑎|𝑎 ∈ 𝐶, |𝑎| ≤ 1}𝑛 → {𝑏|𝑏 ∈ 𝐶, |𝑏| ≤ 1}                                              (60) 

                       𝜇𝐴(𝑥) = 𝑣(𝜇𝐴(𝑥), 𝜇𝐴(𝑥),… , 𝜇𝐴(𝑥)) = ∑ 𝑤𝑖𝜇𝐴𝑖
(𝑥)𝑛

𝑖=1                                     (61) 

where 𝑤𝑖 ∈ 𝑣: {𝑎|𝑎 ∈ 𝐶, |𝑎| ≤ 1} for all i, and ∑ 𝑤𝑖 = 1𝑛
𝑖=1 . This operation is implemented as a 

weighted vector sum that considers the effects of complex fuzzy phases on the aggregation process. 

2.7.3. Complex Fuzzy Relation 

Complex Fuzzy Relation (CFR) represent both the degree of presence or absence of association, 

interaction or interconnectedness, and the phase of association, interaction or interconnectedness 

between the elements of two or more crisp sets [2]. The complex fuzzy relation between two 

discourse universes U and V is a complex fuzzy subset of U*V, which is characterized by a 

complex-valued membership function bound to an arbitrary unit disk, and defined as [2]: 

                                    𝑅(𝑈, 𝑉) = {((𝑥, 𝑦), 𝜇𝑅(𝑥, 𝑦))|(𝑥, 𝑦) ∈ 𝑈 × 𝑉}                                   (62) 

Composition of the complex fuzzy relations either defined on the same product spaces or on the 

different product spaces were proposed in [22]. 

2.8. Complex fuzzy Logic 

Using the same unit-disc codomain as CFS in [2], Complex Fuzzy Logic (CFL) was first 

proposed in [22]. In [22], an isomorphic CFL is proposed based on the generalized Modus Ponens 

inference rule and a complex product as follow: 

                                                     𝜇𝐴→𝐵(𝑥, 𝑦) = 𝜇𝐴(𝑥). 𝜇𝐵(𝑦)                                                (63)   

where 𝜇𝐴→𝐵(𝑥, 𝑦) is the complex-valued membership function of the implication. As a result, 

complex fuzzy implication can be expressed quite similarly to ordinary fuzzy implication. Having 
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complex-valued grades, of course, makes (41) different. The complex fuzzy implication of 

𝜇𝐴→𝐵(𝑥, 𝑦) for the amplitude and phase terms separately is given by: 

                                                     𝑟𝐴→𝐵(𝑥, 𝑦) = 𝑟𝐴(𝑥). 𝑟𝐵(𝑦)                                                   (64) 

                                                     𝑤𝐴→𝐵(𝑥, 𝑦) = 𝑤𝐴(𝑥) + 𝑤𝐵(𝑦)                                                (65) 

 

2.9. An overview of XAI 

There has been recent success and advancement in artificial intelligence (AI) and machine learning 

(ML) algorithms, including shallow and deep artificial neural networks, that can operate better 

than humans in many diverse fields, but many of them perform ambiguously. This means that their 

decision-making process and actions are not transparent. This issue has been discussed under the 

title "explanations and interpretations of the decision-making process" [94-96]. For some 

applications of artificial intelligence, this explanation may not be necessary, and, according to 

some researchers, it may also make accessing the models more difficult. However, it is a very 

important factor in many other AI applications, including military, medical, financial, and law. It 

will lead to a greater sense of understanding and trust among users [97-99]. There has always been 

a conflict between explainability (interpretability  ( and accuracy. For example, most of the methods 

that have higher performance, such as deep neural networks, have less explanations, and in contrast 

to those that are more explainable, such as decision trees, they have less accuracy [100]. Therefore, 

a trade-off between the two should be sought [101].  

Artificial intelligence systems that provide explanations for their behavior are called 

explainable artificial intelligence (XAI). In this regard, it should adhere to some general principles 

to make the intelligent system understandable to users; when describing its capabilities, it should 
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clearly describe what it has already achieved, what it is currently doing, and what it intends to do 

in the future [97]. Analyzing artificial intelligence's inferential processes is also a way to generate 

explanations. However, having an explanatory interface (EI) would be more useful than presenting 

a user with an interpretable artificial intelligence model. In order to provide explanations, EI must 

communicate with the user. Since EI is intended to enhance user trust, XAI researchers should 

measure how much their explanations enhance trust. Metrics such as user satisfaction, which can 

be gauged by assessing the explanation's clarity and usefulness, are purely based on the user's 

perspective [100]. 

Two goals are stated in [102] for science: intelligibility and instrumentality. Intelligibility 

means explainability, and instrumentality is expressed as performance. The difference between 

these two goals is similar to an issue that artificial intelligence has been involved in for decades, 

in that intelligibility and instrumentality are not complementary, that is, improvements in one must 

come at the expense of the other. This is what was previously introduced as the interpretability-

accuracy trade-off [101]. Therefore, XAI is involved with two types of systems; those that 

emphasize intelligibility and those that focus on instrumentality. Because of this, the first type of 

artificial intelligence is primarily based on symbolic approaches that are fairly transparent to 

humans (such as expert systems, logic theory, etc.), while the non-symbolic approaches (such as 

statistical learning, neural networks, etc.) are less transparent and emphasize accuracy more. 

Among the first symbolic expert systems that extracted knowledge through IF-THEN inference 

rules are Heuristic-Dendral [103] and EMYCIN [104], while McCullough-Pitts [105] and 

DRAGON [106] can be referred to as non-symbolic expert systems. 

During the 1970s, neural networks experienced their first winter after the analysis cited in 

[107] revealed that perceptron could only solve linearly separable problems. Nevertheless, some 
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work continued, such as the Neocognitron architecture [108] that led to Lecun's convolutional 

neural networks [109], which continue to dominate research today in signal, image, and video 

processing. A resurgence in interest in neural networks followed the publication of 

backpropagation algorithms in the late 1970s [110], followed by Hopfield's research on associative 

memory [111]. The popularity of neural networks led to new ideas, algorithms, and models being 

proposed to achieve greater performance and accuracy [112-121]. However, the black-box nature 

of NNs exacerbated the problem of user confidence in the late 80s and early 90s, when they were 

considered cutting edge in machine learning, making explanations much more difficult. As a result, 

XAI was given more attention during this time. An explanation can be represented in a variety of 

ways. For example, KBANN [115] (as a rule-based neural network architecture) trains the NN on 

domain datasets before initializing it with rules. It is expected that the rules extracted from this 

trained model will be more accurate than the original ones. Also, Feedforward networks are often 

represented by decision trees [122-124]. Additionally, IF-THEN rules cannot capture the effects 

of recurrent networks' feedback loops. Thus, recurrent networks require different representations. 

A visualization problem has also been considered when XAI was first developed [125]. Typically, 

visualization is used to explain an explanation today. Expert systems and NNs explanations were 

also reduced during the winter break. However, kernel-based learning, and specifically SVMs, still 

held interest due to their reasonable results. In contrast, SVMs are as much a black box as neural 

networks. Despite the deep learning revival ending the winters of neural networks and AI, the need 

to explain NNs has once again intensified. Although some papers claimed there was a basis for 

explaining SVMs [126]and other forms of machine learning at the time, such as Bayesian networks 

[127] and probabilistic reasoning [128]. 
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Since NNs and especially deep neural networks (DNNs) have gained popularity since the 

mid-2010s, a new generation of XAIs has emerged [129-135]. For example, an explainable AI 

program was launched by DARPA in 2017 [136]. With advances in computing power, technology, 

visualizing data, and natural language processing, modern XAI is expected to provide better 

explanations. EI must also be designed to meet the needs of the intended beneficiaries in order to 

be effective [137]. Furthermore, users in the modern era expect to interact with AI for a longer 

periods of time. Thus, the AI must be aware not only of the user's goals, knowledge, and 

experiences but also of how these influence the AI [138]. There are four modern methods exist for 

generating in-depth explanations, including Layer-wise Relevance Propagation (LRP) [139], 

Local Interpretable Model-agnostic Explanations (LIME) [94], Testing with Concept Activation 

Vectors (TCAV) [140], and Rule Extraction with Meta-Features [141]. Each of their resources 

contains details about them. 

2.9.1. XAI and Neuro-Fuzzy Systems 

Lotfi A. Zadeh introduced fuzzy theory and its basic concepts in 1965, referring to classical 

mathematics' inability to deal with imprecise problems in the real world. The fuzzy sets he 

introduced are an extension of the classical (crisp) set to the unit interval [0, 1] [1]. Then, fuzzy 

logic, including union, complement, and intersection operations on fuzzy sets, was presented and 

then operated through a fuzzy inference system (FIS), which mapped input values to output values 

using fuzzy rules. FIS was remarkable in that the use of fuzzy rules (IF-THENs) made it very 

transparent [142]. A more interpretable network was created by combining neural networks and 

fuzzy logic [143, 144], and fuzzy logic has been used since the 1970s to generate explanations. 

Afterward, Zadeh described fuzzy systems using equations of state [145] and suggested using 

fuzzy sets for automatic control [146].  
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For XAI topics that were widely used in FIS, the introduction of Linguistic Variables (LVs) 

marked an important advance [147-149]; for example, a controller designed by Mamdani [150] 

was used in FIS to create a fuzzy logic controller (FLC) algorithm. With the help of LVs, FLC 

made the control rules as transparent as possible. The TSK FLC was then presented [151], which 

differed from Mamdani in that the outputs were always numerical functions of the inputs, not fuzzy 

sets. Transparency in FLC can be considered from two perspectives of XAI: on the one hand, since 

FLC is a linguistic rule base rather than a differential equation with several variables, it is 

transparent and understandable to humans since they do not require learning differential equations. 

On the other hand, the explanation for FLC only includes the fuzzy rule base, and neither in 

Mamdani nor in TSK was an EL designed for it, also there was no any attempt to evaluate the 

comprehensibility of FLCs. 

From the perspective of computational intelligence, researchers have shown that hybrid 

systems including neural networks, fuzzy logic, and evolutionary computing yield better results 

than systems that utilize only one approach [89], and from the perspective of XAI, Hybrid systems 

that include fuzzy logic are more comprehensible and interpretable. Even during the winter of 

neural networks, hybrid systems were of interest [152-155]. Afterwards, fuzzy neural networks 

and neural architectures that mimic fuzzy systems (often called fuzzy neural systems) became the 

main approaches to studying neural fuzzy systems. 

A fuzzy neural network is the combination of a neural network architecture with fuzzy 

logic that is tuned to improve transparency. Hayashi's fuzzy MLP [156] or Pal and Mitra's fuzzy 

MLP [157] are examples. While maintaining accuracy, these types of networks strived to be more 

transparent than traditional neural networks. Generally, fuzzy neural networks are more 

transparent than traditional neural networks without sacrificing much accuracy. In neural fuzzy 
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systems, however, more transparency is achieved by using FISs. Among all the neural fuzzy 

systems, ANFIS [9] is the most famous that have been proven to be equivalent to TSK fuzzy 

systems. There is again a trade-off between interpretability and accuracy when we compare fuzzy 

neural networks to neural fuzzy systems. While the former is more precise, the latter is more 

transparent [158]. However, it should be noted that although these architectures emphasize 

transparency, they do not actually design EI. 

Evolutionary fuzzy algorithms (EFAs) are a combination of meta-heuristics and fuzzy 

algorithms. Like fuzzy neural systems, these algorithms aim to create systems that model datasets 

more accurately and interpretably. Among the first examples in this field are genetic fuzzy systems 

[159-161]. Multi-objective genetic fuzzy systems can also optimize FIS accuracy and 

interpretability simultaneously [101]. A FIS's design and optimization can be done in an EFA. 

EFA elements can all be learned. Depending on the dataset, an EFA can learn the entire FIS 

inductively or fine-tune an initial one. EFA algorithms provide explanations based on fuzzy rules, 

as discussed earlier, but an EI is not designed by them. Like EFAs, deep neuro-fuzzy systems (a 

combination of fuzzy logic and deep neural networks) also try to improve transparency for DNNs. 

Fuzzy DNNs include the following examples: Fuzzy Deep MLP [162], Fuzzy Restricted 

Boltzmann Machine [163], Fuzzified Echo State Networks [164], Fuzzified Stacked Autoencoders 

[165], Deep Fuzzy MLP [166], Fuzzified ResNet [167], Deep fuzzy Decision Tree [168], and a 

combination of ANFIS and LSTM [169]. The architectures of deep neuro-fuzzy systems also do 

not typically include a dedicated EI. 

2.10. AI Brittleness 

The reality that artificial intelligence (AI) is not as capable as it is thought to be has raised concerns 

among the public, although it has been very successful in a number of domains recently. Despite 
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the fact that AI is used in many everyday applications, including shopping and home automation, 

its use in safety-critical systems such as transportation and medicine is of great concern, since the 

wrong application of AI can lead to very dire consequences. For example, problems with the car's 

computer vision can be cited as contributing factors in many fatal Tesla crashes [170, 171]and the 

death of a pedestrian in an Uber self-driving car crash [172].  

While many companies have promised full AI driving for years, many have backed off in 

an effort to moderate public and investor expectations [173, 174]. Negative sentiment about AI 

applications is on the rise due to public opposition to AI and privacy, as well as concerns about AI 

embedded in social media that may manipulate people. According to some experts, this backlash 

may lead to another artificial intelligence winter, which will reduce trust in legitimate AI 

developments and reduce funding [175]. Given this potential outcome, it is important to take a step 

back and analyze exactly why AI is struggling to achieve safety-critical systems and how the 

roadmap to success must change to achieve positive outcomes. 

The use of computer vision in safety-critical topics such as transportation and healthcare is 

based on algorithms that use machine learning to "understand" the world and make decisions. For 

example, the use of deep learning algorithms in driverless cars to identify pedestrians [176] or in 

healthcare, to detect tumors in grainy lung images [177]. Despite significant advances in computer 

vision and deep learning algorithms over the past decade, such approaches to developing real-

world perceptual models have been brittle. Brittleness occurs when an algorithm cannot generalize 

to conditions beyond its assumptions or adapt to new ones. As an example, many natural language 

processing (NLP) algorithms are brittle when they can understand the speech of a native English 

speaker but cannot understand it if spoken by someone with a foreign accent [178]. While this 

brittleness may be frustrating for a person attempting to navigate through an automated telephone 
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system, in a safety-critical system that relies on any kind of machine learning to perceive the 

environment, it can be fatal.  

Therefore, when a machine learning algorithm does not have the ability to generalize its 

perception in the face of uncertainty, perceptual brittleness arises. For example, an inability of 

driverless car computer vision to cope with weather changes [179] is one example of brittleness. 

Other examples like when the curbside is partially covered by something like snow and their edges 

are no longer detectable to the system [180] or not recognizing traffic signs correctly when they 

are partially covered with something like leaves [181]. Research typically addresses such 

brittleness by training models with more images and using techniques such as augmentation [182]. 

Computer vision based on deep learning is still a relatively new field of research, so new problems 

are being discovered. In a recent study, researchers discovered that neural networks don't capture 

accurate images of depth [183], which has significant implications for safety. Therefore, a field of 

study called adversarial machine learning [184] has emerged, which examines how deep learning 

algorithms can be tricked or defeated (see [185, 186]). 

2.10.1. Data/Distribution shifts and brittleness 

The term data shift refers to the shift in the distribution of data [187]. A Machine Learning model 

attempts to uncover the relationship between the input and the target variable. After creating a 

model on this data, one might feed new data of the same distribution and expect similar results. 

However, this is rarely the case in real-world situations. Changes in consumer behaviour, 

technological breakthroughs, political, socioeconomic, and other unpredictable factors can 

dramatically impact either a) the input dataset, b) the target variable, or c) the underlying patterns 

and relationships between input and output. They all lead to the same thing in Data Science: model 
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performance degradation [187]. In order to better understand data shifts, let's give them a more 

formal definition:  

I. Covariate shift: it is the change of distributions in one or more of the independent 

variables (input features) [188]. In mathematical terms, covariate shift is termed the 

situation where Ptrn(Y|X)=Ptst(Y|X) but Ptrn(X) ≠Ptst(X). Covariate shift may happen due to 

a changing environment that affects the input variables but not the target variable. To deal 

with it, various solutions have been provided, such as one provided by [189], which uses 

node-based Bayesian neural networks (BNNs). In this method, node-based BNNs are 

proposed that infer epistemic uncertainty by multiplying hidden nodes with latent random 

variables. As a result, they construct BNNs that perform well under covariate shifts caused 

by input corruption by interpreting these latent noise variables as implicit representations 

of simple and domain-agnostic data perturbations during training. Their study observed 

that implicit corruption diversity depends on the entropy of the latent variables, which led 

them to propose a straightforward method for increasing entropy during the training of 

these variables. After evaluating the method on out-of-distribution image classification 

benchmarks, they showed improved uncertainty estimation for node-based BNNs with 

covariate shifts caused by perturbations of inputs.  Additionally, the method provides 

robustness against noisy training labels. 

II. Prior probability shift: it can be thought of as the exact opposite of covariate shift; it is 

the case that input feature distributions remain the same but the distribution of the target 

variable changes [190]. In mathematical terms, prior probability shift is termed the 

situation where Ptrn(X|Y)=Ptst(X|Y) but Ptrn(Y) ≠Ptst(Y). A prior probability shift can occur 

in cases where despite the input variables remain the same, our target variable changes. To 
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deal with this type of shift, there are several solutions, one of the most recent of which is 

[191] designed an algorithm, called CAPE (Combinatorial Algorithm for Proportional 

Equality), that ensures fair classification under such shifts. The algorithm has two phases: 

training and prediction.  CAPE takes as input a training dataset 𝐷 and a vector Θ = (𝜃1, . . 

. , 𝜃𝑘 ) ∈ [0, 1]𝑘 . CAPE trains an ensemble of classifiers, with the desired prediction 

prevalence of each classifier being one of the 𝜃 ∈ Θ values. Moreover, CAPE is separately 

trained for each group 𝑧 ∈ [𝐺], since it is hypothesized that the relationship between the 

non-sensitive features 𝑋 and the outcome variable 𝑌 may differ across groups. Thus, each 

group is best served by training classifiers on datasets obtained from the corresponding 

group. The results have shown that CAPE guarantees a high degree of fairness in its 

predictions. 

III. Concept drift: it happens where the relations between the input and output variables 

change. So we are not anymore only focusing on X variables or only the Y variable but on 

the relations between them. In mathematical terms, a concept drift is termed the situation 

where Ptrn(Y|X) ≠ Ptst(Y|X). A concept drift may happen in situations where the data is 

trully temporal and thus depend heavily on time. To deal with this type of shift, there are 

several solutions, one of the most recent of which is [192] which proposed two techniques, 

an Error Rate Based Concept Drift Detection and Data Distribution Based Concept Drift 

Detection and studied their impact. 

Other categories of distribution shifts are also provided. According to [193], it can be 

divided into two types: domain generalization and subpopulation shift. It has been shown that 

either of these shifts can significantly degrade model performance in many real-world scenarios. 

In domain generalization, the training and test distributions comprise data from related but distinct 
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domains, such as patients from different hospitals [194], images taken by different cameras  [195], 

bioassays from different cell types [196], or satellite images from different countries and time 

periods [197]. Subpopulation shift considers test distributions that are subpopulations of training 

distributions, with the goal of doing well even in worst-case subpopulations; for example, we 

might search for models that perform well across all demographic subpopulations, including 

minority populations [198].  

While these types of distribution shifts are commonly observed in real-world deployments, 

they are underrepresented in ML datasets today [199]. As most of these datasets were designed for 

the standard i.i.d. (Independent and Identically Distributed) setting, with the same distribution as 

the training and test sets, previous research has focused on retrofitting them with distribution shifts 

that are cleanly characterized but do not always occur in real-world deployments. As an example, 

many papers in the last few years have examined datasets with shifts caused by synthetic 

transformations, such as changing the colour of MNIST digits [200], or by generalizing from 

cartoons to photos [201]. For systematic studies, datasets such as these are important testbeds; 

however, to develop and evaluate methods for real-world shifts, we need datasets that capture real 

shifts. 

ML models face a wide array of distribution shifts in the wild, which are represent by 

WILDS [193], a curated benchmark of 10 datasets with evaluation metrics. WILDS datasets span 

many important applications: animal species categorization [202], tumour identification [203], 

bioassay prediction [204, 205], genetic perturbation classification [206], wheat head detection 

[207], text toxicity classification [208], land use classification [209], poverty mapping [210], 

sentiment analysis [211], and code completion  [212, 213]. There have been natural shifts in the 

distribution of these datasets as a result of a variety of cameras, hospitals, molecular scaffolds, 
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experiments, demographics, countries, time periods, users, and codebases. For WILDS to succeed, 

domain experts often need to deal with distribution shifts in order to collect data. Using the 

following criteria, they identified, selected, and adapted datasets for WILDS: 1) Distribution shifts 

with performance drops 2) Real-world relevance 3) Potential leverage (to generalize models to 

arbitrary distribution shifts, benchmarks must be non-trivial but also feasible to solve). 

Each WILDS dataset is associated with a type of domain shift: domain generalization, 

subpopulation shift, or a hybrid of both. In each setting, it can be seen the overall data distribution 

as a mixture of D domains D = {1, . . . ,D}. Each domain d ∈ D corresponds to a fixed data 

distribution Pd over (x, y, d), where x is the input, y is the prediction target, and all points sampled 

from Pd have domain d. In order for a dataset to be included in WILDS, its train/test split must 

cause significant performance drops in standard models. The researchers determined this for each 

dataset by training standard models using empirical risk minimization (ERM), i.e. minimizing the 

average training loss, and then comparing their out-of-distribution (OOD) performance with their 

in-distribution (ID) performance [193]. The results obtained for each data set show that the 

performance of OOD was consistently and significantly lower than that of ID. Overall, the 

obtained results demonstrated that the real-world distribution shifts reflected in the WILDS 

datasets meaningfully degrade standard model performance. 

2.11. Conclusion 

Throughout this chapter, we reviewed the types of algorithms and methods available for dealing 

with time series forecasts (TSF), which can be broadly categorized into two categories: statistical 

models and machine learning-based models. Having reviewed the statistical models in the first 

part, in the second part we examined one of the most important theories and concepts of machine 

learning, fuzzy set and logic (FS&L), followed by one of its main extensions, complex fuzzy set 
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and logic (CFS&L). The following chapters have been devoted to discussing various models based 

on this, as well as the proposed algorithms and methods for this purpose. 

Moreover, based on what was discussed and reviewed about XAI, the effect of different 

architectures and approaches on XAI and how they affect the perception of explainability was 

investigated. This process was followed by reviewing basic architectures to symbolic and non-

symbolic approaches and then computational intelligence until we reached the role of fuzzy sets 

and fuzzy logic, followed by fuzzy neural networks and neural fuzzy systems and their impact in 

explaining artificial intelligence. Then, we examined the combination of other machine learning 

algorithms such as evolutionary algorithms and deep neural networks with fuzzy logic and 

concluded that the artificial intelligence systems based on fuzzy sets and logic act very 

transparently and this advantage is more evident for hybrid neuro-fuzzy systems as well as fuzzy-

evolutionary systems. Finally, the necessity of designing dedicated explanatory interfaces (EIs) 

was emphasized.  

Finally, it mentioned that among the many safety-critical applications that are being 

transformed by artificial intelligence, machine learning is among those that will offer new forms 

of collaboration between humans and computers that were previously unimaginable. Even though 

AI does have limitations, especially in safety-critical systems. To ensure that AI-enabled systems 

can operate effectively within their intended operational domains, companies need to develop clear 

criteria and testing protocols before buying or approving them. Data/distribution shift as a possible 

phenomenon in machine learning models can significantly degrade model performance in many 

real-world scenarios and it has different types whose definition and some strategies to deal with 

them were referred to above. 
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3.  Chapter III: Neuro-Fuzzy Systems Employing Complex 

Fuzzy Set and Logic 
 

3.1.  Introduction 

As described in the previous chapter, one of the notable extensions of Type-1 fuzzy set and logic 

(FS&L) is the complex fuzzy set and logic (CFS&L) introduced in [2, 22], on which various 

architectures have been designed and implemented. They have shown promising results in time 

series forecasting (TSF). The adaptive Neuro-Complex Fuzzy Inferential System (ANCFIS) [3] 

was the first neuro-fuzzy architecture to combine CFS and rule inference for TSF. Like its 

predecessor (ANFIS [9]), ANCFIS combines least-mean-squares (LMS) optimization in the 

forward pass with gradient descent in the backward pass, followed by a derivative-free final 

optimization. However, this hybrid algorithm is relatively slow, which prevents its wider use. 

Therefore, randomized learning was explored in CFS&L-based architectures called ANCFIS-ELM 

[214] and RANCFIS [215].  

In ANCFIS-ELM and RANCFIS, the training algorithm is based on randomized learning, 

which was discussed in the previous chapter. In both architectures, the layer-1 MF parameters are 

randomly selected. As these are the only parameters updated on the backwards pass, this stage of 

learning can be entirely eliminated, resulting in a very large speedup. The consequent parameters 

are learned in the forward pass as usual; ANCFIS-ELM rules use a singleton output, while 

RANCFIS uses a linear function. Another architecture in the ANCFIS family is FANCFIS [216], 

which uses a Fourier transform to directly estimate the parameters of the layer-1 CFSs; this also 

results in the complete elimination of the backwards pass, but at the cost of executing a Fast Fourier 

Transform (FFT) on the training dataset.  
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3.2.  ANCFIS 

The ANCFIS architecture [3] is a six-layer model that works based on CFS&L [2, 22, 23]. The 

ANCFIS architecture is derived from the ANFIS architecture [9], but there are some fundamental 

differences between them. Firstly, in order to work with periodic time series, ANCFIS uses a 

sinusoidal Membership Function (MF) as suggested by Dick [23] and it is as follows: 

                                                          𝑟(𝜃) = 𝑑𝑠𝑖𝑛(𝑎(𝜃 = 𝑥) + 𝑏) + 𝑐                                    (66)        

Where 𝑟(𝜃) is amplitude, 𝜃 is the phase of a CFS, x is an object of the Universal set X, the 

coefficients of a, b, c, d shows the MF parameters. Also, it should be taken into account that the 

following two conditions must be considered in order to keep the complex fuzzy membership 

degree within the unit disc of the complex plane: 

                                                        0 ≤ 𝑑 + 𝑐 ≤ 1     ,      1 ≥ 𝑐 ≥ 𝑑 ≥ 0                               (67) 

The second difference is an additional layer in ANCFIS to implement rule interference, 

inspired by Ramot in [22]. Also, we need to know that the signals in this layer are complex-valued. 

The last but not the least, the gradient descent phase employs a derivative-free optimization step. 

An ANCFIS network for univariate time series with two rules is depicted in Figure 14. 

 

 

 

 

Figure 13 - ANCFIS network for univariate time series [3] 
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 Layer 1: The parameters {ai, bi, ci, di} in Formula (42) are set in this layer for i = 1,2 ,… , 

n_CMF, where n_CMF is the number of complex membership functions. Then, the 

membership of an input vector in a CFS is determined by complex convolution. 

                     𝑐𝑜𝑛𝑣 = ∑ ℎ(𝑘) = ∑ ∑ 𝑓(𝑗)𝑔(𝑘 + 1 − 𝑗)    
𝑚𝑖𝑛 (𝑘,𝑛)
𝑗=𝑚𝑎𝑥 (1,𝑘+1−𝑛)

2𝑛−1
𝑘=1

2𝑛−1
𝑘=1                   (68) 

where 𝑓(. ) is a data point in the n-element input vector, 𝑔(. ) is sampled membership 

function, n is the length of input vector, and k is the element index of the complex samples. 

Then, the grades are passed to the Elliot function to ensure that they are restricted to the 

unit disk, without changing the phase of the convolution sum. 

                                                                        𝑂1,𝑖 =
𝑐𝑜𝑛𝑣

1+|𝑐𝑜𝑛𝑣|
                                                   (69) 

 Layer 2: Each node in this layer represents a complex fuzzy rule. Thus, the node output is 

the algebraic product of the complex inputs (called the firing strength). 

                                                     𝑂2,𝑗 = ∏ 𝑂1,𝑗𝑖   ,      𝑖 = 1, 2, … , |𝑂1|                                    (70)  

where |𝑂1| = 𝑚𝑛 (m is the number of membership function and n is the number of input 

vectors). 

 Layer 3: The output of each node in this layer is the ith rule’s normalized firing strength. 

                                            𝑂3,𝑖 = 𝑊𝑖
̅̅ ̅ =

𝑤𝑖

∑ |𝑤𝑗|
|𝑂2|

𝑗=1

   ,      𝑖 = 1,2, … , |𝑂2|                                   (71)    

where |𝑂2| is the number of rules. 

 Layer 4: Each node in this layer represents interference between a rule and the other rules 

being fired. It is computed from the dot product of the output of the i-th node in layer 3 and 

the complex sum of all other outputs of the layer 3. 



53 
 

                                          𝑂4,𝑖 = 𝑤𝑖
𝐷𝑃 = 𝑤𝑖̅̅ ̅ ∙ ∑ 𝑤𝑖̅̅ ̅

|𝑂3|
𝑖=1  , 𝑖 = 1,2, … , |𝑂3|                               (72)      

where |𝑂3| is the number of nodes in layer 3. 

 Layer 5: The output of each node in layer 5 is a linear combination of input vectors, given 

by: 

                                                        𝑂5,𝑖 = 𝑤𝑖
𝐷𝑃[∑ 𝑝𝑖,𝑗𝑥𝑗 + 𝑟𝑖

𝑛
𝑗=1 ]                                            (73)          

 Layer 6: This layer computes the sum of all incoming signals. 

                                                             𝑂6,𝑖 = ∑ 𝑂5,𝑖
𝑗∗𝑁
𝑖=1+(𝑗−1)∗𝑁                                                    (74)  

where j is the number of outputs and N is the number of rules. 

3.3.  ANCFIS-ELM 

ANCFIS-ELM [214] is a five-layer network based on ANCFIS [3] that uses a randomized learning 

algorithm; it means the sinusoidal MF parameters are selected randomly, thus this will eliminate 

the backward pass entirely. Both ANCFIS-ELM and ANCFIS are similar in layers 1 to 4, but since 

the ANCFIS-ELM is based on the zero-order Takagi-Sugeno model (constant consequents), it does 

not have ANCFIS’s layer 5, and the outputs of layer 4 are directly connected to a weighted sum in 

the output layer. 

 

 

 

Figure 14 - ANCFIS-ELM network for univariate time series [214] 
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ANCFIS-ELM was inspired by both the Extreme Learning Machine (ELM) algorithm [217] and 

the SLFN architecture [56]. Thus, it uses randomized learning, where the input weights are selected 

from uniform random values in [-1, 1] and the output are determined by minimizing the following 

error [56, 218]: 

                                                          𝜀2 = ∑ (𝑦𝑖 − ∑ 𝑤𝑗𝑓𝑖𝑗
𝑘
𝑗=0 )2𝑁

𝑖=1                                          (75) 

where N is the number of data points, 𝑦𝑖 is target, k is number of hidden neurons in the hidden 

layer, 𝑤𝑗 is the output weight and 𝑓𝑖𝑗 is the activation value of the j-th hidden neuron on the i-th 

data point. 

3.4.  RANCFIS 

RANCFIS architecture [215] is also a six-layer model using the same neuron transfer functions as 

ANCFIS [3], but with an additional step for adaptive weights between layers 5 and 6. As with 

ANCFIS-ELM, the sinusoidal membership function parameters {a, b, c, d} are randomly selected 

from a uniform distribution and keep constant during the whole training and testing. This 

eliminates the backward pass in training completely.   

 

 

 

 

Figure 15 - RANCFIS network for univariate time series [215] 
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              𝐼6,𝑖 = 𝑤𝑖
𝐷𝑃[∑ ∑ 𝑝𝑖,𝑘𝑙𝑥𝑘𝑙 + 𝑟𝑖

𝑛
𝑙=1

𝑗
𝑘=1 ]. 𝛽𝑖 = 𝑤𝑖

𝐷𝑃[∑ ∑ 𝛾𝑖,𝑘𝑙𝑥𝑘𝑙 + 𝜂𝑖
𝑛
𝑙=1

𝑗
𝑘=1 ]                  (76)  

where γ𝑖,=𝑝𝑖,𝑘𝑙.𝛽𝑖 and η𝑖=𝑟𝑖.𝛽𝑖 The output of the Layer 6 neuron is the sum of these weighted inputs: 

                                               𝑂6,𝑗 = ∑ 𝐼6,𝑖
𝑗∗𝑁
𝑖=1+(𝑗−1)∗𝑁                                                    (77) 

where j is the number of network outputs and N is the number of rules. The output can be 

reformulated as follow: 

                                                                    𝑇 = 𝐻†𝛽                                                               (78)        

where † is the Moore-Penrose generalized inverse, and 

                                                  𝛽𝑇 = [

𝑟11 𝑟12 … 𝑟1𝑛 𝜂1

⋮ ⋮ ⋱ ⋮ ⋮
𝑟𝑗1 𝑟𝑗2 … 𝑟𝑗 𝜂𝑗

] ,                                           (79) 

where 𝛽 is estimated by Recursive Least-Squares (RLS) algorithm [112]. 

3.5.  FANCFIS 

The Fast Adaptive Neuro-Complex Fuzzy Inference System (FANCFIS) [216] consists of a six-

layer feed forward neural network. While FANCFIS and RANCFIS both overcome ANCFIS's 

slow learning speed, both remain highly accurate time series forecasting algorithms. The 

FANCFIS achieves this without the use of random learning, in contrast to RANCFIS. By taking 

an FFT (Fast Fourier Transform) of a portion of the time series, sinusoidal membership functions 

are derived directly. In general, it would expect that a FANCFIS network, which achieves the same 

accuracy on the time series, will be smaller than a RANCFIS network due to the membership 

functions being tailored specifically for the dataset. A two-step process is used in FANCFIS 

learning, which includes an initialization and incremental learning phases. The initialization step 

determines membership function parameters as well as delay embedding. Afterwards, the 
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FANCFIS network's output weights are calculated. Recursive least squares is used for incremental 

learning step in order to update the output weights as each new observation is received [216]. 

By using a Fourier transform, the chronologically first segment is used to induce the CFS 

membership function parameters in the initialization step. For a time series with N data points A(k), 

k = 1, 2, ..., N, the discrete Fourier transform (DFT) is calculated as follows [219]:  

                                                             𝐹𝐴(𝑛) = ∑
𝐴(𝑘)

𝑁
𝑒

−𝑖2𝜋𝑛𝑘

𝑁𝑁−1
𝑘=0                                            (80) 

where 𝐹𝐴(𝑛) is complex-valued; the real and imaginary components are the amplitude of a sine 

and a cosine wave, respectively, at frequency n. The inverse DFT reconstructs a time series as 

[219]: 

     𝐴(𝑘) = ∑ 𝐹𝐴(𝑛)𝑒
𝑖2𝜋𝑛𝑘

𝑁𝑁−1
𝑛=0 = ∑ 𝐹(𝑛)𝑟𝑒𝑎𝑙 𝑐𝑜𝑠 (

2𝜋𝑛𝑘

𝑁
) −𝑁−1

𝑛=0 ∑ 𝐹(𝑛)𝑖𝑚𝑎𝑔𝑒 𝑠𝑖𝑛 (
2𝜋𝑛𝑘

𝑁
)𝑁−1

𝑛=0     (81) 

Also, the membership functions are determined as: 

             𝑟(𝜃) = 𝐹(𝑛𝑖)𝑟𝑒𝑎𝑙 𝑐𝑜𝑠(𝜃) − 𝐹(𝑛𝑖)𝑖𝑚𝑎𝑔𝑒 𝑠𝑖𝑛(𝜃) + 𝐷𝐶 ,        𝑖 = 1,2, … ,𝑁𝑚𝑓              (82) 

where Nmf is the number of CFS to be used, r and 𝜃 =
2𝜋𝑛𝑘

𝑁
 (𝑘 = 1, 2, … ,𝑁) are the amplitude and 

phase of the complex membership grade, respectively, x ∈X is an element of the universe of 

discourse X, ni is the frequency with the i-th highest power F(ni)real and F(ni)image are the real and 

imaginary parts of the Fourier transform in the frequency of ni, N is the length of the subsequence, 

and DC is the zero frequency component. 

3.6. CNFS 

In [4], an adaptive complex neuro-fuzzy system (CNFS), based again on ANFIS, is proposed for 

function approximation. As with ANFIS and ANCFIS,  a hybrid learning method is used to train 
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this architecture. This algorithm uses particle swarm optimization (PSO) algorithm and the 

recursive least square estimator (RLSE) algorithm. CNFS is a six-layer network; a CNFS with one 

inupt and two rules is depicted in Figure 13. The neuron transfer functions in each layer are: 

 

Figure 16 - Complex Neuro-Fuzzy System (CNFS) 

 Layer 0 (Input Layer): This layer receives the input vector at time t (Formula (83)) and 

passes it directly to the next layer. 

                                           𝐻(𝑡) = [ℎ1(𝑡), ℎ2(𝑡), … , ℎ𝑀(𝑡)]𝑇                                                 (83) 

where h is the base variable for the CFS.  

 

 Layer 1 (Fuzzy-Set Layer): In this layer membership degrees are calculated using CFSs. 

 

 Layer 2 (Firing-Strengths Layer): For calculating the firing strength of the i-th rule, we 

have: 

                                            𝛽𝑖(𝑡) = ⋀ 𝑟𝑗
𝑖 (ℎ𝑗(𝑡)) 𝑒𝑥𝑝(𝑗𝜔𝐴1

𝑖 ∩…∩𝐴𝑀
𝑖 )𝑀

𝑗=1                                    (84) 

where ⋀ is t-norm operator, 𝑟𝑗
𝑖 is the amplitude of complex membership degree for the j-th 

fuzzy set of the i-th rule, and 𝜔𝑠 is the phase function. 
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 Layer 3 (Firing Strength Normalization Layer): The normalized firing strength for the i-th 

rule is given by: 

                                                           𝜆𝑖(𝑡) =
𝛽𝑖(𝑡)

∑ 𝛽𝑖(𝑡)𝐾
𝑖=1

                                                            (85)    

 Layer 4 (Consequents Normalization Layer): The normalized consequent of the i-th rule is 

given by: 

                                  𝜉𝑖(𝑡) =  𝜆𝑖(𝑡) × 𝛧𝑖(𝑡) =  𝜆𝑖(𝑡) × (𝑎0
𝑖 + ∑ 𝑎𝑗

𝑖ℎ𝑗(𝑡)
𝑀
𝑗=1 )                        (86) 

where 𝑎𝑗
𝑖  (𝑗 = 0,1, … ,𝑀) are the consequent parameters. 

 

 Layer 5 (Output Layer): Given the input taken from the previous layer, the CNFS output is 

calculated as follows: 

                                                                𝜉(𝑡) =  ∑ 𝜉𝑖(𝑡)𝐾
𝑖=1                                                     (87) 

The output of CNFS is complex-valued: 

                 𝜉(𝑡) =  𝜉𝑅𝑒(𝑡) + 𝑗𝜉𝐼𝑚(𝑡) = |𝜉(𝑡)| × 𝑐𝑜𝑠(𝜔𝜉) + 𝑗|𝜉(𝑡)| × 𝑠𝑖𝑛(𝜔𝜉)                    (88) 

where 𝜉𝑅𝑒(𝑡) is the real part and 𝜉𝐼𝑚(𝑡) is the imaginary part of the CNFS output. The CNFS 

proposed in [4]  was modified in [220] by using the product operator instead of min operator in 

layer 2 for the t-norm calculation of the firing strength.  [220] furthermore used a Gaussian-type 

complex fuzzy set: 

    𝑐𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥,𝑚, 𝜎) = 𝑅𝑒(𝑐𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥,𝑚, 𝜎)) + 𝑗𝐼𝑚(𝑐𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥,𝑚, 𝜎))                (89) 
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where, Re (.) and Im (.) are real and imaginary parts of the membership grade which are defined 

as: 

                                    𝑅𝑒(𝑐𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥,𝑚, 𝜎)) = 𝑒𝑥𝑝 [−0.5(
𝑥−𝑚

𝜎
)2]                                      (90) 

                         𝐼𝑚(𝑐𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥,𝑚, 𝜎)) = 𝑒𝑥𝑝 [−0.5(
𝑥−𝑚

𝜎
)2] × (

𝑥−𝑚

𝜎2 )                              (91) 

where {𝑚, σ} are mean and spread of the Gaussian function, and x is the input. 

Another development of this architecture in [221] was of the hybridization of the artificial 

bee colony (ABC) algorithm and RLSE as the ABC-RLSE learning method for training the CNFS. 

The ABC algorithm is an optimization method which simulates the nectar-searching behavior by 

bees. Also, in [222], a self-organizing learning method is used to set up the structure of the model, 

which has two phases: the structure and parameter learning phases. For structure learning, the 

FCM-Based Splitting Algorithm (FBSA) is used to determine the initial structure of knowledge 

base for the proposed CNFS. For parameter learning the PSO–RLSE method is used. The FBSA 

algorithm was first proposed in [223], which is a clustering algorithm based on the fuzzy c-mean 

(FCM) method and a validity index for the clustering results. With the FBSA, the cluster with the 

worst score can be identified at each step of the algorithm and split into two new clusters. To 

determine the worst cluster, a score function S(i) is defined as follows: 

                                             𝑆(𝑖) =
∑ 𝑢𝑘𝑖

𝑛
𝑘=1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑖
                                                   (92)                                 

where S(i) is the score of the ith cluster and U=uij is the set of membership degrees by the FCM 

(i=1,2,. . .,n and j=1,2,. . .,c). 
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3.7.  Conclusion 

In this chapter, we have discussed a variety of CFS&L-based architectures. All of these 

architectures have improved the structure and algorithms used in previous ones to improve the 

accuracy of results and/or learning speed. While these efforts are very significant and valuable, 

these architectures still have problems, one of the most important of which is dealing with big data. 

In the following chapters, we address this limitation. 
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4.  Chapter IV: Condition Monitoring 

In this chapter, we address an important industrial-research topics, condition monitoring of small 

electric induction motors. We discuss the basic design of these motors, and the major types of 

faults they suffer. We then discuss our procedures for obtaining, extracting, and producing the 

relevant dataset for our subsequent experiments (chapters 5 and 6), which are presented in this 

dissertation. Then, we will develop a condition-monitoring solution for these kind of motors, based 

on anomaly detection in time series [6]. 

4.1.  Introduction  

Induction motors are a hugely important class of electrical machines, shouldering much of the task 

of transforming energy into useful work in modern industry [224]. As such, maintenance of these 

often-critical machines is of paramount importance. The most common faults that occur in 

induction motors are bearing faults, stator-shortfaults, and cracked rotor bars [225]. Bearings faults 

can be caused by incorrect lubrication, mechanical stresses, incorrect assembling, misalignment, 

etc. Stator faults can be consequences of overheating, contamination, project errors, etc. Rotor 

faults are usually caused by broken bars or end rings, rotor misalignment and imbalance [226]. 

Figure 17 depicts these fault locations on an induction motor [227]. Bearing failures account for 

about 40% of faults in induction motors [226] while stator, rotor and other faults comprise roughly 

38%, 10% and 12%, of the faults, respectively (see Figure 18) [228]. Over 40 years of research 

has shown that these fault classes can be detected in motor sensor data before motor failure; there 

has thus been great interest in using this fact to reduce motor failures. 
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Figure 17 - Induction motor fault locations [226] Figure 18 - Types of induction motors faults 

 

Condition Monitoring (CM) is the use of non-destructive testing or sensed data to detect changes 

within a monitored system. While earlier approaches could only flag the occurrence of a change, 

more modern approaches can identify a causative fault, its location, and the damage done so far 

[229]. These are largely inferential sensing approaches (the estimation of a complex, time-varying 

system state based on reading from simpler sensors [230-232]); some examples include [233-236]. 

Some adaptive systems can even attempt self-repair based on that information [229]. CM today is 

a well-known, economical approach to maintaining large and expensive systems, allowing for 

cheaper preventative maintenance before a fault worsens or causes failure [237, 238].  

Effective sensing modalities for CM of electric motors include axial electromagnetic flux 

monitoring, current and voltage monitoring, thermal / infrared sensors, vibration sensors, acoustic 

sensors, and chemical analysis of motor oil [239]. Much recent work has focused on stator current 

analysis, particularly current harmonics; this is a non-invasive, in-operation modality, and 

characteristic frequency responses for various faults have been derived from machine physics 

[240]. Machine learning (ML) approaches for fault detection and diagnosis of complex machines 

have been explored in [224, 241]; deep learning in particular has been applied to fault diagnosis in 

e.g. [242-245]. However, small electrical motors (rated at 10 HP or less) have not normally been 

40%

38%

10%12%

Faults by % in Induction 
Motors

Bearing Stator Rotar Others
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monitored as closely as they are easily replaced and not directly process-critical. However, a large 

industrial site may contain hundreds of these motors, and there is an increasing recognition that 

their failure nonetheless impacts the plant’s operation as they often operate important 

subcomponents of, or protection systems for, high-value systems. These can include operating 

cooling / lubrication / HVAC equipment that protects those larger systems. Clearly, any CM 

solution for these motors must be inexpensive, as the individual motors have a low replacement 

cost.  

4.2.  Data Collection and Dataset Generation 

To the best of our knowledge, there are no publicly-available CM datasets for groups of electric 

motors. There are furthermore no available datasets for CM of small electric motors that 1) include 

multiple failure modes across multiple instances of a common motor type; 2) simultaneously 

record current, voltage and temperature; and 3) do so at sampling rates up to 10 kHz. The first 

would allow us to compare CM solutions for both fault detection and fault identification in a 

constant motor design; the second and third point offer the opportunity to study both high-rate 

features such as current harmonics as well as low-rate ones such as power profiles. Thus, our first 

task was to design an experimental apparatus and procedures to collect such a dataset.  

An Edmonton-area motor manufacturer donated a set of 20 identical three-phase motors, 

each rated at 1 HP. A mount was manufactured to hold a motor with the rotor horizontal, and 

couple it to a dynamometer. Electrical and thermal sensors, along with data loggers, were then 

attached. Our basic experimental design is to run the motors under no-load and full-load conditions 

in an undamaged state. Then, after all the undamaged data has been collected, each motor will be 

damaged in a particular manner, and the tests repeated (clearly, they would terminate if the motor 

failed catastrophically; this, however, did not occur).    
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4.2.1. Hardware and Instruments 

Our experimental apparatus is depicted in Figure 19. 

 

Figure 19 - Motor Testing Setup 

The motors used in our experiments were stainless steel 3-phase 1 HP motors with 6205 sized 

drive and fan bearings. They are rated at both 208V and 480V line-to-line, but for this application, 

we ran them at 208V. This gave a maximum current of 3.8 A at full load. The full load rated speed 

is 1145 RPM. The current transformers that fed into the power analyzer are a 10:1 ratio. Since our 

motor had a full load current of only 3.8 A, the wire for each phase was wrapped through the 

current transformer 4 times to give it a high enough amplitude that the transformer would output 

a readable signal to the power analyzer. 

A digital multimeter measured the current for the line to line locked rotor tests. For all other 

tests, we used the dSPACE tool. In this project 6 of the 8 analog-to-digital converters (ADCs) were 

used (3 phase currents and 3 line to line voltages) as well as one UART (Universal Asynchronous 

Receiver-Transmitter) input for the dynamometer. The dynamometer was sampled at 2 Hz, and 

the ADC channels were sampled at 10 kHz. The dynamometer controller was set to create a 
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maximum (full load) torque of 5.624 N∙m, and was used to measure the shaft’s rotational speed in 

RPM when the motor was coupled to the dynamometer. For the no-load uncoupled tests, the 

tachometer was used to record this shaft speed. 

The oscilloscope used for this project is capable of sampling at 100MHz, but was used to 

sample at 500 KHz for every test except the inrush test. For the inrush test the oscilloscope was 

set to sample at 12.5MHz. The thermal camera used for this project was connected via an Ethernet 

switch to a desktop where the video feed was saved. Video of the entire experimental sequence 

was saved for each test, including the 2.5 hour warming period for each “hot” test (i.e. sensed data 

is collected once the motor has reached steady state heat). Finally, a custom mount was built out 

of aluminum to hold the dynamometer, rails for the mount to slide on, two mounts to bolt the 

motors onto and an adjustable rotor lock so that locked rotor test could be run. 

4.2.2. Controlled Variables 

The controlled variables in our experiments were motor temperature, applied load, motor 

alignment, rotor locking, dynamometer coupling, and motor damage. Motor temperature was 

either cold (the motor had been stopped and allowed to cool to room temperature) or hot (motor 

had run under full load for 2.5 hours, reaching steady-state temperature; this length of time was 

empirically determined using the thermal imager). The applied load was either full (dynamometer 

set to 5.624 N∙m) or no load. Motor alignment is either centered (default condition) or twisted (the 

drive end bearings were under uneven lateral pressure). Rotor lock is a binary variable indicating 

whether the rotor lock we designed is applied, in which case the rotor cannot rotate. Dynamometer 

coupling is also binary, indicating whether or not the motor is coupled to the dynamometer. Finally, 

each motor will either be undamaged, or will have been damaged in one way; thus, for each motor, 

there are two possible values of this variable.  
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4.2.3. Experimental Design 

We now discuss the experiments run on the apparatus above. Our basic design is a complete 

factorial experiment for each motor (considering that the motor will only have one type of 

damage). We begin with trial runs of healthy motors, refining our observation procedures and 

troubleshooting the data collection systems. Once those were complete, we executed the no-

damage (“healthy”) portion of the experimental design. We then damage the motors, and execute 

the “damage” portion of the design. In the next subsection, we detail the types of faults we induce, 

our rationale for selecting them, and the specific manner in which the damage is caused. 

4.2.3.1. Stator Short 

Within the 38% of failures caused by stator faults, the overwhelming majority of them are caused 

by shorts in the stator [228]. In order to test if we were able to detect a stator short, motor 3 was 

opened, and a Dermal was used to strip away some of the insulation between two wires in a 

winding and the two wires were soldered together. The solder can be seen outline by the red box 

in Figure 20. The motor was then reassembled and run through the same full tests as would be 

done in a “hot” test. However, it was also subject to a number of short tests that were run to gather 

data on the change in impedance from the short caused.  

 

 

Figure 20 - Stator Damage in Motor 3 
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4.2.3.2. Bearing Faults 

It is unknown exactly why the majority of bearings fail in industry settings, but experience 

indicates that the majority of bearing faults in industry are caused by the following: 

1. Foreign materials entering the bearing and causing increased wear and pitting on the balls, 

cage, and inner or outer tracks. 

2. Under greasing, or not putting any grease in the bearing, which could cause the bearing to 

overheat. This could cause the bearings and tracks to deform or warp if they are too hot under 

load or are going through multiple heating and cooling phases. 

3. Over greasing the bearing, causing the seal to be broken, which subsequently causes all of 

the grease to leak out. This would lead to the same problem as under greasing the bearing. 

4. Unbalanced loads on the motor can cause one side of the bearing to wear at a much greater 

rate that another side, which can lead to static eccentricity. 

5. Simple friction wear caused by running the motor over many working hours.  

To simulate these faults multiple bearings were put through different types of damage: 

1. To simulate foreign materials entering the bearing and causing increased wear and pitting 

multiple silica carbide beads were packed into the bearing. The bearing was then run on a 

lathe with the outer ring held stationary at 150 rpm for 40 minutes. As a side note, after the 

bearing was run through a full test with the 2.5 hour warming period it was found that the 

cage holding the bearing balls in place was broken. This cage was not broken before the test 

was run. The carbide beads were not extensively cleaned out before running the motor for 

all of its tests, nor was the motor re-greased after the damage was caused. 

2. To simulated overheating caused by lack of grease the bearing inner track was heated to a 

cherry red glow with an acetylene torch. This caused all of the grease to be burned of, and 
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left the bearing slightly warped which caused irregular damage on the inner and outer tracks 

as well as the ball bearings. The bearing very clearly ran rough after the damage was caused 

and no grease was placed back in the bearing. Running the bearing through the 2.5 hour 

warming period did not seem to cause additional apparent damage. 

3. The last damage type that was created was a 3 mm hole in the outer track. While this is 

unlikely to appear in industry, it was done to compare to our results to other research paper's 

results as they focused primarily on single point bearing faults such as a drilled hole in the 

inner or outer track. The reason they focused on this type of damage is because the damage 

is supposed to appear at specific frequencies as opposed to general noise increases that 

random damage causes. Additional bearings were damaged by hitting a bearing's inner track 

with a hammer, once and multiple times, and creating a score on the outer track.  

4.3. Methodology 

As discussed, our CM design is an anomaly detector, as in Figure 21. It has two components: a 

model of normal behavior that predicts the current observation from previous ones, and the actual 

detector that identifies when the actual and predicted observations differ [246, 247]. 

 

Figure 21: Anomaly Detector 

Our normal model is a one-step-ahead time-series forecasting algorithm, applied to the current and 

voltage time series across all three phases (giving six variates total). The essential idea is to 
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estimate the current observation vector 𝑥𝑛⃗⃗⃗⃗  given previous values 𝑥𝑛−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. As this model is supposed 

to predict the next value with the assumption that our system is in the healthy state, it is trained on 

healthy data only.   

The anomaly detector is responsible for comparing the 6 values predicted by the normal 

model with the actual observed values for the next time-step. Similar in structure to a classifier, 

the models designed for this part take 12 inputs and have only one binary output, indicating the 

occurrence of a failure. We may, also, use 18 inputs by adding the differences between the 

predicted and the actual values. 

We have explored both shallow learning and deep learning approaches for designing our 

anomaly detector. Both were applied to a dataset constructed from multiple experimental runs in 

the laboratory setup above, performed on three separate motors (in order to guard against over-

specialization of the models to one motor’s particular behavior). Healthy runs are grouped together 

first followed by the runs after the motors were individually damaged. The data recorded for each 

motor consists of current and voltage for each of the three motor phases, measured at each sample 

instant. We use the method of delay embedding [247] to convert this multivariate time series into 

a form suitable for machine learning, and then conduct parameter exploration studies for each of 

the normal model / anomaly detector combinations we have tested.  

4.3.1. Data Preprocessing  

We begin by normalizing each variate within the data using the positive linear transform 

                                                                            𝑋𝑛 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                                     (93) 

where 𝑥𝑚𝑖𝑛 is the minimal and 𝑥𝑚𝑎𝑥 the maximal observed value for the variate X, while x is the 

current value. We then chronologically order and (non-randomly) split the data into training and 

out-of-sample test partitions, assigning 70% of the dataset to the training partition, and the 
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remaining 30% for testing. This is the chronologically ordered single-split design, commonly used 

in time series forecasting experiments. 

After splitting the data, they need to be converted from a multivariate time series into a 

suitable form for general (table-oriented) machine learning algorithms.  One common approach is 

the delay embedding [15]. The current observation in a time series, and multiple prior observations, 

are concatenated into a vector. This vector can be shown to be isomorphic to the (unrecoverable) 

state vector of the system the time series was observed from at that time instant. The form of a 

delay vector in a univariate time series is [248]: 

                                                         𝑆𝑛
⃗⃗⃗⃗ = (𝑆𝑛−(𝑚−1)𝑑, 𝑆𝑛−(𝑚−2)𝑑, … , 𝑆𝑛)                               (94)  

where 𝑆𝑖 is the i-th element of the time series.  

The embedding is repeated for every 𝑆𝑖 in the time series (save those at the beginning for 

which insufficient former examples are available). For a multivariate time series, the embedding 

process is repeated for each variate, and the delay vectors for each are concatenated together. Per 

Formula (94), creating a delay vector comes down to finding two important parameters: the delay 

(d) and the dimensionality (m). Finding d allows us to get an optimal level of autocorrelation within 

each delay vector (by taking each successive value, every second, every third, or so on) [215]. d is 

usually determined heuristically by taking the first minimum of the time-delayed mutual 

information [247]. We then consider the shape of the selected delay using the phase diagram; for 

condition monitoring of electric motors, the general shape of Figure 6 is desired. m is the 

dimensionality of the delay vector, and is mathematically critical; Takens’ result above only holds 

if m is large enough (at least twice the actual dimensionality of the original state space). The value 

of m can be determined heuristically by using the false-nearest neighborhood algorithm [249, 250]. 

In this algorithm, we systematically survey the data points and their neighbors in dimension d = 1, 
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then d = 2, and so on. As the state-space attractor is unfolded, some points originally close together 

will abruptly separate; these are termed “false nearest neighbors.” The algorithm works by setting 

a threshold for how large of a jump constitutes a false neighbor, and the heuristic is to find a value 

m for which the fraction of false neighbors plateaus across many values of this threshold [251].  

The TISEAN package [248] implements these concepts and other elements of nonlinear 

time series analysis as a collection of numerical routines; the outputs are then mean to be plotted 

by some graphing tool, and interpreted by an analyst. Figure 22 presents the phase plot and Figure 

23 the false-nearest neighbors plot for our dataset. 

 

Figure 22: Phase Plot for d = 6 

 

Figure 23: Proportion of False-Nearest Neighbors for different values of ratio factor (f) 
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4.3.2. Data Preprocessing  

The data obtained from each test consist of six columns (currents and voltages; Ia, Ib, Ic, Va, Vb, 

Vc) and 130,000 records. Each of these files was normalized and converted to delay vectors (note 

that doing so has the effect of removing data skews between different motors). We then combined 

the tests for three of our motors (all of which were assigned to the damaged-bearings treatment) 

together, to test whether our CM algorithm is effective on a population of motors rather than just 

one. This dataset contains 109 features after delay embedding (including one class label) and about 

1,800,000 records. 

4.4. Parameter Exploration Procedures 

There are of course many shallow and deep algorithms that can be employed in our normal model 

and anomaly detector. We focus our search on well-known approaches that have worked well in 

many other domains. We test both shallow and deep learning approaches for the normal model, 

choosing ones that perform well in time series forecasting. For shallow learning, we have chosen 

to explore Radial Basis Function Networks (RBFNs) implemented in WEKA, while we have 

chosen 1-dimensional CNNs in Tensorflow as a deep learner. The RBFN contains one hidden 

layer, whose neurons implement the Gaussian transfer function:  

                                                                     𝜑(𝑟) = 𝑒𝑥𝑝 (
𝑟2

2𝜎2)                                                (95) 

Where r is the Euclidean distance from a feature vector to the centre point of the Gaussian function, 

and  is the standard deviation of the Gaussian.  

In the WEKA implementation [252], the hidden layer neuron centers and widths are 

determined via k-means clustering. The output layer takes a weighted sum of the hidden layer 

outputs, with the weights determined via least-squares estimation, and passes the result through a 



73 
 

logistic function. We loop over our variable parameters with the number of neurons changing from 

1 to 500 and the standard deviation selecting from the following set {10i}, i=(-5,…,-1). 

A Convolutional Neural Network (CNN) is a class of deep neural networks, usually applied 

to visual tasks. CNNs can capture the spatial and temporal dependencies within an input domain 

through the application of local convolution windows (Kernels). In the input domain these take 

the form of convolution masks, implemented as groups of neurons that share a weight vector (and 

thus implement the same transfer function).  A thorough explanation is found in [253]. In a 1-

dimensional convolutional layer a 1-dimensional kernel is used, as illustrated in Figure 24. 

 

Figure 24: A 1-dimensional convolutional layer 

In order to determine the hyper parameters for our models, we need a validation dataset to prevent 

overfitting on the final out-of-sample test set. For the RBFN, due to the limitations of the WEKA 

package, our parameter explorations will also be single-split designs. After the chronologically 

ordered split in Section 3.1, we will further partition 30% of the training data as the validation 

dataset, and the test set will be set aside for the final evaluation of the whole model. The 1-

dimensional CNN is trained on an NVIDIA Titan Xp GPU, and so we use a tenfold cross-

validation design (again. only within the training set) for parameter exploration.  
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For the anomaly detector, we have chosen to examine only shallow architectures, as there 

will only be twelve inputs for the n-th observation vector (one predicted and one actual value of 

each component). We have selected multilayer perceptron [112] (implemented in WEKA [254]), 

decision trees (Breiman’s CART [255]) and random forests [256] implemented in Scikit-learn 

[257]. All hyper parameters of the models are explored. For the multilayer perceptron these include 

the number of hidden layers, number of neurons in each layer, activation functions, and 

initialization methods. For the decision tree and random forest  models, the hyper parameters 

include the minimum number of samples required at a leaf node and the maximum depth of the 

tree [257].  

4.5. Results  

We first examine present our results for shallow learning in Table 1; the performance for the 

normal models is given first. We then present the out-of-sample results for our anomaly detector 

in Table 2. As CM is essentially an alarm, we present the detector’s performance in terms of the 

True Positive Rate (TPR; also called sensitivity) and the False Positive Rate (FPR; also called the 

false alarm rate). TPR is the fraction of actual Positive (damaged) examples identified as such. 

FPR is the fraction of actual Negative (healthy) examples identified as Positive. 

 

Table 1: Normal Model Performance for shallow learning 

Number 

of 

Clusters 

Standard 

Deviation 

Train Test 

RMSE RMSE 

100 10-5 0.0323 0.0766 
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Table 2: The final out-of-sample results for shallow learning 

MODEL TPR FPR Accuracy 

MLP 0.947 0.366 0.791 

RBF 0.918 0.085 0.912 

Decision Tree 0.967 0.207 0.881 

Random Forest 0.993 0.264 0.864 

 

For deep learning, the normal model we designed is a 1-dimensional convolutional neural network  

[253] with 17 dimensions for each of the 6 inputs, and a vector of 6 elements as the output, each 

belonging to one of the time-series. Figure 25 illustrates the training of the network using the Adam 

optimizer, in terms of Root Mean Square Error. Plainly, the CNN test error is roughly an order of 

magnitude less than the RBFN. 

 

Figure 25: Normal model RMSE 

Table 3 presents the out-of-sample results for our anomaly detector with deep learning, in terms 

of accuracy, TPR, and FPR. According to the results, random forest (with 100 estimators) with the 

original 12 inputs outperformed all the rest (TPR = 0.948, FPR=0.033). Examining Table 2, both 

decision trees and random forests produce models with slightly better TPR; however the FPR (false 
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alarm rate) is much higher. As false alarm rates are critical considerations in a monitoring 

application, we believe the deep model is superior.  

Table 3: Anomaly Detector Performance for deep learning 

MODEL TPR FPR ACCURACY 

Fully Connected Neural Nets – 12 Inputs 0.732 0.166 0.824 

Fully Connected Neural Nets – 18 Inputs 0.795 0.129 0.861 

Decision Tree – 12 Inputs 0.944 0.037 0.956 

Decision Tree – 18 Inputs 0.748 0.162 0.811 

Random Forest – 12 Inputs 0.948 0.033 0.968 

Random Forest – 18 Inputs 0.841 0.101 0.895 

 

4.6.  Conclusion 

In this chapter, we have discussed the failure of small induction motors and have described the 

various experiments we performed to collect data about them, which ultimately led to the 

acquisition of relevant datasets for use in the models and algorithms presented in this dissertation. 

Also, we have designed a condition monitoring solution for multiple small electric motors, as 

might be found in an industrial site. An anomaly-detection architecture is employed, with the 

normal model being a time-series forecasting algorithm. Both shallow and deep neural networks 

are investigated, with the deep network having a much lower false alarm rate (at the cost of a 

slightly higher false-negative rate).  

In future work, we intend to apply this basic architecture (deep learning for a normal model, 

shallow learning for the anomaly detector) to other monitoring problems and domains. We 

hypothesize that the much smaller feature space for the anomaly detector means that deep learning 

will not be effective for this component, whereas the deep normal model will tend to be more 

accurate than the shallow one; and hence, a hybrid deep/shallow model is the most effective 

approach for anomaly detection in sensed data. Early results from pipeline leak detection 

experiments tend to support this contention.   
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5.  Chapter V: Large-Scale Univariate Time Series 

Forecasting Using Complex Fuzzy Set 
 

5.1.  Introduction 

Complex fuzzy sets (CFSs) are an extension of type-1 fuzzy sets with complex-valued membership 

functions. Over the last 20 years, time-series forecasting has emerged as the most important 

application of complex fuzzy sets, with neuro-fuzzy systems employing them shown to be accurate 

and compact forecasting models. In the complex fuzzy sets literature [3, 4, 214], two dominant 

approaches to designing forecasters can be observed: sinusoidal membership functions are used in 

the ANCFIS family of architectures, while complex-valued Gaussian memberships are employed 

in the CNFS family. To date, however, there has never been a systematic investigation that 

compares the performance of these two membership types (or their combination) within a common 

architecture.   

In this chapter, we design and evaluate a new CFS-based neuro-fuzzy architecture for 

moderate-to-large-scale time series forecasting applications. A major focus of our work is to 

compare the sinusoidal and complex Gaussian CFS to determine if one or the other (or their 

combination) is more effective in the forecasting task. We thus hypothesize (H1) that adding both 

sinusoidal and Gaussian CFS neurons to a neuro-fuzzy architecture for time series forecasting 

will improve its accuracy compared to the same architecture using only sinusoidal CFS. We have 

designed three variants of our architecture to explore the design space for our system, and we test 

each variant with exclusively sinusoidal CFS, exclusively Gaussian CFS, and a combination of 

both. The architectures furthermore make use of randomized learning to minimize training times. 

On two univariate time series (a large solar power dataset collected in [258], and a moderately-
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sized realization of the Lorenz system of equations), we found that the purely Gaussian CFS were 

consistently superior, for all variants, compared to either the sinusoidal CFS or the combination of 

both. Therefore, we hypothesize (H2) that a CFS-based neuro-fuzzy architecture employing 

randomized learning will produce accurate and compact models for forecasting large-scale time 

series, with substantially faster training times. 

Our contributions in this chapter are firstly, the design of three new neuro-fuzzy systems 

that leverage CFS to produce accurate and compact time-series forecasting models; and second, 

the first direct empirical comparison of sinusoidal vs. complex Gaussian CFS in these three 

architectures.  

5.2.  Methodology  

5.2.1. Proposed Models 

Evaluating (H1) plainly requires comparing sinusoidal and Gaussian CFS across multiple 

architectures, while (H2) calls for randomized learning to be used. Our approach is thus to design 

three neural network models (all based on ANCFIS with a reduced number of layers and using 

randomized learning), and evaluate each of the three when using purely sinusoidal CFS, purely 

Gaussian CFS, or a combination of the two.   

Model 1 

One finding from [3] is that, in univariate time series, ANCFIS Layer 2 nodes make no changes to 

the output of Layer 1. Thus, in order to increase speed, this layer and the subsequent layer 3 were 

removed. We furthermore removed the linear consequent function in Layer 5, so the 6-layer 

ANCFIS architecture was converted to a 3-layer architecture, as shown in Figure 26. Plainly, we 

can easily substitute either sinusoidal or Gaussian CFS in this model. In order to examine the 
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combination of the two, we create a bank of sinusoidal CFS neurons, and a separate bank of 

Gaussian CFS neurons, both in Layer 1 (see Figure 27).   

 

Figure 26 - Model 1 

The node activation function in each layer of model 1 are as follows: 

 Layer 1: The parameters {ai, bi, ci, di} in Formula (42) and {𝑚𝑖, 𝜎𝑖
2, 𝜆𝑖} in Formula (43) are 

drawn from a uniform distribution and set in this layer for i = 1, 2, …, n_CMF, where 

n_CMF is the number of complex membership functions. The values of these parameters 

must obey the following conditions [3, 92]: 

                    0 ≤ 𝑑 + 𝑐 ≤ 1,       1 ≥ 𝑐 ≥ 𝑑 ≥ 0,        𝑚, 𝜎2 ∈ [0,1],       𝜆 ∈ [0, 𝜋]                  (96) 

Then, the membership of an input vector in a CFS is determined by complex convolution 

[3]: 

                      𝑐𝑜𝑛𝑣 = ∑ ℎ(𝑘) = ∑ ∑ 𝑓(𝑗)𝑔(𝑘 + 1 − 𝑗)    
𝑚𝑖𝑛 (𝑘,𝑛)
𝑗=𝑚𝑎𝑥 (1,𝑘+1−𝑛)

2𝑛−1
𝑘=1

2𝑛−1
𝑘=1                  (97) 

where 𝑓(. ) is a data point in the n-element input vector, and 𝑔(. ) is the uniformly sampled 

membership function (also n elements in length). 

 Layer 2: The output of the i-th node of this layer is inner (dot) product of the output of the 

i-th node of layer 1 versus the complex sum of all layer-1 outputs [3]: 

                                       𝑂2,𝑖 = 𝑂1,𝑖 . ∑ 𝑂1,𝑗
|𝑂1|
𝑗=1  , 𝑖 = 1,2, … , |𝑂1|                                           (98)      

where the complex-valued output of node i in layer 1 is denoted 𝑂1,𝑖 and |𝑂1| is the number 

of nodes in layer 1. 
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 Layer 3: At the j-th node of layer 3, the outputs of the layer 2 nodes are weighted by the 

coefficients βj and then summed: 

                                                             𝑂3,𝑗 = ∑ 𝑂2,𝑖 ∙ 𝛽𝑗,𝑖
𝑛
𝑖=1                                                    (99) 

where n = |𝑂2|. This output can be reformulated as: 

                                                                  𝑇 = 𝐻†𝛽                                                                 (100) 

where † is the Moore-Penrose generalized inverse, and 

𝑇 = [𝑂3,1 𝑂3,2 ⋯ 𝑂3,𝑗] ,  

                                                           𝐻 = [𝑂2,1 𝑂2,2 ⋯ 𝑂2,𝑛] ,                                       (101) 

𝛽𝑇 = [𝛽1 𝛽2 ⋯ 𝛽𝑚] 

where 𝛽 is estimated by the Recursive Least-Squares (RLS) algorithm [112], and m is the number 

of layer-3 neurons. 

The randomized learning approach we use, as in ANCFIS-ELM [214], is to randomly 

choose the membership function parameters. For the sinusoidal CFS, this means a, b, c, d are 

chosen at random (subject to constraints to ensure the membership value stays within the unit disc). 

Likewise, the parameters {𝑚, 𝜎, 𝜆} of the Gaussian CFS are randomly chosen. Thus, the backward 

pass of learning is entirely eliminated. The CFS memberships pass through the rule interference 

step (inner product), and then the weights of the final layer are obtained by the RLS algorithm.  

 

Figure 27 - Banks of sinusoidal and Gaussian neurons for Model 1 
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Model 2 

In our second model, we test eliminating the rule interference layer, replacing it with the 

conjunction operation from ANCFIS Layer 2 (algebraic product). In all other respects, Model 2 is 

the same as Model 1. Model 2 is depicted in Figure 28.                   

 

Figure 28 - Model 2 

The node activation function in each layer of model 1 are as follows: 

 Layer 1: This layer is identical to layer 1 of model 1. 

 Layer 2: The output of each node of this layer is the algebraic product of the output of the 

nodes of layer 1, which are considered as the input of that node. Thus, the i-th output of 

this layer is calculated as follows: 

                                                   𝑂2,𝑖 = 𝜋𝑖

𝑂1,𝑖  , 𝑖 = 1,2, … , |𝑂1|                                               (102)      

where the complex-valued output of node i in layer 1 is denoted 𝑂1,𝑖 , |𝑂1| is the number 

of nodes in layer 1 and 𝜋 is algebraic product of the input vectors. 

 Layer 3:  This layer is identical to model 1.  

Model 3 

Finally, our third model adds the consequent layer back onto Model 2, to test how the additional 

degrees of freedom affect the network’s performance. Since RLS was used to determine the output 

weights of Models 1 and 2, we do not expect to incur a substantial time penalty with this layer.    
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Figure 29 - Model 3 

In model 3, layers 1 and 2 are identical to the corresponding layers in model 2. In layer 3, the 

output of the i-th neuron is: 

                                          𝑂3,𝑖 = 𝑤𝑖
𝜋[∑ 𝑝𝑖,𝑗𝑥𝑗 + 𝑟𝑖

𝑛
𝑗=1 ]                                                            (103) 

where 𝑤𝑖
𝝅 is the output of layer 2 and 𝑝  and r are the rule consequent parameters, identified in the 

forwarding pass using a linear least squares estimator [259, 260], as in ANFIS [9]. Thus, the output 

of the last layer (layer 4) of our third proposed model can be described mathematically as follows: 

                                            𝑋𝑜𝑢𝑡 = 𝑂4 = ∑ 𝑂3,𝑗. 𝛽𝑗
𝑛
𝑗=1                                                            (104) 

and we have: 

     𝑇 = 𝐻𝛽, 𝐻 = [

𝑤1
𝐷𝑃𝑥11 𝑤1

𝐷𝑃𝑥21 ⋯ 𝑤1
𝐷𝑃𝑥𝑗1

⋮ ⋮ ⋱ ⋮
𝑤1

𝐷𝑃𝑥1𝑛 𝑤1
𝐷𝑃𝑥2𝑛 ⋯ 𝑤1

𝐷𝑃𝑥𝑗𝑛

] ,   𝛽𝑇 = [

𝛾11 𝛾21 ⋯ 𝛾𝑗1 𝜂1

⋮ ⋮ ⋱ ⋮ ⋮
𝛾1𝑛 𝛾2𝑛 ⋯ 𝛾𝑗𝑛 𝜂𝑛

]     (105) 

where 𝛾𝑖𝑗 = 𝑝𝑖,𝑗. 𝛽𝒊  ,  𝜂𝑖 = 𝑟𝒊. 𝛽𝑖 . 

An important point to consider is that the final output of our models is complex-valued but 

our datasets are real-valued. While the CNFS architectures treat complex outputs as a real-valued 

2-tuple, our philosophy in developing ANCFIS was always that a complex number should be 

treated as an atomic value. We thus treat the modulus of the complex output as the network’s 

predicted output; if z=x+iy, then the modulus of z is |𝑧| ∶=  √𝑥2 + 𝑦2, and we derive the RCNFIS 

network error accordingly. 
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5.2.2. Datasets 

In order to evaluate the efficiency of the proposed algorithm, we run our prediction experiments 

on two univariate datasets, which are described below. 

5.2.2.1. Lorenz system 

The chaotic Lorenz system is a system of ordinary differential equations first studied by Edward 

Lorenz [261]. The Lorentz attractor is a set of chaotic solutions of the Lorentz system, which 

consists of the following three differential equations: 

                          
𝑑𝑥

𝑑𝑡
= 𝜎(𝑦 − 𝑥)  ,

𝑑𝑦

𝑑𝑡
= 𝑥(𝜌 − 𝑧) − 𝑦  ,     

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧                               (106) 

For certain values of the positive constants 𝜎, 𝜌, and 𝛽 the Lorenz system displays chaotic 

behavior; a common example is given by  𝜎 = 10, 𝜌 = 28, 𝛽 = 8/3. To perform our 

experiments in this work, which required univariate chaos datasets, we take the values obtained 

for the x variable using these standard parameter values in the full system. In this way, we obtained 

a time series with 16384 observations, which we consider to be a moderately-sized dataset. The 

Lorenz attractor is depicted in Figure 31 [262]. 

 

Figure 30 - Plotted solutions of the Lorenz equations in three-dimensional phase space 
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Figure 31 - Lorenz attractor, variable  X only [262] 

 

5.2.2.2. Solar Power 

This dataset is another univariate time series developed from the recorded air temperature (°C) and 

total solar radiation (W/m2) every minute from 2008-2014 at the U.S. Department of Energy’s 

Lowry Range Solar Station (2,212,520 data points). To measure the air temperature, a thermometer 

was used placed 5 feet above the ground and in a radiant shield, and solar radiation was measured 

by a LICOR LI-200 Pyrometer placed 7 feet above the ground on a Rotating Shadowband 

Radiometer (RSR) (Figure 32) [258]. The results of these two measured variables were later 

converted to an estimated power output for a model solar photovoltaic cell [263], resulting in a 

new time series of solar power at one-minute intervals during the 7 year observation period. Figure 

33 illustrates the monthly average solar radiation (W/m2) for the study period. In [264], a subset 

of 20000 records (two continuous weeks of data) from the dataset was used to perform their 

experiments, but in this work, we use all 2.2 million observations. Our results are thus not directly 

comparable to the results in [216, 264]. 
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Figure 32 - RSR device for measuring solar radiation [258] 

 

Figure 33 - Monthly average of solar radiation (W/m2) for a 7-year period 

 

5.2.2.3. Condition Monitoring Dataset 

As discussed in detail in Chapter 4, Condition Monitoring (CM) is using non-destructive testing 

or sensory data to detect changes in a monitored system. Whereas preceding approaches might 

possibly signal the incidence of a change, some cutting-edge tactics can determine and pinpoint 

why an error occurred, where it is, and therefore the damage done so far [229]. Examples of these 

methods can be found in [233-236]. Some adaptive systems may even restore themselves primarily 
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based totally on that information [229]. Nowadays, CM is a well-known and cost-effective 

technique to maintaining massive and pricey systems that permits to maintain the forecast earlier 

than a fault escalates or breaks down [237, 238].  

A major application of CM is for electrical (induction) motors, as discussed in chapter 4, 

because these types of motors have vital and significant uses in various industries and are one of 

the main arteries of industrial activities, thus any disruption or interruption in their performance 

causes huge and sometimes irreparable damage. The main faults of induction motors are related to 

bearing, stator, and rotor failures, which make up 40%, 38% and 10% of errors, respectively, and 

the other 12% is related to other failures [226, 228]. Most of the CM approaches used for these 

motors are about the large and expensive ones, and in smaller ones, they have received less 

attention because of their low replacement cost and not directly process-critical. However, a 

massive industrial site could contain many these motors, and their breakdown affects the 

performance of the entire site, and it is in this case that the need to monitor them is strongly felt. 

In Chapter 4, a study was performed on small induction motors and data were collected 

under different test conditions and multiple failure modes. To collect such a dataset, a collection 

of twenty identical three-phase motors (1 HP each) equipped with a dynamometer, electrical and 

thermal sensors, and data loggers was installed. The experiments had been designed so that the 

motors would first run underneath no-load and full-load in a non-damaging state and then, after all 

of the undamaged records were collected, each motor would be damaged in a specific way and 

damaged data were conjointly collected. Moreover, 6 converters out of 8 analog to digital 

converters (ADC) (3 phase currents and 3 line-to-line voltages) as well as a UART (Universal 

Asynchronous Receiver-Transmitter) input were used for the dynamometer. In [6], more details 
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are provided about the design of the experiments, other tools used in the experiments, and the types 

of faults that occurred, and the specific damage they cause. 

Overall, the data collected from every experiment consisted of six columns (currents and 

voltages; Ia, Ib, Ic, Va, Vb, Vc) and 130,000 records. Once normalization and obtaining the delay 

vectors, the experiments of the 3 motors (all dedicated to the treatment of damaged bearings) have 

been combined to affirm whether or not the CM algorithm proposed in [6] was effective on a 

populace of motors. Finally, the dataset contained 6 attributes and roughly 1.3 million records.  

To carry out the experiments for univariate time series in this chapter, we consider only 

one variate (in this case, Va) and apply the relevant operation, but in the next chapter (6th), we will 

take into account all variables that we will discuss in the related section. 

5.3. Preprocessing 

We first normalize our datasets to [0, 1] using the min-max Formula: 

                                                                  𝑋𝑛 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                                      (107)                              

where X is the original value, Xmin is the minimum value of X, Xmax is the maximum value of X, and 

Xn is the normalized value. We then perform a chronologically ordered single split of our data, 

assigning the earliest 70% of the data to the training set and reserving the latest 30% as the testing 

set. We then need to embed the data in a tabular format for the Gaussian CFS experiments. 

Fortunately, previous research has determined [265] that the feature vectors from a delay 

embedding, if treated as sampled windows of the time series, are congruent to our input 

representation in ANCFIS. We thus use this as the common input representation for all models and 

all CFS.  
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The form of a delay vector in a univariate time series is [248]: 

                                                  𝑆𝑛 = (𝑆𝑛−(𝑚−1)𝑑, 𝑆𝑛−(𝑚−2)𝑑 , … , 𝑆𝑛)                                             (108)      

Where Sn is the n-th element of the time series. As it can be seen in Formula (108), two 

main parameters, namely the delay (d) and the dimensionality (m), must be determined for 

generating a delay vector. According to [247], the delay d is usually chosen as the one that gives 

the first local minimum of the time-delayed mutual information. This is the mutual information 

between the original sequence and its image after a delay [215]. m can be estimated by the false-

nearest neighborhood algorithm [250]. Using the functions in the TISEAN package [266], we 

determined the best values for d and m in each dataset (note that inspection of the phase plot is 

required to confirm the initial value of d from the mutual information statistic, while manual 

inspection of the false-nearest neighbors plot is also required). Figure 34 presents the time-delayed 

mutual information for each dataset, with the phase plots in Figure 35. Figure 36 present the false-

nearest neighbor plot. Detailed discussions of how to interpret these diagrams are provided in 

[247]. 
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Figure 34 - Time-delayed mutual information statistics for datasets 

 

  

 

Figure 35 - Phase Plot for datasets and their obtained delay 
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Figure 36 - Proportion of False-Nearest Neighbors for different values of ratio factor (f) 

5.4.  Results 

5.4.1. Experimental design 

In Table 4, we present the delay vector parameters obtained for each of the datasets. 

 

Table 4 - Obtained delay vectors parameters 

Dataset 
Delay Vector Parameters 

Delay (d) Dimension (m) 

Lorenz  1 3 

Solar Power  1 3 

CM 1 3 
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In order to evaluate our proposed model and compare it with previous different approaches, we 

use the Root Mean Square Error (RMSE), computed over the out-of-sample test points, and then 

compare the result with other models: 

                          𝑅𝑀𝑆𝐸 = √
1

𝐾
∑ 𝑀𝑆𝐸𝑖

𝐾
𝑖=1              ,     𝑀𝑆𝐸𝑖 =

∑ (𝑦𝑗−�̂�1)2𝑛
𝑗=1

𝑛
                               (109) 

Where K is the number of variates in the time series, MSEi is mean squared one step-ahead of i-th 

variate, yj is predicted value, and �̂�1 is desired value.  

 For each dataset, we varied the number of neurons in Layer 2 from 4 to 500, and tested 

values of the forgetting factor 𝜆 in the RLS algorithm. We furthermore compared sinusoidal, 

complex Gaussian, and mixed CFS forms. For each parameter combination we ran 1000 repetitions 

of the training & testing experiments, to determine the mean and standard of the network RMSE. 

All models and experiments have been implemented in the Visual Studio C++ environment.  

5.4.2. Experimental Results 

Table 5 - Solar power dataset 

d1 m3 Unit λ RMSE SD 

Model 1 (Sin) 4 0.5 8.49E-02 5.33E-02 

Model 1 (Gauss.) 20 0.5 1.25E-02 2.28E-03 

Model 1 (Mixed) 50 0.5 1.36E-02 1.69E-03 

Model 2 (Sin) 4 0.1 3.65E-01 5.33E-01 

Model 2 (Gauss.) 300 0.5 1.02E-03 3.91E-03 

Model 2 (Mixed) 4 0.5 2.16E-02 5.62E-01 

Model 3 (Sin) 4 0.5 3.06E-01 5.52E-01 

Model 3 (Gauss.) 20 0.5 1.27E-02 5.05E-03 

Model 3 (Mixed) 4 0.5 2.88E-02 1.14E+00 
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Tables 5 to 7 show a comparison between the results of exploring the parameters for the different 

modes of our proposed models for each datasets. The best parameterization of each model for each 

form of CFS (as determined by the mean RMSE over 1000 repetitions) is recorded in these tables. 

Table 6 - Lorenz dataset 

d1 m3 Unit λ RMSE SD 

Model 1 (Sin) 50 0.01 2.09E-02 1.05E-03 

Model 1 (Gauss.) 500 0.5 3.42E-05 3.60E-06 

Model 1 (Mixed) 50 0.5 5.98E-03 5.17E-03 

Model 2 (Sin) 20 0.1 2.12E-02 9.39E-03 

Model 2 (Gauss.) 20 0.5 1.11E-03 5.84E-03 

Model 2 (Mixed) 50 0.5 2.57E-03 3.14E-02 

Model 3 (Sin) 50 0.01 2.09E-02 1.06E-02 

Model 3 (Gauss.) 50 0.5 6.71E-04 5.75E-03 

Model 3 (Mixed) 50 0.5 2.01E-03 7.76E-02 

 

Table 7 - CM dataset 

d1 m3 Unit λ RMSE SD 

Model 1 (Sin) 4 0.01 1.49E-01 9.19E-02 

Model 1 (Gauss.) 50 0.5 2.57E-03 4.75E-04 

Model 1 (Mixed) 20 0.5 8.80E-02 1.03E-01 

Model 2 (Sin) 4 0.1 6.10E-01 9.88E-02 

Model 2 (Gauss.) 50 0.5 1.42E-03 8.78E-04 

Model 2 (Mixed) 50 0.5 4.53E-03 3.48E-01 

Model 3 (Sin) 4 0.01 6.67E-01 2.27E+00 

Model 3 (Gauss.) 50 0.5 1.73E-03 1.16E-03 

Model 3 (Mixed) 50 4 3.39E-01 1.27E+00 
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The very clear result of Tables 5 to 7 is that, for all three models on both datasets, the exclusive 

use of a Gaussian CFS is superior to either exclusively sinusoidal CFS, or to the combination of 

both types.  

5.4.3. Comparison against Existing Algorithms 

Table 8 compares the average out-of-sample error for both datasets (across 1000 repetitions) 

against the existing literature, and new experiments on well-known shallow learning algorithms 

(note that the results for the Solar Power dataset on ANCFIS and FANCFIS refer to the 20,000 

observation subset; it is infeasible to train those algorithms for the full 2.2 million observations). 

The best RCNFIS model for Solar power is Model 2 with 300 hidden neurons, and for the Lorenz 

dataset it was Model 1 with 500 hidden neurons. We selected and parameterized the Radial Basis 

Function Network (RBFN, implemented in WEKA [254], Multi-Layer Perceptron (MLP, 

implemented in WEKA and Scikit-learn [257]) and the Sequential Minimum Optimization for 

Regression variant of support vector machines (SMOreg, implemented in WEKA) on both 

datasets. Separate parameter explorations were performed for each dataset in all three algorithms 

following the same experimental design as RCNFIS, and the out-of-sample result for the best 

parameterization is presented in Table 8. For both datasets, the average RMSE of RCNFIS was 

superior to all of the experimental contrasts.  
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Table 8 - Compare results in different architectures in terms of RMSE 

Architecture 
Dataset/RMSE 

Solar Power Lorenz CM 

RCNFIS Model 2 (Gauss.) 

1.02E-03 

Model 1 (Gauss.) 

3.42E-05 

Model 2 (Gauss.) 

1.42E-03 

ANCFIS [265] 3.11 - - 

FANCFIS [216] 4.90 - - 

Adaptive Neuro FIS [89] - 1.43E-01 - 

Pseudo Gaussian RBF [267] - 9.40E-02 - 

ARMA [268] - 8.76E-02 - 

Elman-NARX [269] - 7.14E-05 - 

Scaled Hybrid Model [269] - 3.46E-05 - 

RBF 6.93E-02 9.22E-02 4.97E-02 

MLP 2.20E-03 1.20E-03 2.40E-03 

SMOreg 3.41E-02 2.40E-03 4.90E-02 

 

We apply a Z-test (specifically the one-sample location test) to determine whether the 

differences observed in Table 8 are significant [270, 271]. The null hypothesis H0 is that 

differences are insignificant, while the alternative is that our model is significantly more accurate 

(this is a one-sided test). We compute the Z-statistic using the 1000 repetitions of our models as 

the sample population, and then determine the p-value associated with the observed accuracy of 

the best alternative. The Z-statistic is given by:   

                                                                        𝑍 =
�̅�−𝜇0

𝑠/√𝑛
                                                           (110) 

where �̅� is the sample mean, 𝜇0 is constant being compared, s is the sample standard deviation, 

and n is the sample size. While we are using the sample variance instead of the population variance, 

our sample size of n = 1000 observations should mean that this is a very close approximation of 
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the correct Z-score. Plainly, �̅� and s are determined from our 1000 experiments, while 𝜇0 is the 

RMSE of the best alternative from Table 8. 

For the Solar Power dataset we have: 

H0: 𝜇0 ≥ 0.0022   

Ha: 𝜇0 < 0.0022    (This is a left-sided (one tailed) test) 

The MLP has the lowest RMSE of all competing methods for the Solar dataset in Table 8 at 0.0022. 

We set our significance level α = 0.01. We have n = 1000, �̅� = 0.00102, s = 0.003905. From 

Formula (110) we have:   

𝑍𝑐 =
0.00102 − 0.0022

0.003905

√1000

=  −9.55 

Using the Z-table, we find the corresponding p-value to be ≅ 0.00003; this is much smaller than 

α, and hence we reject H0. Thus, we find that RCNFIS is superior to the other models in Table 8 

for the Solar dataset. 

For the Lorenz dataset, the next-lowest RMSE is obtained by the Scaled Hybrid Model 

[269], at  3.42E-05. For the Z-test we thus have: 

H0: 𝜇0 ≥ 0.0000346    

Ha: 𝜇0 < 0.0000346   (This is a left-sided (one tailed) test) 

n = 1000, �̅� = 0.0000342, s = 0.0000036, α = 0.01, and so from Formula (110) we have:    

𝑍𝑐 =
0.0000342 − 0.0000346

 0.0000036

√1000

=  −3.51 

Using the Z-table, we find the corresponding p-value to be 0.00022. This is much less than 0.01, 

and so H0 is rejected. Thus, we find that RCNFIS is superior to the other models in Table 8 for the 

Lorenz dataset. 
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Finally, for the CM dataset, we have: 

H0: 𝜇0 ≥ 0.0024 

Ha: 𝜇0 < 0.0024   (This is a left-sided (one tailed) test) 

n = 1000, �̅� = 0.00142, s = 0.00088, α = 0.01, and so from Formula (110) we have:    

𝑍𝑐 =
0.00142 − 0.0024

 0.00088

√1000

=  −35.216 

Using the Z-table, we find the corresponding p-value which is much less than 0.01, and so H0 is 

rejected. Thus, we find that RCNFIS is superior to the other models in Table 8 for the Lorenz 

dataset. 

Furthermore, in order to determine which CFS improves accuracy statistically significantly 

(H1), we applied the Friedman test. This test is calculated as follows [93]: 

                                                             𝑆 =
12𝑛

𝑘(𝑘+1)
∑ (�̅�𝑗 −

𝑘+1

2
)2𝑘

𝑗=1                                         (111) 

where k for our case is the number of different CFS types applied on n measures (three different 

models applied on three datasets in a full-factorial design), and �̅�𝑗 is the average rank of the j-th 

CFS type applied for the n different measures. The null hypothesis H0 is that the average rank of 

the methods are the same; rejecting H0 implies that at least one of the average ranks are different. 

We implement the test in Python, using the friedmanchisquare() function from SciPy. We have k 

= 3, n = 9, and we choose a significance of α = 0.05. The calculated p-value from the data presented 

in Tables 2-4 is equal to 0.0001 < α, and so H0 is rejected.  

Having rejected H0, we use the MCB (Multiple Comparisons with the Best) method to 

determine which methods are superior to the others [272]. In this method the null hypothesis of no 

difference is rejected if |�̅�𝑢 − �̅�𝑣| ≥ 𝑟𝛼,𝑘,𝑛 where �̅�𝑢 is the average rank of the u-th method 
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and 𝑟𝛼,𝑘,𝑛 ≈ 𝑞𝛼√
𝑘(𝑘+1)

12𝑛
, where 𝑞𝛼 is the α percentile point for the range of k independent standard 

normal variables. We obtain this from the one-tailed Dunnett’s table at the given values of α, k and 

df (degree of freedom). For α = 0.05, k=3, and df=2 we obtained 𝑞𝛼 = 3.354 giving 𝑟𝛼,𝑘,𝑛 =

1.806.  

We present the differences in average ranks for our three CFS types in Table 9. Gaussian fuzzy 

sets were clearly the superior alternative to sinusoidal ones; however, the differences between 

either sinusoids or Gaussians and the mixed-CFS design were not significant. What we can say, 

however, is that using mixed CFS was not superior to just using Gaussian CFS.  

Table 9 - The average rank of the measures 

 Sin̅̅ ̅̅  Gauss̅̅ ̅̅ ̅̅ ̅̅  Mixed̅̅ ̅̅ ̅̅ ̅̅  

Sin̅̅ ̅̅  0 2 1 

Gauss̅̅ ̅̅ ̅̅ ̅̅  
 

0 1 

Mixed̅̅ ̅̅ ̅̅ ̅̅  
  

0 

 

 We also compare the learning time of RCNFIS against RBF, MLP, and SMOreg in Table 

10, which presents the time needed to train each model (determined by calling the clock() function 

or equivalent at the beginning and end of training). Plainly, our proposed models are faster than 

these alternatives.     

Table 10 - Training time in seconds 

Dataset 
Time spent (seconds) 

RCNFIS RBF MLP SMOreg 

Solar Power Model 2 (Gauss.) 232.5 249.55 399.12 860.14 

Lorenz Model 1 (Gauss.) 35.1 37.25 74.51 95.19 

CM Model 2 (Gauss.) 137.6 147.62 235.56 498.38 
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5.4.4. Evaluating the Research Hypotheses 

We now consider our final evaluation of (H1) and (H2). The results of Tables 5 to 7 quite clearly 

do not support (H1); indeed, they indicate that Gaussian CFS, on their own, produce superior 

prediction models. By contrast, (H2) is clearly supported by the results of Tables 8 and 10. RCNFIS 

is significantly more accurate than the existing algorithms tested on this dataset, while also being 

faster to train. A very accurate RCNFIS forecaster took just under four minutes to train on a time 

series of two million observations.  

5.5.  Conclusion 

In this chapter we have sought to design large-scale learning algorithms for time series. Based on 

prior results, we designed our algorithms to employ complex fuzzy sets, as they have been shown 

to result in accurate and compact models. We furthermore undertook the first direct comparison 

of the sinusoidal and complex Gaussian CFS membership’s functions; across three variants of our 

large-scale learning architecture. We found that using Gaussian CFS led to superior accuracy 

compared to either the sinusoidal CFS or a mixture of the two across two moderate-to-large-scale 

datasets. We also found that the CFS architectures were more accurate and faster to train than the 

existing literature and three additional shallow learning algorithms. 

 In future work we will replicate this study for large-scale multivariate datasets, which are 

common problems in the Big Data world. If our findings concerning CFS in this manuscript are 

confirmed, then we will also seek to understand under what circumstances the sinusoidal CFS 

remain useful models of uncertainty; we do know from [3] that they are able to model finite 

mixtures of sinusoidal functions with zero error.  
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6.  Chapter VI: Large-Scale Multivariate Time Series 

Forecasting Using Complex Fuzzy Set 
 

6.1.  Introduction 

In Chapter 3, we reviewed the various models and algorithms that were based on CFS&L to deal 

with TSF. Despite being designed to handle multivariate problems, all of the mentioned models 

were evaluated on univariate time series problems. In [10] and [273], dealing with multivariate 

time series problems using CFS&L were considered for the first time. In [273], three different 

alternative designs for ANCFIS [3] were studied to create a system to handle multivariate time 

series prediction, namely the use of SISO, MISO and MIMO methods in the ANCFIS architecture; 

given that we have also used these three methods in designing the models of this study, in the 

methodology section we will explain and how to use them.  

 
Figure 37 - MIMO ANCFIS architecture for a bivariate time series problem [10] 

 

In [10], in addition to using these three methods, other approaches are considered to apply 

further changes in ANCFIS model (including some changes to the design of the layers and 
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operators used, as well as a few modifications to the VNCSA algorithm [3]) specifically to the 

MIMO ANCFIS model, which has led to better results. Figure 37 shows a diagram of the MIMO 

ANCFIS architecture for a bivariate time series problem. However, the methods and models 

presented in [10] and [273] only applied to small datasets and were problematic for large-scale 

datasets. 

In this chapter, we extend the RCNFIS models for multivariate TSF on chaotic and large-

scale datasets.  As described in chapter V, three proposed models for RCNFIS are presented. In 

this chapter, we extend the same three models for multivariate time series and test each variant 

with exclusively sinusoidal CFS, exclusively Gaussian CFS, and a combination of both, in order 

to determine which modes (or their combination) is more effective at forecasting. In addition, 

randomized learning [214] is applied to all three models to minimize training times. Moreover, as 

in [10] and [273], we also explored SISO (Single Input Single Output), MISO (Multiple Input 

Single Output) and MIMO (Multiple Input Multiple Output) designs in implementing our models. 

In the methodology section, more detailed descriptions of these methods and how to use them in 

the implementation of our models will be provided. The proposed approaches are applied to one 

chaotic system (a realization of the Rössler system of equations with three variates [274, 275]) and 

two large-scale time series datasets (a condition monitoring dataset with six variates [6] and  a gas 

sensor data set with four variates [276, 277], and their results are compared against a few well-

known machine-learning algorithms (Multilayer Perceptron (MLP), Radial Basis Function 

Network (RBFN), Support Vector Regression (SVR)) as well as the results obtained from other 

recent related publications. We used two statistical evaluation, the Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE), to compare our results. 
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6.2. Methodology  

6.2.1. Proposed Models 

As mentioned earlier, in this chapter we intend to extend the three proposed RCNFIS models of 

Chapter 5 that were proposed to predict univariate time series using CFS.  

6.2.1.1. SISO RCNFIS 

This RCNFIS design considers each variate as an independent univariate time series. There are 

therefore N complete and separate RCNFIS systems for N-variate time series. For example, for a 

time series with two variates of x and y in the form of (𝑥1, 𝑥2, … , 𝒙𝒕) and (𝑦1, 𝑦2, … , 𝒚𝒕), the first 

system is fed by the variate x and the second system by the variate y, while 𝑥𝑡 and 𝑦𝑡 are the 

respective one-step-ahead values that must be predicted. Finally, the overall performance of this 

method in forecasting multivariate time series is computed from the combined accuracy obtained 

from all these systems. The three proposed SISO RCNFIS models are evaluated in the same way 

as in Chapter 5, i.e. the three modes of activation functions; the purely sinusoidal CFS, purely 

Gaussian CFS, or a combination of the two. Figure 38 shows the three SISO Simple/Hybrid 

RCNFIS models in these three modes for a sample variate x. Note that in this method all variates 

in a time series will be forecast using the same model choice. The neuron transfer function in each 

layer of the basic models, are the same as their counterparts in Chapter 5. 

6.2.1.2. MISO RCNFIS 

In this RCNFIS design, as in the previous design, a separate system is considered for each variate, 

but the input of each consists of the concatenated delay vectors from all variates. For example, for 

a time series with two variates of x and y in the form of (𝑥1, 𝑥2, … , 𝑥𝑡) and (𝑦1, 𝑦2, … , 𝑦𝑡), the first 

system receives (𝑥1, 𝑥2, … , 𝒙𝒕, 𝑦1, 𝑦2, … , 𝑦𝑡)  and the one-step-ahead target that must be predicted 

is 𝑥𝑡.The second system receives (𝑥1, 𝑥2, … , 𝑥𝑡 , 𝑦1, 𝑦2, … , 𝒚𝒕) and 𝑦𝑡 is the one-step-ahead target 
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that must be predicted. The overall performance of this method is likewise measured by the 

combined accuracy of all systems. The design of MISO Simple/Hybrid RCNFIS models of this 

method is shown in Figure 39. 

6.2.1.3. MIMO RCNFIS 

This RCNFIS design uses a single network that receives the concatenated delays vectors from an 

N-variate time series at the same time; thus there are N input and N output nodes. For example, for 

a time series with two variates of x and y in the form of (𝑥1, 𝑥2, … , 𝑥𝑡) and (𝑦1, 𝑦2, … , 𝑦𝑡), the first 

is fed by (𝑥1, 𝑥2, … , 𝒙𝒕, 𝑦1, 𝑦2, … , 𝒚𝒕)  and 𝑥𝑡  and 𝑦𝑡 are the one-step-ahead targets that must be 

predicted at the same time. Figure 40 shows the three MIMO Simple/Hybrid RCNFIS models in 

the three modes for a sample time series with two variates x and y. 

 
a. SISO Simple Model 1 b. SISO Simple Model 2 c. SISO Simple Model 3 

 
d. SISO Hybrid Model 1 e. SISO Hybrid Model 2 f. SISO Hybrid Model 3 

Figure 38 - Three SISO Simple/Hybrid RCNFIS models in three modes for a sample variate x [278]  
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a. MISO Simple Model 1 b. MISO Simple Model 2 c. MISO Simple Model 3 

 
d. MISO Hybrid Model 1 e. MISO Hybrid Model 2 f. MISO Hybrid Model 3 

Figure 39 - Three MISO Simple/Hybrid RCNFIS models in the three modes for a sample time series with 
two variates x and y 
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a. MIMO Simple Model 1 b. MIMO Simple Model 2 c. MIMO Simple Model 3 

 
d. MIMO Hybrid Model 1 e. MIMO Hybrid Model 2 f. MIMO Hybrid Model 3 

Figure 40 - Three MIMO Simple/Hybrid RCNFIS models in the three modes for a sample time series with 

two variates x and y 
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6.2.2. Datasets 

In order to assess the overall performance of the proposed algorithms, we carry out our prediction 

experiments on three multivariate datasets of medium and large scale, which are described below. 

6.2.2.1. Rössler Attractor 

Chaotic systems are nonlinear dynamic systems that are very sensitive to their initial conditions 

[279]. A small change in the initial conditions of such systems will cause many changes in the 

future. This phenomenon is known in butterfly theory as the butterfly effect [280]. Chaotic 

behavior occurs in many natural systems, including fluid flow, palpitations, and climate [281-283], 

as well as in some systems with artificial components, such as the stock market [284] and road 

traffic [285]. The Rössler system is another example of such a system. The Rössler system, first 

studied by Otto Rössler, consists of three standard nonlinear differential equations as follows [274, 

275]: 

                                     
𝑑𝑥

𝑑𝑡
= −𝑦 − 𝑧,      

𝑑𝑦

𝑑𝑡
= 𝑥 + 𝑎𝑦,     

𝑑𝑧

𝑑𝑡
= 𝑏 + 𝑧(𝑥 − 𝑐)                         (112) 

These differential equations describe a chaotic dynamic system that affords both complex 

and simple output based on the parameters a, b, and c. The integration of these equations with 

respect to time leads to the formation of a three-dimensional object known as an attractor [286, 

287]. A set of common coefficients for studying Rössler equations reported as the main set of 

coefficients studied by Rössler [274] are a=b=0.2 and c=5.7. Using these standard values, we 

obtained a database with 3 properties (variables) and 17177 records for each one. The graph of 

Rössler attractor in terms of time for the Rössler attractor is plotted in Figure 41. 
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Figure 41 - The Rössler attractor graph for a=b=0.2, c=5.7 

6.2.2.2. Condition Monitoring Dataset 

We discussed this dataset in detail in Chapter 4 and briefly in Chapter 5, therefore we will not 

repeat ourselves here, but just to note that this dataset has 6 features and about 1.3 million records, 

and unlike the previous chapter, we consider all its variables in this chapter, which is about 

multivariate time series experiments. 

6.2.2.3. Gas Sensor Dataset 

The Gas sensor dataset [276, 277] contains the recordings of 16 chemical sensors of 4 different 

types that have been exposed to two dynamic gas mixtures at varying concentration levels that 

have been continuously obtained during 12 hours without interruption. The data is presented in 

two different datasets, so that each dataset contains a mixture of data, that is, the ethylene_CO 

dataset contains the recordings of sensors exposed to a mixture of ethylene and CO in the air and 

the ethylene_methane dataset includes recording of sensors exposed to a mixture of ethylene and 

methane in the air. 

The structure of the datasets is the same for the first and second mixture. Each dataset 

distributed in 19 columns. First column is time (in seconds), second and third columns present 
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concentration set point of Methane (or CO) and Ethylene, respectively. Also, the remaining 16 

columns are the recordings of the sensor array. Lastly, each database contains about 4 million 

records.  

 
Figure 42 - A chemical sensing system for measuring the conductivity of a sensor array exposed to 

different gas conditions [276] 

 

Note that in order to perform our experiments, we used only one of the two datasets 

mentioned, namely ethylene_methane, and also to simplify and speed up the experiments, we 

considered only the values of 4 sensors with half the number of records, i.e. 2 Million records. 

6.3.  Preprocessing 

Data preprocessing is the process of converting raw data into a machine-understandable format 

[288] which includes operations such as cleaning [289], instance selection [290], normalization 

[291], transformation [292], feature extraction [293], and so on. The important steps we took to 

prepare our data are shown in Figure 43. 
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Figure 43 - Data preprocessing steps in our project 

As shown in Figure 43, we began by normalizing each variate in the data using the min-

max normalization [294], in which the values of each feature are mapped to a value between 0 and 

1 using the Formula (113): 

                                                                 𝑋𝑛 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                                            (113) 

where xmin and xmax are the minimum and maximum values for the X variate, respectively, and x 

is the current value.  

The next stage of our preprocessing involves the train-test split procedure to estimate the 

performance of our proposed models. To this end, we divided our datasets into training and testing 

sets and assigned 2/3 data points to the former and the remaining one-third to the latter. Of course, 

this division was a chronologically ordered single split of our data, it means the order in which the 

events occurred, from first to last, and not randomly [295]. 

Last but not least step is to convert our multivariate time series into a suitable form for 

machine learning algorithms.  A conventional method for this purpose is the delay embedding 

developed in Takens [15]. The vital concept is that since a time series is a sequence of observations 

on a system, the forecasting of the time series is actually to predict the state vector of system based 
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on previous states. In other words, time-delay embedding refers to the inclusion of historic data 

into the dynamical system models [296]. In the following, we will consider the delay embedding 

in univariate and multivariate time series. 

A delay vector in a univariate time series is defined by [248]: 

                                                       𝑆𝑛 = (𝑆𝑛−(𝑚−1)𝑑, 𝑆𝑛−(𝑚−2)𝑑, … , 𝑆𝑛)                                 (114) 

where 𝑆𝑛 is the n-th delay vector with two main parameters, namely m (dimension) and d (delay), 

both of which must be determined heuristically to generate the delay vector. Finding d allows us 

to get an optimal level of autocorrelation in each delay vector and it is usually estimated by taking 

the first minimum of the mutual function [247], while m can be estimated by the false-nearest 

neighborhood algorithm [250].  

A very important point to remember is that in Formula (114), the delay vectors are relative 

to a moment in time. This means that our input, like ANCFIS, is a sliding window, not orthogonal 

delay vectors, because in order to match a sinusoidal membership function to an observation, we 

must keep phase information in our inputs. The phase information is destroyed by definition when 

orthogonal lagged inputs are used. To match the membership functions to the sliding window, we 

take the variate as a single input. As a result, ANCFIS/RCNFIS only requires a single input per 

variate, while systems using lagged inputs require ∏ 𝑟𝑖
𝑛
𝑖=1  inputs, where n is the number of variates 

and ri is the number of lags. In this way, ANCFIS/RCNFIS significantly reduces the combinatorial 

explosion inherent in time-series forecasting [3, 278]. 

In multivariate time series, a delay vector can be described as follows [297]: 
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                                             𝑉𝑛 = (

𝑥1,𝑛, 𝑥1,𝑛−𝑑1, … , 𝑥1,𝑛−(𝑚1−1)𝑑1, 
𝑥2,𝑛, 𝑥2,𝑛−𝑑2, … , 𝑥2,𝑛−(𝑚2−1)𝑑2

,
 … ,

 𝑥𝑡,𝑛, 𝑥𝑡,𝑛−𝑑𝑡, … , 𝑥𝑡,𝑛−(𝑚𝑡−1)𝑑𝑡

)                                     (115) 

where 𝑉𝑛 is the n-th delay vector including t variates of length n, each in general form of 𝑋𝑖 =

(𝑥1,𝑖, 𝑥2,𝑖, … , 𝑥𝑡,𝑖) and i-th variate has delay di and dimension mi (i=1,2,…,t). To obtain d and m, 

each variate of the multivariate time series is considered separately, and the same approach as the 

univariate time series are applied on them [297-299]. Using the functions in TISEAN package 

[266], we obtained the best values for d and m in the same manner as in Chapter 5 Figures 44 to 

46 show the plots of finding the best parameters m and d using mutual, phase and false-nearest 

diagrams (Note that these diagrams are plotted for one of the datasets’ variate, and the process is 

similar for other variates, leading to similar results). 

  

 

Figure 44 - Mutual Diagrams for the datasets 



111 
 

  

 

Figure 45 - Phase Plot for the datasets based on their obtained delay 

  

 

Figure 46 - Proportion of False-Nearest Neighbors for different values of ratio factor (f) 
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6.4. Results 

6.4.1. Experimental Design 

According to what was discussed in the previous section and the related graphs, the obtained 

delay vector parameters for each dataset are shown in Table 11. Also, as a rule of thumb (ROT) 

and the result we obtained in [278] it can be said that the lower lag with lower dimension gave 

a better result. Therefore, we also considered d = 1 and m = 3 for CM dataset. 

 

Table 11 - Obtained delay vectors parameters 

Dataset 
Delay Vector Parameters 

Delay (d) Dimension (m) 

CM 

6 
Based on the graphs 

7 
Based on the graphs 

1 
Based on the ROT 

3 
Based on the ROT 

Rössler 1 3 

Gas 

Sensor 
1 6 

 

In all experiments, we used the Root Mean Square Error (RMSE) to evaluate our 

proposed models and compare them with other approaches and models: 

                              𝑅𝑀𝑆𝐸 = √
1

𝐾
∑ 𝑀𝑆𝐸𝑖

𝐾
𝑖=1              ,     𝑀𝑆𝐸𝑖 =

∑ (𝑦𝑗−�̂�1)2𝑛
𝑗=1

𝑛
                        (116) 

where K is the number of variates in the time series, MSEi is mean squared one step-ahead of i-

th variate, yj is predicted value, and �̂�1 is desired value. 
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6.4.2. Experimental Results 

Exploration of hyper-parameters in our experiments was repeated 1000 times per d and m 

obtained in Table 11 (to obtain the best RMSE with the least standard deviation), the number of 

neurons in the second layer of the models changed from 4 to 50 neurons, the value of forgetting 

factor (λ) in the RLS is selected from the set {0.01, 0.1, 0.5} in each experiment, and finally, as 

discussed in the previous sections, the experiments are performed for three modes of activation 

functions, namely Sinusoidal CFS, Gaussian CFS, and a combination of the two, and three 

implementation methods, namely SISO, MISO and MIMO.  Therefore, we performed several 

experiments with different combinations of hyper-parameters, the best results of which are 

described in the next section (4.3). It should be noted that all models have been implemented in 

the Visual Studio C++ environment. Tables 12 to 15 show a comparison between the results of 

exploring the parameters for the different modes of our proposed models for each of the CM, 

Rössler, and Gas Sensor datasets.  
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Table 12 - Explore and compare the best results of the three proposed models in different modes & 
methods (CM dataset – d6m7) 

d6 m7 Unit λ RMSE SD 

SISO RCNFIS Model 1 (Sin)  4 0.5 1.23974E-01 9.06050E-02 

SISO RCNFIS Model 1 (Gauss.) 50 0.5 1.13600E-02 2.39100E-03 

SISO RCNFIS Model 1 (Mixed) 4 0.5 1.02510E-01 8.51410E-02 

MISO RCNFIS Model 1 (Sin)  20 0.01 1.37664E-01 9.09740E-02 

MISO RCNFIS Model 1 (Gauss.) 50 0.5 2.50500E-02 2.33600E-03 

MISO RCNFIS Model 1 (Mixed) 20 0.5 1.16230E-01 8.52510E-02 

MIMO RCNFIS Model 1 (Sin)  4 0.1 1.22605E-01 9.06590E-02 

MIMO RCNFIS Model 1 (Gauss.) 50 0.5 9.99100E-03 2.34000E-03 

MIMO RCNFIS Model 1 (Mixed) 4 0.5 1.01141E-01 8.51010E-02 

SISO RCNFIS Model 2 (Sin)  4 0.1 2.46715E+00 9.64550E-02 

SISO RCNFIS Model 2 (Gauss.) 50 0.5 1.52320E-02 4.46400E-03 

SISO RCNFIS Model 2 (Mixed) 50 0.5 1.52530E-02 4.45600E-03 

MISO RCNFIS Model 2 (Sin)  4 0.1 2.46852E+00 9.67150E-02 

MISO RCNFIS Model 2 (Gauss.) 50 0.5 1.66010E-02 4.23200E-03 

MISO RCNFIS Model 2 (Mixed) 20 0.01 1.66220E-02 4.25300E-03 

MIMO RCNFIS Model 2 (Sin)  4 0.5 2.48221E+00 9.65190E-02 

MIMO RCNFIS Model 2 (Gauss.) 50 0.5 3.02910E-02 4.60100E-03 

MIMO RCNFIS Model 2 (Mixed) 4 0.1 3.03120E-02 4.62200E-03 

SISO RCNFIS Model 3 (Sin)  4 0.5 6.33855E-01 6.76849E+00 

SISO RCNFIS Model 3 (Gauss.) 50 0.5 8.54980E-02 5.47129E-01 

SISO RCNFIS Model 3 (Mixed) 20 0.01 3.74724E-01 3.65436E+00 

MISO RCNFIS Model 3 (Sin)  4 0.1 6.47545E-01 6.76886E+00 

MISO RCNFIS Model 3 (Gauss.) 50 0.5 9.91880E-02 5.47498E-01 

MISO RCNFIS Model 3 (Mixed) 50 0.5 3.88414E-01 3.65472E+00 

MIMO RCNFIS Model 3 (Sin)  4 0.01 6.32486E-01 6.76804E+00 

MIMO RCNFIS Model 3 (Gauss.) 4 0.5 8.41290E-02 5.47356E-01 

MIMO RCNFIS Model 3 (Mixed) 4 0.5 3.73355E-01 3.65415E+00 
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Table 13 - Explore and compare the best results of the three proposed models in different modes & 
methods (CM dataset – d1m3) 

d1 m3 Unit λ RMSE SD 

SISO RCNFIS Model 1 (Sin)  4 0.5 1.55892E-01 8.91000E-02 

SISO RCNFIS Model 1 (Gauss.) 50 0.5 2.32800E-03 4.25000E-04 

SISO RCNFIS Model 1 (Mixed) 4 0.5 8.76130E-02 1.03891E-01 

MISO RCNFIS Model 1 (Sin)  4 0.5 1.57261E-01 8.98920E-02 

MISO RCNFIS Model 1 (Gauss.) 50 0.5 6.01800E-03 3.28000E-04 

MISO RCNFIS Model 1 (Mixed) 20 0.1 8.89820E-02 1.03613E-01 

MIMO RCNFIS Model 1 (Sin)  4 0.01 1.70951E-01 8.92610E-02 

MIMO RCNFIS Model 1 (Gauss.) 50 0.5 1.97080E-02 1.80000E-05 

MIMO RCNFIS Model 1 (Mixed) 4 0.1 1.02672E-01 1.03982E-01 

SISO RCNFIS Model 2 (Sin)  4 0.1 6.11232E-01 9.88630E-02 

SISO RCNFIS Model 2 (Gauss.) 50 0.5 2.87000E-03 3.50100E-03 

SISO RCNFIS Model 2 (Mixed) 4 0.5 2.88000E-03 4.51100E-03 

MISO RCNFIS Model 2 (Sin)  4 0.5 6.24922E-01 9.82320E-02 

MISO RCNFIS Model 2 (Gauss.) 50 0.5 1.65600E-02 3.28700E-03 

MISO RCNFIS Model 2 (Mixed) 20 0.01 1.65700E-02 4.28800E-03 

MIMO RCNFIS Model 2 (Sin)  4 0.5 6.09863E-01 9.86350E-02 

MIMO RCNFIS Model 2 (Gauss.) 50 0.5 1.50100E-03 3.99500E-03 

MIMO RCNFIS Model 2 (Mixed) 50 0.5 1.51100E-03 4.01800E-03 

SISO RCNFIS Model 3 (Sin)  4 0.01 7.01657E-01 1.48932E+00 

SISO RCNFIS Model 3 (Gauss.) 50 0.5 1.79600E-03 4.21600E-03 

SISO RCNFIS Model 3 (Mixed) 4 0.5 5.17368E-01 1.04914E+00 

MISO RCNFIS Model 3 (Sin)  4 0.1 7.03026E-01 1.48972E+00 

MISO RCNFIS Model 3 (Gauss.) 50 0.5 3.16500E-03 4.85500E-03 

MISO RCNFIS Model 3 (Mixed) 20 0.1 5.18737E-01 1.04943E+00 

MIMO RCNFIS Model 3 (Sin)  4 0.1 7.16716E-01 1.48966E+00 

MIMO RCNFIS Model 3 (Gauss.) 50 0.5 1.68550E-02 4.79600E-03 

MIMO RCNFIS Model 3 (Mixed) 50 0.01 5.32427E-01 1.04937E+00 
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Table 14 - Explore and compare the best results of the three proposed models in different modes & 
methods (Rössler dataset) 

d1 m3 Unit λ RMSE SD 

SISO RCNFIS Model 1 (Sin) 4 0.5 3.48250E-02 3.05360E-02 

SISO RCNFIS Model 1 (Gauss.) 50 0.5 4.42600E-03 8.37000E-05 

SISO RCNFIS Model 1 (Mixed) 4 0.5 1.97950E-02 2.72940E-02 

MISO RCNFIS Model 1 (Sin) 4 0.1 3.61940E-02 3.08840E-02 

MISO RCNFIS Model 1 (Gauss.) 50 0.5 5.79500E-03 8.38000E-05 

MISO RCNFIS Model 1 (Mixed) 20 0.01 2.11640E-02 2.78540E-02 

MIMO RCNFIS Model 1 (Sin) 4 0.5 4.98840E-02 3.08250E-02 

MIMO RCNFIS Model 1 (Gauss.) 50 0.5 1.94850E-02 8.39000E-05 

MIMO RCNFIS Model 1 (Mixed) 50 0.1 3.48540E-02 2.77950E-02 

SISO RCNFIS Model 2 (Sin) 4 0.5 1.41500E-02 5.23410E-02 

SISO RCNFIS Model 2 (Gauss.) 50 0.5 4.44300E-03 2.81600E-03 

SISO RCNFIS Model 2 (Mixed) 4 0.5 4.45200E-03 2.74900E-03 

MISO RCNFIS Model 2 (Sin) 4 0.1 1.44364E-01 5.20540E-02 

MISO RCNFIS Model 2 (Gauss.) 50 0.5 5.80900E-03 2.49900E-03 

MISO RCNFIS Model 2 (Mixed) 20 0.01 7.65270E-02 2.21700E-03 

MIMO RCNFIS Model 2 (Sin) 4 0.1 1.58054E-01 5.24150E-02 

MIMO RCNFIS Model 2 (Gauss.) 50 0.5 1.94990E-02 2.44300E-03 

MIMO RCNFIS Model 2 (Mixed) 4 0.5 9.02170E-02 2.45200E-03 

SISO RCNFIS Model 3 (Sin) 4 0.1 1.42995E-01 7.06003E-01 

SISO RCNFIS Model 3 (Gauss.) 50 0.5 4.44000E-03 1.93000E-04 

SISO RCNFIS Model 3 (Mixed) 4 0.5 7.51580E-02 3.70306E-01 

MISO RCNFIS Model 3 (Sin) 4 0.1 1.44364E-01 7.06054E-01 

MISO RCNFIS Model 3 (Gauss.) 50 0.5 5.80900E-03 4.99000E-04 

MISO RCNFIS Model 3 (Mixed) 20 0.01 7.65270E-02 3.70217E-01 

MIMO RCNFIS Model 3 (Sin) 4 0.5 1.58054E-01 7.06364E-01 

MIMO RCNFIS Model 3 (Gauss.) 50 0.5 1.94990E-02 8.09000E-04 

MIMO RCNFIS Model 3 (Mixed) 50 0.1 9.02170E-02 3.70527E-01 
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Table 15 - Explore and compare the best results of the three proposed models in different modes & 
methods (Gas Sensor dataset) 

d1 m3 Unit λ RMSE SD 

SISO RCNFIS Model 1 (Sin) 4 0.5 1.36695E-01 7.28438E-02 

SISO RCNFIS Model 1 (Gauss.) 50 0.5 1.89490E-03 4.49356E-04 

SISO RCNFIS Model 1 (Mixed) 20 0.1 7.34578E-02 8.35699E-02 

MISO RCNFIS Model 1 (Sin) 20 0.01 1.50385E-01 7.32008E-02 

MISO RCNFIS Model 1 (Gauss.) 50 0.5 1.55849E-02 8.06356E-04 

MISO RCNFIS Model 1 (Mixed) 20 0.5 8.71478E-02 8.39269E-02 

MIMO RCNFIS Model 1 (Sin) 20 0.1 1.38064E-01 7.30028E-02 

MIMO RCNFIS Model 1 (Gauss.) 50 0.5 3.26390E-03 6.08356E-04 

MIMO RCNFIS Model 1 (Mixed) 4 0.01 7.48268E-02 8.37289E-02 

SISO RCNFIS Model 2 (Sin) 4 0.01 5.24225E-01 5.47093E+00 

SISO RCNFIS Model 2 (Gauss.) 50 0.5 1.72012E-03 1.57224E-05 

SISO RCNFIS Model 2 (Mixed) 4 0.1 2.74946E-01 2.89007E+00 

MISO RCNFIS Model 2 (Sin) 4 0.1 5.37915E-01 5.47129E+00 

MISO RCNFIS Model 2 (Gauss.) 50 0.5 1.54101E-02 3.72722E-04 

MISO RCNFIS Model 2 (Mixed) 20 0.5 2.88636E-01 2.89043E+00 

MIMO RCNFIS Model 2 (Sin) 4 0.1 5.25594E-01 5.47109E+00 

MIMO RCNFIS Model 2 (Gauss.) 50 0.5 3.08912E-03 1.74722E-04 

MIMO RCNFIS Model 2 (Mixed) 20 0.1 2.76315E-01 2.89023E+00 

SISO RCNFIS Model 3 (Sin) 20 0.5 5.18624E-01 2.36552E+00 

SISO RCNFIS Model 3 (Gauss.) 50 0.5 1.73281E-03 1.20399E-05 

SISO RCNFIS Model 3 (Mixed) 20 0.1 2.66200E-01 1.52224E+00 

MISO RCNFIS Model 3 (Sin) 20 0.01 5.32314E-01 2.36588E+00 

MISO RCNFIS Model 3 (Gauss.) 50 0.5 1.54228E-02 3.69040E-04 

MISO RCNFIS Model 3 (Mixed) 4 0.001 2.79890E-01 1.52260E+00 

MIMO RCNFIS Model 3 (Sin) 4 0.1 5.19993E-01 2.36568E+00 

MIMO RCNFIS Model 3 (Gauss.) 50 0.5 3.10181E-03 1.71040E-04 

MIMO RCNFIS Model 3 (Mixed) 4 0.1 2.67569E-01 1.52240E+00 

 
 
 
 

 

 



118 
 

6.4.3. Out-of-Sample Results 

Table 16 presents the results of out-of-sample error for all three datasets for our proposed models 

against the other architectures and well-known approaches that were applied recently on each 

time series. To achieve the results of the Table 16, for the CM dataset, the best parameters were 

obtained on the first proposed model (MIMO RCNFIS Model 1) for d=6 and m=7 (𝑁=50, 𝜆=0.5, 

𝐴𝐹=𝐺𝑎𝑢𝑠𝑠.𝐶𝐹𝑆). It should be noted that although we obtained a better result than other 

architectures and methods with this delay vector (d = 6 and m = 7) and the parameters of the 

first proposed model, to obtain a lower RMSE (as shown in Table 16), we also performed our 

experiments on the delay vector (d = 1 and m = 3), which gave the best result on the second 

proposed model (MIMO RCNFIS Model 2) and the parameters (𝑁=50, 𝜆=0.5, 𝐴𝐹=𝐺𝑎𝑢𝑠𝑠.𝐶𝐹𝑆). 

Moreover, for the Rössler dataset, the best parameters were gained on the first proposed model 

(SISO RCNFIS Model 1) with the parameters (𝑁=50, 𝜆=0.5, 𝐴𝐹=𝐺𝑎𝑢𝑠𝑠.𝐶𝐹𝑆). Finally, for the 

Gas Sensor dataset, the best parameters were discovered on the second proposed model (SISO 

RCNFIS Model 2) with the parameters (𝑁=50, 𝜆=0.5, 𝐴𝐹=𝐺𝑎𝑢𝑠𝑠.𝐶𝐹𝑆).  

Additionally, we used WEKA [254] to implement the RBFN with the logistic function 

as the activation function and performed our experiments with 1 to 400 neurons in the hidden 

layer and the standard deviation selecting from the set {10-5, 10-4, 10-3, 10-2, 10-1}. The best 

result (lowest RMSE) as shown in Table 16 was obtained for the CM dataset with hyper 

parameter (Nn =100, SD=10-5) in MIMO implementation method, for the Rössler dataset with 

hyper parameter (Nn =50, SD=10-5) in SISO implementation method, and for the Gas Sensor 

dataset with hyper parameter (Nn =200, SD=10-5) in SISO implementation method. Also, to 

implement the MLP, we applied both WEKA and Scikit-learn [257] to compare the results and 

get the best one, the number of hidden layers (Nhl) is considered to 2 and the number of neurons 
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(Nn) in each layer is changed from 50 to 1000 neurons in each layer. Also, the learning rate (𝜂) 

value is selected from the set {0.001, 0.01, 0.1, 0.3} in each experiment, the value of Momentum 

(m) is assumed to 0.2 and the value of Batch Size (BS) is equal to 100. Thus, the best hyper 

parameters for the least RMSE are obtained for the CM dataset {Nhl =2, Nn=500, 𝜂=0.001, 

m=0.2, BS=100} in MIMO implementation method, for the Rössler dataset {Nhl =2, Nn=1000, 

𝜂=0.1, m=0.2, BS=100} in SISO implementation method, and for the Gas Sensor dataset {Nhl 

=2, Nn=500, 𝜂=0.01, m=0.2, BS=100} in SISO implementation method. Lastly, to implement 

the SMOreg on WEKA, we used RBF kernel, 𝛾 selecting from the set {0.01, 0.05, 0.005}, 

complexity (C) selecting from the set {1, 5, 10, 15, 20, 25}, and BS = 100. The best hyper 

parameters for the least RMSE are obtained for the CM dataset {𝛾=0.005, 𝐶=25, 𝐵𝑆=100} in 

MIMO implementation method, for the Rössler dataset {𝛾=0.005, 𝐶=10, 𝐵𝑆=100} in SISO 

implementation method, and for the Gas Sensor dataset for the Rössler Dataset {𝛾=0.05, 𝐶=15, 

𝐵𝑆=100} in SISO implementation method. 

Therefore, as it can be seen in the Table 16, our proposed models yielded the lowest 

forecast error compared to other architectures. 
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Table 16 - Compare results in different architectures in terms of RMSE 

Architecture 
Dataset/RMSE 

CM Rössler GAS Sensor 

 

RCNFIS 

(d6 m7) MIMO Model 1 

(Gauss.)  

9.991E-03  

(d1 m3) MIMO Model 2 

(Gauss.) 

1.501E-03 

SISO Model 1 

(Gauss.) 

4.426E-03 

SISO Model 2 

(Gauss.) 

1.720E-03 

LSTM  [300] - 5.6E-01 - 

GA  [301] - 1.21E+00 - 

PSO  [301] - 4.94E-01 - 

WOA  [301] - 9.72E-01 - 

MFO  [301] - 4.85E-01 - 

FIS  [302] 

(with uniform embedding) 

- 4.92E-01 - 

FIS  [302]   

(without uniform embedding) 

- 4.84E-01 - 

ARIMA (2,0,3)  [302] - 1.27E+00 - 

EGRNN++ [303] - - 2.48E-01 

Multi-GAN [304] - - 8.54E-02 

Rec-TSA [304]  - - 1.66E-01 

TreNet [305] - - 9.57E+00 

RBF 

MIMO 

(d6 m7) 6.01E-02 

(d1 m3) 5.03E-02 

SISO 

2.0E-02 

SISO 

1.93E-01 

MLP 

MIMO 

(d6 m7) 1.08E-02 

(d1 m3) 2.50E-03 

SISO 

2.63E-02 

SISO 

3.15E-03 

SMOreg 

MIMO 

(d6 m7) 4.20E-02 

(d1 m3) 5.20E-02 

SISO 

4.5E-02 

SISO 

3.90E-02 

 

In order to determine whether there are a significant differences between the results obtained 

from our proposed models and the results obtained from other models and published papers, 

the Z-test is again applied [270, 271]. 
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A. For the CM dataset we have:  

H0: 𝜇0 ≥ 0.0025 

Ha: 𝜇0 < 0.0025 (This is a left-tailed (one tailed) test) 

0.0025 is the lowest value obtained for RMSE in the methods and results of other papers (which 

is obtained for CM from MLP) and the rest of the RMSE values provided are greater than or 

equal to this value. Therefore, since we have reached a lower value of it (that is 0.001501), we 

have written our hypothesis as above so that we can reject the null hypothesis claim. So we have: 

n = 1000  

�̅� = 0.001501 

s = 0.003995 

We run our statistical test on a 98% confidence level, then the significance level (α) is: 

c = 0.98 → α = 1-c = 0.02 

From Formula (110) we have:  𝑍𝑐 =
0.001501−0.0025

0.003995/√1000
= −0.1264 

Using the Z-table, we find the p-value corresponding to the z-value obtained (≅ 0.00003) and 

then by comparing the p-value with the α-value and that its value is much smaller 

(0.00003<0.02), then our null hypothesis (H0) is rejected. 

B. For the Rössler dataset we have: 

H0: 𝜇0 ≥ 0.02 

Ha: 𝜇0 < 0.02 (This is a left-tailed (one tailed) test) 

n = 1000  

�̅�  = 0.004426 

s = 0.0000837 

c = 0.98 → α = 1-c = 0.02 



122 
 

From Formula (110) we have: 𝑍𝑐 =
0.004426−0.02

0.0000837/√1000
= −5.88𝐸 + 03 

Similar to the previous case (A) and using the Z-table, the p-value corresponding to the z-value 

obtained (≅ 0.00003) and comparing with the α-value, it can be concluded that its value is 

much smaller (0.00003<0.02), then our null hypothesis (H0) is rejected. 

C. For the Gas Sensor dataset we have: 

H0: 𝜇0 ≥ 0.00315 

Ha: 𝜇0 < 0.00315 (This is a left-tailed (one tailed) test) 

n = 1000  

�̅� = 0.00172 

s = 0.0000157 

c = 0.98 → α = 1-c = 0.02 

From Formula (110) we have: 𝑍𝑐 =
0.00172−0.00315

0.0000157/√1000
= −2.88𝐸 + 03 

Alike to the former cases (A and B), by applying the Z-table, the p-value corresponding to the 

z-value obtained (≅ 0.00003) and comparing with the α-value, it is possible to deduce that its 

value is substantially lower (0.00003<0.02), then our null hypothesis (H0) is rejected. 

As in the previous chapter, by applying the Friedman test, we determined which CFS 

statistically improved accuracy. Therefore, we have: 

k= 27 

n= 3 

α (level of significance) = 0.05 

Based on the Formula (111), the calcukated p-value is equal to: 0.0001 
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A small p-value compares to α indicates that H0 is rejected, which means that there are 

significant differences between the models, or in other words, different CFS improve accuracy 

significantly. Having rejected H0, we can compare models with different CFS using MCB 

method. For α = 0.05, k=3, and df=2 we obtained 𝑞𝛼 = 5.418 giving 𝑟𝛼,𝑘,𝑛 = 1.042.  

We present the differences in average ranks for our three CFS types in Table 17. Gaussian 

fuzzy sets were clearly the superior alternative to sinusoidal ones; however, the differences 

between either sinusoids or Gaussians and the mixed-CFS design were not significant. What we 

can say, however, is that using mixed CFS was not superior to just using Gaussian CFS.  

Table 17 - The average rank of the measures 

 Sin̅̅ ̅̅  Gauss̅̅ ̅̅ ̅̅ ̅̅  Mixed̅̅ ̅̅ ̅̅ ̅̅  

Sin̅̅ ̅̅  0 2 1 

Gauss̅̅ ̅̅ ̅̅ ̅̅  
 

0 1 

Mixed̅̅ ̅̅ ̅̅ ̅̅  
  

0 

 

 

6.5. Conclusion 

In this chapter, we extended the RCNFIS architecture multivariate time series forecasting. Then 

we tested this architecture on large and medium datasets, and found that our architecture was 

superior compared to other previous published papers and work done, as shown in Table 16. 

To summarize, the three proposed RCNFIS models are based on CFS&L and they are 

very similar to ANCFIS architecture, but by eliminating some extra layers, it leads to higher 

efficiency in terms of the measured error of the algorithm. Also, like RANCFIS, they are feed-

forward neuro-fuzzy algorithms which employ randomized learning. This approach eliminates 

the backpropagation learning step, and leads to a fast learning rate.  
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Our investigation has focused on implementing rule interference using the inner product 

of firing weights in the first proposed model. In the second proposed model, we employed a 

weighted complex summation instead. Finally, in our third proposed model we tried to examine 

the effect of the consequents parameters. Moreover, in all three proposed models, we examined 

the efficiency of two activation functions, the sinusoidal MF and the complex Gaussian MF. In 

addition, for each proposed model we considered a combination of these two activation 

functions (a bank of sinusoidal MFs, and another bank of complex Gaussian MFs, in the input 

layer) to perceive the complex Gaussian fuzzy sets singular modifiers that can modify the 

behavior of rules built from sinusoidal fuzzy sets. In addition, to implement our models, we have 

used three implementation methods, namely SISO, MISO and MIMO, according to what is 

stated in section 6.2.1. 
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7.  Chapter VII: Summary, Conclusion, and Future Work 

7.1.  Summary and Conclusion 

 

In this dissertation, we reviewed a variety of time series forecasting methods and algorithms, 

which can be categorized into two main types: statistical models and machine learning models. 

A brief overview of statistical methods and models is presented in the second chapter, and then 

one of the most important theories of machine learning, FS&L, is examined, followed by a major 

extension, CFS&L, which forms the basis of this dissertation's studies, architectures, and 

experiments. 

In the third chapter, we reviewed the various types of CFS&L-based architectures, each 

of which tried to achieve two important goals by structural modification or by using different 

methods and algorithms: 1. achieving more accurate and parsimonious results, and 2. speeding 

up the learning algorithm. ANCFIS was designed to work with both univariate and multivariate 

time series datasets. The main drawback of the ANCFIS architecture was its slow learning 

algorithm. So to speed up this neuro-fuzzy system, another algorithm called RANCFIS was 

designed. This algorithm, which was a feed-forward complex neuro-fuzzy system, took 

advantage of the randomized learning algorithm in its structure. This modification in structure 

eliminated the back propagation learning and led to faster learning. The experimental results 

showed that the RANCFIS learning rate was faster than ANCFIS but slower than ANCFIS-ELM 

(An ANCFIS extended architecture inspired by the Extreme Learning Machine (ELM) 

algorithm and the SLFN architecture). Next, a fast and compact learning algorithm based on 

CFS&L called FANCFIS was designed, which is especially suitable for data stream mining. 
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FANCFIS consisted of two steps of learning: the initial step and the incremental stage, and the 

membership functions were determined using FFT. It should be noted that in all the mentioned 

architectures that were from ANCFIS family, the complex sinusoidal membership function is 

used, but in another family of CFS&L based architectures, i.e. CNFS, the complex Gaussian 

membership function is used.  

While the architectures and algorithms mentioned are very significant and valuable, they 

still have problems, one of the most important of which is dealing with big data. Accordingly, 

one of the main focus of our research in this dissertation has been on this issue. As a result, in 

addition to the existing datasets that were used in this thesis, we also obtained a large dataset 

ourselves, which is about one of the most important topics in the world, namely condition 

monitoring of induction motors, which was explained in detail in Chapter 4 (It should be noted 

that one of the remarkable aspects of this thesis is that all our experiments on large-scale datasets 

are based on real sensor data). Then, in the fifth chapter, we introduced a new architecture based 

on CFS and inspired by the ANCFIS architecture and in three variants, which also took 

advantage of previous architectures such as randomized learning. Another important feature was 

the reduction in the number of layers in order to achieve a better speed in the learning algorithm. 

Also, as another major focus of this dissertation, we used both types of complex membership 

functions used in CFS&L-based architectures, sinusoidal and complex-valued Gaussian, as well 

as combining them in all three variants of our proposed architecture (RCNFIS) to have a 

systematic comparison (for the first time) of the application of these complex membership 

functions to a common architecture. Our results showed that Gaussian CFS showed superior 

accuracy over sinusoidal CFS or a combination of the two. Furthermore, the proposed 

architecture was more accurate and faster to train than existing literature and three other shallow 
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learning algorithms (MLP, RBFN, and SMOreg). Then, in the sixth chapter, we tried to extend 

the architecture proposed in the fifth chapter to support multivariate time series in the large scale 

as well. For this purpose, we examined SISO, MISO and MIMO designs for implementing our 

three proposed architectural variants. The results of our experiments on two large-scale datasets 

and one chaotic dataset indicated that the RCNFIS architecture is significantly superior to 

previous architectures as well as other well-known algorithms. The results of statistically 

significant tests given at the end of both chapters also emphasize this statement. 

7.2. Future Work 

A strong performance of the proposed architecture suggests that this could be a promising future 

development avenue. Further structural and algorithmic changes could be made to improve the 

accuracy of the results, as well as the speed of the learning algorithm (for example, by applying 

Evolutionary Algorithms), or the proposed architecture could be applied to other areas of 

machine learning. Time series forecasting was the main focus of this dissertation, but the 

architecture can also be applied to other areas such as classification, clustering, image 

processing, and data mining. 

Moreover, according to what was discussed and reviewed in chapter II, the effect of 

different architectures and approaches on XAI and how they affect the perception of 

explainability was investigated. Finally, we investigated the effect of combining different 

machine learning algorithms such as evolutionary algorithms and deep neural networks with 

fuzzy logic. The conclusion was that by using linguistic variable structures, artificial intelligence 

systems based on fuzzy sets and logic act very transparently. This advantage is more evident for 

hybrid neuro-fuzzy and fuzzy-evolutionary systems. Thus, the necessity of designing dedicated 

explanatory interfaces (EIs) was emphasized. Although in our proposed models consider the 
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parameters of the layer-1 fuzzy set as adaptive parameters for learning, it is quite possible that 

the fuzzy sets in our trained models deviate from the "intuitive" meaning associated with the 

linguistic term that may be assigned to them. Therefore, in future work, we believe that EI design 

should apply to our RCNFIS model to improve the explanation (transparency) further and 

consequently increase user trust. 

Additionally, regarding the last discussion we had in Chapter II, AI brittleness, we 

concluded that companies should have clear criteria and establish test protocols before 

purchasing or validating AI-enabled systems, especially on safety-critical systems, in order to 

ensure that these systems can operate effectively in their intended operational areas. Also, it was 

discussed how data/distribution shifts may significantly reduce model performance in real-world 

scenarios and may lead to brittleness in machine learning models. Therefore, as one of the future 

work and in order to avoid brittleness in our proposed RCNFIS model, we should generalize it 

in such a way that it adapt to conditions outside a limited set of assumptions. By using a method 

that increases the model's tolerance for dealing with data/distribution shifts that can affect input 

features, target variables, and their relationships, we can prevent brittleness from occurring in 

our model. 
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