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Abstract

Can efficient solvers be built for disjunctive hybrid MKNF knowledge bases?

Recent breakthroughs in solver construction have proven Answer Set Pro-

gramming (ASP) to be a fruitful medium for tackling problems that lie within

the lower two levels of the polynomial hierarchy. The logic of hybrid MKNF

presents a powerful knowledge representation language by elegantly pairing

ASP with ontologies. It would seem that strong answer set solvers that incor-

porate the reasoning power of ontologies are within close grasp. Alas, some

of the foundational work required to construct conflict-driven nogood learning

(CDNL) solvers does not yet exist for hybrid MKNF. In this thesis, we build

upon the existing foundation of hybrid MKNF to move towards the possibility

of constructing a CDNL-based solver. We lift the existing definition of un-

founded sets for knowledge bases with non-disjunctive rules to knowledge bases

that contain disjunctive rules. Unfounded sets serve as the basis for building

operators that can be used to propagate information during the solving pro-

cess. Because our operators cannot be used to verify arbitrary interpretations,

we provide a characterization of knowledge bases that leverages a family of

fixpoint operators for model-checking. This characterization is reminiscent of

prior techniques that leverage loop formulas to identify classes of knowledge

bases that can be solved in NP-time. We identify an analogous case for dis-

junctive hybrid MKNF where interpretations can be verified in polynomial

time instead of requiring an NP oracle. Finally, we outline an abstract solver

that utilizes this technique.
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Preface

This work shares content with two papers submitted to seperate conferences.

Each paper shares the primary author with this thesis and was coauthored by

Jia-Huai You. The content in Chapter 4 was submitted and accepted to the

18th International Conference on Principles of Knowledge Representation and

Reasoning (KR 2021) under the title “Unfounded Sets for Disjunctive Hybrid

MKNF Knowledge Bases”. Some feedback from anonymous reviewers and ed-

itors was incorporated into the text. The content in Chapter 5 was submitted

to the 14th Workshop on Answer Set Programming and Other Computing

Paradigms (ASPOCP 2021) under the title “Fixpoint Characterizations of

Disjunctive Hybrid MKNF Knowledge Bases”. At the time of writing, the

notification date for acceptance into this conference has yet not passed.
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Chapter 1

Introduction

Combining answer set programming (ASP) with ontologies is of great theo-

retical and practical interest. While researchers have proposed a variety of

hybrid semantics and have developed efficient CDNL (conflict-driven nogood

learning) solvers for them [4], [5], these semantics trend towards ASP modulo

theories, a class of semantics where stable models are validated by an external

theory. Disjunctive rules are a powerful extension to answer set programming

that increase the expressive power of programs in the polynomial complex-

ity hierarchy [3]. Disjunctive hybrid MKNF knowledge bases, introduced by

Motik and Rosati [19], can succinctly extend disjunctive ASP with ontologies

without increasing the complexity of reasoning tasks. However, in many cases,

solver development is lagging behind. As the result, the only known method

of computing models for disjunctive hybrid MKNF knowledge bases is based

on guess-and-verify, as formulated by Motik and Rosati in their original work.

Proven solver techniques, such as constraint-driven nogood learning (CDNL)

[7], are essential to constructing highly efficient ASP solvers.

Existing theoretical foundation that enables efficient answer set solvers can

be transferred to disjunctive Hybrid MKNF Knowledge bases. In this work, we

address some issues that must be solved before a CDNL-based (conflict-driven

nogood learning) solver for hybrid MKNF knowledge bases can be developed.

A main obstacle to constructing such solvers is understanding how constraint

propagation may be performed by a solver, which, in the context of ASP, cen-

ters around the computation of unfounded atoms, the atoms that are false
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given a partial interpretation. Unfounded sets are leveraged extensively in

modern solving techniques and thus are an essential component of building

a solver. We define unfounded sets for disjunctive hybrid MKNF knowledge

bases, identify lower complexity bounds, demonstrate the role these develop-

ments play in constructing a solver, and compare our definition to prior work.

Another obstacle to developing an efficient CDNL-based solver for disjunc-

tive hybrid MKNF is the unavailability of syntactic dependency; In general, a

dependency graph can not be generated for a hybrid knowledge base without

knowing the internal structure of the ontology. A framework that treats the

ontology as a black box has a broader range of applications than a solver that

must be tuned for a particular ontology. Atom dependency analysis is crucial

for both model verification and conflict generation. Existing solvers are heavily

reliant on syntactic dependency. We investigate constructions that fill the role

of loop formulas for ASP: We characterize disjunctive hybrid MKNF semantics

through a family of fixpoint operators, then contextualize this framework by

demonstrating the role it would play in a solver. Crucially, our approach can

be performed without relying on a dependency graph. Finally, we recognize a

property of our characterization that is analogous to head-cycle free disjunc-

tive logic programs and demonstrate how to exploit this property to reduce

the complexity of model verification.

In Chapter 2 we give a loose overview of answer set programming; this

is intended as an intuitive introduction to the language. A reader who is al-

ready familiar with answer-set programming may wish to skip this chapter

and progress to Chapter 3 where we formally outline the preliminary material

pertinent to the rest of the text. Chapters 4 and 5 are heavily reliant on this

preliminary chapter. Chapter 4 defines unfounded sets for disjunctive hybrid

MKNF knowledge bases and Chapter 5 introduces our fixpoint characteriza-

tions of these knowledge bases. Though discussed in separate chapters, the

issue of unfounded sets and dependency turn out to be tightly intertwined.

To conclude, we offer a deeper discussion of how the work in these chapters

connects in Chapter 6.
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1.1 Contributions

The major contributions of these work are as follows: In Chapter 4, We give a

definition of unfounded sets for disjunctive hybrid MKNF knowledge bases, we

provide lower-bound complexity analysis for computing the greatest unfounded

set for the normal and disjunctive cases, we give well-founded operators that

compute an approximation of the the greatest unfounded set, and we incor-

porate these operators into a DPLL-based solver. In Chapter 5, we give a

fixedpoint characterization of disjunctive MKNF knowledge bases that can be

used for model-checking and as an alternative to loop-formulas.
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Chapter 2

Answer Set Programming

2.1 ASP Semantics

Answer set programming (ASP) is a class of logic programming focused on

bottom-up reasoning to find a minimal model that satisfies all rules in a logic

program. Established after Gelfond and Lifschitz defined stable model seman-

tics [8], [10], ASP’s underlining semantics, ASP has since been recast under

a variety of different semantics. ASP succinctly expresses NP-complete prob-

lems, as well as more complex problems in the level above NP in the polynomial

hierarchy. The class of NP-complete problems can be loosely described as the

class of problems that have combinatorially large search spaces but also have

the property that solutions can be verified in polynomial time. Problems in

the level above NP, ΣP
2 , are defined in the same way as NP with the differ-

ence that a verification procedure has access to an NP oracle. Many practical

problems such as graph colouring or optimization fall within the classes NP or

ΣP
2 . While ASP shares its niche with SAT (boolean satisfiability problems),

ASP is distinct from SAT in that programs can easily be written and read

by humans. In ASP, logical consequences are directly encoded through rules

and classical negation is absent; instead ASP uses the intuitionistic negation

as failure. In this paradigm, negated facts are derived if there is no positive

proof. For example, one might assume that pigs do not fly if they have not

seen a pig fly.

In this section, we give a loose overview of answer set programming. Later,

in Chapters 4 and 5 we supersede this overview with definitions that are more
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rigorous. Below, we give an ASP program that contains a single rule.

a← not b.

Under stable model semantics, the above program has a single stable model

(also called an answer set). This model is the boolean assignment that assigns

a to true and b to false. This assignment is a model because it satisfies two

conditions: (1) Each rule in the program is satisfied: The rule’s body (not b)

is satisfied by the assignment, so the rule’s head (a) must also be satisfied

by the assignment (this works just like logical implication). (2) There is no

smaller assignment that satisfies the GL-reduct (Gelfond-Lifschitz reduct) with

respect to the initial assignment. Here, a “smaller assignment” is formed by

changing some atoms that were assigned true to false instead. For the model

of the above program (“a is true, b is false”), the only smaller assignment

is the assignment that assigns false to both a and b. By “GL-reduct with

respective to the initial assignment”, we mean a new program obtained by

removing negation from the program as follows: Rules that contain negated

atoms in their bodies are removed entirely if these atoms are assigned true in

the assignment. Otherwise, the rule is kept and the negated atoms are removed

from its body. Below, we give the appropriate GL-reduct for the assignment

“a is true, b is false”:

a←

The atom not b has been removed from the rule because it is false with respect

to the assignment. Because the body of the rule is now empty, it is automat-

ically satisfied, thus a must be true. However, this is not the case for the

assignment that assigns both a and b to be false. Because there is no smaller

assignment, “a is true, b is false” is an answer set of the program.

Now for a program that has multiple rules.

a← not b

b← not a

Consider the assignment that assigns both a and b to true. To verify whether

this assignment is an answer set, we first confirm that all rules in the program
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are satisfied. Both rules are satisfied because their bodies are not satisfied by

the assignment. The GL-reduct of this program with respect to this assignment

is an empty program without any rules: because each rule contains negated

atoms that are not satisfied by the assignment, we remove each rule entirely.

We can generate a smaller assignment that assigns both a and b to be false

which satisfies the empty program, thus the initial assignment “a is true, b is

true” is not an answer set of the program. The assignments “a is true, b is

false” and “a is false, b is true” are the only answer sets of the program.

To effectively encode problems as answer set programs, it is useful to have

variables in programs and to add a grounding phase to the solving process.

In this grounding pase, the program is replaced with an equivalent program

that does not contain variables. Take the following program that contains the

variables X and Y .

letter(a)← not letter(b)

letter(b)← not letter(a)

predicate(X)← letter(X),not letter(Y )

Various constraints such as requiring that variables appear in the body of the

rule are commonplace and ensure that the program can be grounded and that

the grounded program is meaningful. Below, we give an equivalent, grounded

version of the program above:

letter(a)← not letter(b)

letter(b)← not letter(a)

predicate(a)← letter(a),not letter(a)

predicate(a)← letter(a),not letter(b)

predicate(b)← letter(b),not letter(a)

predicate(b)← letter(b),not letter(b)

A variety of other language features that are syntactic sugar exist to make

encoding problems easier. Programs that utilize these features can be effi-

ciently converted to equivalent programs that do not use these features. One
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such feature is so-called constraints which are rules that do not contain atoms

in their head. If an assignment satisfies the body of a constraint, then it is not

an answer set.

We do not dwell on syntactic sugar and instead focus on a particular

language extension which, in general, can not be efficiently removed from a

program. We call programs that allow for disjunction in the heads of rules

disjunctive programs. Conversely, we refer to programs that do not contain

disjunction in the heads of rules as normal programs. Under this extension,

we allow for multiple atoms to appear in the head of a rule, for example:

a, b←

Here, the program has two answer sets. Each assigns a single atom to be

true and the other to be false. The assignment that assigns both atoms to

true is not an answer set because of these smaller assignments that satisfy the

program. The above program can easily be converted to an equivalent normal

program with the same answer sets that does not contain disjunction in the

heads of rules.

a← not b

b← not a

However, not all disjunctive programs can be efficiently converted to a normal

program in this way. Take the following program for example.

a, b←

a← not a

b← a

The only answer set to this program is the assignment that assigns both a and

b to true. When we perform the process used before to convert this program
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to a normal program, we result in the following program.

a← not b

b← not a

a← not a

b← a

The GL-reduct of this transformed program with respect to the assignment “a

is true, b is true” is as follows.

b← a

The assignment that assigns false to both a and b satisfies this new program,

thus the assignment that assigns both a and b to true is not an answer set of

the new, normal program above. It follows that this normal program is not

equivalent to the initial disjunctive program.

While one may try to find an efficient procedure to convert any disjunctive

program to an equivalent normal program, such a discovery would have radi-

cal complexity implications. It has been shown that, in general, determining

whether a disjunctive program has an answer set has a complexity of ΣP
2 [3].

This complexity class is constructed similarly to the complexity class NP, how-

ever, it is thought to be much more difficult than NP; While NP stipulates that

a solution must be verifiable in polynomial time, problems in the class ΣP
2 can

invoke an NP oracle in their otherwise polynomial verification process. Thus, a

polynomial algorithm that converts any disjunctive logic program to a normal

logic program does not exist unless ΣP
2 = NP , which is still an open problem.

There is a certain class of disjunctive programs (referred to as head-cycle free

programs) that can be converted to equivalent normal programs in polynomial

time using a known procedure [16]. In the previous example, we successfully

converted the single-ruled disjunctive program, which is head-cycle free, to an

equivalent normal program using this procedure.
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2.2 Encoding Problems

We apply the semantics outlined in Subsection 2.1 to encode an instance of

the graph colouring problem as an answer set program whose answer sets

coincide with the solutions to the problem. In graph colouring, we are given a

graph containing nodes connected via edges. In the following, we give a graph

containing three nodes as an answer set program.

node(a)←

node(b)←

node(c)←

edge(a, b)←

edge(b, a)←

edge(b, c)←

edge(c, b)←

Then we add a rule to ensure that each node is assigned some colour (either

red, green, or blue).

coloured(N, red), coloured(N, green), coloured(N, blue)← node(N)

Finally, we add a rule to ensure that adjacent nodes do not share the same

color

invalid← edge(X, Y ), coloured(X,C), coloured(Y,C), not invalid

Note that because this is the only rule that derives the atom invalid, it is not

possible for it to be true in any answer set. The final program has answer

sets that coincide with a two-colour and three-colour solutions to the above

problem. For example, the following is part of a three-coloured solution.

coloured(a, red)

coloured(b, green)

coloured(c, blue)
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The following is part of a two-coloured solution.

coloured(a, red)

coloured(b, green)

coloured(c, red)

Colouring a graph with n colours is well known to be NP-complete [21].

The above solution can easily be adapted to solve any graph colouring problem.

2.3 MKNF

Lifschitz formulated minimal knowledge and negation as failure (MKNF) to

unify several nonmonotonic logics with answer set programming [14]. This

logic has its roots in autoepistemic logic; it extends first-order logic with the

modal operatorsK and not which encode minimal knowledge and negation as

failure respectively. An MKNF formula, a first-order formula that uses these

operators, is evaluated against a set of “possible worlds”. A formula within

a K operator, e.g., K a, holds if a is true in every possible world whereas

not a holds if a is false in at least one possible world. To determine whether

the knowledge in a set of possible worlds is minimal, this set is maximized

by adding more possible worlds to it. After this enlargement, you have your

initial set of possible worlds and an enlarged set of possible worlds. The MKNF

formula is reevaluated using both of these sets of possible worlds: subformulas

with a K operator are evaluated against the new, enlarged set of possible

worlds whereas subformulas with a not operator are evaluated against the

initial set of possible worlds. This splitting of the evaluation of K and not

serves the same function as the GL-reduct described in Section 2.1. In the

previous section, we gave the following answer set program:

a← not b

b← not a

One representation of the program as an MKNF formula reads as the fol-
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lowing:

K a ⊂ not b ∧

K b ⊂ not a

Where ⊂ is the implication operator. The assignment that assigns a to true

and b to false, is the set of possible worlds:

{{“a is true, b is false”}, {“a is true, b is true”}}

To test whether this set of possible worlds is an MKNF model (i.e., it satis-

fies all formulas with minimal knowledge) we enlarge the set above with the

possible worlds where a is false:

{{“a is true, b is false”}, {“a is true, b is true”},

{“a is false, b is false”}, {“a is false, b is true”}}

We find that the first rule is not satisfied by the enlarged set of possible

worlds: The formula not b holds because there is an assignment in the initial

set of possible worlds where b is false and there is an assignment in the enlarged

set of possible worlds where a is false, thus K a ⊂ not b is not satisfied.

2.4 Hybrid MKNF

Hybrid MKNF, defined by Motik and Rosati [19], is a subset of MKNF de-

signed to combine answer set programming with ontologies. Under this se-

mantics, an ontology is treated as a decidable first-order formula. A Hybrid

MKNF knowledge base consists of a program, a set of implications of the form

shown in Section 2.3 (often called rules), and an ontology, a first-order for-

mula nested inside a single K operator. A disjunctive (resp. normal) Hybrid

MKNF Knowledge base contains (resp. does not contain) disjunction in the

heads of rules.

Under the closed-world assumption, negation as failure is permitted. On-

tologies are developed under the open-world assumption where classical nega-

tion is available and negated conclusions require proof. Hybrid MKNF
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Knowledge bases allow for the utilization of closed-world and open-world rea-

soning in unison. As an example, suppose that a local theatre has a system

that develops schedules for booking performances on their stage. This system

can schedule a performance on the stage at a particular time if the stage not

already been booked during that time. Here it does not make sense to require

proof that the stage has not been booked, failure to find a booking for that

particular time (negation as failure) is sufficient.

Under the open-world assumption, one assumes that truth is separate from

knowledge and that the lack of knowledge about something does not imply fal-

sity. Keeping with our example, after scheduling a performance on the stage,

the theatre must also schedule one of their own sound engineers to work on

the night of a performance if the booked company is not going to provide their

own engineer. If this requirement is modeled under the open-world assump-

tion, then the system can still rule out certain schedules or construct partial

schedules even if it is not known whether a certain company will provide their

own sound engineer.

2.5 Head-cycle Free

Every answer set program has a set of loop formulas associated with it. These

first-order formulas encapsulate the additional complexity that disjunctive

heads bring to answer set programming [12]. As such, a criterion was devel-

oped, dubbed “head-cycle free” for which if a program’s loop formulas satisfy

this property, then the program can be quickly converted to an equivalent nor-

mal logic program[1]. We briefly outline loop formulas as described by Linke

et al. [12]. First, construct a graph where every atom in the program has a

node associated with it. If an atom appears in the positive body of a rule,

add edges to the graph that connect this atom to each atom in the head of

the rule. A set of atoms L is a loop if for every pair of atoms a, b ∈ L, there

exists a path of nonzero length connecting these atoms where every node along

this path is in L. A program’s (disjunctive) loop formulas is the first-order

formulas equivalent to the following statement: “If for some loop L there is
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an atom in L that is true, then there is a rule whose body does not share any

atom with L and all of the true atoms in the head of this rule are are contained

in L”. A program is head-cycle free, a notion introduced by Ben-Eliyahu and

Dechter [1], if, for every rule, no two atoms in the head of the rule are in a

loop together.
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Chapter 3

Preliminaries

Minimal knowledge and negation as failure (MKNF) [14] extends first-order

logic with two modal operators, K and not , for minimal knowledge and nega-

tion as failure respectively. MKNF formulas are constructed from first-order

formulas using these two modal operators for closed-world reasoning. Intu-

itively, Kψ asks whether ψ is known w.r.t. a collection of “possible worlds”

- the larger the set, the fewer facts are known - while notψ checks whether

ψ is not known, based on negation as failure. An MKNF structure is a triple

(I,M,N) where I is a first-order interpretation and M and N are sets of

first-order interpretations. Operators shared with first-order logic are defined

as usual. An MKNF interpretation M is a set of first-order interpretations

(“possible worlds”). Hybrid MKNF knowledge bases rely on the standard

name assumption [19]. Under this assumption, every first-order interpretation

in an MKNF interpretation is required to be a Herbrand interpretation with a

countably infinite number of additional constants. We refer to these constants

as names. The satisfiability relation under an MKNF structure is defined as:

• (I,M,N) |= A if A is true in I where A is a first-order atom

• (I,M,N) |= ¬F if (I,M,N) ̸|= F

• (I,M,N) |= F ∧G if (I,M,N) |= F and (I,M,N) |= G

• (I,M,N) |= ∃x, F if (I,M,N) |= F [α/x] for some name α (where F [α/x]

is obtained by replacing every occurrence of the variable x with α)
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• (I,M,N) |= KF if (J,M,N) |= F for each J ∈M

• (I,M,N) |= notF if (J,M,N) ̸|= F for some J ∈ N

Other symbols such as ∨, ∀, and ⊃ are interpreted in MKNF as they are in

first-order logic. An MKNF interpretation M satisfies a formula F , written

M |=MKNF F , if (I,M,M) |= F for each I ∈ M . An MKNF model M of

a formula F is an MKNF interpretation such that M |=MKNF F and there

does not exist an MKNF interpretation M ′ ⊃ M such that (I,M ′,M) |= F

for each I ∈M ′. Following Motik and Rosati [19], a hybrid MKNF knowledge

base K = (O,P) consists of a decidable description logic (DL) knowledge base

O (typically called an ontology) which is translatable to first-order logic and

a set of MKNF rules P . We denote this translation as π(O). Rules in P are

of the form:

K a1, . . . ,K ak ← K ak+1, . . . ,K am,not am+1, . . . ,not an

In the above, a1, . . . , an are function-free first-order atoms of the form

p(t1, . . . , ti) where p is a predicate and t1, . . . , ti are either constants or vari-

ables, with k ≥ 1 and m,n, i ≥ 0. Given a rule r ∈ P , we define the following

abbreviations:

head(r) = {K a1, . . . ,K ak},

body+(r) = {K ak+1, . . . ,K am},

body−(r) = {not am+1, . . . ,not an},

K (body−(r)) = {K a | not a ∈ body−(r)}, and

body(r) = (body+(r),K (body−(r)))

A rule r in P is DL-safe if for every variable present in r, there is an

occurence of that variable in the rule’s positive body inside a predicate that

does not occur in K’s description logic knowledge base.

A hybrid MKNF knowledge base K is DL-safe if every rule in P is DL-

safe. A knowledge base that is not DL-safe may not be decidable [19]. This

constraint restricts the assignment of variables in P to names explictly ref-

erenced in the grounded P . Let π(P) denote rule set P ’s corresponding
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MKNF formula:

π(P) =
⋀︂
r∈P

π(r), where

π(r) = ∀x⃗

(︄
k⋁︂

i=1

K ai ⊂
m⋀︂

i=k+1

K ai ∧
n⋀︂

i=m+1

not ai

)︄
where x⃗ is the vector of free variables found in r.

The semantics of a hybrid MKNF knowledge base K is obtained by apply-

ing both transformations to O and P and placing O within a K operator, i.e.

π(K) = π(P) ∧ Kπ(O). We use P , O, and K in place of π(P), π(O), and

π(K) respectively when it is clear from context that the respective translated

variant is intended. We refer to formulas of the form K a and not a, where a

is a first-order atoms, as K-atoms and not -atoms respectively, and we refer to

them collectively as modal-atoms. When it is clear from context, we may write

a bare atom a in place of a K-atom K a. In the rest of paper, we sometimes

refer to disjunctive hybrid MKNF knowledge bases simply as knowledge bases

for abbreviation, or normal knowledge bases if each rule in the knowledge base

has exactly one atom in the head.

line some definitions and conventions. For a hybrid MKNF knowledge base

K = (O,P), we denote the set of all K-atoms found within P using KA(K)

where

KA(K) = {K a | either K a or not a occursin the head or body of a rule in P}

The objective knowledge of a hybrid MKNF knowledge base K w.r.t. a set of

K-atoms S ⊆ KA(K) is the set of first-order formulas {π(O)}∪{a | K a ∈ S}.

We denote this set as OBO,S .

A (partial) partition of KA(K) is a nonoverlapping pair of subsets of KA(K)

usually denoted as (T, F ). K-atoms in T are said to be true and K-atoms in

F are said to be false. A partition is total if T ∪ F = KA(K). A depend-

able partition is a partial partition (T, F ) with the additional restriction that

OBO,T ∪ {¬b} is consistent for each K b ∈ F or OBO,T is consistent if F is

empty. We add this partition variant for convenience and note that a partial

partition that is not dependable may not be extended to an MKNF model. In
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practice, a solver will include direct consequences of OBO,T in T and it will

only operate on dependable partitions. We denote the partition induced by

the body of a rule r with body(r) = (body+(r),K (body−(r))). A rule body is

applicable w.r.t. a partition (T, F ) if body(r) ⊑ (T, F ), i.e., if body+(r) ⊆ T

and K (body−(r)) ⊆ F . We say that an MKNF interpretation M of K induces

a partition (T, F ) if⋀︂
K a∈T

M |=MKNF K a ∧
⋀︂

K a∈F

M |=MKNF ¬K a

Note that the partition (T ∗, F ∗) induced by an MKNF model M is unique

and dependable. For a partition (T, F ) that is a subset of this (T ∗, F ∗), i.e.,

(T, F ) ⊑ (T ∗, F ∗), we say that (T, F ) can be extended to an MKNF model;

such a partition is also dependable. Throughout this work and without loss of

generality we assume that P is ground1, i.e., it does not contain variables.

1In their original work, Motik and Rosati [19] show that if a knowledge base is DL-safe,
a grounded version with the same MKNF models exists.
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Chapter 4

Unfounded Sets

4.1 Introduction

Minimal knowledge and negation as failure (MKNF) is a modal autoepistemic

logic defined by Lifschitz [14] which extends first-order logic with two modal

operators K and not . It was later built upon by Motik and Rosati [19]

to define hybrid MKNF knowledge bases, where rule-based MKNF formulas

along with a description logic (DL) knowledge base intuitively encapsulate the

combined semantics of answer set programs and ontologies. One argument for

using hybrid MKNF is the existence of a proof theory based on guess-and-verify

- one can enumerate partitions (a term that corresponds to interpretation in

first-order logic) and for each one check whether it is an MKNF model. Such

an approach is not efficient enough to be practical.

To address the above issue, Ji et al. [11] give a definition of unfounded sets

and an abstract DPLL-based solver [20] for normal hybrid MKNF knowledge

bases, where rules are constrained to a single atom in the head.

Disjunctive rules are a powerful extension to answer set programming that

increases the expressive power of programs in the polynomial complexity hi-

erarchy [3]. In this chapter, we extend the work of Ji et al. [11] by defining

unfounded sets for disjunctive hybrid MKNF knowledge bases and we inves-

tigate the properties of such sets. This task turns out to be substantially

more challenging than the normal case. We show the following main results.

First, we show that the problem of determining whether an atom is unfounded

w.r.t. a given (partial) partition is coNP-hard. This result is somewhat sur-
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prising in that the claim holds even for normal rules under the condition that

the entailment relation in the underlying DL is polynomial. This shows that

the polynomial construction of the greatest unfounded set as given by Ji et

al. [11] for the normal case is only an approximation. Our proof relies on an

encoding that takes care of several conditions simultaneously (the hardness

in the presence of non-disjunctive rules and the entailment relation assuming

the DL is polynomial). Then, we formulate a polynomial operator to ap-

proximate the greatest unfounded set of disjunctive hybrid MKNF knowledge

bases. Unlike the conventional definition of unfounded sets for disjunctive

logic program [13], greatest unfounded sets under our definition exist uncondi-

tionally. We identify the conditions under which our approximation becomes

exact for normal as well as for disjunctive hybrid MKNF knowledge bases.

These conditions are also the ones under which the coNP-hardness reduces to

polynomial complexity for the normal and disjunctive cases respectively, thus

these results pinpoint the sources that contribute to the hardness of computing

greatest unfounded sets in general. Finally, based on these results, we formu-

late a DPLL-based solver, where the computation of unfounded sets becomes

a process of constraint propagation for search space pruning.

4.2 Unfounded Sets

First defined for normal logic programs by van Gelder et al. [22], unfounded

sets encapsulate the notion that some atoms can be inferred to be false w.r.t. a

partial interpretation. That is to say that given a partial partition (T, F ) of

KA(K), an unfounded set of a knowledge base K w.r.t. (T, F ) is a set where

every atom is false in every instance where (T, F ) can be extended to a model.

A head-cut R ⊆ P × KA(K) is a set of rule atom pairs such that a rule

r ∈ P occurs in at most one pair in R and for every pair (r, h) ∈ R we have

Kh ∈ head(r). We use head(R) to denote the set {h | (r, h) ∈ R} where R is

a head-cut.

Definition 4.2.1. Let K = (O,P) be a disjunctive hybrid MKNF knowledge

base and (T, F ) a partial partition of KA(K). A set X of K-atoms is an
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unfounded set of K w.r.t. (T, F ) if for each K-atom K a ∈ X and each head-

cut R such that:

1. head(R) ∪ π(O) |= a (with O, R can derive K a), and

2. head(R) ∪ OBO,T ∪ {¬b} is consistent for each K b ∈ F and head(R) ∪

OBO,T is consistent if F is empty (the partition (T ∪ head(R), F ) is

dependable),

there is a pair (r, h) ∈ R such that at least one of the following conditions hold:

i. body+(r)∩(F ∪X) ̸= ∅ (r positively depends on false or unfounded atoms),

ii. K (body−(r)) ∩ T ̸= ∅ (r negatively depends on true atoms), or

iii. head(r) ∩ T ̸= ∅ (the head of r is already satisfied by T )

K-atoms that are found in unfounded sets are called unfounded atoms.

We illustrate some general characteristics of this definition of unfounded

sets with the following example.

Example 1. Let K = (O,P) where

O = {(a ⊃ a′) ∧ (b ⊃ b′) ∧ ¬f}

P = {K f ← K b;

K a← not b;

K a,K b,K c←;

K a′ ← K a′; K b′ ← K b′}

Let (T, F ) be the dependable partition ({K b}, ∅). The K-atom K f is an un-

founded atom w.r.t. (T, F ) because K f creates an inconsistency in O. K a is

an unfounded atom because the only way of deriving K a relies on ¬K b which

contradicts T . The K-atom K a′ is unfounded because K a is unfounded and

K b′ is not unfounded because OBO,T |= b. Lastly, K c is an unfounded atom

because the only rule that can derive K c has another head-atom (K b) in T .
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A head-cut R that satisfies the first two conditions of the definition above

is a set of rules that may be used in conjunction with (T, F ) and O to derive

K a. A K-atom is unfounded only if every such head-cut has a pair in it that

meets one of the conditions i through iii. Note that if (T, F ) is dependable,

then it is impossible to derive aK-atom found in F without violating condition

2 because an empty head-cut can be used to derive any K-atom found in T .

We demonstrate this property in the following example.

Example 2. Let K = (O,P) where

O = {a ⊃ b}, and

P = {K a← not b; K b← not a}

The dependable partition ({K b}, {K a}) is the only total dependable partition

induced by an MKNF model of K. Suppose we have the dependable partition

(T, F ) = ({K a}, ∅). Neither K a nor K b is an unfounded atom w.r.t. (T, F ):

when R = ∅ we have head(R) ∪ OBO,T |= a and head(R) ∪ OBO,T |= b.

Now suppose that (T, F ) = (∅, {K a}); The K-atom K a is an unfounded

atom w.r.t. (T, F ). The only head-cut that can derive K a is the set R =

{(K a ← not b, a)}, however, head(R) ∪ OBO,T ∪ {¬a} can be rewritten as

{a} ∪ OBO,T ∪ {¬a} which is inconsistent.

Under Definition 4.2.1, atoms in T cannot be unfounded if (T, F ) is de-

pendable. Note that if (T, F ) is not dependable, then every set X ⊆ KA(K) is

an unfounded set w.r.t. (T, F ). In the following, we formally establish that

no K-atom in T can be an unfounded atom w.r.t. (T, F ).

Lemma 4.2.1 (T is disjoint from any unfounded set). Let U be an unfounded

set of a disjunctive knowledge base K w.r.t. a dependable partition (T, F ) of

KA(K). We have T ∩ U = ∅.

Proof. Assume for the sake of contradiction that U ∩ T ̸= ∅, and let K a ∈

U ∩ T . Because U is an unfounded set w.r.t. (T, F ) we have for every head-

cut R such that head(R) ∪ OBO,T |= a, OBO,T ∪ {¬b} is consistent for each

K-atom K b ∈ F , and OBO,T is consistent, that there is a pair (r, h) ∈ R
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such that one of the conditions i, ii, or iii is satisfied. Let R = ∅. We

have head(R) ∪ OBO,T |= a because K a ∈ T . Because (T, F ) is dependable,

OBO,T ∪{¬b} is consistent for each K-atom K b ∈ F , and head(R)∪OBO,T is

consistent. However, there does not exist a pair (r, h) ∈ R because R is empty,

a contradiction.

The property demonstrated in Lemma 4.2.1 is inherited from the definition

of unfounded sets for normal hybrid MKNF knowledge bases [11]. This is quite

different from the definition of unfounded sets for disjunctive logic programs:

Leone et al. [13] refer to (partial) partitions (called interpretations in their

context) where no atom in T is unfounded (under their own definition of

unfounded sets) as unfounded-free. In some respects, unfounded sets under

Leone et al. [13] can doubt the truth of K-atoms in T . Since unfounded atoms

are assumed to be false, an unfounded set w.r.t. (T, F ) that shares K-atoms

with T is proof that (T, F ) cannot be extended to a model. As shown in

Lemma 4.2.1, Definition 4.2.1 lacks this property. We illustrate this difference

in the following example.

Example 3. Let K=(∅,P) where P={K a,K b←} and construct the depend-

able partition (T, F ) = ({K a,K b}, ∅). Under Leone et al.’s definition, both

{K a} and {K b} are unfounded sets w.r.t. (T, F ), however, the set {K a,K b}

is not an unfounded set w.r.t. (T, F ). Under Definition 4.2.1, none of the three

aforementioned sets are unfounded sets w.r.t. (T, F ) due to Lemma 4.2.1.

Leone et al. show that the partial partitions that have the unfounded-free

property and satisfy every rule in P are precisely the partial partitions that

can be extended to stable models [13]. In the example above, the dependable

partition (T, F ) = ({K a,K b}, ∅) cannot be extended to an MKNF model and

neither K a nor K b is an unfounded atom w.r.t. (T, F ). This indicates that

unfounded sets under Definition 4.2.1 cannot be used to determine whether a

partition can be extended to an MKNF model in the same way as Leone et al.

We demonstrate that this is the case even for a normal knowledge base with

an empty ontology.
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Example 4. Let K = (∅,P) where P = {K a ← not a}. Note that K does

not have an MKNF model. The two possible total partitions are (T1, F1) =

(∅, {K a}) and (T2, F2) = ({K a}, ∅). Under both Definition 4.2.1 and Leone

et al.’s definition of unfounded sets, the only unfounded set w.r.t. (T1, F1) is ∅.

Like Leone et al. , we can determine that (T1, F1) is not an MKNF model of K

because there is a rule r ∈ P such that body(r) ⊑ (T1, F1) and head(r) ∩ T1 =

∅. Under Leone et al.’s definition, the set {K a} is an unfounded set of P

w.r.t. (T2, F2), however, {K a} is not an unfounded set of K w.r.t. (T2, F2)

under Definition 4.2.1. Critically, we cannot use Definition 4.2.1 to conclude

that there is no MKNF model that induces (T2, F2).

The above example demonstrates a limitation that prevents unfounded sets

from being used as a mechanism for MKNF model checking. This limitation

is also present in the unfounded sets defined by Ji et al. [11], however, it

does not inhibit unfounded sets from being useful in a solver. Following Ji et

al. [11] and Leone et al. [13], we show that unfounded sets in Definition 4.2.1

are closed under union. First we note that condition iii of Definition 4.2.1

(head(r) ∩ T ̸= ∅) does not depend on the unfounded set X like it does in

Leone et al.’s definition (in this context, (head(r) \X)∩T ̸= ∅). The property

that all dependable partitions are unfounded-free (Lemma 4.2.1) removes the

need for an additional restriction on partitions as is needed for disjunctive

logic programs [13]. Applying Lemma 4.2.1, (head(r) \ X) ∩ T ̸= ∅ can be

rewritten as head(r) ∩ T ̸= ∅. We formally demonstrate that unfounded sets

by Definition 4.2.1 are closed under union and that there exists a greatest

unfounded set in the following proposition.

Proposition 4.2.1 (Existence of a greatest unfounded set). Given a disjunc-

tive hybrid MKNF knowledge base K = (O,P) and a partial partition (T, F ) of

KA(K), there exists a greatest unfounded set U
(T,F )
K (T, F ) such that for every

unfounded set X of K w.r.t. (T, F ) we have U
(T,F )
K (T, F ) ⊇ X.

Proof. We show that unfounded sets are closed under union and the existence

of a greatest unfounded set directly follows. Let Xa and Xb be unfounded

sets of K w.r.t. a partial partition (T, F ) of KA(K). We show that the set

23



Xc = Xa∪Xb is an unfounded set ofK w.r.t. (T, F ). If (T, F ) is not dependable,

then every set X ⊆ KA(K) is an unfounded set of K w.r.t. (T, F ) including Xc.

Assume that (T, F ) is dependable and for the sake of contradiction, assume

Xc is not an unfounded set. For some K-atom K a ∈ Xc we have a head-cut

R s.t. conditions 1 (head(R) ∪ OBO,T |= a) and 2 (head(R) ∪ OBO,T ∪ {¬b} is

consistent for each K b ∈ F or head(R) ∪ OBO,T is consistent if F is empty)

hold. In this head-cut, there is a pair (r, a) such that none of the conditions

i (body+(r) ∩ (Xc ∪ F ) ̸= ∅), ii (body−(r) ∩ T ̸= ∅), or iii (head(r) ∩ T ̸= ∅)

hold. For simplicity, assume K a ∈ Xa (proof is identical if K a ∈ Xb). If

body+(r) ∩ (Xa ∪ F ) ̸= ∅ then we have body+(r) ∩ (Xc ∪ F ) ̸= ∅ and it follows

that Xc is an unfounded set.

This property is a natural result of Lemma 4.2.1 and differs from Leone et

al.’s unfounded sets, which are closed under union only if (T, F ) is unfounded-

free.

A solver can use any unfounded set to extend a dependable partition’s false

atoms without altering which models it finds. We now relate unfounded sets

to MKNF models.

Proposition 4.2.2. Let (T ∗, F ∗) be the partition induced by an MKNF model

of a disjunctive hybrid MKNF knowledge base K. For any dependable partition

(T, F ) ⊑ (T ∗, F ∗), U
(T,F )
K (T, F ) ∩ T ∗ = ∅.

Proof. Let M be the MKNF model that induces (T ∗, F ∗). Note that (T ∗, F ∗)

is total and dependable. Let (T, F ) ⊑ (T ∗, F ∗) and U be an unfounded set of K

w.r.t. (T, F ). We show that U ∩T ∗ = ∅ and it follows that U
(T,F )
K (T, F )∩T ∗ =

∅. Assume for the sake of contradiction that U ∩ T ∗ ̸= ∅. With B = U ∩ T ∗,

let us construct an MKNF interpretation M ′ such that

M ′={I | I |= OBO,T and I |= t for each K t ∈ T ∗ \B }}

The dependable partition induced by M ′ is (T ∗ \B,F ∗ ∪B). For each b ∈ B,

OBO,T ̸|= b, thus M ′ ⊃M . We will derive a contradiction by showing U is not

an unfounded set ofK w.r.t. (T, F ). By construction, (I,M ′,M) |=MKNF π(O)
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for each I ∈M ′. We now show ∀I ∈M ′, (I,M ′,M) |=MKNF π(P), and it then

follows that M is not an MKNF model which leads to a contradiction. Let

(T ∗ \ B,F ) be the induced partition (from M ′ for true K-atoms in T ∗ \ B

and from M for false K-atoms in F ). Observe that if a rule r ∈ P is not

satisfied w.r.t. (T ∗ \B,F ) then it must be the case that body(r) ⊑ (T ∗ \B,F ),

head(r) ∩ T ∗ ̸= ∅, and head(r) ∩ (T ∗ \B) = ∅. That is, r is a rule whose body

is satisfied by (T ∗ \B,F ) but all true atoms in its head come from B, because

M satisfies all rules in P .

Let R = {(r, h)} and b be some atom from head(r) ∩ B. Conditions 1

and 2 of Definition 4.2.1 are met for R to test if U is an unfounded set of

K w.r.t. (T, F ). We show that none of the conditions i through iii are met

by R, as such U cannot be an unfounded set w.r.t. (T, F ), which leads to a

contradiction. First, body+(r) ⊆ T ∗\B gives us body+(r)∩(F ∪U) = ∅ (which

violates condition i). Then, from K (body−(r)) ⊆ F , we derive K (body−(r))∩

T = ∅ (which violates condition ii). Finally, using head(r) ∩ T ∗ ⊆ B and

B∩T = ∅ (Lemma 4.2.1), we obtain head(r)∩T = ∅ (which falsifies condition

iii). We have shown U ∩ T ∗ = ∅, as desired.

We have shown that if a dependable partition (T, F ) can be extended to

an MKNF model, no unfounded set of K w.r.t. (T, F ) may overlap with the

true atoms in the model. It follows directly from Proposition 4.2.2 that the

following analogous property holds for unfounded atoms w.r.t. (T, F ).

Corollary 4.2.1. Let (T ∗, F ∗) be the partition induced by an MKNF model

M of a disjunctive hybrid MKNF knowledge base K. Then, for any dependable

partition (T, F ) ⊑ (T ∗, F ∗), M |=MKNF ¬Ku for all u ∈ U (T,F )
K (T, F ).

With these properties, we have shown that unfounded sets can be used to

extend a partition without missing any models, i.e., if (T, F ) can be extended

to an MKNF model M then (T, F ∪ U) can be extended to the same model

M for any unfounded set U w.r.t. (T, F ).
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4.3 Computing Unfounded Sets

Due to the inconsistencies that can arise in connection with O, computing the

greatest unfounded set w.r.t. a partial partition is intractable in general.

Example 5. Let K = (O,P) where O = ¬(a ∧ b) and

P = {K a← not b; K b← not a; K c← K c}

Under Definition 4.2.1, K c is an unfounded atom w.r.t. (∅, ∅), however, with

the V
(∅,∅)
K operator defined by Ji et al. [11] we have lfp(V

(∅,∅)
K ) = KA(K) which

misses K c as an unfounded atom.1 It’s clear that a similar operator for dis-

junctive knowledge bases would have the same limitation.

In the following, we first give a formal proof of intractability and then

we construct an operator for hybrid MKNF knowledge bases with disjunctive

rules that adopts the same approximation technique used by Ji et al. in their

V
(T,F )
K operator [11] for hybrid MKNF knowledge bases with normal rules.

We now show that deciding whether an atom of a normal hybrid

MKNF knowledge base is unfounded is coNP-hard by comparing the head-

cuts that need to be considered to determine unfoundedness with the SAT

assignments that need to be considered to determine the satisfiability of a

3SAT problem.

Proposition 4.3.1. Let K = (O,P) be a normal hybrid MKNF knowledge

base such that the entailment relation OBO,S |= a can be checked in polynomial

time for any set S ⊆ KA(K) and for any K-atom K a ∈ KA(K). Determining

whether a K-atom K a ∈ KA(K) is an unfounded atom of K w.r.t. a dependable

partition (T, F ) of KA(K) is coNP-hard.

Proof. We show that the described problem is coNP-hard. The 3SAT problem

is well known to be NP-complete [21]. Let SAT be an instance of 3SAT in

conjunctive normal form such that CLAUSE = {c1, c2, . . . , cn} is the set of

1This is because in the least fixed point computations of the V
(T,F )
K operator, a default

negation not q is true if K q is not known to be true, and as such, both K a and K b are
derived in the first iteration which leads to inconsistency with O.
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clauses in SAT and V AR = {v1, v2, . . . , vn} is the set of variables in SAT . De-

termining whether SAT is unsatisfiable is coNP-hard. We construct a normal

hybrid MKNF knowledge base K = (O,P) s.t.

O ={vui ⊕ v
f
i ⊕ vti | for each vi ∈ V AR where ⊕ is exclusive-or } ∪

{(
⋀︂

vi∈V AR

¬vui ⇐⇒ total), total ⊃ sat}∪

{clausei ∨ ¬total | for each clause ci ∈ CLAUSE

where clausei is a formula obtained by replacing all occurences

of vi and ¬vi in ci with vti and v
f
i respectively}

P ={K sat← K sat} ∪
⋃︂
{{(K vti ← not vfi ), (K vfi ← not vti)} | vi ∈ V AR}

Note that the rule K sat ← K sat is only required to ensure that K sat is

in KA(K). The time to construct the above knowledge base is linear in the

number of clauses and variables in SAT . The first set of formulas in O requires

exactly one of vui , v
f
i , or vti to be true. This constraint is analogous to a

three-valued assignment for SAT where a variable vi ∈ V AR is unassigned

if vui is true, assigned false if vfi is true, and assigned true if vti is true. The

second set in O ensures that the atom total is true if and only if no variable is

unassigned. Finally, the third set of formulas ensure that π(O) is inconsistent if

the assignment is total and a clause in SAT is not satisfied. We show that (A)

For any K-atom K a and set of K-atoms S, the entailment relation OBO,S |= a

is computable in polynomial time and (B) that K sat is an unfounded atom

of K w.r.t. (∅, ∅) if and only if SAT is unsatisfiable.

(A) We call a set of K-atoms S total if it contains either K vti or K vfi

for each variable vi ∈ V AR. Note that for a variable vi ∈ V AR, the set

KA(K) only contains K vti and K vfi ; It does not contain K vui . Let S ⊆

KA(K). We show that we can, in polynomial time, determine whether S∪π(O)

is consistent. We split cases where S is total and where it is not. First,

assume S is not total: For some variable vi ∈ V AR, neither K vti nor K vfi

is in S. By fixing vui to be true in a consistent first-order interpretation I of

S ∪ π(O), we ensure the atom total is false. If the atom total is false, we can
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determine whether OBO,S is consistent in polynomial time because we only

need to consider the first two sets of formulas in O. If S is total, we can, in

polynomial time, verify that S ∪ π(O) is consistent by checking that only one

of vti or vfi is present in S and that every clause clausei is satisfied. After

determining whether S∪π(O) is consistent, we can quickly check the relations

OBO,S |= vti and OBO,S |= vfi for any variable vi ∈ V AR: Assuming S ∪ π(O)

is consistent, the entailment relation OBO,S |= vti (resp. OBO,S |= vfi ) holds

if and only if K vti ∈ S (resp. K vfi ∈ S). When S ∪ π(O) is consistent, the

entailment relation OBO,S |= total holds if and only if S is total. Finally, we

have OBO,S |= sat if and only if K sat ∈ S or OBO,S |= total. If S ∪ π(O)

is inconsistent, the entailment relation OBO,S |= K a holds vacuously for any

K a ∈ KA(K).

(B) When determining whether the K-atom K sat is unfounded

w.r.t. (∅, ∅), we must consider each way to select a head-cut R. We show

that there is a correspondence between the head-cuts that can disprove the

unfoundedness of K sat w.r.t. (∅, ∅) and total sat assignments for SAT . Let

X = {K sat} be a set that is possibly unfounded w.r.t. (∅, ∅). Observe that

a larger unfounded set X ′ ⊃ X w.r.t. (∅, ∅) cannot exist unless X is an un-

founded set w.r.t. (∅, ∅). A head-cut R cannot be used to disprove the un-

foundedness of K sat if either condition 1 or 2 of Definition 4.2.1 do not hold.

Before creating a mapping between head-cuts and sat assignments for SAT ,

we exclude head-cuts that cannot be used to disprove the unfoundedness of

K sat, i.e., conditions 1 and 2 of Definition 4.2.1 are met and i, ii, and iii do

not hold. Firstly, we exclude head-cuts that contain the pair (r, sat) because

body+(r) ∩ X ̸= ∅. We further exclude any head-cut R containing a pair of

pairs (r0, v
t
i) and (r1, v

f
i )

2 because head(R) ∪ OBO,∅ is inconsistent. Thirdly,

we exclude any head-cuts that do not contain either (r0, v
t
i) or (r1, v

f
i ) for each

variable vi ∈ V AR noting that if such a head-cut R also meets the previous

two conditions we have head(R) ∪ OBO,∅ ̸|= sat (See part (A) of this proof

for details). The remaining head-cuts have a one to one correspondence with

2Due to the uniqueness of the second component in such a pair, there should be no
confusion about which rule the first component refers to.
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total assignments for SAT : if a head-cut contains a pair with vti (resp. vfi )

the corresponding assignment for SAT assigns vi to be true (resp. false). We

have for every such head-cut R that head(R) ∪ OBO,∅ |= sat and that for ev-

ery pair in (r, h) ∈ R we have head(r) ∩ T = ∅, body+(r) ∩ (F ∪ X) = ∅,

and body−(r) ∩ T = ∅. If head(R) ∪ OBO,∅ is consistent, then every clause is

satisfied by the corresponding sat assignment, otherwise, the inconsistency is

caused by an unsatisfied clause ¬clausei, thus the assignment does not satisfy

SAT . If no such head-cut R exists such that head(R) ∪ OBO,∅ is consistent,

then K sat is unfounded w.r.t. (∅, ∅) and SAT is unsatisfiable. Conversely, if

SAT is unsatisfiable, a head-cut R such that head(R) ∪ OBO,∅ is consistent

and head(R) ∪ OBO,∅ |= sat does not exist, thus {K sat} is an unfounded set

w.r.t. (∅, ∅). We have shown that deciding whether an K-atom is unfounded

is coNP-hard.

It follows that computing the greatest unfounded set of a disjunctive hybrid

MKNF knowledge base is coNP-hard. Since we are unlikely to find a way to

compute U
(T,F )
K (T, F ) in polynomial time, we are motivated to construct a

polynomial operator that computes an approximation (a subset) of the greatest

unfounded set. We define a family of operators Z
(T,F )
K where each operator

induced by a dependable partition (T, F ) computes an approximation of the

greatest unfounded set of K w.r.t. (T, F )

Z
(T,F )
K (X) = {K a | OBO,X |= a for each K a ∈ KA(K)} ∪

{K a | ∃r ∈ P with K a ∈ head(r) s.t.

body+(r) ⊆ X ∧ body+(r) ∩ F = ∅ ∧

K (body−(r)) ∩ T = ∅ ∧ head(r) ∩ T = ∅ ∧

{a,¬b} ∪ OBO,T is consistent for each K b ∈ F}

This operator is the direct result of combining the V
(T,F )
K operator for

normal hybrid MKNF knowledge bases [11] with the Φ operator for disjunctive

logic programs [13]. It is easy to see that the Z
(T,F )
K operator is monotonic,

and let us use AtmostK(T, F ) to denote its least fixed point. This operator

computes a subset of KA(K) \ U (T,F )
K (T, F ). In particular, if AtmostK(T, F ) ∪

29



π(O) is inconsistent, we have KA(K) \ AtmostK(T, F ) = ∅, a compromise to

keep the operator computable in polynomial time.

To determine whether an atom is unfounded when there are disjunctive

rules, we must consider an exponential number of head-cuts. The Z
(T,F )
K op-

erator instead considers the heads of rules all at once and this can result in

AtmostK(T, F ) missing some unfounded atoms even if AtmostK(T, F )∪ π(O)

is consistent.

Example 6. Let K = (O,P) be a disjunctive hybrid MKNF knowledge base

where P = {K a,K b ←; K c ← K c} and O = (a ∧ b) ⊃ c. We have

that {K c} is an unfounded set of K w.r.t. (∅, ∅). However, AtmostK(T, F ) is

{a, b, c} and KA(K) \ {a, b, c} ≠ U
(T,F )
K (∅, ∅).

We intend to identify the class of knowledge bases for which the Z
(T,F )
K

operator does not miss unfounded atoms as a result of disjunctive heads. First

we define a weak head-cut to be a set of rule atom pairs Rw such that Rw ⊆

P ×KA(K) and h ∈ head(r) for each pair (r, h) ∈ R. Note that this definition

is identical to the definition of head-cuts without the constraint that a rule

can appear in at most one pair in Rw; within a weak head-cut, there may be

two pairs (r, h0) and (r, h1) such that h0 ̸= h1. In the following, we define

a property that captures a subset of knowledge bases where AtmostK(T, F )

computes U
(T,F )
K (T, F ) if AtmostK(T, F ) ∪ π(O) is consistent.

Definition 4.3.1. A hybrid MKNF knowledge base K = (O,P) is head-

independent w.r.t. a dependable partition (T, F ) if for every K-atom K a ∈

KA(K) and every weak head-cut Rw such that head(R) ∪ OBO,T |= a, there

exists a head-cut R such that R ⊆ Rw and head(R) ∪ OBO,T |= a.

Head-independence means that we cannot derive atoms that we would

not be able to derive using only a single atom from each rule head by using

multiple atoms in the head of a rule in conjunction with the ontology. The

head-independence property is violated by the knowledge base in Example

6 and it ensures that AtmostK(T, F ) ̸= U
(T,F )
K (T, F ). Were we to alter the

knowledge base in Example 6 such that the rule K a,K b ← were changed to
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the pair of rules K a ← not b and K b ← not a then K would have head-

independence. We show formally that for a head-independent knowledge base

K, the Z(T,F )
K operator computes the greatest unfounded set w.r.t. (T, F ) if

AtmostK(T, F ) ∪ π(O) is consistent.

Proposition 4.3.2. If K is head-independent w.r.t. a dependable partition

(T, F ) and AtmostK(T, F ) ∪ π(O) is consistent, then U (T,F )
K (T, F ) = KA(K) \

AtmostK(T, F ).

Proof. First we show (1) that no K-atom computed by AtmostK(T, F ) is un-

founded w.r.t. (T, F ) and then we show (2) that every atom that is not un-

founded w.r.t. (T, F ) is computed by AtmostK(T, F ).

(1) We first show no K-atom in Z
(T,F )
K (∅) is unfounded. Let K a ∈

Z
(T,F )
K (∅). Construct a weak head-cut Rw that contains a pair (r, h) for

each head K-atom Kh ∈ head(r) and rule r ∈ P where body+(r) ⊆ ∅,

K (body−(r)) ∩ T = ∅, and head(r) ∩ T = ∅. The weak head-cut Rw con-

tains every rule that was applied in the computation of Z
(T,F )
K (∅). We have

head(Rw)∪OBO,T |= a. Applying the head-independence condition, we obtain

a head-cut R such that R ⊆ Rw and head(R) ∪ OBO,T |= a. For every pair

(r, h) ∈ R, body+(r) ⊆ T , K (body−(r)) ∩ T = ∅, and head(r) ∩ T . The head-

cut R shows that K a is not an unfounded atom w.r.t. (T, F ), thus it is not a

member of any unfounded set. We show that no atom computed by a succes-

sive application of Z
(T,F )
K , e.g., Z

(T,F )
K (Z

(T,F )
K (∅)), is unfounded w.r.t. (T, F ).

Let Zi be result of applying the Z
(T,F )
K operator i times where Z0 = ∅. We

assume that no atom in Zi is unfounded w.r.t. (T, F ) and show the same for

Zi+1. Construct a weak head-cut Rw that contains a pair (r, h) for each head a

K-atom Kh ∈ head(r) and rule r ∈ P where body+(r) ⊆ Zi, body
−(r)∩T = ∅,

and head(r) ∩ T = ∅. Let K a ∈ Z(T,F )
K (Zi). We have head(Rw) ∪ OBO,T |= a.

Applying the head-independence condition, we obtain a head-cut R such that

R ⊆ Rw and head(R) ∪ OBO,T |= a. Now we have for each pair (r, h) ∈ R,

body+(r) ⊆ Zi. Knowing that no K-atom in Zi is a member of an unfounded

set, we conclude that a is not an unfounded atom w.r.t. (T, F ).

(2) We show that if a K-atom K a is not computed by AtmostK(T, F )
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and it is not an unfounded atom w.r.t. (T, F ), we can derive a contradiction.

Let U = KA(K) \ AtmostK(T, F ). Let K a ∈ U be an K-atom such that

there exists a head-cut R where head(R) ∪ OBO,T |= a, head(R) ∪ OBO,T is

consistent and head(R) ∪ OBO,T ∪ {¬b} is consistent for each K b ∈ F and

for each pair (r, h) ∈ R, head(r) ∩ T = ∅ and body−(r) ∩ T = ∅. If for each

pair (r, h) ∈ R we have body+(r) ̸⊆ AtmostK(T, F ) then U is an unfounded

set w.r.t. (T, F ), otherwise K a ∈ AtmostK(T, F ). Both cases contradict the

initial assumptions.

For normal knowledge bases, i.e., where each rule contains only a sin-

gle head-atom, the head-independence condition is satisfied automatically. If

a knowledge base K is not head-independent, the Z
(T,F )
K operator computes

a subset of U
(T,F )
K (T, F ). Therefore, for a normal knowledge base and de-

pendable partition (T, F ) s.t. AtmostK(T, F ) ∪ π(O) is consistent, we have

U
(T,F )
K (T, F ) = KA(K) \ AtmostK(T, F ). The following corollary follows di-

rectly from Proposition 4.3.2.

Corollary 4.3.1. If a knowledge base K is head-independent w.r.t. a depend-

able partition (T, F ) and AtmostK(T, F )∪π(O) is consistent, then the greatest

unfounded set of K w.r.t. (T, F ) is computable in polynomial time.

We have shown that computing the greatest unfounded set of a normal

knowledge base is coNP-hard (Proposition 4.3.1). Because AtmostK(T, F )

can be computed in polynomial time, we conclude that the greatest un-

founded set of a normal knowledge base K can be computed in polynomial

time if AtmostK(T, F ) ∪ π(O) is consistent and the greatest unfounded set

of a disjunctive knowledge base K can be computed in polynomial time if

AtmostK(T, F ) ∪ π(O) is consistent and K is head-independent. Observe

that for the knowledge base constructed in our proof of Proposition 4.3.1,

AtmostK(T, F ) ∪ π(O) is inconsistent. We formally demonstrate the in-

tractability of computing U
(T,F )
K (T, F ) for a disjunctive knowledge base when

AtmostK(T, F ) ∪ π(O) is consistent but the head-independence condition is

not met.
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Proposition 4.3.3. Let K = (O,P) be a disjunctive hybrid MKNF knowledge

base such that the entailment relation OBO,S |= a can be checked in polynomial

time for any set S ⊆ KA(K) and for any K-atom K a ∈ KA(K). Let (T, F ) be a

dependable partition of KA(K) such that AtmostK(T, F ) ∪ π(O) is consistent.

Determining whether a K-atom K a ∈ KA(K) is an unfounded atom of K

w.r.t. (T, F ) is coNP-hard.

Proof. Let SAT be an instance of 3SAT in conjunctive normal form such

that CLAUSE = {c1, c2, ..., cn} is the set of clauses in SAT , and V AR =

{v1, v2, ..., vn} is the set of variables in SAT . We construct a disjunctive hybrid

MKNF knowledge base K = (O,P) s.t.

O ={(vfi ∨ vti)⊕ vui | for each vi ∈ V AR where ⊕ is exclusive-or } ∪

{(vfi ∧ vti) =⇒ sat | for each vi ∈ V AR}∪

{

(︄
(

⋀︂
ci∈CLAUSE

clausei) ∧ (
⋀︂

vi∈V AR

¬vui )

)︄
=⇒ sat |

where clausei is a formula obtained by replacing all occurrences of

vi and ¬vi in ci with vti and v
f
i respectively}

P ={K sat← K sat} ∪
⋃︂
{{(K vti ,K vfi ←)} | vi ∈ V AR}

Let (T, F ) = (∅, ∅) and observe that AtmostK(T, F ) ∪ π(O) is consistent

(AtmostK(T, F ) = KA(K) \ {K sat}). We show that (A) For any K-atom

K a and set of K-atoms S, the entailment relation OBO,S |= a is computable

in polynomial time and (B) that K sat is an unfounded atom of K w.r.t. (∅, ∅)

if and only if SAT is unsatisfiable.

(A) Observe that KA(K)∪π(O) is consistent, therefore, S∪π(O) is consis-

tent for any set of K-atoms S ⊆ KA(K). The entailment relation OBO,S |= vti

(resp. OBO,S |= vfi ) holds if and only if vti ∈ S (resp. vfi ∈ S). What re-

mains to show is that OBO,S |= sat can be checked in polynomial time when

K sat ̸∈ S. We call a set of K-atoms S consistent if it does not contain both

K vti and K vfi for every variable vi ∈ V AR. If S is not consistent, then we

have OBO,S |= sat due to the second set of formulas in O. We assume that

S is consistent. We call a set of K-atoms S total if it contains either K vti
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or K vfi for each variable vi ∈ V AR. We consider the cases where S is total

and where S is not total. If S is not total, we can construct a consistent first-

order interpretation of S ∪ π(O) such that vui is true for some vi ∈ V AR, thus

OBO,S ̸|= sat if S is consistent and not total. Now we assume that S is total

and it follows that
⋀︁

vi∈V AR

¬vui is satisfied in the third set of formulas in O. We

refer to a model M of S ∪ π(O) as a proper model if for every vi ∈ V AR we

have vfi (resp. vti) to be false in M if vfi ̸∈ S (resp. vfi ̸∈ S). Observe that for

all models of S∪π(O) modulo proper models, sat is true because of the second

set of formulas in O (recall that S is total and consistent). Note that for each

proper model M we have M |= vfi ⊕ vti (where ⊕ is exclusive-or) because S

is consistent. The only case where OBO,S ̸|= sat is if we have OBO,S |= sat

if and only if S satisfies every formula clausei. This can easily be checked in

polynomial time.

(B) When determining whether the K-atom K sat is unfounded

w.r.t. (∅, ∅), we must consider each way to select a head-cut R. This part of the

proof carries out almost identically to part 2 of our proof of Proposition 4.3.1.

We only outline the key differences: Rather than relying on head(R) ∪ π(O)

to be inconsistent if R does not correspond to a satisfying assignment of SAT

like in our proof of Proposition 4.3.1, we rely on there being a single model

of head(R) ∪ π(O) where sat is false (See part (A) of this proof for details on

proper models). This is enough to show that head(R) ∪ OBO,∅ ̸|= sat. When

only considering proper models of head(R) ∪ π(O), we can ignore the second

set of formulas in O because a set of rule atom pairs R containing both (r, vfi )

and (r, vti) is not a valid head-cut. In order to determine whether a K-atom

K a is unfounded w.r.t. (∅, ∅), we must exhaustively check head(R)∪ π(O) for

every head-cut R and can conclude that SAT is unsatisfiable. If we know that

SAT is unsatisfiable, there cannot exist a head-cut R, which proves that K a

is not an unfounded atom.
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4.4 A DPLL-Based Solver

In this section we formulate a DPLL-based solver. First, we construct a well-

founded operator W
(T,F )
K using the greatest unfounded set approximator from

the previous section:

T
(T,F )
K (X, Y ) = {K a | where OBO,T∪X |= a for some K a ∈ KA(K)} ∪

{K a | where head(r) \ F = {K a} and

body(r) ⊑ (T ∪X,F ∪ Y ) for some r ∈ P})

W
(T,F )
K (X, Y ) =

(︂
T

(T,F )
K (X, Y ) ∪ T, (KA(K) \ Z(T,F )

K (X, Y )) ∪ F
)︂

We show that this operator maintains the property shown in Proposition

4.2.2.

Proposition 4.4.1. If a dependable partition (T, F ) can be extended to an

MKNF model M , then the dependable partition lfp (W
(T,F )
K ) can also be ex-

tended to M .

Proof. It follows from Corollary 4.2.1 that if (T, F ) can be extended an

MKNF model M , then (T, F ∪ Z(T,F )
K (T, F )) can be extended to M . What’s

left to show is that if (T, F ) can be extended to an MKNF model M , then

(T ∪ T (T,F )
K (T, F )), F ) can be extended to M . Suppose that there is some

K-atom K a in T ∩ T (T,F )
K (T, F )) such that M ̸|=MKNF K a. Then we either

have that OBO,T |= a, and thus M ̸|=MKNF π(O) or that M ̸|=MKNF Kh for

each Kh ∈ head(r) and thus M ̸|=MKNF π(P). Either case contradicts the

assumption that M is an MKNF model of K.

Following Ji et al. [11], we construct an abstract solver in Algorithm 1

that prunes the search space for solving by using the W
(T,F )
K operator. The

CHECK-MODEL procedure checks whether the MKNF interpretation

{I | where I |= π(O), I |= t for each K t ∈ T , and I ̸|= f for each K f ∈ F}

is an MKNF model of K whenever the solver reaches a total dependable parti-

tion. This procedure is analogous to the NP-oracle required to check a model
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Algorithm 1: solver(K, (T, F ))

1 (T, F )← WK(T, F ) ⊔ (T, F );

2 if T ∩ F ̸= ∅ then
3 return false;

4 else if T ∪ F = KA(K) then
5 if CHECK-MODEL(T, F) then
6 return true;

7 else
8 return false;

9 else
10 choose a K-atom K a from KA(K) \ (T ∪ F );
11 if solver(K, (T ∪ {K a}, F )) then
12 return true;

13 else
14 return solver(K, (T, F ∪ {K a}));

of a disjunctive logic program [1]. Further developments are required for a

more precise definition of this procedure.

Proposition 4.4.2. Given a partial partition (T, F ) of KA(K), the invocation

of Algorithm 1 solver(K, (∅, ∅)) will return true if (T, F ) can be extended to

an MKNF model of K.

Proof. It follows from Proposition 4.4.1 that the extension of (T, F ) on the

first line of the algorithm, (T, F ) ← WK(T, F ) ⊔ (T, F ), does not miss any

models. A model that induces a partition (T, F ) s.t. T ∩F ̸= ∅ does not exist.

Without the use of the WK(T, F ) operator, the solver algorithm will explore

every partition (T, F ) ⊆ KA(K) × KA(K) where T ∩ F = ∅. Thus, the usage

of the WK(T, F ) operator simply prunes the search space.

Given Proposition 4.4.2, it is easy to modify Algorithm 1 to report models

instead of returning a boolean value.

We have identified some fundamental challenges in computing unfounded

sets for hybrid MKNF knowledge bases that make the problem intractable.
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The operator constructed by Ji et al. [11] computes a subset of the great-

est unfounded set and we build on this approximation with an extension for

programs with rules with disjunctive heads.

4.5 Related Work

Ji et al. establish a definition of unfounded sets for normal hybrid

MKNF knowledge bases and construct well-founded operators that can be

directly embedded in a solver [11]. We extend their work by introducing a

definition of unfounded sets that handles disjunctive rules, rules that have

multiple K-atoms in their heads. Our extension borrows from the unfounded-

set techniques outlined by Leone et al. [13] for disjunctive logic programs but

with a few noteworthy differences. Namely, our definition cannot be used

directly for model-checking. If the ontology in K is empty, our definition is

equivalent to Leon et al.’s for unfounded-free partitions. Similarly, if K is a

normal knowledge base, our definition is equivalent to Ji et al.’s definition.

Both Ji et al. and Leone et al. outline abstract solvers for finding models of

their respective languages. These solvers follow the DPLL paradigm of explor-

ing the search space for a model. Both solvers substantially prune their search

space using unfounded sets. Because the complexity of model-checking a dis-

junctive hybrid MKNF knowledge base is greater than that of normal hybrid

MKNF knowledge bases [19], our abstract solver in this work consults a model

checker once it reaches a total partition. This differs from the solver described

by Ji et al. which does not rely on a model checker [11]. Leone et al.’s solver

does not deepen its search on partial interpretations that assign unfounded

atoms as true (partitions that cannot be extended to models) [13]. This ag-

gressive pruning strategy requires, at each step of the solver, an invocation of

an algorithm with a complexity of ∆P
2 [O(log n)] [13]. Industry-grade solvers,

such as Clingo [6] or HEX [4], recognize the impracticality of enumerating

all unfounded sets many times during the solving process and these solvers

introduce approximations techniques. As a caveat of using approximations of

unfounded sets, a solver may deepen its search on partial interpretations that
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cannot be extended to models. Because we rely on approximations of great-

est unfounded sets, we think it is reasonable for our solver to employ similar

strategies used by practical solvers and include some partitions that cannot be

extended to models in its search.

Both Clingo and HEX have additional support for external atoms, atoms

whose truth is dependant on external sources. Clingo 5 defines T-stable se-

mantics [5] to reason about external atoms via external theories. HEX defines

semantics for external atoms using boolean functions that take a total inter-

pretation as input [3]. For any hybrid MKNF knowledge base, models of the

accompanying ontology must be monotonic [19]. While it may be possible to

encode the semantics of hybrid MKNF knowledge bases using either the HEX

or Clingo extensions, neither solution exploits the monotonicity of external

sources and both support nonmonotonic models of the external theories.

4.6 Conclusion

We have provided a definition of unfounded sets for disjunctive hybrid

MKNF knowledge bases, studied its properties, and formulated an operator

to compute a subset of the greatest unfounded set of a knowledge base. This

leads to a DPLL-based solver where after each decision constraint propaga-

tion is carried out by computing additional true and false atoms on top of

the current partial partition. Our methods can be directly embedded into

a solver for a drastic increase in efficiency when compared to a guess-and-

verify solver, the current state of art for reasoning with disjunctive hybrid

MKNF knowledge bases. The addition of ontologies to answer set programs

brings new challenges, namely, there is a complexity increase in computing un-

founded sets even in the case of normal hybrid MKNF knowledge bases. We

leave computing unfounded sets in light of inconsistencies that arise because

of O to future work.
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Chapter 5

Fixpoint Characterizations

5.1 Introduction

The operators introduced in the previous chapter extend partial partitions

with atoms that exist in all models that induce the partition. A limitation

of these operators is that for a dependable partition (T, F ) that cannot be

extended to an MKNF model, this property can only be observed if lfp W
(T,F )
K

is not dependable. Critically, a total partition may be dependable when there

does not exist a model that induces it; Unlike Leone et al. [13], we have no

way to use unfounded sets to perform model checking. As such, additional

constructions are required to show that atoms in a partition are justified.

For showing an atom is justified, we mimic the approach of loop formulas

using fixpoint operators instead of a dependency graph. Using these opera-

tors, we can determine whether a partial partition can be extended to a model.

While in this chapter we limit ourselves to showing that atoms in T are jus-

tified, the work in the previous section on propagating false atoms can be

applied here. A major difference with our approach here and the approach

of using loop formulas is that loop formulas require a dependency graph. In

general, a dependency graph can not be generated for a hybrid knowledge

base without knowing the internal structure of the ontology. A framework

that treats the ontology as a black box has a broader range of applications

than a solver that must be tuned for a particular ontology. Atom dependency

analysis is crucial for both model verification and conflict generation. In this

chapter, we present a framework for disjunctive hybrid MKNF knowledge bases
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that utilize fixpoint operators. This framework does not rely on dependency

graphs and the only restriction it imposes on the description logic is that the

entailment relation can be checked in polynomial time. The framework can

perform model-checking, rule out some partial partitions as potential models,

and can function similarly to head-cycle free checking. Another limitation of

the operators discussed in the previous chapter is that they can not extend a

partial partition to a total partition if it can be extended to multiple models.

The framework presented in this chapter also provides a way of exploring the

search space in a meaningful way that does not miss models.

5.2 Related Work

Numerous accounts on the complexity of disjunctive ASP [3], [12], [13], [15]

agree that the complexity of computing answer sets of disjunctive logic pro-

grams resides in the class ΣP
2 . Leone et al. show that answer sets can be

computed by generating unfounded-free interpretations [13], while Lee and Lif-

schitz show that loop formulas in conjunction with a program’s Clark comple-

tion can be used for model-checking [12]. Both unfounded sets and loop formu-

las rely heavily on syntactic dependencies between atoms: One cannot generate

a set of loop formulas for a program without knowing its structure and an atom

is not deemed unfounded unless it is known to be underivable. The semantics

of the well-known ASP solver, Clingo [6], is defined in terms of loop formulas

and in terms of unfounded sets. Due to the complexity of model checking,

there is an intractable number of loop formulas; Because static dependencies

between atoms are easy to establish, this complexity can be handled lazily

[2]. Unlike ASP, its ontology-free counterpart, hybrid MKNF knowledge bases

do not lend themselves well to dependency graph generation. If a knowledge

base’s ontology is left unrestricted, generating a static dependency graph for a

hybrid MKNF knowledge base would require testing the ontology’s entailment

relation for all subsets of atoms. In the remainder of this paper, we describe

a framework that establishes dependencies between atoms through fixpoint

operators and thus does not require static dependency analysis.
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5.3 Headcut Semantics

In this section, we formulate a framework that relies on fixpoint operators

to represent MKNF models. First consider the MKNF knowledge base K =

(O,P) where π(O) = {(a ∨ b) ⊃ c} and P only contains the rule K a,K b ←

not c. This knowledge base has no MKNF models. Intuitively, we can verify

that K does not have an MKNF model by recognizing that there is no rule to

derive K c and thus some K-atom in the head of this rule must be true in an

MKNF model of K. With either K a or K b true, an inconsistency is created

if K c is false.

We generalize and formally express these intuitive semantics by considering

head-cuts of P . We define a head-cut R of K to be a set R ⊆ P×KA(K) where

each rule r ∈ P occurs in no more than one pair (r, h) ∈ R and Kh ∈ head(r).

For example, the program P = {K a,K b ←}, P has exactly two head-cuts,

{(r, a)} and {(r, b)} where r refers to the only rule in P (Note that we omit

“K ” when describing head-cuts). Given a head-cut R, we use head(R) and

rule(R) to denote the sets {h | (r, h) ∈ R} and {r | (r, h) ∈ R} respectively.

Definition 5.3.1. For a total partition (T, F ), we define H
(T,F )
K to be the set

containing every head-cut R of K such that head(R) ⊆ T and for each rule

r ∈ P, r ∈ rule(R) if and only if body(r) ⊑ (T, F ).

Intuitively, there is a head-cut in H
(T,F )
K for each way of selecting a single

head-atom for every satisfied rule in P . In essence, H
(T,F )
K , gives us a way to

avoid dealing with negation or disjunction. We use this set to show atoms are

justified by defining a family of operators induced by a head-cut R:

QR(X) ={Kh | where (r, h) ∈ R and body+(r) ⊆ X for each r ∈ P }

∪ {K a ∈ KA(K) | OBO,X |= a}

We denote the least fixpoint of an operator QR as lfp QR and use QR
i to denote

applying the QR operator i times on the empty set (e.g., QR
2 = QR(QR(∅))).

This operator simply takes a set of K-atoms X and extends it with immediate

consequences under R.
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Revisiting the initial example where K = (O,P), π(O) = {(a∨b) ⊃ c}, and

P = {K a,K b← not c}, consider any total dependable partition (T, F ) where

K c ∈ F . Observe that for each head-cut R ∈ H
(T,F )
K , we have c ∈ lfp QR.

For example, let (T, F ) = ({K a}, {K c,K b}). Every head-cut R in H
(T,F )
K

contains the rule from P , thus the QR operator will compute either a or b on

the first iteration and then c on the second iteration. Conversely, if we consider

a dependable partition (T, F ) such that K c ∈ T , then for each head-cut R ∈

H
(T,F )
K , we have c ̸∈ lfp QR. For example, let (T, F ) = ({K a,K c}, {K b}).

No rule in P is applicable w.r.t. (T, F ), thus H
(T,F )
K contains a single head-cut,

∅. We have Q∅
0 = Q∅

1 = ∅, thus c ̸∈ lfp QR.

We now formally show that sets of the form H
(T,F )
K coincide with an

MKNF models of hybrid knowledge bases. First, we connect family of sets

H
(T,F )
K to total partitions that satisfy all rules in P but are not necessarily

induced by an MKNF model.

Lemma 5.3.1. For a total partition (T, F ), the set H
(T,F )
K is empty if and

only if there exists a rule r ∈ P where body(r) ⊑ (T, F ) and head(r) ∩ T = ∅.

Proof. (⇒) We prove the contrapositive by constructing a head-cut R: For

each rule r ∈ P where body(r) ⊑ (T, F ), include a pair (r, h) in R where h is

selected arbitrarily from head(r) ∩ T . If body(r) ̸⊑ (T, F ), then r ̸∈ rule(R),

thus R ∈ H(T,F )
K ; H

(T,F )
K is nonempty.

(⇐) Let r ∈ P be a rule where body(r) ⊑ (T, F ) and head(r)∩T = ∅. Any

head-cut R ∈ H(T,F )
K must contain a pair with r. For R to be a head-cut, h

must come from head(r), and H
(T,F )
K requires that h ∈ T . No head-cut can

satisfy both of these requirements, thus, H
(T,F )
K is empty.

Definition 5.3.2. A set of head-cuts H is a supporting set for a total depend-

able partition (T, F ) if: An MKNF model M of K that induces (T, F ) exists if

and only if H is nonempty and for each R ∈ H the set computed by lfp QR is

precisely T .

Proposition 5.3.1. The set H
(T,F )
K is a supporting set of the dependable par-

tition (T, F ).
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Proof. Let (T, F ) be a total dependable partition. We show that an

MKNF model M that induces (T, F ) exists if and only if H
(T,F )
K is nonempty

and for each R ∈ H(T,F )
K , lfp QR = T .

(⇐) Assume H
(T,F )
K is nonempty and for each R ∈ H(T,F )

K , lfp QR is pre-

cisely T . We construct an MKNF model of K that induces (T, F ). Let M be

an MKNF interpretation containing all first-order interpretations that satisfy

both O and T , i.e.,

M = {I | I |= π(O)} ∩ {I | I |= t for each K t ∈ T}

We have M |=MKNF ¬K a for each K a ∈ F and M |=MKNF K a for each

K a ∈ T , thusM induces the dependable partition (T, F ). By construction, we

have M |=MKNF K π(O); Applying Lemma 5.3.1 while knowing H
(T,F )
K ̸= ∅,

we get M |=MKNF π(P). It remains to be shown that M is maximal, i.e.,

there does not exist a larger MKNF interpretation M ′ such that M ′ ⊃M and

(I,M ′,M) |= π(K) for each I ∈M ′.

Assume for the sake of contradiction, that such an interpretationM ′ exists

and let (T ′, F ′) be the dependable partition induced byM ′ (Note that because

we useM ′ to evaluate positive rule bodies only, we rely on the dependable par-

tition (T ′, F ) rather than (T ′, F ′)). We will locate a head-cut R ∈ H(T,F )
K such

that lfp QR ⊂ T and contradict the assumption that lfp QR = T . With

M ′ |=MKNF π(P), we have for each rule r ∈ P where body(r) ⊑ (T, F ) (satis-

fied by M) if head(r) ∩ T ′ = ∅, then body+(r) ⊆ T \ T ′. Let R be a head-cut

R ∈ H
(T,F )
K where for each (r, h) ∈ R, either h ∈ T ′ or body+(r) ⊆ T \ T ′.

Clearly, such a head-cut exists. Intuitively, we only constrain the pairs whose

positive rule bodies are satisfied by M ′; A pair (r, h) ∈ R containing a rule r

whose positive body is not satisfied by M ′ may use any h ∈ head(r)∩T . Sup-

pose for the sake of contradiction that lfp QR ̸⊂ T . Because T ′ ⊂ T , the QR

operator has computed atoms in T \ T ′ through either the ontology or a pair

in R. If it was through a pair (r, h) in R, then we have body+(r) ⊆ T \T ′. We

must have that OBO,T ′ |= t for some t ∈ T \ T ′ which contradicts the assump-

tion that (I,M ′,M) |= π(O) for each I ∈M ′. This gives us that lfp QR ⊂ T

which contradicts the assumption that lfp QR = T . We conclude that M is
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an MKNF model of K.

(⇒) Assume that either H
(T,F )
K is empty or there exists a head-cut R ∈

H
(T,F )
K such that lfp QR ̸= T . Let M be an MKNF interpretation induced by

(T, F ). We show that eitherM ̸|=MKNF π(K) or there exists an interpretation

M ′ ⊃M such that (I,M ′,M) |= π(K) for each I ∈M ′. Clearly if H
(T,F )
K = ∅,

thenM ̸|=MKNF π(K) because there exists a rule r ∈ P whereM ̸|=MKNF π(r)

(Lemma 5.3.1). Assume there exists a head-cut R ∈ H(T,F )
K such that lfp QR ̸=

T . Clearly if lfp QR \ T ̸= ∅, then T is missing K-atoms derived from either

a rule or the ontology and thus M ̸|=MKNF π(K). Assuming lfp QR ⊂ T ,

let T ′ be the set of K-atoms that R fails to compute, i.e., T ′ = T \ lfp QR.

Construct the MKNF interpretation M ′ that both induces (T ′,KA(K) \ T ′)

and satisfies O.

M ′ = {I | I |= π(O)} ∩ {I | I |= t for each K t ∈ T ′}

We have M ′ ⊃M and M ′ |=MKNF π(K), thus M is not an MKNF model. We

conclude that if given an MKNF model M that induces a total dependable

partition (T, F ), then lfp QR = T for each R ∈ H(T,F )
K .

In the following example, we demonstrate how the set H
(T,F )
K can be used

to verify that a partition can be extended to a model.

Example 7. Let K = (∅,P) where P is defined as

1 : K a,K b← K c 2 : K b,K c←

Let (T, F ) = ({K b,K c}, {K a}). By definition, the set H
(T,F )
K contains two

head-cuts: R0 = {(1, b), (2, b)} and R1 = {(1, b), (2, c)}. When we repeatedly

apply the Q operator on each of these head-cuts we obtain the following sets.

QR0
0 = ∅ QR0

1 = {b} QR0
2 = QR0

1 QR0
3 = QR0

1

QR1
0 = ∅ QR1

1 = {c} QR1
2 = {b, c} QR1

3 = QR1
2

Using Proposition 5.3.1, it is easy to confirm that (T, F ) =

({K a,K b,K c}, ∅) can not be extended to a model of K by observing

that neither lfp QR0 nor QR1 computes T . If we instead use (T, F ) =
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({K a,K c}, {K b}), then the set H
(T,F )
K contains the just a single head-cut,

R0 = {(1, a), (2, c)}. We have lfp QR0 = T , thus (T, F ) can be extended to an

MKNF model.

Now that we have established a semantics in terms of a family of fixpoint

operators, we discuss some optimizations that, when applied to H
(T,F )
K , greatly

reduce the number of head-cuts in the set. This is a crucial step that enables

the set to be used in a solver. For a dependable partition (T, F ), that cannot

be extended to a model, there are many head-cuts in H
(T,F )
K that contain rules

whose bodies are never satisfied by iterative construction or do not derive

anything new. Our first optimization step is to remove such rules from head-

cuts by defining a new set HM
(T,F )
K based on H

(T,F )
K . A head-cut R is in

HM
(T,F )
K if and only if there is a head-cut R′ ∈ H(T,F )

K such that R = R′ \RM ,

where

RM = {(r, h) ∈ R | ∀i, body(r) ⊆ QR
i =⇒ head(r) ⊆ QR

i }

This set removes some pairs in each head-cut from H
(T,F )
K . For each head-

cut R ∈ HM
(T,F )
K there is some head-cut R′ ∈ H

(T,F )
K for which R ⊆ R′.

However, R′ is not unique in general. The set HM
(T,F )
K also has the convenient

property of only including pairs that contribute to the computation of QR, thus

head(R) ⊆ lfp QR.

In the example following example, we demonstrate that HM
(T,F )
K can be

used as a supporting set.

Example 8. Let K = (∅,P) where P contains the following rules

0 : K a,K b←

1 : K c← K a

2 : K c← K b

3 : K a,K d← K c

Let (T, F ) = (KA(K), ∅) and R = {(0, a), (1, c), (3, d)}. QR
1 computes “a” via

rule 0, then QR
2 computes “c” via rule 2. On the third iteration, QR

3 computes
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“d” via rule 3, however, we already have head(3) ⊆ QR
2 , thus R is not in

HM
(T,F )
K . Instead, the head-cut R = {(0, a), (1, c)} is in HM (T,F )

K .

Like H
(T,F )
K , the set HM

(T,F )
K is a supporting set of (T, F ).

Proposition 5.3.2. HM
(T,F )
K is a supporting set of (T, F ).

Proof. It is trivial to show that the property demonstrated in Lemma 5.3.1

also applies to HM
(T,F )
K , thus HM

(T,F )
K = H

(T,F )
K if and only if either H

(T,F )
K or

HM
(T,F )
K is empty. We build upon the proof in Proposition 5.3.1 by showing

lfp QR′
= T for each R′ ∈ HM

(T,F )
K if and only if lfp QR = T for each

R ∈ H(T,F )
K . It follows that HM

(T,F )
K is a supporting set of (T, F ).

(⇒) Let R ∈ H(T,F )
K and have R′ ∈ HM (T,F )

K be the head-cut where R′ ⊆ R.

We assume lfp QR′
= T and show lfp QR = T . Apply Lemma 5.3.2 to obtain

lfp QR ⊇ T . By lfp QR′
= T , we have OBO,T ̸|= a for each K a ∈ KA(K) \ T .

We have head(R) ⊆ T , thus it would be absurd for a K-atom K a ∈ KA(K)\T

to be in lfp QR because it would imply OBO,head(R) |= a.

(⇐) Let R′ ∈ HM (T,F )
K and assume for each R ∈ H(T,F )

K , lfp QR = T . We

show lfp QR′
= T by adding a set of rule pairs S to R′ allowing (R′ ∪ S) to

be a head-cut in H
(T,F )
K while keeping lfp QR′∪S = lfp QR′

. For any rule R ∈

H
(T,F )
K , the set rule(R) is the same, i.e. {rule(R)} =

⋂︁
{rule(R) | R ∈ H(T,F )

K }.

The set rule(R) \ rule(R′) contains precisely the rules that need to be added

to R′ via S to have (R′ ∪S) ∈ H(T,F )
K . From the construction of HM

(T,F )
K : For

each rule r in rule(R) \ rule(R′), we have a K-atom Kh ∈ head(r) such that

h ∈ QR′
i where i+1 is the smallest integer such that QR′

i+1 ⊇ body+(r). Have S

be the set of pairs (r, h) where r ∈ rule(R)\rule(R′) andKh is such anK-atom

from head(r). It follows that lfp QR′
= lfp QR′∪S, thus lfp QR′

= T .

Lemma 5.3.2. Given two head-cuts R,R′ ∈ H
(T,F )
K where R ⊂ R′ we have

lfp QR ⊆ lfp QR′

Proof. Assume the contrary and let i be the smallest integer such that QR
i+1 ̸⊆

QR′
i+1. Let X = QR

i = QR′
i and let a be an atom in QR

i+1 but not in QR′
i+1.

From a ̸∈ QR′
i+1, we have OBO,X ̸|= a (otherwise QR′

i+1 would compute a).

Therefore there must exist a pair (r, a) ∈ R where body(r) ⊆ X for QR
i+1 to
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compute a. However, this pair also exists in R′ (R ⊆ R′), thus a ∈ QR
i+1 a

contradiction.

We define more optimizations that further reduce the number of head-cuts

that need to be tested to verify a model. A head-cut R is branch-minimal

w.r.t. a set of head-cuts S if for each R′ ∈ S such that head(R) ⊆ head(R′) or

head(R′) ⊆ head(R), we have head(R) ⊆ head(R′). It can be easily shown that

this relation is a partial order between head-cuts.

We formulate a further optimization of HM
(T,F )
K based on this notion of

minimality.

HP
(T,F )
K = {R ∈ HM (T,F )

K | R is branch-minimal w.r.t. HM
(T,F )
K }

Proposition 5.3.3. HP
(T,F )
K is a supporting set of (T, F ).

Proof. We have HP
(T,F )
K ⊆ HM

(T,F )
K , and if HM

(T,F )
K is nonempty, then there

exists a least head-cut w.r.t. the branch-minimal relation. Thus, HP
(T,F )
K is

empty if and only if HM
(T,F )
K is empty. We show

(∀R ∈ HM (T,F )
K , lfp QR = T ) ⇐⇒ (∀R′ ∈ HP (T,F )

K , lfp QR′
= T )

and it follows from Proposition 5.3.2 thatHP
(T,F )
K is a supporting set of (T, F ).

(⇒) Trivial because HP
(T,F )
K ⊆ HM

(T,F )
K by definition.

(⇐) Assume that for each R′ ∈ HP
(T,F )
K , we have lfp QR′

= T . Let

R ∈ HM (T,F )
K \HP (T,F )

K We know lfp QR ⊆ T and show lfp QR ⊆ T . Because

R ̸∈ HP (T,F )
K , we have an R′ ∈ HP (T,F )

K such that head(R) ⊃ head(R′). By the

initial assumption, OBO,head(R′) |= t for each K t ∈ T , thus lfp QR ⊇ lfp QR′

because O is monotonic. It follows that lfp QR′
= T .

The set HP
(T,F )
K is not practical for use in solver: Because of the complex-

ity of determining whether a head-cut is branch-minimal, the set cannot be

efficiently enumerated. We develop a supporting set that is a compromise of

HP
(T,F )
K .

Given a head-cut R, we define R[i] to be the subset of R that contains

only the rules in rule(R) whose bodies are satisfied after i iterations of the QR
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operator, that is,

R[i] = {(r, h) ∈ R | h ̸∈ QR
i , body

+(r) ⊆ QR
i }

Intuitively, R[i] contains the atoms newly derived on iteration i. Likewise, we

define a range R[0..j] where 0 ≤ j

R[0..j] =

j⋃︂
k=0

R[k]

A head-cut R is semi-branch-minimal w.r.t. a head-cut R′ if for the largest

i such that

R[0..(i− 1)] = R′[0..(i− 1)]

we have head(R[i]) ⊆ head(R′[i]).

We define HG
(T,F )
K to be the set

HG
(T,F )
K = {R ∈ HM (T,F )

K |

R is semi-branch-minimal w.r.t. every other head-cut R′ ∈ HM (T,F )
K }

We give an example of a head-cut from HM
(T,F )
K that is also in HG

(T,F )
K

Example 9. Let K = (O,P) where O = ∅ and

1 :K a,K b← K c

2 :K a,K b← K c

3 :K c←

Let (T, F ) = (KA(K), ∅). Define the following head-cuts:

R0 = {(1, a), (2, a), (3, c)},

R1 = {(1, a), (2, b), (3, c)},

R2 = {(1, b), (2, a), (3, c)},

R3 = {(1, b), (2, b), (3, c)}

We have HM
(T,F )
K = {R0, R1, R2, R3}. For each pair of head-cuts Ri and Rj,

we have Ri[0..1] = Rj[0..1]. However, we have head(R0[2]) ⊂ head(R1[2]) and

head(R0[2]) ⊂ head(R2[2]), thus neither R1 nor R2 is semi-branch-minimal.

This gives us HG
(T,F )
K = {R0, R2}.
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Both the sets HP
(T,F )
K and HG

(T,F )
K are subsets of HM

(T,F )
K , however, in

general, neither set is a subset of the other. The set HG
(T,F )
K is easier to enu-

merate than HP
(T,F )
K because head-cuts can be constructed iteratively whereas

to enumerate head-cuts in HP
(T,F )
K , one must test whether each head-cut in

HM
(T,F )
K is branch-minimal. We demonstrate how HG

(T,F )
K may be iterated

later on when we construct an abstract solver.

Example 10. Let K = (O,P) such that O = ∅ and

P = {1 : K a,K b,K c,K d←;

2 : K a,K b,K d←;

K c← a;K c← b;

K a← b;K a← d;

K b← a;K b← d; }

We use the total partition (T, F ) = (KA(K), ∅) to consider various head-cuts

in the sets HG
(T,F )
K and HP

(T,F )
K . For brevity, we omit pairs in head-cuts that

contain normal rules. First, we give a head-cut R found in HG
(T,F )
K but not

HP
(T,F )
K .

R = {(1, d), (2, d)}

QR
1 = {d}

lfp QR = {a, b, c, d}

R is semi-branch-minimal w.r.t. every head-cut from HM
(T,F )
K because

head(R) contains a single atom and there is no head-cut R′ in HM
(T,F )
K such

that head(R′) = ∅. However, the selection of d in R results in the atoms a, b,

and c, also being derived; For the head R′ = {(1, a), (2, a)}, lfp QR′
= {a, b, c},

thus R is not branch-minimal. We give a head-cut R that is in HP
(T,F )
K and

not HG
(T,F )
K :

R = {(1, c), (2, b)}

QR
1 = {b, c}

lfp QR = {a, b, c}
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R is branch-minimal because every head-cut in HM
(T,F )
K computes at least a,

b, and c, however, R is not semi-branch-minimal because c ∈ head(R); A head-

cut R in HG
(T,F )
K cannot contain a pair with c in it because there is always a

head-cut R′ that is semi-branch-minimal w.r.t. R.

We give an exhaustive account of the head-cuts that are in both HG
(T,F )
K

and HP
(T,F )
K :

R0 = {(1, a), (2, a)}

R1 = {(1, b), (2, b)}

lfp QR0 = lfp QR1 = {a, b}

As mentioned above, no head-cut R in HP
(T,F )
K can have d ∈ head(R) and no

head-cut R in HG
(T,F )
K can have c ∈ head(R), thus no head-cut in HG

(T,F )
K ∩

HP
(T,F )
K can contain either atom. Finally, we give an example of a head-cut

in HM
(T,F )
K that is neither in HM

(T,F )
K nor HG

(T,F )
K :

R = {(1, a), (2, d)}

QR
1 = {a, d}

lfp QR = {a, b, c, d}

The head-cut demonstrated above is neither branch-minimal nor semi-branch-

minimal.

Even though HP
(T,F )
K and HG

(T,F )
K are disjoint, they are related in a crucial

way that allows us to show that HG
(T,F )
K is a supporting set. Intuitively, a

head-cut R from HP
(T,F )
K can be thought of as having a minimal set head(R)

that is globally minimal w.r.t. iterations of QR
i whereas a head-cut R from

HM
(T,F )
K ’s set head(R) is only locally minimal w.r.t. an iteration of QR

i . As it

turns out, HP
(T,F )
K is more precise and if there is a head-cut in HP

(T,F )
K that

fails to compute T , we can guarantee that such a head-cut exists in HG
(T,F )
K

as well. We demonstrate this property formally.

Lemma 5.3.3. If there exists a head-cut in R ∈ HP (T,F )
K such that lfp QR ⊂

T , then there is a head-cut R′ ∈ HP (T,F )
K ∩HG(T,F )

K such that lfp QR′ ⊂ T
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Proof. We demonstrate this property by describing an algorithm to convert an

arbitrary head-cut R from HP
(T,F )
K into a head-cut R′ in HP

(T,F )
K ∩HG(T,F )

K .

This new head-cut has the property that lfp QR′ ⊆ lfp QR. Thus, if there

exists a head-cut R ∈ HP (T,F )
K such that lfp QR ⊂ T , then we can apply this

algorithm to obtain a head-cut R′ ∈ HP (T,F )
K ∩HG(T,F )

K such that lfp QR′ ⊂ T .

Algorithm 2: hp-to-hm(Rinitial)

1 R← Rinitial;

2 S1 ← {(r, select h ∈ lfp QRinitial ∩ head(r)) | r ∈
P \ rule(Rinitial), body

+(r) ⊆ lfp QRinitial};
3 S2 ← {(r, select h ∈ head(r)) | r ∈ P \ rule(R ∪ S1)};
4 R← R ∪ S1 ∪ S2;

5 for i← 0; i = 0 or QR
i−1 ̸= QR

i ; i← i+ 1 do

6 R∗ ← R \ {(r, h) | ¬∃j,QR
j ⊇ body(r), QR

j ∩ head(r) = ∅};
7 if ∃R′ ∈ HG(T,F )

K \HP (T,F )
K s.t. R′[0..(i− 1)] = R∗[0..(i− 1)] and

head(R′[i]) ⊂ head(R∗[i]) then

8 R← (R \R∗[i]) ∪R′[i];

9 R∗ ← R \ {(r, h) | ¬∃j,QR
j ⊇ body(r), QR

j ∩ head(r) = ∅};
10 return R∗;

We use select h ∈ S to denote that an atom h may be selected from a

set S arbitrarily. We give an informal overview of the above algorithm and

follow it with a formal proof. The algorithm begins by converting the head-

cut R into a head-cut in H
(T,F )
K by adding missing rules appropriately. At

the beginning of each iteration of the loop, we create a copy of R, named

R∗, that has had these additions removed so that R∗ ∈ HG
(T,F )
K . We check

whether R∗ is semi-branch-minimal, and if it is not, we make it so. The body

of the loop is repeated for each iteration of the QR operator. The end result

is a head-cut R ∈ HP (T,F )
K \HM (T,F )

K such that lfp QR comptues fewer atoms

than lfp QRinitial

We show formally that the head-cut returned by the algorithm has this

property. Assume that Algorithm 5.3.3 is invoked with a head-cut Rinitial ∈

HP
(T,F )
K . Let R∗ = {(r, h) | ¬∃j,QR

j ⊇ body(r), QR
j ∩ head(r) = ∅} (the

expression at line 9). The following invariants hold at the beginning of every

iteration of the loop on line 5:
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1. R ∈ H(T,F )
K

2. lfp QR∗ ⊆ lfp QRinitial

3. R∗ ∈ HM (T,F )
K ∩HP (T,F )

K

4. For each j such that 0 ≤ j < i there does not exist a head-cut R′ ∈

HG
(T,F )
K \HP (T,F )

K such that R′[0..(i−1)] = R[0..(i−1)] and head(R′[i]) ⊂

head(R[i]) (the condition on line 7) is satisfied.

We first show that the invariants 1 through 4 hold for the first iteration of

the loop. Let R = Rinitial ∪ S1 ∪ S2.

(1) We have Rinitial ∈ HM
(T,F )
K , thus there is some head-cut J ∈ H

(T,F )
K

such that R = J \ (S1 ∪ S2). Note that for every pair (r, h) ∈ S1, there exists

a head atom h ∈ head(r) ∩ lfp QRinitial by Rinitial ∈ HM (T,F )
K .

(2) We have lfp QR ⊆ lfp QRinitial because for every pair (r, h) added to

Rinitial via S1 and S2 we have either (r, h) ∈ S2 and body+(r) ̸⊆ lfp QRinitial

(thus h ∈ lfp QR only if h is computed via a different pair) or (r, h) ∈ S1 and

h ∈ lfp QRinitial . Because R∗ is obtained by removing pairs from R ∪ S1 ∪ S2,

we have lfp QR∗ ⊆ lfp QRinitial .

(3) From (1) we have R ∈ H
(T,F )
K . The pairs R∗ removes from R are

precisely the pairs to have R∗ ∈ HM (T,F )
K . From Rinitial ∈ HP (T,F )

K and 2, we

have R∗ ∈ HP (T,F )
K .

(4) We have i = 0, thus there does not exist an integer j, 0 ≤ j < 0.

Assuming each invariant holds at the beginning of an iteration, we show

they each hold at the end of an iteration.

(1) We have rule(R′[i]) = rule(R∗[i]), thus line 8 does not affect the set

rule(R) and we still have R ∈ H(T,F )
K .

(2) Under the condition on line 7, we have head(R′[i]) ⊆ head(R∗[i]), thus

line 8 can only shrink the set lfp QR∗
.

(3) From (1) we have R ∈ H
(T,F )
K . The pairs R∗ removes from R are

precisely the pairs to have R∗ ∈ HM (T,F )
K . From Rinitial ∈ HP (T,F )

K and 2, we

have R∗ ∈ HP (T,F )
K .
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(4) Because R′ ∈ HG(T,F )
K , there does not exist another set R′′ ∈ HG such

that R′[0..(i− 1)] = R′′[0..(i− 1)] and head(R′′[i]) ⊂ head(R′[i]). It is minimal

in this respect. Because line 8 only effects pairs in R[i], this invariant continues

to hold after i is incremented.

Finally, we return a head-cut which is in HM
(T,F )
K ∩ HP (T,F )

K ∩ HG(T,F )
K

where lfp QR∗ ⊆ lfp QRinitial .

Finally, we can use the property demonstrated above to show that HG
(T,F )
K

is a supporting set of (T, F ).

Proposition 5.3.4. HG
(T,F )
K is a supporting set of (T, F ).

Proof. HG
(T,F )
K is empty if and only if HP

(T,F )
K is empty. It is sufficient to

show

(∀R ∈ HM (T,F )
K , lfp QR = T ) ⇐⇒ (∀R′ ∈ HG(T,F )

K , lfp QR′
= T )

. (⇒) Trivial since HG
(T,F )
K ⊆ HM

(T,F )
K .

(⇐) We show the contrapositive. Let R ∈ HM (T,F )
K such that lfp QR ⊂ T .

By Proposition 5.3.3, we have a head-cut Rp ∈ HP (T,F )
K such that lfp QRp ⊂

T . Apply Lemma 5.3.3 to Rp to obtain a head-cut R′ ∈ HG
(T,F )
K such that

lfp QR′ ⊂ T . We conclude

¬(∀R ∈ HM (T,F )
K , lfp QR′

= T ) =⇒ ¬(∀R′ ∈ HG(T,F )
K , lfp QR′

= T )

.

It follows that HG
(T,F )
K is a supporting set of (T, F ).

5.4 An Abstract Solver

Up until now, we have dealt exclusively with total partitions. We now discuss

how the techniques described in the previous section can be applied to partial

partitions and in turn be used to develop an abstract solver.

We define the set DR
K under a head-cut R.

DR
K = {HG(T ∗,F ∗)

K | where R = R∗[0..i]

for some i and R∗ ∈ HG(T ∗,F ∗)
K and total partition (T ∗, F ∗)}
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Given a head-cut R, we can extract an appropriate partition from R:

S(R) = (lfp QR,
⋃︂
{body−(r) | (r, h) ∈ R})

Note that for each HG
(T ∗,F ∗)
K ∈ DR

K, we have S(R) ⊑ (T ∗, F ∗). Intuitively, the

set DR
K holds every possible set HG

(T ∗,F ∗)
K if S(R) were extended to a total

partition (T ∗, F ∗). Note that (T ∗, F ∗) may not be dependable. We also define

a total variant of S(R):

S∗(R) = (lfp QR,KA(K) \ lfp QR)

We recursively define a subclass of head-cuts to limit the use of DR
K.

Definition 5.4.1. Given, a head-cut R where S(R) is a dependable partition,

we call R a head-cut state if either R = ∅ or there is another head-cut state

R′ such that either R = R′[0..i] or R ∈
⋃︁
DR′

K .

Intuitively, a head-cut state is a head-cut that can be extended to some a

head-cut in R ∈ H for every H ∈ DR
K. Note that S(R) ⊑ S∗(R) for a head-cut

state R.

We now define an abstract solver that operates on head-cut states. Sup-

porting can assist a solver in several key ways: Conflict propagation and imme-

diate propagation that adds positive direct consequences to a head-cut state

R (See T (R) in Algorithm 3), Guiding solver decisions at points where the

current head-cut state cannot be extended through means of well-founded

propagation (See decisions(R) in Algorithm 4) and as already shown, sup-

porting sets can be used for model verification. We join these roles together in

an abstract solver outlined in Algorithm 6. Finally, we show how supporting

sets can be used to reason about head-cut states that can be verified in poly-

nomial time (similar to head-cycle free). We leave certain details unspecified

such as how to enumerate the set DR
K in an efficient way in the context of each
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of the algorithms and the overall complexity of the algorithms we provide.

Algorithm 3: T (R)

1 (T, F )← S(R);
2 B ← {R′[i+ 1] | R′ ∈

⋃︁
DR

K, R
′[0..i] = R};

3 if ∃(r, h) ∈
⋂︁
B, |head(r) \ F | ≠ 1 or body(r) ̸⊑ (T, F ) then

4 return R;

5 assert |B| ≤ 1;

6 return R ∪
⋂︁
B;

Intuitively, Algorithm 3 adds information to R only if there are only rules

whose bodies are satisfied w.r.t. S(R) and the head of the rule contains no

true atoms and only a single atom that is not false. We demonstrate that a

solver cannot miss any models by applying T (R) to a head-cut state.

Lemma 5.4.1. For a head-cut state R and any head-cut R∗ ∈
⋃︁
DR

K where

R = R∗[0..i], we either have R∗[0..(i+ 1)] = T (R) or R = T (R).

Proof. We show that the assertion on line 5 holds and it directly follows that

either R = T (R) (when B is empty or the assert was not reached) or T (R) =

R∗[0..(i + 1)] because R∗[0..(i + 1)] is the same for any R∗. Consider for

the sake of contradiction that |B| > 1 at line 5. We have two head-cuts

R∗
1, R

∗
2 ∈

⋃︁
DR

K such that R∗
1[0..i] = R∗

2[0..i] = R and R∗
1[i + 1] ̸= R∗

2[i + 1].

Let (r, h1) ∈ R∗
1[i+1] \R∗

2[i+1]. If there is a pair (r, h2) ∈ R∗
2[i+1] such that

h1 ̸= h2, then |head(r)\F | ≠ 1, otherwise, body(r) ̸⊑ (T, F ). In either case, the

algorithm would have met the condition on line 3 and returned before reaching

line 5, which contradictions the assumption that |B| > 1 at line 5.

With T (R), we only propagate information if it holds in all models that

S(R) can be extended to. At some point in the solving process, we must add

information for which this does not hold. We describe a process for extending

55



head-cut states with decision atoms.

Algorithm 4: decisions(R)

1 Decisions← ∅;
2 if R ∈

⋃︁
DR

K then

3 return ∅;

4 for R′ ∈
⋃︁
DR

K where ∃i, R′[0..i] = R do
5 if S(R′[0..(i+ 1)]) is dependable then
6 Decisions← Decisions ∪ {R′[0..(i+ 1)]};

7 return Decisions;

We guarantee very little about the atoms added by decisions(R) and in

general, the solver will be forced to backtrack because of the atoms that were

added by this procedure. However, extensions made by decision(R) will main-

tain the property that R is a head-cut state. Furthermore, if S(R) can be

extended to an MKNF model of K, then a head-cut in decisions(R) also has

this property. This ensures that a solver that uses decisions(R) will not miss

any models.

Lemma 5.4.2. Given a head-cut state R and an MKNF modelM that induces

S(R), there is either a head-cut state R′ ∈ decisions(R) such that M induces

S(R′) or decisions(R) is empty.

Proof. Let (T ∗, F ∗) be the total dependable partial induced by M . If the

condition does not hold on line 2, i.e. R ̸∈
⋃︁
DR

K, then there is at least one

head-cut R′ that meets the condition of the loop. Because M is a model, for

at least one R′, S(R) is dependable. The set HG
(T ∗,F ∗)
K is in DR

K, and there

is a head-cut R∗ ∈ HG
(T ∗,F ∗)
K such that R = R∗[0..i]. Thus, the head-cut

R∗[0..(i + 1)] is in decisions(R). We have S(R∗[0..(i + 1)]) ⊑ (T ∗, F ∗), it

follows that M induces S(R∗[0..(i+ 1)]).
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Definition 5.4.2. The definition of check-model(R):

Algorithm 5: check-model(R)

1 if HG
S∗(R)
K = ∅ then

2 return false;

3 if S∗(R) is dependable and for each R ∈ HGS∗(R)
K , lfp QR = T where

(T, F ) = S∗(R) then
4 return S∗(R);

5 else
6 return false;

We define check-model(R) to be a procedure that simply enumerates all

head-cuts in HG
S∗(R)
K to verify that S∗(R) can be extended to a model by

applying the QR until a fixed point is reached. The correctness of such an

algorithm follows directly from Proposition 5.3.4.

We now integrate all preceding algorithms into an abstract solver.

Algorithm 6: solver(R)

1 R← lfp T (R);

2 for R′ ∈ decisions(R) do
3 if solver(R′) then
4 return solver(R′);

5 if decisions(R) = ∅ and check-model(R) then
6 return S∗(R)

7 return false;

While we do not specify which head-cut from decisions(R) should be se-

lected to minimize backtracking, our algorithm can locate a model if one exists.

Lemma 5.4.3. Given a head-cut state R, if there exists a model that induces

S(R), then solver(R) will return a total partition induced by a model.

Proof. Let (T ∗, F ∗) be the total dependable partition induced by M . The

solver algorithm is simply repeated application of T (R) and decisions(R).

From Lemma 5.4.1 we know that T (R) will preserve S(R) ⊑ (T ∗, F ∗).

There is either a head-cut R′ ∈ decisions(R) such that S(R′) ⊑ (T ∗, F ∗)

or decisions(R) is empty (Lemma 5.4.2). In the case that decisions(R) is

empty, we check whether S∗(R), a total partition, can be extended to a model

and return it. Clearly, if this is the case then S∗(R) = (T ∗, F ∗).
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While more efficient than a guess-and-verify solver, Algorithm 6 does not

efficiently verify total partitions. It is well known that head-cycle free disjunc-

tive logic programs can be solved in NP [1]. We demonstrate an analogous

subclass of disjunctive MKNF knowledge bases that can be verified in polyno-

mial time.

First, we identify a property of head-cut states that enables polynomial

verification. We show that this property holds if and only if a head-cut state

coincides with an MKNF model.

Definition 5.4.3. A head-cut state R is P-verifiable if the following holds. For

every head-cut R∗ ∈
⋃︁
DR

K, where R
∗[0..i] = R[0..i] and R∗[i + 1] ̸= R[i + 1],

we have lfp QR∗ ⊇ head(R[i+ 1]).

Lemma 5.4.4. Given a dependable partition (T, F ), let R1, R2 ∈ HG
(T,F )
K

s.t. for some i, lfp QR1 ⊇ QR2
i . There exists a head-cut R3 ∈ HG(T,F )

K such

that R3[0..i] = R2[0..i] and lfp QR1 ⊇ lfp QR3.

Proof. We construct R3 by iteratively adding pairs its base, R2[0..i]. For each

r ∈ P s.t. body(r) ⊑ (QR3
j , F ) and head(r) ∩ QR3

j = ∅, we have body(r) ⊑

(lfp QR1 , F ) and thus some h ∈ head(r) ∩ lfp QR1 . We add these pairs to

R3 so that lfp QR1 ⊇ QR3
i+1 is maintained. Let R[i + 1] = {(r, h) | body(r) ⊑

(QR3
j , F ) and h ∈ head(r) ∩ lfp QR1}. 1. This process can be repeated until

there are no pairs to add and the result is a head-cut R3 ∈ HG(T,F )
K such that

lfp QR3 ⊆ lfp QR1 .

Proposition 5.4.1. If a head-cut state R is P-verifiable and S∗(R) is depend-

able, then lfp QR = T if and only if lfp QR′
= T for each R′ ∈ HGS∗(R)

K .

Proof. Because R is a head-cut state, HG
(T,F )
K is nonempty. Given that R ∈

HG
S∗(R)
K , we need only show that lfp QR = T implies ∀R∗ ∈ HGS∗R

K , lfp QR∗
.

1The pairs in R[i+1] must also be minimal w.r.t. head(R[i+1]) but this does not affect
the proof.
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We begin by defining a mapping m(x) : y:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

the smallest positive integer y s.t. QR
y+1 = QR

y x = 0

the largest positive integer y s.t. y < m(x− 1)

and ∃R∗ ∈ HG(T,F )
K , R∗[0..y] = R[0..y], and

R∗[y + 1] ̸= R[y + 1]

x > 0

0 there does not exist such an integer y

We show that for any R∗ ∈ HG
(T,F )
K , if for some i, lfp QR∗ ⊇ QR

m(i), then

lfp QR∗ ⊇ QR
m(i+1).

Let (r, h) ∈ R[m(i) + 1]. From lfp QR∗ ⊇ QR
m(i), we have body+(r) ⊆

lfp QR∗
, thus we have Kh′ ∈ head(r) such that either (r, h) ∈ R∗ or we have

that if QR∗
j ⊇ body+(r), then h′ ∈ QR∗

j . In either case, we have h′ ∈ lfp QR∗

and with the definition of m, we have a head-cut R′ such that

R[0..m(i)] = R′[0..m(i)]

R[m(i) + 1] ̸= R′[m(i) + 1]

lfp QR∗ ⊇ R′[m(i) + 1]

(Although the definition of m does not say that R′ with lfp QR∗ ⊇ R[m(i)+1]

exists, it is clear that it must by the definition of HG
(T,F )
K ). Because

R is P-verifiable and R[0..m(i)] = R′[0..m(i)], we have for each R′′ ∈

HG
(T,F )
K , R′′[m(i) + 1] = R′[m(i) + 1] that lfp QR′′ ⊇ head(R[m(i) + 1]).

Applying Lemma 5.4.4 with R∗ and R′, we obtain a head-cut R′′ such that

R′′[m(i) + 1] = R′[m(i) + 1] and lfp QR∗ ⊇ lfp QR′′
. Thus, we have

lfp QR∗ ⊇ QR
m(i)+1.

For each j s.t. m(i− 1)+ 1 < j < m(i)+ 1, we have lfp QR∗ ⊇ head(R[j]).

Note that if this were not the case, there would be multiple true atoms in the

head of some r ∈ rule(R[j]) and thus m(i− 1) would be equal to j + 1.

We have shown that for any R∗ ∈ HG(T,F )
K , if for some i, lfp QR∗ ⊇ QR

m(i),

then lfp QR∗ ⊇ QR
m(i+1). We now show inductively that lfp QR∗ ⊇ T . Let e

be the integer such that m(e−1) ̸= 0 and m(e) = 0. Clearly, lfp QR∗ ⊇ QR
m(e),

since QR
m(e) = ∅. Assume for some k, lfp QR∗ ⊇ QR

m(i), we have lfp QR∗ ⊇

QR
m(k+1) (shown above).

By the initial assumption, we have QR
m(0) = T , thus lfp QR∗ ⊆ T . We can

not have lfp QR∗ ⊂ T , thus lfp QR∗
= T
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Corollary 5.4.1. A head-cut state R is P-verifiable if and only if S∗(R) can

be extended to an MKNF model of K.

Proof. (⇒) See Proposition 5.4.1. (⇐) Under the definition of head-cut states,

we have that HG
S∗(R)
K is nonempty. If R were not P-verifiable, then we have a

head-cut R∗ ∈ HGS∗(R)
K such that lfp QR∗ ̸= T where (T, F ) = S∗(R). With

Proposition 5.3.4, S∗(R) can not be extended to an MKNF model of K.

Using the above property, we construct a verification algorithm that is

more efficient than check-model(R).

Algorithm 7: check-model2(R)

1 if HG
S∗(R)
K = ∅ then

2 return false;

3 for i← 0;QR
i ̸= QR

i−1; i← i+ 1 do

4 for R′ ∈ HGS∗(R)
K where R[0..i] = R′[0..i] and R[i+ 1] ̸= R′[i+ 1]

do
5 if head(R[i+ 1]) ̸⊆ lfp QR′

then
6 return false;

7 return true;

When check-model(R) is replaced with Algorithm 7 in the solver (Algo-

rithm 6), P-verifiable head-cut states can be quickly verified. We feel strongly

that with further complexity analysis we will be able conclude that our ab-

stract solver algorithm, when used with an empty ontology and head-cycle free

disjunctive logic program, can verify any enumerated partition in polynomial

time.

5.5 Conclusion

We have provided a new way of characterizing disjunctive MKNF models

through supporting sets. The largest set we defined, H
(T,F )
K , contains many

redundant head-cuts and is not practical for use in a solver. We defined a

smaller set, HM
(T,F )
K , where each head-cut in HM

(T,F )
K is limited to rules that

contribute to the fixpoint computation. Next we refined HM
(T,F )
K further to

obtain HP
(T,F )
K and the less precise but more tractable set HG

(T,F )
K . We pro-
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vided an abstract solver that utilizes supporting sets to enumerate partitions

and to verify models. Finally, we characterized P-verifiable head-cut states, a

property of head-cut states that is comparable to head-cycle free disjunctive

logic programs, and we give a more efficient model verification procedure that

leverages this property.

We speculate that the complexity of our abstract solver algorithm is no

worse than a guess-and-verify solver if the entailment relation of the accompa-

nying ontology can be computed in polynomial time. We also speculate that

if the ontology is empty and P is a head-cycle free disjunctive logic program

that the complexity of finding a model lies in NP . However, we leave a full

analysis of the complexity of our algorithm and the complexity of recognizing

P-verifiable head-cut states to future work. In this work, we introduce many

new structures to characterize our semantics; It would be interesting to recast

this work using more familiar fixpoint structures such as approximators in

approximation fixpoint theory [18]. In the future, we would also like to lever-

age this framework to generate conflicts so that a CDNL-based solver may be

constructed.
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Chapter 6

Conclusion

The pairing of open-world reasoning with closed-world reasoning is highly

sought after in the area of knowledge representation and reasoning. Hybrid

MKNF matches the two very elegantly but solvers that adopt modern tech-

niques, such as CDNL, have yet to be developed.

In this work, we defined unfounded sets for disjunctive hybrid MKNF

knowledge bases.. We established a definition of unfounded sets that joins

the definition from Ji et al. [11] with Leone et al.’s definition [13]. After iden-

tifying that the definitions are incompatible in certain respects, we opted for

our definition to remain more faithful to Ji et al’s definition. We obtained

similar properties as Ji et al., while compromising some of the properties ex-

hibited by Leone et al’s definition. Namely, our definition of unfounded sets

cannot be applied to arbitary partitions in order to determine whether they can

be extended to an MKNF model. We have proven upper complexity bounds

for computing our unfounded sets and have proven a new upper bound for

computing Ji et al.’s unfounded sets. Finally, we constructed well-founded

operators based on this definition and showed how these operators may be

incorporating into the solving process.

We give a fixpoint characterization for disjunctive hybrid MKNF knowledge

bases that can be applied to determine whether arbitrary partial partitions

can be extended to MKNF models. This directly tackles the limitations of our

definition of unfounded sets and also tackles the issue of a lack of syntactic

dependency between atoms for an ontology. We provide several optimizations
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to our construction that can reduce the search space required in the solving

process. We also show that from within our characterizations we can iden-

tify a class of solver states that is analogous to head-cycle free disjunctive

logic programs. Finally, we the role our constructions can play in a solver by

constructing an abstract solver that uses them.

One of the shortcomings of our definition of unfounded sets is that atoms

in T in a dependable partition cannot be unfounded atoms. As a result,

unfounded sets cannot be used to identify unjustified atoms in a dependable

partition. Our fixpoint developments remedy this by providing an alternative

model-checking approach to unfounded-free checking and can identify some

unjustified atoms for partial partitions.

The theoretical foundation we’ve provided in the thesis solves some of the

issues that must be addressed before a more efficient disjunctive hybrid MKNF

knowledge base solver can be constructed. With it, we are closer to building

more efficient solvers for disjunctive hybrid MKNFknowledge bases.
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