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A B S T R A C T

A net in the group algebra of a locally compact group which commutes asymptot­

ica lly  w ith  elements from  the measure algebra is called quasi-central. In  th is thesis 

we provide new characterizations of locally compact groups whose group algebras 

possess quasi-central bounded approximate units. Reiter-type and structura l condi­

tions for such groups are obtained which indicate tha t these groups behave much like 

the tractable [SIN]-groups. A  general notion of an amenable action on the predual 

o f a von Neumann algebra is developed to prove these theorems. Applications to the 

Fourier algebra are discussed.

We study the relationship between the classical invariance properties of amenable 

loca lly compact groups G and the approximate diagonals possessed by the ir associated 

group algebras L l (G ) . From the existence o f a weak form  of approximate diagonal for 

L l (G) we provide a direct proof tha t G is amenable. Conversely, we give a formula for 

constructing a strong form  of approximate diagonal for any amenable locally compact 

group. In particular we have a new proof of Johnson’s Theorem: A locally compact 

group G is amenable precisely when L l {G) is an amenable Banach algebra. Several 

structura l Fplner-type conditions are derived, each of which is shown to correctly 

reflect the am enability of L l {G). We show that a semigroup algebra is 1-amenable 

precisely when the semigroup is an amenable group. We obtain Fplner conditions 

characterizing semigroups w ith  1-amenable semigroup algebras.

We consider amenable representations, introduce a notion of complete-amenability 

for representations, and examine the relationship between the two concepts. Several
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C*-algebraic characterizations of amenable and completely-amenable representations 

are obtained. We define versions of the Fourier and Fourier-Stieltjes algebras for 

an arb itra ry representation. We show tha t a representation is amenable whenever an 

associated Fourier algebra has a bounded approximate un it, and th a t a representation 

is amenable precisely when an associated Fourier-Stieltjes algebra has an identity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOW LEDGEMENTS

I t  is a pleasure to express my greatest thanks to my wonderful supervisor Professor 

A. T .-M . Lau. He has my deep gratitude for lending his considerable expertise, his 

valuable suggestions, and his consistent encouragement to me through several years 

o f study.

I  would like to sincerely thank Professor V . Runde for showing interest in  th is 

thesis and for providing me w ith  copies o f his own work. I  would also like to  thank 

Professor F. Ghahramani for expressing interest in  my work and Professor M. Neufang 

fo r discussing the topic of the final chapter of th is thesis w ith  me. I  would also like 

to  express my gratitude to  Professor Rick Loy for his careful reading of th is thesis, 

and his many valuable comments.

Special thanks are due to my friends Monica Ilie  and D r. Mehdi Sangani Monfared 

for numerous conversations over the years about abstract harmonic analysis. I would 

like to  further thank Monica for p rin ting  and d istribu ting  copies o f th is thesis for me 

in  my absence.

For the ir enduring love and support, I  offer my mother, father, and sister my 

immense appreciation. M y most heartfelt thanks go to  my lovely wife Anna for 

brightening every day and for being there from  the beginning. And thank you Ava 

for showing up towards the end!

The financial support of the N atural Sciences and Engineering Research Council 

o f Canada and the University of A lberta is gratefully acknowledged.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents

1 Introduction 1

2 Preliminaries 5

2.1 Amenable locally compact groups and sem igroups............................... 5

2.2 Amenable Banach a lgebras....................   8

2.3 Representations of locally compact groups  ............................... 10

3 Quasi-Central Bounded Approximate Units in Group Algebras of

Locally Compact Groups 15

3.1 In tro d u c tio n ....................................................................................   15

3.2 Amenable action on the predual of a IV *-a lgebra..............   16

3.3 A Reiter Condition  ..............................................   21

3.4 The M ain Theorem  .....................................................  24

3.5 Applications  .................    31

4 Fplner Conditions for Amenable Group and Semigroup Algebras 35

4.1 In troduction  .................................................   35

4.2 V irtua l and approximate diagonals for group algebras . . . . . . . . .  37

4.3 Fplner C ond itions...........................................    46

4.4 1-Am enability of semigroup algebras .....................................................  57

5 Amenable and completely-amenable representations 65

5.1 Introduction  ...........................   65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.2 Am enability and complete-amenability for representations . . . . . .  66

5.3 Complete-amenability and weak containment . . . . . . . . . . . . . .  70

5.4 C*-algebraic characterizations  .........................................  72

5.5 The Fourier algebra for an arb itra ry representation . . . . . . . . . .  76

5.6 Towards Leptin ’s theorem for amenable representations . . . . . . . .  80

5.7 Some comments regarding a question posed by M .E.B. Bekka . . . . .  83

Bibliography 87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1

Introduction

A  locally compact group G is called amenable i f  the space L°°(G), o f essentially 

bounded functions on G, possesses a translation-invariant functional called an invari­

ant mean. The notion of amenability traces its  origins back to  the study o f fin ite ly  

additive measures which are invariant under groups o f isometries, a theory which 

led to  the celebrated Banach-Tarski paradox. Given the history of the subject, the 

prominence o f invariance properties in  the theory of amenable groups is o f no sur­

prise. Among these properties is the Reiter condition from  which the very deepest of 

the classical invariance properties, the Fplner conditions, can be derived. The Fplner 

conditions are, in  a sense, especially nice because they provide the only known de­

scriptions of am enability in  terms o f the internal structure o f the group itse lf, rather 

than in  terms o f a related Banach algebra.

A  Banach algebra is called amenable i f  i t  possesses a particular cohomological 

property. The theory of amenable Banach algebras was born in  1972 when B.E. 

Johnson proved his famous theorem which states tha t a locally compact group G is 

amenable precisely when its associated group algebra L l (G) is amenable [24]. Shortly 

thereafter, Johnson proved his fundamental characterization of amenable Banach 

algebras in  terms of the existence of v irtu a l and approximate diagonals [25]. V irtu a l 

diagonals are often said to play the role in  the theory o f amenable Banach algebras 

th a t invariant means play in  the theory of amenable groups. Indeed, the existence

1
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o f approximate diagonals may be interpreted as an invariance property for amenable 

Banach algebras.

An elegant theory of amenable representations was developed in  1990 by M .E.B. 

Bekka [3]. In  th is general context Bekka proved analogues o f a ll o f the classical invari­

ance properties including the Fplner conditions, and interpreted several am enability 

theories in  terms o f amenable representations. In  particular he proved th a t a locally 

compact group is amenable i f  and only i f  a ll o f its  representations are amenable.

A  bounded net in  a Banach algebra A  which behaves asym ptotically like an 

iden tity  for A  is called a bounded approximate unit. A  bounded approximate u n it 

fo r L l (G) is called quasi-central i f  i t  commutes asym ptotically w ith  elements from  the 

measure algebra M (G ). In  [48] A. Sinclair asked when group algebras possess quasi­

central bounded approximate units. V. Losert and H. R indler [36] have shown th a t 

group algebras of amenable groups always have quasi-central bounded approximate 

units and in  Chapter 3 we provide new answers to  S inclair’s question.

A  locally compact group G is called a [SIN]-group (small invariant neighbourhood 

group) i f  i t  has a base for the neighbourhood system at the iden tity comprised of 

compact sets which are invariant under inner automorphisms. The [SIN]-groups are 

necessarily unim odular and are precisely those groups whose group algebras possess 

central bounded approximate units [37]. In  Chapter 3 we call a locally compact group 

a quasi-[SIN]-group i f  i t  possesses a base for the neighbourhood system at the iden tity  

which is asym ptotically invariant under inner automorphisms. We prove tha t for a 

group to  be quasi-[SIN], it  is both necessary and sufficient th a t i t  is unim odular and its  

group algebra has a quasi-central bounded approximate un it. This structura l theorem 

combines w ith  Losert and R indler’s theorem to  say tha t unim odular amenable locally 

compact groups behave much like the very tractable class o f [SIN]-groups.

In  Chapter 4 we study the relationship between the classical invariance proper­

ties o f amenable locally compact groups and the approximate diagonal invariance 

property of the ir associated group algebras. An integral part o f th is endeavour is 

our work on quasi-central bounded approximate units from  Chapter 3. We give an

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



exp lic it form ula for constructing a compactly-invariant approximate diagonal (a very 

strong form  o f approximate diagonal) from Reiter’s condition and a nice form  of 

quasi-central bounded approximate un it possessed by amenable groups. Conversely, 

we show how R eiter’s condition and strong forms of quasi-central bounded approx­

imate units can be obtained from  the existence of com pactly-invariant approximate 

diagonals. From weaker forms o f approximate diagonals we show how to construct 

nets converging to  topological invariance. One corollary of these results is a new proof 

o f Johnson’s theorem. The existence of a com pactly-invariant approximate diagonal 

can be interpreted as a Reiter condition for amenable group algebras, and doing th is 

we derive new Fqlner conditions for amenable locally compact groups which have 

a very different flavour from  the ir classical counterparts. We then show how re­

lated Fplner conditions can be obtained from  the classical Fplner condition and our 

work from  Chapter 3 on quasi- [SIN]-groups. A ll o f our Fplner conditions are shown 

to correctly reflect the am enability of L X(G) in  the sense th a t they na tura lly yield 

com pactly-invariant approximate diagonals comprised o f normalized characteristic 

functions.

The definition of am enability also makes sense in  the more general context of 

semigroups, and it  is known tha t amenability o f a semigroup algebra implies tha t 

the semigroup itse lf is amenable. However, unlike the case for groups, the converse 

does not hold. Thus a theme of many papers has been to  address the problem of 

describing those semigroups, in  terms of the internal structure o f the semigroup itself, 

which carry amenable semigroup algebras. The problem, now a quarter century in 

age, has only been completely settled in special cases. The general trend however, 

is tha t am enability of the semigroup algebra imposes very strong conditions upon 

the semigroup. We show tha t semigroup algebras are 1-amenable, (tha t is have an 

approximate diagonal bounded in  norm by 1) precisely when the semigroup is an 

amenable group. When searching for internal properties o f a semigroup related to 

am enability i t  is natural to look for structural Fplner-type conditions. We obtain a 

Fplner condition which, w ith  no extraneous conditions imposed upon the semigroup,

3
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characterizes those semigroups w ith  1-amenable semigroup algebras.

In  the fina l chapter we tu rn  our attention to  Bekka’s amenable representations and 

introduce a notion o f complete-amenability for representations. We provide the rela­

tionship between these two concepts of am enability and interpret amenability, inner 

amenability, and amenable group actions in terms of completely-amenable represen­

tations. We describe complete-amenability through a weak-containment property 

and provide several characterizations o f complete-amenability of a representation in 

terms o f the existence of certain states upon C*-algebras. For each representation 

7r o f G we define a Fourier algebra A (tx)  and show tha t when an associated Fourier 

algebra ^4(7r®7f) has a bounded approximate un it, the representation tt is necessarily 

amenable.

4
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Chapter 2

Preliminaries

2.1 Amenable locally compact groups and semi­

groups

Throughout th is thesis G w ill denote a locally compact group w ith  iden tity element 

e, le ft Haar measure A, and modular function A . We w ill refer to  a set or function 

which is Borel measurable sim ply as measurable. I f  A  is a measurable subset o f G, 

then |A| w ill denote its  Haar measure. The characteristic function of A  is 1a and 

i f  0 <  [A| <  oo, <j>A is its normalized characteristic function ^ 1 a -  Integration o f a 

Borel measurable function /  taken w ith  respect to  Haar measure is w ritten

/ f ( x ) dx.
Jg

Let 17(G) be the space of a ll complex-valued measurable functions f  on G such 

tha t

/  If ( x )\pdx <oo ,  (1 <  p <  oo).
Jg

Identifying functions tha t are equal A-almost everywhere, Z7(G) is a Banach space 

w ith  norm

\\!\\v =  ( f \ ! ( A \ r dx ) K  ( f € l / ( G ) ) .

The C*-algebra o f a ll essentially bounded complex-valued Borel measurable functions 

on G equipped w ith  the essential supremum norm is denoted by L°°(G). The C*-

5
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subalgebras o f continuous bounded functions and the functions vanishing at infinity- 

on G are respectively CB(G)  and Cq(G). The space of continuous functions w ith  

compact support is denoted by Cqo{G). For 1 <  p <  oo we let

=  { /  € LP(G) : }  >  0 and l l / l l ,  =  1}.

When G is discrete we w ill use the notation lp(G).

W ith  convolution product

f * g ( t ) =  [  f(s )g {s  H) ds 
J g

and involution

1
r { t )  =  a M / ( *-1)) { / ^ e L l(G ) ’ S G (? )’

L 1 (G) becomes an involutive Banach algebra, called the group algebra o f G. The 

Banach space M {G ) o f a ll complex regular Borel measures on G may be identified 

w ith  the dual o f Co(G) through the pairing

(h ,p ) =  [  h(s) dp(s), (p € M (G ), h € C0(G)).
J g

W ith  convolution product defined by

>G

and involution

{h ,p *  v) — /  h(st) dp(s)dv(t)
Jg

(h ,p*) =  [  h is -1) dfx(s), ip, v G M (G ), h G C0(G)),
J g

M {G ) also becomes an involutive Banach algebra called the measure algebra o f G. 

The group algebra L 1 (G) is identified w ith  a closed ideal in  M (G )  through

/  n f  : L \G )  -> M (G )

where

<fc,M/> =  J  h (s )f(s ) ds, ( /  e L 1(G ) ,h € C 0(G)).
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I f  Sx denotes the D irac measure at x E G and /  E L l {G), we have

Sx * f (s )  =  f ( x ~ l s) and /  * ^ (s )  =  (s E G).

Let U  be a closed subgroup o f (3 and let X  =  G /H  be the space o f le ft cosets o f

H  in G w ith  the quotient topology induced by the canonical map G —> X .  Let G act 

on X  through a • x H  =  (ax)H. Two measures are said to  be equivalent i f  they share 

the same collections o f nu ll sets. A positive regular Borel measure p  on X  is called 

quasi-invariant i f  the measure a • p  is equivalent to  p  where for a E G and E  a Borel 

measurable subset of X ,  a • p(E ) :=  p(a • E). I f  p is quasi-invariant, le t a(a, xH ), 

(a,x  € G), denote the Radon-Nikodym derivative of a • p  taken w ith  respect to  p. 

The quasi-regular Borel measure p is called strongly continuous i f  the map

(o, xH )  M- cr(a, xH ) : G x  X  —> [0, oo)

is jo in tly  continuous. Every coset space admits a strongly continuous quasi-invariant

positive regular Borel measure. For s € G and /  6 L 1 (X , p) we w rite

5a * f ( x H )  =  a(a, x H ) f (a ~ 1xH ).

I f  (j> is any complex-valued function on G and a e G ,  we w rite

(la(t>){s) =  4>{as) and (r a(j>)(s) -  4>{sa), (s e G).

A functional m  € L°°(G)* satisfying ||m|| =  m (la )  =  1 is called a mean. The locally 

compact group G is called amenable i f  there exists a mean m  on L°°{G) such tha t

m {la(j)) =  m(<j>), (a E G , <j> € L°°(G)).

Such a mean is said to  be left invariant. We call G inner-amenable i f  L°°(G ) has an 

inner-invariant mean; tha t is, i f  there is a mean m on L°°(G) such that

m (lar~ l (t>) =  m(4>), {a E G, <j> E L°°(G)).

The components o f the follow ing two theorems w ill be referred to in  Chapter 4 as 

the classical invariance properties o f amenable locally compact groups. The various 

parts o f these theorems are due to M. Day, E. Fplner, I. Namioka, and H. Reiter. 

Proofs may be found in  [18], [39], and [40].

7
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Theorem 2.1.1. The following are equivalent fo r  a locally compact group G.

(1) G is amenable.

(2) There exists a net (f a) C L 1(G ) f  such that ||5X * f a ~  f a||i -> 0, (x £ G).

(8) There exists a net (f a) C L l {G ) f  such that \\g * f a — f a\\i ->  0, {g £ L l {G )f) .

(4) There exists a net (f a) C L 1(G )f such that ||6X * f a ~  fa ||i —► 0 uniformly in  x

on compact subsets of G.

Theorem 2.1.2. Let G be a locally compact group. Then G is amenable i f  and only 

i f  i t  satisfies the F0lner condition

(FC): For every e >  0 and every compact subset K  of G there exists a compact subset 

A of G with |A| >  0 such that

|xA  A  A\ <  e|A|, for every x £ K.

A  net as in  part (3) o f Theorem 2.1.1 is said to converge to topological invariance 

and the existence of a net as in part (4) of Theorem 2.1.1 is called Reiter’s condition. 

I t  is not d ifficu lt to  see th a t (4) =>■ (3) => (2) =>■ (1) in  Theorem 2.1.1. The condition 

(FC) says tha t the net (f a) in  part (4) o f Theorem 2.1.1 may be taken to  be comprised 

o f normalized characteristic functions 4>a — i^l 1a, A c  G.

Let S be a discrete semigroup. W ith  the convolution product

=  ^ 2 f ( x )g ( y ) ,  ( f , g e  l^ S ) , t e S ) ,
x y = t

11 (S) is a Banach algebra called the semigroup algebra of S. As w ith  locally compact 

groups, we call S amenable i f  there is a le ft invariant mean on l°°(S).

2.2 Amenable Banach algebras

Throughout th is section let A  be a fixed Banach algebra. A Banach space E  is called 

a le ft Banach A-module i f  E  is a le ft A-module, and there exists a number K  >  0 

such tha t

||a • x\\ <  A ||a || ||a:||, (a £ A, x £ E ).

8
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S im ilarly one defines righ t Banach A-modules, and Banach A-bimodules. I t  is easy 

to  see tha t i f  E  is a le ft Banach A-module, then its  continuous dual E* becomes a 

righ t Banach A-module w ith  module m ultip lica tion given by

(<j> • a )(x) =  <j)(a ■ x), (<j> € E*, a € A, x G E).

We w ill refer to  E* as the dual Banach A-module o f E.

Let E  be a Banach A-bimodule. An jEJ-derivation is a linear mapping D  : A E  

such tha t

D(ab) =  D (a ) • b +  a • D(b), (a, b € A).

For example i f  x £ E , a simple calculation shows th a t adx is a bounded derivation 

where

adx(a) :=  a • x  — x ■ a, (a £ A ).

The map adx is called an inner derivation. The Banach algebra A  is called amenable 

i f  for every Banach A-bimodule E, every bounded derivation D  : A  -¥ E* is inner. 

The reason for th is use o f term inology is the follow ing theorem due to  Barry Johnson 

[24].

Theorem 2.2.1. (Johnson’s Theorem) Let G be a locally compact group. Then G is 

amenable i f  and only i f  its group algebra L 1 (G) is amenable.

The projective tensor product A ® A  is a Banach A-bim odule w ith  products de­

termined by ( a ® b ) - c  =  a ® b c  and c • (a ® 6) =  ca ® b. Let tt denote the canonical 

homomorphism determined by n(a  ® b) =  ab. An approximate diagonal for A  is a 

bounded net (m7) in  A ® A  such tha t for each a € A,

lim  (m7 • a — a - m7) =  0 and lim  7r(m7)o =  a.
7 7

A virtual diagonal for A  is an element M  o f the dual Banach A-bim odule (A® A)** 

such tha t fo r each a £ A, M -a =  a -M  and (tt**M)a — a. In  [25] B arry Johnson proved 

th a t the Banach algebra A  is amenable i f  and only i f  i t  possesses an approximate 

diagonal which is true i f  and only i f  i t  has a v irtu a l diagonal. The Banach algebra

9
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A  is called ^-amenable, where k is a positive constant, i f  i t  has an approximate 

(equivalently v irtu a l) diagonal w ith  bound k [26]. C learly A  is amenable precisely 

when it  is ^-amenable for some k >  0. Proof of these statements and much more 

about amenable Banach algebras may be found for example in  [45].

2.3 Representations of locally compact groups

i f  n  is a H ilbe rt space, B (H )  is the von Neumann algebra of bounded linear operators 

on H . For £ G % we le t be the vector state on B(fH) associated to £ which is 

defined by a^(T ) =  (T£, £), (T  G B(%)). For £, rj G H , £07?* is the rank-one operator 

on % defined by (£ 0 t?*)(£) =  (£,7?)£, (£ € H ). We note tha t the linear span of 

a subset F  o f a linear space E  w ill be denoted by (F ). General references for the 

m aterial on operator algebras and the ir representations needed in  th is thesis are [8], 

[35], and [49].

Let G be a locally compact group. A  continuous unitary representation o f G is a 

pair {-7T, % } where 7r is a homomorphism of G into the group of un itary operators on 

the H ilbe rt space % which is continuous w ith  respect to the weak operator topology 

(W OT) on B{%). In  th is thesis we w ill refer to continuous un ita ry representations 

o f G sim ply as representations of G.

Im portant examples of representations of G are {A 2, L 2(G )} and {p2,L 2(G )} re­

spectively defined by

A2(s)£(£) =  £(s_1t) and p2(s)£(t) =  A (s)^£ (ts ), (£ G L 2(G), s ,t  6 G).

The representations { \ 2,L 2(G )} and {p2,L 2(G )} are called the left and right regular 

representations of G. The conjugation representation {/3, L 2(G )} may be defined by

P(s) =  X2(s)p2(s), (s G G).

I f  i f  is a closed subgroup of G and X  =  G /H  has strongly continuous quasi­

invariant positive regular Borel measure p, then the quasi-regular representation

10
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{ In d g  1h, L 2(X ,j j ,) }  is defined by

In d % lff(s ) i{x H )  =  a (a ,x H )^ (s ~ 1xH ), (s, x & G, £ G L 2(X , p).

Two representations { t , % }  and { 7 , X }  o f G are said to be unitarily equivalent i f  

there exists a un itary operator U : % - *  1C such tha t for every s € G, Uir(s) =  j(s )U . 

The set of equivalence classes o f u n ita rily  equivalent representations of G is denoted 

by £ (G).

I f  A  is an involutive Banach algebra, a * -representation of A  is a pair {tt, H }  where 

H  is a H ilbe rt space and 7r : A  -» B (H )  is a ^-homomorphism. A  ^-representation 

{tt, % } is called non-degenerate i f  {n (a)£ : a £ A, £ G %) is dense in  %.

There is a one-to-one correspondence between the representations {77,% }  o f G 

and the ^-representations of the measure algebra M  (G) given by the formula

MaOC, i )  =  [  v) dn(s), (fj, £ M (G ), £,r} € %). (2.1)
J g

R estricting equation (2.1) to L l (G) yields a one-to-one correspondence between the 

representations o f G and the non-degenerate ^-representations o f L l (G). The induced 

representations o f {7r, % } on L 1 (G) and M (G ) given by equation (2.1) w ill also be 

denoted by { 7 Now any representation {7r, % } o f G satisfies

IK(/)|| < ll/ill, ( / G L l (G)), 

so we may define a new norm on L 1 (G) by

\\ fh(G) =  suP {ll7r( / ) l l  : { « , n }  G E (G )}, ( /  G L l (G)).

The completion o f (L 1(G), || • ||s (g )) is a C*-algebra called the group C*-algebra of 

G and is denoted by C*(G). There is a one-to-one correspondence between the 

non-degenerate ^-representations o f L l {G) and C*(G), and therefore a one-to-one 

correspondence between the representations of G and C*{G).

For a representation { 7t , H }  o f G, le t ker(7r) =  { x  G C*(G) : tt(x) =  0} denote 

the kernel of 7r in  C*(G). A  representation is said to be weakly contained in

another representation { 7 , /C} of G, (and we w rite n ■< 7 ), i f  ker(7r) Dker(7 ).

11
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References for the m aterial which follows are [13] and [2], respectively due to  P. 

Eymard and his student G. Arsac.

I f  € S(G ) and £, 77 € %, then w ill denote the coefficient of n  defined

by

£ *?r v{s) =  (x{s%v) ,  (s e G ).

The set of continuous positive-definite functions on G

P(G) =  « • „ £ :  { * ,  H )  6 £ (G ), ? e H ]

corresponds perfectly w ith  the set of positive linear functionals on C*(G) and it  

follows th a t B (G ) =  (P(G )) may be identified w ith  the dual o f C*(G). The pairing 

o f these spaces satisfies

( / ,« )  =  [  f(s)u(s) ds, ( /  e L \G ) ,  u e B(G )).
J g

I t  can be seen tha t B(G ) is precisely the set of a ll coefficients o f representations 

{7r, % } € £ (G ). W ith  respect to its  dual norm and pointwise defined operations, 

B(G ) is a Banach algebra, called the Fourier-Stieltjes algebra o f G. I f  u G B(G ) 

is positive-definite, then ||w||b(g) =  IMloo =  u(e)- The state space of C*(G) is thus 

Px(G) =  { u e  P(G ) : u(e) =  1}.

Let {7T, % } be a representation of G. Let Gd be the group G endowed w ith  the 

discrete topology and let 7 be the representation 7r viewed as a representation o f Gd- 

We w ill be concerned w ith  the C*-algebras associated to  { k ,% }

c :  =  =  x(G *(G )) =  C-(G)/ker(7T) and =  C ‘v

The von Neumann algebra generated by 7r is

v k = ~¥m WOT= w m i WOT= c f OT-

The commutant of a subset £ of B fa )  is the set

£ ’ =  { B e  B(% ) : B E  =  E B  for everyE  e £ }.

12
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From the von Neumann bicommutant theorem we also have V N v =  7r ((?)", the 

bicommutant o f 7r(G) in  B(fH).

We define

and let denote the u;*-closure o f A n in  B(G ). I t  can be shown tha t Av may be

identified w ith  the predual (VN^)* of V N n and B n may be identified w ith  the dual

of C*. The pairings satisfy

< u ,7 r(/))=  f  f(s )u (s ) ds, ( /  e L X{G), u G A „)  (2.2)
Jg

and

( t t ( / ) ,u ) =  [  f(s )u (s ) ds, ( f  € L l (G), u G B v). (2.3)
J g

The space B v may also be described in  the follow ing two ways. I f  u € P(G), le t 

{ f t uiHu}  £ E(G ) be the cyclic representation of G associated to u (see [8]), and let

Pv =  { u e  P{G ) : 7ru ^  7r}.

Then Pn may be identified w ith  the set of positive linear functionals on C* and 

B ,r =  (Ptc), the linear span o f Pv in B(G ). Also

Bv =  (C:)* =  (C*(G)/kev(n))* =  kerfr)1

=  {« £  i5(G) : x € (7*(G) and 7r(x) =  0 =» (x, w) =  0}.

We w ill call A„. the Fourier space associated to the representation {tt, % } and we 

w ill refer to B w as the Fourier-Stieltjes space associated to  {% ,%}. I f  {A2, L 2(G )} is 

the le ft regular representation of G, the space A \2 is a closed ideal of B(G), called 

the Fourier algebra o f G and is usually denoted by A(G ). The space B \2 is also an 

ideal in  B(G ), often denoted B r (G) and called the reduced Fourier-Stieltjes algebra of 

G. The reduced group C*-algebra of G is C*(G) =  C^2 and the group von Neumann 

algebra of G is V N (G ) =  V N \2.

The follow ing lemma records some elementary facts which w ill be used in Chapter 

5. Each part of the lemma is almost certainly well-known.

13
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Lem m a 2.3.1. Let { tt,TC] be a representation of G.

(1) I f  x  G C* C VNn and u E A n C then (x , it) =  (u, x) w/iere on Z/m Ze/t toe weto 

a; G < 3 , «  G and on the right we view x E V N n, u G A * .  That is, the pairing is 

unambiguous.

(2) I f u  =  £ *tt and f  G L ^ G ), Zhen (7r ( /) ,« )  =  (t t (/)£, 77).

£5) For any u E A^ and t  E G, (u, ir(t)) — u(t).

(4) The set o f states on C* is n  P\{G) =  {u  E P„ : u(e) =  1}.

(5) The set o f normal, (that is w*-continuous) states on V N n is A n f l P\(G).

Proof. Part (1 ) follows from  the density o f 7t(L 1 (G)) in  C* and equations (2 .2 ) and 

(2.3).

Part (2) follows from  equations (2.1) and (2.2).

Part (3) is proved as in  the case of the Fourier algebra A(G). We may assume th a t 

u =  £**-77. Let t  E G and take a net (f a) in  L 1(G) such th a t r r( fa) —¥ t t (t) a (V N n, A v). 

Then we also have 7r ( /Q) —» ix{t) W O T, so from  part (2)

(u, tt(Z)) =  lim (w, 7r ( /a)) =  lim (7r ( /a)£, rf)

=  (tt (t)£,r?) =  n (t).

Parts (4) and (5) are obvious. □

F ina lly we record the follow ing result due to P. Eymard [14, page 48,49]. Eymard 

states the theorem only for quasi-regular representations, but i t  can readily be seen 

th a t his proof works in  the general case. We let 1^ denote the tr iv ia l representation 

o f G which is also the constant function la  '■ G —¥ G \ s —¥ 1. A  coefficient o f the 

form  £ * 7r £ is called a positive-definite function associated to 1r.

T heo rem  2.3.2. Let { r ,  % } be a representation of G. Then 1q 7r i f  and only i f  

there is a net o f positive-definite functions in P\ (G) associated to n which converges 

uniformly to I q on compact subsets o f G.

14
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Chapter 3

Quasi-Central Bounded 

Approximate Units in Group 

Algebras of Locally Compact 

Groups

3.1 Introduction

Let G be a locally compact group. A net (ua) in  L l (G) is called weakly asymp­

totically central i f  8X * ua — ua * 5X —> 0, (a; € G) where convergence is w ith  re­

spect to the weak topology in  L l (G). A  net (ua) in  L l (G) is called quasi-central 

i f  ||/i * ua — ua * / i| |i —> 0, (/t € M (G )).  We w ill use the notation K{e) — { U  :

U  is a compact neighbourhood of e}.

Locally compact groups G whose group algebras L X(G) possess quasi-central 

bounded approximate units (bau) have been studied by several authors; see for exam­

ple [36], [48], [50], [51], [54]. In  particular A. Sinclair firs t asked the question, ‘when 

does L l {G) have a quasi-central bounded approximate iden tity? ’ [48, Problem A3.4]. 

V . Losert and H. R indler addressed this problem in  [36] and among other things, they 

showed tha t the existence of a weak asym ptotically central bau in  L 1 (G) is equivalent

15
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to  the existence o f a quasi-central bau, and tha t group algebras o f amenable groups 

always possess quasi-central bau, [36, Theorem 3]. We note th a t im portant use of 

[36, Theorem 3] was made in the papers [42], [43] and we shall use i t  extensively in  

th is thesis. In  th is chapter we w ill provide new answers to  S inclair’s question.

In  section two we develop an amenability theory in  the very general context o f a 

group action on the predual of a von Neumann algebra. The machinery developed 

in  section two is used in  section three to  prove Theorem 3.3.4, which is an analogue 

o f R eiter’s condition [18, 3.2.1] for groups whose group algebras possess quasi-central 

bau. This result includes the converse direction of [36, Theorem 2].

A  locally compact group G is called a [SIN]-group (small invariant neighbourhood 

group) i f  there is a base for the neighbourhood system at the iden tity  comprised of 

compact sets which are invariant under inner automorphisms. A  well-known theorem 

due to  R. Mosak [37] states tha t G g[SIN] i f  and only i f  L l (G) possesses a central 

bau. Moreover every [SIN]-group is unimodular.

In  section four we define quasi- [SIN]-groups to  be those locally compact groups 

for which there is a base for the neighbourhood system at the identity which is 

asym ptotically invariant under inner automorphisms. We prove the main result of 

th is chapter, Theorem 3.4.3, which states th a t G is a quasi-[SIN]-group i f  and only i f  

G is unim odular and L l (G) possesses a quasi-central bounded approximate un it.

Applications o f th is work are discussed in section five. We begin by characteriz­

ing locally compact groups G w ith  group algebras adm itting  quasi-central bounded 

approximate units in  terms o f the Fourier and Fourier-Stieltjes algebras of G. We 

then discuss applications to the cohomology o f the Fourier algebra.

Our main application o f the results found in  th is chapter appear in  Chapter 4.

3.2 Amenable action on the predual of a W*-algebra

In  th is section we briefly outline a unified approach under which the standard tech­

niques used to develop the basic theory o f amenable groups, up to and including 

R eiter’s condition, may be used to develop the theory o f several types of amenability.

16
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We om it most proofs as they may a ll be adapted from  the ir classical counterparts,

(see for example [18], [39], [40]). In  the special case of amenable representations (Ex­

ample 3.2.2 , part (3) below) th is theory was developed by M. Bekka [3, Sections 2, 

3, and 4], and the details found in  th is paper may be helpful. For sections three, four, 

and five of th is chapter we only need up to  Lemma 3.2.9 (3) in  the special case of 

Example 3.2.2 part (2). We have chosen to set our presentation in  th is more general 

context because it  is no more d ifficu lt to  do so and because th is approach does not 

seem to  exist elsewhere in  the literature.

Let M  be a W*-algebra w ith  predual M * .  Let S (M )  denote the state space o f M ,  

(M * ) i  the normal states of M .  References for Banach G, L l (G), and M (G)-m odules 

are [24, Chapter 2] and [40, Section 1 1 ].

Definition 3.2.1. A locally compact group G w ill be said to have positive action on 

M * ,  i f  M *  is a le ft Banach G-module such that

(1) \\s • 0|| <  ||0||, (<j) € M * ,  s € G), and

(ii) s ■ <f> € {M * ) i  whenever s e G, <f> € (A f* )* .

Example 3.2.2. (1 ) Let M  =  L°° (G), A t*  =  L l  (G), w ith

s ’ f  =  Ss * f ,  ( /  G L l (G ),s e  G).

(2 ) Let M  =  L°°(G), M *  =  L X(G), w ith

s - f  =  6s * f * 5 s- 1 , ( /  € L l (G ),s  € G).

(3) Let { 7T, H }  be a continuous un itary representation o f G ,M  =  B {^ i)  the bounded 

linear operators on %, M *  =  T{% ) the trace class operators on H , and define

8 • T  =  tt(s)T tt(s~'1), (T  e T{n), s e G).

(4) Let G be a locally compact group, H  a closed subgroup o f G, X  =  G /H  the 

le ft coset space o f G modulo H . Let M. — L°°(X , v), M *  =  L l (X , v), where v is a 

strongly continuous quasi-invariant positive Borel measure on X ,  (see for example 

[14]). Define

s - f  =  6s * f ,  ( f e L ^ X , * ) ,  s € G).

17
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(5) Let (M ,G ,a )  be a W *-dynam ical system. That is, Ad is a W *-algebra, G is 

a locally compact group, and a  : G A u t(M )  is a homomorphism o f G in to  the 

group of ^-automorphisms of Ad, such tha t for each x  6  Ad, s -»  a s(x) : G -> 

(Ad,a(Ad, Ad*)) is continuous. Define

s • <j> =  (a s- i )*(</>), (s € G, (j) e Ad*),

where (as)* : Ad* —> Ad* is the adjoint map of : Ad —» Ad. In  fact each of our

firs t four examples is a special case o f th is last example.

For the remainder of th is section, G is a locally compact group, and Ad is a 

IT*-algebra such tha t G has positive action on Ad*. Note tha t Ad* is a le ft Banach 

M (G )-m odule (and essential Banach L 1 (G)-module) through the action defined by 

the weak integral

/  s ■ (j) dn(s), (<f> € M * , /j, € M (G )).
J g

Dual module operations on Ad and Ad* are defined in  canonical fashion. This next 

lemma is often required in the proofs of the statements which follow.

Lem m a 3.2.3. Let be the identity of M., and let M (G )i denote the set of prob­

ability measures in  M  (G) . The following statements hold:

(1) (Ad*)i~ is w*-dense in  S'(Ad).

(2) For each fj, e M (G )f,  eM • M =  eM-

(3) ( M , ) t  = G ■ ( M , ) t  =  M ( G ) t  ■ (M , ) t ■

(4) S(M) =  G  • S(M) =  M ( G ) f  ■ S(M).

Proof. (1) This is standard and may be found for example in  [49].

(2) Let f i € M (G )f.  Then for any <f) € (Ad*)^,

(<f>, eM -iJt) =  (n ■ <f>, eM ) =  /  (s-4>, eM ) dji (s) =  1 =  (<f>, eM )
J g

because the action o f G on Ad* is positive. But (Ad*)^ separates points of Ad, so

M =  e x .
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(3) The firs t equality is obvious. For the second one, note tha t i f  n G M (G ) f  and

(f> G then ||// • (f>\\ <  1, and from part (2), fx • 4>{eM ) =  <t>{eM  • lA =  =  1-

Hence jx * (j) is a normal state on M .

(4) The dual module actions on M *  are w* — w* continuous, so th is follows from

parts (1) and (3). □ .

D e fin itio n  3.2.4. We w ill say that G acts amenably on M *  i f  there exists a state 

m  on M  such tha t

m(x  • s) =  m(ar), (s G G, x  G M ) .

The state m  w ill be called a G-invariant mean (G -IM ) for the action.

The interpretation of th is definition in  Example 3.2.2 parts (l)-(4 ) is as follows:

(1 ) G acts amenably on M *  44- G is amenable.

(2 ) G acts amenably on A4* G is inner amenable.

(3) G acts amenably on A4* 44- { 7r, % } is amenable [3].

(4) G acts amenably on M *  ̂  G acts amenably on X  [14].

D e fin itio n  3.2.5. An element x € JA w ill be called uniform ly continuous i f  s x -s  : 

G —> (M ,  || • ||) is continuous. Let U C (M ) =  { x  € M  : x  is uniform ly continuous}.

R em arks 3 .2 .6 . (1) For Examples 3.2.2 (1 ), (3), and (4), we respectively have 

U C (M ) =  Cru(G) as defined in  [23], U C (M ) =  X (% ) as defined in [3], and 

U C (M ) =  U C B {X )  as defined in [14].

(2 ) In  the case o f Example 3.2.2 (2 ), U C (M )  may contain functions which are not 

continuous on G. For example i f  there exists U  G K(e) which is invariant under inner 

automorphisms (tha t is i f  G is an [IN]-group) then it  is clear tha t lu  € U C (M ).

(3) U C (M )  is always a (|| • ||-closed) righ t Banach G-submodule of M  containing e ^ . 

In  the case o f Example 3.2.2 (5), (and hence in  a ll o f our examples), i t  is easy to  see 

th a t U C (M )  is a C'*-subalgebra of M ,  (and (U C (M ), G, q\ uc{m )) is a ‘C*-system’).

Lem m a 3.2.7. We always have U C (M )  =  M  ■ L X(G ).
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D e fin itio n  3 .2.8 . A  state m  on M  is called a topological invariant mean (T IM ) i f

m (x  • u) =  m (x), (x G M , u G L l {G ) i) .

An element m  G U C (M )*  such tha t ||m|| =  m (e ^ ) =  1  w ill be called a mean. A

mean m is a T IM  on U C {M )  i f

m(x ■ u) =  m (x), (x G U C (M ), u G L 1(G )f).

Lem m a 3.2.9. The following statements hold.

(1) I fm  is a T IM  on M  (respectively U C (M )), then m is a G -IM  on JA (respectively

U C (M )).

(2) I f  m is a G -IM  on U C (M ), then m is a T IM  on U C (M ).

(3) I f  m is a G -IM  on U C {M ) and u G L l {G )f, then mu is a T IM  on M ,  where

mu(x) :=  m (x • u), (x G M ).

P ro p o s itio n  3.2.10. The following statements are equivalent.

(1) G acts amenably on M .*.

(2) There is a T IM  on M..

(3) There is a G -IM  on U C {M ).

(4) There is a T IM  on U C {M ).

C o ro lla ry  3.2.11. The following are equivalent fo r  a locally compact group G.

(1) G is amenable.

(2) Every positive action of G on the predual of a W*-algebra M. is amenable.

Proof. (2) (1 ) is obvious. For (1) => (2 ) apply Day’s fixed point theorem [18,

3.3.5] to  the natural action o f G on the set S o f means on U C (M ). □

C o ro lla ry  3.2.12. The following statements are equivalent.

(1) G acts amenably on M * .

(2) There is a net (<j)a) C  {M * ) i such that ||s ■ <f>a — (j)a\\ —> 0, (s G G).

(3) There is a net (<j>a) C ( M * ) f  such that ||w • ~  ^all 0, (u G L 1 (Gr) f ) .
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Proposition 3.2.13. (R eiter’s condition) The following statements are equivalent.

(1) G acts amenably on M.*.

(2) For any e >  0 and any compact subset K  of G there exists (j> G Ad* such that

||s • ^  — 0|| <  e, { s e K ) .

(3) There is a net {(fa) C such that \\p ■ <fa — <j)a\\ —> 0, (p G M (G )f) .

This is precisely Reiter’s condition in  each o f our Examples 3.2.2 ( l)-(4 ).

3.3 A Reiter Condition

Let G be a locally compact group. Throughout the sequel we w ill restrict our atten­

tion  to  the positive action

x - f : = 5 x * f * 5 x- i ,  { x e G ,  /  G L \G ) )

of G on L l (G ), (Example 3.2.2 (2 )). A ll references to T IM , G -IM , U C(L°°(G )), etc

are w ith  respect to th is action. I t  is easy to see that

M- /( y )  =  [  A ( x ) f ( x ~ 1yx) dp{x) a.e. y {p G M (G ), f  G L l {G))
J g

and

(j> • p(y) =  f <p(xyx~l ) dp,(x) locally a.e. y (p  G M (G ), <fi G L°°(G))
Jg

describe the induced M (G)-module and dual M (G)-module operations on L l {G) and 

L°°(G) respectively. In  particular we have

(t> • x(y) =  ( f-8 x(y) =  <f>(xyx~l ) (x G G, <f> G L°°(G)).

A  mean m  on L°°(G) is called inner invariant i f

m(<f> • x) =  ((j) G L°°(G), x  G G)

and is called an extension of the Dirac measure 5e (from C B(G ) to L°°(G)) i f

m (^) =  0 (e), (<j>GCB(G)).
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In [36, Lemma 3] it is shown that m extends the Dirac measure at e if and only if

m(<p) =  m(<f>lv) for any (f> € L°°(G), V  € fC{e), which in  tu rn  holds i f  and only i f  

m{f>) =  0 fo r any 4> € L°°(G) which vanishes locally a.e on a neighbourhood o f e. 

The follow ing is contained in [36, Theorem 5].

Lemma 3.3.1. For L 1 (G) to have a quasi-central bau i t  is necessary and sufficient 

that L°°{G) has an inner invariant mean which extends the Dirac measure at e.

Lemma 3.3.2. I f  L l (G) has a quasi-central hau, then there is a T IM  on L°°{G ) 

which extends the Dirac measure at e.

Proof. D irect K{e) by reverse inclusion and consider the bau {4>u '■ U € /C(e)} for 

L l {G), where <j>u ■— u- Let m be an inner invariant mean for L°°{G) extending 

6e. By Lemma 3.2.9 (2) and (3), mu is a T IM  for L°°(G) where mu {if) =  m(ip • 

<fu)i { if £ L°°(G)). Let mo be a w M im it point o f {mu) in  L°°{G)*; w ithout loss o f 

generality assume tha t mu —» mo w*. C learly mo is a T IM  on L°°{G). Suppose th a t 

(j> € L°°{G) and (j>{x) =  0 locally a.e. on a neighbourhood V  o f e. By [36, Lemma 3] 

we only need to  show tha t mo{(j>) =  0. To th is end take Uq € K{e) which is symmetric 

and satisfies Uq C V . Then for any U C Uq and almost every x g Uq

Lem m a 3.3.3. Let m be a mean on L°°{G) extending Se. Then fo r  any U € )C{e),

That is, {(f • (j>u)\u0 — 0 a.e. for U C  Uq. But m  extends 5e, so

m 0{<p) =  lim  mu(<f>) =  lim  m(<j> • <j>u) =  lim  m{4> • <fu) — 0.
u o

□

N o ta tio n  For any U  e /C(e) let

W(17) :=  {v  e L l {G )f : support(n) C  17} Pi L°°{G).

m e V {U )W\
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Proof. I f  not, then by the Hahn-Banach separation theorem we may find f  € L°°(G) 

and e >  0  such tha t

R e(f, m) >  e +  R e (f,v ), (« e f  ( I/)).

Le tting  g =  (R e f) lu  we have

(*) (v,g) +  e <  m(g), (v G W{U)),

where we have used [36, Lemma 3]. Let a  =  ess sitp{g(x) : x E U j  and A — {x  E 

U  : g(x) > a  — §}. Then |A| >  0 and <f>A € U ). Observe tha t i f  g' =  g +  a l G\u  

then (again by use of [36, Lemma 3])

m(g) =  m (g lu ) =  m (g 'lv ) =  m(g') <  ess sup(g') =  a.

Hence by (*)

a ~  \  <  9) <  m{g) - e < a - e ,

a contradiction. □

We may now prove the follow ing version of Reiter’s condition for groups whose 

group algebras possess quasi-central bounded approximate units. This may be seen 

as an improvement on the converse direction o f [36, Theorem 2].

T heo rem  3.3.4. Let G be a locally compact group such that L l (G) has a quasi-central 

bau. Then fo r  any e >  0, any compact subset K  of G, and any compact neighbourhood 

U of e there is some u € U) such that

U&c * u *  Sx -1  — u\\i <  e, (x G K ).

In  particular, i f  L 1(G) has a quasi-central bau (up), then (up) may be chosen so that

H&E * U p ~ U p *  5a,||i ->■ 0

uniform ly on compact subsets of G, and fo r  any neighbourhood U of e, there exists 

A, such that up G U) whenever /3 y  A -

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proof. Choose a symmetric set V  £ K.(e) such that V 3 C U. Choose E  £ JC(e) such 

th a t

\\4>e *<I>v  ~  <M |i <  e and \\6X * (f>v -  <pv\\i <  e, (x £ E).

Take X\, ...,xk £ K  such tha t K  C Ufc=i xkE. For k =  1, ...,n  le t i f k =  SXk * <j>E. 

Using Lemmas 3.3.2, 3.3.3, and an idea due to Namioka [38, 2.2] one can obtain a net 

(<f>a) C 4/(V ) such tha t ||0 • 0a — 0a||i 0 (4> £  In  particular, fo r some a

\\<f>v ■ (t>a -  <  e and \\ifk ■ <}>a ~  K \ \ i  <  z, {k =  l, . . ,n ) .

Let <fi =  (j>v • th a t is

0 (2/) =  k{x)<j>a{x~l yx) dx, a.e. y.

Then by Lemma 3.2.3 (3), <j> £ L l (G )f, support(0) C  V 3 C U, and it  is clear th a t 

0 £ L°°(G ). Thus 0 £ tf(U ).

As in  the proof o f the classical version of Reiter’s condition [18, 3.2.1] one can 

now show tha t

IISx * 0 *  Sx -1  -  0 111 =  ||s • 0 -  0 1[x <  5e, (x £ K ).

□

R em arks 3.3.5. (1) By Lemmas 3.2.9 (1), 3.3.1, and 3.3.2, L 1 (G) has a quasi-central 

bau i f  and only i f  there is a T IM  on L°°(G) extending the D irac measure at e.

(2 ) A  net (ua) satisfying the convergence property o f Theorem 3.3.4 is necessarily a 

quasi-central bau. This can be seen by arguing as in  [39, 4.3].

3.4 The Main Theorem

We begin w ith  a definition.

D e fin itio n  3.4.1. A net (Ua) o f measurable subsets o f G w ith  0 <  |Z7a| <  oo w ill be 

called asymptotically invariant (under inner automorphisms) i f

o, (X S G ).
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We w ill call G a quasi-[SIN]-group i f  i t  possesses an asym ptotically invariant net 

(Ua) C fC(e) which comprises a base for the neighbourhood system at e.

We remark th a t in  [1], a [QSIN]-group (standing for quasi-[SIN]-group) is de­

fined to  be any locally compact group whose group algebra has a quasi-central bau. 

Theorem 3.4.3 shows tha t our definitions do not quite coincide.

Lemma 3.4.2. I f  G possesses an asymptotically invariant net of subsets, then G is 

unimodular.

Proof. For each x  G G and each a,

A (x ) =  1 ^ 1  =  J - [ \ UaX\ xUa\ +  \xUa\ _  \xUa\U ax\]
\Uoc\ \U(x\

\Uax \xU a\ \xUa\U ax\
\Ua\ \Ua\

Taking the lim it o f the fina l term  of the above equation we obtain A (x) =  1 for each 

x  £ G. EH

Theorem 3.4.3. The following are equivalent fo r  a locally compact group G.

(1) G is unimodular and L l (G) has a quasi-central bau.

(2) There exists a net (Ua) C K{e) comprising a base fo r  the neighbourhood system 

at e such that
IxUa A  Uax\

~ \ u l \  0

uniformly on compact subsets of G. The sets Ua may be chosen to be symmetric.

(3) G is a quasi-[ SIN]-group.

(4) L l {G) has a quasi-central bau comprised of normalized characteristic functions 

(of compact symmetric neighbourhoods of the identity).

Note tha t unim odularity does not follow  from  the existence o f a a quasi-central 

bau alone. Indeed the group algebra of any amenable group has a quasi-central bau 

[36, Theorem 3].

Proof. (1 ) => (2) We begin by proving some lemmas, in  which we assume tha t con­

d ition  ( 1 ) is satisfied and U € K(e) is fixed. I f  v is a function on G, v(x) :=  v(x~1).
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Lem m a 3.4.4. There is a net ((fa ) C \&(I7) nCoo(G) such that fo r  each a, ||0a||oo =  

<j>a{e), (fa — (fa, and ||&e *  (fa — (fa *  <M|i -F 0  uniformly on com pact subsets of G.

choose a net (vQ) C ^ (V ) such tha t H&b * va — va *  6 x||i ->  0 uniform ly on compacta. 

Let (fa — va *Va- I t  is then easy to  see th a t for each a ,  <fa 6  U ), ||0a||oo =  (fa(e) (for 

example (fa is positive definite), (fa =  (fa , and because \If(U) C L 2(G ), (fa £  C qq(G ). 

F ina lly

^  ll^i * Va Va * ^x| |l F  ||(Uq *  Sx~i Sx- i  *  Va) ||l

=  ||$a; *  Va Va * $a;||l F  H'Wq * Sx—i Sx- i  * Ua||i

from  which the uniform  convergence on compacta follows. We note tha t unimodu-

Notation We denote the convex hu ll o f a subset 5 of a linear space by co(S). Let

$ ( [/)  =  c o { 4 > k  '• K  C U, K  a compact symmetric neighbourhood o f e}.

Lemma 3.4.5. There is a net {(fp) C $(?/) such that * (fp — (fp * 5x||i —> 0 

uniformly on compact subsets o f G.

Proof. Let (<fa) be a net as in  Lemma 3.4.4 and f ix  a. As <fa £ ^ (U )  n  Cqo{G), 

11 (fa 11 oo =  4>a(e), and (fa =  (fa, i t  follows th a t for each positive integer n, and each 

k =  0 , 1 ,..., n — 1

is a compact symmetric neighbourhood of e. Note tha t c  ... C A% =  U . Let

Proof. Let V  £ /C(e) be symmetric and such tha t V 2 C U. Using Theorem 3.3.4

||£, * ( f a - ( f a *  4 | | l  <  ll&E * V a * V a - V a * 5 x *  t ^ | | i  +  ||ua *  6X *  Va  -  Va *  Va *  5x \ \ i

la rity  was used in  this proof. □

A% =  { x  £  U  : <fa (x ) >  ~ ( fa (e ) }
TX

Then

*fa,n ^   ̂ j where Aj,
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Observe that n—l n —1 p

Aft =  y ]  Afc /  <t>A° =  |K ,n ||l =  1 
fe=0 fc=0 J g

so (f>a,n G $ (^ 0 - Now it  is not d ifficu lt to  see tha t | K  -  <̂ain||oo <  so

I K  -  ^a,n111 <  ^ ~ - | t / |  -► 0  as n 0 0 .
Th

Therefore l im n^ oo |K ,n||i =  I K I l i  =  1 and it  follows th a t l im n^ o o |K  -  ^ Q,n||i =  0. 

Let T  =  {(e , K )  : e >  0, K  C  G  is  compact}. For each /3 =  (e, K )  G JF take (j>a such 

th a t H&E *4 > a - 4>a* $c||i <  f ,  and take n such tha t | K  -  (j>a,n\\i <  f  • Then le tting  

(j)p =  <j)a,n, we have ||<JX * <f>p -  <j)p *  <5x ||i <  e, (a: € K ).  Thus {(j>p)pe? is the net we 

want. D

Observe th a t in  establishing Lemma 3.4.5, we showed th a t each <f>p may be w ritten  

in  the form
n

(*) 4>0=
*:=i

where each A*, >  0, ]Cfc=i At =  1, and U D A \ D A<i D ... D A n, w ith  each set Ak a 

compact symmetric neighbourhood of e.

Lem m a 3.4.6. Let <j) e $ ( [/)  be written in  the form  (*). Then

11 s, * * - * * { .1 1 1  = ' p (.EC).

Proof. This is sim ilar to  the proof o f [38, 3.3]. For any Borel measurable set A, x € G,

I
|Aj i f  y e  x A \A x  

i f  y e A x \x A  

0  otherwise.

Thus, noting th a t the sets U * = i  x A k \Akx , U k = i Akx\xA k  are d isjo int, i t  is clear tha t 

P  =  {y  : (Sx *< p -(j> * Sx)(y) >  0 } =  U k=i(xA k \Akx ), and 

N  =  {y  : (6X * (f -  <f * 8x)(y) <  0} =  \Jk=x(A kx \ xA k)-
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Hence

JxAk\AkX JAkx\xAk \A-k\

|x A k A  A kx\

We note tha t unim odularity was used in th is proof. □

We can now prove (1) =» (2) o f the theorem:

Let T  =  {(e, K , U) : e >  0, K  C G is compact, U G /C(e)}. I t  suffices to prove tha t 

the follow ing statement holds:

( f ) For every (e, K ,U )  G T  there is a compact symmetric neighbourhood A  o f e such 

th a t A  C U and

3.6.4]. We firs t show tha t the statement (f*) holds:

(t* ) For every (e, K , U) G T , and every 5 > 0, there is a compact symmetric neigh­

bourhood A  o f e w ith  A C U and a measurable set N  c  K  w ith  \N\ < 5  such 

tha t

To see this let (e, K ,U ) £ T , 5 >  0 and choose <j> £ $ (U )  such th a t for a ll x £ K ,  

\\5x*4>—(j)*5x\\i <  |^ i. I f  we w rite  (f> in  the form  (*), and then integrate the continuous 

function x h* \\5x * $ — </> * 5x||i over K  we obtain

\xA  A  A x | ,
J j^ j— 1 < e> (*  e K )-

This w ill be established from Lemmas 3.4.5 and 3.4.6 by use o f an argument sim ilar 

to  the usual proof o f the classical Fplner condition as found for example in  [18, 3.6.2,

\xA  A  A x | , Arx
J j^ j— 1 <  ( * €  K \N ) .

As — 1 and each A* > 0 we must have

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



fo r some A  =  Ak- Letting N  — {x  E K  : the sets A  and N  satisfy (f* )

fo r (e, K , U) E T  and 5. We w ill now show tha t (f*) => (f). Given (e, K , U) E T , 

apply ( t * )  to  the trip le  ( |,  L  =  K l i K 2, U) e T  and 8 — \ \ K | to  obtain sets A  and N. 

Let M  =  L \N .  Observe tha t for any k E K , kLC\L C (k M D M )U (L \M )U (k L \k M ); 

also k K  c k L f \ L ,  so \kL  D L\ >  \K\. Therefore

25 =  \K \ <  |kM  D A f | +  2|iV| <  \kM  D M \ +  28, 

whence k M  n i l f / f ) ,  (k E K ).  Thus K  C M M ~ l . But for any x ,y  E M  =  L \N ,

(2) => (3) is obvious.

(3) =>• (1) Let (Ua) be an asym ptotically invariant base for the neighbourhood system 

at e, and consider the net of normalized characteristic functions 4>a =  (f>ua ■ By Lemma

quasi-central bounded approximate un it.

(2) => (4) This follows from Remark 3.3.5(2) and the argument used in (3) =>- (1)

(4) =$■ (1) Let (<j>ua) be such a bau. By Lemma 3.4.2 we only need to show tha t the 

net (Ua) is asym ptotically invariant. Observe that

As \\8x *4>ua—4>ua *<M|i - *  0 and the modular function A  is always positive (nonzero), 

i t  follows th a t fo r each x E G

|xy l A  A  A xy  x|

\A \
=  l l^ I  *  8 y - l  *  <j>A — (j)A  *  8x  *  8 y - l  | | l

<  \\8X *  ( 8 y - l  *  (f>A ~  <f>A *  8 y - l ) \ \ l  +  \ \ (8X *  (l>A -  P a  *  8X) *  8 y - l \ \ l

_  |Ay A  yA\ ^  \xA  A  Ax\ ^

3.4.2, G is unim odular so * <pa — <Pa * 8X ||i =  which converges to zero.

Hence (<fia) is an asym ptotically central bau and so, by [36, Theorem 2], L X(G) has a

\Ua\ ' A (Z )' l^a l

1 \Uax \x U a 
+  A (x ) \Ua\

-A- 0  and

Hence (Ua) is asym ptotically invariant. □
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R em arks 3.4.7. (1) In  the proof o f (4) =4> (1) we only needed \\Sx*^u a~ (J)ua *<U |i —> 

0, (x e (?) and [36, Theorem 2].

(2) By Remark 3.3.5(2) the nets of Lemmas 3.4.4 and 3.4.5 are necessarily quasi­

central bau. Hence the existence o f such nets in  the group algebra of a unim odular 

group also characterize quasi- [SIN]-groups.

(3) I f  G is cr-compact and firs t countable (ie metrizable) then the net in  part (2) of 

Theorem 3.4.3 may be taken to be a sequence.

(4) In  [16], the authors define two generalizations of [SIN]-groups, and show th a t for 

such groups the so-called inner derivation problem for L l {G) has a positive solution. 

I t  would be interesting to determine the relationship between the ir [W SIN ]i and 

[W SIN]2 -groups and our quasi-[SIN]-groups. I f  i t  could be shown tha t quasi-[SIN]- 

groups are [W SIN^-groups, then combined w ith  [36, Theorem 3] such a result would 

answer the question [16, 8 .2 (ii)].

(5) The follow ing statement can be proved by use o f Proposition 3.2.13, [38, 3.1], 

Lemma 3.4.2, and the arguments used in the proofs o f Lemma 3.4.6 and Theorem

3.4.3, im plications (1) => (2) and (4) => (1):

P ro p o s itio n  3 .4.8 . The following are equivalent fo r a locally compact group G.

(1) G is inner amenable (defined in  the second section o f this chapter) and unimod­

ular.

(2) The following F0lner-type condition is satisfied:

For every e >  0 and every compact subset K  of G, there is a compact subset A  of G 

such that
\xA  A  Ax\ . _
J p |j— 1 < e, ( x e  K ).

(3) G has an asymptotically-invariant net of subsets.

( 4 )  There is a net of normalized characteristic functions (4 > a 0 )  i n  L l (G) such that 

l l& r  *  (j>A 0  ~  4> a 0  *  & e | | i  - »  0, (x €  G), (or uniformly on compacta of G).
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3.5 Applications

In  th is section we characterize locally compact groups whose group algebras possess 

quasi-central bounded approximate units in  terms of the Fourier and Fourier-Stieltjes 

algebras. We then present an application o f our work to the cohomology of the 

Fourier algebra. In  the next chapter we w ill exhibit cohomological applications to  

group algebras.

The Fourier and Fourier-Stieltjes algebras o f G are denoted by A(G) and B (G ) re­

spectively [13], (also see section three of Chapter 2 ). Let {A 2 , L 2(G )} and {p 2 , L 2(G )} 

respectively denote the le ft and righ t regular representations o f G. Then the conju­

gation representation {f3 ,L2(G )} o f G is defined by /3(s) =  \ 2 (s)p2 (s), (s 6 G). For 

£ 6 L 2(G) we w ill denote the coefficient £ £ of £ w ith  respect to  /? by e .̂ That is,

e?(s) =  <£(s)£,£), (s e G).

Note tha t by definition, any 6  B(G). Let ( fa) be a net o f complex-valued functions 

on G. We w ill w rite  support(/a) —> {e } i f  for each neighbourhood U o f e, there is 

some ot0 such tha t support(/Q) C U  whenever a >z cxq. The follow ing result describes 

when L l (G) has a quasi-central bau in terms of A(G) and B(G).

P ro p o s itio n  3 .5.1. The following are equivalent fo r a locally compact group G.

(1) L l (G) has a quasi-central bounded approximate unit.

(2) There exists a net (£a) in  L 2(G )f such that support(£a) —> {e }, and

\\veia -  v\\A{G) -)► 0 , {v € A(G )).

Proof. ( 1 ) =>• (2 ) Let (ua) be a quasi-central bau for L l {G) as described in  Theorem
I

3.3.4. Let £q :=  Ua- Then (£Q) C L 2(G )f, support(£a) {e }, and by a standard

inequality, (see for example [45, Exercise 4.4.5]), ||/3(s)£Q — £a ||| <  —

which converges to 0  uniform ly on compact subsets o f G. I t  follows th a t ê a —> 1  

uniform ly on compact subsets o f G. The conclusion is now a consequence of [17, 

Theorem B2].
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(2) =>■ (1) Let (£a) be a net as described in  statement (2). Let K  be any compact 

subset o f G and choose v E A (G ) so tha t v  is identically 1 on K .  Then

s“ P {lefa(s) -  1| : s E K }  <  \\ve^a -  u|U(G) -► 0.

Observe that

IIP(s)£a ~  Call! =  2|1 -  R e(p(s)ta,£a)I <  2|1 -  eCo(s)|,

so ||/3(s)£Q — £ a | | 2 —> 0 uniform ly on compact subsets of G. Now let ua :=  ££. Then 

(ua) C  L l (G)~l and support(ua) —> {e }, so (ua) is a bounded approximate iden tity  

for L 1 (G). Moreover by a standard inequality

Pz * u a - u a * 4 | | l =  u m t o ) 2 -  (^a)2||l <  M\P(x)€a ~  £ah  0

uniform ly on compact subsets o f G. □

In  [42] Z.-J. Ruan proved th a t a locally compact group G is amenable precisely 

when its  associated Fourier algebra A(G) is operator amenable. We w ill now indicate 

how Theorem 3.3.4 allows for a sim plification o f Ruan’s proof. References for the 

term inology used below are [42] and [45].

The operator projective tensor product A(G)<&A(G) can be identified w ith  A(G  x 

G) through the identity

(u <g) v)(s,t) =  u(s)v(t), (u, v e A(G), s , t  € G).

Doing this, A(G  x G) has canonical operator A(G )-bim odule operations defined by

(u • w)(s, t) =  u(s)w(s, t) and (w ■ u)(s, t)  =  w(s,t)u(t) ,

where w e A(G  x G), u G A(G), and s,t  E G. The m ultip lica tion  operator

I I : A(G  x ( ? ) 4  A(G)

is given by restricting functions in  A(G  x G) to  the diagonal {(s, s) : s E G }. In  

an obvious way one can extend these module operations on A(G  x G) to  module 

operations on B (G  x G), and one can extend I I  to  a map I I  : B(G  x (?) —>• B{G ).
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I t  is easy to  see th a t { 7 ,L 2(G )} defines a continuous un ita ry representation of 

G x G where 7 (s ,t) :=  A2 (s)p2 (£)- For £ € L 2{G) we denote the coefficient £ * 7  £ of 

£ w ith  respect to 7  by That is,

mf  (s, t) =  (7 (5 , t ) f ,  0 ,  (s, t ) e G x G .

P ro p o s itio n  3.5.2. The following are equivalent fo r  a locally compact group G.

(1) L l (G) has a quasi-central bounded approximate unit.

(2) There is a net (£a) in  L 2(G )f with support(£a) ->• {e } such that

(*) 11“  • -  mia ■ u \ \ B ( g x g )  0 and ||m II(to^) -  u ||b (g ) 0, (u G A(G)).

Define W  G B (L2{G x G)) by

=  a s , st), (£ e L 2(G x  G), M )  G G x G).

In  [42] i t  is shown th a t when G is amenable, there is a net (£a) C L 2(G )f  such 

tha t (m |Q) satisfies the condition (*). A  m ajor part of the proof of th is fact is 

the follow ing nontriv ia l lemma which is proved for amenable groups in  [42]. As 

stated below the follow ing is [45, Lemma 7.4.2] where V. Runde observed tha t the 

am enability condition may be dropped.

Lem m a 3.5.3. Let G be a locally compact group and suppose that there is a net of 

unit vectors (£Q) in  L 2(G) such that

\\W (a  ® 77) -  ( fQ (8 > r j)II2 0, (rj G L 2(G))

and

||7 (s>s)£a -fa ||2  0

uniformly on compact subsets of G. Then the net (m^a) in B {G xG ) satisfies condition 

(*) of Proposition 3.5.2.

We w ill now show how the existence of a net (£a) as described in Lemma 3.5.3 

follows easily from our Theorem 3.3.4.
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Proof of Proposition 3.5.2. (1) (2) Let (ua) be a net as described in  Theorem
I

3.3.4 and le t £a :=  Ua- As shown in  the proof o f Proposition 3.5.1, (£a) C L 2(G )f, 

support (£a) ->• {e } and ||7 (s, s) ^ Q - ^ | | 2 =  ||/3(s) ^ Q - ^ a | | 2 -»  0  uniform ly on compact 

subsets of G. Now le t rj € L 2(G) be arbitrary. Let U be a symmetric neighbourhood of 

e such tha t ||A2 (s)?7 —?7 ||2  <  e whenever s € U, and take ao such th a t support(£a) C U 

whenever a  >z ao- Then for a >z a 0

\\W(£a ® v ) ~  (fa ® V)\\2 =  J J  \ta(s){v{st) -  rj(t))|2 dtds

=  [  Ca(s) p 2 (s_ 1 )?7 -  rj\\l ds <  e2.
Ju

(2 ) => (1 ) Observe tha t Ilm ^Q(s) =  ê a(s), (s € G). Now the im plication follows 

from  Proposition 3.5.1. □

R em arks 3.5.4. (1) Using [36, Theorem 3] Ruan proved th a t when G is amenable 

one can construct a net (£Q) as described in Lemma 3.5.3. To accomplish this, Ruan 

required Losert and R indler’s explicit construction o f a quasi-central bau for L 1 (G) 

from  the Reiter condition characterizing amenable locally compact groups.

(2) By [36, Theorem 3], condition (2) of Proposition 3.5.2 is satisfied when G is 

amenable. That am enability combined w ith  condition (2) of Proposition 3.5.2 implies 

tha t A(G) is operator amenable follows very easily from  Leptin ’s theorem [34]. The 

details are found in  [42, Lemma 3.1].
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Chapter 4 

F0lner Conditions for Amenable 

Group and Semigroup Algebras

4.1 Introduction

Amenable Banach algebras were introduced by B.E. Johnson in  [24] where he proved 

tha t a loca lly compact group G is amenable i f  and only i f  its  associated group algebra 

L 1 (G) is amenable, (Johnson’s Theorem). Shortly thereafter, Johnson proved his 

fundamental characterization of amenable Banach algebras in  terms of the existence 

o f v irtu a l and approximate diagonals [25]. V irtu a l diagonals are often said to play 

the role in  the theory of amenable Banach algebras tha t invariant means play in  the 

theory of amenable groups.

In  th is chapter we w ill study the exact relationship between the classical invariance 

properties possessed by amenable locally compact groups and the virtua l/approxim ate 

diagonal invariance properties of the ir amenable group algebras. We w ill also address 

the problem o f determ ining which discrete semigroups carry amenable semigroup 

algebras. The deepest of the invariance properties characterizing amenable locally 

compact groups are the combinatorial Fplner conditions, which have also proven to 

be interesting and useful in the study of amenable semigroups [18], [38], [39], [40], 

[53]. We w ill establish Fplner-type conditions characterizing discrete semigroups and
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locally compact groups whose associated L 1 — algebras are 1-amenable. Thus one of 

our purposes here is to  give internal properties of semigroups and locally compact 

groups which reflect the Banach algebra amenability of the ir associated L 1 —algebras.

In  section two we investigate the relationship between the invariance properties 

o f amenable locally compact groups and the virtual/approxim ate diagonal invari­

ance properties o f the ir amenable group algebras. Using R eiter’s condition and the 

existence o f a strong form  of quasi-central bau for L l (G) (guaranteed by [36] and 

Theorem 3.3.4) we are able to exp lic itly  w rite down a form ula which gives a strong 

form  o f approximate diagonal fo r L l {G), (Theorem 4.2.9). Moreover we d irectly 

show tha t weaker forms of approximate diagonals for L 1 (G) are sufficient fo r G to  be 

amenable, (Theorem 4.2.2, Proposition 4.2.4). From the existence of an approximate 

diagonal of norm one, we show how to  construct a net converging to topological in ­

variance, (Corollary 4.2.3). Corollary 4.2.12 is a form ulation o f our results in  terms 

of compactly-invariant and measure-invariant approximate diagonals, (see D efin ition

4.2.6). One immediate consequence o f th is work is a new proof of Johnson’s theorem 

given entirely in  terms o f approximate diagonals.

The results given in  section two set the groundwork for section three in  which we 

derive our Fplner conditions. We begin by interpreting Corollary 4.2.12 as a Reiter 

condition for amenable group algebras and use it  to  derive Fplner conditions (F) 

and (Fv) fo r unim odular amenable locally compact groups. Theorem 4.3.6 combines 

Theorem 3.4.3 w ith  (FC) to obtain structura l properties (Ay), (By), and (Cy) for 

unim odular amenable groups. Theorem 4.3.7 shows tha t each o f our properties (F), 

(Fy), (Ay), (By), and (Cy) is a ‘correct’ Fplner condition reflecting the am enability of 

L l (G) in  the sense th a t each one yields a (com pactly-invariant) approximate diagonal 

for L l {G) comprised o f normalized characteristic functions o f subsets o f G x G.

I t  is well known tha t i f  S is a semigroup, then am enability o f the semigroup 

algebra l l (S) implies the am enability o f S. However, unlike the case in  which S 

is a group, the converse does not hold. The articles [9], [10], [12], [19], [20] and 

[32] have addressed the problem o f describing, in  terms o f the internal structure of
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the semigroup itself, those semigroups carrying amenable semigroup algebras. These 

papers show th a t am enability of ZX(S) imposes very strong conditions on S, especially 

when additional algebraic conditions are placed upon the semigroup S. Indeed when 

I1 (S) is amenable, i t  can be said tha t S is ‘close’ to  a group. For a survey of what is 

known to  date, see [21]. In  section four, we show tha t for a discrete semigroup S, ^ (S )  

is 1-amenable i f  and only i f  S is an amenable group. Moreover we provide a Fplner- 

type condition which, w ith  no extraneous conditions placed upon 5, characterizes 

1 -am enability o f Z1 (5').

4.2 Virtual and approximate diagonals for group 

algebras

In  th is section we w ill begin our investigation o f the relationship between the clas­

sical invariance properties of amenable locally compact groups and the approxi­

m a te /v irtua l diagonals possessed by the ir associated amenable group algebras. For 

certain discrete semigroups th is relationship was considered in  [9].

Throughout, G w ill again denote a locally compact group w ith  le ft Haar measure 

A, modular function A , and iden tity  e. Recall tha t A x A is a Haar measure, and 

(x ,y ) A (x )A (y ), (x ,y ) € G x  G, is the associated modular function, on G x  G. 

We w ill denote the Haar measure o f a Borel subset A  o f either G  or G x G, by |A|. 

As usual, L l (G x  G) and L 1(G )® L1(G) are identified through

(h 0  k)(x, y) =  h (x)k(y), (h ,k e L l (G), x ,y  e G).

References for Banach G, ZA(G), and M(G)~modules are Chapter two of [24] and 

section eleven o f [40]. The follow ing dual-module and M (G )-m odule operations are 

easily verified.

The space L X{G x  G) becomes an essential Banach L 1 (G)-module w ith  operations 

defined through

/  • (h <g> k) =  ( /  * h) <g> k, (h (g> k) ■ f  — h <g> (k * / ) ,  ( h ,k , f  6  L 1(G)).

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The corresponding M (G )-m odule operations are given by 

p • (h ® k) =  (fx * h) ® k, (h<g> k) • p =  h<g> (k * p), (h ,k  G L l (G ),p  G M (G )). 

Thus L 1 (G x G) has Banach G-module operations

a -m (x ,y )  =  m(a~1x ,y ), m -a (x ,y )  =  A(a~l )m (x,ya~1), (m E L 1 (Gy. G), a G G).

Now

a - (j> =  r ^ a)(j) and 4>-a =  l(a,e)<i>, (a € G, <j> G L°°(G  x G))

define the dual G-module structure of L°°(G  x G). As usual the group algebra L X(G) 

is often viewed as a Banach G-module through the operations

x -  f  =  8X * f  and f  -x  -  f  *SX, ( /  G L X(G), a; G G).

Let 7r : L 1(G x G) —>■ L 1 (G) be the m ultip lica tion  operator, 7r* : L°°(G) —* 

L°°(G  x  G) its  adjoint map. Let p : G x G ^  G : (s ,t) st.

Lemma 4.2.1. (1) For any f> G L°°(G), n*{4>) =  0 o p .

^  7r maps L l {G x G)+ into L 1 (G )i‘ , and tt** maps the set of means on L°°(G  x  G) 

into the set o f means on L°°(G).

(3) I f  (m7) C  L 1 (G xG ) is an approximate diagonal fo r L 1 (G), then lim (l< 3 xG) ^ 7) — 

1 .

Proof. (1) Let h, Jfc G ^ (G ) , 0 G L°°(G ). Then

(h ® fc, 7r*0 ) =  (h *  k,4>) =  j  j  h(s)k(i)4>(st)dtds =  (h ® k, <j> o p).

(2) Note tha t ||7tj| =  1 and from  part (1) 7r*(1g) =  Igxg- Therefore, i f  /  G L X(G x

G )i", ||7r ( /) || <  1 and (1 G ,n (f)) — (1 GxG,f) — 1 whence 7r ( / )  is a normal state on 

L°°(G ); tha t is 7r ( / )  G L 1 (G)]t'. The second statement follows from  the w *-continuity 

o f 7r** and the u;*-density of the normal states w ith in  the state space of a von Neumann

algebra.
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(3) Let (m7) be an approximate diagonal for L l (G). I f  /  G L l (G )f, observe th a t 

( # , /  • 1<?) =  (5 * /,!<?> =  (g, !<?)(/, lc )  =  <5 , 1g), (# € Xx(G )), so /  • l(~r =  1G. 

Therefore

l im ( lGxG, m1) =  lim {7r*(lG),m 7) =  l im ( / ■ l G,7r(m7))

=  lim ( lG, 7r(m7) * / )  =  (1 G, / )  =  1 .

□

We w ill now show tha t for G to  be amenable, i t  is sufficient th a t there exist

weaker forms o f v irtu a l and approximate diagonals for L l (G). F irs t we introduce

some notation. For <j> G L°°(G), define t) =  <p(s), (s ,t) e G x G .  Then it  is a 

simple m atter to see th a t (j) <jfi : L°°(G) L°°(G  x G) is linear and isometric. For

m e L l (G x G) we define gm G L°°(G)* by

W.Sm) =  W".m>, W e  £ “ (<?)).

Observe tha t the map m gm is linear and contractive. We note here tha t the proof 

o f the next theorem w ill show th a t gm belongs to L 1 (G ) .

T h eo rem  4.2.2. The following are equivalent fo r  a locally compact group G.

(1) G is amenable.

(2) There exists M  G L°°(G  x G)* such that M ( lGxG) =  1 and f  • M  — M  • f , 

( / e i * ( G ) ) .

(3) There exists a bounded net (m7) C L 1 (G x G) such that lim {m 7, l GxG) =  1 and 

| | /  • m7 -  m7 • / | | i  -»  0, ( /  G L X(G)) .

The functional M  in statement (2) may be chosen to be a mean, and the net (m7) in  

statement (3) may be chosen from L l (G x G )/.

Froo/. (2) (3) The argument used to prove [38, Theorem 2.2] yields th is equiva­

lence.

(1 ) (3) A  stronger result w ill be proved in  Theorem 4.2.9.

(3) =>• (1) Let m G L l {G x G) and le t g =  gm. We claim th a t G L 1 (G). By the
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Krein-Smulyan theorem it  suffices to  show tha t g is ^ ’ -continuous on the un it ball 

o f L°°(G). So suppose th a t <f>a - *  (p <?(L°°(G), L l (G)), w ith  (<pa) bounded by 1  in  

L°°(G). I f  m =  h <g> k w ith  h, k G L l (G), then

(0Q -<f>,g) =  {4b -  ™) =  {(f>a -  4>,h) J k(t)dt -4- 0. ( t)

By linearity, density, and the assumption that ((pa) is bounded, ( f)  now holds for

general m G L l (G x G). Thus g G L l (G) as claimed.

We now show th a t for any /  G L ^ G ) / and <p G L°°(G),

(i) (<p\m- f )  =  (<t>,g) and (ii) (</>“, /  -m ) =  (4 > ,f*g ).

We may suppose tha t m =  h ® k , h ,k  € Z /(G ). Equation (i) is then an easy calcula­

tion. To establish equation (ii), we firs t define ip G L°°(G ) by ip(t) =  f  <p(st)f(s)ds, 

(t G G). Viewing / ,  <7, and h as elements of M (G ) we have

=  JJ <f>(st)f(s)g(t)dsdt =  (ip, g) =  (ip \ m)

=  JJ ip(s)h(s)k(t)dsdt =  J J J (p(rs) f  (r)h(s)k(t)drdsdt

=  J(cp ,f*  h )k(t)d t =  JJ<pi (s , t ) ( f * h ® k ) ( s , t ) d s d t  

=  (4> \f -™).

Suppose now tha t (m7) is as in statement (3) o f the theorem and let <?7  =

Then for any /  G L l (G )i,

11/ * P7  ^7 111 =  s u p {|((/> ,/* 5 7 - 5 7)| : 0 G T°°(G ) and l^lloo <  1}

=  sup{|(08, /  • ra7  -  m 7  • / ) |  : (p G L°°(G ) and H^loo <  1}

<  | | /  • m 7  -  m 7  • / | | x

which converges to  0. Let n be a w M im it point o f (g7); assume w ithout loss of 

generality th a t <77  -4 n w*. Then n ( lo ) =  lim {l.G , <77) =  lim (lG xG >^7) =  1, so n is 

non-zero. Moreover, i f  we fix  /  G L 1 (G)]t', then for any x  G G and any <p G L°°(G), 

n (lxcp) =  lim (lx(p,g7) =  lim {Ix<£,/ * #7) =  lim<</>,5* * /  * £?7) -  #7) =  n(<£).

Thus n  G L°°(G)* is non-zero and left-invariant from  which i t  follows tha t G is 

amenable. □
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Observe th a t i t  follows from part (3) of Lemma 4.2.1 tha t any approximate d i­

agonal for L l {G) satisfies the properties of the net described in  part (3) of Theorem

4.2.2. In  the course o f the proof of Theorem 4.2.2, the follow ing fact emerged.

Corollary 4.2.3. Suppose that G is an amenable locally compact group with a net 

(m 7) as described in  Theorem 4-2.2 part (3). Let <?7 =  gm-t. Then fo r every f  G 

L 1(G ) f , we have | | / * 5 7 —<77||i —»• 0. Thus, i f  (m1) C  L 1(G x G ) f,  then (g7) C  L l (G )f  

is a net converging to topological invariance.

W ith  respect to the G-module action on L 1 (G x  G) we have the follow ing propo­

sition.

Proposition 4.2.4. The following are equivalent fo r  a locally compact group G.

(1) G is amenable.

(2) There exists a mean M  G L°°(G  x  G)* such that x  ■ M  =  M  - x, (x G G).

(3) There exists a non-zero element M  G L°°(G  x  G)* such that x  • M  =  M  • x, 

(;x G G).

(4) There exists a net (m 7) C  L 1(G x  G )f such that \\x • — m7 • x \\i —> 0, (x G G).

Proof. (1) =>• (2) I f  G is amenable, then so is G x  G. Any two-sided invariant mean 

M  on L°°(G  x  G) satisfies x • M  =  M  • x, (x G G).

(2) => (1) Take M  as in  condition (2). Then m(<j>) :=  M ($ ) ,  (<f> G L°°(G )) defines a 

mean on L°°(G). Moreover, for any (j> G L°°(G) and any a e G, m (la<f>) =  M((Za0 )tt) =  

M ( $  • a) =  M (a  ■ $ )  — M {$ )  =  m(4>), so m  is a le ft invariant mean on L°°(G).

(2) =£- (3) is obvious.

(3) (2) I t  is easy to see tha t we may suppose th a t M  is self-adjoint. Let M  have

Jordan decomposition M  =  M + — M ~. Now the G-module operations are isometric 

and preserve p o s itiv ity  in  L°°(G  x G)*, so i t  follows from  the uniqueness of the Jordan 

decompositions of x -M  and M -x  tha t x -M + — M + -x and x-M ~  =  M ~-x. I f  M + ^  0 

(say) then M ' =  w+(iGxa)^ + a mean on L°°(G  x G) such th a t x • M ' =  M ' ■ x.

(2) (4) The argument from [38, Theorem 2.2] yields the equivalence of (2) and

(4). □
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R em arks 4 .2 .5 . Proposition 4.2.4 also holds for any discrete semigroup. In  th is 

situation, (2) (1) is [9, Lemma 3], and for inverse semigroups (1) => (2) is [9,

Lemma 4]. I f  S has an identity, our argument above proves (1) =$■ (2), however for an

to  th a t of [23, 17.18 (b)].

Let G be a locally compact group. In  terms of the dual module action o f G on 

L°°(G) which was introduced at the beginning o f th is chapter, a mean m  on L°°(G) 

is in ner invariant i f  m (x ■ <p • x _1) =  to(</>), (<j> € L°°(G), x G G). As well, recall

from  Chapter 3 tha t to is called an extension of the D irac measure Se (from C B(G ) 

to  L°°(G)) i f  m(<p) =  </.(e), (</» € C B(G )).

Definition 4.2 .6 . We w ill say tha t an approximate diagonal (m7) C L l (G x G )/ 

is compactly-invariant [respectively measure-invariant] i f  ||x • to7 — to7 • ^ lli o 

uniform ly on compact subsets of G, [respectively ||p ■ rr i1 — m1 • p\\i —> 0, (p € 

M(G)) ] .  A  v irtu a l diagonal M  for L l (G) is measure-invariant i f  M  is a mean and 

p ■ M  — M  • p, (/x G M (G )).

The follow ing proposition contains some simple observations.

P ro p o s itio n  4 .2.7. (1) Let (to7) be an approximate diagonal fo r  L 1 (G) . / / ( to 7) is 

compactly-invariant, then (to7) is measure-invariant, and (7t(to 7)) is a quasi-central 

bau contained in  L 1(G )/ such that ||<5X * 7r(m 7) — 7t(to 7) * 5s||i 0 uniform ly on

compact subsets of G. I f  (to7) is measure-invariant, then (7t(to 7)) is a quasi-central 

bau in L l (G ) f .

(2) Let M  be a measure-invariant virtual diagonal fo r  L 1(G). Then n **M  is an 

inner-invariant mean on L°°(G) which extends the Dirac measure at e.

Proof. (1) I f  to  G L 1(G x G) and p  6 M (G ), then by [24, 2.1] p  • to and to • p  are 

given by the weak integrals

a rb itra ry semigroup, the im plication may s till be obtained using an argument sim ilar
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We may suppose that p, has compact support C. Then for (j> G L°°(G x G) and

m  G L l {G x G),

\((j), p • m  — m ■ p)\ — \ J((j> ,t • m — m • t)dp(t)\

< [  \\(f>\\oo\\t • m -  m • t\\id\ii\(i)
Jc

<  ||^||oo||ju||sup{||t- m - m - i||! : t e C } .

Therefore i f  (m7) is com pactly-invariant, ||//-m 7—ra7-/z||i <  ||/x||sup{||t-m 7—m7-t||i : 

t  G C }, which converges to zero. The balance of (1) now follows from  Lemma 4.2.1 

and the fact tha t n is an M (G)-module morphism.

(2) The fact tha t tt* * ( M )  is a mean is from  Lemma 4.2.1. Now tt* *  is an M(G)~ 

module morphism so 7r**(M ) is inner-invariant; as ir**(M ) is a w eak*-lim it point of 

a bounded approximate un it, it  extends the Dirac measure at e, [36]. □

We w ill need some facts which we summarize in  the follow ing theorem; part one 

is [36, Theorem 3], part two is jus t a restatement of Theorem 3.3.4.

T heorem  4 .2 .8 . Let G be a locally compact group.

(1) I f  G is amenable, then L 1(G) has a quasi-central bounded approximate unit.

(2) Suppose that L X{G) has a quasi-central bau (e^). Then (ep) may be chosen so 

that (ep) C L 1(G )f, *ep — ep* <5a;||i -> 0 uniformly on compact subsets of G, and 

fo r  any neighbourhood U of e, there exists fio such that support(ep) C U whenever

P h  A)-

We w ill now show how to construct a compactly-invariant approximate diagonal 

for L X{G) from  Reiter’s condition for amenable groups and a quasi-central bau as 

described in  the above theorem. We remark tha t on page 319 o f [7] i t  is incorrectly 

stated tha t when G is an amenable locally compact group, one can construct a v irtu a l 

diagonal for L l (G) as follows: Letting  m  be an invariant mean on L°°(G ), define

M (h ) =  [  h(t, t~ l )dm {t), {h G L°°(G  x G)),
J g
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where the form al integral represents the action of m  on the function t  m- 

However unless G is discrete, the set { ( t , t -1 ) : t  E G }  may have measure zero so the 

map M  is not well-defined.

T h e o rem  4 .2 .9 . Let G be an amenable locally compact group. Let (f a) C L l (G )i 

be a net such that ||5X * f a — / a||i —>■ 0 uniformly on compact subsets of G. Let 

(ep) C L 1(G )f be a quasi-central bau fo r L 1(G) as in  Theorem 4.2.8 (2). For each 

7  =  (ct, ff), define

m7(s1t) =  f a(s)ep(st), (s, t) E G  x G .

Then (m7) is a compactly-invariant approximate diagonal fo r  L 1(G) contained in  

L 1(G x G)+.

Proof. I t  is easy to  see tha t (m7) C L 1(G x G )*. Observe tha t fo r any x E G and

any (s, t) E G x  G,

x  ■ m 7 (s, t) =  m7(x~l s, t) =  f a(x~1s)ep(x~l st) =  Sx * f a{s)Sx * ep(st),

and

m7 ■ x (s ,t) =  A (x~1)m 7(s ,tx~ 1) =  f a(s)ep * 5x(st).

Therefore

\\x - m7 -  m7 • x\\x =  JJ \8X * f a(s)Sx * ep(st) -  f a{s)ep *  5x(st)\dtds

=  J J \8X * fa(s^8x * /a(s)e^ * Sx( t) \dtds

<  JJ |&  * fa(s) -  fa(s)\8x * ep(t)dtds

(s)|5* * ep(t) -  ep* Sx(t)\dtds 

=  ll&E * f a ~  fa  111 +  ll&E * ep — ep* 5a;111 —> 0

uniform ly on compact subsets of G.

Now by Lemma 4.2.1 (2), 7r(m 7) C L 1 (G ) f. Let U  be any neighbourhood o f e 

and take /30 such tha t support(ep) C U whenever ft y  j30. F ix  a 0, le t 7 0  =  (aQ,{3o),
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and suppose that 7  >z 7o• Then support(m7) C p 1{U), so by Lemma 4.2.1 (1)

[  ft(rn t)(x)dx  =  (7r(m7), l G\u) =  (m7, l G\u o p )
J g \ u

I t  follows tha t 7r(m7) =  0 a.e on G \U . Hence (7r(m7)) is a (quasi-central) bau for

Remarks 4.2.10. Suppose conversely th a t (m7) is a com pactly-invariant approx­

im ate diagonal for L l (G ), and let g7 =  gm~i. Then a simpler version o f the argu­

ment used to establish (3) => (1) of Theorem 4.2.2 shows tha t (g7) C L l (G )i and 

115s * g~i — 0 7  ||i -> 0 uniform ly on compact subsets o f G. This is R eiter’s condition. 

Moreover, by Proposition 4.2.7, (7r(m7)) C L l {G )f  is a quasi-central bau for L l {G) 

such tha t H5* * ir (m7) — 7r(m7) * 5*||i —» 0 uniform ly on compact subsets o f G.

One immediate consequence of th is work is a new proof of Johnson’s Theorem 

given entirely in  terms of approximate diagonals.

Corollary 4.2.11. (Johnson’s Theorem) The following are equivalent fo r  a locally 

compact group G.

(1) G is amenable.

(2) L X{G) is 1-amenable.

(3) L l {G) is amenable.

Proof. (1) => (2) is contained in Theorem 4.2.9 and (2) =>• (3) is triv ia l. (3) =$■ (1) 

follows from Lemma 4.2.1 (3) and Theorem 4.2.2. □

In  the language of D efinition 4.2.6 we have proved

Corollary 4.2.12. The following are equivalent fo r  a locally compact group G.

(1) G is amenable.

(2) L l (G) has a compactly-invariant approximate diagonal.

(3) L l (G) has a measure-invariant approximate diagonal.

(4) L l (G) has a measure-invariant virtual diagonal.

L \G ) . □
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Remarks 4.2.13. (1) In  the next section we w ill interpret condition (2) o f Corollary 

4.2.12 as a Reiter condition characterizing amenability o f L l (G) and use it  to  obtain 

structural properties for G x G which reflect the amenability of L l (G).

(2) In  this section we have examined the relationship between nets converging to  

topological invariance, quasi-central bounded approximate units and approximate 

diagonals for L l {G). Both nets converging to invariance and quasi-central bounded 

approximate units are clearly less complicated than approximate diagonals and have 

the advantage th a t they can be studied separately, so i t  would be interesting to see 

what can be said along these lines in the context of other amenable Banach algebras.

4.3 F0lner Conditions

The Fplner condition (FC) was proved for discrete groups by E. Fplner in  [15]. An 

elegant proof due to  I. Namioka appears in  [38]. Employing Namioka’s method, 

(FC) is proved in  [18] fo r amenable locally compact groups by use o f [38, 3.1] and 

R eiter’s condition [18, 3.6.2] . We begin th is section w ith  Theorem 4.3.3 where we 

derive our Fplner conditions (F) and (Fv) from condition (2) o f Corollary 4.2.12 

and Lemma 4.3.1. We then derive from  the classical Fplner condition (FC) and 

Theorem 3.4.3 Fplner-type conditions (A y), (By), and (Cy). F ina lly we show tha t 

a ll o f our conditions are the correct Fplner conditions reflecting the am enability of 

L l {G) in  the sense th a t they yield (com pactly-invariant) approximate diagonals for 

L 1 (G) comprised of normalized characteristic functions.

Let B  denote the cr-algebra o f Borel subsets of G, and let A  be the algebra of 

subsets of G x G generated by B  x  B  =  {B  x C : B, C £ B }. As B  x  B is a semi­

algebra, [41, page 303], A  £ A i f  and only i f  A  may be w ritten  as a fin ite  d isjo int 

union of sets in  B x B .  I f  A  is any measurable subset of G x G w ith  \A\ <  oo, then by 

regularity of Haar measure and a simple compactness argument, for any e >  0 there is 

A ' £ A such tha t \A A  A'\ <  e. Thus the ^4-simple functions are dense in L l (G x  G). 

In  particular part (2) of the follow ing lemma follows from  Corollary 4.2.12; part (1) 

is essentially [38, 3.1], (one ju s t needs to  check that the sets A i £ A).
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Lem m a 4.3.1. (1) I f  m £ L l (G x G )t is an A-simple function, then m may be 

written in the form
n

Vfl — ^  
i- 1

where each Aj >  0, Aj — 1 , A \ D  ... D A n, with each A i £ A ,  0 <  |Aij| <  oo and

(j>A  : =

fjg) / / G amenable then L 1 (G) has a compactly-invariant approximate diagonal

(to7) C  ZA(G x  G)+ comprised of A-simple functions. □

For any G C  G, we w ill use the notation

V (C ) =  p-1 (G) =  {(x , y ) : x y £  C },

and for A  C  G x  G we w rite

x • A  =  {(xs , t) : (s, i)  € A } and 4̂ • x =  {(s , tx ) : (s, t) £ A }.

Observe tha t i f  A  C  G x G, then x • 1* =  l(x- V)1a — l(a:,e)A =  Iz-a, and 1^ • x =  

2^ ) r (e,a:-1)lA  =  We w ill now define our firs t two structura l conditions.

(F) For every e >  0, every 8 >  0, and every K , L  C  G w ith  K  compact and L  mea­

surable and o f fin ite  measure, there exist sets A £ A  and N  C L  w ith  0 <  \A\ <  oo, 

\N\ <  8 such tha t

(i) |x • A  A  A  • x| <  e|A|, (x £ K ) ,  and

(ii) \A \  v  (L x -1 )| +  \A \ V  {xL~ l )\ <  e\A\, (x € L \N ) .

For each base V for the neighbourhood system at e we define a corresponding

Fplner condition (Fv) as follows:

(Fv) For every e >  0, every 8 >  0, every compact K  C G , and every V  £ V, there

exist sets A £ A  and N  C  V  w ith  0 <  \A\ <  oo, \N\ < 8 such tha t

(i) |x • A  A  A • x\ <  e|yl|, (x £ K ),  and
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(ii) |^4\ V  (V x - 1̂  +  |A \ V (xV~l )\ < e|-A|, (x G V \N ).

Conditions (ii) o f (F) and (Fy) say th a t the set A  lies very close to  the reverse- 

diagonal v ( e) =  : x  G G }. Lemma 4.3.2 w ill show tha t the unim odularity

condition cannot be om itted from  the statements o f the theorems in  th is section.

Lem m a 4 .3 .2 . Suppose that there exists a net (Aa) of measurable subsets o f G x G  

with 0 <  |Aa| <  oo such that

T h e o rem  4 .3 .3 . The following are equivalent fo r a locally compact group G.

(1 )G  is amenable and unimodular.

(2) G satisfies the F0lner condition (F).

(3) For every base V fo r the neighbourhood system at e, G satisfies the F&lner condi­

tion  (Fy).

Proof. In  order to  prove (1) (2) we need two lemmas.

Lem m a 4.3.4. Let m  G L 1(G x G )^ be an A-simple function, written as in Lemma 

4-3.1 (1). Then fo r  any x £ G,

ThenG  is unimodular.

Proof. For each x G G and each a,

so the argument is the same as th a t which is given in  the proof of Lemma 3.4.2. □

^(3;) — l-̂ a(e3 ff)l _ 1 A* ' x

Proof. For A € A and x  G G we have

P l i f  (s, t) G x  •  A \A  • x

(x • <Pa —  <j>A ■ x) (s , t) — < p i  i f  (s, t) G A  • x \x  • A

0 otherwise.
\

The lemma is now established by arguing as in  the proof of Lemma 3.4.6. □
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Though we are dealing only w ith  unim odular groups in the theorem, the follow ing 

lemma works equally well (and is no more d ifficu lt to prove) fo r any locally compact 

group, so we prove it  accordingly.

Lem m a 4.3.5. Let G be a locally compact group, (not necessarily unimodular) and 

let m  6 L l (G x G )f be an A-simple function, written as in  Lemma 4-3.1 (1). Let 

L  C  G be a Borel set with \L\ <  oo. Then

||tt (m) * 1 L -  l L \h =  f i \ A i \  V  (Lx~ l )\ +  \A{\  V  (xL~ l )\)dx.

Proof. We’l l  firs t show tha t fo r any A £ A ,

(i) 7t(1a) * 1 l (x ) =  |̂ 4 fl s /(x L ~l )| (x £ G), and

( ii)  [  i r ( lA) * l L (x)dx =  f  |4 \  v  (Lx~ l )\dx.
Jg\l  Jl

I f  A e  A  is arbitrary, then A  is a d isjo int union y ”_1 A^  where each Ai =  B i x Ci £ 

B x B .  Thus 1 a — IC IL i and it  suffices to  demonstrate (i) and ( ii)  for A  =  B  x C, 

where B, C  are Borel subsets o f G o f fin ite  measure. In  th is  case

7r(l,i) * l L(x) =  7r(l£  <g> lc )  * 1l (x ) =  l B * lc  * I l (x )

=  JJ l B ( s ) l c ( t ) l L ( t ~ 1S~1x)dtds

=  JJ l(BxC )nv(si_1) (s> t )dtds = \ A n  v ( ^ _1)|

which is (i).

Now

/  7r(lA) *  1 L (x)dx  =  /  1 b  * l c  *  1 l ( x ) ( 1 x

J g \ l  J g \ l

=  L J a W ) { l B * l c ) { X y ~1 ) lL M d V d ‘

=  L L w ) i i B * i c ) { x v ~i )dxdy
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by use of Fubini’s theorem. But

U m { lB t lc ) ( X y ' 1)dX =  I a W ) i l B * lc){XV~l)dX

=  \B \\C \ ~  * 1c)(^2/ X)1 L{x)dx

=  \ A \ -  J J  l B( z ) - ^ r ^ l c (z l xy  X)1 L{x)dxdz

11 ^■(BxC)n'^(Ly-1) (z i x)dxd,

=  Ml -  \A n s7(Ly x)| =  \A \  V  (Ly x)|

which gives equation (ii) .

Finally, i f  we express m  =  i as in  Lemma 4.3.1 (1), we obtain

proof o f the classical Fplner condition (FC) as found for example in  [18, 3.6.2, 3.6.4]. 

We firs t show th a t condition (F*) holds

(F*) : For every e >  0 ,5 >  0, K , L  C G w ith  K  compact and L  measurable and of 

fin ite  measure, there exist sets A e  A  and N i C K , N 2 C L  w ith  0 <  \A\ <  00, 

\Ni\ <  6, i  =  1,2 such tha t

(i) \x ■ A  A  - x\ <  e\A\, (x £ K \N i) ,  and

IM M  * U  -  1 l | | i
J L J  G\ L

r  _TO \
j j E  i^jWUJ'UW-IADI

n \ . f

+  V  (Lx~l )\dx

£  | ^ i  J j \ A i \  V  ( x i - 1)! +  I M  V  (L x - l )\)dx.

□

We can now prove (1) =» (2) of the theorem, by use of an argument sim ilar to  the

(ii) \A \  v  (Lx~l )\ +  \A \  V  (xL~ l )\ <  e\A\, (x £ L \N 2).
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To see th is le t e, 8 >  0, K, L  C G be as in  (F *). By Lemma 4.3.1 (2) we can find

an .A-simple function m £ L X{G x G )f  such tha t for each x £ K

6(5 b5
| | x - m - m - z | | i  <  and ||7r(m) * U  -  l L ||i <  — .

W riting  m  as in  Lemma 4.3.1 (1), and integrating the continuous function x  t->

IIx -m  — m - x\\i over K  we obtain

x • A i A  A i • x\ . eS ...

K  | * |  *  "  2 (t)1= 1

from  Lemma 4.3.4. By Lemma 4.3.5 we have

I M  V  ( L x - 1) | +  \A i\  y  { x L -1) | ^  ^ e5

*=1

Adding (f) and ( f f )  we obtain

\x ■ At A  Ai • x\ f  |A i\ v  {Lx~ l )\ +  |A*\ v  {xL~1̂

f ] x j  +  <  t *  ( t t )
Jl  1 * 1  2

^  , r f  \x ■ *  A  A  ■ x | , f  * \  V  i i - 1 +  * \  V  ( * £ - ')  , .  ,

ir — i*i— * +Jl-------------ra--------------ta] <V-

As X 4 L 1 =  1 and each \  >  0, we must have

f  \ x - A h  A - x \  f \ A \ s 7 ( L x ^ ) \  +  \ A \ V ( x L ^ ) \

Jk  W + Jl W
fo r some A =  A *. Le tting  N i =  { x  £ K  : \x • A  A  A  • x| >  e |A |} and N 2 =  { x  £ L  : 

|A \  v  (L x -1)] -I- |A \ v  (xL~ls) | >  e|A |}, the sets A, N x, and N2 satisfy (F*).

We now establish (F*) => (F).  Let e, 5 >  0, K , L  C G be as in  (F). Apply 

(F1*) to H  =  K  U K 2, L, |  and 5' =  m in { ||A |, 5} to obtain sets A, N% and N 2. Let

M  =  H \N \.  Observe tha t for any k £ K , kH C \H  C ( k M f ) M ) U (H \M )  U (kH \kM )-,

also k K  C k H  n  IF, so |*jF  D H \ >  \K\. Therefore

28' <  \K \ <  |JfeM 0  M \ +  21Ai| <  \kM  n  M \ +  25',

whence k M  D M  ^  (k £ K ).  Thus K  C M M " 1. But fo r any x ,y  £ M  =  H \N i,  

\{x y - ' ) - A A A . ( x y - ' ) \  =  ^  ^  ^

<  ||x • {y~l  ■4>A-<t>A• y-1)||l +  ||(s • <I>A- <t>A- x) • J/_1||i

= ||<Ai • y -  y • <Ai||i +  Ik  - ( t > A - ( t > A -  ®||i 
_  \ A - y A y - A \  |x • A  A  A  • x|
-  p?i +  m  < £ '
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(2) =» (3) is obvious.

(3) =» (1) For each pa ir a — (e, K )  choose A a 6 A  to  satisfy condition (i) o f (Fy); 

le t ma =  4>Aa. From Lemma 4.3.2 we know th a t G is unim odular, so tha t by Lemma 

4.3.4 ||a; -m a — ma ■ rc||i -»  0 uniform ly on compact subsets o f G. That G is amenable 

now follows from Proposition 4.2.4. □

Let V be any base for the neighbourhood system at e. In  the follow ing definitions 

o f conditions (A y), (By), and (Cy), the subsets A  of G x G and K  o f G are to be 

assumed compact and o f positive measure.

(Ay) : For every e >  0, K  C G, and V  G V, there exists A C G x  G, such tha t

(i) A  C vO O  and (ii) \x • A  A  A • x\ <  e|A|, (x € K ).

(By) : For every e >  0, K  C G, and V  G V, there exists A c  G x  G, such tha t

(i) |A \ v  ('P)I <  z\A\ and (ii) \x • A  A  A ■ x\ <  e\A\, (x € K ) .

(Cy) : For every e >  0, K  C G, and V  G V, there exists A  C G x G, such th a t

(i) \A f l vO O l >  (1 — e)\M  and (ii) \x • A  D A  • x\ >  (1 — e)|A|, (x € K ).

The next result is proved by use of the Fplner condition (FC) and Theorem 3.4.3.

T heo rem  4.3.6. Let G be a locally compact group, and let V be any base fo r  the 

neighbourhood system at e. The following are equivalent.

(1) G is amenable and unimodular.

(2) G satisfies the condition (Ay).

(3) G satisfies the condition (By).

(4) G satisfies the condition (Cy).

Proof. By Lemma 4.3.2 each o f the conditions (Ay), (By), and (Cy) im p ly  uni­

m odularity. I t  is clear tha t (2) =>■ (3), and (3) (4) follows from  the iden tity

\x • A  A  A  • a:| =  2(|A| -  |x • A  n A  • a:|). We have (4) (1) by the argument given to

prove (3) (1) of Theorem 4.3.3. O nly (1) (2) remains.
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Let Q < k < l ,  K c G  compact, and V  € V. I t  is sufficient to  find a compact set 

A  such tha t A  c  v ( ^ )  and \x ■ A f \  A  - x\  >  k\A\, (x E K ). By use of the condition 

(FC), Theorem 4.2.8 (1), and Theorem 3.4.3 we can find compact subsets B  and U 

o f G w ith  U a neighbourhood o f e contained in V  such tha t

\xB  H B \ >  V k\B \ and \xU  n  Ux\ >  Vk\U \, { x  E K ).

Let A =  { (s, t )  : s E B  and st E U}.  Obviously A  c  V (V )- Now it is easy to see 

that for any x E G, x  • A  =  {(s, t) : s E xB  and st E xU }, and A  - x =  { (s, t )  : s € 

B  and st E Ux }. It  follows that x - A f ) A - x  =  { {s, t )  : s E x B f ) B  and st E x U d U x } .  

But if C  and W  are any two measurable subsets of G  with finite measure, and 

E  =  {(s, t) : s E C  and st E W } ,  then

| £ |  =  J J  l E ( x , y ) d y d x  =  J J  l E (x, x ~ l y ) d y d x  =  J J  l C x W { x , y ) d y d x  =  \C \ \W \ .

Thus for any x  E K ,

\ x - A D A - x \  =  \ x B n  B \\xU  n  Ux\ >  Vk\B\Vk\U\ =  k\A\.

□

The final result o f th is section shows tha t a ll o f our Fplner conditions correctly 

reflect the am enability o f L 1 (G) in  the sense tha t each yields a com pactly-invariant 

approximate diagonal comprised of normalized characteristic functions. Before stat­

ing the result we fix  some notation. Suppose tha t G is an amenable and unim odular 

locally compact group and let V be any base for the neighbourhood system at e. Let

T  =  {a  =  (e, K , L) : e >  0, K ,L  c G  compact, \K\ ,  \L\ >  0},

Tv =  {P =  (e, K , V)  : e >  0, K  C G compact w ith  \K \ >  0, V E V }.

D irect T  by pu tting  a 0 — (eo, K 0, L q) < a i  — (ei, K i ,  L \)  i f  and only i f  <  e0, K x D 

K 0, L x C Lq-, direct 7y analogously. For each a  =  (e, K , L) E T , take A a a Borel 

measurable subset o f G x  G (and N a C L) to  correspond to  (e, K , L) and <5 =  ||L | as 

in  condition (F). For each /3 =  (e, K , V )  E Tv take a subset A@ o f G x G to  correspond 

to  (e ,K,V)  as in  either condition (Fy), (Ay), (By) or (Cy), ( if  Ap is chosen using 

(Fy), assume th a t Np c  V  is chosen w ith  respect to 5 =  ||I^ |)-
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T heo rem  4 .3 .7 . Let G be a unimodular amenable locally compact group. The nets 

{4>Aa) and i^Ap) of normalized characteristic functions of subsets A a, Ap of G x G 

are compactly-invariant approximate diagonals fo r  L 1(G).

Proof. For notations! convenience we w rite <f>a = <j>Aa , <j>p =  <t>A0 - Observe th a t by 

Lemma 4.3.4, (where the assumption tha t the functions were .A-simple was unneces­

sary), in  a ll cases we have ||x • <f>a — (j)a ■ m|| —» 0 and ||m • <j>p — 4>p • x\\ -> 0 uniform ly 

on compacta o f G.

Claim 1: Assuming th a t the sets A a,Ap € A , the nets (7r(0Q)) and (rc(<j)p)) are 

bounded approximate units for L l (G).

This will follow if we can show that for any compact subset Lq of G with |Lo| >  0, 

\\n((f>a) * lio  -  l£oHi 0 and \\n{4>p) * 1 l q ~  M il l  0- To this end, let e0 >  0, 

and take U  an open neighbourhood of L q such that |U\Lo| <  f 1- By [23, 4.10] we 

can find a compact neighbourhood Wq of e such that W0W0~1Lo C U. Choosing 

Kq compact with \K Q\ >  0 arbitrarily, let a0 =  ( -^^ ,K q ,W q),  and suppose that 

a  =  (e, K , W ) >z olq. Then for any x  € Lq, W W ~ l x  C U, so W W ~ l  C Ux~l  and 

W W ~ l C xU~l . In  particular, for any x € Lq, taking any yx € W \N a one has 

U x - 1 D W y~ l  and xU~l D yxW - \  Thus

|-Aq\  V  (U x - 1)I +  |Aa\  V  (XU-1 )| <  |Aa\  V  (Wy~l )\ +  |Aa\  y  M W -1 )!

< e\Aa\, (x  € L q).

Using th is and Lemma 4.3.5 we obtain

lk(^a) * M  -  Mill = lk(^a) * M  ~ M^o) ~ M  ~ M-Mlll

<  IK O M  *  1 u -  M l i  +  I k O M IM lM M l i  +  I I M M l i
< [  +  ^  | 2 e0

Ju |Aa | 6

< f  2 dx +  [  e d x + * ^ -  
Ju\L0 j  Lq 3

< +  e|Lo| ^  eo-

I f  the sets Ap correspond to (Fy) the argument given above works provided th a t Wo 

is chosen from  V. Suppose now th a t the sets Ap are chosen to  correspond to  (By).

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Take a neighbourhood Wo 6 V such tha t WqL 0 C U and choose Vq £ V so th a t
f €Q
^6|L0| 3Vq C Wq D Wq l . Suppose tha t (3 =  (e, K , V) >  /30 =  (g#-T, i^o, Vo). Then for each

x £ Lq, V  C Ux 1 and V  C rcC/ \  so again we have

\Ap\ V (tfaT1)! +  I M  V {xU - 1)| < 2 |M  V (V)| < 2e|4,|.

That I k ( ^ )  * ln 0 — 1 z,0111 <  eo now follows as before. This argument also works when 

the sets Ap are chosen to  correspond to (Ay) or (Cy).

Claim 2: W ithou t the assumption th a t the sets A a, Ap £ A , the nets (w((pa)) and 

(n{4>p)) are bounded approximate units for L 1(G).

We prove th is in  the case in  which the sets Ap are chosen to  correspond to  the 

condition (Fy). The other cases a ll follow  from a sim ilar argument. For each /3 =  

(e, K , V) £ 7y, take Ap £ A  such tha t \A'p A  Ap\ <  m infe lA ^I, Let ftp — (j)A^.

Then

’p - < f > p \ \ i  <  \\< I> a '0 ~  +  Ii \ j Q l A 'e ~

\\Ap\-\A>p\\ +  \ApAA>p\

\Ap\ \Afi\
\A p / \A 'B\

<  2  t t - t - -  <  2e. (4.3.7.1)
\Ap\

Now \Ap\ =  |Ap r\A!p\ +  \Ap\Ap\ < \A'p\ +  \\Ap\, so \Ap\ <  2\A'p\. I t  follows th a t for 

any x £ V \N p,

\ A p \  V  (VaT1)! +  |A ^ \ V  (aW-1)| =  \{A!p n  Ap)\ V  { V x ' 1)]

+  \(A’p \A p ) \V  (V x - ' ) \

+ | ( ^ n A ^ ) \ v ( ^ - 1)l
+  | ( i 4 i \ ^ ) \ v ( * V - 1)|

< I M V ^ a r ^ l  + I M v ^ - 1)!

+  2|Ap A  Ap\

< e\Ap\ +  2e\Ap\ <  6e\A'p\. (4.S.7.2)

I t  follows from  (4.3.7.2) and Claim  1 th a t (:ir(</>p)) is a bounded approximate u n it for
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L l (G). But for any /  G L l {G),

h i f a )  * /  ~  /H i <  lk ( ^ s  -  $ )  * / | | i  +  I k ( ^ )  *  /  ~  / | | i

which by use of inequality (4.3.7.1) converges to zero. Thus C laim  2 holds. □

R em arks 4.3.8. (1) I t  follows from  the proof of Theorem 4.3.7 th a t we do not need 

to assume th a t the sets A a and Ap belong to A, (as in  the official statements o f (F) 

and (Fy)), in  order to  obtain compactly-invariant approximate diagonals comprised of 

normalized characteristic functions. Moreover, for any unim odular amenable group, 

the conditions (Ay), (By), and (Cy) hold even i f  we demand th a t the sets Ap E A  .

(2) When the sets Ap correspond to  condition (A y), one can prove th a t the net

is a bounded approximate diagonal for L l (G) by means o f a simpler argu­

ment which is sim ilar to  the one found in the last paragraph of the proof o f Theorem 

4.2.9.

(3) Let G be any unim odular locally compact group which is amenable. Let U — (Up) 

be a base for the neighbourhood system at e as in  Theorem 3.4.3, and le t ( K y) be 

a Fplner net for G in  the sense th a t i t  satisfies condition (3) o f [39, D efin ition 4.15]. 

Let

A 7j<5 =  { (s ,t)  : s € K~f and st £ Up}.

Then the argument used in  the proof o f Theorem 4.3.6 together w ith  Theorem 4.3.7 

show tha t the net (<pAyS) is a com pactly-invariant approximate diagonal for L l (G). 

I f  G is (7-compact and firs t countable, (that is m etrizable), then th is approximate 

diagonal may be chosen to  be a sequence. We remark tha t a great deal o f research 

has been done regarding the exp lic it construction o f Fplner nets for certain classes of 

locally compact groups, [39, Chapter 6]. I t  would be interesting i f  for such groups one 

could sim ila rly construct asym ptotically invariant nets as described in  Theorem 3.4.3. 

I f  so, we would have a method for constructing com pactly-invariant approximate 

diagonals, comprised of normalized characteristic functions, for group algebras o f such 

groups. When G is abelian, any base U for the neighbourhood system at e satisfies 

condition (2) of Theorem 3.4.3 so i t  is particu larly easy to construct approximate
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diagonals for L X(G). For example, i f  G is the additive group of real numbers, le tting  

A n =  { {s, t )  : s G [-n , n] and s + 1 G [ ^ ,  £ ]}, the sequence (0 a J  is a compactly- 

invariant approximate diagonal for L 1 (R ).

(4) In  ligh t o f Proposition 4.2.4, it  is clear tha t the condition (F 8) also characterizes 

unim odular amenable locally compact groups, where

(F #): For every e >  0 and every compact subset K  o f G, there exists a set A  G A  

such tha t |a: • A  A  A  ■ x\ <  e|A|, (x  G K) .

(5) Theorems 2.1.1 and 2.1.2 provide a hierarchy of nets converging to invariance, 

each one characterizing amenable locally compact groups. We have now provided a 

corresponding hierarchy o f approximate diagonals for amenable group algebras.

(6) We leave open the question of whether the subsets N  of L  and V  can be om itted 

from  the conditions (F) and (Fy).

4.4 1-Amenability of semigroup algebras

In  th is fina l section o f Chapter 4 we tu rn  our attention to  the problem of determ ining 

which semigroups carry amenable semigroup algebras. Throughout, S w ill denote 

a (discrete) semigroup. The most complete solutions to th is problem have been 

obtained by placing additional algebraic conditions on the semigroup [9], [10], [19], 

[20], and [32]. We w ill see tha t w ith  no extraneous conditions placed upon our 

semigroup S, i f  its  semigroup algebra l l (S) is 1-amenable, then S is necessarily an 

amenable group. We w ill also provide Fplner conditions (A ), (B), and (C) on S which 

correspond exactly to 1-amenability o f l l (S).

I f  E  is a subset o f 5 , \E\ is its  cardinality. We w rite

[s-1£] =  {ar G S : sx =  t }  and [st~l ] =  {x  £ S : s =  x t } ,  (s, t  G S).

As in the case for groups, we may identify l 1(S )® l1(S) w ith  l l (S x S) and we shall 

identify the D irac function at an element s o f S w ith  s itself. Doing this, a function
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r r f  C I1 (S x S) may be w ritten  in  the form

m l = E ^ > * )
SxS

and one sees th a t the net (m7) is an approximate diagonal for I1 (S) i f  and only i f  it  

is bounded, and for each v E S

lim  tv) ~  (vs>f ) ] = °> iim  Pl*s t v = v -
7 SxS 7 SxS

Further details regarding these identifications may be found in [9].

D e fin itio n  4 .4.1. The semigroup S is left cancellative i f  for any s ,t e S, |[s~H]| <  1. 

I f  for any s € S, sup{|[s_1t]| : t  € S } <  oo, then S w ill be called left subcancellative.

Recall from  [32], th a t S is left weakly cancellative, i f  for any s ,t  € S, |[s-1t]| <  oo. 

I t  is clear th a t le ft cancellativity implies le ft subcancellativity, which in  tu rn  implies 

le ft weak cancellativity. That these im plications cannot be reversed is fa irly  easy to 

show.

For A  C S x S and v € S, v • A, A • v are as defined in  the previous section, and 

we w rite

V (^ ) =  {(s , t) G S x S : stv — v}.

In  the follow ing definitions o f Fplner-type conditions (A ), (B), and (C), the subsets 

A  o f S' x 5, and F  o f S are to be assumed fin ite  and non-empty:

(A) : For every e >  0, F  C S, there exists A c  S x S, such tha t

A  C VC0)* \v ■ A  A  A ■ v\ <  e|A|, (v e F ).

(B ) : For every e >  0, F  C S, there exists A C S x  S, such tha t

|A \ v  (^)l +  \v • A  A  A - v \  <  e\A\, (v e F ).

(C ) : For every e >  0, F  C S, there exists A  C S x  S, such tha t

\A n  y (u )| +  \ v - A n A - v \ > ( 2 -  e)|A|, (v e F) .
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We note th a t when S' is a group, fo r any v £ S we have \ / {v)  — {(s , s-1) : s £ S }, 

so the conditions (A y), (By), and(Cy) o f Section 4.3 are non-discrete analogues o f 

these new conditions.

T heo rem  4.4.2. The following are equivalent fo r  a semigroup S:

(1) l l {S) is 1-amenable.

(2) S is an amenable group.

(3) S is one-sided subcancellative, and satisfies condition (A).

(4) S is one-sided subcancellative, and satisfies condition (B).

(5) S satisfies condition (C).

E xam p le  4 .4 .3 . Let S be the semigroup of positive integers w ith  m u ltip lica tion  

given by n • m — m in{n , to }. Then S satisfies condition (A ), (and therefore condition 

(B )), yet S is not a group. To see th is let e >  0, and le t F  be a fin ite  subset of S.

Let to =  max(F), and put B  =  {to  +  1, ...,m  +  n}, where 2 /n  <  e. Then for any

v £ F , A =  B  x  B  C S/(v), and

\v • A  A  A  ■ v\ /  |A| =  (|u • A\ +  \A • t>|) /  |A| =  2n /n 2 <  e.

This example shows th a t at least some form of cancellativity is needed in  condi­

tions (3) and (4) o f the theorem. However note tha t our example is not even weakly 

cancellative, (for any n £ S, [n~l n] is in fin ite ). I t  would be interesting to find an 

example of a weakly cancellative semigroup which is not a group, yet satisfies (A ).

To prove the theorem we need some prelim inary results.

Lem m a 4.4.4. I f v  G S, and sup{\[v~H]\ : t  £ S } <  n, then fo r  any fin ite  A  C S x S ,

\ v - A \ >  i|A |.

Proof. W rite A  as A — x where Xi ^  Xj whenever i ^  j .  Let B  =

{x i ,  v B  =  {yu ...,yk}, and for 1  <  j  <  k, le t M j =  { i  : vxi =  y^}. Then

< n, and
m k

v ■ A — x Q  =  |J ( {% }  x  | J  Ci).
i— 1 j = l  ie M j
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Thus

□

A righ t simple semigroup which contains an idempotent is called a right group. 

A  discussion o f righ t groups can be found in section 1.11 of [6].

Lem m a 4.4.5. A semigroup S is a right group i f  and only i f

f t )  fo r  any v\, V2 E S, (not necessarily distinct), there exists (s, t) E v ( ^ i)  such that

s E V2S.

Proof. Assume th a t S satisfies ( f)  and suppose tha t /  is a (non-empty) proper righ t 

ideal in  S. Take v\ E S \I ,  i ?2 € I  and choose (s,t) E V (^ i)  such th a t s E V2 S. Then 

s E I ,  so vi  =  stv 1 e l ,  a contradiction. Thus S is righ t simple. I t  now suffices to 

exhib it an idempotent in  S. To this end, let v e S and take (s, t) e \ / (v )  w ith  s =  vx 

fo r some x e S. Then (rrtv )2 =  (xt) (vx)tv  =  (x t)(s tv ) =  xtv. The converse, (which 

we don’t  need), follows easily from the fact tha t righ t groups are regular and righ t 

simple. □

Lem m a 4.4.6. I f  S satisfies condition (C), OR i f  S is left subcancellative and satisfies 

condition (B), then S is a right group.

Proof. Suppose firs t tha t S is le ft subcancellative and satisfies condition (B). We w ill 

show tha t S satisfies condition (f) o f Lemma 4.4.5. Let vi,V2 E S and suppose tha t 

supdfw jH ]! : t  e S} <  n. Take A  to be a fin ite  non-empty subset o f S' x 5 such tha t

|^4\ V  (^z)l +  fa  • A A  A  • Vi\ <  “ |A|, (i =  1,2).

Then using Lemma 4.4.4 we have

1 1
—-|A| >  \v2 • A \A  • t;2| =  \v2 • A\ -  \v2 • A n  A  • u2| >  —|A| -  \v2 • A n  A • v2\, 
i n  n
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and so \v2-A nA -v2\ >  ^ \ A \ .  Suppose tha t for every (s, t ) £ A n v (^ i)>  (s, tv2) £ v2-A. 

Then v2 • A  n  A  ■ v2 C {(s , tv2) : (s, t) £ A \  y  fa i)}, so

X | \A\ < \ v 2 - A n A - v 2\ <  |A \ v  M  <  ^ 1 4 ,

a contradiction. Thus for some (s ,t) e A n  V (ui)) (s ,tv2) £ v2 ■ A; in  particu lar 

(s, t) £ and s £ v2S. To see th a t condition (C) implies th a t property (f)

holds is sim ilar, but easier: arguing as above, le t e =  1 in  condition (C) applied to  

v i , v2 £ S. □

I f  ̂ 4 is a fin ite  subset o f S' x  5, let <f>A denote the normalized characteristic function

\a \ 1 a  o f A

Lem m a 4.4.7. Let S be a left cancellative semigroup which satisfies the following 

condition in which the sets F  and A  are to be assumed fin ite  and non-empty:

(*) For every e > 0, F  C S, there exists A  C S' x  S, such that

| 4 \ v ( ^ ) |  +  |n • A \A  • w| <  e\A\, (v £ F ).

Then I1 (S') has an approximate diagonal comprised of normalized characteristic func­

tions o f fin ite  non-empty subsets of S x S.

Proof. F ix A  C S x S, v £ S. I f  for (x,y) £ S x S we w rite [(re, y) • v~l ) =  {(s , t) :

(s, tv) =  (x,y) } ,  then it  is easy to  see tha t A  is the d isjo int union

A  =  | J  ( A f ) [ ( x , y )  - iT 1]) (4.4.7.1).
(x,y)€A-v

Now

so

^ a ' v =z Ta \ X  tv^  v ' ^ a =  Ta \ X  *)»
‘ ' (s,t)€A ' ' (s,t)eA

j ^ \ A r \ [ ( x , y )  • v x]| i f  (x, y) £ A  • v \v  • A

I ra  i f  (x,y) £ v - A \ A - v
{(f)A -v -  v ■ (f)A)(x,y)  =  11

j j - f lA n  [(x,y)  • v x]| -  1] i i  (x,y) £ A • v C\ v ■ A

0 otherwise.
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Therefore, using (4.4.7.1) and le ft cancellativity we obtain

\\(j)A - v - v  <j)A\\i =  ■ V ~  V ■ (t>A)(x ,y ) \
(x,y)

=  H it  J 2  l ^ n [ ( r r , y ) - n - x] | +  1
(x,y)eA-v\v-A (x,y)£v-A\A-v

+  £  ( l^ n [ ( i , i / )  -o- 'H - 1 ))
(x,y)£A-vrnj'A

~  n j t  \A  n  [(ar, y) ■ tT 1]! +  \v ■ A \A  ■ v\ -  \A • v f \ v  ■ A\]
(x,y)eA-v

=  r jr [ |A |  — \ A - v D v ■ A\ +  \v • A \A  • v\]
\A\
J v  • A \ A  • d

=  2-------j—;------L. (4.4.7.2)
\A\

Also Tr(^A)v =  |4j E (Sjt)6A Stv’ S0

\\n(<pA)v -  v\\t =  \(tt(<I)A)v - v)(v)\ +  Y^n(4>A)v{x)
x^v

i l ^ n  v ( v ) l  TI . I A v W I  _  J - 4 \  v  {v)\ tA a i  o\
-  1 \A\ l +  \A\ ~  \A\ • ( j

(Observe tha t le ft cancellativity was not used in  the calculation o f (4.4.7.S)). Let IF 

=  {(F,  e) : F  C S fin ite , e >  0} and for each 7  =  (F, e) £ T ,  choose A 7  C S x S to  

correspond to 7  as in (*); let ra7  =  Then

||u • m 7  — m 7  • u lli —» 0 and ||7r(m 7)u — u ||i —>■ 0 

follow  from  the calculations (4.4.7.2) and (4.4.7.S). □

Put r(u ) =  (vS x Sv) f i {(s, t) £ S x. S : stv =  vst =  u }, (v £ S).

Lem m a 4.4.8. I f  P (5) is 1-amenable, then fo r  any 1 7 , v2 G 5, T('U1) D r(u 2) ^  0.

Proof. I t  w ill in  fact be shown tha t r (u i)  f l r(i>2) supports an approximate diagonal 

fo r /1 (5 ). Let (m7) C /1 (5 'x  S) be an approximate diagonal for P (5 ) w ith  ||m7||i <  1, 

and let M  £ l°°(S  x S)* be a w eak*-lim it point of (ra7). Then \\M\\ <  1  and as M
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is a v irtu a l diagonal fo r l l (S), M ( l s xs) =  1- Thus M  is a mean on l°°(S  x S). By 

the weak*-density o f T  =  { /  G l l (S x S) : f  >  0 , \\f\\i =  1 , support( / )  fin ite } in  the 

set o f means on l°°(S  x 5’), there exists a net (f s) C T  such th a t ( f s) converges to 

M  in  the weak*-topology of l°°(S  x 5); th is net is necessarily a “weak” approximate 

diagonal for I1 (S). Standard methods (due to Namioka, [38, Theorem 2.2]), yield an 

approximate diagonal (pa) in  T  for ^(S).  We w rite  pa — Tor v E S, let

Z (v ) =  (vS x  S') f l {(s , t) : stv =  n } and W (n) =  (S x  Su) f l {(s , f) : vst =  u }.

Then

lim  P*t =  1  and lim  ^  =  1 ,
(M )ez(v ) “  (s,t)eff(v)

where the firs t lim it is calculated in  the proof of [10, Theorem 1] and the second 

lim it follows from  a symmetric argument. F ix  V\, v2 € S. We claim  tha t :=  

]T){/3“ t (s ,i) : (s,t) e ^ (n i) }  is an approximate diagonal fo r ZX(S). For given n e S, 

Pq ■ v — v ■ Pq =  pa ■ v — v • pa — na, where

n“ =  S  -  ( ^ * ) ] -
(s,t)£Z(v i)

Now j|n"11! <  2 £ { / ? “ t : {s,t) $ Z(vx) }  =  2(|[pQ:| | 1 -  : (M ) € ^ (« i) } )

2(1 — 1) =  0, so ||pq • v — v • Po|| -4- 0. S im ilarly ||7r(po)n — u ||i -»  0, which proves the 

claim.

Now ||Po ill ~ 1) so qa :=  also an approximate diagonal for I1 (S'), and

(gQ) is in  T  w ith  support (<?“ ) C support(p“ ) f l Z (n i). W orking now w ith  (qa) and 

W  (n i) we obtain an approximate diagonal (r a) c  T  w ith  support ( r “ ) C support (9 “ ) Pi 

W(v i )  C support(p“ )n r (u i). F ina lly working w ith  (r a) and T ^ )  the above argument 

yields an approximate diagonal (s“ ) c  T  w ith  support(sa) C support(ra) f l r ( v 2 ) C 

r ( v t ) n r ( v 2). □

We may now prove Theorem 4.4.2:

(1) => (2) From [10], S is a regular amenable semigroup so i t  suffices to prove tha t S 

contains a unique idempotent, (by regularity i t  has at least one). So suppose e, /  € S
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are idempotents. From Lemma 4.4.8 we may take (s,t) G F(e) f l F ( /) .  Then es =  s

and t f  =  t, so e =  est — st =  s t f  =  / .

(2) =>• (3) Let e >  0, and let F  be a fin ite  non-empty subset of S. From the classical 

F 0 lner condition (FC) which characterizes amenable groups, there is a fin ite  subset 

B  o f S such tha t

\ v B H B \  >  (1 -  e/2)|J3|, (v G F).

Let A  =  {(s , s-1 ) : s G B} .  Then A  C v(v) =  { ( ^ , x _1) : x  G 5 }, (t> G S), 

and i t  is readily verified tha t x (x, x~l v) defines a bijection from v B  n  B  onto 

v - A n A - v .  Therefore \ v-AC\A-v\  =  |ui5nJB| >  ( 1  — e/2)\B\  =  ( 1  — e/2)|A |, whence 

\v ■ A  A  A  • w| <  e\A\, (v G F).

(3) =» (4) is obvious.

(4) =$> (1 ) We assume tha t S is le ft subcancellative, the other case follow ing by a 

symmetric argument. By Lemma 4.4.6, S is le ft cancellative and S satisfies condition 

(*) o f Lemma 4.4.7; therefore S is 1-amenable.

(2) => (5) is proved by the argument given in  (2) => (3).

(5) =» (1) By Lemma 4.4.6, S is le ft cancellative and condition (C) implies condition 

(*) of Lemma 4.4.7; therefore S is 1-amenable. □

R em arks 4 .4 .9 . (1 ) Let S be a discrete group. In  Lemma 4.4.7 we saw th a t condition 

(B) natura lly yields an approximate diagonal comprised o f normalized characteristic 

functions o f fin ite  subsets A  o f S' x S. S im ilarly, the Fplner condition (FC) gives rise to 

a net comprised of normalized characteristic functions o f fin ite  subsets A  o f S which 

converges to le ft (or righ t) invariance in  F (5 ). This suggests tha t our conditions (A ),

(B ), and (C) are the “correct” Fplner conditions corresponding to  (1 -) am enability of

n s ) -

(2) In  [10], J. Duncan and A .L .T  Paterson prove that i f  P (5 ) is amenable then S must 

be a regular semigroup w ith  fin ite ly  many idempotents. We have shown th a t when 

S is 1-amenable S has exactly one idempotent. I t  would be interesting to  see what 

relationship exists between ^-am enability fo r a positive integer k and the number of 

idempotents of S.
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Chapter 5

Amenable and

completely-amenable

representations

5.1 Introduction

In  th is chapter we sh ift our focus to a notion of amenability fo r un ita ry representations 

o f locally compact groups. The theory of amenable representations was developed 

in  1990 by M .E.B. Bekka [3]. Bekka proved analogues o f a ll o f the classical invari­

ance properties including the Fplner conditions, and interpreted several am enability 

theories in terms o f amenable representations. In  particular he proved th a t a locally 

compact group is amenable i f  and only i f  a ll o f its  representations are amenable. Since 

the ir introduction amenable representations have attracted much research attention, 

see for example [5], [27], and [52].

We begin w ith  the introduction of a new notion of am enability fo r represen­

tations, called complete-amenability. We provide the exact relationship between 

these two concepts of am enability and interpret amenability, inner amenability, and 

amenable group actions in terms of completely-amenable representations. We de­

scribe complete-amenability through a weak-containment property and provide sev-
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eral characterizations o f completely-amenable representations in  terms o f the exis­

tence o f certain states upon C*-algebras. For each representation tt o f G  we define 

a Fourier algebra A (7t). We prove tha t when the Fourier algebra A (n  <g> n) has a 

bounded approximate un it, the representation 7r is necessarily amenable. We con­

clude the chapter w ith  a discussion o f a problem posed in  [3] by M .E.B. Bekka. We 

w ill make much use here of the m aterial presented in  section three o f Chapter 2.

5.2 Amenability and complete-amenability for rep­

resentations

Throughout th is chapter G w ill again denote a locally compact group. A  represen­

ta tion  o f G w ill always mean a continuous unitary representation of G as defined 

in Chapter 2 . The follow ing definition of an amenable representation was given by 

M .E.B. Bekka in  [3].

D e fin itio n  5 .2.1. A  representation { 7 , JC} o f G is called amenable i f  there exists a 

state oj on B(JC) such that

u>('y(s)x j (s~1)) =  u (x ), (x  £ B (K ), s £ G).

The state u  is called a G -invarian t mean for 7 .

Let TC{K.) and H S {K ) respectively denote the trace-class operators and H ilbert- 

Schmidt operators on the H ilbe rt space K. Reiter conditions (P l) 7  and (P2 ) 7  are 

defined for a representation { 7 , K \  as follows.

(P i)7: For every e >  0 and every compact subset K  o f G there exists a trace-class 

operator T  £ T C (K ) i =  {P  £ TC(1C) : R > 0 and ||P ||i =  1} such tha t

||7 (s)T 7 (s -x) -  T \ \ t  < e for a ll x  £ K .

(P2)7: For every e >  0 and every compact subset K  o f G there exists a H ilbert- 

Schmidt operator S £ HS(JC)i =  {R £ H S (K ) : R > 0 and ||P | | 2 =  1 } such
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tha t

||7 (s)S '7 ( s - 1 ) — S \\2 <  e for a ll x  €  K.

Recall tha t the le ft regular representation {A 2 , L 2(G)} and the conjugation represen­

ta tion  {/?, L 2 (G )} o f G were defined in  section 3 of Chapter 2. The follow ing theorem 

summarizes the results from [3] tha t we w ill need, (also see section 1 o f Chapter 3). 

Respectively the parts o f the theorem coincide w ith  Theorems 2.2, 2.3(i), 2.4(i) and 

4.3 o f [3].

Theorem 5.2.2. Let G be a locally compact group, let H  be a closed subgroup o f G 

and let { 7 , 1C} be a representation of G.

(1 )  The group G is amenable i f  and only i f  the left regular representation {A 2 , L 2 (G )} 

is amenable which is true i f  and only i f  every representation o f G is amenable.

(2) The group G acts amenably on the left coset space G /H  i f  and only i f  the quasi­

regular representation Ind% 1 h is amenable.

(3) The group G is inner amenable i f  and only i f  the conjugation representation 

{/?, L 2 (G )} is amenable.

(4) The representation { 7 , K }  is amenable i f  and only i f  { 7 , K.} satisfies the Reiter 

condition (P i) 7  which is true i f  and only 2/ ( 7 , 1C} satisfies the Reiter condition (^ 2 )7 -

We now introduce a new concept o f am enability for representations.

Definition 5.2.3. A representation {^ ,14 } w ill be called completely amenable [re­

spectively completely*-amenable] i f  there is a net o f un it vectors (£Q) in  % such th a t 

| |t t (s )£ q — £a || —> 0 uniform ly on compact subsets of G [respectively [|7r(s)£Q — £a || - >  

0, ( s € G)].

Observe th a t 7r is completely*-amenable precisely when it  is completely-amenable 

when viewed as a representation o f G<j, the group G w ith  the discrete topology. Thus 

a ll statements phrased in  terms of complete-amenability may be interpreted in  terms 

complete*-amenability. The follow ing remarks record some elementary properties of 

completely-amenable representations.
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R em arks 5.2.4. (1) I f  { 7r ,7 i}  is completely*-amenable then i t  is amenable. To see 

this, le t (£q) be a net o f un it vectors in  % such that ||7r(s)£a — Call —► 0, (s G G). 

Taking u  to  be any u A lim it point in  B{% )* o f the net vector states (wfa) i t  is easily 

seen tha t u  is a G-invariant mean for 7r.

(2) In  section two o f Chapter 3 we interpreted amenability and inner am enability in  

terms o f certain positive actions on L X{G). Using Reiter’s condition, Theorem 3.2.13 

applied to these actions together w ith  [45, Exercise 4.4.5] one sees that

(i) G is amenable the le ft regular representation {A 2 , L 2 (G )} is completely-amenable 

and

(ii) G is inner amenable the conjugation representation {/?, L 2 (G )} is completely- 

amenable.

When i f  is a closed subgroup o f G we sim ila rly obtain tha t

( iii)  G acts amenably on G /H  the quasi-regular representation Ind%1# is completely- 

amenable.

(3) The statements (i), (ii) and ( iii)  o f [3, Remark 1.2] are valid for completely- 

amenable representations. Indeed

(i) Any representation which is u n ita rily  equivalent to a completely-amenable repre­

sentation is also completely-amenable.

(ii) I f  i f  is a closed subgroup o f G and {7r, % } is a completely-amenable represen­

ta tion  o f G, then the restriction tt\H  is a completely-amenable representation o f H . 

Moreover, i f  H  is normal and H  Cker(7r), then n is completely-amenable i f  and only 

i f  i t  is completely-amenable when viewed as a representation o f G /H .

( iii)  I f  {7r, % } is completely-amenable, then so is its  conjugate representation { 7T, H }. 

Moreover the follow ing is clear.

(iv) I f  {7r, H }  contains a completely-amenable subrepresentation, then { 7r, % } is also 

completely-amenable.

E xa m p le  5.2.5. The follow ing is a simple example of an amenable representation 

which is not completely-amenable. Let T  =  {a  G C : |a| =  1} be the circle group
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and let H  be any Hilbert space. Consider the representation defined by

7  : T  —f  B(H)  : a H  a  id u-

Observe tha t any state on B{fH) is a G-invariant mean for 7  so { 7 , /C} is amenable. 

However if  £ is any u n it vector in  %, then ||7 (—1)£ — £|| =  2 so 7  is not completely- 

amenable.

Thus complete-amenability is s tric tly  a stronger property than am enability for 

representations. Moreover the above example shows tha t in  contrast to  the theory 

of amenable representations (see [3, Theorems 1.3 and 2.2]), even one-dimensional 

representations can fa il to  be completely-amenable, and amenable groups can have 

representations which are not completely-amenable.

The next result describes the relationship between amenable and completely- 

amenable representations. I t  shows tha t any characterization o f completely-amenable 

representations yields a characterization of amenable representations and hence by 

[3, Theorem 2.2] o f amenable locally compact groups.

T heorem  5.2.6. The following are equivalent fo r  a representation { 7 , /C} of G.

(1) { 7 ,/C } is amenable.

(2)  { 7  <g) 7 , K. ® /C} is completely-amenable.

(3) { 7  (g> 7 , K. <8 > /C} is completely*-amenable.

(4) { 7  ® 7 , /C ® /C} is amenable.

Proof. (1 ) =$■ (2 ) Define a representation {p7, H S (K )}  o f G by py(s)S =  7 (s)S'7 (s~1), 

(S € H S (K ), s e G). As 7  is amenable, i t  satisfies the Reiter property (P2)7 so there 

is a net of u n it vectors (Sa) in  H S (K ) such tha t ||p7 (s)S,a — 5 Q | |2  -> 0 un iform ly on 

compact subsets o f G. Thus p1 is completely-amenable. As the the map determined

by

/C ® /C —v HS(JC) : £ <3 t) ^  £ ® p*

yields a un itary equivalence of {p7, HS(JC)} and { 7  ® 7 , /C ® /C}, we are done.

(2) =>- (3) is tr iv ia l and (3) => (4) follows from part (1) o f Remark 5.2.4.
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(4) =$> (1 ) Let Q, be a state on B (K  ® K) such tha t

D ( ( 7  <S> 7y)(s)x('y®  7 )(s -1 )) =  O(ar), (x G B(K. <£> K ), s G G).

Define w on B {K )  by

u(y) = ^(y ® i%), (y e £ ( £ ) ) .

Then a; is clearly a state on B (K )  and for any y G B(JC), s € G we have

w(7 (s)2/7 (s_1)) =  f i( 7 (s)y7 (s_1) ® id^)

=  0 ( ( 7  ® 7 ) (s) {y <8 > id^) ( 7  ® l )  (s-1))

=  D ( y ® id ^ )  =  u ( y ) .

□

5.3 Complete-amenability and weak containment

In  th is section we w ill characterize complete-amenability of a representation (zr, % } 

in  terms o f both weak containment and the Fourier-Stieltjes spaces Bx.

T h e o rem  5.3.1. The following are equivalent fo r  a representation { 7r, 7 /} of G.

(1)  { 7r, % } is completely-amenable.

(2 )  1 G ^  7r.

(3) 1 a E B x.

Proof. (1) =>• (2) Let (£a) be a net of un it vectors in  Tl such tha t ||7r(s)£a — £tt|| —> 0 

un iform ly on compact subsets of G. Let ua =  £Q * x £a. Then

\ua{s) -  1| =  |<7r(s)Ca -  fa ifa )I <  |K («)fa  -  f a||

whence ua(s) -»  1 uniform ly on compact subsets o f G. I t  follows from Theorem 2.3.2 

th a t 1G ^  7r.

(2) =>■ (3) As Bx =  (Px) where Px =  {u  G P(G) : ttu X 7r }  th is is triv ia l.

(3) =>■ (2) Part (4) o f Lemma 2.3.1 says tha t B x f l Pi(G ) — {u  G Px : u(e) =  1 }  so
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th is is also triv ia l.

(2) => (1) By T h eo re m  2.3.2 there is a net (£Q) in  % such tha t ua =  £Q £Q G Pi(G ) 

and (uQ) converges to  1q uniform ly on compact subsets of G. Observe tha t | | £ a | | 2 =  

ua(e) =  1. Now

IW «)fa -  Call2 =  2|1 -  Re ua (s)| <  2|1 -  ua(s)I 

from  which it  follows th a t { f t ,91} is completely-amenable. □

Corollary 5.3.2. The following are equivalent fo r  a representation {?r, of G.

(1) { * , « }  is completely*-amenable.

(2 )  1 Gd -< Kcl-

fS) 1G G B Vd.

Leptin ’s theorem says tha t a locally compact group G is amenable i f  and only i f  

its  Fourier algebra A(G) has a bounded approximate un it. The follow ing looks a little  

like a Leptin theorem for completely-amenable representations. In  the sixth  section 

o f th is chapter we w ill conjecture a more satisfying version o f Leptin ’s theorem for 

(completely-)amenable representations, (we can only prove one direction).

Corollary 5.3.3. A representation {7r, H }  is completely-amenable i f  and only i f  there 

is a net (ua) c A f n  Pi(G ) such that fo r  every v G A(G), \\uav — v|| —>• 0.

Proof. This follows immediately from  Theorem 5.3.1, Theorem 2.3.2, and [17, Theo­

rem B2]. □

As w ith  amenable representations [3, Corollary 5.3] we now have the follow ing 

result.

Corollary 5.3.4. Let {tt, % }, { 7 , K.} be representations of G. I f  7  ^  7r and 7  

is completely-amenable, then so is n. In  particular, the complete-amenability of 7r 

depends only upon its weak equivalence class.

Let { 11,% }  be a representation o f G. In  [2 ] Arsac defines the representation 

ujtt =  £  0  { 7r„ : u G Pn}  and proves th a t B w =  =  AUw [2, Proposition 2.24]. I t
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seems interesting to  note tha t by Proposition 5.3.1 the representation 7r is completely- 

amenable precisely when the associated representation is completely-amenable.

5.4 C*-algebraic characterizations

We w ill characterize complete and complete*-amenability of a representation { 7r, % } 

in  terms of the existence o f certain states on the (7*-algebras C |jjr, C* and B (H ). The 

state space o f a C**-algebra A  w ill be denoted by S (A ) .

Lem m a 5.4.1. Let U be a group of unitary operators on a Hilbert space % and let 

A  be the C*-subalgebra of B(% ) generated by U.

(1)  I f  $ £ S (A ), then (ft is multiplicative on A  i f  and only i f  \<ft(u) \ =  1, (u £ 14).

(2) I f  (ft E S{B {'H )), then \(ft{u) \ =  1, (u £14) i f  and only i f

(ft{xy) =  (ft{yx) =  (ft{x)<ft(y), {x £ B (H ), y £ A ). (*)

Proof. We w ill prove (2), the proof o f (1 ) being sim ilar. I f  the condition (*) holds,

then for any u £ U, 1 =  <ft(idn) — <ft(u*u) =  (ft(u)(ft(u) =  \(ft(u)\2. Suppose now 

th a t the converse statement holds. Then given x £ B (H )  and u £ U, using the 

Cauchy-Schwartz inequality for states we have

\(ft{xu) -  (ft(x)(ft(u) \ 2 =  \<ft(x{u -  (ft(u)idH ) ) \ 2

<  (ft{xx*)(ft{(u -  <ft(u)idfi)*(u -  <ft(u)idH))

=  (ft{xx*)[(ft{idH) -  (ft{u)(ft{u*) -  (ft{u)(ft{u) 4- \(ft(u)\2 (ft(idn )\ 

=  0 .

Now A  =  (14)  ̂ B̂{n) so condition (*) holds by linearity and continu ity of (ft. □

T heorem  5.4.2. The following are equivalent fo r  a representation { tt, H }  o f G.

(1)  {?T,U } is completely*-amenable.

(2) There is a state (ft on C*&<K such that <ft(ir(s)) =  1 , (s £ G). [The state (ft is 

necessarily multiplicative].
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(3) There is a state u  on B (7 i) such that u i ( tt( s ) )  =  1, (s  G G).

(4) There is a state ui on B(TL) such that

o j ( - k (s )x )  =  u ( x n ( s ) )  =  (jo(x ) ,  (s  G G, x  G B(fH)).

Proof. I t  follows from  equation (2.3) o f Chapter 2 tha t the duality o f Bni w ith  C*d =  

C |)7r satisfies

Hence statement (2) is equivalent to saying tha t G B Wd so (1) 43- (2) is a conse­

quence o f C orollary 5.3.2. The equivalence (2) 43- (3) is clear and (3) (4) follows

R em arks 5.4.3. The invariant mean characterization o f completely*-amenable rep­

resentations given in  part (4) of Theorem 5.4.2 suggests tha t i t  should be possible to 

study complete and complete*-amenability in  same manner used by Bekka in [3] and 

which we used in  section two of Chapter 3. However unlike the action

does not preserve the normal states T C (H )i on Bifhi). That is, the la tte r action is 

not a positive action on TCifH). I t  is because o f th is th a t the fam ilia r techniques 

breakdown. In  particu lar we have been unable to prove a Reiter-type theorem in 

th is context, namely th a t complete*-amenability implies complete-amenability. We 

suspect tha t the key to  such a proof may be the Raikov Theorem which states th a t 

on Pi(G ) the weak*-topology agrees w ith  the topology of uniform  convergence on 

compact subsets o f G.

ip(s) =  (tt(s), •0), (s G G, ip e B,rd).

from  Lemma 5.4.1. □

s - T  =  t t ( s ) T i t { s - 1),  ( s G G, T  G T C {H ))

the action defined by

s - T  =  7r(s)T, (s G G, T  G T C (ft)) ,

Let
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Much o f the follow ing theorem was proved by C.K. Yuan [54] fo r the conjugation 

representation {/?, L 2((?)}. Our proof o f the equivalence (4) (5) is quite sim ilar to

his proof.

T heo rem  5.4.4. The following are equivalent fo r a representation {tt,TL} of G.

(1)  { 7x,% } is completely-amenable.

(2) There exists a state 00 on BifH) such that u (ir(p ))  =  p{G), (p G M (G )).

(3) There exists a state u> on B (H ) such that 00(1r ( /) )  =  f G f(s )  ds, ( /  G ^ (G ) ) .

(4) There exists a state <j) on C* such that <t>(n(f)) =  f G f(s )  ds, ( /  G L 1 ((?)).

/5 ) There exists a state <f> on C* such that ker(</>) =  7r(J)^ b̂(k) and 0(7r(/o)) =  1 /o r

some f 0 G I /1 (G) with f  /o =  1.

Proo/. (1) => (2) Let (£Q) be a net of u n it vectors in  "H such th a t ||7r(s)£a — Call 0 

uniform ly on compact subsets of G. Let u  be any u ;*-lim it point in  BlfH)* o f the net 

o f vector states (w&J; we may assume tha t u^Q —> oj w* in B{TL)*. Let p  G M {G ) 

and le t e >  0. We can suppose tha t p  has compact support K . Take a' such th a t

Hence uj ( tt( p ) )  =  p(G).

(2) => (3) is triv ia l.

(3) =>• (4) Let 4> be the restriction of 00 to  C*. Then <j> G {C*)* =  B v and from  

equation (2.3) o f Chapter 2

Then

\u(ir(p)) -  p(G)\ <  ^  +  \uju (7 r {p ) ) -p (G ) \

=  l  +  l J  dpI [  M s)£a',£a'> dp{s) -  [  dp(s) I 
J g  J g
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I t  follows th a t (j) =  la  € B „  which is a state on C*.

(4) =*> (1) The argument used to establish (3) => (4) shows tha t 4> =  1g G B^. By 

Theorem 5.3.1 is completely-amenable.

(4) =£- (5) Let (j> be a state on C* as in  (4) and fix fo in  L 1 (G) w ith  f  fo =  1. Then 

</>(ir(fo)) =  1 and /  G J  i f  and only i f  r ( /) )  =  0. Hence 7r(J)^ b̂{h) c  k e r N o w  

suppose tha t x  Gker(^). Let ( /„ )  be a sequence in L l (G) such tha t \W n ) ~ x \ \  ->  0. 

As J  is an ideal o f codimension one in  L X(G) and fo £ J, for each n there is some 

a n G C and gn £ J  such tha t f n = anfo+9n- Now 0 = l i m = lim  |an|, 

so

M g n) ~  #|| =  Ik ( /„ )  -  a n7r(/0) -  x\\

<  \W {fn )~ x \\ +  |oin|||/o||l 0.

Therefore x  G 7r(J)^

(5) =$> (4) Let (f) and fo be as statement (5). Then for any f  G L X(G),

g =  f - ( [  f(s )  ds)f0 G J and f  =  g +  ( f  f (s )  d s )f0.
J g  J g

Consequently 0 (7r ( /) )  =  f Gf ( s ) ds .  □

I f  { 7 ,/C} is an amenable representation, then by Theorem 5.2.6 we know tha t 

a ll o f the conditions from  Theorems 5.4.2 and 5.4.4 are equivalent fo r the associated 

representation { 7r, =  { 7  <g> 7 , K  <g> /C}. Beyond th is we can extend a result due to

E. Bedos which he proved in  [4] for the le ft regular representation {A 2 , L 2 (G)}.

T heorem  5.4.5. The following are equivalent fo r  a representation { 7 , K,} of G.

(1) (7 , is amenable.

(2) There is a non-zero multiplicative linear functional <fi on C |i70?.

(3) There is a state u  on B (K  ® K) such that |w ((7®  7 )(s))l =  1, (s G G).

Proof. (1) =» (2) follows from  Theorems 5.2.6 and 5.4.2.

(2) => (3) From Lemma 5.4.1 we have <8 > t)(s )) | =  1, (s G G). Now let ui be 

any state on B {K  ® K) which extends (j).
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(3) =>■ ( 1 ) For any x  £ B(JC ® JC) and s £ G we have

w ((7 ® l ) {s )x {y  ® 7)(s~x)) =  ^ ( ( 7 ® 7 )(s))w(ar)w((7 ® 7 )(s -1 ))

=  cu((7 ® 7 )(s))o;(a:)a>((7 ® 7 )(s))

=  u (x)

where we have used Lemma 5.4.1. Thus a; is a (7-invariant mean for 7  ® 7  and it  

follows from  Theorem 5.2.6 th a t { 7 , JC} is amenable. □

5.5 The Fourier algebra for an arbitrary represen­

tation

In  Section three o f Chapter 2 we defined the Fourier spaces An. When our represen­

ta tion  is the le ft regular representation {A 2 , L2(G)}, A\ 2 is the Fourier algebra A(G). 
I t  is however quite rare for a Fourier space A * to  be an algebra [2, Proposition 3.26]. 

In  th is section we w ill define and study an analogue of the Fourier algebra for an 

a rb itra ry representation.

Let A(tt) denote the closed subalgebra o f B(G) generated by the coefficients 

of 7r. We w ill refer to A (7r) as the Fourier algebra associated to n. I t  is not d ifficu lt 

to  see tha t A(n) is closed under le ft and righ t translations, so by [2, Theorem 3.17] 

A (7r) =  Ar„ for some representation t v o f G. The next proposition gives an exp lic it 

description o f th is representation which we w ill find useful. Before stating the result 

we prove a simple lemma which we expect is well-known.

Lem m a 5.5.1. Let { 7 , JC} be a representation of G and suppose that T  C JC has 

dense linear span in  JC. Then { f . ^ r j  \ £ T )  is dense in  A1.

Proof. Let 7  £ JC and choose sequences (£n), C (T )  such tha t ||£n — £|| 0
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and ||rjn -  r]\\ -»• 0. Let u =  £ * 7  rj and «n =  £n * 7  r)n . As it, un e B 1  — (C *)*,

||u -  ttn|| =  sup{| J f ( s ) ( u n -  u)(s) ds| : /  € L X(G), H t(/)II <  1 }

=  sn p {|{7 (/)^n,77n) -  (t(/)€ ,t? )| : f  e L l {G), ||7 (/)|| <  1}

=  m p { \W ) ( £ n -ti)>Vn) +  ( 'y { f )£ ,y n -v ) \  - f z & i G ) ,  ||7 (/) ll <  1 }

<  ||f» -  £ |||M | +  11̂ 1111% -  7?|| 0 .

Now (E * & )  *7 ( E  j  Vj )  =  E i j t e  *7 Vj)  SO ( £ * 7 t? : Z, V G (^ ) )  =  (£ * 7 r j i ^ r j e f )  

and we are done. □

Let {n ,% }  be a representation o f G. For a positive integer n we employ the 

notation

7T®" =  ^ =l7r and

P ro p o s itio n  5.5.2. Let {tt, % } be a representation of G and consider the associated 

representation
00 oo

n=l ra=1
Then A(7r) =  A Tjr =  A (rff).

Proof. For £ls . . .  ,£*. G %, le t <g>f£j denote the associated elementary tensor in  %®k 

which we view as a subspace of . I t  is clear tha t (T )  is dense in  'HTir where

T  =  { ® i £ i  : 6 )  • ■ • i £fc € % ,  k  €  N}.

I t  follows from  Lemma 5.5.1 tha t to  show A Tjr is an algebra, we only need to demon­

strate tha t {£ * T7r rj : £ , r j  € T )  is closed under m ultip lication. To th is end, le t

£, fj, v, C €E T  and let u — £ * Tir rj, v =  v * Tt £. Observe that i f  £ =  and

rj =  ® i2r)j w ith  k \ ^ k 2, then

£ * t „  rj(s) =  ( °) + (®il7r(s)^’ °) + (°> ®Ni> = 0 .
n̂ =ki,k2
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Hence we may assume th a t £ =  <8 >x£i, r\ — ®\r]i, v — ® [v j, and £ =  ®[Cj- Then

(uv){s)  =  (® ? 7 r(s )£ i, ® i V i ) { ® [ ^ { s ) v j ,  ® [ ( i )  
k I

=  n < « m ,  ^  ^
i= l j = 1

= { { ® i +l7 r ) ( s ) ( t ® v ) , r j ® ( )  =  (£® t;) *T* (»7® £)(«),

and £ 0  u, rj ® £ 6  J7. Thus is an algebra. Now it  is obvious th a t A v c  A T7r so 

we have A (7r) C  A Tvr. F ina lly  i f  £ =  £* and rj =  ®\r]i e J7, then

k

* * ^ e

Using Lemma 5.5.1 once again we have A Tir C  A (7r). □

In  [30] A . T .-M . Lau calls a Banach algebra A  an F-algebra i f  A  is the predual of 

some von Neumann algebra Ad such tha t the identity element o f Ad is a m ultip lica tive  

linear functional on A. We remark tha t F-algebras are now commonly referred to 

as Lau algebras and we shall refer to them as such. Observe th a t i f  { r ,  H r }  is a 

representation of G for which A r  is an algebra, then r(e ) is the iden tity  in  V N r  =  A* 

and (u, r(e )) =  u(e), (u e A r ). I t  follows tha t A r is a Lau algebra. Thus we can 

make the follow ing statement.

P ro p o s itio n  5.5.3. For any representation { 7r, H } of G, A (n) is a Lau algebra.

We now examine the relationship between the am enability properties o f n and 7V-

T heo rem  5.5.4. Let { tt, % } be a representation of G. Then { tt, % } is amenable i f  

and only i f  { ^ ,7 1 ^ }  is amenable.

Proof. Suppose firs t th a t 7r is amenable. Then rw =  © (7r®n) has an amenable

subrepresentation and it  follows from  [3, Theorem 1.3(ii)] tha t 7v is amenable. For 

the converse, suppose tha t u  is a state on B{fHr„) such tha t

u (tA s)B t„ ( s- 1)) =  uj(B ), ( s e G , B e  B (H rJ .
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Define 00
A : B (U ) B {H t.J  : B  J ]© (J 3  ® (®L=2 id« ))-

n=l
I t  is easy to  see tha t A is a linear isometry such tha t A (id ^ ) =  id ^ Tjr. Moreover for 

any B  G and s £ G,

OO
Tv(s)A(jB)r7r(s~1) =  J^©[7r®n(s )(B ®  (®fc=2idw))7r®n(s-1)]

n—1 
oo

=  X! © frO O -B ^ -1) ® (®fc=:2 id ^ )]
n—1

=  A ( tt(s ) B 7 t( s~ 1)).

Therefore i f  we define

m (B ) =  w (A (B )), (B  G B (? 0 ),

then it  is clear th a t m is a G-invariant mean on B(%) fo r { 7r, % }. □

R em arks 5.5.5. As in  the above proof, rv is completely-amenable whenever 7r is 

completely-amenable. We have been unable to obtain any form  o f converse to th is 

statement.

We conclude th is section w ith  a definition o f the Fourier-Stieltjes algebra associ­

ated to  an a rb itra ry  representation.

Suppose firs t th a t { 7r, % } is a representation of G such tha t A *  is a subalgebra 

o f B(G);  tha t is, suppose tha t A w =  A(tt). By [2, Proposition 2.20] an element 

u G B(G ) belongs to  Bn precisely when there is a bounded net in  A w which converges 

to u un iform ly on compact subsets o f G. Prom th is i t  follows easily tha t B w is also a 

Banach subalgebra o f B(G).

Now suppose tha t { 7r, % }  is any representation of G and let A{tt) =  A Tn =  A ( t7r) 

be the Fourier algebra associated to 7r. From the preceding paragraph B{-k) =  B Tv is 

a Banach subalgebra of B(G ), which we call the Fourier-Stieltjes algebra associated 

to t t . When our representation is the le ft regular representation {A2, L 2((?)}, we have 

B ( A2) =  B \ 2 =  B t (G), the reduced Fourier-Stieltjes algebra o f G.
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Proposition 2.20 and Theorem 3.17 of [2] respectively say tha t Bv is the ttf-closure 

o f An in  B(G ) and tha t the Fourier spaces A *  are precisely the translation-invariant 

closed linear subspaces of B(G). I t  is readily verified th a t translation is w*-continuous 

on B(G ), so the spaces Bv are precisely the translation-invariant w*-closed linear 

subspaces o f B{G ). Thus we can make the follow ing statement.

P ro p o s itio n  5.5.6. Every translation-invariant closed subalgebra of B {G ) is a Fourier 

algebra A {n) associated to a representation { 7r, H }  o fG . Every translation-invariant 

w*-closed subalgebra of B(G) is a Fourier-Stieltjes algebra B (k ) associated to a rep­

resentation { 7T, W } of G.

5.6 Towards Leptin’s theorem for amenable rep­

resentations

Leptin ’s theorem [34] says th a t a locally compact group G is amenable i f  and only 

i f  the Fourier algebra A(G) has a bounded approximate un it. In  terms o f repre­

sentations th is says tha t (complete-) am enability of the le ft regular representation 

{A 2, L 2 (G )} is characterized by the existence o f a bounded approximate u n it in  vl(A2). 

We suspect th a t the corresponding statement holds for any representation but have at 

present only been able to  prove one direction. We begin by proving a simple lemma.

I f  {w, H }  is a representation such tha t A r  =  A (tt), let VN ^ — A* have its  canonical 

dual A^-module structure. We note tha t because A w is commutative, the side tha t 

we choose to  w rite  our module operations does not m atter.

Lem m a 5.6.1. Let be a representation of G such that A w =  A (tc).

(1) The module action of An on V N n restricted to ^ (L ^ G )) is given by pointwise 

multiplication

u • tr ( /)  =  tt(u /) , ( u  6  An, f  e L 1{G)).

Consequently C* is a closed An-submodule o fV N w.

(2) The dual module action of A w on (C*)* =  B n is given by pointwise multiplication.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



That is

U • (j) =  U(f), (u E A r, (j) E A ) .

Proof. (1) For w, n G A  and f  E L l {G) we have

( u ,u • 7 r(/)) =  (vu, 7 r(/)) =  / v(s)u (s)f(s) ds — (w ,7r(u/)).
Jg

As C* =  ŝ(k) i t  follows th a t C* is an A-subm odule o f VTV*.

(2) Let n G A> (j) G (G*)* =  B v. Then u</> G A  and for any /  G 17(G),

( tt( f ) , u - 4>) =  ( tt( / )  -u,(j)) =  ( tr ( /u ) , <£)

=  f  f (s )u(s) ( l>(s)  d s =  {n( f ) ,u( f>) ,
J g

where we have used part (1 ). □

T heo rem  5.6.2. Let { it, TL} be a representation of G such that A  =  A(n) and 

consider the following statements.

(1)  { 7x,% } is completely-amenable.

(2) A (tt) has a bounded approximate unit.

(3) The closed ideal I n =  {u  E A(tt) : u(e) =  0} of A (tv) has a bounded approximate 

unit.

Then (1) «= (2) &  (3)

Proof. By Proposition 5.5.3 A{tt) is a commutative Lau algebra, so the equivalence of 

statements (2) and (3) is a direct consequence o f [30, Exam ple(l) Page 168] and [30, 

Theorem 4.10]. Now suppose tha t A {k) =  A  has a bau (ea) and let ^  be a w M im it 

point of (eQ) in  V N *; assume w ithout loss o f generality th a t ea —> (j> w*. Then for 

any u  E A  and x  e V N v we have

(x, u • 4>) =  (x -u,(j)) — lim (x  • u, ea)

=  lim ( x , u e a) =  ( x , u ) .

Thus u -  <j) =  u, (u  E A )- Letting  G (G*)* =  A  denote the restriction o f (f> to  G*, 

Lemma 5.6.1(2) gives

u  =  U ■ 4>x — U(j) 1 , (U E An) .
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Suppose th a t £ is any u n it vector in  %. Then given any s £ G, le tting  77 =  7r(s)£ and 

u =  £ *jr 7?) we have

1  =  u(s) =  u(s)4>i(s) — <j>i(s).

Thus (j>i =  1q £  and by Theorem 5.3.1 { k ,TL} is completely-amenable. □

I f  {7T, H }  is any representation o f G, then by Proposition 5.5.2 AT„ — A ( tt ) =  

A (7r). Hence the existence of a bounded approximate u n it in  A (7r) is sufficient for 

complete-amenability of { r F o r  amenable representations we have the follow­

ing corollary.

C o ro lla ry  5 .6 .3 . Let { 7 , JC} be a representation of G and consider the following 

conditions.

(1) { 7 ,/C} is amenable.

(2) A(-y ® 7 ) has a bounded approximate unit.

(3) The closed ideal I 7<m  =  {u  £ A (7  g) 7 ) : u(e) =  0 } of A ( 7  ® 7 ) has a bounded 

approximate unit.

Then (1) «= (2) &  (3)

Proof. The equivalence of statements (2) and (3) is an immediate consequence of 

Theorem 5.6.2. For (2) => (1 ) note th a t i f  A (7 ® 7 ) has a bounded approximate un it, 

then by Theorem 5.6.2, r 7 ® 7  is amenable and so by Theorem 5.5.4, is amenable. 

Now { 7 , JC} is amenable by Theorem 5.2.6. □

We have unfortunately been unable to prove the im plication (1 ) =>- (2 ) of either 

Theorem 5.6.2 or Corollary 5.6.3. In  terms o f Fourier-Stieltjes algebras we can make 

the follow ing statement.

T heo rem  5.6.4. The following are equivalent fo r  a representation { 7 , AC} of G.

(1)  { 7 , £ }  is amenable.

(2) The Fourier-Stieltjes algebra B { 7 0 7 ) has an identity.

Proof. (1 ) => (2) I f  { 7 , JC} is amenable, then by Theorems 5.2.6 and 5.3.1, 1q € B 7 g,7. 

As Bim  C 15(7® 7 ), (2) follows.
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(2) =£■ (1) I f  S (7 ® 7 ) has an identity (f>, then the argument found in  the last few lines 

o f the proof o f Theorem 5.6.2 shows tha t ^  =  lg  6  B ( 7  ® 7 ). I t  now follows from  

Theorems 5.2.6, 5.3.1 and 5.5.4 tha t { 7 , JC} is amenable. □

5.7 Some comments regarding a question posed by 

M .E.B. Bekka

Let G be a loca lly compact group. In  the previous chapter we discussed Johnson’s 

Theorem which states tha t G is amenable precisely when its  group algebra L l (G) 

is amenable. Am enability of G has also been characterized in  terms of am enability 

o f the reduced group C*-algebra C*(G) and Connes-amenability of the group von 

Neumann algebra V N (G ).

Before stating these characterizations in  Theorem 5.7.1 we remark th a t for C*- 

algebras, am enability is equivalent to the im portant C*-algebraic property o f nucle- 

arity. For von Neumann algebras, am enability as defined in  Chapter 2 turns out 

to  be too strong of a condition to  yield an interesting subclass of von Neumann al­

gebras. The most suitable notion o f am enability for von Neumann algebras, called 

Connes-amenability, takes account o f the fact th a t every von Neumann algebra is the 

dual space o f some Banach space. Connes-amenability o f von Neumann algebras is 

known to be equivalent to each o f the conditions o f in jectiv ity , semidiscreteness, and 

Schwartz’s property P. The facts stated in th is paragraph are of significant depth and 

are p rim arily  due to  M .D Choi, A. Connes, E.G. Effros, E.C. Lance, S. Wassermann 

and others. A  self-contained account may be found in  [45]. The follow ing is due 

to  E.G. Effros and E.C Lance [11], A. Guichardet [22], and E.C. Lance [29] in  the 

discrete case; the general case was established by A. T .-M . Lau and A .L .T . Paterson 

[31], (also see [39] and [44]).

T heo rem  5.7.1. The following are equivalent fo r  a locally compact group G.

(1)  G is amenable.

(2) C *(G ) is nuclear and G is inner amenable.
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(3) V N (G ) is Connes-amenable and G is inner amenable.

We may phrase th is in  terms o f the le ft regular representation {A 2 , L 2 (G )} and the 

conjugation representation {/3, L 2 (G )} as follows: A2 is amenable precisely when 

is nuclear and ft is amenable which is true precisely when VN x2 is Connes-amenable 

and j3 is amenable.

In  1990 M. Bekka [3, page 400] asked i f  i t  is possible to characterize amenable 

representations { 7 , JC} in  terms o f am enability of some Banach algebra associated to 

7 . Presumably motivated by the above theorem, Bekka suggested C | 7  and ViV7  as 

two natural candidates.

In  [28] E. K aniuth and A. M arkfort showed tha t i f  {/3 ,L 2 (G )} is the conjugation 

representation o f G, then (?<* is amenable i f  and only i f  C\p  is nuclear(=amenable). 

Thus i f  we take G to  be any non-amenable discrete group, (for example let G  be the 

free group on two generators), then G is tr iv ia lly  inner-amenable, so {/5, L 2 (G )} is 

amenable, but Cg^ =  is not nuclear. This suggests tha t both and Cp are not 

good candidates when searching for a solution to  Bekka’s problem. We are unsure as 

to  whether th is also implies th a t VNp is not Connes-amenable.

According to  [3, Corollary 5.5] G is amenable precisely when a ll o f its  irreducible 

representations are amenable. Thus i f  we take any non-amenable group G, we can 

find an irreducible representation { 7 , JC} o f G which is non-amenable. However by 

Schur’s lemma for irreducible representations

V N n =  7 (G )" =  { a i d K : a e  C } ' =  B(JC)

which is Connes-amenable. S till, fo r irreducible representations 7  we have no related 

concept of inner am enability so we cannot rule ViV 7  out as a contender for the Banach 

algebra which w ill solve Bekka’s problem.

Recall tha t

(i) G is amenable i f  and only i f  the le ft regular representation {A 2 ,L 2 (G )} is 

amenable;
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(ii) the righ t regular representation {p2, L 2 (G )} is u n ita rily  equivalent to {A2, L 2(G)} 

and p2 (G) C A2 ((?)'; and

(iii)  the conjugation representation {0 , L 2 (G )} is defined by 0 (s) =  A2 (s)p2 (s), and 

G is inner amenable i f  and only i f  0 is amenable.

Based upon an argument tha t V. Runde has given to prove the equivalence o f (1) 

and (3) in  Theorem 5.7.1, (see [44, Theorem 5.3] where Runde actually proves more 

than th is), we can prove the follow ing proposition.

P ro p o s itio n  5.7.2. Let { 7 , K.} be a representation of G. Suppose that there is a 

representation {p, JC} o fG  such that p(G) C 7 (G)1 and let {0 7,p, K.} be the (continuous 

unitary) representation defined by

Pi ,p(s) =  7 (s)p{s), {s e G).

I f V N .7  is Connes-amenable and /37iP is amenable, then 7  is amenable.

We w ill om it the proof. Beyond the remarks tha t we have already made in  th is sec­

tion  we have the follow ing few remaining comments. F irst, in  lig h t of Theorems 5.2.6 

and 5.4.5, we m ight suggest tha t the C7*-algebras C |j7 (g,7, C*m  and the von Neumann 

algebra V N ^  are worthy of consideration w ith  regards to  Bekka’s problem.

Two other possibilities are the Banach algebras ^.(7 ) and B ( 7 ), (or A ( 7 ® 7 ) and 

J5 ( 7  <S> 7 )). As mentioned in  section 5 of Chapter 3, Ruan’s theorem says tha t G 

is amenable i f  and only i f  the Fourier algebra A(G) =  A(A2) is operator amenable. 

Operator am enability also makes sense for the Lau algebras A (7 ) and one m ight 

certainly wonder how i t  relates to the am enability of 7 . In  [47] V. Runde and N. 

Spronk introduced a notion o f am enability for dual operator Banach algebras called 

operator Connes-amenability. There they proved tha t G is amenable i f  and only if  

the reduced Fourier-Stieltjes algebra Br (G) — J3(A2) is operator Connes-amenable. 

Every Fourier-Stieltjes algebra B (7 ) is a dual operator Banach algebra so it  is natural 

to  ask how operator Connes-amenability of B ( 7 ) relates to the am enability o f 7 . 

In  fact, because every operator amenable operator Banach algebra has a bounded
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approximate u n it [42, Proposition 2.3] and every operator Connes-amenable Banach 

algebra has an iden tity  [47, proof o f Theorem 4.4], the follow ing is an immediate 

consequence o f Corollary 5.6.3 and Theorem 5.6.4.

P ro p o s itio n  5.7.3. Let { 7 , JC} be a representation of G.

(1) I f  A ( 7  ® 7 ) is operator amenable, then { 7 , K,} is amenable.

(2) I f  13(7® 7 ) is operator Connes-amenable, then { 7 , JC} is amenable.

As a final remark we note tha t there is no hope o f characterizing am enability o f 7  

in  terms of am enability o f the Fourier algebras ^ ( 7 ). Indeed, fo r the Fourier algebra 

A(G) to  be amenable it  is both necessary and sufficient tha t G contain an abelian 

subgroup of fin ite  index, (see [33] for sufficiency and [46] for necessity).

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] O.Y. Aristov, V . Runde, and N. Spronk Operator amenability of the Fourier 

algebra and approximate indicators fo r  subgroups, preprint.

[2 ] G. Arsac, Sur Vespace de Banach engendre par les coefficients d ’une 

representation unitaire, Publ. Dep. Math. (Lyon) 13 (1976), 1 -  101.

[3] M .E.B. Bekka, Amenable unitary representations of locally compact groups, 

Invent. M ath. 100 (1990), 383-401.

[4] E. Bedos, On the C*-algebra generated by the left regular representation of a 

locally compact group, Proc. Amer. Math. Soc. 120 (1994), 603-608.

[5] C. Chou and A. T .-M . Lau, Vector-valued invariant means on spaces of 

bounded operators associated to a locally compact group, Illino is  J. M ath. 

45 (2001), 561-602.

[6 ] A.H. C lifford and G.B. Preston, The algebraic theory o f semigroups I, M ath. 

Surveys No. 7, Amer. Math. Soc., Providence, R .I., 1961.

[7] G. Corach and J.E. Gale, On amenability and geometry of spaces of bounded 

representations, J. London M ath. Soc. (2) 59 (1999), 311-329.

[8 ] J. D ixm ier, C* — algebras (translated from  the French), North-Holland, 1977.

[9] J. Duncan and I. Namioka Amenability of inverse semigroups and their semi­

group algebras, Proc. Royal Soc. Edinburgh 80A (1978), 309-321.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[10] J. Duncan and A .L .T . Paterson, Amenability fo r  discrete convolution semi­

group algebras, M ath. Scand. 6 6  (1990), 141-146.

[1 1 ] E.G. Effros and E.C. Lance, Tensor products of operator algebras, J. Funct. 

Anal. 25 (1977), 1-34.

[12] G.H. Esslamzadeh, Banach algebra structure and amenability of a class of 

matrix algebras with applications, J. Funct. Anal. 161 (1999), 364-383.

[13] P. Eymard, L ’algebre de Fourier d ’un groupe localement compact, B u ll. Soc. 

Math. France 92 (1964), 181-236.

[14] P. Eymard, Moyennes invariantes et representation unitaires, Lecture Notes 

in  M ath. 300, Springer, Berlin 1972.

[15] E. Fplner, On groups with fu ll Banach mean values, M ath. Scand. 3 (1955), 

243-254.

[16] F. Ghahramani, V . Runde, G. W illis , Derivations on group algebras, Proc. 

London M ath. Soc. (3) 80 (2000), 360-390.

[17] E.E. G ranirer and M. Leinert, On some topologies which coincide on the unit 

sphere of the Fourier-Stieltjes algebra B(G), Rocky M ountain J. M ath. 11 

(1981), 459-472.

[18] F.P. Greenleaf, Invariant means on topological groups, Van Nostrand, New 

York, 1969.

[19] N. Grpnbaek, Amenability of weighted discrete convolution algebras on can-

cellative semigroups, Proc. Royal Soc. Edinburgh 110A  (1988), 351-360.

[20] N. Grpnbaek, Amenability of discrete convolution algebras, the commutative

case, Pacific J. Math. 143 (1990), 243-249.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[21] N. G r0 nbaek, Various notions of amenability, a survey of problems, in: E. 

A lbrecht and M. Mathieu (Eds) Banach Algebras ’97, pp. 535-548, W alter de 

G ruyter, 1998.

[22] A. Guichardet, Tensor products of C*-algebras, Arhus U niversity Lecture 

Notes 12, 1969.

[23] E. H ew itt and K .A . Ross, Abstract harmonic analysis, Springer-Verlag, New 

York, 1963.

[24] B.E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 

(1972).

[25] B.E. Johnson, Approximate diagonals and cohomology of certain annihilator 

Banach algebras, Amer. J. Math. 94 (1972), 685-698.

[26] B.E. Johnson, Weak amenability of group algebras, B u ll. London. M ath. Soc. 

23 (1991), 281-284.

[27] P. Jolissaint, Invariant states and a conditional fixed point property fo r  affine 

actions, M ath. Ann. 304 (1996), 561-579.

[28] E. K an iu th  and A. M arkfort, On C*-algebras associated to the conjuga­

tion representation of a locally compact group, Trans. Amer. M ath. Soc. 347 

(1995), p. 2595-2606.

[29] E.C. Lance, On nuclear C*-algebras, J. Funct. Anal. 12 (1973),157-176.

[30] A .T .-M . Lau, Analysis on a class of Banach algebras with applications to

harmonic analysis on locally compact groups and semigroups, Fund. M ath. 

118 (1983), 161-175.

[31] A .T .-M . Lau and A .L .T . Paterson, Inner amenable locally compact groups,

Trans. Amer. Math. Soc. 325(1991) 155-169.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[32] A .T .-M . Lau and R.J. Loy, Amenability of convolution algebras, Math.Scand. 

79 (1996), 283-296.

[33] A .T .-M . Lau, R.J. Loy, and G.A. W illis , Amenability of Banach and C*- 

algebras on locally compact groups, Studia Math. 119 (1996), 161-178.

[34] H. Leptin, Sur Valgebre de Fourier d ’un groupe localement compact, C. R. 

Acad. Sci. Paris, Ser. A  266 (1968), 1180-1182.

[35] B.-R  L i , Introduction to operator algebras, W orld-Scientific, 1992.

[36] V. Losert and H. Rindler, Asymptotically central functions and invariant 

extensions of Dirac measure, P robab ility Measures on Groups V II (Oberwol- 

fach,1983) Lecture Notes in  M ath., vol. 1064, Springer-Verlag, Berlin and New 

York, 1984, pp. 368-378.

[37] R.D. Mosak, Central functions in group algebras, Proc. Amer. M ath. Soc. 29 

(1971), 613-616.

[38] I. Namioka, F0 lner conditions fo r  amenable semigroups, Math. Scand. 15 

(1964), 18-28.

[39] A .L .T . Paterson, Amenability, Amer. Math. Soc., Providence, 1988.

[40] J.P. Pier, Amenable locally compact groups, John W iley and Sons, New York, 

1984.

[41] H. Royden, Real Analysis, M acm illan, New York, 1988.

[42] Z.-J. Ruan, The operator amenability of A(G), Amer. J. Math. 117 (1995), 

1449-1474.

[43] Z.-J. Ruan and G. Xu, Splitting properties of operator bimodules and operator 

amenability of Kac algebras, In: A . Gheondea, R.N. Gologan, and D. T im otin , 

Operator Theory, Operator Algebras and Related Topics, pp. 193-216. The 

Theta Foundation, 1997 .

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[44] V. Runde, Amenability fo r  dual Banach algebras, Studia Mathematica, 148 

(1) (2001), 47-66.

[45] V. Runde, Lectures on amenability, Lecture Notes in  Mathematics 1774. 

Springer-Verlag, Berlin-Heidelberg-New York, 2002.

[46] V. Runde, (Non-)  amenability of Fourier and Fourier-Stieltjes algebras, 

preprint (2 0 0 2 ).

[47] V. Runde and N. Spronk, Operator amenability of Fourier-Stieltjes algebras, 

Math. Proc. Cambridge P hil. Soc. (to appear).

[48] A.M . Sinclair, Continuous semigroups in Banach algebras, London M ath. 

Soc. Lecture Notes 63, Cambridge Univ. Press 1982.

[49] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, 1979.

[50] B.J. Tom iuk, Multipliers on Banach algebras, Studia M ath. 54 (1976), 267- 

283.

[51] B.J. Tomiuk, Arens regularity and the algebra of double multipliers, Proc. 

Amer. M ath. Soc. 81 (1981), 293-298.

[52] Q. Xu Representations of locally compact groups, amenability and compacti- 

fications, Ph.D. thesis, University o f A lberta, 1993.

[53] Z. Yang, F0lner numbers and F0lner type conditions fo r  amenable semigroups, 

Illino is  J. M ath. 31 (1987), 496-517.

[54] C.K. Yuan, The existence of inner invariant means on L°°(G), J. Math. Anal. 

Appl. 130 (1988), 514-524.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


