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ABSTRACT

A net in the group algebra of a locally compact group which commutes asymptot-
ically with elements from the measure algebra is called quasi-central. In this thesis
we provide new characterizations of locally compact groups whose group algebras
possess quasi-central bounded approximate units. Reiter-type and structural condi-
tions for such groups are obtained which indicate that these groups behave much like
the tractable [SIN]-groups. A general notion of an amenable action on the predual
of a von Neumann algebra is developed to prove these theorems. Applications to the
Fourier algebra are discussed.

We study the relationship between the classical invariance properties of amenable
locally compact groups G and the approximate diagonals possessed by their associated
group algebras L'(G). From the existence of a weak form of approximate diagonal for
L}(@) we provide a direct proof that G is amenable. Conversely, we give a formula for
constructing a strong form of approximate diagonal for any amenable locally compact
group. In particular we have a new proof of Johnson’s Theorem: A locally compact
group G is amenable precisely when L!'(G) is an amenable Banach algebra. Several
structural Felner-type conditions are derived, each of which is shown to correctly
reflect the amenability of L!'(G). We show that a semigroup algebra is l-amenable
precisely when the semigroup is an amenable group. We obtain Fglner conditions
characterizing semigroups with I-amenable semigroup algebras.

We consider amenable representations, introduce a notion of complete-amenability

for representations, and examine the relationship between the two concepts. Several
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C*-algebraic characterizations of amenable and completely-amenable representations
are obtained. We define versions of the Fourier and Fourier-Stieltjes algebras for
an arbitrary representation. We show that a representation is amenable whenever an
associated Fourier algebra has a bounded approximate unit, and that a representation

is amenable precisely when an associated Fourier-Stieltjes algebra has an identity.
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Chapter 1

Introduction

A locally compact group G is called amenable if the space L*(G), of essentially
bounded functions on G, possesses a translation-invariant functional called an invari-
ant mean. The notion of amenability traces its origins back to the study of finitely
additive measures which are invariant under groups of isometries, a theory which
led to the celebrated Banach-Tarski paradox. Given the history of the subject, the
prominence of invariance properties in the theory of amenable groups is of no sur-
prise. Among these properties is the Reiter condition from which the very deepest of
the classical invariance properties, the Fglner conditions, can be derived. The Fglner
conditions are, in a sense, especially nice because they provide the only known de-
scriptions of amenability in terms of the internal structure of the group itself, rather
than in terms of a related Banach algebra.

A Banach algebra is called amenable if it possesses a particular cohomological
property. The theory of amenable Banach algebras was born in 1972 when B.E.
Johnson proved his famous theorem which states that a locally compact group G is
amenable precisely when its associated group algebra L*(G) is amenable [24]. Shortly
thereafter, Johnson proved his fundamental characterization of amenable Banach
algebras in terms of the existence of virtual and approximate diagonals [25]. Virtual
diagonals are often said to play the role in the theory of amenable Banach algebras

that invariant means play in the theory of amenable groups. Indeed, the existence
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of approximate diagonals may be interpreted as an invariance property for amenable
Banach algebras.

An elegant theory of amenable representations was developed in 1990 by M.E.B.
Bekka [3]. In this general context Bekka proved analogues of all of the classical invari-
ance properties including the Fglner conditions, and interpreted several amenability
theories in terms of amenable representations. In particular he proved that a locally
compact group is amenable if and only if all of its representations are amenable.

A bounded net in a Banach algebra A which behaves asymptotically like an
identity for A is called a bounded approximate unit. A bounded approximate unit
for L*(G) is called quasi-central if it commutes asymptotically with elements from the
measure algebra M(G). In [48] A. Sinclair asked when group algebras possess quasi-
central bounded approximate units. V. Losert and H. Rindler [36] have shown that
group algebras of amenable groups always have quasi-central bounded approximate
units and in Chapter 3 we provide new answers to Sinclair’s question.

A locally compact group G is called a [SIN]-group (small invariant neighbourhood
group) if it has a base for the neighbourhood system at the identity comprised of
compact sets which are invariant under inner automorphisms. The [SIN]-groups are
necessarily unimodular and are precisely those groups whose group algebras possess
central bounded approximate units [37]. In Chapter 3 we call a locally compact group
a quasi-[SIN}-group if it possesses a base for the neighbourhood system at the identity
which is asymptotically invariant under inner automorphisms. We prove that for a
group to be quasi-[SIN], it is both necessary and sufficient that it is unimodular and its
group algebra has a quasi-central bounded approximate unit. This structural theorem
combines with Losert and Rindler’s theorem to say that unimodular amenable locally
compact groups behave much like the very tractable class of [SIN]-groups.

In Chapter 4 we study the relationship between the classical invariance proper-
ties of amenable locally compact groups and the approximate diagonal invariance
property of their associated group algebras. An integral part of this endeavour is

our work on quasi-central bounded approximate units from Chapter 3. We give an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



explicit formula for constructing a compactly-invariant approximate diagonal (a very
strong form of approximate diagonal) from Reiter’s condition and a nice form of
quasi-central bounded approximate unit possessed by amenable groups. Conversely,
we show how Reiter’s condition and strong forms of quasi-central bounded approx-
imate units can be obtained from the existence of compactly-invariant approximate
diagonals. From weaker forms of approximate diagonals we show how to construct
nets converging to topological invariance. One corollary of these results is a new proof
of Johnson’s theorem. The existence of a compactly-invariant approximate diagonal
can be interpreted as a Reiter condition for amenable group algebras, and doing this
we derive new Fglner conditions for amenable locally compact groups which have
a very different flavour from their classical counterparts. We then show how re-
lated Fglner conditions can be obtained from the classical Fglner condition and our
work from Chapter 3 on quasi-[SIN]-groups. All of our Fglner conditions are shown
to correctly reflect the amenability of L'(G) in the sense that they naturally yield
compactly-invariant approximate diagonals comprised of normalized characteristic
functions.

The definition of amenability also makes sense in the more general context of
semigroups, and it is known that amenability of a semigroup algebra implies that
the semigroup itself is amenable. However, unlike the case for groups, the converse
does not hold. Thus a theme of many papers has been to address the problem of
describing those semigroups, in terms of the internal structure of the semigroup itself,
which carry amenable semigroup algebras. The problem, now a quarter century in
age, has only been completely settled in special cases. The general trend however,
is that amenability of the semigroup algebra imposes very strong conditions upon
the semigroup. We show that semigroup algebras are l-amenable, (that is have an
approximate diagonal bounded in norm by 1) precisely when the semigroup is an
amenable group. When searching for internal properties of a semigroup related to
amenability it is natural to look for structural Fglner-type conditions. We obtain a

Fglner condition which, with no extraneous conditions imposed upon the semigroup,
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characterizes those semigroups with 1-amenable semigroup algebras.

In the final chapter we turn our attention to Bekka’s amenable representations and
introduce a notion of complete-amenability for representations. We provide the rela-
tionship between these two concepts of amenability and interpret amenability, inner
amenability, and amenable group actions in terms of completely—amenable represen-
tations. We describe complete-amenability through a weak-containment property
and provide several characterizations of complete-amenability of a representation in
terms of the existence of certain states upon C*-algebras. For each representation
7 of G we define a Fourier algebra A(r) and show that when an associated Fourier
algebra A(7w ®7) has a bounded approximate unit, the representation 7 is necessarily

amenable.
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Chapter 2

Preliminaries

2.1 Amenable locally compact groups and semi-
groups

Throughout this thesis G will denote a locally compact group with identity element
e, left Haar measure )\, and modular function A. We will refer to a set or function
which is Borel measurable simply as measurable. If A is a measurable subset of G,
then |A| will denote its Haar measure. The characteristic function of A is 14 and
if 0 < |A| < 00, ¢4 is its normalized characteristic function I"lfi'll 4. Integration of a

Borel measurable function f taken with respect to Haar measure is written

/Gf(:c) dx.

Let LP(G) be the space of all complex-valued measurable functions f on G such

that
[U@Piz <o, 1 <p<oo)
G

Identifying functions that are equal A-almost everywhere, LP(G) is a Banach space

with norm
1
£l = ([ 1f@P &), (7 € 22(@).
The C*-algebra of all essentially bounded complex-valued Borel measurable functions

on G equipped with the essential supremum norm is denoted by L®°(G). The C*-

5
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subalgebras of continuous bounded functions and the functions vanishing at infinity
on G are respectively CB(G) and Cy(G). The space of continuous functions with
compact support is denoted by Copo(G). For 1 < p < oo we let

PG ={felP(G): f=20and |f], =1}

When G is discrete we will use the notation I?(G).

With convolution product

fHg(t) = fG F(s)g(s7H) ds

and involution

fr(t) = Z\—l(—t;f(t*), (f,9 € L{G), s € G),

L'(G) becomes an involutive Banach algebra, called the group algebra of G. The
Banach space M(G) of all complex regular Borel measures on G’ may be identified

with the dual of Cy(G) through the pairing

(hopt) = /G h(s) du(s),  (u€ M(G), h e Co(G)).

With convolution product defined by

(hy o+ v) = /G h(st) du(s)dv(t)

and involution

(hy %) = /G G duls), (uv € M(G), he Co(G)),

M(G) also becomes an involutive Banach algebra called the measure algebra of G.

The group algebra L'(G) is identified with a closed ideal in M(G) through
f= s LHG) = M(G)

where

(o ig) = / h(s)f(s) ds,  (f € L*(C),h € Co(G)).

6
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If §, denotes the Dirac measure at z € G and f € L}(G), we have

6z % f(s) = f(z™'s) and f*4,(s)= f(sz™), (seq).

1
A(x)

Let H be a closed subgroup of G and let X = G/H be the space of left cosets of
H in G with the quotient topology induced by the canonical map G — X. Let G act
on X through a-zH = (az)H. Two measures are said to be equivalent if they share
the same collections of null sets. A positive regular Borel measure y on X is called
guasi-invariant if the measure o - 4 is equivalent to u where for @ € G and E a Borel
measurable subset of X, a- u(E) := p(a- E). If p is quasi-invariant, let o(a, zH),
(a,z € G), denote the Radon-Nikodym derivative of a - 4 taken with respect to p.

The quasi-regular Borel measure p is called strongly continuous if the map
(a,zH) — o(a,zH) : G x X = [0, 00)

is jointly continuous. Every coset space admits a strongly continuous quasi-invariant

positive regular Borel measure. For s € G and f € L}(X, u) we write
6o * f(zH) = o(a,zH) f(a 'zH).
If ¢ is any complex-valued function on G and a € G, we write
(la¢)(s) = #(as) and (rad)(s) = ¢(sa), (s € G).

A functional m € L®(G)* satisfying ||m|| = m(1lg) = 1 is called a mean. The locally

compact group G is called amenable if there exists a mean m on L*°(G) such that
m(la¢) = m(d), (a € G, ¢ € L¥(Q)).

Such a mean is said to be left invariant. We call G inner-amenable if L*°(G) has an

inner-invariant mean; that is, if there is a mean m on L*®(QG) such that
m(l,r7te) = m(¢), (a € G, ¢ € L®(G)).

The components of the following two theorems will be referred to in Chapter 4 as
the classical invariance properties of amenable locally compact groups. The various
parts of these theorems are due to M. Day, E. Fglner, I. Namioka, and H. Reiter.
Proofs may be found in [18], [39], and [40].

7
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Theorem 2.1.1. The following are equivalent for a locally compact group G.

(1) G is amenable.

(2) There ezists a net (f,) C LY(G)T such that ||6; * fo— falli = 0, (z €G).

(8) There erists a net (fo) C LY(G)T such that ||g* fo— falli = 0, (9 € LHB)Y).
(4) There exzists a net (fo) C LY(G)T such that ||6; * fa — falli — O uniformly in z

on compact subsets of G.

Theorem 2.1.2. Let G be a locally compact group. Then G is amenable if and only
if it satisfies the Fglner condition

(FC): For every e > 0 and every compact subset K of G there exists a compact subset
A of G with |A| > 0 such that

lzA A A| < €Al for every z € K.

A net as in part (3) of Theorem 2.1.1 is said to converge to topological invariance
and the existence of a net as in part (4) of Theorem 2.1.1 is called Reiter’s condition.
It is not difficult to see that (4) = (3) = (2) = (1) in Theorem 2.1.1. The condition
(FC) says that the net (f,) in part (4) of Theorem 2.1.1 may be taken to be comprised
of normalized characteristic functions ¢4 = l_«}i—ll 4, ACG.

Let S be a discrete semigroup. With the convolution product

(Fxo)®) =) f@)el), (f,9€l'(S), teS9),
zy=t
I*(S) is a Banach algebra called the semigroup algebra of S. As with locally compact

groups, we call S amenable if there is a left invariant mean on [*®(S).

2.2 Amenable Banach algebras

Throughout this section let A be a fixed Banach algebra. A Banach space £ is called
a left Banach A-module if E is a left A-module, and there exists a number K > 0
such that

le-zll < Kllal| lzll,  (a € A, z € E).

8
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Similarly one defines right Banach A-modules, and Banach A-bimodules. It is easy
to see that if F is a left Banach A-module, then its continuous dual E* becomes a

right Banach A-module with module multiplication given by
(¢-a)(z) =d(a-z), (P€E", acA, z€E)

We will refer to £* as the dual Banach A-module of F.
Let E be a Banach A-bimodule. An E-derivation is a linear mapping D: A — F
such that
D(ab) = D(a) - b+ a- D(b), (a,b € A).

For example if x € E, a simple calculation shows that ad, is a bounded derivation

where

ady(a) :=a- -z —z-a, (a € A).

The map ad, is called an inner derivation. The Banach algebra A is called amenable
if for every Banach A-bimodule F, every bounded derivation D : A — E* is inner.

The reason for this use of terminology is the following theorem due to Barry Johnson
[24].

Theorem 2.2.1. (Johnson’s Theorem) Let G be a locally compact group. Then G is

amenable if and only if its group algebra L*(G) is amenable.

The projective tensor product A®A is a Banach A-bimodule with products de-
termined by (a®b)-c=a®bcand ¢- (a ®b) = ca ® b. Let 7 denote the canonical
homomorphism determined by 7(a ® b) = ab. An approzimate diagonal for A is a

bounded net (m?) in A®A such that for each a € 4,
lim (m”-a—a-m”)=0 and lim 7(m")a =a.
v 7

A virtual diagonal for A is an element M of the dual Banach A-bimodule (A®A)**
such that for eacha € A, M-a = a-M and (7**M)a = a. In [25] Barry Johnson proved
that the Banach algebra A is amenable if and only if it possesses an approximate

diagonal which is true if and only if it has a virtual diagonal. The Banach algebra
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A is called k-amenable, where k is a positive constant, if it has an approximate
(equivalently virtual) diagonal with bound & [26]. Clearly A is amenable precisely
when it is k-amenable for some & > 0. Proof of these statements and much more

about amenable Banach algebras may be found for example in [45].

2.3 Representations of locally compact groups

If # is a Hilbert space, B(H) is the von Neumann algebra of bounded linear operators
on H. For £ € H we let we be the vector state on B(#) associated to £ which is
defined by we(T) = (T€,€), (T € B(H)). For&,n € H, £@n* is the rank-one operator
on H defined by (£ ® 7*)(¢) = ({,n)¢, (( € H). We note that the linear span of
a subset F' of a linear space E will be denoted by (F). General references for the
material on operator algebras and their representations needed in this thesis are [8],
[35], and [49].

Let G be a locally compact group. A continuous unitary representation of G is a
pair {7, H} where 7 is a homomorphism of G into the group of unitary operators on
the Hilbert space H which is continuous with respect to the weak operator topology
(WOT) on B(#). In this thesis we will refer to continuous unitary representations
of G simply as representations of G.

Important examples of representations of G are {)\s, L>(G)} and {ps, L*(G)} re-
spectively defined by

Xo(s)6(t) = £(s7M) and po(s)E() = A(s)2€(ts), (€ € L*(G), s,t € G).

The representations {\s, L>(G)} and {ps, L?>(G)} are called the left and right regular
representations of G. The conjugation representation {8, L*(G)} may be defined by

Bls) = Xa(s)pa(s), (s € G).

If H is a closed subgroup of G and X = G/H has strongly continuous quasi-

invariant positive regular Borel measure p, then the quasi-regular representation

10
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{Ind§1y, L*(X, p)} is defined by
IndS1y(s)é(zH) = o(a,zH)?&(szH), (s,z € G, £ € L}(X, p).

Two representations {7, %} and {7, K} of G are said to be unitarily equivalent if
there exists a unitary operator U : H — K such that for every s € G, Un(s) = v(s)U.
The set of equivalence classes of unitarily equivalent representations of GG is denoted
by Z(G).

If A is an involutive Banach algebra, a x-representation of A is a pair {m, H} where
H is a Hilbert space and 7 : A — B(#) is a *-homomorphism. A s-representation
{m, H} is called non-degenerate if (m(a)é : a € A, £ € H) is dense in H.

There is a one-to-one correspondence between the representations {n,H} of G

and the x-representations of the measure algebra M(G) given by the formula

(w()¢,m) = /G(W(S)E, m du(s),  (pe M(G), &neH). (2.1)

Restricting equation (2.1) to L!(G) yields a one-to-one correspondence between the
representations of G and the non-degenerate x-representations of L*(G). The induced
representations of {m,H} on L(G) and M(G) given by equation (2.1) will also be
denoted by {7, H}. Now any representation {m, H} of G satisfies

lr(AON < fll (f € LHG)),

so we may define a new norm on L!(G) by

[£lls@) =sup{llr(AIl - {m, H} € 2(@)},  (f € L'(G)).

The completion of (L'(G), || - |lx()) is a C*-algebra called the group C*-algebra of
G and is denoted by C*(G). There is a one-to-one correspondence between the
non-degenerate *-representations of L}(G) and C*(G), and therefore a one-to-one
correspondence between the representations of G and C*(G).

For a representation {m, H} of G, let ker(n) = {z € C*(G) : n(z) = 0} denote
the kernel of 7 in C*(G). A representation {m,H} is said to be weakly contained in

another representation {, K} of G, (and we write 7 < ), if ker(7) Dker(y).

11
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References for the material which follows are [13] and [2], respectively due to P.
Eymard and his student G. Arsac.
If {r,H} € T(G) and £,n € H, then & *,n will denote the coefficient of m defined
by
Exam(s) = (m(s)&m), (s €G).

The set of continuous positive-definite functions on G
P(G)={&*,&: {m, H} € Z(G), £ € H}

corresponds perfectly with the set of positive linear functionals on C*(G) and it
follows that B(G) = (P(G)) may be identified with the dual of C*(G). The pairing

of these spaces satisfies

() = /G fs)u(s) s, (f € I}G), ue B(G)).

It can be seen that B(G) is precisely the set of all coeflicients of representations
{m,H} € (G). With respect to its dual norm and pointwise defined operations,
B(G) is a Banach algebra, called the Fourier-Stieltjes algebra of G. If u € B(G)
is positive-definite, then |jullpe) = ||lullc = u(e). The state space of C*(G) is thus
P (G) ={u€ P(G) : u(e) =1}

Let {m,#} be a representation of G. Let G4 be the group G endowed with the
discrete topology and let 7, be the representation 7 viewed as a representation of Gj.

We will be concerned with the C*-algebras associated to {m,H}
Cr =7(THQ)) P = 1(C*(G)) = C*(G) /kex(r) and Cp,=C:,.

The von Neumann algebra generated by 7 is

wor WoT ——WOoT

=r@i@)y) =0

™

VN = (n(G))
The commutant of a subset £ of B(H) is the set

&' ={B € B(H): BE = EB for everyE € £}.

12
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From the von Neumann bicommutant theorem we also have VN, = n(G)”, the
bicommutant of 7(G) in B(H).
We define

Ap=Earn Eme H) 2@

and let B, denote the w*-closure of A, in B(G). It can be shown that A, may be
identified with the predual (V N, ), of VN, and B; may be identified with the dual
of C;. The pairings satisfy

(u, 7(f)) = /G foyuls) ds,  (f € L}G), ue Ay) (2.2)

and

(), ) = /G fs)u(s) ds,  (f € ING), u € By). (2.3)

The space B, may also be described in the following two ways. If u € P(G), let
{7y, Hu} € Z(G) be the cyclic representation of G associated to u (see [8]), and let

P.={ueP(G):m, 27}

Then P, may be identified with the set of positive linear functionals on C} and

B, = (P;), the linear span of P; in B(G). Also

B, = (Cp)* = (C*(G)/ker(r))* = ker(m)*
= {u€ B(G):z € C*(G) and n(z) = 0 = (z,u) = 0}.

We will call A, the Fourier space associated to the representation {7, H} and we
will refer to B, as the Fourier-Stieltjes space associated to {m,H}. If {)g, L*(G)} is
the left regular representation of G, the space A,, is a closed ideal of B(G), called
the Fourier algebra of G and is usually denoted by A(G). The space B,, is also an
ideal in B(G), often denoted B,(G) and called the reduced Fourier-Stieltjes algebra of
G. The reduced group C*-algebra of G is C7(G) = C%, and the group von Neumann
algebra of G is VN(G) = VNy,.

The following lemma records some elementary facts which will be used in Chapter

5. Each part of the lemma is almost certainly well-known.

13
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Lemma 2.3.1. Let {w,H} be a representation of G.

(1) Ifz € C: C VN, andu € A, C By, then (z,u) = (u,z) where on the left we view
z € CF, v € B; and on the right we view z € VN,, u € A,. That is, the pairing is
unambiguous.

(2) If u=Exxn and f € LY(G), then (n(f),u) = (7 (f),n).

(8) For any u € A, andt € G, (u,w(t)) = u(t).

(4) The set of states on C; is By N P (G) = {u € P, : u(e) = 1}.

(5) The set of normal, (that is w*-continuous) states on VN, is A, N Py (G).

Proof. Part (1) follows from the density of #(L}(G)) in C; and equations (2.2) and
(2.3).

Part (2) follows from equations (2.1) and (2.2).

Part (3) is proved as in the case of the Fourier algebra A(G). We may assume that
u = Ex,7. Let t € G and take a net (f,) in L!(G) such that 7(f,) = 7 (t) o(V N, Ay).
Then we also have 7(f,) — 7 (¢) WOT, so from part (2)

(w,m(®)) = lim{u, 7(fa)) = im(m(fa)¢, n)
= (n(t)¢,m) = u(?).

Parts (4) and (5) are obvious. O

Finally we record the following result due to P. Eymard [14, page 48,49]. Eymard
states the theorem only for quasi-regular representations, but it can readily be seen
that his proof works in the general case. We let 1 denote the trivial representation
of G which is also the constant function 15 : G — C : s = 1. A coefficient of the

form ¢ x, € is called a positive-definite function associated to .

Theorem 2.3.2. Let {n,H} be a representation of G. Then lg =X 7 if and only if
there is a net of positive-definite functions in P,(G) associated to m which converges

uniformly to 1¢ on compact subsets of G.

14
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Chapter 3

Quasi-Central Bounded
Approximate Units in Group
Algebras of Locally Compact
Groups

3.1 Introduction

Let G be a locally compact group. A net (u,) in L(G) is called weakly asymp-
totically central if 6, * ug — U * 8 — 0, (2 € G) where convergence is with re-
spect to the weak topology in L'(G). A net (u,) in L'(G) is called quasi-central
if |p*xue —ua*plli =0, (o€ M(G)). We will use the notation K(e) = {U :
U is a compact neighbourhood of e}.

Locally compact groups G whose group algebras L!(G) possess quasi-central
bounded approximate units (bau) have been studied by several authors; see for exam-
ple [36], [48], [50], [51], [54]. In particular A. Sinclair first asked the question, ‘when
does L'(G) have a quasi-central bounded approximate identity?’ {48, Problem A3.4].
V. Losert and H. Rindler addressed this problem in [36] and among other things, they

showed that the existence of a weak asymptotically central bau in L!(G) is equivalent

15
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to the existence of a quasi-central bau, and that group algebras of amenable groups
always possess quasi-central bau, [36, Theorem 3]. We note that important use of
[36, Theorem 3] was made in the papers [42], [43] and we shall use it extensively in
this thesis. In this chapter we will provide new answers to Sinclair’s question.

In section two we develop an amenability theory in the very general context of a
group action on the predual of a von Neumann algebra. The machinery developed
in section two is used in section three to prove Theorem 3.3.4, which is an analogue
of Reiter’s condition [18, 3.2.1] for groups whose group algebras possess quasi-central
bau. This result includes the converse direction of [36, Theorem 2].

A locally compact group G is called a [SIN]-group (small invariant neighbourhood
group) if there is a base for the neighbourhood system at the identity comprised of
compact sets which are invariant under inner automorphisms. A well-known theorem
due to R. Mosak [37] states that G €[SIN] if and only if L'(G) possesses a central
bau. Moreover every [SIN]-group is unimodular.

In section four we define quasi-[SIN]-groups to be those locally compact groups
for which there is a base for the neighbourhood system at the identity which is
asymptotically invariant under inner automorphisms. We prove the main result of
this chapter, Theorem 3.4.3, which states that G is a quasi-[SIN]-group if and only if
G is unimodular and L!(G) possesses a quasi-central bounded approximate unit.

Applications of this work are discussed in section five. We begin by characteriz-
ing locally compact groups G with group algebras admitting quasi-central bounded
approximate units in terms of the Fourier and Fourier-Stieltjes algebras of G. We
then discuss applications to the cohomology of the Fourier algebra.

Our main application of the results found in this chapter appear in Chapter 4.

3.2 Amenable action on the predual of a W*-algebra

In this section we briefly outline a unified approach under which the standard tech-
niques used to develop the basic theory of amenable groups, up to and including

Reiter’s condition, may be used to develop the theory of several types of amenability.
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We omit most proofs as they may all be adapted from their classical counterparts,
(see for example [18], [39], [40]). In the special case of amenable representations (Ex-
ample 3.2.2 , part (3) below) this theory was developed by M. Bekka [3, Sections 2,
3, and 4], and the details found in this paper may be helpful. For sections three, four,
and five of this chapter we only need up to Lemma 3.2.9 (3) in the special case of
Example 3.2.2 part (2). We have chosen to set our presentation in this more general
context because it is no more difficult to do so and because this approach does not
seem to exist elsewhere in the literature.

Let M be a W*-algebra with predual M,. Let S(M) denote the state space of M,
(M.,)7T the normal states of M. References for Banach G, L!(G), and M(G)-modules
are {24, Chapter 2] and [40, Section 11].

Definition 3.2.1. A locally compact group G will be said to have positive action on
M,, if M, is a left Banach G-module such that

(@) fls- ol < li¢ll, (¢€ M., s€G), and

(ii) s- ¢ € (M,)T whenever s € G, ¢ € (M,)T.

Example 3.2.2. (1) Let M = L®(G), M, = LYG), with
s-f=6xf, (feLYG),s€q).
(2) Let M = L®(G), M., = LYG), with
s-f=06,xfx8-1, (f€LYQ),s€q).
(3) Let {m,H} be a continuous unitary representation of G, M = B(#H) the bounded
linear operators on H, M, = T(#) the trace class operators on #, and define
s-T=n(s)Tn(s™), (T €T(H),s€eQq).

(4) Let G be a locally compact group, H a closed subgroup of G, X = G/H the
left coset space of G modulo H. Let M = L®(X,v), M, = L}(X,v), where v is a

strongly continuous quasi-invariant positive Borel measure on X, (see for example
[14]). Define

s'f:(;s*f) (fELl(XaV)’ SGG)'

17
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(5) Let (M, G, ) be a W*-dynamical system. That is, M is a W*-algebra, G is
a locally compact group, and o : G — Aut(M) is a homomorphism of G into the
group of *-automorphisms of M, such that for each z € M, s — as(z) : G —
(M, (M, M,)) is continuous. Define

s:¢=(2-1)"(¢), (s€G, p€M,),

where (a;)* : M* — M* is the adjoint map of a, : M — M. In fact each of our

first four examples is a special case of this last example.

For the remainder of this section, G is a locally compact group, and M is a
W*-algebra such that G has positive action on M,. Note that M, is a left Banach
M(G)-module (and essential Banach L!(G)-module) through the action defined by

the weak integral

u-¢=/Gs~¢du(S), (6 € M., pe M(G)).

Dual module operations on M and M* are defined in canonical fashion. This next

lemma is often required in the proofs of the statements which follow.

Lemma 3.2.3. Let ey be the identity of M, and let M(G){ denote the set of prob-
ability measures in M(G). The following statements hold:

(1) (M,)f is w*-dense in S(M).

(2) For each p € M(G)T, epm - 1= ep.

(8) (M)T = G- (MJIT = M(G)f - M.

(4) SM) =G - S(M) = M(G){ - S(M).

Proof. (1) This is standard and may be found for example in [49].
(2) Let u € M(G){. Then for any ¢ € (M.)7,

(d)? Em [J,> = (/’l’ ¢’ eM) = /C}'(S ) ¢7 6M) dli(s) =1= <¢7 6M>

because the action of G on M, is positive. But (M,)] separates points of M, so

EM = Epm.

18
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(3) The first equality is obvious. For the second one, note that if p € M(G)T and
¢ € (M,)T, then ||u- ¢}l <1, and from part (2), p-dlem) = dleam - 1) = dlea) = 1.
Hence p - ¢ is a normal state on M.

(4) The dual module actions on M* are w* — w* continuous, so this follows from

parts (1) and (3). O

Definition 3.2.4. We will say that G acts amenably on M, if there exists a state
m on M such that

m(z-s)=m(z), (s€qG, zeM).
The state m will be called a G-invariant mean (G-IM) for the action.
The interpretation of this definition in Example 3.2.2 parts (1)-(4) is as follows:
(1) G acts amenably on M, & G is amenable.
(2) G acts amenably on M, & G is inner amenable.
(3) G acts amenably on M, & {m,H} is amenable [3].
(4) G acts amenably on M, < G acts amenably on X [14].

Definition 3.2.5. An element z € M will be called uniformly continuous if s — z-s:

G — (M, ] - |]) is continuous. Let UC(M) = {z € M : z is uniformly continuous}.

Remarks 3.2.6. (1) For Examples 3.2.2 (1), (3), and (4), we respectively have
UC(M) = Cry(G) as defined in [23], UC(M) = X(H) as defined in [3], and
UC(M) = UCB(X) as defined in [14].

(2) In the case of Example 3.2.2 (2), UC(M) may contain functions which are not
continuous on G. For example if there exists U € K(e) which is invariant under inner
automorphisms (that is if G is an [IN]-group) then it is clear that 1y € UC(M).

(3) UC(M) is always a (|| - ||-closed) right Banach G-submodule of M containing e .
In the case of Example 3.2.2 (5), (and hence in all of our examples), it is easy to see

that UC(M) is a C*-subalgebra of M, (and (UC(M), G, alycmy) is a ‘C*-system’).
Lemma 3.2.7. We always have UC(M) = M - L}(G).
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Definition 3.2.8. A state m on M is called a topological invarient mean (TIM) if
m(z - u) =m(z), (zeM, ue Ll (G))

An element m € UC(M)* such that ||m| = m(enm) = 1 will be called a mean. A
mean m is a TIM on UC(M) if

m(z -u) =m(z), (z€UCM), ue L}G)]).

Lemma 3.2.9. The following statements hold.

(1) If m is a TIM on M (respectively UC(M)), then m is a G-IM on M (respectively
Uc(Mm)).

(2) If m is a G-IM on UC(M), then m is a TIM on UC(M).

(3) If m is a G-IM on UC(M) and u € LY(Q)Y, then my is a TIM on M, where

my(z) == m(z - u), (z € M).

Proposition 3.2.10. The following statéments are equivalent.
(1) G acts amenably on M.,.

(2) There is a TIM on M.

(3) There is a G-IM on UC(M).

(4) There is a TIM on UC(M).

Corollary 3.2.11. The following are equivalent for a locally compact group G.
(1) G is amenable.

(2) Every positive action of G on the predual of a W*-algebra M is amenable.

Proof. (2) = (1) is obvious. For (1) = (2) apply Day’s fixed point theorem [18,
3.3.5] to the natural action of G on the set S of means on UC(M). O

Corollary 3.2.12. The following statements are equivalent.

(1) G acts amenably on M,.
(2) There is a net (¢a) C (M.)T such that ||s- o — ¢a]l = 0, (s €G).
(3) There is a net (¢o) C (M,)T such that |lu- ¢o — dull = 0, (u e LYG)T).
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Proposition 3.2.13. (Reiter’s condition) The following statements are equivalent.

(1) G acts amenably on M..
(2) For any € > 0 and any compact subset K of G there exists ¢ € M, such that

lls-o—9dll<e, (s€K).
(3) There is a net (¢o) C (M.)] such that || - do ~ dall = 0, (1 € M(G)?).

This is precisely Reiter’s condition in each of our Examples 3.2.2 (1)-(4).

3.3 A Reiter Condition

Let G be a locally compact group. Throughout the sequel we will restrict our atten-

tion to the positive action
z-f=8%f %6, (z€G, feL}Q)

of G on L}(G), (Example 3.2.2 (2)). All references to TIM, G-IM, UC(L*®(G)), etc

are with respect to this action. It is easy to see that
we£0) = [ M@ ye) dule) we.y (u€ M(G), € LHG)
and
6-us) = | $(are™) dulo) Tocally sy (ueM(G), ¢€L™(G)

describe the induced M (G)-module and dual M(G)-module operations on L'(G) and

L*(@G) respectively. In particular we have
¢-2(y) = - 6(y) = d(zyz™) (z€G, ¢ € L®(G)).
A mean m on L*®(G) is called inner invariant if
m(¢-z) =m(¢), (¢€L®(G), z€Q)
and is called an extension of the Dirac measure é, (from CB(G) to L®(G)) if

m(¢) =4(e), (¢ €CB(G)).
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In [36, Lemma 3] it is shown that m extends the Dirac measure at e if and only if
m(¢) = m(¢ly) for any ¢ € L*(G), V € K(e), which in turn holds if and only if
m(¢) = 0 for any ¢ € L*®°(G) which vanishes locally a.e on a neighbourhood of e.

The following is contained in {36, Theorem 5].

Lemma 3.3.1. For L'(G) to have a quasi-central bau it is necessary and sufficient

that L°°(@) has an inner invariant mean which extends the Dirac measure at e.

Lemma 3.3.2. If L(G) has a quasi-central bau, then there is a TIM on L®(G)

which extends the Dirac measure at e.

Proof. Direct K(e) by reverse inclusion and consider the bau {¢y : U € K(e)} for
LYG), where ¢y := ﬁlU. Let m be an inner invariant mean for L®(G) extending
de. By Lemma 3.2.9 (2) and (3), my is a TIM for L®(G) where my(¢) = m(y -
dv), (€ L™(G)). Let my be a w*-limit point of (my) in L®(G)*; without loss of
generality assume that my — mgy w*. Clearly my is a TIM on L*°(G). Suppose that
¢ € L°(G) and ¢(z) = 0 locally a.e. on a neighbourhood V of e. By [36, Lemma 3]
we only need to show that mg(¢) = 0. To this end take Uy € K(e) which is symmetric
and satisfies U3 C V. Then for any U C Uy and almost every z € U

1 -
¢ pu(z) = ——/ $lyzy™") dy =0.
Ul Jy
That is, (¢ - ¢v)lv, = 0 a.e. for U C Uy. But m extends &, so

mo(4) = limmu (¢) = limm(@ - u) = Jim m(¢ - dv) =0.

Notation For any U € K(e) let
U(U) := {v € LY(G){ : support(v) C U} N L=(G).

Lemma 3.3.3. Let m be a mean on L®(G) extending .. Then for any U € K(e),
m € U(U) "
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Proof. If not, then by the Hahn-Banach separation theorem we may find f € L®(G)
and € > 0 such that

Re(f,m) > e+ Re(f,v), (ve¥U)).

Letting g = (Ref)1y we have

(©)  {v,9)+e<mlg), (e¥)),

where we have used [36, Lemma 3]. Let a = ess sup{g(z) : z € U} and A = {z €
U:g(z) >a—5} Then |A] > 0 and ¢4 € ¥(U). Observe that if ¢ = g+ alew
then (again by use of [36, Lemma 3])

m(g) = m(gly) = m(g'ly) = m(g') < ess sup(g’) = c.

Hence by (x)
0= <(bng) <m(g)—e<a-¢

a contradiction. O

We may now prove the following version of Reiter’s condition for groups whose
group algebras possess quasi-central bounded approximate units. This may be seen

as an improvement on the converse direction of [36, Theorem 2].

Theorem 3.3.4. Let G be a locally compact group such that L*(G) has a quasi-central
bau. Then for any e > 0, any compact subset K of G, and any compact neighbourhood
U of e there is some u € ¥(U) such that

10z xu* -1 —ully <€, (z€K).
In particular, if L*(G) has a quasi-central bau (ug), then (ug) may be chosen so that
10z % ug — ug * &zl[s — 0

uniformly on compact subsets of G, and for any neighbourhood U of e, there exists

Bo such that ug € U(U) whenever B > [o.
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Proof. Choose a symmetric set V € K(e) such that V® C U. Choose E € K(e) such
that

log *x ¢y — dvlli <€ and ||6; xdy — dv|li <¢, (2 € E).

Take @1, ...,z € K such that K C {Jp_,zxE. For k = 1,...,n let ¢y = &, * ¢x.
Using Lemmas 3.3.2, 3.3.3, and an idea due to Namioka [38, 2.2] one can obtain a net

($a) C (V) such that ||¢p- o — Palli = 0 (6 € LYG)T). In particular, for some «

“¢V * ¢a - ¢0t”1 <€ and “’lﬂk . ¢a - ¢o:”1 < g, (k - 1) ,n)

Let ¢ = ¢v - ¢, that is

8(y) = fﬂ fv A(2)dalz'ya) dz, ae.y.

Then by Lemma 3.2.3 (3), ¢ € L(G){, support(¢) C V3 C U, and it is clear that
¢ € L*(G). Thus ¢ € T(V). '
As in the proof of the classical version of Reiter’s condition [18, 3.2.1] one can

now show that
W0r ¥ % 0p—1 — @l = ||z & — @|l: < Be, (z€K).
O

Remarks 3.3.5. (1) By Lemmas 3.2.9 (1), 3.3.1, and 3.3.2, L'(G) has a quasi-central
bau if and only if there is a TIM on L*(G) extending the Dirac measure at e.
(2) A net (uq) satisfying the convergence property of Theorem 3.3.4 is necessarily a

quasi-central bau. This can be seen by arguing as in [39, 4.3].

3.4 The Main Theorem

We begin with a definition.

Definition 3.4.1. A net (U,) of measurable subsets of G with 0 < |U,| < co will be
called asymptotically inveriant (under inner automorphisms) if

|zUqy A Uyx)

A — 0, (z € G).
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We will call G a quasi-[SIN]-group if it possesses an asymptotically invariant net

(Ua) C K(e) which comprises a base for the neighbourhood system at e.

We remark that in [1], a [QSIN]-group (standing for quasi-[SIN}-group) is de-
fined to be any locally compact group whose group algebra has a quasi-central bau.

Theorem 3.4.3 shows that our definitions do not quite coincide.

Lemma 3.4.2. If G possesses an asymptotically invariant net of subsets, then G is

unimodular.

Proof. For each z € G and each «,

Uyx 1
———IIU ll = ———-W I[IUax\anl + |zUq| — |2Us\Uazl]
Q o

Uez\2Us|  |3Us\Uaz|
|Uel |Ua

Alz)

I

1+

Taking the limit of the final term of the above equation we obtain A(z) = 1 for each

z €G. O

Theorem 3.4.3. The following are equivalent for a locally compact group G.
(1) G is unimodular and L*(G) has a quasi-central bau.

(2) There exists a net (Uy) C K(e) comprising a base for the neighbourhood system

at e such that
lzUqy A Uyz|
Vel
uniformly on compact subsets of G. The sets U, may be chosen to be symmetric.

(8) G is a quasi-[SIN]-group.

-0

(4) L*(G) has a quasi-central bau comprised of normalized characteristic functions

(of compact symmetric neighbourhoods of the identity).

Note that unimodularity does not follow from the existence of a a quasi-central
bau alone. Indeed the group algebra of any amenable group has a quasi-central bau
[36, Theorem 3].

Proof. (1) = (2) We begin by proving some lemmas, in which we assume that con-

dition (1) is satisfied and U € K(e) is fized. If v is a function on G, ¥(z) = v(z71).
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Lemma 3.4.4. There is a net (¢o) C ¥(U) N Coo(G) such that for each a, ||pa)lco =
dal€), ?i;; = @, and ||0; * ¢o — g * 0zl|1 — O uniformly on compact subsets of G.

Proof. Let V € K(e) be symmetric and such that V2 ¢ U. Using Theorem 3.3.4
choose a net (vq) C ¥(V) such that ||0; * Vg — Vg * 6z||1 — O uniformly on compacta.
Let ¢ = vo*Uq. It is then easy to see that for each o, ¢ € ¥(U), ||dalloc = dale) (for
example ¢, is positive definite), 5; = ¢a, and because ¥ (V) C L*(G), ¢ € Coo(G).
Finally

”531 * ¢a - ¢a * 5:::”1

IA

10z * Vo * Uy — Vg * Oz * Ug||1 + ||Ve * Oz % Vg — Vo * Vg * 6|1

< |0z * va — Vo * Ozll1 + (Ve ¥ Sp-1 — Sp-1 xve) |1

”6z * Vg — Vg ¥ 62:”1 + ”'Ua * Og-1 — Op1 % Ua”l

from which the uniform convergence on compacta follows. We note that unimodu-

larity was used in this proof. O

Notation We denote the convex hull of a subset S of a linear space by co(S). Let
®(U) = co{dx : K C U, K a compact symmetric neighbourhood of e}.

Lemma 3.4.5. There is a net (¢g) C ®(U) such that ||0; * ¢ — ¢g * 6z]l1 — 0

uniformly on compact subsets of G.

Proof. Let (¢,) be a net as in Lemma 3.44 and fiz a. As ¢, € V(U) N Coo(G),
loalloo = dole), and o = ¢a, it follows that for each positive integer n, and each
k=01,..n—1

k
={z €U : ¢o(z) > R%(e)}
is a compact symmetric neighbourhood of e. Note that A% ; C ... C A =U. Let

1

: 3 ¢a(e)1Az.
k=0 n
Then
= bale)
an 1T o = A 2 .
Pan = - n¢’ 2 Aubag, where = Cpp |4
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Observe that el -1
S =3 [ g = leusl =1
P k=0 “G
50 (o € B(U). Now it is not difficult to see that [|¢a — ¢ nlleo < 222, 50
Pale)

n

”¢a - ¢Ia,n“1 <

|U| — 0 as n — oo.

Therefore limn_ool|#hnll1 = ||¢allt = 1 and it follows that limyeoll$a — Panlls = 0.
Let F = {(¢,K) : ¢ > 0, K C G is compact}. For each 8 = (¢, K) € F take ¢, such
that |0z * @a — ¢a * 651 < §, and take n such that ||@q — @anlli < §. Then letting
bp = Pan, we have |0, x ¢g — ¢g* &5|l1 < ¢, (z € K). Thus (dp)ser is the net we

want. ]

Observe that in establishing Lemma 3.4.5, we showed that each ¢3 may be written

in the form

(*)  ds= Mbas,
k=1
where each Ay > 0, > 7 Ax =1,and U D A; D A3 D ... D A, with each set A a
compact symmetric neighbourhood of e.
Lemma 3.4.6. Let ¢ € ®(U) be written in the form (x). Then

‘.’EAk JAN Akw|

A , (ze@).

625 —d*balli = M
k=1

Proof. This is similar to the proof of [38, 3.3]. For any Borel measurableset 4, z € G,

mp iy €zA\Az
(0 * da — da % 6;)(y) = I:l if ye Az\zA

0 otherwise.

Thus, noting that the sets y_; zAx\Axz, Us-; Axz\z A, are disjoint, it is clear that
P = {y : (5x * ¢ - ¢ * 5:1:)(3/) > O} = UZ:l(xAk\Ak'T)a and
N={y: (0 *¢—¢*d)(y) <0} = gy (Arz\zAs).
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Hence

losd—dxbal = 3 Ml / (5 * B — b, + 82) () dy
k=1 P

- / (6e * e — bag * 8)(v) ]
N

k—1 zAR\Arz | Akl Apz\zAp | Al

_ Zx\ IIEAk A Akiﬂl
A

We note that unimodularity was used in this proof. O

We can now prove (1) => (2) of the theorem:

Let 7= {(¢, K,U) : ¢ > 0, K C G is compact, U € K(e)}. It suffices to prove that
the following statement holds:

(1) For every (¢, K,U) € T there is a compact symmetric neighbourhood A of e such

that A C U and
lzA A Az| <e
4] ’
This will be established from Lemmas 3.4.5 and 3.4.6 by use of an argument similar

(z € K).

to the usual proof of the classical Fglner condition as found for example in [18, 3.6.2,
3.6.4]. We first show that the statement (1*) holds:

(1*) For every (¢, K,U) € T, and every § > 0, there is a compact symmetric neigh-
bourhood A of e with A C U and a measurable set N C K with |[N| < 6 such

that
|lzA A Az|
|A]
To see this let (¢, K,U) € T, § > 0 and choose ¢ € ®(U) such that for all z € K,

<e¢ (z € K\N).

10z %p—d#bz|l1 < T% If we write ¢ in the form (*), and then integrate the continuous

function £ > ||0; * ¢ — ¢ * 0;]|1 over K we obtain

n

A

Yo [ ER LA g s
k|4

As 37, Ax = 1 and each A, > 0 we must have

/ lzA A Az p
K
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for some A = Ag. Letting N = {z € K : j—”—”‘%—‘ﬁ%—“—”—l > €}, the sets A and N satisfy (1*)
for (¢, K,U) € T and §. We will now show that (1*) = (1). Given (¢, K,U) € T,
apply (1*) to the triple (£, L = KUK?,U) € T and § = }|K| to obtain sets A and N.
Let M = L\N. Observe that for any k € K, kLNL C (kMNM)U(I\M)U(KI\EM);

also kK C kLN L, so |kLNL| > |K|. Therefore
26 = |K| < |[kM N M| +2|N| < |kM N M| + 26,

whence kM N M #0, (k€ K). Thus K C MM™!. But for any z,y € M = L\N,

lzy~tA A Azy™Y
|4]

= ||0g % 0y-1 % P4 — Pa * 0y * by ]|1

< |0z * (By-1 % da — da* dy-1)|l1 + ||(0z * pa — da * 0z) * Gy l1
Ay A yA| + |zA A Ax| <e
| Al |A] '

I

(2) = (3) is obvious.

(3) = (1) Let (U,) be an asymptotically invariant base for the neighbourhood system
at e, and consider the net of normalized characteristic functions ¢, = ¢y, . By Lemma
3.4.2, G is unimodular so ||0; * ¢g — Po * &z|l1 = M%%Lliﬂ which converges to zero.
Hence (4, ) is an asymptotically central bau and so, by [36, Theorem 2], L!(G) has a
quasi-central bounded approximate unit.

(2) = (4) This follows from Remark 3.3.5(2) and the argument used in (3) = (1)
(4) = (1) Let (¢y,) be such a bau. By Lemma 3.4.2 we only need to show that the

net (U, ) is asymptotically invariant. Observe that

1 1
162 60 = b, 38l = 7 [ Maa®) = grzlon)l
lea\an|+|1_ 1 ||mUaﬂUax|+ 1 |Uux\zU,|
O] N C L A EANE R A

As ||6; % by, — v, *6z||1 —> 0 and the modular function A is always positive (nonzero),

it follows that for each z € G

lzU\U, | |Upz\zU,|
———— 30 and ———— = 0.
|Ua| |Ual
Hence (U, ) is asymptotically invariant. O
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Remarks 3.4.7. (1) In the proof of (4) = (1) we only needed ||6, *@y, — dv, *6z|l1 —
0, (z € G) and [36, Theorem 2].

(2) By Remark 3.3.5(2) the nets of Lemmas 3.4.4 and 3.4.5 are necessarily quasi-
central bau. Hence the existence of such nets in the group algebra of a unimodular
group also characterize quasi-[SIN]-groups.

(3) If G is o-compact and first countable (ie metrizable) then the net in part (2) of
Theorem 3.4.3 may be taken to be a sequence.

(4) In [16], the authors define two generalizations of [SIN]-groups, and show that for
such groups the so-called inner derivation problem for L!(G) has a positive solution.
It would be interesting to determine the relationship between their [WSIN]; and
[WSIN],-groups and our quasi-[SIN]-groups. If it could be shown that quasi-[SIN]-
groups are [WSIN];-groups, then combined with [36, Theorem 3] such a result would
answer the question [16, 8.2(ii)]. _

(5) The following statement can be proved by use of Proposition 3.2.13, [38, 3.1,
Lemma 3.4.2, and the arguments used in the proofs of Lemma 3.4.6 and Theorem

3.4.3, implications (1) = (2) and (4) = (1):

Proposition 3.4.8. The following are equivalent for a locally compact group G.

(1) G is inner amenable (defined in the second section of this chapter) and unimod-
ular.

(2) The following Fplner-type condition is satisfied:

For every ¢ > 0 and every compact subset K of G, there is a compact subset A of G

such that
lzA A Az <e
|A| ’

(8) G has an asymptotically-invariant net of subsets.

(z € K).

(4) There is a net of normalized characteristic functions (¢a,) in L'(G) such that

|62 % day — day * )l — 0, (z € G), (or uniformly on compacta of G).
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3.5 Applications

In this section we characterize locally compact groups whose group algebras possess
quasi-central bounded approximate units in terms of the Fourier and Fourier-Stieltjes
algebras. We then present an application of our work to the cohomology of the
Fourier algebra. In the next chapter we will exhibit cohomological applications to

group algebras.

The Fourier and Fourier-Stieltjes algebras of G are denoted by A(G) and B(G) re-
spectively [13], (also see section three of Chapter 2). Let {)a, L?(G)} and {ps, L*(G)}
respectively denote the left and right regular representations of G. Then the conju-
gation representation {83, L?(G)} of G is defined by B(s) = Ag(s)p2(s), (s € G). For
¢ € L*(G) we will denote the coefficient £ x5 £ of & with respect to 8 by eg. That is,

eg(s) = (B(s)§,£), (s € G).

Note that by definition, any e € B(G). Let (f,) be a net of complex-valued functions
on G. We will write support(f,) — {e} if for each neighbourhood U of e, there is
some g such that support(f,) C U whenever o > . The following result describes

when L'(G) has a quasi-central bau in terms of A(G) and B(G).

Proposition 3.5.1. The following are equivalent for a locally compact group G.
(1) LY(G) has a quasi-central bounded approzimate unit.

(2) There ezists a net (&,) in L2(G)} such that support(€,) — {e}, and
lveg, — vlla) =0, (v € AG)).

Proof. (1) = (2) Let (u,) be a quasi-central bau for L*(G) as described in Theorem
3.34. Let &, = ug. Then (&,) € LAHG){, support(&,) — {e}, and by a standard
inequality, (see for example [45, Exercise 4.4.5)), [|8(8)€a — Eall2 < |10z * Ua — Ug * 62|
which converges to 0 uniformly on compact subsets of G. It follows that e;, — 1

uniformly on compact subsets of G. The conclusion is now a consequence of [17,
Theorem B2].
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(2) = (1) Let (&,) be a net as described in statement (2). Let K be any compact
subset of G and choose v € A(G) so that v is identically 1 on K. Then

sup{leg, () — 1] : s € K} < |lveg, — vllace = 0.
Observe that
18(s)éa — &all3 = 2|1 — Re(B(5)a, )| < 2/1 — g, (s)],

s0 ||B8(8)&x — &all2 — 0 uniformly on compact subsets of G. Now let u, = £2. Then
(ua) € LYG){ and support(uy) — {e}, so (u,) is a bounded approximate identity
for L'(G). Moreover by a standard inequality

102 % o ~ ug * 8l = [(B(2)€a)* ~ (6a)*llr < 41B(2)éa — Ealla = 0
uniformly on compact subsets of G. O

In [42] Z.-J. Ruan proved that a locally compact group G is amenable precisely
when its associated Fourier algebra A(G) is operator amenable. We will now indicate
how Theorem 3.3.4 allows for a simplification of Ruan’s proof. References for the
terminology used below are [42] and [45].

The operator projective tensor product A(G)®A(G) can be identified with A(G x
G) through the identity

(u ® v)(s,t) = u(s)v(t), (u,v € A(G), s,t €G).
Doing this, A(G x G) has canonical operator A(G)-bimodule operations defined by
(w-w)(s,t) =u(s)w(s,t) and (w-u)(s,t) = w(s,t)u(t),
where w € A(G x G), u € A(G), and s,t € G. The multiplication operator
II: A(Gx G) = A(G)

is given by restricting functions in A(G x G) to the diagonal {(s,s) : s € G}. In
an obvious way one can extend these module operations on A(G x G) to module

operations on B(G x G), and one can extend II to a map II: B(G x G) — B(G).
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It is easy to see that {v, L%(G)} defines a continuous unitary representation of
G x G where y(s,t) 1= Ay(s)p2(t). For & € L%(G) we denote the coefficient £ x, £ of
€ with respect to vy by m,. That is,

me(s,t) = (v(s,0)€,€), (s,t) € @xG.

Proposition 3.5.2. The following are egquivalent for a locally compact group G.
(1) LX(G) has a quasi-central bounded approzimate unit.
(2) There is a net (&) in L2(G)} with support(£,) — {e} such that

() Nlu-me, —mg, 'UHB(GxG) — 0 and |[ull(mg,) — ullp@ — 0, (v€ A(@)).
Define W € B(L*(G x G)) by
WE(s, t) = &(s, st), (e I*(Gx @), (s,t) € G xG).

In [42] it is shown that when G is amenable, there is a net (&) C L*(G)7 such
that (me,) satisfies the condition (*). A major part of the proof of this fact is
the following nontrivial lemma which is proved for amenable groups in [42]. As
stated below the following is [45, Lemma 7.4.2] where V. Runde observed that the

amenability condition may be dropped.

Lemma 3.5.3. Let G be a locally compact group and suppose that there is a net of
unit vectors (£,) in L*(G) such that

W(a®n) ~ (E@n)llz—0, (ne€L*G))

and
(s, 8)éa — Eallz = O

uniformly on compact subsets of G. Then the net (mg,) in B(GXG) satisfies condition

(x) of Proposition 38.5.2.

We will now show how the existence of a net (&,) as described in Lemma 3.5.3

follows easily from our Theorem 3.3.4.
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Proof of Proposition 8.5.2. (1) = (2) Let (u,) be a net as described in Theorem
3.3.4 and let &, := ué As shown in the proof of Proposition 3.5.1, (¢,) C L*(G)T,
support(£,) — {e} and ||7(s, 8)a —&all2 = ||B(8)€s — Eall2 — O uniformly on compact
subsets of G. Now let n € L?(G) be arbitrary. Let U be a symmetric neighbourhood of
e such that ||A2(s)n—nll2 < € whenever s € U, and take o such that support(§,) C U

whenever o > ag. Then for o > ay

Wi on - @onlt = [[lals)nls) - ne)P dsds
- [ £()dals™ ) — nll2 ds < &

(2) = (1) Observe that IImg, (s) = e (s), (s € G). Now the implication follows
from Proposition 3.5.1. O

Remarks 3.5.4. (1) Using [36, Theorem 3] Ruan proved that when G is amenable
one can construct a net (£,) as described in Lemma 3.5.3. To accomplish this, Ruan
required Losert and Rindler’s ezplicit construction of a quasi-central bau for L}(G)
from the Reiter condition characterizing amenable locally compact groups.

(2) By [36, Theorem 3], condition (2) of Proposition 3.5.2 is satisfied when G is
amenable. That amenability combined with condition (2) of Proposition 3.5.2 implies
that A(G) is operator amenable follows very easily from Leptin’s theorem [34]. The

details are found in [42, Lemma 3.1].
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Chapter 4

Fg¢lner Conditions for Amenable

Group and Semigroup Algebras

4.1 Introduction

Amenable Banach algebras were introduced by B.E. Johnson in [24] where he proved
that a locally compact group G is amenable if and only if its associated group algebra
L'(G) is amenable, (Johnson’s Theorem). Shortly thereafter, Johnson proved his
fundamental characterization of amenable Banach algebras in terms of the existence
of virtual and approximate diagonals [25]. Virtual diagonals are often said to play
the role in the theory of amenable Banach algebras that invariant means play in the
theory of amenable groups.

In this chapter we will study the exact relationship between the classical invariance
properties possessed by amenable locally compact groups and the virtual/approximate
diagonal invariance properties of their amenable group algebras. We will also address
the problem of determining which discrete semigroups carry amenable semigroup
algebras. The deepest of the invariance properties characterizing amenable locally
compact groups are the combinatorial Fglner conditions, which have also proven to
be interesting and useful in the study of amenable semigroups [18], [38], [39], [40],

[53]. We will establish Fglner-type conditions characterizing discrete semigroups and
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locally compact groups whose associated L'—algebras are 1-amenable. Thus one of
our purposes here is to give internal properties of semigroups and locally compact
groups which reflect the Banach algebra amenability of their associated L!—algebras.

In section two we investigate the relationship between the invariance properties
of amenable locally compact groups and the virtual/approximate diagonal invari-
ance properties of their amenable group algebras. Using Reiter’s condition and the
existence of a strong form of quasi-central bau for L'(G) (guaranteed by [36] and
Theorem 3.3.4) we are able to explicitly write down a formula which gives a strong
form of approximate diagonal for L*(G), (Theorem 4.2.9). Moreover we directly
show that weaker forms of approximate diagonals for L'(G) are sufficient for G to be
amenable, (Theorem 4.2.2, Proposition 4.2.4). From the existence of an approximate
diagonal of norm one, we show how to construct a net converging to topological in-
variance, (Corollary 4.2.3). Corollary 4212isa formulation of our results in terms
of compactly-invariant and measure-invariant approximate diagonals, (see Definition
4.2.6). One immediate consequence of this work is a new proof of Johnson’s theorem
given entirely in terms of approximate diagonals.

The results given in section two set the groundwork for section three in which we
derive our Fglner conditions. We begin by interpreting Corollary 4.2.12 as a Reiter
condition for amenable group algebras and use it to derive Fglner conditions (F)
and (Fy) for unimodular amenable locally compact groups. Theorem 4.3.6 combines
Theorem 3.4.3 with (FC) to obtain structural properties (Ay), (By), and (Cy) for
unimodular amenable groups. Theorem 4.3.7 shows that each of our properties (F),
(Fy), (Ay), (By), and (Cy) is a ‘correct’ Fglner condition reflecting the amenability of
LY(G) in the sense that each one yields a (compactly-invariant) approximate diagonal
for L'(G) comprised of normalized characteristic functions of subsets of G' x G.

It is well known that if S is a semigroup, then amenability of the semigroup
algebra ['(S) implies the amenability of S. However, unlike the case in which §
is a group, the converse does not hold. The articles [9], [10], [12], [19], [20] and

[32] have addressed the problem of describing, in terms of the internal structure of
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the semigroup itself, those semigroups carrying amenable semigroup algebras. These
papers show that amenability of I*(S) imposes very strong conditions on S, especially
when additional algebraic conditions are placed upon the semigroup S. Indeed when
I*(S) is amenable, it can be said that S is ‘close’ to a group. For a survey of what is
known to date, see [21]. In section four, we show that for a discrete semigroup S, I*(S)
is 1-amenable if and only if S is an amenable group. Moreover we provide a Fglner-

type condition which, with no extraneous conditions placed upon S, characterizes
1-amenability of I*(.9).

4.2 Virtual and approximate diagonals for group

algebras

In this section we will begin our investigation of the relationship between the clas-
sical invariance properties of amenable locally compact groups and the approxi-
mate/virtual diagonals possessed by their associated amenable group algebras. For
certain discrete semigroups this relationship was considered in [9].

Throughout, G will again denote a locally compact group with left Haar measure
A, modular function A, and identity e. Recall that A x A is a Haar measure, and
(z,y) = A(2)A(y), (z,y) € G x G, is the associated modular function, on G x G.
We will denote the Haar measure of a Borel subset A of either G or G x G, by |A|.
As usual, L'(G x G) and LY(G)®L'(G) are identified through

(h®k)(z,y) = Mz)k(y), (hke L'Y(G), =,y €q).

References for Banach G, L'(G), and M(G)-modules are Chapter two of [24] and

section eleven of [40]. The following dual-module and M (G)-module operations are

easily verified.

The space L!(G X G) becomes an essential Banach L}(G)-module with operations
defined through

f-(h@k)=(f+xh)®k (h®k)-f=h®((k=xf), Mk feLYG)).
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The corresponding M(G)-module operations are given by

p-(h@k)=(uxh)®k, (h®@k)-u=h®(kxp), (hkeL'(G),nec M(G)).
Thus L(G x G) has Banach G-module operations
a-m(z,y) = m(a™z,y), m-a(z,y) = Ale™)m(z,ya™), (meL'(GxG),acq).

Now

a - qs — T(e,a)¢ and ¢ Q= l(a,e)¢, (a, € G, ¢ € LOO(G X G))

define the dual G-module structure of L®(G x G). As usual the group algebra L!(G)

is often viewed as a Banach G-module through the operations
t-f=6+f and f-z=f*6, (fe€LYG), z€q).

Let 7 : LY(G x G) — L*(G) be the multiplication operator, 7* : L*(G) —
L®(G x G) its adjoint map. Let p: G x G = G : (s,t) > st.

Lemma 4.2.1. (1) For any ¢ € L®(G), n*(¢) = ¢ o p.

(2) m maps LY(G x G)T into L}(G)T, and 7 maps the set of means on L®(G x G)
into the set of means on L*(G).

(3) If (m") C LY(G x G) is an approzimate diagonal for L*(G), then lim(lgxg, m?) =
1.

Proof. (1) Let h,k € L}(G), ¢ € L(G). Then
(h@k'd) = (h+k,¢) = / h(s)k(t)g(st)dtds = (h @ k, 6 o p).

(2) Note that ||r]] = 1 and from part (1) 7*(1g) = lgxg. Therefore, if f € L*(G x
AT, Im(Hll €1 and (g, 7(f)) = {lgxe, f) = 1 whence m(f) is a normal state on
L>(G); that is 7(f) € L'(G)T. The second statement follows from the w*-continuity
of 7** and the w*-density of the normal states within the state space of a von Neumann

algebra.
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(3) Let (m") be an approximate diagonal for L}(G). If f € LY(G){, observe that

(9,f - 1le) = (g* f,1e) = (g, 1a){f, 1e) = {9,1c), (g € L}@)), s0 f-1g = le.
Therefore

hm(lGxg, ’mﬂ) = lim<ﬂ'*(lg), m7) = hm(f . 1(;, 7r(m7))

= lim(lg,7(m") * f) = (1g, f) = 1.
(W

We will now show that for G to be amenable, it is sufficient that there exist
weaker forms of virtual and approximate diagonals for L!(G). First we introduce
some notation. For ¢ € L®(G), define ¢(s,t) = ¢(s), (s,t) € G x G. Then it is a
simple matter to see that ¢ — ¢F : L®°(G) — L*®(G X G) is linear and isometric. For
m € L}(G x G) we define g,, € L*(G)* by

(6, 9m) = (¢',m), (6 € L®(G)).

Observe that the map m + g,, is linear and contractive. We note here that the proof

of the next theorem will show that g,, belongs to L'(G).

Theorem 4.2.2. The following are equivalent for a locally compact group G.

(1) G is amenable.

(2) There exists M € L®°(G x G)* such that M(lgxg) = 1 and f- M = M - f,
(f € LXG)).

(3) There erists a bounded net (m”) C L*(G x G) such that lim{m",lgxg) = 1 and
If-m? =m?- flp =0, (fe€LYQ)).

The functional M in statement (2) may be chosen to be a mean, and the net (m”) in

statement (3) may be chosen from L'(G x G)T.

Proof. (2) < (3) The argument used to prove [38, Theorem 2.2] yields this equiva-

lence.
(1) = (3) A stronger result will be proved in Theorem 4.2.9.
(38) = (1) Let m € L}Y(G x G) and let g = g,. We claim that g € L*(G). By the

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Krein-Smulyan theorem it suffices to show that ¢ is w*-continuous on the unit ball
of L®(G). So suppose that ¢, — ¢ o(L*®(G), L}(G)), with (¢,) bounded by 1 in
L®(G). If m = h®k with h, k € L}(G), then

(ba = 6,9) = ($h— ) = Ga— 0,10 [ KO >0, (1)

By linearity, density, and the assumption that (¢,) is bounded, (}) now holds for
general m € LY(G x G). Thus g € L*(G) as claimed.
We now show that for any f € L}(@)7 and ¢ € L®(G),

@) (¢',m- f)={(g,9) and (ii) (¢" f-m)=(o,f*9g).

We may suppose that m = h®k, h,k € L'(G). Equation (i) is then an easy calcula-
tion. To establish equation (ii), we first define ¥ € L=(G) by ¥(t) = [ ¢(st)f(s)ds,
(t € G). Viewing f,g, and h as elements of M(G) we have

@fx0) = [[onre)etdsdt = .90 = Whm)
f / b(s)h(s)k(t)dsdt = / / 6(rs) £ (r)h(s)k(£)drdsdt

= /(¢, [ *hYk(t)dt = / ¢ (s, t)(f * h ® k)(s,t)dsdt
= (¢ﬁ7fm>

Suppose now that (m?) is as in statement (3) of the theorem and let g, = gmn.

Then for any f € LYG)T,

If *9y = galls = sup{[{8,f*gy—gy)|: ¢ € L(G) and ||¢||co < 1}
= sup{{{¢’,f-m" —m"- f)]: ¢ € L%(G) and [|¢llw < 1}
< Jfem”=m7-fl
which converges to 0. Let n be a w*-limit point of (g,); assume without loss of
generality that g, — n w*. Then n(lg) = lim(lg, g,) = lim{lgxg, m”) =1, so n is
non-zero. Moreover, if we fix f € L}(G)T, then for any z € G and any ¢ € L®(G),
n(ly¢) = lim{le@, gy) = lim(lad, f * gy) = lm($, &5 * [ * g,) = lim(¢, gy) = n(9).

Thus n € L®(G)* is non-zero and left-invariant from which it follows that G is

amenable. O
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Observe that it follows from part (3) of Lemma 4.2.1 that any approximate di-
agonal for L'(G) satisfies the properties of the net described in part (3) of Theorem
4.2.2. In the course of the proof of Theorem 4.2.2, the following fact emerged.

Corollary 4.2.3. Suppose that G is an amenable locally compact group with a net
(m") as described in Theorem 4.2.2 part (8). Let g4 = gm». Then for every f €
LMG)T, we have || fxg,—g,|l1 = 0. Thus, if (m?) C L*(GxG)T, then(g,) C LY (G)Y

s a net converging to topological invariance.

With respect to the G-module action on L!(G x G) we have the following propo-

sition.

Proposition 4.2.4. The following are equivalent for a locally compact group G.

(1) G is amenable.

(2) There exists a mean M € L*°(G x G)* such thatz- M =M -z, (z € G).

(8) There ezists a non-zero element M € L®(G x G)* such that x- M = M - z,
(z € G).

(4) There exists a net (m?) C L*(G x G){ such that ||z-m? —m7-z||; = 0, (z € G).

Proof. (1) = (2) If G is amenable, then so is G X G. Any two-sided invariant mean
M on L®(G x G) satisfies z- M = M -z, (z € G).

(2) => (1) Take M as in condition (2). Then m(¢) := M ("), (¢ € L®(G)) defines a
mean on L®(G). Moreover, for any ¢ € L®(G) and any a € G, m(l,9) = M((L,¢)") =
M(¢*-a) = M(a-¢") = M(¢") = m(¢), soc m is a left invariant mean on L®(G).

(2) = (3) is obvious.

(3) = (2) It is easy to see that we may suppose that M is self-adjoint. Let M have
Jordan decomposition M = M — M~. Now the G-module operations are isometric
and preserve positivity in L®(G x G)*, so it follows from the uniqueness of the Jordan

decompositionsof z-M and M-z that z- MT = M*-zandz- M~ =M~ -xz. UM™*T #0

(say) then M’ = gr—sM™* is a mean on L®(G x G) such that z- M' = M' - z.

(2) & (4) The argument from [38, Theorem 2.2] yields the equivalence of (2) and

(4). O
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Remarks 4.2.5. Proposition 4.2.4 also holds for any discrete semigroup. In this
situation, (2) = (1) is [9, Lemma 3], and for inverse semigroups (1) = (2) is [9,
Lemma 4]. If S has an identity, our argument above proves (1) = (2), however for an
arbitrary semigroup, the implication may still be obtained using an argument similar

to that of [23, 17.18 (b)].

Let GG be a locally compact group. In terms of the dual module action of G on
L*°(G) which was introduced at the beginning of this chapter, a mean m on L*(G)
is inner invariant if m(z - ¢ - z7t) = m(@), (¢ € L®(G), z € G). As well, recall
from Chapter 3 that m is called an extension of the Dirac measure 6§, (from CB(G)

to L*(G)) if m(¢) = ¢(e), (¢ € CB(G)).

Definition 4.2.6. We will say that an approximate diagonal (m?) C L*(G x G)7
is compactly-invariant [respectively measﬁre-invam’ant] iflz-m"—m"- -zl - 0
uniformly on compact subsets of G, [respectively || -mY —m? - ply = 0, (¢ €
M(G))]. A virtual diagonal M for L'(G) is measure-invariant if M is a mean and

p-M=M-p, (peM(@G)).
The following proposition contains some simple observations.

Proposition 4.2.7. (1) Let (m") be an approzimate diagonal for L*(G). If (m?) is
compactly-invariant, then (m?) is measure-invariant, and (w(m?)) is a quasi-central
bau contained in LY(G)Y such that ||6; * m1(m?) — w(m?) * &;||y — 0 uniformly on
compact subsets of G. If (m?) is measure-invariant, then (w(m?)) is a quasi-central
bau in LYG).

(2) Let M be a measure-invariant virtual diagonal for LY(G). Then 7*M is an

inner-invariant mean on L*®°(G) which extends the Dirac measure at e.

Proof. (1) f m € L}Y(G x G) and p € M(G), then by [24, 2.1] x-m and m - p are

given by the weak integrals

/.L-m——-/t-md,u(t) m-uz/m-tdu(t).
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We may suppose that g has compact support C. Then for ¢ € L®(G x G) and
m € L'(G x Q),

K@wm~mwﬂ=|f%vm—mﬁw@|

ﬂﬂMan-m¢MWM®
< N@lloollulisup{llt - m — m- ] : £ € C}.

IA

Therefore if (m?) is compactly-invariant, {|g-m”—m?7-pll; < ||pllsup{|lt-m” —m7-¢||; :
t € C}, which converges to zero. The balance of (1) now follows from Lemma 4.2.1
and the fact that 7 is an M(G)-module morphism.

(2) The fact that 7**(M) is a mean is from Lemma 4.2.1. Now #** is an M(G)-
module morphism so 7**(M) is inner-invariant; as 7**(M) is a weak*-limit point of

a bounded approximate unit, it extends the Dirac measure at e, [36]. O

We will need some facts which we summarize in the following theorem; part one

is [36, Theorem 3], part two is just a restatement of Theorem 3.3.4.

Theorem 4.2.8. Let G be a locally compact group.

(1) If G is amenable, then L'(G) has a quasi-central bounded approzimate unit.

(2) Suppose that L'(G) has a quasi-central bau (eg). Then (eg) may be chosen so
that (eg) C LY(G)T, |02 * eg — eg * 8,]|1 — O uniformly on compact subsets of G, and
for any neighbourhood U of e, there exists Sy such that support(eg) C U whenever
B = Bo.

We will now show how to construct a compactly-invariant approximate diagonal
for L'(G) from Reiter’s condition for amenable groups and a quasi-central bau as
described in the above theorem. We remark that on page 319 of [7] it is incorrectly
stated that when G is an amenable locally compact group, one can construct a virtual

diagonal for L}(G) as follows: Letting m be an invariant mean on L*®(G), define

M(h) = /G B, dm(), (e I®G x G)),
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where the formal integral represents the action of m on the function ¢ — h(t,t71).
However unless G is discrete, the set {(¢,t™!) : t € G} may have measure zero so the

map M is not well-defined.

Theorem 4.2.9. Let G be an amenable locally compact group. Let (f,) C LYG)F
be a net such that |0y * fo — falli — O uniformly on compact subsets of G. Let
(eg) C LYG)T be o quasi-central bau for L'(G) as in Theorem 4.2.8 (2). For each
v = (a, B), define

mY(s,t) = fo(s)es(st), (s,t) € GxG.

Then (m") is a compactly-invariant approzimate diagonal for L*(G) contained in

LYG x G)T.

Proof. Tt is easy to see that (m?) C L(G x G)f. Observe that for any z € G and
any (s,t) € G x G,

z-m(s,t) =m"(s7's,t) = falz 7 s)es(z7 st) = &y x fa(s)0z * e5(st),

and

m7 - a(s,8) = Alr)m (s, ta™) = fa(s)ep * &5(st).
Therefore
fo-mt = mall = [ [ 1625 falo)bex ealst) = fals)es ¢ ulst) dtds
= [ [ 182+ £a(5)82 x ealt) = fals)ea x 5.8 dtds
< [[ 165 £a(6) = a0l 4 eatyitds

n / Fa(8)160 * 5(2) — €5 % 5, (8)|dtds
= |16z % fo— falli + ||0c xeg —eg % 8{|1 = O

uniformly on compact subsets of G.
Now by Lemma 4.2.1 (2), 7#(m”) C L}Y(G)T. Let U be any neighbourhood of e
and take By such that support(eg) C U whenever 8 = fy. Fix ay, let v = (oo, fo),
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and suppose that v > vo. Then support(m?) C p~*(U), so by Lemma 4.2.1 (1)
[, mE@E = 100 = 1w o
U
- / m(s,8) g o p(s, 1)d(s, £) = 0.
p~H{U)

It follows that m(m?) = 0 a.e on G\U. Hence (m(m7)) is a (quasi-central) bau for

LYG). 0

Remarks 4.2.10. Suppose conversely that (m?) is a compactly-invariant approx-
imate diagonal for L*(G), and let g, = gmv. Then a simpler version of the argu-
ment used to establish (3) = (1) of Theorem 4.2.2 shows that (g,) C L}(G)T and
|0z * g4 — g4ll1 = O uniformly on compact subsets of G. This is Reiter’s condition.
Moreover, by Proposition 4.2.7, (r(m?)) C L'(G){ is a quasi-central bau for L!'(G)

such that ||§, x m(m?) — w(m?) * §;||s —+ 0 uniformly on compact subsets of G.

One immediate consequence of this work is a new proof of Johnson’s Theorem

given entirely in terms of approximate diagonals.

Corollary 4.2.11. (Johnson’s Theorem) The following are equivalent for a locally
compact group G.

(1) G is amenable.

(2) LY(G) is 1-amenable.

(8) L} (G) is amenable.

Proof. (1) = (2) is contained in Theorem 4.2.9 and (2) = (3) is trivial. (3) = (1)
follows from Lemma 4.2.1 (3) and Theorem 4.2.2. O

In the language of Definition 4.2.6 we have proved

Corollary 4.2.12. The following are equivalent for a locally compact group G.
(1) G is amenable.

(2) LY(G) has a compactly-invariant approzimate diagonal.

(8) LY(G) has a measure-invariant approzimate diagonal.

(4) L}(G) has a measure-invariant virtual diagonal.
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Remarks 4.2.13. (1) In the next section we will interpret condition (2) of Corollary
4.2.12 as a Reiter condition characterizing amenability of L}(G) and use it to obtain
structural properties for G x G which reflect the amenability of L!(G).

(2) In this section we have examined the relationship between nets converging to
topological invariance, quasi-central bounded approximate units and approximate
diagonals for L!(G). Both nets converging to invariance and quasi-central bounded
approximate units are clearly less complicated than approximate diagonals and have
the advantage that they can be studied separately, so it would be interesting to see

what can be said along these lines in the context of other amenable Banach algebras.

4.3 Fglner Conditions

The Felner condition (FC) was proved for discrete groups by E. Fglner in [15]. An
elegant proof due to I. Namioka appears in [38]. Employing Namioka’s method,
(FC) is proved in [18] for amenable locally compact groups by use of [38, 3.1] and
Reiter’s condition [18, 3.6.2] . We begin this section with Theorem 4.3.3 where we
derive our Fglner conditions (F) and (Fy) from condition (2) of Corollary 4.2.12
and Lemma 4.3.1. We then derive from the classical Fglner condition (FC) and
Theorem 3.4.3 Fglner-type conditions (Ay), (By), and (Cy). Finally we show that
all of our conditions are the correct Fglner conditions reflecting the amenability of
LY(G) in the sense that they yield (compactly-invariant) approximate diagonals for
LY(G) comprised of normalized characteristic functions.

Let B denote the o-algebra of Borel subsets of G, and let A be the algebra of
subsets of G x G generated by Bx B={Bx C:B,C € B}. As B x B is a semi-
algebra, [41, page 303], A € A if and only if A may be written as a finite disjoint
union of sets in B x B. If A is any measurable subset of G x G with |A| < oo, then by
regularity of Haar measure and a simple compactness argument, for any € > 0 there is
A' € A such that |A A A'| < e. Thus the A-simple functions are dense in L}(G x G).
In particular part (2) of the following lemma follows from Corollary 4.2.12; part (1)
is essentially [38, 3.1], (one just needs to check that the sets 4; € A).
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Lemma 4.3.1. (1) If m € LY(G x G)} is an A-simple function, then m may be

written in the form

m=Y_ Ada,

=1
where each A; >0, 3.0 A =1, Ay D ... D Ap, with each A; € A, 0 < |A;| < 00 and
P4 = T;}qlA-
(2) If G is amenable then L*(G) has a compactly-invariant approzimate diagonal

(m") C LY(G x G)T comprised of A-simple functions. O
For any C C G, we will use the notation
v(C)=pC) = {(z.,y) :ay € C},
and for A C G x G we write
z-A={(xs,t):(s,t) € A} and A-z={(s,tz):(s,t) € A}.
Observe that if A C G x G, then 14 = 1914 = Lzgeya = lza, and 14 -7 =

zt—)?”(e,z-l)l 4= Z%;)-l Az We will now define our first two structural conditions.

(F) For every € > 0, every § > 0, and every K, L C G with K compact and L mea-
surable and of finite measure, there exist sets A € A and N C L with 0 < |A4] < oo,
|N| < & such that

(i) |lz- AN A -z| <€lA], (z€K), and

(i) [A\ v (Lz™ )|+ A\ v (&L7Y)| < €|A], (z € L\N).

For each base V for the neighbourhood system at e we define a corresponding

Fglner condition (Fy) as follows:

(Fy) For every € > 0, every § > 0, every compact K C G, and every V € V, there
exist sets A € A and N C V with 0 < |A| < o0, |N| < § such that
i) jlz- AN A -z| <eld]|, (ze€K), and
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(i) |A v (Vz )|+ [A\ v (zV ) <eld], (z€V\N).

Conditions (ii) of (F) and (Fy) say that the set A lies very close to the reverse-
diagonal 7(e) = {(z,z7!) : z € G}. Lemma 4.3.2 will show that the unimodularity

condition cannot be omitted from the statements of the theorems in this section.

Lemma 4.3.2. Suppose that there exists a net (Ay) of measurable subsets of G x G
with 0 < Al < oo such that

|z- Aa A A, - 2]
|Aa|

— 0, (z € G).
Then G is unimodular.

Proof. For each z € G and each o,

|Aq(e, )| - |Aq - 2|
|4al |4a|

so the argument is the same as that which is given in the proof of Lemma 3.4.2. O

Az) =

Theorem 4.3.3. The following are equivalent for a locally compact group G.

(1) G is amenable and unimodular.

(2) G satisfies the Fglner condition (F).

(8) For every base V for the neighbourhood system ot e, G satisfies the Falner condi-
tion (Fy).

Proof. In order to prove (1) = (2) we need two lemmas.

Lemma 4.3.4. Let m € L}(G x G)T be an A-simple function, written as in Lemma

4.8.1 (1). Then for any z € G,

= CA A A; -
Hm-m——m-xl]l:Z)\ilm Y :vl
i=1 v

Proof. For A € A and = € G we have

a f(st)ez-A\A -z
(@ -Pa—9a-2)(s,t) =1 7 if(s,t)eA-2\z-A

0 otherwise.

The lemma is now established by arguing as in the proof of Lemma 3.4.6. O
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Though we are dealing only with unimodular groups in the theorem, the following
lemma works equally well (and is no more difficult to prove) for any locally compact,

group, so we prove it accordingly.

Lemma 4.3.5. Let G be a locally compact group, (not necessarily unimodular) and
let m € LY(G x G)f be an A-simple function, written as in Lemma 4.8.1 (1). Let
L C G be a Borel set with |L| < co. Then

N _ -
lmw(m) * 1z = 1zlh = A /L(IAz'\ v (Le™h)| + 4\ 7 (zL7Y)])dz.
i=1
Proof. We'll first show that for any A € A,
(@) 7(1a) * 1(x) = |JANv(zL™Y)| (z€@G), and

(ii) / (1) % 12 (z)ds = / 1A\ ¥ (LzY)|ds.
G\L L
If A € Ais arbitrary, then A is a disjoint union | J;_; A;, where each A; = B; x C; €
BxB. Thus 14 = 37| 14, and it suffices to demonstrate (i) and (i) for A = Bx C,
where B, C are Borel subsets of G of finite measure. In this case
TF(lA) * 1L($) = 7('(13 & 10) * 1L(.'L’) = 13 * 10 * 1L($)

- / / La(s)1o(t) 1 (25~ ) dtds

- / / Lisxomoer-1)(s, Odtds = |AN v (el )|
which is (4).

Now

/ w(14) x 1 {z)dz = / lg* 1o 1(z)dz
G\L G\L

1 -1
= [, | &gte * 10E utdues

1 -1
/L o ———@—)—(13 * 1o)(zy™ ") dzdy

i
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by use of Fubini’s theorem. But
1 e 1 .
L agler e = [ 10
—/Ilz%a(lg*lc)(my_l)dm
1 -1
= 1BICI - | (s * 1)@ Lula)ds
1 -1, -1

= IAI"// 1B(z)A(y)1C(Z zy ) 1p(z)dzdz
= IAI—// 15(2)1c(x)1;(2zy)dzdz

= 14]- / / L bxcyotet (7 @)dodz
= Al ANy = 1A v Ty

which gives equation (ii).
Finally, if we express m = > ., A\id4, as in Lemma 4.3.1 (1), we obtain
= |m(m) * 1.(z) — 1|dz + / w(m) * 1g(z)dz
lr(m) 1y — 1gfly = L G\L

- /Ll; [y (™(1a) * 1u(=) ~ 14|
}n: Ai . 2~ Nldz

= 32 (04N I+ 140 v (Lo
ﬁlwil Jro B h

O

We can now prove (1) = (2) of the theorem, by use of an argument similar to the
proof of the classical Fglner condition (FC) as found for example in [18, 3.6.2, 3.6.4].
We first show that condition (F*) holds

(F*) : For every € > 0,6 > 0, K, L C G with K compact and L measurable and of
finite measure, there exist sets A € Aand N; C K, N, C L with 0 < |4]| < o0,
|N;] < 6,i=1,2 such that

(i)lz- AN A-z| <e€lA], (z€ K\N;), and

(ii) [A\ v (L™ )+ A\ v (L7 < e|4], (z € L\Na).
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To see this let ¢, > 0, K, L C G be as in (F*). By Lemma 4.3.1 (2) we can find
an A-simple function m € L}(G x G){ such that for each z € K

and H7r(m) *17 — 1L”1 < '6—('5-

lz-m—-—m-zll; < == 5

€d
2|K]|
Writing m as in Lemma 4.3.1 (1), and integrating the continuous function z —
|z - m — m - z|l; over K we obtain

from Lemma 4.3.4. By Lemma 4.3.5 we have

ZA/IA\V L AT EL, S

Adding (}) and (1) we obtain

i A . . ~1 ) -1
K | Adl |Ail
As 37, A =1 and each X; > 0, we must have
-1 -1
[lAod,, [AYENT e,

for some A = A;. Lettmg N={zeK:|z-AAA-z| > €|lA|}and No={z € L:
|A\ 7 (Lz71)| + |A\ v (zL71)| > €|Al}, the sets A, Ny, and N, satisfy (F*).

We now establish (F*) = (F). Let ¢, > 0, K,L C G be as in (F). Apply
(F*)to H=K UK?, L, § and & = min{3|K]|, 6} to obtain sets A, Ny and N,. Let
M = H\N;. Observe that for any k € K, kHNH C (kMNM)U(H\M)U(kH\kM);
also kK C kHN H, so |[kHN H| > |K|. Therefore

26' < |K| < kM N M|+ 2|Ny| < |kM N M| + 26,

whence kM N M # 0, (k € K). Thus K C MM~!. But for any z,y € M = H\Njy,

[(zy™)- AN A-(zy™")
|A]

I(zy™) - ¢4 — ¢4 (zy Dl
S - @ da—da- v Hi+1(@ da—oa-z) -y

Noa-y—y- - dalli +lz-da—da-z|1
IA-yAy-A|+ lz-AAA- x| <e
A Al

fl
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(2) = (3) is obvious.

(3) = (1) For each pair a = (¢, K) choose A, € A to satisfy condition (i) of (Fy);
let m® = @a,. From Lemma 4.3.2 we know that G is unimodular, so that by Lemma
4.34 ||z-m®—m®-z||; — 0 uniformly on compact subsets of G. That G is amenable

now follows from Proposition 4.2.4. O

Let V be any base for the neighbourhood system at e. In the following definitions
of conditions (Ay), (By), and (Cy), the subsets A of G x G and K of G are to be
assumed compact and of positive measure.

(Ay) : For every € > 0, K C G, and V €V, there exists A C G x G, such that
() Ac (V) and (ii) |z- AAA-z| <€ld]|, (z€K).
(By) : For every e > 0, K C G, and V € V, there exists A C G x G, such that
@) A\ v (V)| < €|A| and (ii) jz- AAA-z| <€e|d], (z€K).
(Cy) : For every € > 0, K C G, and V € V, there exists A C G x G, such that
G) [Any(V)|> (1-¢)lA| and (ii) |[z- ANA-z| > (1-¢)|4], (z€K).
The next result is proved by use of the Fglner condition (FC) and Theorem 3.4.3.

Theorem 4.3.6. Let G be a locally compact group, and let V be any base for the
neighbourhood system at e. The following are equivalent.

(1) G is amenable and unimodular.

(2) G satisfies the condition (Ay).

(8) G satisfies the condition (By).

(4) G satisfies the condition (Cy).

Proof. By Lemma 4.3.2 each of the conditions (Ay), (By), and (Cy) imply uni-
modularity. It is clear that (2) = (3), and (3) & (4) follows from the identity
lz- AAA-z|=2(|A| - |z- AN A-z|). We have (4) = (1) by the argument given to
prove (3) = (1) of Theorem 4.3.3. Ounly (1) = (2) remains.
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Let 0 <k <1, K C G compact, and V € V. It is sufficient to find a compact set
A such that A C (V) and |z- AN A-2z| > k|A|, (z € K). By use of the condition
(FC), Theorem 4.2.8 (1), and Theorem 3.4.3 we can find compact subsets B and U
of G with U a neighbourhood of e contained in V such that

|zBN B| > Vk|B| and |zUNUz| > Vk|U|, (z € K).

Let A = {(s,t) : s € B and st € U}. Obviously A C (V). Now it is easy to see
that forany z € G, z-A={(s,t) :s€zBand st € zU}, and A-z={(s,t):s€
B and st € Uz}. It follows that - ANA.-z = {(s,t) : s € zBN B and st € zUNUz}.
But if C and W are any two measurable subsets of G with finite measure, and

E = {(s,t): s € C and st € W}, then

|E| = // 1p(z, y)dydx = // 1z(z,z7y)dydz = // loxw (2, y)dydz = |C||W].

Thus for any z € K,
|z-ANA-z| =|zBn B||lzU nUz| > Vk|B|VEU| = E|A].
O

The final result of this section shows that all of our Fglner conditions correctly
reflect the amenability of L'(G) in the sense that each yields a compactly-invariant
approximate diagonal comprised of normalized characteristic functions. Before stat-
ing the result we fix some notation. Suppose that G is an amenable and unimodular

locally compact group and let V be any base for the neighbourhood system at e. Let
T={a=(¢K,L):¢>0, K,L CG compact, |K}|,|L| >0},
To={8=(¢,K,V):e>0, K CG compact with |[K| >0, V € V}.

Direct 7 by putting ap = (€o, Ko, Lo) < a1 = (€1, K1, L) if and only if ¢, < ¢, K7 D
Ky, L; C Ly; direct Ty, analogously. For each a = (¢, K,L) € T, take A, a Borel
measurable subset of G x G (and N, C L) to correspond to (¢, K, L) and § = £|L] as
in condition (F). For each 8 = (¢, K, V') € Ty take a subset Az of G x G to correspond
to (¢, K, V) as in either condition (Fy), (Ay), (By) or (Cy), (if As is chosen using
(Fy), assume that Nz C V is chosen with respect to 6 = 1|V).
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Theorem 4.3.7. Let G be a unimodular amenable locally compact group. The nets
(#a.) and (a,) of normalized characteristic functions of subsets Ay, Ag of G x G

are compactly-invariant approzimate diagonals for L(G).

Proof. For notational convenience we write ¢o = P4,, §p = ¢4,. Observe that by
Lemma 4.3.4, (where the assumption that the functions were A-simple was unneces-
sary), in all cases we have ||z + @o — ¢o - z|| = 0 and ||z - ¢5 — ép - z|| = O uniformly
on compacta of G.
Claim 1: Assuming that the sets A,, Ag € A, the nets (7(¢,)) and (7(dg)) are
bounded approximate units for L!(G).

This will follow if we can show that for any compact subset Lo of G with |Lg| > 0,
7 (da) * 11, — Lrolli — O and |jw(dg) * 1, — 1roll1 — 0. To this end, let ¢ > 0,
and take U an open neighbourhood of Ly such that |U\Lg| < 2. By [23, 4.10] we
can find a compact neighbourhood W, of e such that WyW; 'Ly ¢ U. Choosing
K, compact with |Kp| > 0 arbitrarily, let ap = (ﬁa’KO’WO)’ and suppose that
a = (6 K,W) = ap. Then for any z € Ly, WW-lz C U, so WW-! C Uz! and
WW-! c zU~!. In particular, for any z € Ly, taking any y, € W\N, one has
Uz > Wy, and zU! D y,W~1. Thus

A\ V (Uz™) ]+ 4\ v (@U™)] < 1A\ v Wz )| + 14\ ¥ (W )]
< elAala ('7: € LO)'

Using this and Lemma 4.3.5 we obtain

17 (a) * 1y — Lrolls

I

7 (#a) * (L — 1inz,) — (Iv — Lingzo)lle

I7(¢a) * 1 — Lol + [ (@)l I lonsolls + 1onzo [ln
/ [ 4o\ v (Uz )| + |4a\ v (zU7Y)] 2¢9
U

IN

IA

IAal d$+~6—

/ 2M+/em+@
U\Lo Lo 3

< %‘?2 + €| Lo} < .

IA

If the sets Ag correspond to (Fy) the argument given above works provided that Wy

is chosen from V. Suppose now that the sets Az are chosen to correspond to (By).
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Take a neighbourhood Wy € V such that WLy C U and choose Vy € V so that
Vo C Won W5, Suppose that 8 = (6, K,V) = By = (515> Ko, Vo). Then for each
z €Ly, VC Uz and V C zU}, so again we have

|4\ 7 (Uz™)] + |45\ 7 (aU™)] < 2|45\ 7 (V)] < 2€|44].

That ||7(¢g) * 11, — 11,|]1 < €0 now follows as before. This argument also works when
the sets Ag are chosen to correspond to (Ay) or (Cy).

Claim 2: Without the assumption that the sets A,, Ag € A, the nets (w(¢,)) and
(m(¢p)) are bounded approximate units for L*(G).

We prove this in the case in which the sets Ag are chosen to correspond to the
condition (Fy). The other cases all follow from a similar argument. For each f =
(e, K,V) € Ty, take Ay € A such that |Aj A Ag| < min{e|Ag|, 5|45l}. Let ¢ = ga,.
Then

1 1
65 — sl < o, — mlA’BHl + HmlAgg — daglh

_ llAﬂl*lAfsii+|AﬁAAk|
[Ag] [Ag]

Ag A A
< oMLl (4.3.7.1)
| Al

Now |Ag| = |Ag N Aj| + |Ag\AG| < |Ap| + 31A45], so |Ag| < 2|Aj|. Tt follows that for
any z € V\Np,

AN\ 7 (Ve )+ 145\ v @V )] = (43N A\ v (V™)
+ |[(A\Ap)\ v (Vz™)|
+ (A N A\ v (aV )]
+ [(A\Ap)\ v (zV )|

< A\ v (Vo) + A\ v (aV )]
+ 2JAL A Ayl
< €|Ap| + 2¢|Ag| < BelAj|. (4.3.7.2)

It follows from (4.3.7.2) and Claim 1 that (m(¢})) is a bounded approximate unit for
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LY(G). But for any f € LY(G),

lm(88) * f = flls < lIm(ds = ) * flln + 1w () = f — fla
which by use of inequality (4.3.7.1) converges to zero. Thus Claim 2 holds. O

Remarks 4.3.8. (1) It follows from the proof of Theorem 4.3.7 that we do not need
to assume that the sets A, and Ag belong to A, (as in the official statements of (F)
and (Fy)), in order to obtain compactly-invariant approximate diagonals comprised of
normalized characteristic functions. Moreover, for any unimodular amenable group,
the conditions (Ay), (By), and (Cy) hold even if we demand that the sets Ag € A .
(2) When the sets Ag correspond to condition (Ay), one can prove that the net
(m(44,)) is a bounded approximate diagonal for L'(G) by means of a simpler argu-
ment which is similar to the one found in the last paragraph of the proof of Theorem
4.2.9.

(3) Let G be any unimodular locally compact group which is amenable. Let U = (Us)
be a base for the neighbourhood system at e as in Theorem 3.4.3, and let (K,,) be
a Fglner net for G in the sense that it satisfies condition (3) of [39, Definition 4.15).
Let

Ays={(s,t) : s € K, and st € Us}.

Then the argument used in the proof of Theorem 4.3.6 together with Theorem 4.3.7
show that the net (¢4 ;) is a compactly-invariant approximate diagonal for L'(G).
If G is o-compact and first countable, (that is metrizable), then this approximate
diagonal may be chosen to be a sequence. We remark that a great deal of research
has been done regarding the explicit construction of Fglner nets for certain classes of
locally compact groups, [39, Chapter 6]. It would be interesting if for such groups one
could similarly construct asymptotically invariant nets as described in Theorem 3.4.3.
If so, we would have a method for constructing compactly-invariant approximate
diagonals, comprised of normalized characteristic functions, for group algebras of such
groups. When G is abelian, any base U for the neighbourhood system at e satisfies

condition (2) of Theorem 3.4.3 so it is particularly easy to construct approximate
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diagonals for L*(G). For example, if G is the additive group of real numbers, letting
A, = {(s,t) : s € [-n,n] and s+t € [, 1]}, the sequence (¢4,) is a compactly-
invariant approximate diagonal for L!(R).

(4) In light of Proposition 4.2.4, it is clear that the condition (F*) also characterizes
unimodular amenable locally compact groups, where

(F"): For every € > 0 and every compact subset K of G, there exists a set A € A
such that |z- AA A-z| < e|d], (z € K).

(5) Theorems 2.1.1 and 2.1.2 provide a hierarchy of nets converging to invariance,
each one characterizing amenable locally compact groups. We have now provided a
corresponding hierarchy of approximate diagonals for amenable group algebras.

(6) We leave open the question of whether the subsets NV of L and V' can be omitted
from the conditions (F) and (Fy).

4.4 1-Amenability of semigroup algebras

In this final section of Chapter 4 we turn our attention to the problem of determining
which semigroups carry amenable semigroup algebras. Throughout, S will denote
a (discrete) semigroup. The most complete solutions to this problem have been
obtained by placing additional algebraic conditions on the semigroup [9], [10], [19],
[20], and [32]. We will see that with no extraneous conditions placed upon our
semigroup S, if its semigroup algebra [1(S) is 1-amenable, then S is necessarily an
amenable group. We will also provide Fglner conditions (A), (B), and (C) on S which
correspond exactly to 1-amenability of I*(S).

If E is a subset of S, |E| is its cardinality. We write
[s'%]={ze€S:sx=1t} and [stT!]={zeS:s=zt}, (s,t€09).

As in the case for groups, we may identify I}(S)®I'(S) with I*(S x ) and we shall

identify the Dirac function at an element s of § with s itself. Doing this, a function
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m" € I}(S x S) may be written in the form
m’ = Z ;B.Z,t(sat)
x5

and one sees that the net (m?) is an approximate diagonal for I*(S) if and only if it

is bounded, and for each v € S

1i§n Z B14l(s, tv) — (vs, )] =0, liﬂr/nz B st = v.

§xS SxS

Further details regarding these identifications may be found in [9].

Definition 4.4.1. The semigroup S is left cancellative if for any s,t € S, |[s7¢]| < 1.
If for any s € S, sup{|[s~'t]| : t € S} < o0, then S will be called left subcancellative.

Recall from [32], that S is left weakly cancellative, if for any s,t € S, |[s7t]| < 0.
It is clear that left cancellativity implies left subcancellativity, which in turn implies
left weak cancellativity. That these implications cannot be reversed is fairly easy to
show.

ForACcSxSandveS v-A, A-v are as defined in the previous section, and
we write

V) ={(s,t) € S x S : stv = v}.

In the following definitions of Fglner-type conditions (A), (B), and (C), the subsets
Aof S xS, and F of S are to be assumed finite and non-empty:
(A) : For every € > 0, F C S, there exists A C S x S, such that

AC ), [v-AA A -v|<eld], (veF).
(B) : For every € > 0, F C 9, there exists A C S x S, such that
AV @)| + [v-AAA-v| <€A, (veF).
(C) : Forevery € >0, F C S, there exists A C S x S, such that
ANy (v)] + w-ANA-v|>(2-¢lA], (veF).
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We note that when S is a group, for any v € S we have 7 (v) = {(s,s7!) : s € S},
so the conditions (Ay), (By), and(Cy) of Section 4.3 are non-discrete analogues of

these new conditions.

Theorem 4.4.2. The following are equivalent for a semigroup S:
(1) }(S) is 1-amenable.

(2) S is an amenable group.

(8) S is one-sided subcancellative, and satisfies condition (A).

(4) S is one-sided subcancellative, and satisfies condition (B).

(5) S satisfies condition (C).

Example 4.4.3. Let S be the semigroup of positive integers with multiplication
given by n-m = min{n, m}. Then S satisfies condition (A), (and therefore condition
(B)), yet S is not a group. To see this let € > 0, and let F' be a finite subset of S.
Let m = max(F), and put B = {m + 1,...,m + n}, where 2/n < e. Then for any
v€F, A= B x B C y(v), and

lv-ADNA-v| [ |A] =(Jv-Al+|4-v]) /4] = 2n/n® <e.

This example shows that at least some form of cancellativity is needed in condi-
tions (3) and (4) of the theorem. However note that our example is not even weakly

1

cancellative, (for any n € S, [n~!'n] is infinite). It would be interesting to find an

example of a weakly cancellative semigroup which is not a group, yet satisfies (A).
To prove the theorem we need some preliminary results.

Lemma 4.4.4. Ifv € S, and sup{|[v"'t]| : t € S} < n, then for any finite A C Sx 8,
lv- Al > £|A].

Proof. Write A as A = | o, {z:} x Ci, where z; # z; whenever i # j. Let B =
{z1, ., Zm}, VB = {31, ..., 4}, and for 1 < j < k, let M; = {i : va; = y;}. Then
IMjI < n, and

v-A= U{'u:z:i} x C; = U({yj} X U C;).

ieM;
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'Thus
k k 1 k
v-Al=>_1 U ci Z 721G ;ZZ!C|~-—|A!
Jj=1 ieM; j=1 iEM; Jj=1ieM;

O

A right simple semigroup which contains an idempotent is called a right group.

A discussion of right groups can be found in section 1.11 of [6].

Lemma 4.4.5. A semigroup S is a right group if and only if
(1) for any vi,vy € S, (not necessarily distinct), there exists (s,t) € 7(v1) such that
§ € V98,

Proof. Assume that S satisfies () and suppose that I is a (non-empty) proper right
ideal in S. Take v; € S\I, v2 € I and choose (s,t) € \7(v;) such that s € v,5. Then
s € I, so v; = stv; € I, a contradiction. Thus S is right simple. It now suffices to
exhibit an idempotent in S. To this end, let v € S and take (s,t) € v(v) with s = vz
for some z € S. Then (ztv)? = (at)(vz)tv = (xt)(stv) = ztv. The converse, (which
we don’t need), follows easily from the fact that right groups are regular and right

simple. O

Lemma 4.4.6. If S satisfies condition (C), OR if S is left subcancellative and satisfies
condition (B), then S is a right group.

Proof. Suppose first that S is left subcancellative and satisfies condition (B). We will
show that S satisfies condition (}) of Lemma 4.4.5. Let v;,v; € S and suppose that
sup{|[v;'t]] : t € S} < n. Take A to be a finite non-empty subset of S x S such that

1 .
[AAYV ()| +vi- AL A v < %IAI, (2=1,2).
Then using Lemma 4.4.4 we have

1 1
-2—1:1:|A1> !'UQ'A\A"UQIZ!'UQ‘AI"""UQ’AOA'Uz] > EIAI-—|1)2'A0A"U2|,
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and so |vy- ANA-va| > 5=|A|. Suppose that for every (s, t) € ANv(v1), (s,tve) € v2-A
Then vp - ANA-vy C {(s,tvz) : (s,t) € A\ v (v1)}, so

1 1
Sl < o AN A+ ] S A\ (o0)] < oA

a contradiction. Thus for some (s,t) € AN (v1), (s,tv2) € vy - A; in particular
(s,t) € w(v1), and s € 1,5. To see that condition (C) implies that property (1)
holds is similar, but easier: arguing as above, let ¢ = 1 in condition (C) applied to

V1,2 € S. O

If A is a finite subset of S xS, let ¢4 denote the normalized characteristic function

|A|1A of A.

Lemma 4.4.7. Let S be a left cancellative semigroup which satisfies the following
condition in which the sets F' and A are to be assumed finite and non-empty:

(%) For every e >0, F C S, there exists A C S x S, such that
A\ 7 (v)] + |v-A\A-v|<¢d]|, (veF).

Then I*(S) has an approzimate diagonal comprised of normalized characteristic func-

tions of finite non-empty subsets of § x S.

Proof. Fix AC Sx S,veS. If for (z,y) € S x S we write [(z,y) - v™!] = {(s,1) :
(s,tv) = (z,y)}, then it is easy to see that A is the disjoint union

A= |J @ni@y > (4.4.7.1).
(w’y)EA"U
Now
Z (s,tv), v-ga= Z (vs, 1),
(3 t)eA (s t)eA
S0
)
’}TlAﬂ[(iﬂ y) v if (z,y) € A-v\v-A
fal if (z,y) €v-A\A-v

(¢a-v—v-0a)(z,y) = :
ANz, y) - v N -1] if (z,y)eAd-vnv-A

otherwise.

=) :hl"“
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Therefore, using (4.4.7.1) and left cancellativity we obtain

ga-v—v-dall = D (a-v—v-da)zy)|

(=)
- Tfﬂ[ T lAnfey o+ Y1
(z.y)ed-v\v-4A (z,y)ev-A\Aw
+ > (An[z,y) v - 1)
(z,y)EA-vMv-A
= GL X An(En) v o AA- o] =400 0 4]
(®,y)EAY
= I—f}l—l[lAl—]A-vﬂv'Al—i—lv-A\A-vl]
v A\A-v
= 2 (4.4.7.2)

Also m($a)v = iy 2o(sea SV, SO

@l = |(x(baye —n)@) + 3 w(da)ol)

x#v
Any) . AT AT @)
T W T T

(4.4.7.3)

(Observe that left cancellativity was not used in the calculation of (4.4.7.3)). Let F
= {(F,¢e) : F C S finite, € > 0} and for each v = (F,¢) € F, choose A, C S x S to

correspond to 7y as in (x); let m” = ¢4,. Then
lv-m?”—m" |}y =0 and |lx(m")v—v|; =0
follow from the calculations (4.4.7.2) and (4.4.7.3). O
Put T'(v) = (S x Sv) N {(s,t) € S x S :stv =wst =v}, (veSI).
Lemma 4.4.8. If I*(S) is 1-amenable, then for any vi,v2 € S, T'(v) NT'(ve) # 6.

Proof. Tt will in fact be shown that I'(v;) N T'(v2) supports an approximate diagonal
for 11(8). Let (m”) C I*(S x S) be an approximate diagonal for {}(S) with [jm?]j; < 1,
and let M € I°(S x S)* be a weak*-limit point of (m?). Then ||M]| < 1 and as M
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is a virtual diagonal for I*(S), M(1sxs) = 1. Thus M is a mean on I®°(S x S). By
the weak*-density of F = {f € }(S x S) : f > 0,]|f|l. = 1, support(f) finite} in the
set of means on [*®(S x §), there exists a net (f°) C F such that (f?) converges to
M in the weak*-topology of I°°(S x S); this net is necessarily a “weak” approximate
diagonal for ['(S). Standard methods (due to Namioka, [38, Theorem 2.2]), yield an
approximate diagonal (p®) in F for I'(S). We write p* = Y %(s,t). For v € S, let

Z(w) = (wS x S)N{(s,t) : stv =v} and W(v) = (S x Sv) N {(s,1) : vst = v}.

Then
hm Z Bey =1 and hm Z Bes =1,

(s,0)EZ(v) (s,t)eW (v)
where the first limit is calculated in the proof of [10, Theorem 1] and the second
limit follows from a symmetric argument. Fix v;,v; € §. We claim that p§ =
>.{B2(s,t) : (s,t) € Z(v1)} is an approximate diagenal for I*(S). For given v € S,

py-v—v-p§=p*-v—v-p*—n® where

Z Boil(s, tv) — (vs, t)].

(s:1)¢Z(v1)

Now [nolls < 25382, ¢ (8) ¢ Z(on)} = 2p°lh — S © (:8) € Z()}) —
2(1-1)=0,s0 ||pg -v—v-p§|| — 0. Similarly ||7(p§)v — v|l1 — 0, which proves the
claim.

Now ||pglls — 1, so ¢® ”pa“ —=—p¢ is also an approximate diagonal for I*(S), and
(g%) is in F with support(g* ) C support(p®) N Z(v;). Working now with (¢*) and
W (v;) we obtain an approximate diagonal (r*) C F with support(r®) C support(g*)N
W (vy) C support(p*)NI'(vy). Finally working with (r®) and I'(v,) the above argument
yields an approximate diagonal (s®) C F with support(s®) C support(r®) N T'(ve) C
'(vy) N T(ws). O

We may now prove Theorem 4.4.2:

(1) = (2) From [10], S is a regular amenable semigroup so it suffices to prove that S

contains a unique idempotent, (by regularity it has at least one). So suppose e, f € S
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are idempotents. From Lemma 4.4.8 we may take (s,t) € I'(e) NT'(f). Then es = s
and tf =t,soe=est =st =stf = f.
(2) = (3) Let € > 0, and let F' be a finite non-empty subset of S. From the classical
Fglner condition (FC) which characterizes amenable groups, there is a finite subset
B of S such that

lvBN B| > (1 -¢/2)|B|, (ve F).

Let A = {(s,57%) : s € B}. Then A C v(v) = {(z,z7) : z € S}, (v € 9),
and it is readily verified that z ~ (z,z7'v) defines a bijection from vB N B onto
v-ANA-v. Therefore |v- ANA-v| =|vBNB| > (1-¢/2)|B| = (1 —€/2)|A|, whence
lv-AAA-v] <eld], (veF).

(3) = (4) is obvious.

(4) = (1) We assume that S is left subcancellative, the other case following by a
symmetric argument. By Lemma 4.4.6, S is left cancellative and S satisfies condition
(%) of Lemma 4.4.7; therefore S is 1-amenable.

(2) = (5) is proved by the argument given in (2) = (3).

(5) = (1) By Lemma 4.4.6, S is left cancellative and condition (C) implies condition
(%) of Lemma 4.4.7; therefore S is 1-amenable. O

Remarks 4.4.9. (1) Let S be a discrete group. In Lemma 4.4.7 we saw that condition
(B) naturally yields an approximate diagonal comprised of normalized characteristic
functions of finite subsets A of Sx S. Similarly, the Fglner condition (FC) gives rise to
a net comprised of normalized characteristic functions of finite subsets A of S which
converges to left (or right) invariance in [1(S). This suggests that our conditions (A),
(B), and (C) are the “correct” Fglner conditions corresponding to (1-)amenability of
I(S).

(2) In [10], J. Duncan and A.L.T Paterson prove that if [*(S) is amenable then S must
be a regular semigroup with finitely many idempotents. We have shown that when
S is l-amenable S has exactly one idempotent. It would be interesting to see what
relationship exists between k-amenability for a positive integer k¥ and the number of

idempotents of S.
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Chapter 5

Amenable and
completely-amenable

representations

5.1 Introduction

In this chapter we shift our focus to a notion of amenability for unitary representations
of locally compact groups. The theory of amenable representations was developed
in 1990 by M.E.B. Bekka [3]. Bekka proved analogues of all of the classical invari-
ance properties including the Fglner conditions, and interpreted several amenability
theories in terms of amenable representations. In particular he proved that a locally
compact group is amenable if and only if all of its representations are amenable. Since
their introduction amenable representations have attracted much research attention,
see for example [5], [27], and [52].

We begin with the introduction of a new notion of amenability for represen-
tations, called complete-amenability. We provide the exact relationship between
these two concepts of amenability and interpret amenability, inner amenability, and
amenable group actions in terms of completely-amenable representations. We de-

scribe complete-amenability through a weak-containment property and provide sev-

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



eral characterizations of completely-amenable representations in terms of the exis-
tence of certain states upon C*-algebras. For each representation 7 of G we define
a Fourier algebra A(n). We prove that when the Fourier algebra A(m ® 7) has a
bounded approximate unit, the representation 7 is necessarily amenable. We con-
clude the chapter with a discussion of a problem posed in [3] by M.E.B. Bekka. We

will make much use here of the material presented in section three of Chapter 2.

5.2 Amenability and complete-amenability for rep-
resentations

Throughout this chapter G will again denote a locally compact group. A represen-
tation of G will always mean a continuous unitary representation of G as defined

in Chapter 2. The following definition of an amenable representation was given by
M.E.B. Bekka in [3].

Definition 5.2.1. A representation {-y,C} of G is called amenable if there exists a

state w on B(K) such that
w(y(s)zy(s™h)) =w(z), (¢ € B(K), s€G).
The state w is called a G-invariant mean for ~.

Let TC(K) and HS(K) respectively denote the trace-class operators and Hilbert-
Schmidt operators on the Hilbert space K. Reiter conditions (P;), and (P), are
defined for a representation {7, K} as follows.

(P1),: For every € > 0 and every compact subset K of G there exists a trace-class

operator T € TC(K)] = {R e TC(K): R> 0 and ||R||, = 1} such that
l7(s)Ty(s™) —= T}y < ¢ forallz € K.

(P2),: For every € > 0 and every compact subset K of G there exists a Hilbert-
Schmidt operator S € HS(K)} = {R € HS(K) : R > 0 and ||R|]2 = 1} such
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that
lv(s)Sy(s™!) — S|l < € forallz € K.

Recall that the left regular representation {)s, L2(G)} and the conjugation represen-
tation {8, L>(G)} of G were defined in section 3 of Chapter 2. The following theorem
summarizes the results from [3] that we will need, (also see section 1 of Chapter 3).
Respectively the parts of the theorem coincide with Theorems 2.2, 2.3(i), 2.4(i) and
4.3 of [3].

Theorem 5.2.2. Let G be a locally compact group, let H be a closed subgroup of G
and let {7, K} be a representation of G.

(1) The group G is amenable if and only if the left regular representation {)\2, L*(G)}
is amenable which is true if and only if every representation of G is amenable.

(2) The group G acts amenably on the left coset space G/H if and only if the quasi-
regular representation Ind$1y is amenable.

(8) The group G is inner amenable if and only if the conjugation representation
{8, L*(G)} is amenable.

(4) The representation {,K} is amenable if and only if {v,C} satisfies the Reiter
condition (Py), which is true if and only if {7, K} satisfies the Reiter condition (Ps)..

We now introduce a new concept of amenability for representations.

Definition 5.2.3. A representation {m,H} will be called completely amenable [re-
spectively completely*-amenable] if there is a net of unit vectors (&,) in H such that

|7 (8)éa — &a|| = O uniformly on compact subsets of G [respectively |[7(s)éq — &ul| —
0, (s € G)).

Observe that 7 is completely*-amenable precisely when it is completely-amenable
when viewed as a representation of G4, the group G with the discrete topology. Thus
all statements phrased in terms of complete-amenability may be interpreted in terms
complete*-amenability. The following remarks record some elementary properties of

completely-amenable representations.
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Remarks 5.2.4. (1) If {m,} is completely*-amenable then it is amenable. To see
this, let (£,) be a net of unit vectors in A such that |7(s)és — &l = 0, (s € G).
Taking w to be any w*-limit point in B(#)* of the net vector states (we,) it is easily
seen that w is a G-invariant mean for 7.

(2) In section two of Chapter 3 we interpreted amenability and inner amenability in
terms of certain positive actions on L'(G). Using Reiter’s condition, Theorem 3.2.13
applied to these actions together with [45, Exercise 4.4.5] one sees that

(i) G is amenable < the left regular representation { g, L2(G)} is completely-amenable
and

(ii) G is inner amenable <> the conjugation representation {8, L?(G)} is completely-
amenable.

When H is a closed subgroup of G we similarly obtain that

(iii) G acts amenably on G/H <> the quasi-regular representation Ind$1y is completely-
amenable.

(3) The statements (i), (ii) and (iii) of [3, Remark 1.2] are valid for completely-
amenable representations. Indeed

(i) Any representation which is unitarily equivalent to a completely-amenable repre-
sentation is also completely-amenabile.

(ii) If H is a closed subgroup of G and {m,H} is a completely-amenable represen-
tation of G, then the restriction «|H is a completely-amenable representation of H.
Moreover, if H is normal and H Cker(r), then 7 is completely-amenable if and only
if it is completely-amenable when viewed as a representation of G/H.

(iii) If {m, %} is completely-amenable, then so is its conjugate representation {7, #}.
Moreover the following is clear.

(iv) If {m,H} contains a completely-amenable subrepresentation, then {m, #} is also

completely-amenable.

Example 5.2.5. The following is a simple example of an amenable representation

which is not completely-amenable. Let T = {a € C: |a| = 1} be the circle group
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and let H be any Hilbert space. Consider the representation defined by
v: T — B(H):a aidy.

Observe that any state on B(#) is a G-invariant mean for v so {7, K} is amenable.
However if £ is any unit vector in H, then ||y(—1)& — £]] = 2 so v is not completely-

amenable.

Thus complete-amenability is strictly a stronger property than amenability for
representations. Moreover the above example shows that in contrast to the theory
of amenable representations (see [3, Theorems 1.3 and 2.2]), even one-dimensional
representations can fail to be completely-amenable, and amenable groups can have
representations which are not completely-amenable.

The next result describes the relationship between amenable and completely-
amenable representations. It shows that any characterization of completely-amenable
representations yields a characterization of amenable representations and hence by

[3, Theorem 2.2] of amenable locally compact groups.

Theorem 5.2.6. The following are equivalent for a representation {v,K} of G.
(1) {v,K} is amenable.

(2) {y®7%,K ®K} is completely-amenable.

(8) {y®7%,K @K} is completely* -amenable.

(4) {y®7%,K ®K} is amenable.

Proof. (1) = (2) Define a representation {p,, HS(K)} of G by p,(s)S = 7(s)Sv(s71),
(S € HS(K), s € G). As v is amenable, it satisfies the Reiter property (Ps), so there
is a net of unit vectors (S,) in HS(K) such that ||04(s)Sa — Sallz — 0 uniformly on
compact subsets of G. Thus p, is completely-amenable. As the the map determined
by

K@K —HSK): (é®@n—£@n*

yields a unitary equivalence of {p,, HS(K)} and {y® %, K ® K}, we are done.
(2) = (3) is trivial and (3) = (4) follows from part (1) of Remark 5.2.4.
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(4) = (1) Let Q be a state on B( ® K) such that
UreN(z(y@MN(s™) =), (reB(K®K), s€q).

Define w on B(K) by

wly) =y ®idg), (v € B(K)).
Then w is clearly a state on B(K) and for any y € B(K), s € G we have
w(y()yyr(s™)) = Qy(hyr(s™) ®idg)

= A(veNEeidg)(vy@7)(s7))
= Qy ®idg) = w(y).

5.3 Complete-amenability and weak containment

In this section we will characterize complete-amenability of a representation {mx, H}

in terms of both weak containment and the Fourier-Stieltjes spaces B;.

Theorem 5.3.1. The following are equivalent for a representation {m,H} of G.
(1) {m,H} is completely-amenable.

(2) 1 <X .

(8) 1 € Bs.

Proof. (1) = (2) Let (&,) be a net of unit vectors in H such that ||7(s)és — &all = 0

uniformly on compact subsets of G. Let uy, = &, % &,. Then

|ua(s) — 1| = [{m(s)éa — £a €a)| < lIm(8)€a — &all

whence u,(s) — 1 uniformly on compact subsets of G. It follows from Theorem 2.3.2

that 1¢ < 7.
(2) = (3) As B, = (P,) where P, = {u € P(G) : m, < 7} this is trivial.
(3) = (2) Part (4) of Lemma 2.3.1 says that B, N P (G) = {u € P, : ule) = 1} so0
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this is also trivial.
(2) = (1) By Theorem 2.3.2 there is a net (&,) in H such that u, = &, *, & € Pi(G)
and (u,) converges to 1g uniformly on compact subsets of G. Observe that ||£,]|? =

uq{e) = 1. Now
I7(8)éa — &all* = 2I1 — Re ua(s)] < 2[1 — ua(s)|
from which it follows that {m, H} is completely-amenable. O

Corollary 5.3.2. The following are equivalent for o representation {n,H} of G.
(1) {n,H} is completely*-amenable.

(2) 1g, 2 74

(3) 1 € Bx,.

Leptin’s theorem says that a locally compact group G is amenable if and only if
its Fourier algebra A(G) has a bounded approximate unit. The following looks a little
like a Leptin theorem for completely-amenable representations. In the sixth section
of this chapter we will conjecture a more satisfying version of Leptin’s theorem for

(completely-)amenable representations, (we can only prove one direction).

Corollary 5.3.3. A representation {m, H} is completely-amenable if and only if there
is a net (uq) C Ar N P(G) such that for every v € A(G), |luav — v|| = 0.

Proof. This follows immediately from Theorem 5.3.1, Theorem 2.3.2, and [17, Theo-
rem Bo). O

As with amenable representations [3, Corollary 5.3] we now have the following

result.

Corollary 5.3.4. Let {m,H}, {7,K} be representations of G. Ify <X = and 7
s completely-amenable, then so is w. In particular, the complete-amenability of 7

depends only upon its weak equivalence class.

Let {m,#} be a representation of G. In [2] Arsac defines the representation
wr = L& {m, : u € P} and proves that B, = B, = A,, [2, Proposition 2.24]. It
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seems interesting to note that by Proposition 5.3.1 the representation 7 is completely-

amenable precisely when the associated representation w, is completely-amenable.

5.4 (*-algebraic characterizations

We will characterize complete and complete*-amenability of a representation {m, H}
in terms of the existence of certain states on the C*-algebras C; ., C; and B(#). The

state space of a C*-algebra A will be denoted by S(A).

Lemma 5.4.1. Let U be a group of unitary operators on a Hilbert space H and let
A be the C*-subalgebra of B(H) generated by U.

(1) If ¢ € S(A), then ¢ is multiplicative on A if and only if |p(u)| =1, (u € U).
(2) If ¢ € S(B(H)), then |¢(u)| =1, (u € U) if and only if

¢(zy) = d(yz) = d(z)d(y),  (z€ B(H), y€ A). (*)

Proof. We will prove (2), the proof of (1) being similar. If the condition (*) holds,
then for any u € U, 1 = ¢(idy) = d(u*u) = ¢(u)d(u) = |Pp(u)[>. Suppose now
that the converse statement holds. Then given z € B(#H) and u € U, using the

Cauchy-Schwartz inequality for states we have

6(zu) — (@)p(W)* = (v — p(w)idy))|?

< P(z3*)p((u — p(u)id)* (u — (u)idz))
$(zz*)[B(ids) — $(u)B(u”) — (u)d(w) + |(u)|*d(ids))]
= (.

Il

Now A = 2177”'”3(”) so condition (*) holds by linearity and continuity of ¢. O

Theorem 5.4.2. The following are equivalent for a representation {7, H} of G.
(1) {m, H} is completely*-amenable.
(2) There is a state ¢ on Cj, such that ¢(n(s)) = 1, (s € G). [The state ¢ is

necessarily multiplicative].
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(8) There is a state w on B(H) such that w(w(s)) =1, (s € G).
(4) There is a state w on B(H) such that

w(n(s)z) = w(zn(s)) =w(z), (s€ G, z€ B(H)).

Proof. Tt follows from equation (2.3) of Chapter 2 that the duality of B, with C; =
C; . satisfies

h(s) = (m(s),¥), (s €G,¥ € By).

Hence statement (2) is equivalent to saying that 1 € By, so (1) & (2) is a conse-
quence of Corollary 5.3.2. The equivalence (2) & (3) is clear and (3) < (4) follows
from Lemma 5.4.1. O

Remarks 5.4.3. The invariant mean characterization of completely*-amenable rep-
resentations given in part (4) of Theorem 5.4.2 suggests that it should be possible to
study complete and complete*-amenability in same manner used by Bekka in [3] and

which we used in section two of Chapter 3. However unlike the action
s-T =m(s)Tw(s™), (se G, T € TC(H)),
the action defined by
s T =n(s)T, (s€e G, TeTC(H)),

does not preserve the normal states TC(H){ on B(H). That is, the latter action is
not a positive action on TC(#H). It is because of this that the familiar techniques
breakdown. In particular we have been unable to prove a Reiter-type theorem in
this context, namely that complete*-amenability implies complete-amenability. We
suspect that the key to such a proof may be the Raikov Theorem which states that
on Pi(G) the weak*-topology agrees with the topology of uniform convergence on

compact subsets of G.

Let
J={feI{G): fo(s) ds = 0},
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Much of the following theorem was proved by C.K. Yuan [54] for the conjugation
representation {3, L*(G)}. Our proof of the equivalence (4) < (5) is quite similar to

his proof.

Theorem 5.4.4. The following are equivalent for a representation {m,H} of G.

(1) {m,H} is completely-amenable.

(2) There exists a state w on B(H) such that w(w(u)) = u(G), (u € M(G)).

(8) There exists a state w on B(#H) such that w(n(f)) = fG f(s) ds,(f € LY(G)).

(4) There ezists a state ¢ on Ci such that ¢(m( f) = [, f(s) ds,(f € LY(G)).

(5) There exists a state ¢ on CF such that ker(¢) = 7r(J)“ “Bm) and ¢(w(fo)) =1 for
some fo € LYG) with [ fo=1.

Proof. (1) = (2) Let (&) be a net of unit vectors in H such that ||7(s)&y — el — 0
uniformly on compact subsets of G. Let w be any w*-limit point in B(#)* of the net
of vector states (wg, ); we may assume that we, — w w* in B(H)*. Let p € M(G)
and let € > 0. We can suppose that u has compact support K. Take o such that

() — we, (r(W)] < = and |lr(s)ew - Ewll < 57

5 (s € K).

2” I’
Then

() = (@) < £+ e (r(w) - w(G)|
-HL@@@@H@@—LdMM
ﬁ/W@@~&¢mww@

/mHﬁM®

f

|
wlm Bl DIl

Hence w(m(p)) = p(G).

(2) = (3) is trivial.

(3) = (4) Let ¢ be the restriction of w to C;. Then ¢ € (C})* = B, and from
equation (2.3) of Chapter 2

/#w ) ds = (n(f), & /ﬂ@@ (f € ING)).
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It follows that ¢ = 1¢ € B, which is a state on C.

(4) = (1) The argument used to establish (3) = (4) shows that ¢ = 1¢ € B,. By
Theorem 5.3.1 {m, H} is completely-amenable.

(4) = (5) Let ¢ be a state on C} as in (4) and fix fo in L*(G) with [ fo = 1. Then
¢(7(fo)) =1 and f € J if and only if ¢(7(f)) = 0. Hence H‘J—)“'“B(H) C ker(¢). Now
suppose that x €ker(¢). Let (f,) be a sequence in L*(G) such that ||7(f,) —z|| — O.
As J is an ideal of codimension one in L*(G) and f, ¢ J, for each n there is some
ay € Cand g, € J such that f, = oy, fo+gn. Now 0 = lim |¢(n(f,))—¢(z)| = lim |ay),

S0

“7r(fn) - Oan(fo) - .‘17”
< Aiw(fa) — il + lomlll foll, — .

[I7(gn) — |

Therefore z € W(J)II'HB(H).
(5) = (4) Let ¢ and f; be as statement (5). Then for any f € L}(G),

g=f—(/Gf(8) ds)fy € J and f=g+(/Gf(S) ds)fo

Consequently ¢(n(f)) = [, f(s) ds. O

If {7,K} is an amenable representation, then by Theorem 5.2.6 we know that
all of the conditions from Theorems 5.4.2 and 5.4.4 are equivalent for the associated
representation {7, H} = {7 ®%, K ® K}. Beyond this we can extend a result due to
E. Bédos which he proved in [4] for the left regular representation {);, L*(G)}.

Theorem 5.4.5. The following are equivalent for a representation {v,K} of G.
(1) {v,K} is amenable.
(2) There is a non-zero multiplicative linear functional ¢ on Cj g

(8) There is a state w on B(K ® K) such that jw((y®@7)(s))| =1, (s € G).

Proof. (1) = (2) follows from Theorems 5.2.6 and 5.4.2.

(2) = (3) From Lemma 5.4.1 we have |¢((y ® 7)(s))] = 1, (s € G). Now let w be
any state on B(X ® K) which extends ¢.
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(3) = (1) For any z € B(K® K) and s € G we have

w((Y®F)(s)a(y@M(s™) = w((v®N(w@w((vy®F)(s™)
= w((y®7)(9))w()w((y®7)(s))

= w(z)

where we have used Lemma 5.4.1. Thus w is a G-invariant mean for v ® 7 and it

follows from Theorem 5.2.6 that {7, K} is amenable. O

5.5 The Fourier algebra for an arbitrary represen-
tation

In Section three of Chapter 2 we defined the Fourier spaces A,. When our represen-
tation is the left regular representation {)\y, L?(G)}, A,, is the Fourier algebra A(G).
It is however quite rare for a Fourier space A, to be an algebra [2, Proposition 3.26].
In this section we will define and study an analogue of the Fourier algebra for an
arbitrary representation.

Let A(7) denote the closed subalgebra of B(G) generated by the coefficients & *, 7
of m. We will refer to A(n) as the Fourier algebra associated to m. It is not difficult
to see that A(r) is closed under left and right translations, so by [2, Theorem 3.17]
A(m) = A, for some representation 7, of G. The next proposition gives an explicit
description of this representation which we will find useful. Before stating the result

we prove a simple lemma which we expect is well-known.

Lemma 5.5.1. Let {7,K} be a representation of G and suppose that F C K has
dense linear span in K. Then (%, n:&,n € F) is dense in A,.

Proof. Let £, € K and choose sequences (&), () C (F) such that ||, —&|| — 0
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and [|n, — 0|l — 0. Let u = & *, 1 and u, = &, %, M. As u, u, € By = (C})7,

lu—unll = sup{] /Gf(S)(un —u)(s) ds|: f € L}G), |lv(AI < 1}
sup{[{v(f)én, ) — (Y(HE M : £ € LHG), V(NI <1}
sup{[(v(F)(&n = );mm) + (¥(€, 1 — )| : £ € LY(G), |Iv(DII < 1}
< (1 = Elllimall + 1€linn — nll = 0.

H

0

Now (32,&) %y (30 m5) = 2oi &y mi) so Exyn:&n€(F)) = {Exn:§n€F)

and we are done. ]

Let {m,H} be a representation of G. For a positive integer n we employ the

notation

7" =@ m and H®" = QI H.

Proposition 5.5.2. Let {m,H} be a representation of G and consider the associated

representation

(T e} = {D_ @), ) 6(H™)}.

n=1 n=1

Then A(r) = A, = A(rz).

Proof. For &,,...,& € H, let ®%¢; denote the associated elementary tensor in H®*

which we view as a subspace of H._. It is clear that (F) is dense in H,, where

It follows from Lemma 5.5.1 that to show A, is an algebra, we only need to demon-
strate that (€ x, 7 : £, € F) is closed under multiplication. To this end, let
7,5, € Fandlet u = €, 7, v = T %, (. Observe that if £ = ®"¢ and
7 = ®%n; with k; # ko, then

Exr, 7(s) = ( D 0)+ (@ n(s)&0) + (0,@Fn;) = 0.
n#k1,k2
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Hence we may assume that £ = ®%¢&;, 71 = ®Fn;, T = ®}v;, and { = ®!¢;. Then

(uo)(s) = (®Fn(s)&, ®fm){®1m(s)vy, ®1G)

k l
H(W(S)&, ) H(W(S)Uja )

=1

= ((&1"'n)(5)E®7),T®C) = (E®T) *r, (T®{)(5),
and £E®7T,7® ¢ € F. Thus A,_ is an algebra. Now it is obvious that A, C A,_ so

we have A(m) C A,,. Finally if £ = ®%¢; and 7 = @¥; € F, then

k
£y = [ [(& %2 ) € Am).
i=1
Using Lemma 5.5.1 once again we have A, C A(r). O

In [30] A. T.-M. Lau calls a Banach algebra A an F-algebra if A is the predual of
some von Neumann algebra M such that the identity element of M is a multiplicative
linear functional on A. We remark that F-algebras are now commonly referred to
as Lau algebras and we shall refer to them as such. Observe that if {7,#.} is a
representation of G for which A, is an algebra, then 7(e) is the identity in VN, = A}
and (u,7(e)) = ule), (u € A,). It follows that A, is a Lau algebra. Thus we can

make the following statement.
Proposition 5.5.3. For any representation {m,H} of G, A(r) is a Lau algebra.
We now examine the relationship between the amenability properties of 7 and 7.

Theorem 5.5.4. Let {m,H} be a representation of G. Then {m,H} is amenable if

and only if {7, H..} is amenable.

Proof. Suppose first that 7 is amenable. Then 7, = 3,2, ®(«®") has an amenable
subrepresentation and it follows from [3, Theorem 1.3(ii)] that 7, is amenable. For

the converse, suppose that w is a state on B(#,,) such that

w(te(8)BT(s71)) = w(B), (s€ G, Be B(H.,).
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Define -
A:B(H) = B(#.,): B Y &(B® (8]idy)).

n=1

It is easy to see that A is a linear isometry such that A(idy) = idy,_. Moreover for

any B € B(H) and s € G,

T(ABIT(s7) = D Bln®(s)(B ® (®f=sidw))n®(s7)]

n==1

= Z Bl (s)Br(s™!) ® (®F_oidy)]

n=1

= A(n(s)Br(s™1)).

Therefore if we define

i

m(B) =w(A(B)), (B € B(H)),

then it is clear that m is a G-invariant mean on B(H) for {m, H}. O

Remarks 5.5.5. As in the above proof, 7, is completely-amenable whenever 7 is
completely-amenable. We have been unable to obtain any form of converse to this

statement.

We conclude this section with a definition of the Fourier-Stieltjes algebra associ-
ated to an arbitrary representation.

Suppose first that {7, "} is a representation of G such that A, is a subalgebra
of B(G); that is, suppose that A, = A(rw). By {2, Proposition 2.20] an element
u € B(G) belongs to B, precisely when there is a bounded net in A, which converges
to u uniformly on compact subsets of G. From this it follows easily that B, is also a
Banach subalgebra of B(G).

Now suppose that {r, #} is any representation of G and let A(7) = A, = A(7x)
be the Fourier algebra associated to 7. From the preceding paragraph B(w) = B,_ is
a Banach subalgebra of B(G), which we call the Fourier-Stieltjes algebra associated
to m. When our representation is the left regular representation {)g, L%(G)}, we have

B()2) = By, = B;(G), the reduced Fourier-Stieltjes algebra of G.
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Proposition 2.20 and Theorem 3.17 of [2] respectively say that B, is the w*-closure
of A; in B(G) and that the Fourier spaces A, are precisely the translation-invariant
closed linear subspaces of B(G). It is readily verified that translation is w*-continuous
on B(G), so the spaces B, are precisely the translation-invariant w*-closed linear

subspaces of B(G). Thus we can make the following statement.

Proposition 5.5.6. Every translation-invariant closed subalgebra of B(G) is a Fourier
algebra A(m) associated to a representation {mw,H} of G. Every translation-invariant
w*-closed subalgebra of B(G) is a Fourier-Stieltjes algebra B(w) associated to a rep-
resentation {7, H} of G.

5.6 Towards Leptin’s theorem for amenable rep-

resentations

Leptin’s theorem [34] says that a locally compact group G is amenable if and only
if the Fourier algebra A(G) has a bounded approximate unit. In terms of repre-
sentations this says that (complete-)amenability of the left regular representation
{A2, L?(QG)} is characterized by the existence of a bounded approximate unit in A(Az).
We suspect that the corresponding statement holds for any representation but have at
present only been able to prove one direction. We begin by proving a simple lemma.

If {m, H} is a representation such that A, = A(r), let VN, = A% have its canonical
dual A,-module structure. We note that because A, is commutative, the side that

we choose to write our module operations does not matter.

Lemma 5.6.1. Let {m, H} be a representation of G such that A, = A(r).
(1) The module action of Ay on VN, restricted to n(L'(G)) is given by pointwise

multiplication
w-n(f) =7(uf),  (u€ A feLYG)).

Consequently Cy is a closed Ar-submodule of VN,.

(2) The dual module action of A, on (Ck)* = B, is given by pointwise multiplication.
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That is
u- = ud, (u€ Ay, ¢ € By).

Proof. (1) For u,v € A, and f € L}(G) we have
(0,0 7(f)) = (o, 7(f)) = L o(s)u(s) (5) ds = (v, w(uf)).

As Cr = W(Ll(G))l!.”B(%) it follows that C} is an A-submodule of V N;.
(2) Let u € A, ¢ € (C2)* = B,. Then u¢ € B, and for any f € L(G),

(n(f),u-8) = (a(f)-u,) = (n(fu),d)
- /G £(5)u(s)(s) ds = (x(f), ug),

where we have used part (1). O

Theorem 5.6.2. Let {n,H} be a representation of G such that A, = A(rw) and
consider the following statements.

(1) {w,H} is completely-amenable.

(2) A(m) has a bounded approzimate unit.

(8) The closed ideal I, = {u € A(x) : u(e) = 0} of A(w) has a bounded approzimate
unit.

Then (1) < (2) < (3)

Proof. By Proposition 5.5.3 A(m) is a commutative Lau algebra, so the equivalence of
statements (2) and (3) is a direct consequence of {30, Example(1) Page 168] and [30,
Theorem 4.10]. Now suppose that A(r) = A, has a bau (e,) and let ¢ be a w*-limit
point of (ey) in VN}; assume without loss of generality that e, — ¢ w*. Then for

any u € A, and x € VN, we have
(Z,u-@) = (z-u,¢) =lim(z-u,ey)
= lim(z,ue,) = (z,u).

Thus u- ¢ = u, (u € A;). Letting ¢, € (C})* = B, denote the restriction of ¢ to C},
Lemma 5.6.1(2) gives
U=u-@ = udy, (u € Ay).
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Suppose that £ is any unit vector in H. Then given any s € G, letting n = 7(s)§ and

u = £ *, 1, we have
1 = u(s) = u(s)¢1(s) = ¢1(s).

Thus ¢; = 1g € B, and by Theorem 5.3.1 {w,H} is completely-amenable. O

If {m,H} is any representation of G, then by Proposition 5.5.2 A, = A(r,;) =
A(r). Hence the existence of a bounded approximate unit in A(7) is sufficient for
complete-amenability of {7, H., }. For amenable representations we have the follow-

ing corollary.

Corollary 5.6.3. Let {v,K} be a representation of G and consider the following
conditions.

(1) {~, K} is amenable.

(2) A(y®%) has a bounded approzimate unit.

(8) The closed ideal I.o7 = {u € A(y®7) : u(e) = 0} of A(y®7) has a bounded
approzrimate unit.

Then (1) < (2) < (3)

Proof. The equivalence of statements (2) and (3) is an immediate consequence of
Theorem 5.6.2. For (2) = (1) note that if A(y®%) has a bounded approximate unit,
then by Theorem 5.6.2, 7.,g7 is amenable and so by Theorem 5.5.4, ¥ ®% is amenable.

Now {7, K} is amenable by Theorem 5.2.6. O

We have unfortunately been unable to prove the implication (1) = (2) of either
Theorem 5.6.2 or Corollary 5.6.3. In terms of Fourier-Stieltjes algebras we can make

the following statement.

Theorem 5.6.4. The following are equivalent for a representation {v,K} of G.
(1) {r,K} is amenable.
(2) The Fourier-Stieltjes algebra B(y ® ¥) has an identity.

Proof. (1) = (2) If {7, K} is amenable, then by Theorems 5.2.6 and 5.3.1, 1g € B, g5.
As B,gy C B(y®7), (2) follows.
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(2) = (1) If B(y®7) has an identity ¢, then the argument found in the last few lines
of the proof of Theorem 5.6.2 shows that ¢ = 1g € B(y ® 7). It now follows from
Theorems 5.2.6, 5.3.1 and 5.5.4 that {v, K} is amenable. O

5.7 Some comments regarding a question posed by

M.E.B. Bekka

Let G be a locally compact group. In the previous chapter we discussed Johnson’s
Theorem which states that G is amenable precisely when its group algebra L'(G)
is amenable. Amenability of G has also been characterized in terms of amenability
of the reduced group C*-algebra C}(G) and Connes-amenability of the group von
Neumann algebra VN(G).

Before stating these characterizations in Theorem 5.7.1 we remark that for C*-
algebras, amenability is equivalent to the important C*-algebraic property of nucle-
arity. For von Neumann algebras, amenability as defined in Chapter 2 turns out
to be too strong of a condition to yield an interesting subclass of von Neumann al-
gebras. The most suitable notion of amenability for von Neumann algebras, called
Connes-amenability, takes account of the fact that every von Neumann algebra is the
dual space of some Banach space. Connes-amenability of von Neumann algebras is
known to be equivalent to each of the conditions of injectivity, semidiscreteness, and
Schwartz’s property P. The facts stated in this paragraph are of significant depth and
are primarily due to M.D Choi, A. Connes, E.G. Effros, E.C. Lance, S. Wassermann
and others. A self-contained account may be found in [45]. The following is due
to E.G. Effros and E.C Lance [11}, A. Guichardet [22], and E.C. Lance [29] in the
discrete case; the general case was established by A. T.-M. Lau and A.L.T. Paterson
[31], (also see [39] and [44]).

Theorem 5.7.1. The following are equivalent for a locally compact group G.
(1) G is amenable.

(2) C¥(G) is nuclear and G is inner amenable.
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(3) VN(G) is Connes-amenable and G is inner amenable.

We may phrase this in terms of the left regular representation {),, L%(G)} and the
conjugation representation {8, L*(G)} as follows: )z is amenable precisely when C3,
is nuclear and B is amenable which is true precisely when V N,, is Connes-amenable
and 3 is amenable.

In 1990 M. Bekka {3, page 400] asked if it is possible to characterize amenable
representations {7, K} in terms of amenability of some Banach algebra associated to
7. Presumably motivated by the above theorem, Bekka suggested Cj, and VN, as
two natural candidates.

In [28] E. Kaniuth and A. Markfort showed that if {8, L?(G)} is the conjugation
representation of G, then G, is amenable if and only if Cj 4 is nuclear(=amenable).
Thus if we take G to be any non-amenable discrete group, (for example let G be the
free group on two generators), then G is trivially inner-amenable, so {8, L?(G)} is
amenable, but Cj ; = Cj is not nuclear. This suggests that both Cj ; and C are not
good candidates when searching for a solution to Bekka’s problem. We are unsure as
to whether this also implies that V' Ny is not Connes-amenable.

According to [3, Corollary 5.5] G is amenable precisely when all of its irreducible
representations are amenable. Thus if we take any non-amenable group G, we can
find an irreducible representation {, K} of G which is non-amenable. However by

Schur’s lemma, for irreducible representations
VN, =7(G)" = {aidg : @ € C} = B(K)

which is Connes-amenable. Still, for irreducible representations v we have no related
concept of inner amenability so we cannot rule V N, out as a contender for the Banach
algebra which will solve Bekka’s problem.

Recall that

(i) G is amenable if and only if the left regular representation {)s, L%(G)} is

amenable;
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(i) the right regular representation {ps, L?(G)} is unitarily equivalent to { )y, L2(G)}
and po(G) C A2(G)'; and

(iii) the conjugation representation {3, L?(G)} is defined by S8(s) = Aa(s)pa(s), and

G is inner amenable if and only if § is amenable.

Based upon an argument that V. Runde has given to prove the equivalence of (1)
and (3) in Theorem 5.7.1, (see [44, Theorem 5.3] where Runde actually proves more

than this), we can prove the following proposition.

Proposition 5.7.2. Let {v,K} be a representation of G. Suppose that there is a
representation {p, C} of G such that p(G) C ¥(G)' and let {B,,, K} be the (continuous

unitary) representation defined by

:B'y,p(s) = 'y(s)p(s), (3 € G)
If VN, is Connes-amenable and B, , is amenable, then vy is amenable.

We will omit the proof. Beyond the remarks that we have already made in this sec-
tion we have the following few remaining comments. First, in light of Theorems 5.2.6
and 5.4.5, we might suggest that the C*-algebras Cj 45, (v and the von Neumann
algebra V N,gy are worthy of consideration with regards to Bekka’s problem.

Two other possibilities are the Banach algebras A(y) and B(7), (or A(7®7) and
B(y ®7)). As mentioned in section 5 of Chapter 3, Ruan’s theorem says that G
is amenable if and only if the Fourier algebra A(G) = A()2) is operator amenable.
Operator amenability also makes sense for the Lau algebras A(v) and one might
certainly wonder how it relates to the amenability of . In [47] V. Runde and N.
Spronk introduced a notion of amenability for dual operator Banach algebras called
operator Connes-amenability. There they proved that G is amenable if and only if
the reduced Fourier-Stieltjes algebra B.(G) = B().) is operator Connes-amenable.
Every Fourier-Stieltjes algebra B(v) is a dual operator Banach algebra so it is natural

to ask how operator Connes-amenability of B(vy) relates to the amenability of +.

In fact, because every operator amenable operator Banach algebra has a bounded
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approximate unit [42, Proposition 2.3] and every operator Connes-amenable Banach
algebra has an identity [47, proof of Theorem 4.4], the following is an immediate

consequence of Corollary 5.6.3 and Theorem 5.6.4.

Proposition 5.7.3. Let {v,K} be a representation of G.
(1) If A(y®7) is operator amenable, then {v,K} is amenable.
(2) If B(y ® %) is operator Connes-amenable, then {7, K} is amenable.

As a final remark we note that there is no hope of characterizing amenability of
in terms of amenability of the Fourier algebras A(7). Indeed, for the Fourier algebra
A(G) to be amenable it is both necessary and sufficient that G contain an abelian

subgroup of finite index, (see [33] for sufficiency and [46] for necessity).
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