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Abstract 

 

“It always seems impossible until it’s done” 

– Nelson Mandela (1918-2013) 

 

Artificial sweeteners (ASs) are highly stable, man-made sugar alternatives used in 

many low and no-calorie foods and beverages. The massive consumption of ASs by the 

general population has resulted in their wide occurrence in waste and environmental waters. 

Wastewater treatment is not designed to remove ASs and therefore detection of ASs can be 

used as indicators of human impact on environmental waters. Chapter 1 includes a critical 

review of literature on ASs and re-assessment of the specificity and stability assumptions that 

led to their use as waste-water indicators. I drew attention to accurate characterizing of waste 

sources before interpreting AS impact on receiving water bodies to account for specificity 

and natural variation in occurrence.  Further, I emphasized the importance of sensitive and 

reliable analytical methods to facilitate proper utilization of ASs as WW impact indicators. 

In Chapter 2, a high-performance liquid chromatography tandem mass spectrometry 

(HPLC-MS/MS) method was developed for sensitive (ng/L) detection of two ASs, 

acesulfame (ACE) and sucralose (SUC) without sample preconcentration. The method was 

used to investigate the occurrence of ACE and SUC in 10 publicly accessible surface water 

bodies in the Thompson Region. SUC was only present at two sites while ACE was detected 

in every sample. Therefore, ACE is a better indicator for future water quality studies on 

human waste-impact in the Thompson Region surface waters.  
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In Chapter 3, I examined the application of ACE as a urine indicator in recreational 

waters. Water disinfection is essential to prevent the transmission of waterborne pathogens 

but unintentionally results in the formation of disinfection byproducts (DBPs). Nitrogenous 

compounds in urine can react with chlorine disinfectants to form irritating N-DBPs in 

swimming pools. Rapid HPLC-MS/MS analysis identified 100% occurrence of ACE in pool 

and hot tub samples from two Canadian cities. The recreational water samples contained 

significantly greater concentrations of ACE compared to the input tap water controls. 

Approximate estimates of 30 and 75 L of urine were calculated to be required to account for 

the average ACE in two pools.  

In Chapter 4, I moved to examine ASs as potential DBP precursors. Previous studies 

have identified halobenzoquinones (HBQs) as more cyto- and genotoxic in vitro than 

commonly regulated DBPs. I therefore examined a commonly used AS, aspartame, an 

aromatic dipeptide composed of phenylalanine, aspartic acid, and methanol, as a precursor 

to 2,6-dichloro-1,4-benzoquinone (DCBQ). Under controlled chloramination conditions, 

HPLC-MS/MS analysis confirmed aspartame and phenylalanine as precursors of DCBQ. 

Further, dissolving one AS package (Equal® Original) in a cup of authentic tap water 

containing residual monochloramine can increase DCBQ concentration. Additionally, the 

presence of aspartame in water was found to reduce the transformation of DCBQ to HO-

DCBQ. Boiling pre-treatment of tap water reduced residual chloramine, increased pH and 

significantly decreased the concentration of DCBQ.  

 In Chapter 5, I further examined formation of HBQs from aromatic amino acids 

(AAAs). Determining HBQ precursors is essential to reduce their formation in drinking 

water. AAAs share structural similarities and are readily found in natural water bodies. 
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DCBQ and 2,3,6-trichloro-1,4-benzoquinone (TriCBQ) formation was quantified with 

HPLC-MS/MS after chlorination of each AAA (phenylalanine, tyrosine, and tryptophan). 

Additionally, water sources high in bromide ions have been found to produce higher 

proportions of Br-DBP analogues after disinfection. Br-DBP species are more toxic than the 

corresponding chlorinated compounds. In the presence of bromide, chlorination of all AAAs 

yielded 2,6-dibromo-1,4-benzoquinone (DBBQ) in addition to DCBQ. 

This thesis investigates ASs and their relation to water quality. Ubiquitous occurrence 

of ACE in B.C. surface waters and Canadian swimming pools and hot tubs provides a 

baseline for future waste impact studies on these environmental waterbodies. The 

confirmation of aspartame and phenylalanine as DCBQ precursors under chloramination and 

AAAs as HBQ precursors under chlorination conditions warrants further investigation into 

human exposure to DBPs via consumption of beverages prepared with disinfected tap water.   
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Parts of Chapter 1 have been published as Jmaiff Blackstock, L.K.; Wawryk, N.J.P.; 

Jiang, P.; Hrudey, S.E.; Li, X.-F. Recent applications and critical evaluation of using artificial 

sweeteners to assess wastewater impact. Current Opinion in Environmental Health & 

Science. 2019, 7(2): 26-33. Copyright 2018 Elsevier. Available from: 

https://doi.org/10.1016/j.coesh.2018.09.002 . As the first author of this review I identified 

the topic concept, reviewed and annotated the recent literature, and composed the manuscript 

draft. Nicholas Wawryk and Dr. Ping Jiang contributed to the organization of the review 

outline, preparation of figures and tables, as well as editing responsibilities. Dr. Steve Hrudey 

and Dr. Xing-Fang Li, the supervisory author, participated in editing, and oversaw the 

manuscript composition and concept execution. 

Parts of Chapter 2 have been published as Jmaiff Blackstock, L.K.; Wawryk, N.J.P.; 

Jiang, P.; Hrudey, S.E.; Li, X.-F. Recent applications and critical evaluation of using artificial 

sweeteners to assess wastewater impact. Current Opinion in Environmental Health & 

Science. 2019, 7(2): 26-33. Reprinted with permission. Copyright 2018 Elsevier. 

Chapter 3 of this thesis has been published as Jmaiff Blackstock, L.K.; Wang, W.; 

Vemula, S.; Jaeger, B.T.; Li, X.-F. Sweetened swimming pools and hot tubs. Environmental 

Science & Technology Letters. 2017, 4(4): 149-153. Reprinted with permission. Copyright 

2017 American Chemical Society. Available from: 

https://pubs.acs.org/doi/abs/10.1021/acs/estlett/7b00043 . Further permission related to the 

material excerpted should be directed to the American Chemical Society (ACS). As the first 

author of this original research article, I participated in the concept development and method 

optimization and was responsible for the experimental design, collection of all British 

Columbia samples, all sample analysis, data interpretation, manuscript composition and 

editing. Wei Wang trained me to use the analytical instrumentation and interpret the 

experimental data, as well as guided me in the development of the analytical method and in 

subsequent troubleshooting throughout sample analysis. Sai Vemula was responsible for 

collection of Alberta samples and participated in sample preparation before analysis. Ben 

Jaeger was responsible for sample collection for the Alberta case study samples. As the 

https://doi.org/10.1016/j.coesh.2018.09.002
https://pubs.acs.org/doi/abs/10.1021/acs/estlett/7b00043
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supervisory author, Xing-Fang Li participated in manuscript editing as well as concept 

development and execution. Parts of Chapter 3 have been published as Zheng, Q.; Jmaiff 

Blackstock, L.K.; Deng, W.; Wang, H.; Le, X.C.; Li, X.-F. Keep swimming but stop peeing 

in the pools.  Journal of Environmental Sciences. 2017, 53: 322-325. Copyright 2017 The 

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Available 

from: https://doi.org/10.1016/j.jes.2017.03.006 . The co-authors of this commentary were 

jointly responsible for the manuscript outline, flow of ideas, written content and revisions.  
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Chapter 1 

Introduction* 

 

“Nothing in life is to be feared, it is only to be understood. 

Now is the time to understand more, so that we may fear less”  

– Marie Curie (1867-1934) 

 

1.1 Importance of Safe and Clean Water Sources 

Water quality is of utmost importance due to its pervasive use in daily life. Humans 

rely on water for hydration, food preparation, bathing, and recreational purposes. The United 

Nations (UN) “Recognizes the right to safe and clean drinking water and sanitation as a 

human right that is essential for the full enjoyment of life and all human rights”.1 Safe 

drinking water is defined by the World Health Organization (WHO) as “free from micro- 

organisms, chemical substances and radiological hazards that constitute a threat to a person’s 

health”.2 Although it is a basic human right, globally 884 million people do not have access 

to safe and clean drinking water.3 A 2009 WHO Report on Global Health Risks4 reported 

that the incidence of diarrhoeal diseases increased with inadequate access to sanitation, 

hygiene or water. Globally, unsafe water, sanitation or hygiene is the cause of most (88%) 

diarrhoeal deaths. Of which, 99% of deaths occur in developing countries and 84% are 

children.5 

 Both surface and groundwater are used as drinking water sources. In 2010, surface 

and groundwater was used by approximately 213 and 104 million U.S. citizens, respectively.6 

In Canada, 90.2% of municipal water distribution systems used surface water while 9.8% 

came from a ground water source. In 2009, 10.5% of the Canadian population obtained their 

water from private wells.7 Surface water is found in lakes, rivers and wetlands as well as 

water bound up in snow, ice and glaciers.8 Alternatively, ground water not in direct contact 

                                                 
* Parts of Chapter 1 (i.e., Sections of 1.2.2 Critical Evaluation of Indicator Characteristics) 

have been published as Jmaiff Blackstock, L.K.; Wawryk, N.J.P.; Jiang, P.; Hrudey, S.E.; Li, 

X.-F. Recent applications and critical evaluation of using artificial sweeteners to assess 

wastewater impact. Current Opinion in Environmental Health & Science. 2019, 7: 26-33. 

Reprinted with permission. Copyright 2018 Elsevier. 
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with the atmosphere.9 Beneath Earth’s surface, water can be contained in pores,10 in the form 

of soil moisture, or as water stored in aquifers.8 Aquifers are geological formations of sand, 

gravel or permeable rock that can store and transmit water8 and are protected from surges of 

natural organic matter (NOM) present in run off.11 NOM is ubiquitous in natural waters12,13 

as a complex mixture, varying both regionally and temporally, that can be impacted by the 

surrounding environment.14 For example, spring run-off causes large volumes of 

agriculturally impacted organics to be mobilized into the surrounding watershed or after 

increasingly common climate change events like wildfire followed by heavy rainfall and 

flooding over eroded soils.15 By adsorbing to sediment, pathogens can travel in water 

sources.16 

Exposure to pathogens present in untreated water can result in gastrointestinal distress 

and even in some cases death.17,18 Cryptosporidium, Giardia, and Escherichia coli (E. coli) 

O157:H7 are a few examples of pathogens19 commonly found in lakes and rivers especially 

those contaminated with animal and/or human fecal waste.17,18,20  Although the majority of 

deaths from preventable diarrheal diseases occur in developing nations, 4,16,21 fatal 

waterborne disease outbreaks continue to occur in affluent nations when major contamination 

incidents and subsequent treatment failures take place at waste and/or drinking water 

untilities.21–23 For example in 1993, sewage contaminated a drinking water source intake in 

Lake Michigan, which led to a Cryptosporidium outbreak in Milwaukee affecting an 

estimated 400 000 residents with mild to severe cases of gastrointestinal illness and 

contributed to over 50 deaths among immune compromised individuals in the following 2 

years.21,22,24,25 In 2000, heavy rainfall in Walkerton Ontario, Canada, led to minor 

Campylobacter and major E. coli O157:H7 contamination of the drinking water source by 

agricultural manure, resulting in 2300 cases and 7 deaths.21,26 Since 2000, 24 outbreaks have 

been reported in affluent nations, including Canada, the U.S., Sweden, Spain, Norway, 

Iceland, Finland, Ireland, Switzerland, Montenegro, England, Denmark, and Greece.27 Most 

recently, Campylobacter in sheep manure contaminated ground water in Havelock North, 

New Zealand causing 4 fatalities and an estimated 5500 cases of illness in 2016.27 These 

outbreaks underline the acute importance of drinking water treatment through appropriate 

disinfection. To ensure safe water requires comprehensive understanding of the potential 
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contamination sources and subsequent treatment strategies for individually unique raw water 

sources. Therefore, it is necessary to develop detection methods for monitoring water 

contaminants and investigating treatment strategies.  

 

1.2 Waste Indicators 

As urbanization continues, ground and surface water bodies are increasingly 

impacted by wastewater (WW),28 which has been contaminated with human, industrial, 

agricultural and/or animal waste,29 affecting environmental and drinking water quality. 

Waterborne pathogens, shed in untreated fecal waste, can cause gastrointestinal distress and 

even death.30 Nitrogen and phosphorus in nutrient rich WW effluent can result in 

eutrophication of aquatic environments31 leading to potentially toxic cyanobacterial blooms 

and taste and odor issues.32 Additionally, industrial and municipal wastes can contain 

environmental pollutants ranging from salts33,34 and organic chemicals35 to artificial 

sweeteners (ASs) as well as pharmaceuticals and personal care products (PPCPs).36 Pristine 

fresh water sources continue to decrease, demanding better understanding and management 

of WW and its impact on the environment and our drinking water.37 Municipal, industrial 

and some agricultural wastes are managed by WW treatment plants (WWTPs) to reduce the 

risks of discharge in surrounding water bodies. However, some anthropogenic contaminants, 

such as PPCPs and ASs, do not occur naturally in the environment and are incompletely 

removed by current WWTPs.38 Using specific indicators of WW to trace impact in surface 

and ground waters can inform future treatment strategies designed to mitigate negative WW 

impacts in aquatic environments and to ensure safe, high quality drinking water.  

1.2.1 Artificial Sweeteners as Wastewater Indicators 

An ideal indicator for tracing WW impact should: 1) be specific to its source; 2) resist 

removal by WWTPs; 3) be quantifiable with sensitive methods capable of detecting change 

in receiving waters; 4) occur in WW at concentrations higher than background environmental 

levels; and 5) undergo negligible attenuation in the receiving water body.39,40 Various 

contaminants previously used as indicators of WW contamination (e.g., PCPPs) have met a 

variety of challenges.41 For example, pharmaceuticals often occur at trace levels with varying 

occurrence in municipal WW42 because of differences in prescriptions and usage; caffeine 
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can degrade in the environment, and chloride ions are non-specific with seasonally 

confounding sources (e.g., road salts, fertilizer). Different anthropogenic contaminants, such 

as drug metabolites or X-ray contrast media, are being proposed43,44 for their prospective 

improvement on inherent limitations with known WW tracers. 

ASs have received increasing attention for both their potential and effective use as WW 

indicators45–47 in ground and surface waters. In general, ASs originate from a specific point 

source, have high occurrence in WW, generally resist removal by WWTPs and 

environmental transformation processes, and have established, sensitive detection 

methods.46,48 There are continuous advancements in understanding ASs from source to 

sample. Here, I highlight unique applications using ASs to assess WW impact on different 

water bodies. Additionally, I identify key AS characteristics evaluated in recent literature to 

be considered in future investigations.  

1.2.2 Critical Evaluation of Indicator Characteristics 

1.2.2.1 Specificity of ASs to WW  

ASs are widely consumed49 because of their pervasive use in processed foods, 

beverages, and pharmaceuticals. In the United States, 25% of children and 41% of adults 

reported consuming low-/no-calorie sweeteners.50 ASs can be classified as either nutritive 

(e.g., fructose, isomalt, malitol, xylitol) or non-nutritive (i.e., acesulfame (ACE), sucralose 

(SUC), cyclamate (CYC), and saccharin (SAC); Figure 1.1) based on their ability to be 

metabolized and consequential caloric value.51 Nutritive, low-calorie sweeteners, including 

sugar alcohols (e.g., steviol, malitol, or xylitol) or peptide-based compounds (e.g., aspartame 

or thaumatin) are broken down during digestion52,53 and therefore are not introduced into 

WW. Due to the metabolism of these low-calorie nutritive sweeteners, they do not meet the 

criteria of effective waste indicators. Non-nutritive sweeteners are not metabolized, excreted 

unchanged in urine and/or feces (ACE: urine >99%; CYC: mixed urine and feces, SAC: urine 

95% and feces 5%; SUC: 15% urine, 85% feces),51,52,54 and inevitably transported to 

municipal WWTPs. Since ASs are not naturally occurring in the environment, their 

anthropogenic specificity is ideal to trace domestic WW. A major change in AS consumption, 

leading to the cessation of use in a population may impact its ability to trace WWTP effluents, 

but could still be used to monitor movement of legacy waste sources (i.e., septic tanks or 
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landfill leachate). However, a recent review of the global intake of low- and no-calories 

sweeteners found no evidence of a shift in artificial sweetener intake over time.49  

Municipal WW is not the exclusive source of ASs in the environment. Landfill 

leachate can contain non-nutritive ASs that may contaminate ground and surface water.55 

Furthermore, in addition to human consumption, ASs are also used in agricultural operations. 

SAC, CYC, and ACE have been reported as components of livestock (i.e., piglet) feed in 

Europe56 and China.57 Ma et al. reported high concentrations of ASs in soils fertilized with 

AS-rich pig manure. Yet, this study found that AS concentrations decreased with soil depth, 

indicating a lower potential for ASs to contaminate groundwater.57 While domestic WW is 

the major source of AS contamination in environmental waters, taking note of nearby 

landfills and agricultural livestock operations can eliminate potential confounders.  

 

 

Figure 1.1 Structures of non-nutritive artificial sweeteners: ACE, SUC, CYC, and SAC; 

commonly investigated as human waste indicators in environmental waters 
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1.2.2.2 Removal of ASs by WWTPs 

When a contaminant is eliminated or significantly removed by a WWTP, it is likely 

not detectable in water samples, thereby restricting WW impact assessment viability. While 

SAC and CYC are consistently observed to be almost completely removed,45,58 previous 

studies found SUC and ACE to be stable throughout WW treatment processes.59 However, 

recent research development has provided evidence that ACE may be susceptible to 

biologically mediated degradation (Table 1.1).58,60–64 Interestingly, Kahl et al. suggested that 

the increased removal of ACE through WWTPs could be due to an evolution in the capability 

of microbial degradation processes63 and indicated the microbial families: 

Phyllobacteriaceae, Methylophilaceae, and Bradyrhizobiaceae, as being involved in ACE 

metabolization or degradation.64 Recent studies have also investigated the effects of ultra-

violet (UV) irradiation on the fate of ASs.65–69 Perkola et al. found that UV irradiation 

degraded ACE, SUC, SAC, and CYC, with ACE degrading three orders of magnitude faster 

than the other ASs.69 

Overall, AS concentrations can be altered by different WWTP processes. Therefore, 

negligible removal of ACE or SUC from municipal WW influent should not be assumed, and 

concentrations of ASs in effluent must be used to accurately assess WW impacts 

downstream. Although removal of ASs by water treatment processes is evident, as long as 

the concentration of ASs in WW effluent is enough to be detectable, ASs could be utilized 

as WW impact markers in drinking water sources. 
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Table 1.1 Selected examples reporting evidence of ACE removal by WWTPs through 

biologically mediated degradation in recent literature 

Treatment process Experimental 

Scale 

Percent 

Removal  

Notes Reference 

biodegradation 5 WW 

treatment plants 

13-28% - denitrification under anoxic 

conditions yielded the highest 

removal efficiency for ACE 

Li et al. 

201858 

biodegradation 9 WW 

treatment plants 

>85% -indicated three microbial 

families commonly found in 

soils as being involved in ACE 

metabolization or degradation 

- increased removal of ACE 

could be due to an evolution in 

the efficiency of microbial 

degradation processes 

Kahl et al. 

201864 

biodegradation 13 WW 

treatment plants 

59%-97% -degradation of ACE occurred 

in both activated sludge and 

sand filters under oxic and 

denitrifying conditions but was 

not removed under anaerobic 

conditions in the absence of 

both dissolved oxygen and 

nitrate 

Castronovo 

et al. 201762 

3-step treatment 

including: physical 

removal of solids, 

biological processing, 

and chlorine-based 

disinfection  

1 WW 

treatment plant 

>90% -biological process includes 

four oxidation ditches with an 

aerobic and anaerobic zone 

followed by clarifiers 

Cardenas et 

al. 201660 

activated sludge with 

oxic or anaerobic post 

treatment  

1 WW 

treatment plant 

and laboratory 

scale  

>60% -removal of micropollutants in 

real municipal wastewater 

samples was investigated in 12-

L sequencing batch reactors 

Falas et al. 

201661 

 

1.2.2.3 Methods for Determination of ASs 

An indicator of WW contamination should be detectable by analytical methods 

capable of quantifying minor changes in concentration at realistic environmental 

concentrations. An in-depth overview of physiochemical properties and analytical methods 

for ASs has been compiled by Lange et al.59 High performance liquid chromatography 

(HPLC) or ion chromatography (IC) separation coupled with electrospray ionization mass 

spectrometry (ESI-MS) detection are sensitive and reliable technologies commonly used to 

determine ASs (Table 1.2). The IC-MS method provides AS detection limits at sub to low 

µg/L levels.46 Incorporating large volume injection apparatus70 or solid phase extraction 

(SPE) preconcentration48 with LC-MS have lowered detection limits down to sub to low 
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ng/L. Deuterated internal standards (i.e., acesulfame-d4, sucralose-d6, saccharin-d4, 

cyclamate-d10) are often used as controls for accurate interpretations of a specific signal. 

Typically, SPE is used to both clean up complex WW samples and to pre-concentrate the 

analytes. However, tedious sample preparation or manual injection steps limit sample 

throughput desired for routine monitoring. Overall, the highly sensitive MS technology is 

proven to be capable of detecting trace concentrations of ASs in different water sources. 

 

 

Table 1.2 Selected examples summarizing commonly used analytical methods for the 

determination of ASs in environmental samples 
 

Analyte LOD (ng/L) Analytical Methodology References 

ACE SUC CYC SAC Sample 

Preparation 

Separation Detection 

8 21 3 5000 No Sample Prep IC ESI MRM Van Stempvoort et 

al. 201347 

Snider et al. 

201777 

0.3 10 0.6 1 SPE HPLC Z-spray ESI 

MRM 

Tran et al. 201348 

Yang et al. 201842 

10 200 20 30 2 stacked SPE HPLC API SRM Buerge et al. 

200945 

0.2 5 N/A N/A 500-µL large 

volume LC injection 

HPLC ESI MRM Wu et al. 2014254 

0.2 N/A N/A N/A No Sample Prep HPLC ESI MRM Blackstock et al. 

201778 

N/A 200 N/A N/A Online SPE HPLC ESI MRM Prescott et al. 

201771 

3 N/A N/A N/A No Sample Prep HPLC MS/MS Kahl et al. 201864 

10 50 10 10 SPE UPLC ESI MRM Li et al. 201858 

0.28 4.2 0.52 0.63 SPE LC ESI MRM Ma et al. 2017255 

0.3 N/A 0.3 N/A SPE HPLC ESI-MS/MS Zirlewagan et al. 

2016256 

Range 0.015-23 ng/L SPE HPLC MS Watanabe et al. 

201672 

 

 

1.2.2.4 Occurrence of ASs in WW and Environmental Water Bodies  

To use ASs as quantitative tracers of WW sources, the concentration and profile of 

ASs must be well characterized both in the monitoring environment as well as at each source. 

ASs have been found in municipal WWTPs globally, but because both geographical and 
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temporal variation have been identified, the concentration in any particular WW source 

cannot be assumed. WW studies in different countries have reported varying AS 

concentration profiles.36 In some cases ACE and SUC occur more frequently and in greater 

concentrations than CYC and SAC in North America.46,47,71 Whereas in other studies, CYC 

and SAC have been detected more frequently in higher proportions in some samples from 

Asian countries.41,58,72 Differences in ASs approved by regulatory agencies and subsequent 

consumption habits around the world likely influence this variation.49,73–75 Temporal 

variation in WW AS concentrations have been reported in multiple countries. In Indian 

WWTP influent, daily concentration spikes of ACE in the morning and SUC in the evening 

corresponded with mealtimes.76 Seasonally, concentrations of ASs, specifically CYC and 

ACE were found to decrease in untreated Canadian domestic septic WW during summer 

months.77 Similarly, in China, concentrations of ACE, SUC, CYC, and SAC in all five 

WWTP influents studied were greater in winter.58 Therefore, care should be taken to ensure 

that the concentrations of ASs being used to assess impact on affected waterbodies reflect 

the source and are consistent with the time environmental samples are collected.  

An indicator of WW impact is effective only if it is detectable in receiving water 

bodies. ASs have been classified as environmental contaminants59 and are continually being 

reported in new locations.42,70,72,76,78 For the first time, ASs were reported in South Asian 

surface and ground waters.72 ACE, SUC, SAC, and CYC were found in surface waters at the 

highest concentrations in the Philippines, followed by Vietnam and Myanmar. The highly 

variable concentrations of ACE observed along closely spaced groundwater sample sites in 

Vietnam indicated contamination from domestic septic tanks.72 Furthermore, AS 

concentrations have been frequently detected at concentrations similar to, or greater than, 

other proposed WW indicators (i.e., PCPPs).36,41,44,47,48,76 In South China, of 93 PCPPs and 

five ASs investigated, the three compounds detected in groundwater with highest occurrence 

and concentration were ACE, CYC, and SUC.42 In surface waters, SUC was proposed as the 

most effective indicator of WW due to its frequent occurrence. Importantly, Yang et al. noted 

that temporal trends in surface water concentrations may be observed in regions with distinct 

wet and dry precipitation seasons. ASs should still serve as effective WW indicators even 
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with ongoing use and dispersal through the environment, as long as they continue to occur in 

WW at concentrations higher than background environmental levels. 

 

1.3 Drinking Water Treatment 

In 2007, 95% of Canadians had access to treated municipal water supplies. Of those 

households, 59% reported to drank water from the tap.79 Providing clean and safe drinking 

water of high quality is an ever changing and complex issue for government agencies and 

drinking water treatment plants (DWTPs). Disinfection is essential to prevent the 

transmission of waterborne pathogens80. The U.S. Environmental Protection Agency (EPA) 

requires that the concentration of viruses and bacteria are reduced by a factor of 10000. 

However, disinfectant dosage and contact time varies depending on the mixing efficiency 

and the number of pathogens present in the source input water.81 Approximately 57000 of 

the 63000 total DWTPs in Canada and the United States rely on chlorine chemistry for their 

operations.81 Chlorine is inexpensive, effective, and readily available.82 Chlorine acts as a 

moderate oxidizer.83 The lower the pH of the chlorine, the more effective it is at disinfection. 

Chloramines are often employed as a secondary disinfection step because they provide 

longer-lasting residual protection against pathogens.  

 Before disinfection, DWTPs implement a variety of strategies to remove NOM from 

source water to limit DBP formation.14,84 A coagulant can be added to source water to remove 

particulate NOM by colloid destabilization and dissolved organic matter (DOM) by 

precipitation or coprecipitation.14 Flocculation is the aggregation to combine small particles 

together into larger particles called ‘flocs’.83 Sedimentation occurs when the flocculated 

particles settle out of the water over time.85 Filtration physically removes solid material from 

water by trapping particles in a filtering medium until the medium is saturated and must be 

cleaned or replaced.83 Granular and powdered activated carbon (GAC and PAC) can remove 

dissolved NOM through adsorption.14  However, current treatment technologies cannot 

completely remove NOM from source water. Inevitably, a portion of NOM from the raw 

drinking water source will be present during disinfection. 
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1.4 Drinking Water Disinfection Byproducts 

The disinfectants used to inactivate pathogens react unintentionally with NOM 

present in source water. This leads to the consequential formation of disinfection byproducts 

(DBPs).86 The nature and concentration of DBPs formed is dependent on the composition of 

source water as well as the disinfection conditions.87 Water consumption is a major route of 

exposure to DBPs. Canadian adults reported drinking approximately 970 – 1360 mL of water 

each day.88  Similarly, plain water and beverages made up 33% (i.e., 1056 mL) and 48% (i.e., 

1536 mL) of the approximate 3.2 L of total water consumed daily by American adults, 

respectively.89 Epidemiological studies have consistently identified a potential association 

between long-term chlorinated water consumption and increased bladder cancer risk.86,90,91 

Bladder cancer is the fourth most common cancer in men and three times more likely to occur 

in men compared to women in the United States.92 Bladder cancer risk factors aside from 

DBPs,90,93–96 include smoking,90,97 obesity,97 and arsenic in drinking water.98,99 Additional 

detrimental health effects associated with DBP exposure that have been identified from 

population level studies, albeit less consistently than bladder cancer, include adverse 

pregnancy outcomes such as miscarriages, preterm delivery, and low birth weight.100,101  

Mixed evidence for association with colon and rectal cancers has been inconclusive.101,102 

In efforts to reduce overall DBP exposure, Health Canada regulates the maximum 

acceptable concentration (MAC) for several organic and inorganic DBPs in drinking 

water.103 These include total trihalomethanes (THM4; includes chloroform, bromoform, 

chlorodibromomethane, and bromodichloromethane): 0.100 mg/L, total haloacetic acids 

(HAA5; includes monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, 

monobromoacetic acid, and dibromoacetic acid): 0.08 mg/L, and N-nitrosodimethylamine 

(NDMA): 0.00004 mg/L. Inorganic DBPs regulated by Health Canada include bromate (0.01 

mg/L), chlorate (1 mg/L) and chlorite (1 mg/L). The U.S. EPA has similar guidelines104 with 

the exception of NDMA, which is regulated by some, but not all States and is currently 

included on the fourth Contaminant Candidate List (CCL4).38,105 

 The limited suite of DBPs with maximum contaminant limits in drinking water, 

regulated by the U.S. EPA, Health Canada, and similar agencies in other regions, do not have 

the specific toxicity required to account for the observed bladder cancer risk.91,93 The 
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regulation of THM4 and HAA5 is intended to serve as indicators of exposure to complex 

mixtures of DBPs present in drinking waters.87,91,104 However, due to differences in formation 

conditions for various DBP classes, it is possible that the toxicological drivers associated 

with the increased adverse health effects are not being accounted for when only the regulated 

DBPs are considered.91 Over 700 halogenated DBPs have been reported in drinking 

water,106,107 however approximately 70% of total organic halogenated (TOX) species formed 

after disinfection remain unknown.108  

 Subsequently, research focus has shifted to identify unknown and unregulated DBPs, 

and their precursors, of toxicological relevance to better understand the potential increased 

risks observed in epidemiological studies. Interestingly, in vitro109,110 and in vivo111 studies 

have identified a trend in the toxicity of halogenated DBPs: iodinated > brominated > 

chlorinated. Source water containing high levels of bromide and iodide can produce higher 

proportions of the more toxic Br- and I-DBP analogs.112,113 New DBP compounds, identified 

in novel sample types are continuously be reported. Furthermore, investigations continue to 

determine their precursors and strategies to reduce their formation and subsequent 

exposure.107,114 

 

1.5 Recreational Water Disinfection Byproducts 

Recreational water bodies (i.e., swimming pools and hot tubs) shared by the public 

can lead to transmission of waterborne pathogens. Swimming pools have been implicated in 

over 11000 cases of illness and over 70 cases of waterborne outbreaks between 1971 and 

2000.115 Various disinfection strategies are employed to keep recreational waters safe from 

pathogens. Chlorination based disinfectants, including chlorine gas (Cl2), sodium 

hypochlorite (NaOCl), and calcium hypochlorite (Ca(Ocl)2) are most commonly used.116,117 

Hot tubs are often managed with bromine based disinfectants117 due to greater stability under 

high temperature conditions compared to chlorine.118 Outdoor pools utilize halogenated 

organic solvents such as trichloroisocyanuric acid, dichloroisocyanuric acid, and 

bromochlorodimethylhydantoin to stabilize chlorine under the intense UV exposure from 

sunlight.119,120 Finally, alternate non-halogenated disinfectants such as UV or ozone have 

been combined with traditional disinfectants (e.g., UV + chlorine) to minimize the formation 
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of DBPs while also providing a disinfectant residual.121,122 Over the past 20 years, the 

majority of DBP research has focused on drinking water compared to recreational waters.117 

When swimming, many different contaminants can be introduced into swimming 

pool and hot tub waters including: personal care products (e.g., lotions, sunscreens, shampoos 

and conditioners), bodily fluids (e.g., sweat and excreta (i.e., urine)123) as well as organics in 

outdoor pools (e.g., leaf litter, dirt).117,124 Contaminants in recreational waters can reach high 

concentrations due to relatively low dilution factor coupled with recirculation of existing 

water, with freshwater input only to replace evaporation and splash out.117,125,126 A 60 second 

shower has been shown to significantly reduce the amount of pollutants introduced into 

swimming pools.127 Additionally, some bodily fluids are an avoidable introduction into a 

shared water body. Several studies have approximated the amount of urine swimmers 

contribute to swimming pool waters. The reports have similar volumes ranging from 25-1760 

mL/bather).128–131 High volumes of sweat, ranging from 200-1000 mL/bather128,129 released 

at rates from 0.04- 0.8 L/m2/h132 led to actual pool concentrations approximated as roughly 

200 mL of sweat and 50 mL/m2 of swimming pool water.133 

DBP concentrations detected in recreational waters are much greater than drinking 

water,117,134–136 leading to higher potential exposure levels.137,138 Three major exposure 

pathways to DBPs through swimming include inhalation of volatile compounds or 

aerosolized solutes, dermal adsorption, and oral ingestion of swimming pool water.117 The 

physiochemical properties of DBPs impact their major route of exposure. The volatility and 

skin permeability of HAAs was found to decrease as polarity increased139. HAAs can be 

present on aerosols140 with concentrations up to approximately 65 µg/m3 in indoor swimming 

pool air.141 Inhalation and dermal absorption are the major exposure routes of highly volatile 

THMs.95,142 Furthermore, the mutagenicity of total extracted halogenated organics is greatest 

in hot tub waters than swimming pool waters with both significantly higher than 

corresponding tap water controls143. Individual nitrogen containing components in urine and 

sweat such as urea, ammonia, amino acids and creatinine, have been found to react with 

disinfectants present in swimming pools to form DBPs including trihalomethanes, haloacetic 

acids, haloamines and halonitromethanes.144,145 Exposure to volatile DBPs, specifically 
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trichloramine, in in-door swimming facilities can lead to eye and respiratory irritation146–148 

and has been linked to the development of occupational asthma.149 

Unlike drinking water, where the maximum level of specific DBPs have been 

regulated consistently internationally by various health organizations (e.g., The WHO,2 U.S. 

EPA,104 and Health Canada150) the regulation of DBPs in swimming pool waters is limited 

to a few European countries117. Germany151, Switzerland, and Denmark136 require THMs or 

chloroform to stay below MCLs less than 50 µg/L, whereas France,152 Belgium, Finland and 

the U.K. limit THMs to less than 100 µg/L.136 The wide diversity and high concentration of 

DBPs in recreational waters necessitates increased research focus on both comprehensive 

detection methods and innovative strategies to monitor overall exposure. Additionally, 

efforts to reduce the introduction of additional organic materials (e.g., bodily fluids, PCPPs, 

dirt, etc.) into recreational waters through appropriate swimmer hygiene practices would 

limit the total DBP precursors available to react with necessary disinfectants. 

 

1.6 Food Preparation Disinfection Byproducts 

Food is one of the greatest pathogen exposure routes in the U.S. resulting in an 

estimated 76 million foodborne illnesses, including 325000 hospitalizations and 5000 deaths, 

per year.153 DBP formation during food processing and preparation is an emerging field of 

significance as an additional, non-conventional route of human exposure.154 The majority of 

U.S. foodborne pathogen outbreaks are associated with leafy vegetables.155 Consequently, 

processed vegetables often undergo disinfection wash using a high concentration 

disinfectant,156,157 resulting in the formation of DBPs.158 In simulated lettuce wash with 

chlorinated water, Shen et al. reported high concentrations of THM and HAA formation,159 

while Lee and Huang detected formation of THMs, HAAs, C- and N-DBPs (including 

nitrosamines), and aldehydes in their investigation of hypochlorite and peracetic acid 

sanitizers.160 Recent reports have identified 3-chloro- and 3,5-dichlorotyrosine, as well as 

volatile DBPs in chlorinated spinach and lettuce wash water at concentrations greater than 

disinfected drinking water.161 THMs have been found in foods by effect of the accumulation 

and sorption from packaging materials, from cleaners and disinfectants used on processing 

equipment, in addition to formation during processing rinses and washes.162 



 15 

DBPs can also be formed in foods and beverages prepared with disinfected water. 

Residual chlorine (e.g., from hypochlorite (HOCl) or monochloramine (NH2Cl)) are often 

added to finished drinking water to ensure that potential contamination does not occur in the 

distribution system to maintain water quality before it reaches the municipal consumer’s 

tap.103,104,163 The residual chlorine, up to 4 mg/L in American, or 2 mg/L in Canadian tap 

water can react with organics during food162 and beverage preparation.154,164,165 Coffee and 

teas are regularly consumed in North America,166,167 and around the world.168,169 Wu et al. 

identified elevated TOX formation in instant teas in 1998.164 A few studies have since 

determined DBPs in teas and coffees including THMs,162,170,171 and recently 

halobenzoquinones (HBQs).172 Along with the conventionally studied drinking water 

DBPs,154 Pan et al. determined the formation of emerging iodinated-DBPs (I-DBPs) in 

simulated chlor(am)ine . Cook water, and highlighted hypoiodous acid production with the 

addition of iodine from iodized table salt.173 More recently, Zhang et al. detected and 

characterized 25 brominated-DBPs (Br-DBPs) in cook water prepared with a variety of 

edible salts.174 Toxicity attributed to Br-DBPs decreased after cooking preparations 

(boiling).174 In contrast, Pan et al. reported an increase in polar phenolic I-DBPs with 

increasing cooking temperature.173 Pre-treatment of tap water by boiling reduces residual 

chloramine concentration175 and has been identified as a simple strategy to reduce volatile 

DBPs.57,176   

 Huang and Batterman reviewed the occurrence of THMs identified in various 

prepackaged foodstuffs (e.g., selected baked goods, grains, caned sodas, meats and cooked 

vegetable dishes, and dairy items).162 Additionally, Gallego and Jose Cardador detailed 

available reports of THM and HAA occurrence in commercial beverages (e.g., pure and 

concentrated juices, nectars, and sodas).154 Interestingly, the addition of common food 

additives, ascorbate and sodium carbonate, were found to enhance the reduction of TOX in 

tap water by an additional 28% and 36% compared to boiling alone.177 

1.7 Halobenzoquinone Disinfection Byproducts 

Halobenzoquinones (HBQs; Figure 1.2) are a class of compounds structurally 

defined as a quinone, an unsaturated six-membered, carbon ring with two carbonyl groups 

attached either at the 1,2- (i.e., ortho) or 1,4- (i.e., para) positions, with one or more halogen 
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species (i.e., chlorine, bromine, or iodine) bound on the remaining carbon atoms. HBQs have 

been identified as unregulated DBPs of toxicological importance that may contribute to the 

epidemiologically observed adverse health outcomes.96 Quantitative structure toxicity 

relationship (QSTR) analysis predicted HBQs to be plausible bladder carcinogens.96,178  

Some HBQs are up to 1000x more cytotoxic than the regulated DBPs (i.e., THM4, 

HAA5).110,179,180 Since HBQs were first detected in treated tap water as DBPs in 2010,181,182 

they have remained a relevant group of compounds garnering emerging interest with 

developments in occurrence and toxicity continuously reported in the literature.   

HBQs are not stable, they can undergo oxidation reactions in water to form more 

stable hydroxyl-halo-benzoquinones (OH-HBQs).179 In neutral (i.e., pH 7) aqueous solution, 

2,6-DCBQ has a half-life of 6-7 hours.182 The major transformation product was identified 

as is 3-hydroxy-2,6-dichloro-1,4-benzoquinone (OH-DCBQ). Like 2,6-DCBQ, 2,6-DBBQ, 

TriCBQ, and DCMBQ were all found to transform to their respective hydroxylated 

transformation products (i.e  3-hydroxy-2,6-dibromo-1,4-benzoquinone (OH-DBBQ), 3-

hydroxy-2,5,6-trichloro-1,4-benzoquinone (OH-TriCBQ), and 3-hydroxy-2,6-dichloro-5-

methyl-1,4-benzoquinone (OH-DCMBQ).179 After reaching equilibrium, the OH-HBQ 

transformation product was stable for over 60 hours. Decreasing the sample pH (e.g., with 

formic acid) preserves HBQs in solution.179,181,183 HBQs also readily transform into HO-

HBQs under UV-irradiation.184 Based on existing literature on BQ phototransformation,185 

Zhao et al. proposed the HBQ UV-transformation pathway to include the photo decay of 

HBQ to halobenzenetriol followed by sequential reaction steps to form hydroxylated 

quinone, and hydroxy-hydroquinone. Additional extended UV treatment results in OH-HBQ 

dehalogenation.184 The rapid transformation of HBQs to OH-HBQs has been supported by 

subsequent studies in multiple research groups.183,186–188 Mohan indicated that with 

increasing pH, [OH-] catalyzes DCBQ degradation in a first order rate (i.e., > pH 7), and 

estimated the second order rate constant to be 156M-1s-1.189 
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Figure 1.2 General and commonly occurring halobenzoquinone structures  

 

1.7.1 Known Toxicity of HBQs 

1,4-Benzoquinone (BQ) is a thoroughly studied metabolite of benzene. Two major 

molecular pathways have been found to account for the toxicity induced by 1,4-BQ exposure. 

In the first pathway, 1,4-BQ produces reactive oxygen species (ROS) causing oxidative 

damage to cellular DNA, proteins, and/or lipids. Alternatively, the second pathway occurs 

when 1,4-BQ covalently bonds to cellular macromolecules like DNA or protein.190,191 

Oxidative stress can contribute to the development of cancer.192,193 ROS can be produced in 

cells from both endogenous and exogenous sources. If ROS species are not counteracted by 

cellular mechanisms, oxidative stress may lead to DNA, protein or lipid damage, and cell 

death, or chromosome instability, genetic mutation and even cancer.192,194  When an 

exogenous substrate can interact irreversibly (i.e., covalently bound) with proteins or nucleic 

acids either directly or through metabolic activation, it can alter or inhibit the function of the 

macromolecule.195,196 HBQs are structurally similar compounds to 1,4-BQ. Toxicological 
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assays, both in vitro and more recently in vivo, continue to provide evidence that HBQs 

induce cytotoxic oxidative stress and genotoxic effects after exposure.  

 Acute cytotoxic effects have been observed in different cell lines after being exposed 

to various concentrations of HBQs. IC50 values were determined in Chinese Hamster Ovary 

(CHO) cells179 and human urinary bladder cancer (T24) cells.197 IC50 represents the 

concentration in which the cell index is reduced to 50% of the control. In CHO cells, the 72-

hour IC50 values for HBQs ranged from 15.9 – 72.9 µM (i.e., 2,6-dichloro-3-methyl-1,4-

benzoquinone (DCMBQ) < 2,6-dibromo-1,4-benzoquinone (DBBQ) < 2,6-dichloro-1,4-

benzoquinone (DCBQ) < 2,3,6-trichloro-1,4-benzoquinone (TriCBQ)).179 Comparatively 

72-hour IC50 values for regulated DBPs are much higher (i.e., less cytotoxic); THMs ranged 

from 3.96-11.5 mM and HAAs ranged from 8.90 µM to 17.52 mM.110 In T24 cells, IC50 

values for HBQs after 24 hours ranged from 94.5-142.0 µM (DCBQ < DMCBQ < DBBQ < 

TriCBQ)197 which are greater than the 24 hour IC50 values in CHO cells (i.e., 11.4 – 45.5 

µM).197  

Oxidative stress has been observed in vitro after exposure to HBQs. In T24 cells, 

ROS concentration significantly increased with HBQ concentration dose. HBQ cytotoxicity 

was significantly reduced with the addition of an oxidant scavenger, N-acetylcysteine 

(NAC),197 which acts to sequester ROS in vitro.198 Glutathione (GSH) plays a key role in the 

cellular detoxification of HBQs.199,200 GSH is an endogenous tripeptide thiol and GSH 

associated metabolism is a primary intracellular defense against agents that produce 

oxidative stress.  GSH is able to detoxify the cell by scavenging free radicals, reducing 

peroxidases, and conjugating with electrophilic compounds.201 The viability of T24 bladder 

cancer cells was determined when treated with DCBQ or when treated with DCBQ and 

buthionine sulfoximine (BSO).199 BSO binds irreversibly with glutamate cysteine synthetase, 

one of the enzymes responsible for the cellular production of GSH.202 Cell viability decreased 

when glutathione production in the cell was inhibited by BSO. This indicates that GSH is 

essential sin detoxifying the cell from the toxicant. These results were verified when GSH 

was added exogenously the viability of the T24 cells increased, confirming that GSH is 

necessary for the detoxification of HBQs. 
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Li et al. proposed a model for the detoxification;199 when low concentrations of HBQs 

enter the cell, cellular ROS are produced leading to the depletion of GSH resulting in 

oxidative stress. This results in the activation of genes that lead to the induction of glutathione 

S-transferase199, an enzyme that is responsible for catalyzing the conjunction reaction 

between GSH and HBQs201. To determine the concentration dependent mechanism of GSH 

reduction after HBQ exposure, Wang et al. studied GSH conjugation with HBQs in a human 

liver carcinoma cell line (HepG2).200 Intracellular GSH depletion was attributed to the direct 

conjugation of GSH to HBQs as well as the oxidation of GSH to glutathione disulfide.200 For 

example, 11 different conjugates between GSH with 2,6-DCBQ were identified including 

mono-sulfur-glutathionyl-benzoquinone (mono-SG-BQ), di-SG-BQ, tri-SG-BQ, and tetra-

SG-BQ conjugates and isomers. Five of which were confirmed to form in vitro when HepG2 

cells were treated with HBQs. 

Nrf2, the nuclear factor (erythroid derived 2)-like 2, is a transcription factor that 

regulates the expression of genes through one of the primary signaling pathways that protects 

cells against oxidative stress.180 Nrf2 promotes the expression of antioxidant response 

element (ARE)-mediated antioxidative and detoxifying enzymes. Nrf2-deficient mice have 

shown significantly increased susceptibility to chemical-induced urinary bladder cancer 

compared to wildtype mice.203 HBQ exposure was found to induce significant response from 

the Nrf2 pathway in both human uroepithelial (SV-HUC-1) cells204 and epithelial colorectal 

adenocarcinoma (Caco-2) cells.180  

The p53 signaling pathway is critical in cellular differentiation and tumor 

suppression. The p53 tumor suppressor gene preserves the stability of the genome by 

inducing cell cycle arrest, senescence, and apoptosis. It is activated in response to various 

events including oxidative stress and DNA damage.205,206 When Caco-2 cells were exposed 

to HBQs, increased p53 pathway activity was observed.180 Additionally, p53 protein 

expression was significantly increased in CHO cells treated with several HBQs (i.e., 2,5-

dibromo-1,4-benzoquinone (2,5-DBBQ), 2,3-diiodo-1,4-benzoquinone (2,3-DIBQ), DCBQ 

and 2,5-DCBQ) after 24 hours.207 Here, Li et al. compared isomeric structural effects on 

toxicity and found p53 protein levels were approximately twice as high in 2,5-HBQ treated 

cells compared to 2,6- isomers.  
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There is evidence that HBQs are capable of genotoxic effects in cells. A genotoxin is 

a chemical or agent that can cause DNA or chromosomal damage. Free radicals in cells can 

potentially act as genotoxins208 resulting in damage to DNA, lipids and proteins and may 

eventually lead to cell death either by necrosis or apoptosis.209 In somatic cells, DNA damage 

may lead to malignant transformation: cancer.210 8-Hydroxy-deoxyguanosine (8-OhdG) is a 

nucleotide biomarker that is indicative of deoxyguanosine oxidation and is a known sensitive 

measure of DNA damage.211 Point mutations in nuclear DNA can be induced by 8-

OhdG.212,213 A foundational bench scale experiment, not conducted in a cell line, found that 

8-OhdG was formed in double stranded DNA in the presence of DCBQ and H2O2.
208 T24 

cells treated with DCBQ showed significantly higher concentrations of 8-OhdG than the 

control group.197 More recently, Xu et al. found 8-OhdG increased 1.4, 3.2, 8.8, and 9.2 times 

in T24 cells after treatment with 50 µM tetrabromo-1,4-benzoquinone (TBBQ), tetrachloro-

1,4-benzoquinone (TCBQ), 2,6-DCBQ and 2,5-DCBQ, respectively.214 Contrary to the 

structural trend observed for p53 protein levels, in CHO cells, 2,6-DCBQ generated nearly 

double the 8-OhdG in vitro compared to the 2,5-DCBQ isomer.207 Although 5-

Hydroxymethyl-2’-deoxycytidine (5HmdC) is not a biomarker of nuclear DNA damage, it is 

capable of affecting the binding of transcription factors, which can result in errors in 

subsequent gene expression.215 In a bench scale experiment, the nucleotide 5-

methyldeoxycytidine (5mdC) was oxidized to 5HmdC in the presence of at least 0.1 mM 2,6-

DCBQ and H2O2.
216  

 Stem cells (SCs) are an emerging model used to characterize the toxicity of 

environmental contaminants and evaluate their potential developmental effects.217,218 In 

2015, Li et al. reported that TCBQ significantly induced apoptosis in mouse embryonic SCs 

in a concentration dependent matter.219 A recent study investigated the effects of HBQs on 

human neural stem cells (hNSCs). It was found that 2,6-DCBQ and 2,6-DBBQ influenced 

the proliferation of hNSCs. After HBQ exposure, a significantly increased proportion were 

observed in S-phase.220 Increased p53 protein expression can activate cell cycle arrest.221 

Furthermore, DNA damage checkpoints during S-phase delay cell cycle progression to repair 

defects.222   



 21 

There are several factors that can introduce uncertainty into the interpretation of 

toxicological assays. A recent in vitro toxicity assessment of HBQs by Hung et al. 

investigated the stability of HBQs in cell culture media and the intra cellular ROS generated 

by HBQs in normal human colon cells (CCD 841 CoN) and human liver cancer cells 

(HepG2).186 The rate of DCBQ transformation was investigated for different cell culture 

media (i.e., HBSS, EMEM, and MEM) and DCBQ exhibited enhanced reactivity in all media 

types compared to water. DCBQ transformation was accelerated in EMEM and MEM 

compared to water and HBSS.186 The results demonstrate that previous in vitro toxicity 

assays may have underestimated the cytotoxicity of HBQs by unintentionally evaluating 

transformed HBQs which are less toxic.186  

Many of the HBQ induced cyto- and genotoxic effects observed in vitro have been 

corroborated in recent in vivo research. Zebrafish are advantageous for their rapid lifecycle 

and development, high number of offspring, transparency of embryos, as well as ease of 

laboratory maintenance and experimental manipulation. Zebrafish embryos are an 

established model used to evaluate developmental toxicity for environmental pollutants. 223 

Recently, oxidative stress and developmental toxicity in zebrafish embryos was investigated 

after exposure to HBQs.224 The LC50 values for HBQs (2,5-DCBQ, 2,6-DCBQ, 2,5-DBBQ, 

TCBQ, and TBBQ) was up to 200 times lower than HAAs: dichloroacetic acid (DCA), 

dibromoacetic acid (DBA), and iodoacetic acid (IAA). HBQ treatment resulted in significant 

larval developmental malformations of the heart, gas bladder and spine. These in vivo results 

supported the acute adverse oxidative and genotoxic effects observed in vitro. HBQ exposure 

increased ROS and decreased GSH, which was significantly mitigated by the addition of 

NAC. Furthermore, evidence of genotoxicity was supported by increased 8-OhdG levels, 

DNA fragmentation and larval apoptosis.224 A very similar zebrafish toxicity study replicated 

these HBQ induced cyto- and genotoxic results.225   

Caenorhabditis elegans (C. elegans), is a small nematode organism, that has been 

widely used as a toxicological model due to its simple structure, short lifespan, culturability 

and self-fertilization. Multiple similar biochemical pathways are shared between humans and 

C. elegans, making assay data translatable and comparable for other toxicants.226 Zuo et al. 

studied the effects of DCBQ on lethality, respiration rate, and DNA damage through an in 
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vivo study on C. elegans. Compared to other regulated DBPs (i.e., DCA, trichloroacetic acid 

(TCA), monobromoacetic acid (MBA), DBA, and NDMA), DCBQ exposure elicited the 

greatest increase in 24-hour lethality (LC 50) and inhibition of respiration. Additionally, of 

all studied DBPs, only DCBQ and NDMA exposure lead to DNA damage in C. elegans.227 

The toxicity of the major HBQ transformation products, HO-HBQs is less studied, 

but existing reports suggest the same trend: the hydrolysis of HBQs to HO-HBQs is a 

detoxification step.180,186 Wang et al. noted that while HBQ IC50 values were 2-fold lower 

(i.e., more cytotoxic than OH-HBQs) in CHO cells, OH-HBQs were still substantially more 

cytotoxic compared to regulated DBPs.179 Further investigation into the molecular 

mechanisms of toxicity of HBQs and their transformation products, along with a thorough 

assessment of human exposure are necessary to better understand the health risks associated 

with HBQs in disinfected water. 

1.7.2 Methods for Determination of HBQs 

 Accurate assessment of HBQ exposure requires the determination of their occurrence 

in disinfected water using sensitive and specific analytical detection methods. UV-visible 

absorption spectrometry was an early analytical technique used to monitor HBQs 

transformation228 and intermolecular interactions.229 Wang compiled the available reported 

characteristic absorption wavelengths of HBQs.230 The halosemiquinone free radical (HSQ•-

), is a relatively stable HBQ intermediate in its equilibrium with halohydroquinone.229 This 

chemical feature results in a specific line shape, unique to HSQ•-, when analyzed with 

electron paramagnetic resonance (EPR).200,231 Recently, Wang et al. utilized EPR analysis to 

investigate the semiquinone radical detected in the reaction between GSH and HBQs, which 

helped elucidate the mechanism of GSH and HBQ conjunction.200  

 Direct gas chromatography mass spectrometry (GC-MS) methods for previously 

reported HBQ analyses are complicated by their thermal instability. Complex derivatizations 

were required for detection.232,233 Detection limits of 10 structurally similar 1-4 ring quinones 

of 1-2 nmol/mL were achieved in a GC-MS method developed by Lim et al. to determine 

urinary quinone levels in both rats and human urine over time.234 More relevantly, Heasley 

et al. used GC-MS to identify the formation of 2,6-DCBQ and other chlorinated phenols and 
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structurally related Cl-DBPs after the mono- and dichlorination of phenol, m-cresol, and 

2,4,6-trichlorophenol in aqueous solution.235 

The high-performance liquid chromatography electrospray ionization tandem mass 

spectrometry (HPLC-ESI-MS/MS) method, developed in the Li Group and reported by Zhao 

et al. and Qin et al., both in 2010,181,182 enabled sensitive specific determinations of HBQs 

with detection limits less than 5 ng/L. The majority of subsequent HBQ determination studies 

have been accomplished using the same general sample preparation and HPLC-MS/MS 

analysis workflow, Table 1.3. 

In general, the workflow can be described as follows: using formic acid (FA) residual 

chlorine is quenched and samples are acidified to approximately pH 2-3 to stabilize HBQs 

by preventing hydrolysis to OH-HBQs.182,183 The aqueous sample is then preconcentrated 

with a multimode HLB solid phase extraction (SPE) cartridge. Next, the acidified methanol 

eluate is further concentrated by evaporation under a gentle stream of nitrogen. The 

concentrated sample is reconstituted in acidified water. The prepared sample is split into 5 

portions, for future standard addition quantification before injection for HPLC-ESI-MS/MS 

analysis. 

Reverse phase liquid chromatography columns, specifically C18, has been most 

commonly applied to separate HBQs (Table 1.3). The unique HBQ ionization pathway for 

stable and intense signal detection under negative ESI during high HPLC-MS analysis was 

first detailed by Zhao et al. in 2010.181 The method has been expanded to comprehensively 

include 12 different HBQ analytes236 and was later optimized to simultaneously detect OH-

HBQs.179 The determination of OH-HBQs is challenging due to the lack of commercial 

standards. Therefore, pure HBQ standards must first be converted to OH-HBQ 

transformation products before they can be used as calibration standards to determine the 

parent and fragment masses for specific and sensitive multiple reaction monitoring (MRM) 

analysis.179,230  

Zhao et al. first described how monitoring the conventional [M+1]+ ions in positive 

mode and [M-1]- ions in negative mode yielded weak and instable HBQ LC-MS signals.181 

Through HPLC-ESI-MS/MS analysis in acidified conditions (i.e., 0.25% FA sample and 

mobile phase composition) ionization of HBQs form a [M+H++2e-] ion (abbreviated as 
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[M+H]-).181,182,237 Under negative ESI potential (i.e., -4500 V) HBQs are electron acceptors 

with high electron affinity.238 Therefore, HBQs likely directly accept two electrons and one 

proton. An alternative route to the [M+H]- ion is through the formation of the intermediate 

dihydro-halo-benzoquinone followed by a loss of a proton. MRM is then utilized to measure 

compound specific mass to charge (m/z) ion transitions, increasing raw data accumulation 

and enhancing detected signals.239  

Recently, Cuthbertson et al. developed an online SPE-LC-MS/MS method, capable 

of detecting 10 different HBQs with LODs ranging from 0.2 – 166 ng/L. This method is 

advantageous because it requires less sample volume and minimal sample preparation 

compared to the traditional analytical sample preparation that relies on benchtop SPE and N2 

evaporation.183 In innovative analytical approach using a metal organic framework (MOF) to 

distinguish and determine para (p-) and ortho-tetrachlorobenzoquinone (o-TCBQ) was 

described by Du et al.240 Both isomers were successfully quantified simultaneously in 

mixtures, overcoming the common challenge of cross interference from similar signal 

mechanisms. 

 

Table 1.3 Summary of reported HPLC-MS/MS HBQ detection strategies and 

corresponding sample preparation details 

HBQ  LOD 

(ng/L) 

Recovery 

% 
Sample  

Pre-

treatment 

Sample 

preconcentration 

HPLC 

Separation 

Summary 

MS 

Detection 

Summary 

Reference  

2,6-DCBQ 0.6-1.9 97-118% Acidify to 

0.5% FA final 

concentration 
immediately 

after 

collection 

SPE HPLC MS/MS-

MRM 

Qin et al.  

2010182 

2,6-DBBQ     HLB oasis 
cartridge 

Agilent 1100 LC API 5000 MS 
(Sciex) 

  

TriCBQ     rinse SPE with 

6mL MeOH 
(0.5% FA) 

Luna C18 column 

(100x2.0mm i.d. x 
3µm) 

Phenomenex 

ESI   

DCMBQ     after loading wash 
SPE with 6mL 

water (0.5% FA) 

and 6 mL 1:1 
MeOH:Water 

(0.5% FA) 

Room 
Temperature 

(-) 4500 V   

      Dry 10 min under 

vacuum 

20µL injection 

volume 

450 °C   

      Elute with 6 mL 

MeOH (0.5% FA) 

Mobile Phase 

flow rate 
150µL/min 
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Table 1.3 Summary of reported HPLC-MS/MS HBQ detection strategies and 

corresponding sample preparation details (continued) 

      
 

Evaporate to 100 

µL under nitrogen 

A: water 0.5% FA     

      Reconstitute to 
500 µL with 

water:MeOH 

(80:20 0.5% FA) 

B: Methanol 30 minutes   

2,6-DCBQ 1 84 ± 1 Acidify to 
0.25% FA 

immediately 
after 

collection 

SPE Agilent 1100 LC MS/MS-
MRM 

Zhao et al. 
2010181 

2,6-DBBQ 0.5 78 ± 3 HLB Luna C18 column 
(100x2.0mm i.d. x 

3µm) 

Phenomenex 

API 5000 MS 
(Sciex) 

  

TriCBQ 1.7 59 ± 9 rinse SPE with 

6mL MeOH 

(0.5% FA) and 2 
washes of 6mL 

water (0.25% FA) 

Room 

Temperature 

ESI   

DCMBQ 1.9 69 ± 3 after loading wash 
SPE with 6mL 

water (0.25% FA) 

and 6 mL 1:1 
MeOH:Water 

(0.25% FA) 

20µL injection 
volume 

(-) 4500 V   

  
   

Dry 10 min under 
vacuum 

Mobile Phase 
flow rate 

150µL/min 

450 °C   

  
   

Elute with 6 mL 
MeOH (0.25% 

FA) 

A: water 0.25% 
FA 

 
  

  
   

Evaporate under 
N2 (100µL) 

B: Methanol 
0.25%FA 

 
  

        Reconstitute (500 

µL) with 
water:MeOH 

(80:20 0.25% FA) 

40 minutes     

2,6-DCBQ 1.3 95 ± 5 % Acidify to 
0.25% FA 

immediately 

after 
collection. 

Removed free 

chlorine and 
HBQs (i.e., 

eliminate 

hydrolysis to 
HO-HBQs 

under neutral 

aqueous 
conditions) 

SPE UHPLC MS/MS-
MRM 

Huang  et 
al. 2013236 

2,5-DBCQ 1.3 70 ± 12 HLB cartridge ACQUITY UPLC 

BEH 1.7µm-C18 
column 

(2.1x100mm; 

waters) 

API 5000 MS 

(SCIEX) 

  

DCMBQ 0.6 66 ± 1 rinse SPE with 

6mL MeOH 

(0.25% FA) 

50 °C ESI   

TriCBQ 1.1 88 ± 2 after loading wash 

SPE with 6mL 

water (0.25% FA) 
and 6 mL 1:1 

MeOH:Water 

(0.25% FA) 

10 µL injection 

volume 

(-) 4500 V   

TetraCBQ 0.9 80 ± 2 Dry 10 min under 

vacuum 

      

TetraC-1,2-

BQ 

2.5 89 ± 2 Elute with 6 mL 

MeOH (0.25% 

FA) 

Mobile phase flow 

rate 0.4mL/min 

    

2,6-DBBQ 0.2 95 ± 5 Evaporate to 100 
µL under nitrogen 

A: water with 
0.25% FA 

    

2,5-DBBQ 0.3 85 ± 5 Reconstitute to 

500 µL with 
water:MeOH 

(80:20 0.25% FA) 

B: MeOH with 

0.25% FA 
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Table 1.3 Summary of reported HPLC-MS/MS HBQ detection strategies and 

corresponding sample preparation details (continued) 

 
DBDMBQ 6.6 90 ± 1 

 
  18 minutes     

TetraBBQ 1 81 ± 4         

TetraB-1,2-

BQ 

4.8 77 ± 0 
 

        

DIBQ 0.2 89 ± 2         

2,6-DCBQ 0.07 96 ± 2 % Acidify to 

0.25%. 

Sample 
transported to 

lab on 

icepacks 
immediately. 

Analysis 
within 2 days 

of sample 

collection 

SPE Waters Oasis 

HLB Cartridge 

UHPLC MRM Wang et al. 

2014179 

OH-2,6-
DCBQ 

0.03 92 ± 8  condition 
cartridge with 12 

acetic (0.25% FA) 

MeOH 

Agilent 1290 ESI 5600 Q-
TOF (IDA 

Experiments) 

  

DCMBQ 0.7 96 ± 2 Equilibrate with 

12 mL acidified 
water 

Luna C18 column 

(100x2.0mm i.d. x 
3µm) 

Phenomenex 

ESI 5500 Q-

Trap (MRM 
Experiments) 

  

OH-
DCMBQ 

0.4 76 ± 2 Pump 500 mL 
sample at 8 

mL/min 

20 µL injection 
volume 

(-) 4500 V   

TriCBQ 0.8 78 ± 5 Wash with 
methanol and 

water  

Mobile phase flow 
rate 0.17 mL/min 

 
  

OH-

TriCBQ 

0.7 79 ± 2 Elute with acidic 

MeOH 

A: Water with 

0.1% FA 

 
  

2,6-DBBQ 0.05 95 ± 5 Evaporate to 100 

µL under nitrogen 

stream 

B: MeOH with 

0.1% FA 

 
  

OH-2,6-

DBBQ 

0.04 85 ± 4   Reconstitute in 

400 µL acidified 

water 

30 minutes     

  *LOQ 
(ng/L) 

% 
Recovery 

(CV) 

Sample 
acidified to 

0.1% FA after 

collection  
 

CV = Coeff 

of variation 

      Cuthbertson 
et al. 

2019183 

2,5-DCBQ 2.5 65 (7) SPE (Online) UFLC (Ultra Fast 
LC, Shimadzu) 

MS/MS-
MRM 

  

2,6-DCBQ 2.5 71 (4)     SCIEX 

QTRAP 5500 

  

2,5-DBBQ 2.5 62 (9) Analysis within 

48 hours of 

collection 

C18 

(100Angstrom 

reverse phased 
Interchim column) 

ESI   

2,6-DBBQ 5 117 (6)   30 °C (-) 4500 V   

TetraCBQ 5 57 (6) Online SPE with 
HLB column (2.1 

x 20mm x 25 µm) 

Autosampler 10 
°C 

400 °C   

TetraC-1,2-
BQ 

1000 81 (2) 
 

4 mL sample 
volume, flow rate 

1 mL/min, charge 

time 11.2 min 

Mobile Phase (A 
and C): water 

0.1% FA 

    

2,6-

DBDMBQ 

50 71 (4) 
 

  B: 0.1% 

acetonitrile (B) 

    

2,6-
DBCMBQ 

100 69 (4) 
 

  5 mL sample 
injected  

    

TetraBBQ 100 73 (5) 
 

  300 µL/ min     

TetraB-1,2-
BQ 

1000 72 (4) 
 

  50 minutes     
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Table 1.3 Summary of reported HPLC-MS/MS HBQ detection strategies and 

corresponding sample preparation details (continued) 

  
LOD 
(ng/L) 

% 
Recovery 

    
Wu et al. 
2019243 

2,5-DCBQ 1.02 76.5-

80.2% 

Acidify to pH 

2.6-2.8 with 
FA 

SPE UPLC MS/MS-

MRM 

 

        

2,6-DCBQ 0.78 89.9-
102.9% 

 HLB Thermo Fisher 
UPLC U-3000 

5500 Sciex 
 

       

DCMBQ 1.76 62.5-71.0 
 

(Huang 2013 and 
Zhao 2010) 

Acclaim 
RSLC120 2.2µm 

C18 column 
(2.1x100 mm) 

ESI   

TetraC-1,2-

BQ 

0.54 81.0-97.5 
 

2µL injection 

volume 

(-) 4500 V   

2,5-DBBQ 0.66 82.4-83.0 
 

flow rate 0.3 

mL/min 

550 °C   

2,6-DBBQ 0.38 85.3-90.8 
 

A: water 0.25% 
FA 

 
  

TetraB-1,4-

BQ 

0.26 72.7-89.3 
 

B: Methanol 

0.25% FA 

 
  

          22 minutes     

 

1.7.3 Occurrence of HBQs in Drinking and Recreational Waters 

Continuous development of sensitive and specific detection HPLC-MS/MS methods 

enabled investigations into the occurrence of HBQs in treated drinking water, recreational 

water and beverages prepared with treated drinking water. Table 1.4 summarizes the reports 

of type and concentration of HBQs detected in disinfected waters. HBQs were first detected 

in treated drinking water in 2010.181,182 Since their discovery, 2,6-DCBQ has been determined 

with the highest frequency and concentrations (i.e., as high as 165 ng/L181 or 263 ng/L189 in 

some cases) in disinfected waters compared to other HBQs. Mohan’s 2015 Master’s thesis 

identified greater concentrations of 2,6-DCBQ in treated water from DWTPs using free 

chlorine as a secondary disinfectant.189 Source waters containing bromide influence the 

formation of Br-HBQs.237 As such, 2,6-DBBQ follows 2,6-DCBQ in HBQ occurrence 

(Table 1.4). Like other DBPs classes, HBQs follow the same toxicological trend: I-HBQs > 

Br-HBQs > Cl-HBQs.241 Recently, Cuthbertson et al. used their efficient online SPE-HPLC-

MS/MS method to detect the highest recorded 2,6-DBBQ concentration in treated drinking 

water, 254 ng/L.183 Interestingly, while 2,6-halogen substituted HBQ isomers are exist 

widely in treated water, the more toxic 2,5-HBQ isomers207 have not yet been identified in 
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authentic samples. Wang et al. determined the concentration of HBQs and their stable OH-

HBQ transformation products in a drinking water distribution system. Over time, as distance 

from the DWTP increased, the concentrations of HBQs in tap water samples decreased while 

the concentration of less toxic, OH-HBQs increased proportionally.179 

HBQs have also been identified in swimming pools in Canada242 and more recently, 

in China.243 Wang et al. first noted elevated levels of 2,6-DCBQ in swimming pool water 

(19-299 ng/L) compared to input tap water control samples (1.1-5.6 ng/L). For the first time, 

2,3-dibromo-5,6-dimethyl-(1-4)-benzoquinone (DMDBBQ) was identified as an HBQ-DBP 

unique to swimming pool water.242 Wu et al. recently observed greater HBQ concentrations 

in indoor pools, compared to outdoor pools in China.243 This can be explained by the UV 

irradiation transformation mechanism of HBQs to OH-HBQs.184 Additional sunlight 

exposure to outdoor pools promoted HBQ degradation. 

Recently, Lou et al. identified the formation of HBQs in tea brewed with disinfected 

water. The concentration of 2,6-DCBQ decreased in green tea (2.3 ng/L) after preparation 

with disinfected tap water (0.2 ng/L). Notably, the HBQ, 3,4,5,6-tetrachloro-1,2-

benzoquinone (TetraC-1,2-BQ) increased from 0.6 ng/L in tap water to 1.8 ng/L after 

brewing Green, Oolong, Pu-erh, and Black teas.172 Characterizing new exposure routes for 

HBQs enables a more accurate assessment of their risk to human health. 

 

Table 1.4 Summary of reported HBQ occurrences in various disinfected water samples 

HBQ 

Compound 

Concentration Range 

(ng/L) 

Frequency Sample Type Region Reference 

Disinfected Drinking Water 

2,6-DCBQ range 14.3-54.6  3 of 3 Treated drinking water, 

Water distribution 

system 1 

Canada Qin et al. 

2010182 

    5.3-14.4  3 of 3 Treated drinking water, 

Water distribution 

system 2 

    

2,6-DCBQ average of 

triplicate 

165.1 ± 9.1    Chlorinated drinking 

water from 12 water 

purification plants 

Canada Zhao et al. 

2010181 

DCMBQ 
 

1.3 ± 0.2  
   

  

TriCBQ 
 

9.1 ± 0.6  
   

  

2,6-DBBQ   0.5 ± 0.1          

2,6-DCBQ range 2.5-21.3  2 of 2 Finished drinking water  Canada Huang et al. 

2013236 

2,6-DBBQ range 7.3-19.4  2 of 2       
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Table 1.4 Summary of reported HBQ occurrences in various disinfected water samples 

(continued) 

 
2,6-DCBQ range nd-20  34/37   North 

America 

Wang et al. 

2014179 

DCMBQ n.d. = not 

detected 

nd-4  11/37 Treated water collected 

from 5 WTPs 2012-

2013. 

 
  

TriCBQ 
 

nd-20  10/37 
  

  

DBBQ 
 

nd-10  6/37 
  

  

OH-DCBQ 
 

nd-20  34/37 
  

  

OH-DCMBQ 
 

nd-7  12/37 
  

  

OH-TriCBQ 
 

nd-20  6/37 
  

  

OH-DBBQ   nd-10  6/37 
  

  

2,6-DCBQ   < 50  7 of 8 chlorinated and 

chloraminated drinking 

water from 8 water 

treatment plants in the 

U.S. 

  Mohan  

2015189 

    ~ 263  1 of 8 
 

    

2,6-DCBQ range 8-51  21 of 24 

samples 

chlorinated drinking 

water from 12 water 

purification plants 

Japan Nakai et al. 

2015257 

2,6-DCBQ range 13-14  2 of 4 Finished drinking water 

samples from four 

DWTPs using chlorine 

disinfection 

U.S. Cuthbertson 

et al. 2019183 

2,6-DBBQ range 5-254   4 of 4 WTP 1, 2, 3, and 4     

Disinfected Recreational Water 

2,6-DBCQ range 18.9-299.0  10 of 10 Chlorinated and 

chlorinated + UV 

swimming pool water 

Canada Wang et al. 

2013242 

TriCBQ range 7.3-11.3  4 of 10       

DMDBBQ range 0.6-0.7  2 of 10       

2,6-DBBQ range 1.6-3.8  2 of 10       

2,6-DCBQ range 1.1-5.6  10 of 10 chloraminated input tap 

water control 

    

2,6-DCBQ range 4.56-45.30  7 of 7 Indoor and Outdoor 

Swimming pools 

China Wu et al. 

2019243 

2,6-DBBQ range  <0.38-14.20  2 of 7 
  

  

TetraC-1,2-

BQ 

range <0.54-2.60  2 of 7 
  

  

Disinfected Water Beverage  

2,6-DCBQ triplicate 

average 

2.3 ± 0.1    Tap Water China Lou et al. 

2019172 

TetraC-1,2-

BQ 

  0.6 ± 0.0    Tap Water      

2,6-DCBQ average of all 

teas 

0.2 ± 0.0 

  

  Green tea Prepared with  

disinfected  

tap water 

TetraC-1,2-

BQ 

  1.8 ± 0.1    Green tea     

      Oolong Tea     

      Pu-erh Tea     

      Black Tea     
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1.7.4 Known Precursors of HBQs 

Various strategies have been investigated to reduce exposure to HBQs by limiting 

their formation during water disinfection.  Efforts have been made to identify sources of HBQ 

precursors in disinfected waters (Table 1.5) and design appropriate approaches to reduce 

those precursors before reacting with disinfectants.244,245 Multiple individual HBQ precursors 

including phenol,235,237 alkyl and carboxyl para-substituted phenolic compounds as well as 

para-substituted aromatic amines246 have been identified under chlorination and/or 

chloramination conditions. Additionally, NOM mixtures with higher aromatic character (e.g., 

UV254, humic SUVA) have been correlated with increased DCBQ formation after 

chlorination.244 Several processes are employed at water treatment plants to remove NOM 

before disinfection.245,247 Coagulation,244,245 granular activated carbon,247 and ozonation pre-

treatments245 were all found to remove HBQ precursors before chlorination and can 

subsequently reduce the formation of HBQs in finished drinking water.  

Based on HBQ structures, compounds containing aromatic moieties could serve as 

HBQ precursors. Previous studies have identified phenol,179,237 and NOM from Otonabee 

River, Grand River and Lake Ontario as HBQ precursors.244 NOM in source water is an 

environment dependent,248 complex mixture including high aromaticity humic acids,249 as 

well as peptides and amino acids. Over 600 distinct peptides have been detected in surface 

waters250 and free amino acids have been determined at low µg/L concentrations82,251 Kosaka 

et al. determined molar yields ranging from 0.0008% to 4.9% for various aromatic DCBQ 

precursors, including aromatic amino acid tyrosine and dipeptide tyrosyl-alanine, under 

chlorination conditions.246 Lignan compounds are present as NOM in source water,252 and 

have been shown to be viable precursors of DBPs.253 Recently, Mohan reported 2,6-DCBQ 

formation from 10 of 16  lignan compounds, Table 1.5, under chlorination conditions ranging 

from 0.001-0.1% yields.189 

 HBQ precursors in swimming pools have been investigated. Wang et al. found that 

HBQ formation in swimming pools was enhanced with greater levels of DOC, chlorine dose, 

and increased temperature. Both lotions and sunscreens were found to be precursors of 

DCBQ and other HBQs (i.e., DCMBQ, TriCBQ, and TetraB-1,4-BQ) under chlorination 

conditions. More recently, Sun et al. specifically identified 2,4-dihydroxybenzophenone, a 
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component and metabolite of benzophenone type UV filters, present in PCPs (i.e., sunscreen, 

cosmetics, and shampoos), as a precursor of HO-DCBQ and eight additional aromatic DBPs 

under chlorination conditions.187   

The formation of HBQs from phenolic compounds present in tea leaves has been 

investigated. Overall, both DCBQ and tetrachloro-1,2-benzoquinone (TC-1,2-BQ) were 

detected in teas. DCBQ was present in the tap water source and TC-1,2-BQ originated from 

tea leaves’ leachate or was generated during the chlorination of tea polyphenols. Four tea 

polyphenols (i.e., (-)-epigallocatechin gallate, (-)-epicatechin gallate, (-)-epicatechin, and 

gallic acid) were identified as precursors of both 2,6-DCBQ and TC-1,2-BQ under 

chlorination conditions at pH 7.172 Lou et al. found that while these HBQs induced cellular 

reactive oxygen species (ROS) and semiquinone radicals after 24 hours in HepG2 human 

bladder cancer cells, the resulting oxidative stress could be decreased by the addition of the 

tea polyphenol (-)-epigallocatechin.172 Characterizing the types of compounds capable of 

forming HBQs and their sources is a strategy to control their formation in disinfectant treated 

waters and mitigate overall human exposure. 
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Table 1.5 Summary of reported HBQ precursors under chlorination or chloramination 

conditions 

HBQ 

Compound 

Identified Precursor 

Compound 
Yield Disinfectant 

Reaction 

Details 
Reference 

2,6-DCBQ Bisphenol-A 
Identified not 

quantified 

Chlorination 

(sodium 

hypochlorite) 

pH 8-9 

Yamamoto 

et al. 

2002250 

      
30-290 mg/L 

initial Cl 
20-25 °C   

2,6-DCBQ Suwanee Humic River Acid 
Identified not 

quantified 

5 mg/L 

sodium 

hypochlorite 

pH 7.5 
Zhai et al. 

2011251 

2,6-DBBQ 2,4,6-tribromophenol 
Identified not 

quantified 
  in darkness 

 

  

   
ambient 

temperature 

 

2,6-DCBQ 
NOM from Canadian 

surface waters 

DCBQ formation 

correlated with 

humic substance 

concentration, UV 

at 254 nm, SUVA  

Chlorination 

with Sodium 

Hypochlorite 

40 hour 

reaction time 

Diemert et 

al. 2013238 

  Lake Ontario 

DCBQ formation 

potential was 

strongly correlated 

with the 

biopolymer fraction 

of NOM, likely due 

to do-removal of 

biopolymer fraction 

with HBQ 

precursors during 

alum treatment. 

Dosed to 

achieve 

residual 

chlorine 

concentrations 

of 3-5mg/L 

free chlorine 

after 36 hours 

    

  Grand River       

  Otonabee River       

  Lignan Compounds yield range 
5 mg/L Cl2 from 

chlorination 
6 hours 

Mohan 

2015184 

2,6-DCBQ 4-hydroxybenzaldehyde 

 

 

range from 0.001-

1% formation yield 

  25 °C  

 4-hydroxybenzoic acid   pH 7  

 Vanilin   

0.004-

0.009 % 

 

 vanilic acid    

 syringaldehyde    

 syringic aicd    

 p-courmaric acid     

 hydroquinone   0.02%  

 3,4-dihydroxybenzoic acid     

 gallic acid   0.01%  

  

Aromatic Compounds % molar yield  

Chlorination 

(sodium 

hypochlorite) 

60 minutes 
Kosaka et 

al.  2017240 

2,6-DCBQ Phenol 0.10 ± 5.2       

  2-Chlorophenol 0.12 ± 15       

  4-Chlorophenol 0.03 ± 8.8       

  2,4-Dichlorophenol 0.07 ± 6.4       

  2,6-Dichlorophenol 0.12 ± 14       

  2,4,6-Trichlorophenol 0.20 ± 6.1       

  p-Quinone-4-chloromide 0.0008 ± 32       

  2,6-Dichloroquinone-4-

chloromide 
4.9 ± 13   
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Table 1.5 Summary of reported HBQ precursors under chlorination or chloramination 

conditions (continued) 

 
  p-Cresol 0.016 ± 39       

  4-Methothyphenol 0.0006 ± 24       

  4-Hydroxybenzoic acid 0.14 ± 33       

  Tyrosine 1.5-2.7 ± 28       

  L-Alanyl-L-tyrosine 0.11 ± 39       

  4-Hydroxybenzoic acid 

methyl ester 
0.0003 ± 34   

    

  Bisphenol A 1.6 ± 26       

  4-Nonylphenol 1.8 ± 0.7       

  Analine 2.6 ± 0.4       

  4-Methyl aniline 0.03 ± 10       

  N-Methyl aniline 2.0 ± 1.7       

  N,4-Dimethyl aniline 0.001 ± 11       

  Tinopal AMS-GX 0.02 ± 38       

HBQ 

Formation 

Potential 

Teas (=10 mg/L DOC) 
HBQ formation 

(ng/L) 

Excess 

Chlorination 

(dose to yield 1-

1.5 mg/L free 

chlorine residual 

after reaction) 

pH 7  
Lou et al. 

2019166 

TetraC-1,2-

BQ 
Green Tea (~47 mg/L) 6.2 ± 0.5 ~ 35 mg/L  

Reaction 

time 2 h  
 

 Oolong Tea (~52 mg/L) 7.9 ± 0.5 ~ 18 mg/L    

 Pu-erh Tea (~66 mg/L) 23.9 ± 2.0 ~ 22 mg/L    

 Black Tea (~39 mg/L) 11.7 ± 0.4 ~ 28 mg/L    

2,6-DCBQ Green Tea (~47 mg/L) 3045.9 ± 60.7 ~ 35 mg/L    

 Oolong Tea (~52 mg/L) 160.8 ± 11.7 ~ 18 mg/L    

 Pu-erh Tea (~66 mg/L) 1251.7 ± 58.2 ~ 22 mg/L    

  Black Tea (~39 mg/L) 1922.6 ± 49.7 ~ 28 mg/L    

MCBQ Green Tea (~47 mg/L) 726.9 ± 11.6 ~ 35 mg/L    

 Oolong Tea (~52 mg/L) 102.3 ± 6.8 ~ 18 mg/L   

 Pu-erh Tea (~66 mg/L) 462.7 ± 19.1 ~ 22 mg/L    

 Black Tea (~39 mg/L) 683.2 ± 10.8 ~ 28 mg/L    

TriCBQ Green Tea (~47 mg/L) 1.8 ± 0.1 ~ 35 mg/L    

 Oolong Tea (~52 mg/L) 0.5 ± 0.1 ~ 18 mg/L    

 Pu-erh Tea (~66 mg/L) 1.8 ± 0.1 ~ 22 mg/L    

  Black Tea (~39 mg/L) 2.3 ± 0.1 ~ 28 mg/L    

TetraC-1,4-

BQ 
Black Tea (~39 mg/L) 0.6 ± 0.1 ~ 28 mg/L     

 Tea Polyphenols  

(10 µM) 
 500 µM chlorine 

pH 7,  

2 hours 

reaction 

time 

 

2,6-DCBQ 
(-)-epigallocatechin gallate 

(EGCG) 

370.41 ± 10.79 

µmol/mol 
   

 (-)-epicatechin gallate 

(ECG) 

361.07 ± 12.48 

µmol/mol 
   

 (-)-epicatechin (EC) 
174.81 ± 4.76 

µmol/mol 
   

  Gallic acid (GA) 
3.37 ± 0.21 

µmol/mol 
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Table 1.5 Summary of reported HBQ precursors under chlorination or chloramination 

conditions (continued) 

 
TetraC-1,2-

BQ 

(-)-epigallocatechin gallate 

(EGCG) 

112.76 ± 6.56 

µmol/mol 
    

 (-)-epicatechin gallate 

(ECG) 

259.26 ± 10.51 

µmol/mol 
    

 (-)-epicatechin (EC) 
47.70 ± 3.45 

µmol/mol 
    

 Gallic acid (GA) 
3.35 ± 0.53 

µmol/mol 
    

  Commercially Available 

Personal Care Products 

(PCPs) 

  Chlorination 

(sodium 

hypochlorite) 

36 h 

reaction 

time 

Wang et al. 

2013236 

2,6-DCBQ 4 of 4 Lotions studied 
Identified not 

quantified 

3 mg/L residual 

chlorine 
24 ° C 

  

  4 of 4 Sunscreens studied 

  10-15 mg/L 

initial chlorine 

dose 

    

DCMBQ 4 of 4 lotions studied         

  2 of 4 sunscreens studied         

TetraB-1,4-

BQ 
4 of 4 sunscreens studied 

  
  

    

  UV Filters in sunscreens formation yield   23 °C 
Sun et al. 

2019182 

2,6-DC-3-

hydroxy-BQ 

2,4-dihydroxybenzophenone 

(BP) 

 
molar ratio free available 

chlorine (FAC) to (BP-1) 

 

  
2.70% pH 10, [FAC]:[BP-1] = 5:1 

 

  
5.40% pH 7.5, [FAC]:[BP-1]  

 

    6.10% pH 5, [FAC]:[BP-1]   

 

 

 

1.8 Rationale and Scope of Thesis 

ASs have been demonstrated as effective indicators of waste impact in environmental 

waterbodies. However, the occurrence and concentration in a given water body must be first 

determined to interpret the relative waste impact associated with detected increases in ASs. 

Much of the literature has reported on AS occurrence and successful waste impact indicator 

use in environmental water bodies (i.e., surface and ground waters) in regions with dense 

populations (e.g., U.S., Asia, or Europe). Canada has an abundance of freshwater resources, 

and a comparatively low population density. Few Canadian waters have been investigated 

for AS occurrence and no surveys of British Columbia’s surface waters have been reported. 

The Thompson River Watershed in B.C. contains major surface water bodies that support 

several municipalities as a drinking water source. Anthropological wastes from municipal 
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wastewater as well as agricultural and industrial operations located in the region have the 

potential to impact surface water quality. This led to the study described in Chapter 2. 

 

Chapter 2 research objectives: 

 Develop a rapid and sensitive high-performance liquid chromatography 

tandem mass spectrometry (HPLC-MS/MS) for the detection of ACE and 

SUC. 

 Determine the concentration of ACE and SUC in surveyed surface waters 

of the Thompson Region Watershed.  

 

Swimming is a popular recreational and exercise activity with known cardiovascular 

benefits. Disinfection of recreational waters (i.e., swimming pools and hot tubs) is critical to 

reduce the potential for transmission of waterborne pathogens. Unintentional reactions 

between organics in swimming pools and chlorine disinfectants can form a variety of DBPs. 

Trichloramine is a volatile DBP identified as a pulmonary and ocular irritant and long-term 

exposure has been linked with occupational asthma in pool workers and professional 

swimmers. A major nitrogenous precursor of trichloramine is urea, excreted in urine and 

sweat. ASs have never been reported in recreational waters. The potential application of ASs 

as indicators of human waste has not been investigated in swimming pools or hot tubs. ACE 

is excreted exclusively in urine; therefore, it is an ideal candidate indictor for urine, as 

demonstrated in the study of Chapter 3. 

 

Chapter 3 research objectives: 

 Determine the occurrence of ACE in swimming pool and hot tub samples 

collected from two cities in Alberta and B.C. using the sensitive and rapid 

HPLC-MS/MS analysis method. 

 Estimate the approximate volume of urine required to account for the 

average ACE determined in two swimming pools over three weeks as a 

proof of concept calculation in support of ACE as a urinary indicator. 
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 Educate the public on the importance of proper swimming pool hygiene 

practices (i.e., don’t pee in the pool, and rinse off in provided showers 

before jumping in) to reduce unnecessary increases in organic DBP 

precursors and subsequent DBP exposure.  

  

Long-term exposure to DBPs through chlorinated drinking water has been 

consistently associated with an increased potential of developing bladder cancer. However, 

the regulated DBPs (e.g., THMs and HAAs) have been excluded as toxicological drivers 

capable of inducing these epidemiologically observed adverse health effects. QSTR results 

first predicted HBQs to be bladder carcinogens based on their chemical structure. HBQs are 

up to 1000x more cytotoxic than regulated DBP classes and multiple studies have 

subsequently confirmed HBQs induce oxidative stress both in vitro and in vivo. HBQ 

occurrence is frequent in treated drinking water across North America. A fundamental 

strategy in reducing exposure to HBQs is to identify and remove HBQ precursors from the 

water source before disinfection (e.g., chlorination, chloramination). Although the number 

of identified HBQ precursors are limited, they share similar aromatic structural components. 

Tremendous efforts are employed by DWTPs to remove NOM from source waters to reduce 

unintentional DBP formation during disinfection treatment. Excess disinfectants are added 

to the treated water to maintain a residual concentration as it travels through the distribution 

system to the consumers tap. However, the residual disinfectants can react with organics 

during food and beverage preparation before consumption. Food and beverage DBPs are a 

field of emerging importance that may help to identify new DBP precursors and exposure 

routes that impact human health. Therefore, I studied whether a widely used AS, aspartame 

can serve as an HBQ DBP precursor in Chapter 4 and aromatic amino acids (AAAs) as HBQ 

DBP precursors in Chapter 5. 

 

 

 

 

 



 37 

Chapter 4 research objectives: 

 Evaluate the artificial sweetener aspartame, and its aromatic structural 

component phenylalanine, as HBQ precursors under controlled 

chloramination conditions mimicking tap water parameters. 

 Compare the concentration of DCBQ in one cup of authentic 

chloraminated tap water with and without the addition of one package of 

Equal artificial sweetener blend 15 minutes after mixing. 

 Investigate the impact of aspartame on the stability of DCBQ in pure 

aqueous solution. 

 

Chapter 5 research objectives: 

 Develop a method for simultaneous determination of AAAs (i.e., 

phenylalanine, tyrosine, and tryptophan) and HBQs  

 Evaluate AAAs as HBQ precursors under controlled chlorination 

conditions. 

 

The anticipated outcomes of my research will provide new analytical methodologies 

for monitoring of ASs in environmental and recreational waters. Determining the occurrence 

of ACE and SUC in B.C. surface waters will establish a baseline for future waste 

contamination investigations. Application of an ACE survey in recreational waters will yield 

information about swimming pool hygiene practices, potential swimming pool DBP 

precursors, and provide possible approaches to monitor and prevent urine, and the formation 

of irritating DBPs, in swimming pools.  

Our study contributes understanding to the overall HBQ-DBP exposure pathway by 

identifying new HBQ precursors with sources ranging from raw water to beverage 

ingredients. AAAs are ubiquitous components of environmental water NOM and food stuffs. 

Aspartame is a commonly used AS. This research will add a new perspective to the ongoing 

discussion weighing the known benefits and potential adverse effects surrounding continued 

consumption of ASs.  
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Overall, translating meaningful research outcomes to disciplinary experts, group 

colleagues and the general public through multiple communication platforms is a rewarding 

approach to make an impact with each project’s results. 
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Chapter 2  

Occurrence of Artificial Sweeteners Acesulfame and Sucralose in Surface Waters of 

British Columbia, Canada†  

 

“The man who moves a mountain begins by carrying away small stones.” 

- Confucius 

 

2.1 Introduction 

Canada has an abundance of freshwater resources. Geographically, it is the second 

largest country in the world with the third largest renewable freshwater supply globally 

yielding 103,899 m3 fresh water per capita.1 Canada’s population density is low (33,476,688 

persons, 3.8 persons/km2)1 compared to locations in the United States, Europe, and Asia 

where many artificial sweetener (AS) occurrence and waste impact evaluation studies are 

conducted.2-6 Table 2.1 presents a summary of the limited reported data for the occurrence 

and distribution of ASs in Canadian environmental water samples. The majority of studies 

ASs in Canadian waters investigate water samples collected from Ontario.7-13 ASs have also 

been detected in samples collected from Alberta,7-9, 14 the Yukon,7 and Saskatchewan.9 In an 

effort to support ASs as indicators of waste impact in water systems (i.e., septic fields), 

groundwater wells are a commonly analyzed sample type among the Canadian studies.7-9, 14-

16 Canadian surface water samples are limited to a few streams in Jasper and Ontario,7 as well 

as Grand River10,13and Lake Simcoe,12 both located in Ontario. There is no previously 

reported data for water bodies located in British Columbia. 

  

                                                 
† Parts of Chapter 2 (i.e., Sections 2.3.2, 2.3.3, and 2.4.2) have been published as Jmaiff Blackstock, 

L.K.; Wawryk, N.J.P.; Jiang, P.; Hrudey, S.E.; Li, X.-F. Recent applications and critical evaluation 

of using artificial sweeteners to assess wastewater impact. Current Opinion in Environmental Health 

& Science. 2019, 7: 26-33. Reprinted with permission. Copyright 2018 Elsevier. 
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Table 2.1 Summary of reported non-nutritive artificial sweetener occurrence in Canadian 

waters 

Sample Type Location 

Artificial Sweetener Concentration Range  

SUC ACE CYC SAC Ref 

Groundwater 

wells 

Whitehorse, 

Yukon 
n.d. - 24 µg/L n.d. - 9.7 µg/L n.d. - 0.98 µg/L n.d. - 2.0 µg/L 

(7) 

 

Groundwater 

wells 

Hamilton, 

Ontario 
n.d. - 17 µg/L 0.02 - 8.2 µg/L n.d. - 0.056 µg/L n.d. - 0.12 µg/L 

Groundwater 

along streams 

Jasper, 

Alberta 
n.d. n.d. - 3.5 µg/L n.d. - 0.046 µg/L n.d. - 0.15 µg/L 

Stream 
Jasper, 

Alberta 
n.d. n.d. - 0.063 µg/L n.d. n.d. - 0.028 µg/L 

Groundwater 

along streams 

Barrie, 

Ontario 
n.d. n.d. - 33.6 µg/L n.d. n.d. - 10.3 µg/L 

Stream 
Barrie, 

Ontario 
n.d. n.d. - 0.088 µg/L n.d. n.d. - 0.066 µg/L 

Groundwater 

along streams 

Burlington, 

Ontario 
n.d. n.d. - 0.36 µg/L n.d. - 0.038 µg/L n.d. - 0.12 µg/L 

Stream 
Burlington, 

Ontario 
n.d. 0.082 - 0.34 µg/L n.d. n.d. 

Grand River Ontario n.d. - 21 µg/L n.d. - 3.6 µg/L n.d. - 0.88 µg/L n.d. - 7.2 µg/L (10) 

Groundwater 

wells 
Alberta n.d. - 541 ng/L 0.9 - 1534 ng/L - - (14) 

Sewage 

Lagoon 
Ontario 11.1 - 47.8 ng/L - - - (8) 

Groundwater 

wells 

Regina, 

Sask. 
- 32 µg/L (max) n.d. 87 µg/L (max) 

(9) 

Groundwater 

wells 

Cambridge, 

Ontario 
- 12 µg/L (max) n.d. 25 µg/L (max) 

Groundwater 

wells 

Hamilton, 

Ontario 
- 11 µg/L (max) 0.9 µg/L (max) 250 µg/L (max) 

Groundwater 

wells 

Waterloo, 

Ontario 
- 3.7 µg/L (max) 2.1 µg/L (max) 16 µg/L (max) 

Groundwater 

wells 

Jasper, 

Alberta 
- 0.05 µg/L (max) 14 µg/L (max) 11 µg/L (max) 

Groundwater 

septic tank / 

plume effluent 

Ontario - 9.9 - 265 µg/L - - (15) 

Groundwater 

septic effluent 
Ontario < 5 - 98 µg/L 32 - 91 µg/L - - (16) 

Groundwater 

seep 

Nottawasaga 

River 

Ontario 0.57 µg/L (max) 1.7 µg/L (max) 0.18 µg/L (max) 0.095 µg/L (max) (11) 

Lake Simcoe 

Wastewater 

treatment 

effluent 

Ontario 144 - 249 ng/L 4.4 - 32.8 ng/L - - (12) 

Grand River Ontario - n.d. - 3500 ng/L - - (13) 

Groundwater 
Jasper, 

Alberta 
- 2510 ng/L (max) 46 ng/L (max) 35 ng/L (max) (38) 

Groundwater 
Barrie, 

Ontario 
- 

10 700 ng/L 

(max) 
n.d. n.d.  
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 The Thompson River Watershed (TRW) is located in the interior of B.C. and covers 

approximately 56,000 km2 (6%) of the province’s area.17 The TRW region has a total Census 

population of approximately 195,000, encompassing 6 Regional Districts, 16 municipalities, 

and 29 areas under First Nations governments.18 The largest ecoregion in the TRW is the 

Thompson-Okanagan Plateau (TOP).19 The TOP is a broad forested rolling plateau with low 

elevation sagebrush-steppe dominated basins. The regions climate consists of warm, dry 

summers and cool winters, characteristic of the semi-arid plateau region of the B.C. Interior. 

The Kamloops region specifically has low total precipitation and high evapotranspiration 

rates which result in overall water deficit conditions.17, 20 Several large lakes occur in the 

valley basins with hundreds of small lakes and ponds dispersed across the uplands. The TOP 

is dissected by the North Thompson, South Thompson and Thompson Rivers. These large 

rivers flow west until they join the Fraser River.17  

The Fraser-Lower Mainland drainage region extends 233,104 km2 from Prince 

George to Vancouver. Containing the Greater Vancouver Area, the Fraser – Lower Mainland 

drainage region has the third highest population in Canada. Surface freshwater intake for the 

Fraser-Lower Mainland region totaled 615.3 million m3 in 2013 for manufacturing, drinking 

water plants, irrigation, mining, and thermal electric production.1 A 2011 report by the British 

Columbia Ministry of Environment ranked watersheds in the Thompson Region based on 

spatial data analysis of land use types, water users, and natural watershed characteristics. The 

three watershed units identified with the highest risk for anthropogenic effects on water 

quality and its designated users were the South Thompson River from Shuswap Lake to 

Kamloops, Peterson Creek (Kamloops), and the North Thompson River from Barrier to 

Kamloops due to their high proportion of urbanization, agriculture, mining, and road and 

stream crossing density.21  

Recently, a highly sensitive high performance liquid chromatography – tandem mass 

spectrometry (Agilent 1100 series system, AB Sciex API 5500 QTrap; HPLC-MS/MS) 

method was developed capable of detecting ACE (0.2 ng/L) and SUC (5 ng/L) at low part-

per-trillion (ppt) levels without any sample pretreatment.14 This method required 500-µL 

manual injection with a Rheodyne 6-port valve with a large injection loop. I was able to 

modify this method to be usable with a commonly available autosampler (Agilent, 
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Waldbronn, Germany), requiring a volume of only 100-µL for injection, while maintaining 

a reasonably similar detection limit (ACE: 0.5 ng/L, SUC: 50 ng/L) in the low ppt range. 

This improved method was used to analyze environmental water samples collected from 12 

different surface waters in the Thompson Region surrounding Kamloops, British Columbia.  

 

2.2 Materials and Methods 

2.2.1 Reagents  

The acesulfame-K (ACE) standard was obtained from Supelco (Bellefonte, PA), and 

the deuterated isotopic internal standard Acesulfame-K-d4 (ACE-d4) was obtained from 

Toronto Research Chemicals (Toronto, ONT). Working stocks were prepared in methanol 

and stored in a -20°C freezer. LC/MS grade formic acid (FA, 49−51%) was obtained from 

Sigma-Aldrich (St. Louis, MO). Water and methanol used in this study were Optima® LC/MS 

grade, purchased from Fisher Scientific (Fair Lawn, NJ, USA). 

2.2.2 Sample Collection 

Water samples were collected from 12 different locations (contributory lakes, creeks, 

and rivers) from surface water bodies in the Thompson Basin and Shuswap Basin 

Ecosections19, 20 of the Thompson River Watershed between July 30 and August 07, 2014, 

Figure 2.1. No specific permissions were required as all locations were publicly accessible. 

The collection sites include public parks as well as popular tourism destinations with heavy 

beach usage. The hottest month for the region in 2014 was July with an average daily high 

temperature of 32°C.22 Triplicate grab samples were collected by hand from the shoreline at 

a depth of 10 cm from at least 30 cm deep water.  
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Figure 2.1 Map of sites for environmental samples collected in the Thompson Okanagan 

region of British Columbia 

 

 

2.2.3 HPLC-MS/MS Analysis of ACE and SUC 

Samples were stored at 4C after collection. Before analysis samples were filtered 

through disposable 0.45-µm Millipore filters. The triplicate samples were split into duplicates 

before analysis for a total of n=6. A 10-ng/L spike of the deuterated internal standard, ACE-

d4, or a 200-ng/L spike of SUC-d6, prepared in LCMS grade methanol, was added to every 

sample and standard before analysis for a final composition of 9:1 H2O:MeOH. The peak 

area ratio between ACE and ACE-d4, or SUC and SUC-d6 primary transitions were used for 

quantification, while secondary transition peaks were used to confirm analyte identity. A 

calibration curve was prepared with each batch to account for variation in instrument signal 

intensity. Outliers were removed using the Q-test with an n=6 modified Thompson Tau value.  

An analysis blank was injected into the LC-MS/MS after each set of six samples to detect 

and avoid any carryover or contamination during sequential analysis. No ACE or SUC was 

detected in any of the analysis blanks.  

100µL of each filtered (0.45µm, Millex) water sample was injected directly onto an 

Inspire C18 (100 x 3.0 mm, 3µm, Dikma) HPLC column at room temperature, using the 
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Agilent 1100 G1329A Autosampler and 2LC system. The LC mobile phase consisted of 

solvent A: 0.1% formic acid (v/v) in water (Optima Grade). Solvent B is 0.1% formic acid 

(v/v) in MeOH. The gradient program is listed in Table 2.2. A triple quadrupole tandem mass 

spectrometer (5500 QTRAP, AB Sciex, Concord, ON, Canada) was used in negative 

multiple-reaction monitoring (MRM) mode for the determination of ACE, SUC, and their 

corresponding deuterated internal standards. The MS instrument operating conditions are 

provided in Table 2.3 and the MRM transitions and parameters are listed in Table 2.4. ACE 

and SUC were quantified using internal standard peak area ratios (ACE-d4 and SUC-d6) and 

positive identifications were made by confirming peak area ratios between MRM transitions 

and by matching retention times with authentic standards. 

 

 

Table 2.2 HPLC mobile phase gradient program 

Time (min) Solvent A (%) Solvent B (%) Flow Rate (µL/min) 

0.00 95.0 5.0 500 

2.00 5.0 95.0 500 

4.00 5.0 95.0 500 

4.10 95.0 5.0 500 

11.00 95.0 5.0 500 

Solvent A: Optima H2O (0.1% FA) 

 Solvent B: Optima MeOH (0.1% FA) 

 

 

 

Table 2.3 MS instrument operating conditions 

 
Collision Gas High 

Curtain Gas 10 psi 

Ion Source Gas 1 50 psi 

Ion Source Gas 2 40 psi 

Ion Spray Voltage -4500 V 

Temperature 500 °C 

Entrance Potential -10 

Dwell Time 100 (msec) 

 5500 Sciex QTrap Mass Spectrometer 
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Table 2.4 Multiple reaction monitoring mode analyte ion transitions and detection 

parameters 

Name 
Rt 

(min) 

Q1 Mass 

(Da) 

Q3 Mass 

(Da) 

DP 

Declustering 

Potential 

CE 

Collision 

Energy 

CXP 

Collision Cell 

Exit Potential  

ACE 
4.11 162.0 81.9 -60 -18 -6 

4.11 162.0 77.9 -60 -18 -6 

ACE-d4 
4.11 166.0 85.9 -60 -18 -6 

4.11 166.0 77.9 -60 -18 -6 

SUC 
4.41 441.0 395.0 -70 -12 -15 

4.41 443.0 396.9 -70 -12 -15 

SUC-d6 
4.41 447.0 401.0 -70 -12 -15 

4.41 449.0 403.0 -70 -12 -15 

 

 

2.3 Results and Discussion 

2.3.1 Concentration of ACE and SUC in Environmental Samples from the Thompson 

River Region of British Columbia  

Figure 2.2 and Table 2.5 show the concentrations of ACE and SUC detected from 

surface waters collected from the Thompson Region. ACE was detected in every sample with 

averages ranging from 1 to 17 ng/L and the majority (10/12) of percent relative standard 

deviation (%RSDs) less than 20% (2/12, %RSD > 35%). For ACE, 10/12 samples had 

concentrations less than 5 ng/L, whereas samples collected from popular provincial parks 

had concentrations of 16 and 17.8 ng/L. There were no differences between the range of 

average ACE determined in rivers (1.0 – 16.1 ng/L) and lakes (1.5 – 17.8 ng/L). Location 3 

yielded exceptional results; average ACE was 133 ng/L but had %RSD of 83.6% between 

the triplicate collected samples. This could be due to the water stagnation in the collection 

area for location 3, which was a recreational park island river mote. During collection the 

water level was low. McArthur Island Sport and Event Centre includes 3 NHL sized arenas, 

12 baseball diamonds, 9 soccer fields, playgrounds and outdoor fitness equipment, BMX and 

biking paths, and a disk golf course among other facilities.23 Due to the wide variety of use 

in the area, waters with high ACE concentration may be impacted by leaching from food 

wrap and refuse. Addition contamination sources of the low flow mote could include the 

local population of homeless who set up shelter in Kamloops’ riverbanks.24 SUC was only 
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quantifiable in 2 of 12 samples both of which were Lakes (i.e., Louis Lake and Paul Lake). 

This could be due to the higher limit of detection compared to ACE. SUC may be a more 

successful indicator of human waste impact in environmental waters impacted by much 

larger populations, as the largest city in the region, Kamloops, has a population under 86 000 

residents.25  

 

 

 

 

 

 

Figure 2.2 Box and whisker plots of ACE and SUC determined in environmental water 

samples from each collection location. No SUC was detected in samples 1-7, 10-13 
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Table 2.5 Average ACE and SUC concentrations determined in environmental water 

samples corresponding to Figure 2.2, collected from locations indicated in Figure 2.1 

Location 

ACE, ng/L 

Average St. Dev % RSD 

1 4.2 0.4 8.6 

2 3.1 0.6 18.1 

3 133 111.2 83.6 

4 3.7 0.6 17.5 

5 1.0 0.1 8.9 

6 4.1 2.0 49.1 

7 3.5 0.4 10.3 

8 2.8 1.0 34.8 

9 17.8 2.1 11.9 

10 1.5 1.7 113.0 

11 16.1 4.6 28.7 

12 5.0 0.4 8.9 

13 4.0 0.4 9.4 

Location 
SUC, ng/L 

Average St. Dev % RSD 

8 239.8 130.3 54.3 

9 87.1 80.5 92.4 

 

 

 

There are several potential sources of ASs in the collection region. The South 

Thompson Rivers flows through several settled areas including downtown Kamloops. The 

small town of Pritchard, east and upstream of Kamloops, has a sewage treatment plant 

discharge. This section of the South Thompson River is adjacent to several working farms, 

as well as the Lafarge gypsum mine, and multiple sand and gravel pits. The North Thompson 

River is impacted by high road density, as well as urban and agricultural uses.21 The 

Kamloops Wastewater Treatment Plant is located on the south side of the Thompson River, 

west of Kamloops. In 2015, the facility processed a total of 10 billion litres of wastewater, 

approximately 30 million litres per day. The collection system consists of 525 km of sewer 

mains with 22,511 service connections.26 The Paul Lake Community Sewer System services 

approximately 105 customers by processing 35 septic tanks per year through a septic tank 

effluent system consisting of one pumping station, Rotating Biological Contactor, and septic 
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field disposal.27 Paul Lake hosts a popular Provincial Park site. SUC was only detected in 

Paul Lake and its neighbour Louis Lake. It is possible that the nearby septic field is the unique 

source of SUC in the area. The Scotch Creek community located on Shuswap Lake is one of 

several popular tourist destinations on the Lake. The water quality can be impacted by 

domestic household sewage disposal systems, septic fields, and some smaller community-

based disposal systems.28 

 The concentrations of ACE determined in the surface water samples collected from 

the Thompson Region of British Columbia are in the low ng/L, with the majority of samples 

containing less than 20 ng/L ACE. This is similar to ACE reported in streams from Jasper 

and Barrie ranging from not detected up to 90 ng/L7 and Lake Simcoe ranging from 4.4 to 

32.8 ng/L. However, the surface water samples in the Thompson River region had far less 

ACE than maximum values determined in samples from Grand River (3500 ng/L)10, 13 and 

Nottawasaga River (1700 ng/L)11. In the two samples in this study where SUC was detected, 

the average concentrations (i.e., 87 and 240 ng/L) were accordant with maximum SUC 

determined in other Canadian surface water samples (e.g., Nottawasaga River, 570 ng/L11; 

Lake Simcoe, 249 ng/L12). 

2.3.2 Potential Attenuation of ASs in the Environment 

As persistent environmental contaminants, the potential toxicological impact of ASs 

in aquatic ecosystems has been investigated. Toxicity studies with exposures up to 1000 

mg/L found none of the ASs, ACE, CYC, SUC or SAC, induced any significantly adverse 

effects in the Daphnia magna water flea or the freshwater plant, Lemna minor.29 Likewise, 

ACE induced no significantly adverse effects on Zebrafish embryos at exposure 

concentrations up to 1000 mg/L.28 With reported concentrations in waterbodies well below 

1 mg/L, ASs have not been demonstrated to pose a risk to aquatic ecosystems.   

Ideally, chemical tracers undergo negligible attenuation under environmental 

processes. If unknown routes for losses of ASs exist in the environment, assessment of the 

WW impact may be impaired. The fate and transformation of ASs in the environment is a 

topic of continuous development; however, distinct transformation pathways will not be 

discussed in detail here. Several environmental transformation processes such as UV 

irradiation, sorption, and microbial degradation have been reported to decrease ASs. For 
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example, simulated realistic solar radiation levels were found to degrade ACE, but not SUC, 

SAC, or CYC.6 Evidence showing variable sorption of ASs to different organic materials 

have been reported in detail.31-33 Li et al. found that for granular activated carbon (GAC), 

SAC was absorbed to the highest degree followed by SUC > CYC > ACE.31 Consequently, 

some fraction of AS may sorb to organic materials suspended in water bodies or surrounding 

sediments and soils.  

Buerge et al. found that under aerobic soil conditions, CYC, SAC, ACE and SUC had 

half-lives of 0.8, 3.3, 6.1 and 9.0 days, respectively.34 Interestingly, ASs have been found to 

transpire into vegetation grown in AS-rich soils. Ma et al. determined uptake of ASs by plants 

grown in soils enhanced with pig manure fertilizer,35 and Riemenschneider et al. detected 

ACE in field-grown vegetables irrigated with treated municipal WW.36 If notable proportions 

of ASs are removed by environmental transformation processes, WW contributions may be 

unintentionally underestimated.  

2.3.3 Recent Applications using ASs as WW Indicators 

ASs have been demonstrated as effective indicators of WW contribution to water 

bodies.37 For example, ACE and SUC have received attention as being stable indicators of 

municipal WW effluent, while CYC has proven to be a suitable indicator of untreated 

sewage.2,6 Zirlewagen et al. investigated ACE and CYC as indicators of WW contamination 

in the rural catchment area of a German karst spring and found CYC/ACE ratios 

approximately three orders of magnitude higher in untreated vs treated WW.6 CYC spikes 

were observed exclusively after combined sewer overflow events and correlated with 

breakthrough of fecal indicator bacteria. 

Septic waste can contribute to nitrogen and/or phosphorus contamination of nearby 

waterbodies. Unlike municipal WWTP effluent, AS concentrations and distributions vary 

between different septic system sites because they collect WW from significantly fewer 

sources than WWTPs and do not represent integration across a population source.38 In 

authentic ground and surface water applications, total inorganic nitrogen (TIN)/ACE ratios 

were used to differentiate septic tank leachate from other waste sources as the cause of 

nitrogen contamination in groundwater in agricultural land use areas.15 Additionally, both 

ACE and SUC were found to correlate with TIN and soluble reactive phosphorus in a study 
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of 19 single and multi-dwelling domestic septic systems in Canada. Even though SUC was 

found to be susceptible to slow degradation, it could be used to fingerprint recent sources of 

WW contamination of groundwater.16  

ASs have been demonstrated as indicators of domestic WW impact on surface and 

ground waters that serve as source waters for drinking water. Recently, ASs have been 

applied to study the impact of WW and subsequent formation of disinfection by-products 

(DBPs) in treated drinking water.3 Reactions between disinfectants (e.g., chlorine, 

chloramine) and organic matter in source water forms DBPs.39 Formation of toxic DBPs, like 

N-nitrosodimethylamine (NDMA), have been found to increase with WW contamination of 

source water.40-47 In a study of 19 North American DWTPs, Prescott investigated the 

relationship between SUC in source water and NDMA formation potential (FP), which 

represents NDMA precursor loading in the source water. This study found a correlation 

between NDMA FP and SUC concentrations in source water. Prescott cautioned that the 

SUC and NDMA FP relationship may be confounded when assessing water sources impacted 

by non-domestic WW (e.g., agricultural or industrial) that contain other NDMA precursors.3 

  Using the same principles for ASs to trace WW contamination, my Chapter 3 

research48 proposed the use of ACE, excreted exclusively in urine49 to approximate its 

presence in recreational waters. For the first time, ACE load was found to be up to 570 times 

greater in swimming pool and hot tub samples than input control samples. By quantifying 

the average ACE in 20 urine samples as well as two swimming pools sampled over three 

weeks, the study estimated the approximate volume of urine required to account for the 

average ACE concentration observed.48 While more controlled studies in swimming pools 

are needed to clarify this relationship, it may be useful for future assessment of pool water 

age or FP of swimming pool irritant DBPs (e.g., trichloramine) with known precursors in 

urine.50 

Studies that quantitatively assess WW discharge into a waterbody using detected AS 

concentrations are limited in comparison to AS occurrence surveys. This is likely because 

WW impact quantitation requires comprehensive knowledge of the waterbody being 

investigated coupled with specific mathematics to determine the level of AS dilution based 

on water flow.  
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A one-dimensional deterministic non-equilibrium advection dispersion equation was 

used to model a breakthrough event that determined a total of 262 m3 of combined WW 

discharge, corresponding to 1.1 g of CYC, had entered a karst spring.6 Lee et al. estimated 

approximately 20-60% WW effluent in Sacramento River samples based on the SUC 

concentrations detected.51 Calculations regarding this complex hydraulic system were made 

possible with the Delta Simulation Model II. Similarly, measured SUC concentrations along 

with water flow rates allowed Prescott et al. to estimate up to 37% WW-impacted DWTP 

influents.3 Using ASs to quantify WW impact on drinking water supply is a unique tool that 

has limited studies and is a logical next step in future AS investigations in this field. 

 

2.4 Conclusion 

2.4.1 Occurrence of ACE and SUC in B.C. Surface Waters 

For the first time, ACE and SUC concentrations were reported for surface waters in 

the Thompson River region of British Columbia. Compared to the limited data of other non-

nutritive artificial sweeteners in Canadian environmental waters, these samples had ACE 

concentrations in the low part-per-trillion (ng/L) range compared to reports ranging from low 

parts per trillion in streams to low parts per billion (µg/L) in wells and high ppb in sewage 

effluent. Studies on ASs on Canadian water bodies are scant. It is possible the low 

concentration of ACE in the Thompson region is due to a relatively low population density 

impacting the water bodies compared to the populous southern Ontario region, and other 

global locations studied (e.g., California, U.S., Europe, China, India). The Grand River is 

known for being heavily impacted by human activity,52 rationalizing high ACE occurrence. 

The low ACE background levels in the waterbodies would make ACE suitable to detect a 

nearby waste discharge event, however, unlike CYC, ACE is not specific to untreated waste. 

SUC was only detectable in two lakes of all 12 locations surveyed. The higher detection limit 

(50 ng/L) compared to ACE (0.5 ng/L) make SUC a poor choice as an indicator in this region. 

2.4.2 Perspectives on ASs as WW Indicators 

The characteristics of ASs align with ideal indicators of WW impact. Early literature 

consisting of surveys and proof of concept studies were fundamental in generating new 

hypotheses to validate ASs as WW indicators. However, recent literature has suggested that 
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some general assumptions made in previous studies should be re-assessed to ensure that ASs 

are appropriately monitored to estimate WW contributions. Domestic waste may not be the 

only source of ASs; landfill leachate and manure fertilizer were identified as alternate 

contamination sources of ASs in groundwater. Although increasing evidence indicates 

biologically mediated removal of ASs by different treatment technologies, AS effluent 

concentrations remain useful for assessment of downstream WW impact. AS transformation 

pathways under various environmental conditions53-55 is a topic of continuous investigation 

that exceeds the scope of this discussion. With careful design of experiments and controls, 

ASs can serve as effective indicators of WW impact in water bodies. Continuous 

advancement of analytical tools providing low detection limits will enhance the 

understanding of fate and behavior of ASs in environmental waters, increasing the accuracy 

of WW impact assessments.  
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Chapter 3  

Artificial Sweetener Acesulfame as an Indicator of Urine in Swimming Pools  

and Hot Tubs ‡ 

 

“A little more persistence, a little more effort,  

and what seemed hopeless failure may turn to glorious success.” 

– Elbert Hubbard (1856-1915) 

 

3.1 Introduction 

The recent news article “Chemical reactions taking place in your pools”1 and the 

overnight colour change of the water from blue to green in the 2016 Rio Olympic pools2 

highlights the need to monitor water quality in swimming pools. A variety of chemicals can 

be introduced into recreational waters via body fluids3 that can react with disinfectants. 

Recently, a study identified over 100 disinfection byproducts (DBPs) in swimming pools and 

hot tubs, and found that organic extracts from those samples were more mutagenic than 

corresponding tap water extracts.4 Epidemiological studies have found a potential association 

of increased risk of bladder cancer with long-term DBP exposure via drinking water,5 but 

association via exposure through swimming pools has been inconsistent.6,7 

Human urinary input into swimming pools is a public health concern although urine 

itself is sterile. Urine contains many nitrogenous compounds such as urea, ammonia, amino 

acids, and creatinine. These compounds can react with disinfectants (e.g., chlorine) in 

swimming pools to form DBPs including trihalomethanes, haloacetic acids, haloamines, and 

halonitromethanes.8,9 Exposure to volatile DBPs, specifically trichloramine, in indoor 

swimming facilities can lead to eye and respiratory irritation10-12 and has been linked to 

occupational asthma.13 Although considered a taboo, 19% of adults have admitted to having 

                                                 
‡ Chapter 3 has been published as Jmaiff Blackstock, L.K.; Wang, W.; Vemula, S.; Jaeger, B.T.; Li, 

X.-F. Sweetened swimming pools and hot tubs. Environmental Science & Technology Letters. 2017, 

4(4): 149-153. Reprinted with permission. Copyright 2017 American Chemical Society. Parts of 

Section 3.5 have been published as Zheng, Q.; Jmaiff Blackstock, L.K.; Deng, W.; Wang, H.; Le, 

X.C.; Li, X.-F. Keep swimming but stop peeing in the pools.  Journal of Environmental Sciences. 

2017, 53: 322-325. Reprinted with permission. Copyright 2017 The Research Center for Eco-

Environmental Sciences, Chinese Academy of Sciences. 
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urinated in a swimming pool at least once.14 The average urine excretion per swimmer in 

pools is approximately 70 mL.15 Dissolved organic carbon (DOC) in swimming pools has 

been associated with both bather load and formation of trihalomethanes.16,17 The potential 

negative health effects associated with DBPs led us to investigate a marker for urine in 

swimming pools and hot tubs.  

Artificial sweeteners are consumed in large quantities due to their negligible calories 

and low impact on blood sugar.18 Found pervasively in natural water bodies, 19-23 they have 

been recognized as emerging environmental contaminants.23,24 Non-nutritive artificial 

sweeteners including acesulfame-K (ACE), 25,26 sucralose (SUC), saccharin (SAC), and 

cyclamate (CYC) have been recognized as indicators of wastewater in environmental 

waters.27,28 ACE, used in prepackaged foods,18,29,30 is not metabolized by humans; it is 

completely absorbed and excreted exclusively in the urine,29,31 whereas SUC is excreted 

mainly in feces.32 The average concentration of ACE in urine is approximately 4000 ng/mL.33 

Several studies have shown that ACE is stable at varying pH and high temperatures30 and is 

resistant to microbial action in aerobic soils.34 Furthermore, ACE is much more resistant to 

wastewater treatment processes compared to SAC or CYC.25,35,36 Because of its widespread 

consumption, stability, and persistent nature, I hypothesized that ACE may serve as an 

indicator of urinary input in swimming pools. The occurrence of any artificial sweetening 

agents in swimming pools has not been studied previously. The objective of this study was 

to determine the occurrence of the artificial sweetener ACE in swimming pools and hot tubs 

compared to input tap water.  

The determination of ACE in water typically includes separation by ion or liquid 

chromatography (LC) and detection using electrospray ionization mass spectrometry (ESI-

MS), with37 or without27 solid phase extraction (SPE). Recently, a method capable of 

detecting ACE at 0.2 ng/L without preconcentration was developed.38 However, the need for 

specialized equipment or sample preconcentration makes these methods impractical for 

monitoring studies. To enable the determination of ACE in the complex matrices of pool and 

hot tub water samples, without preconcentration, I have developed a rapid, high throughput 

method using high performance liquid chromatography (HPLC) with tandem mass 
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spectrometry (MS/MS). The method was applied to determine ACE in over 250 samples 

collected from 31 pools and hot tubs and over 90 corresponding input tap water samples.  

 

3.2 Materials and Methods 

3.2.1 Reagents 

The acesulfame-K (ACE) standard was obtained from Supelco (Bellefonte, PA), and the 

deuterated isotopic internal standard acesulfame-K-d4 (ACE-d4) was obtained from Toronto 

Research Chemicals (Toronto, Ontario, Canada). Working stocks were prepared in methanol 

and stored in a -20 °C freezer. LCMS-grade formic acid (FA, 49−51%) was obtained from 

Sigma-Aldrich (St. Louis, MO). Water and methanol used in this study were Optima LCMS-

grade, purchased from Fisher Scientific (Fair Lawn, NJ). 

3.2.2 HPLC-MS/MS Analysis of ACE  

An Agilent 1100 HPLC system (Agilent, Santa Clara, CA) was used with an Inspire 

C18 column (100 x 3.0 mm, 3 µm particle size; Dikma Technologies, Lake Forest, CA) at 

room temperature. The flow rate was set to 0.5 mL/min with the autosampler injection 

volume set to100 µL. Solvent A was acidified water [0.1% formic acid (FA)] and solvent B 

was acidified methanol (0.1% FA).  

A triple quadrupole tandem mass spectrometer (5500 QTRAP, AB Sciex, Concord, 

ON, Canada) with multiple-reaction monitoring (MRM) mode was used for the detection and 

quantification of ACE and the internal standard, ACE-d4. For ACE, the Q1 and Q3 mass-to-

charge ratios for primary and secondary transitions were 162.1 > 81.9 Da and 162.1 > 77.9 

Da; for ACE-d4, transitions of 166 > 85.9 Da and 166 > 77.9 Da were used. Retention times 

were matched with authentic standards.  

ACE-d4 was prepared in LCMS-grade methanol. Each sample was spiked with ACE-

d4 at a concentration of 10 ng/L. All samples had a final composition of 9:1 H2O:MeOH. 

The relative peak area of the primary transition for ACE to ACE-d4 was used for 

quantification. The secondary transition peak confirmed the identity of ACE in the samples. 

A calibration curve was prepared with each batch to account for variation in instrument signal 

intensity. 
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3.2.2.1 Optimized HPLC-MS/MS Conditions 

The mobile phase gradient program linearly increased B from 5% to 95% in 2 min; 

maintained B at 95% until 6 min; returned to 5% B between 6.0 and 6.1 min; and remained 

at 5% for column equilibration until run completion at 15 min. 

Optimized conditions for negative electrospray ionization (ESI) were: curtain gas, 45 psi; 

collision gas, high; gas 1, 50 psi; gas 2, 80 psi; ion spray voltage, -4500 V; temperature, 

400ºC; and dwell time, 75 msec. The optimized declustering potential (DP), collision energy 

(CE), and cell collision exit potential (CXP) for all transitions are listed in Table 3.1. 

 

Table 3.1 Optimized parameters for MS/MS (MRM) ion pair transitions 

MRM Ion Pair 

Transition 

Declusterization 

Potential (DP) 

Collision Energy  

(CE) 

Cell Exit Potential 

(CXP) 

162.1 > 81.9 -60 -19 -10 

162.1 > 77.9 -60 -44 -7 

166 > 85.9 -53 -20 -10 

166 > 77.9 -54 -46 -10 

 

 

3.2.3 HPLC-MS/MS Method Validation 

3.2.3.1 Limit of Detection Calculation 

The instrument limit of detection (LOD) was calculated as three times the standard deviation 

of a 0.5 ng/L standard divided by the slope. This agrees with the observed chromatographic 

signal-to-noise ratio of 4.3 obtained for a 0.5 ng/L ACE standard. The method LOD was 

calculated as three times the standard deviation of the method blank signal divided by the 

slope. LCMS-grade water was filtered through 0.45-µm PVDF filters and analyzed as method 

blanks. Typical chromatograms displaying signal response from the method blank, LOD 

standard, and the ACE-d4 sample spike are shown in Figure 3.1. The linear range for ACE 

was 0.5 to 1000 ng/L; a typical calibration curve is shown in Figure 3.2. 
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Figure 3.1 Typical chromatograms showing the signal intensity of (a) ACE in a blank 

sample, method blank sample, and a 0.5 ng/L ACE standard and (b) a 10 ng/L ACE-d4 

internal standard 

 

 

 

 

Figure 3.2 A typical ACE calibration curve prepared with 10-ng/L ACE-d4 spiked ACE 

standards ranging from 0.5 to 1000 ng/L in 9:1 LCMS H2O:MeOH 
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3.2.3.2 Reproducibility 

Intraday and interday reproducibility was evaluated for a 5.0-ng/L standard prepared 

in LCMS grade Optima water (Figure 3.3). Within the same day, the %RSD for the 

determined concentrations from triplicate analyses was less than 2%. Over four non-

consecutive days, a one-way ANOVA test determined that p=0.564, indicating no significant 

difference between the mean concentrations reported on different days. The retention time 

for ACE and ACE-d4 in LCMS-grade, tap, and recreational waters were 4.4 ± 0.1 minutes 

(n=558 over 4 days), respectively. Therefore, this method is stable over a multi-day analysis 

on a shared instrument. 

 

 

Figure 3.3 Interday and intraday variation of a 5-ng/L ACE standard prepared in LCMS 

grade water (10% MeOH with 10-ng/L ACE-d4 spike) 

 

 

3.2.3.3 Matrix Effects 

The matrix effects for recreational waters were evaluated in two ways. First, HT5 was 

used as a representative complex sample to determine whether recreational water matrix 

effects had an impact on signal intensity. The sample was diluted to 1/5, 1/10, 1/20, 1/40, and 

1/80 and analyzed. The concentration of ACE was plotted against the dilution factor resulting 

in an R2 value of 0.994 (Figure 3.4), indicating that the matrix did not affect the analyte 

intensity. Based on the concentration range of ACE in swimming pool and hot tub samples 
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obtained from preliminary screening, I chose a dilution factor of 1/20 to be used for all 

samples to ensure the analyte was within the linear range, to eliminate carry over, and to 

reduce residue buildup in the LC column and ESI source. Second, a spike recovery study was 

conducted with three representative samples: SP2, SP4, and HT8 (Table 3.2). Each sample 

was diluted to 1/20 and split into six portions; three were spiked with 50 ng/L ACE. The non-

spiked samples represented the matrix. Recoveries ranged from 86 to 91% indicating that the 

matrix did not affect the recovery of ACE at 1/20 dilution.  

 

 

 

Figure 3.4 Recreational water matrix dilution and corresponding ACE response, the sample 

HT5 was diluted to 1/5, 1/10, 1/20, 1/40, and 1/80 and the concentration of ACE was 

determined 
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Table 3.2 Percent spike recovery for ACE in three representative recreational sample 

matrices 

Sample 
% Spike Recovery ϕ % RSD 

RF1 SP2 
87% 4% 

RF2 SP4 
86% 5% 

RF12 HT8 
91% 8% 

%R=((F-I)/A)*100% 

Where: F=[Matrix+Spike]; I=[Matrix]; A=[Spike] 

ϕ Each sample was diluted to 1/20 and then split into 6 portions. Three portions were spiked with 50 ng/L 

ACE; all portions were spiked with 10 ng/L ACE-d4 internal standard for quantification. 

 

 

3.2.4 Dissolved Organic Carbon Analysis 

Swimming pool, hot tub, and input tap water samples collected from City 1 were 

analyzed for their DOC content. DOC was measured at the Biogeochemical Analytical 

Service Laboratory of the University of Alberta. The US EPA Method 415.1 for 

Determination of Total Organic Carbon in Water was used with a Shimadzu TOC-5000A 

Total Organic Carbon Analyzer (Shimadzu, Japan).  

3.2.5 Sample Collection 

3.2.5.1 Collection of Swimming Pool and Hot Tub Samples  

I collected samples from two Canadian cities between May and August 2014. In City 

1, samples were collected from 10 swimming pools (SP) and 5 hot tubs (HT) from 5 

recreational facilities (RF) and 3 hotels (H). In City 2, samples were collected from 11 SPs 

and 3 HTs from 8 RFs and one private pool (P). All facilities used municipal tap water as the 

input source. Triplicate grab samples were collected using new, sterile, 15-mL polystyrene 

vials. In swimming pools and hot tubs, samples were collected away from the jets, 

approximately 30 cm from the edge and 15 cm below the surface. Municipal tap water was 

collected on the same day, in triplicate, at each site.  

Samples were stored at 4 C until analysis. ACE is stable and resistant to 

decomposition, showing no detectable decrease in concentration after 10 years of storage at 

room temperature.39 Samples were filtered through disposable 0.45-µm Millipore filters 

(PVDF, 25-mm). An analysis blank was injected into the HPLC-MS/MS after each set of 
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samples to detect and avoid any carryover or contamination during sequential analysis. No 

ACE was detected in the analysis blanks.  

3.2.5.2 Case Study Sample Collection 

Samples were collected over three weeks from two swimming pools, SPx and SPz, 

in City 2 in August 2016. SPx and SPz have volumes of 110000 and 220000 US gallons 

(roughly 420000 and 840000 L). Both SPs are on a closed water filtration system with new 

water only being added to replace losses due to evaporation or splash out. Both pools are 

disinfected with Cl2 gas and shocked with CaOCl2. Each day, 6 SP samples and 3 tap water 

samples were collected from the same locations at the same time. Human urine samples 

(n=20) with equal volume were pooled and homogenized. The mixture was diluted 100000 

times with Optima water through serial dilution. The diluted sample was analyzed in 

triplicate to obtain the average concentration of ACE.  

 

3.3 Results and Discussion 

3.3.1 Concentration of ACE in Swimming Pools and Hot Tubs  

Figure 3.5 shows the concentrations of ACE determined in the pools and hot tubs. In 

City 1, the concentration of ACE in the pool samples ranged from 30 ng/L in SP10 to 2110 

ng/L in SP8 (Figure 3.5(a)). In City 2, ACE ranged from 90 ng/L to 580 ng/L in all the pools 

except SP20, where 1070 ng/L of ACE was determined (Figure 3.5(b)). ACE concentrations 

in all hot tub samples ranged from 70 to 100 ng/L (HT3, HT4, HT6, and HT7) and from 2220 

to 7110 ng/L (HT1, HT2, HT5, and HT8). HT5 contained the highest ACE concentration 

(7110 ng/L), more than double any other sample. These samples were collected at one time 

and represent only a snapshot in time. The large variation of ACE in the pools and tubs may 

be explained by the water change cycling time point, the number of users and events, and 

facility management practices. Typically, fresh water is only added to swimming pools to 

maintain water levels, whereas hot tub water in community facilities is replaced frequently 

to prevent health issues associated with heavy use.40,41  

ACE was detected in all tap water samples at significantly lower concentrations than 

those in the pools and tubs in both cities. ACE in tap water samples ranged from 6 to 12 ng/L 

(Figure 3.6(a)) in City 1 and 12 to 15 ng/L (Figure 3.6(b)) in City 2. The difference in ACE 
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concentration in the two cities’ tap waters is statistically significant (p<0.001; unpaired t-

test). This is expected, as the source water for each city is unique. The ACE concentrations 

in swimming pools and hot tubs were 4 (SP10) to 571 (H4) times greater than the 

corresponding input tap water (Table 3.3). The ACE concentrations determined in the tap 

water samples in this study are comparable to some Albertan well water samples (0.9–1530 

ng/L ACE)38 and lower than those in Swiss tap waters (20–70 ng/L ACE).18,42  

 

 

 

Figure 3.5 Average ACE concentration (n=3) detected in swimming pool (SP) and hot tub 

(HT) samples collected from public recreational facilities (RF), hotels (H), and a private 

residence (P) in (a) City 1 and (b) City 2. Samples indicated by the silcrow (§) were analyzed 

at 1/10 dilution, rather than 1/20, due to their low ACE concentration 
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Figure 3.6 Average ACE concentration (n=3) detected in tap water samples collected from 

each sampling location in (a) City 1 and (b) City 2. The combined average of ACE 

concentration in each city’s tap water was found to be statistically different using an unpaired 

Student’s t-test (p<0.001) 

 

 

 

Table 3.3 Average ACE fold increase in swimming pools and hot tubs compared to input 

tap water concentration; fold increase = (A-B)/B, where A = SP or HT, B = T. 

 
City 1 

 

City 2 

RF1 SP1 98 RF6 SP11 14 
 SP2 165 RF7 SP12 5 
 H1 343  SP13 36 
 H2 513 RF8 SP14 36 

RF2 SP3 93  SP15 15 
 HT3 7 RF9 SP16 12 

RF3 SP4 12  HT6 7 
 SP5 9 RF10 SP17 39 

RF4 SP6 6  HT7 5 

RF5 SP7 6 RF11 SP18 34 

H1 SP8 290  SP19 10 
 HT4 9 RF12 SP20 75 

H2 SP9 27  HT8 199 
 HT5 571 P1 SP21 10 

H3 SP10 4    

 

 

 

 

b. 
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3.3.2 Concentration of Dissolved Organic Carbon in City 1 Samples  

To examine the potential human impact on the water quality in the pools and hot tubs, 

I determined DOC in all samples collected in City 1 (Figure 3.7). The average DOC ranged 

from 4.8 to 6.3 mg/L in the tap waters and from 6.7 to 40.5 mg/L in the pools and tubs. For 

controls, DOC of input tap waters was significantly greater (p<0.001, unpaired t-test) than 

the blanks (LCMS Optima water). In the paired samples, DOC of all SP and HT samples, 

except HT4, was significantly greater (p<0.01 or p<0.001, unpaired t-test) than the respective 

input tap water samples. The increase of DOC in the pools and hot tubs suggests human 

impact on the water quality. Previous studies have observed the association of increasing 

DOC in swimming pools with increasing bather load.16,17 Increased DOC is linked with 

enhanced formation of DBPs (e.g., THMs and HBQs).16,17,43 Natural organic matter (NOM) 

is the primary source of DOC in tap water, whereas human inputs such as personal care 

products and body fluids introduced by swimmers (e.g., urine, sweat) may contribute to DOC 

in recreational waters.  

 

 

 

 

Figure 3.7 Average dissolved organic carbon (DOC) concentration detected* in tap and 

recreational water samples (n=3) collected from City 1. The average ACE in each sample 

type was compared using an unpaired Student’s t-test  

(*) Total Organic Carbon in Water EPA Method 415.1. 

https://www.epa.gov/sites/production/files/2015-06/documents/415_1dqi.pdf 

(accessed Feb 15, 2017) 

 

 

https://www.epa.gov/sites/production/files/2015-06/documents/415_1dqi.pdf
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3.3.3 Case Study – ACE Variability in Swimming Pools Over Time 

To investigate the degree of variation of ACE in pool water, samples were collected 

from two different sized swimming pools, SPx (110 000 US gal.) and SPz (220 000 US gal.), 

over three weeks. ACE in the tap water control samples ranged from 12 to 20 ng/L (Table 

3.4) during the collection period (n=45). The average ACE in SPx and SPz was 156 and 210 

ng/L, respectively (Figure 3.8). The concentration of ACE in both pools varied similarly. 

The percent relative standard deviation (%RSD) for ACE determined in SPx and SPz was 

18% and 15%, respectively. Based on the volume of each pool, the total mass of ACE present 

was estimated to be 65 mg in SPx and 176 mg in SPz (see Calculation 3.1 and Table 3.5).       

 

 

Table 3.4 Average concentration of ACE in SPx, SPz, and corresponding input tap water 

samples over 15 non-consecutive days 

 

Sample 

Day # 

Acesulfame, ng/L 

Tap Water (n=3) SPx (n=6) SPz (n=6) 

Avg ± St Dev %RSD Avg ± St Dev %RSD Avg ± St Dev %RSD 

1 16 ± 0.5 3 133 ± 5 4 173 ± 13 8 

2 16 ± 0.8 5 135 ± 3 2 180 ± 13 7 

3 17 ± 0.5 3 125 ± 7 5 240 ± 10 4 

4 16 ± 0.4 3 134 ± 4 3 242 ± 13 5 

5 17 ± 1.9 11 127 ± 8 6 251 ± 9 3 

8 18 ± 3.6 20 114 ± 21 18 221 ± 16 7 

9 15 ± 0.1 1 165 ± 4 2 202 ± 8 4 

10 16 ± 0.4 2 174 ± 8 4 258 ± 24 9 

11 15 ± 0.9 6 150 ± 27 18 242 ± 9 4 

12 14 ± 0.7 5 154 ± 12 8 220 ± 7 3 

15 16 ± 0.6 4 173 ± 9 5 186 ± 19 10 

16 17 ± 1.0 6 181 ± 8 4 191 ± 3 2 

17 20 ± 1.4 7 183 ± 6 4 186 ± 13 7 

18 16 ± 0.7 4 181 ± 6 3 178 ± 5 3 

19 12 ± 0.4 3 202 ± 8 4 182 ± 7 4 
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Figure 3.8 (a) Average ACE concentration detected in SPx, SPz (n=6), and tap water (n=3) 

samples per day over three weeks. (b) Box and whisker diagram for average ACE 

concentration detected in SPx, SPz (n=90), and tap water (n=45) over three weeks  

 

 

Calculation 3.1 Total ACE present  

 

The following calculation estimates the total mass of ACE in SPx. The values used 

were the known pool volume (V1) and average concentration of ACE determined 

over all 15 days of collection (C1). 

V1 = Swimming Pool Volume = 110 000 US Gal ≅ 420 000 L 

C1 = Average ACE in pool = 156 ng/L 

 

156 
𝑛𝑔

𝐿
 ×  

1 µ𝑔

1000 𝑛𝑔 
 ×  

1 𝑚𝑔

1000 µ𝑔
 × 

1 𝑔

1000 𝑚𝑔
= 1.56𝐸−7

𝑔

𝐿
 𝑜𝑓 𝐴𝐶𝐸  

1.56𝐸−7
𝑔

𝐿
 ×  420 000 𝐿 = 0. 0655 𝑔 ≅ 𝟔𝟓 𝒎𝒈 𝑨𝑪𝑬 
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 To estimate the total urinary input in SPx and SPz, I determined the average ACE 

concentration in a pooled Canadian human urine sample (n=20) to be 2360 ng/mL with 4% 

RSD (Figure 3.9). Although this is less than the mean concentration of ACE in Chinese 

human urine samples (n=54), reported as 4070 ng/mL,33 both values have the same order of 

magnitude. Using approximate pool volumes and the ACE concentration determined in 

Canadian urine samples, I estimated the total urinary input in SPx and SPz to further illustrate 

the feasibility of ACE as an indicator (see Calculation 3.2 and Table 3.5). I calculated the 

volume of urine to be approximately 30 and 75 L in SPx and SPz, respectively.  

 

 

 

Figure 3.9 A sample chromatogram showing ACE and ACE-d4 internal standard transitions 

detected in a pooled human urine (n=20) sample at 100000 times dilution 
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Calculation 3.2 Total volume of urine  

The following calculation estimates the volume of urine in SPx. The values used were 

the known pool volume (V1) and average concentration of ACE determined on the 

final day of collection (C1), along with the determined average concentration of ACE 

in Canadian urine (C2, Figure 3.9). 

 

V1 = Swimming Pool Volume = 110 000 US Gal ≅ 420 000 L 

C1 = Average ACE in pool = 156 ng/L 

C2 = Average ACE in Adult Urine = 2 360 ng/mL ≅ 2 360 000 ng/L 

 

𝐶1𝑉1 = 𝐶2𝑉2 

𝑉2 =
𝐶1𝑉1

𝐶2
 

𝑉2 =
156

𝑛𝑔
𝐿 × 420 000 𝐿

2 360 000 
𝑛𝑔
𝐿

 

𝑽𝟐 ≅ 𝟑𝟎 𝑳 Urine 

 

Note: Calculations 3.1 and 3.2 were repeated for SPz, which had twice the total 

volume of SPx (220 000 US Gal) and an average ACE concentration of 210 ng/L over 

the collection period (Table 3.5).   

 

 

Table 3.5 Average concentration of ACE in SPx and SPz over three weeks of sample 

collection as well as the corresponding estimated total mass of ACE and total urine content 

 

Pool  ACE Average  

(ng/L, N=90) 

ACE  

Standard Deviation 

(ng/L, N=90) 

ACE %  

Relative Standard 

Deviation  

ACE  

Estimated Total 

Mass (mg) 

Estimated 

Total Urine 

(L) 

SPx  156 28 18 65 28 

SPz 210 32 15 176 75 
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3.3.4 HPLC-MS/MS Method Development and Optimization 

The successful and rapid determination of ACE in more than 350 samples is due to 

the new method I developed. This method eliminates the need for preconcentration, and 

provides sensitive and rapid analysis for a wide range of concentrations of ACE in swimming 

pool, hot tub, and tap water samples. The method can achieve an instrument limit of detection 

(LOD) of 0.5 ng/L and method LOD of 2.2 ng/L. Compared to previous methods requiring 

manual injection of 500-µL or SPE,37,38 the new method, with a 100-µL autosampler injection 

volume enabling high throughput analysis, makes the analysis of many samples feasible. 

 

3.4 Conclusion 

This is the first reported occurrence study of ACE in swimming pools and hot tubs. 

The high concentration of ACE with 100% occurrence in pools and hot tubs demonstrates 

human impact on recreational water quality. The association of occupational asthma in 

swimmers with volatile N-DBPs (e.g., trichloramine) highlights the need to control the water 

quality of swimming pools. Several studies have reported that increased DOC in swimming 

pools results in enhancement of DBP formation. To reduce exposure to N-DBPs and their 

negative health impacts in swimming pools, I should monitor and control water quality. 

Public education on personal hygiene in the pools is important as demonstrated in the C&EN 

cover story.1 

 

3.5 Media Platform and Public Education 

3.5.1 Media Impact 

The results from Chapter 3 were published online as “Sweetened Swimming Pools 

and Hot Tubs” 44 in the Journal Environmental Science & Technology Letters (ES&TLett) on 

March 1st, 2017. Within one day, the research was covered by more than 100 news stories of 

multiple media and languages.45 The coverage ranged from scientific press, such as Science 

Daily,46 to popular press, such as The Guardian,47 BBC News,48 CBC News,49 and CBS 

News.50 Since December 26, 2019, Altmetric (a website that ranks publications by collecting 

metrics for attention) has documented over 250 news stories from 211 news outlets around 
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the world. 45 Currently, the publication ranks at #1055 out of the 14,220,799 research outputs 

tracked by Altmetric, Figure 3.10. 

Many news stories of the popular press have such headlines as “how much pee is in 

our swimming pools?” or “Yes, there is a lot of pee in that public pool”, emphasizing 75 

liters of urine in a swimming pool smaller than one-third of an Olympic-size pool. “Buckets 

of urine in swimming pools” presented “gross” and “scary” images in the minds of some 

readers/viewers, which could discourage people from swimming. This was not the purpose 

of the study. An appropriate public education and public health message should not dwell on 

how much urine is in the pools, but rather how to promote swimming hygiene and encourage 

people to enjoy swimming for its health benefits.  

When interviewed by the media, both Dr. Xing-Fang Li and I repeatedly emphasized 

that the benefits of swimming far outweigh the risk of urine in the pools.51-53 The importance 

of public awareness and education to stop peeing in the pools was stressed.53 The new 

research findings on the evidence of urine in swimming pools should be used to promote 

good swimmer hygiene practice. 
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3.5.2 Public Education Perspective 

Following the widespread social impact of the publication, “Sweetened Swimming 

Pools and Research”, I collaborated with Mark Rober, a science education content creator on 

YouTube for the video “How to measure HOW MUCH PEE IS IN YOUR POOL” to 

properly explain the research and correct the negative narrative propagated to the public by 

the media at large. To date, the video has amassed over 20.7 million views and garnered over 

25000 comments of discussion.54  

Several key messages were emphasized in the video. ACE was measured in the pools, 

not urine. Swimming and other water-related activities are excellent ways to engage in 

physical activity to achieve wellness benefits and lead a healthy life.55, 56 Disinfection is an 

essential strategy to maintain safe water and prevent the transmission of waterborne illness. 

The U.S. Center for Disease Control and Prevention (CDC) encourages swimmers to practice 

good hygiene. “Keep the pee, poop, sweat, blood and dirt out of the water.” “Shower before 

you get in the water. Rinsing off in the shower for just 1 minute removes most of the dirt or 

anything else on your body”.55 Consistent with these recommendations, studies on personal 

care products in swimming pool water have shown that chemicals in sunscreen and lotions 

can be precursors to the formation of toxic DBPs.43 An important measure to minimize the 

formation of DBPs is to control and reduce DOC.57
 Thus, showering to remove excess debris 

before going into the pools and keeping body fluids out of the pools it is critical to minimize 

the formation of DBPs.  
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 Chapter 4 

Chloraminated Water Sweetened with Aspartame Increases Disinfection Byproduct: 

Dichlorobenzoquinone § 

 

“Success is not final, failure is not fatal: It is the courage to continue that counts.” 

– Winston Churchill (1874-1965) 

 

4.1 Introduction  

  

Total daily intake of water by American adults is approximately 3.2 L, with roughly 

half that amount as prepared beverages (1536 mL).1 Sugar sweetened beverages are the 

largest source of beverage calories.2 Thus, for the management of caloric intake and blood 

sugar levels, sugar is often replaced with artificial sweeteners.3,4 Aspartame is an intense 

artificial sweetener, approximately 200 times sweeter than sucrose,5 and is found in a variety 

of products. This includes general tabletop sweeteners (Nutrasweet®, SugarTwin®, 

Equal®), processed foodstuffs such as dry bases for certain foods, and carbonated beverages 

and their syrup bases.6,7 With its popular use as a beverage sweetener, aspartame is often 

added to drinks prepared with disinfected drinking water.  

Drinking water disinfection is essential to prevent the transmission of waterborne 

pathogens.8-12 To prevent microbial contamination within a distribution system, residual 

disinfectants must be maintained.8-12 However, residual chlorine or chloramine can react with 

organics in food and beverages,13-16 resulting in formation of disinfection byproducts (DBPs). 

DBPs have long been a human health concern in treated drinking water due to the potential 

epidemiologically observed association between increased bladder cancer risk and long-term 

chlorinated water consumption.17 Because regulated DBPs do not have sufficient potency to 

account for this observed risk, research is shifting to identify toxicologically relevant 

unknown and unregulated DBPs.18,19 Recent studies identified emerging iodo-DBPs in 

simulated tap water containing iodized salt after boiling20 and demonstrated the formation of 

                                                 
§ The results in Chapter 4 are unpublished. The instrumental analysis described in Section 4.2.3.3 

was completed by the University of Alberta Department of Renewable Resources Natural Resources 

Analytical Laboratory 
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selected DBPs in a variety of brewed tea and coffee.21 To date, the formation of DBPs in 

beverages from the use of artificial sweeteners prepared from authentic tap water has not 

been investigated.  

Halobenzoquinones (HBQs) are a class of unregulated DBPs detected frequently in 

drinking water22,23 and have up to 1000 higher cytotoxicity than regulated DBPs.24 The most 

commonly detected HBQ in tap water is 2,6-dichloro-1,4-benzoquinone (DCBQ). Several 

studies have identified DCBQ precursors under chlorination and/or chloramination 

conditions including phenol,22,26 alkyl and carboxyl para-substituted phenolic compounds, 

and para-substituted aromatic amines.27 Natural organic matter (NOM) mixtures of higher 

aromatic character have also been correlated with increased DCBQ formation after 

chlorination.28 A recent study demonstrated phenolic compounds present in tea leaves as 

HBQ precursors and antioxidents.29 Because aspartame is a dipeptide consisting of 

phenylalanine and aspartic acid, the presence of its aromatic component (i.e., phenylalanine) 

makes it a plausible HBQ precursor. 

The predominant use of aspartame in the US is sweetening low calorie drinks.30 

However, it remains unknown whether aspartame may react with residual chloramine in tap 

water to form HBQs during beverage preparation. In this study, aspartame and its aromatic 

component phenylalanine were investigated as DCBQ precursors, Figure 4.1 under 

controlled conditions mimicking chloraminated tap water. Next, DCBQ concentrations were 

examined in one cup of authentic chloraminated tap water with and without the addition of 

one Equal packet. Finally, the impact of aspartame on DCBQ stability in Optima water was 

evaluated.23 This study highlights the potential indirect impact of artificial sweetener use on 

DBP exposure, adding a new perspective when weighing the known benefits of reduced 

blood sugar and weight management against potential adverse effects surrounding long-term 

consumption of artificial sweeteners.   
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Figure 4.1 Chemical structures of experimentally relevant precursors (phenylalanine and 

aspartame) and products (DCBQ and OH-DCBQ) 

 

4.2 Materials and Methods  

4.2.1 Chemicals, Materials and Instrument Details 

High performance liquid chromatography-tandem mass spectrometry (HPLC-MS) 

grade formic acid (FA, 98%), sodium hypochlorite solution, ascorbic acid (AA), 

phenylalanine, and 2,6-dichloro-1,4-benzoquinone (DCBQ) were obtained from Sigma-

Aldrich (St. Louis, MO). Optima LC-MS grade methanol, water, and hydrochloric acid, as 

well as ammonium chloride, aspartame, anhydrous dibasic potassium phosphate, and sodium 

bicarbonate were obtained from Thermo Fisher Scientific (Fair Lawn, NJ). Equal Original 

Sweetener was purchased from a local grocery store, Figure 4.2. The concentration of free 

chlorine in the sodium hypochlorite solution was determined to be 120 mg/mL (as Cl2) with 

a chlorine amperometric titrator (Autocat 9000, HACH, Ontario, Canada). A pH meter 

(Model 15, Accumet, Fisher Scientific, Ontario, Canada) was used to monitor pH. A nitrogen 

evaporator (TurboVap LV Concentration Workstation, Caliper Life Sciences, Massachusetts, 

United States) was used to preconcentrate SPE eluate. A HPLC system (Agilent 1290 HPLC, 

Waldbronn, Germany) was coupled with a tandem mass spectrometer (MS/MS) (5500 

QTRAP System; Sciex, Concord, Ontario, Canada) for sample analysis. 

The investigated authentic chloraminated tap water (pH 7.7; residual chloramine 1.8 

mg/L = 34.8 µM) was surface water sequentially treated by a DWTP through coagulation, 

flocculation, filtration, UV disinfection, and chlorination, followed by the addition of 

ammonium to form chloramine before leaving the plant. Therefore, the residual chlorine in 

the distribution system is primarily chloramine.  
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Figure 4.2 Equal® Original Sweetener  

blend package nutritional information  

and ingredient list. 

 

 

Calculation 4.1 Molar concentration of 

aspartame in one package of Equal® 

Original Sweetener blend 

 

aspartame molar mass = 294.3 g/mol 

aspartame in 1g packet of Equal® Original = 

15.8 mg 

 

15.8 mg dissolved in 1 cup (i.e., 250 mL) of 

water: 

 

15.8 mg aspartame

0.250 L
= 63.2 

mg

L
 aspartame 

 

 

Molarity of aspartame: 

 

63.2 
mg

L
 aspartame = 0.0632 

g

L
   

1 mol

294.3 g 
 

= 0.0002147 
mol

L
aspartame 

= 214.7 
µmol

L
 aspartame 
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4.2.2 Chloramination of Phenylalanine and Aspartame 

Individual reaction solutions (n=3) containing 10 µM of aspartame or phenylalanine 

were prepared in 250 mL of 10 mM phosphate buffer (prepared in Optima water). The pH 

was adjusted to 6.5, 7.5, or 8.5. Next, freshly prepared monochloramine32 was added into 

reaction solutions for a final concentration of 80 µM (4.1 mg/L). The molar ratio of 

monochloramine to aspartame or phenylalanine was 8:1, near the previously reported 

optimum DCBQ formation conditions between monochloramine and phenol (i.e., 10:1).23 

Caution is necessary because preparation of monochloramine at high concentrations can be 

very reactive. Use adequate personal protective equipment and safety measures within a fume 

hood.  

After 24 hours in the dark at 24 oC, samples were quenched with excess ascorbic acid 

(AA, 100 µM) to ensure a complete quench of free chlorine the reaction solution (µM AA = 

1.3 x µM monochloramine). After 10 minutes, a 625-L aliquot of formic acid (FA; 0.25% 

v/v, final) was added to stabilize DCBQ. Sample preparation, analysis, and quantification 

procedures were adapted from previously described methods,22,23 with specific high-

performance liquid chromatography tandem mass spectrometry with multiple reaction 

monitoring HPLC-MS/MS (MRM) method parameters detailed in Section 4.2.2.1, and Table 

4.1. Before HPLC-MS/MS (MRM) analysis, the samples underwent solid-phase extraction 

(SPE), nitrogen evaporation, and reconstitution (Section 4.2.2.2). The DCBQ concentration 

(mean ± SD) was quantified using standard addition (Section 4.2.2.3). Controlled 

experiments (Section 4.2.2.4) confirmed addition of AA or AA/FA did not affect DCBQ 

signal, Figure 4.3.  

Using the same procedures, DCBQ (mean ± SD) was determined after addition of 10 

µM aspartame in chloraminated tap water (pH 7.7, residual chloramine 1.8 mg/L) at 24 oC 

after 24 hours. 

4.2.2.1 HPLC-MS/MS (MRM) Method Details  

The HPLC-MS/MS (MRM) analysis was adapted from previously described 

methods23,33 An Agilent 1290 series LC system consisting of an autosampler with 

temperature control and a binary pump (Agilent, Waldbronn, Germany) was used with a Luna 

C18(2) column (100  2.0 mm i.d., 3 μm; Phenomenex, Torrance, CA). The mobile phase 
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was comprised of solvent (A), water containing 0.1% FA; and solvent (B), methanol 

containing 0.1% FA. The flow rate of the mobile phase was 300 μL/min, and the injection 

volume was 20 μL. A gradient program was performed as follows: linearly increased B from 

20% to 90% in 15 min; kept B at 90% for 1.5 min; changed B to 20% for column equilibration 

at 16.51 until 20.00 min. The column oven was set at 40 oC, and the autosampler was kept at 

4 oC. 

HPLC-MS/MS with MRM mode was performed using a triple quadrupole ion-trap 

tandem mass spectrometer (Sciex QTRAP 5500) to confirm the identity of DCBQ and HO-

DCBQ in all samples. The optimized MS instrumental parameters were as follows: ion-spray 

voltage, -4500 V; source temperature, 450 °C; gas 1, 50 arbitrary units; gas 2, 60 arbitrary 

units; curtain gas, 30 arbitrary units; entrance potential (EP), -10 V; accumulation time for 

each ion pair, 250 ms. The MRM ion pairs and the optimized values of declusturization 

potential (DP), collision energy (CE), and cell exit potential (CXP) are listed in Table 4.1. 

Analyst software version 1.5.2 for Sciex QTRAP 5500 was used for data analysis. 

 

Table 4.1 MRM parameters for HPLC-MS/MS analysis (positive ESI mode) of DCBQ and 

OH-DCBQ 

 
Compounds Protonated 

molecule 

(M+2H-H)+  

Product 

ion 

DP 

(V) 

EP 

(V) 

CE 

(V) 

CXP 

(V) 

DCBQ 177.0 113.0 -100 -10.0 -24 -13.0 

  141.0 -100 -10.0 -20 -13.0 

HO-DCBQ 191.0 83.0 -50 -10.0 -33 -10.0 

  163.0 -90 -10.0 -26 -6.0 

 

 

4.2.2.2 Solid Phase Extraction and Nitrogen Evaporation  

A Waters Oasis HLB cartridge (6 mL, 200 mg) mounted in a VISIPREP SPE 

manifold (Supelco, Bellefonte, PA) was used to desalt and concentrate the quenched reaction 

solutions. The HLB cartridges were first activated with two 6 mL washes of methanol (0.25% 

FA, v/v), then rinsed twice with 6 mL of Optima water (0.25% FA, v/v). The quenched 

reaction solution was drawn through the cartridge under vacuum at a flow rate of 8 mL/min. 

Next, the cartridge was washed with two 6 mL portions of Optima water (0.25% FA, v/v), 
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and the analytes were finally eluted with 10 mL of methanol (0.25% FA, v/v). The eluate 

was evaporated down to 100 μL under a gentle (< 5 psi) nitrogen stream, reconstituted with 

Optima water (0.25% FA, v/v) to a final volume of 500 μL water/methanol (v/v, 4/1).  

4.2.2.3 Standard Addition Calibration and Quantification Details 

For standard addition, four 80 L aliquots were removed from the 500 µL 

reconstituted sample. Each aliquot was spiked with 20 L of DCBQ methanol solution 

yielding 2.5, 5, 10 or 25 g/L additional DCBQ (100 µL total). The peak areas of the spiked 

samples, determined with HPLC-MS/MS (MRM), were used to calibrate against the spiked 

concentrations. The resulting standard addition calibration curves, with linear coefficients 

ranging between 0.989−0.999, were used to determine the concentrations of DCBQ in each 

sample by solving for the absolute value of the X-intercept.  

4.2.2.4 Controlled Ascorbic Acid Experiments  

 To evaluate ascorbic acid (AA) and/or formic acid (FA) incubation time on the 

stability of DCBQ, I prepared identical DCBQ solutions by spiking 100 µL of DCBQ 

standard (500 ppb in methanol) into 1.9 mL of Optima water (final, 25 µg/L). Next, AA (32.5 

µL of 2 mg/L standard) was added (final, 32.5 µg/L) and the triplicate solutions were kept in 

the dark for 0, 10, or 20 min. Finally, at the end of each time interval, 5 L of FA was added 

(0.25% FA, final) to stabilize DCBQ. The final solutions were analyzed by HPLC-MS/MS. 

The variation of DCBQ with different AA incubation times was calculated based on the 

DCBQ peak area ratio of each incubation time to that of time zero. In Figure 4.3a, DCBQ 

was still detected (97% of time zero signal) after 20 min incubation with AA, demonstrating 

that DCBQ is stable in the presence of ascorbic acid for 20 minutes. 

Identical DCBQ solutions were prepared with AA exactly as described above and 

were kept in the dark for 10 minutes. Next, 5 L of FA was added to the DCBQ and AA 

solutions (0.25% FA, final) and the triplicate samples were kept in the dark for 0, 2, 4, or 24 

h, and analyzed by HPLC-MS/MS. Similarly, the response of DCBQ to different AA plus 

FA incubation times can be calculated from DCBQ peak area ratio of a particular time to that 

of time zero. As seen in Figure 4.3b, 92% DCBQ remained in the solution after 24 hours 

incubation with AA and FA, which demonstrated that DCBQ can be stable once in the 

presence of AA and FA, for 24 hours before analysis. Since all our sample pre-treatment 
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(SPE and nitrogen evaporation) was completed in less than 24 hours, no loss of DCBQ was 

expected after quenching.  

 

 

 

Figure 4.3 Relative DCBQ signal detected after different incubation times with AA (a), or 

AA and FA (b). Data represents the average and standard deviation of triplicate 

experiments (n=3). 
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4.2.3 Determination of DCBQ in an Authentic Tap Water with and without Equal   

A 1-g packet of Equal Original contained aspartame (15.8 mg) (Figure 4.2). To 

mimic realistic household beverage preparation, one packet of Equal was dissolved into 250-

mL of authentic tap water at 24 oC. Authentic tap water samples with and without the addition 

of Equal were prepared in triplicate. Samples were quenched with excess AA (45 µM) after 

15 minutes reaction time in the dark at 24 oC. Finally, FA was added (0.25% FA, final) to 

stabilize DCBQ before sample preparation and analysis.22,23 Quenched reaction solutions 

underwent extraction, detection, and quantification identical to controlled formation 

solutions (Sections 4.2.2.1 to 4.2.2.3). DCBQ recovery with and without the presence of 

Equal using the SPE method was 89% and 73%, respectively (Section 4.2.3.1). Experiments 

were repeated with the use of boiled authentic tap water (Section 4.2.3.2). 

4.2.3.1 Recovery of DCBQ in the Presence of Equal using an HLB Cartridge  

Samples were prepared in duplicate (n=2). First, 250 mL solutions of DCBQ (40 

ng/L, final) were prepared in Optima water with or without one Equal packet (63.2 mg/L 

aspartame, final, Figure 4.2). Then, AA (50 ng/L) was spiked into the solution to mimic the 

NH2Cl quenching step for authentic tap water sample pre-treatment. After 15 minutes in the 

dark, 625 L FA (0.25% FA, final) was added to quench and stabilize the DCBQ present in 

solution. The recovery solutions underwent the same SPE, nitrogen evaporation, and 

reconstitution protocol described in Materials and Methods. Similarly, the final extracts were 

analyzed by HPLC-MS/MS in MRM mode and DCBQ was determined using an external 

calibration curve of 1, 5, 10, 25, and 50 g/L). The recovery of DCBQ in Optima water with 

and without the Equal Original package was 89% and 73%, respectively. After obtaining the 

data for the standard curve, the concentration of DCBQ in the recovery solution was 

compared to the known initial concentration (i.e., 100% recovery = 40 ng/L initial DCBQ x 

500 concentration factor = 20 µg/L). The recovery was determined as the determined DCBQ 

concentration after sample preparation and analysis, divided by the initial DCBQ 

concentration, multiplied by 100%.  
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4.2.3.2 Boiling Pre-treatment of Authentic Tap Water Before Addition of Equal 

Each experimental condition was examined in triplicate (n=3). Freshly collected 

authentic chloraminated tap water was brought to a boil (90 oC) using an electric kettle. The 

concentration of DCBQ was determined in the boiled tap water under three different 

conditions: 1, boiled tap water without Equal; 2, addition of one Equal packet immediately 

after boiling; and 3, addition of one Equal packet 1 hour after boiling (34 oC). All samples 

were quenched after 15 minutes reaction time.  The quenching, sample preparation and 

analysis details are the same as described for the experiment described in Section 4.2.1. The 

pH and monochloramine concentration were determined in the authentic tap water before 

and after boiling. To maintain instrument integrity, measurements were only taken on the 

pre-boiled samples after cooling for 1 hour. 

4.2.4 Stability of DCBQ in Optima Water Containing Aspartame 

DCBQ solutions (100 µg/L = 0.56 µM) were prepared by spiking a 1-mL aliquot of 

2.0 mg/L DCBQ methanol standard into 19 mL of Optima water containing increasing 

concentrations of aspartame: 0, 0.57, 5.70, 28.50, and 209.8 M (n=3). The molar ratio of 

aspartame to DCBQ in each solution was 0:1, 1:1, 10:1, 50:1, and 368:1. The highest 

concentration condition is comparable with the approximate aspartame concentration in one 

serving size of Equal (i.e., 215 µM, Figure 4.2). A 2-mL aliquot was removed at 0, 1, 2, 8, 

24 and 53 hours and FA was added immediately (0.25% FA, final) to stabilize DCBQ. The 

high initial DCBQ concentration in the prepared solutions allowed for direct analysis with 

HPLC-MS/MS (MRM) without SPE and nitrogen evaporation. Control experiments detailed 

in Section 4.2.4.1 confirmed that aspartame does not interfere with DCBQ detection in a pure 

solution, Table 4.2. All Optima water solutions had pH 5.0-5.4 (Table 4.3). DCBQ 

concentration was determined using freshly prepared external calibration standards, analyzed 

immediately before the experimental sample. 
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Table 4.2 Peak area ratio of DCBQ in Optima water (0.25% FA, v/v) in the presence of 

increasing aspartame concentrations to DCBQ only in Optima water (0.25% FA, v/v). The 

molar ratio of aspartame to DCBQ in each solution was 0:1, 1:1, 10:1, 50:1, and 368:1 

 

 DCBQ 

concentration 

 in Optima water 

samples (g/L) 

Peak area ratio of DCBQ + Optima water to: 

DCBQ +  

Optima water + 

0.6 mol/L  

aspartame 

DCBQ +  

Optima water + 

5.7 mol/L  

aspartame 

DCBQ +  

Optima water + 

28.5 mol/L 

aspartame 

DCBQ +  

Optima water + 

209.8 mol/L 

aspartame 

2 1.06 0.96 0.97 0.89 

10 0.97 0.95 0.94 0.90 

50 0.91 0.92 0.95 1.01 

100 0.98 0.91 0.98 0.93 

160 0.89 0.92 0.89 0.97 

 

 

Table 4.3 pH of Optima water solutions with increasing aspartame concentrations 

 
Aspartame in Optima Water (µg/L) pH 

0 5.0  0.1 

0.6 5.3  0.1 

5.7 5.4  0.1 

28.5 5.4  0.1 

209.8 5.4  0.1 

 

 

4.2.4.1 Investigating Interference of Aspartame on DCBQ Detection   

To evaluate the matrix effect of aspartame on DCBQ detection, a set of solutions 

containing 40, 200, 1000, 2000 and 3200 ng DCBQ in 20 mL Optima water containing 

aspartame of 0, 0.6, 5.7, 28.5, and 209.8 mol/L were prepared. The final concentration of 

DCBQ in the Optima water solutions were 2, 10, 50, 100, and 160 g/L, respectively. 

Immediately after vortexing, a 2 mL aliquot was removed from the 20 mL solution and 

quenched with 5 L FA (0.25% FA, final). This solution was analyzed by HPLC-MS/MS 

(MRM). The DCBQ signal of Optima water sample containing DCBQ and increasing 

concentrations of aspartame was compared to the Optima water sample containing DCBQ 

only, Table 4.2. All conditions had ratios between 0.89 and 1.1. If the ratio of [DCBQ with 

aspartame]/[DCBQ only] is close to 1, it indicates negligible matrix effects.34  It was 
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determined that aspartame had negligible interference on DCBQ detection after comparing 

the peak areas of a range of DCBQ concentrations with and without increasing aspartame in 

Optima water. 

4.2.5 DOC in Tap Water with and without Aspartame or Equal   

The concentration of dissolved organic carbon (DOC) was determined for each of 

experimental and control conditions including the authentic tap water and Optima water, both 

with and without 10 µM aspartame or one package of Equal.  

4.2.5.1 DOC Analysis Method 

An OI Analytical Aurora 1030W TOC Analyzer (OI Analytical, Xylem Inc, College 

Station TX, U.S.A.) was used to determine the non-purgeable organic carbon (NPOC) in 

each sample. The dissolved organic content was determined using the persulfate oxidation 

method.35 Briefly, the instrument mixes phosphoric acid (5% w/v) and sodium persulfate 

(10% w/v) with the aqueous sample in a heated glass reaction vessel to chemically oxidize 

carbon into CO2.  The evolved CO2 gas is then passed through a non-dispersive infrared 

(NDIR) detector to determine NPOC (carrier gas: helium, purge gas: nitrogen).  Total organic 

carbon calibration and quality control check certified reference standards were purchased 

from SCP Scientific. 

 

4.3 Results and Discussion 

4.3.1 Formation of DCBQ from Chloramination of Aspartame or Phenylalanine  

Tap water pH ranges between 6.5-8.5 in the US31 (7.0-10.5 in Canada)36 and the EPA 

maximum residual chlorine level is ≤ 4.0 mg/L (≤ 2.0 mg/L by Health Canada). Therefore, 

DCBQ formation was evaluated at 24 °C under the conditions of 4.1 mg/L (80 µM) 

monochloramine and 10 µM aspartame or phenylalanine in phosphate buffered Optima water 

at pH 6.5, 7.5, and 8.5. Table 4.4a presents the concentration of DCBQ detected after 24 

hours reaction time under each testing condition. 

Chloramination of aspartame at pH 6.5 and 7.5 formed 0.6  0.04 and 2.0  0.4 ng/L 

DCBQ, respectively. Chloramination of phenylalanine yielded DCBQ only at pH 6.5 (9.8  

1.0 ng/L). Our results are consistent with previous reports that found DCBQ was not stable 

at pH 8.5.19 The molar yields for DCBQ from aspartame (pH 6.5: 0.00004%, pH 7.5: 
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0.0001%) and phenylalanine (0.0006%) were low under mimicked tap water conditions, but 

are comparable with other studies.27 Chlorination of the aromatic amino acid tyrosine and the 

dipeptide alanyl-tyrosine formed DCBQ with molar yields ranging from 0.0008-4.9%.27 

DCBQ and other halogenated phenolic and quinone compounds have been identified as 

intermediates in the formation of halomethanes.37 The minor could be due to further 

transformation to other DBPs not included as analytes in this study. 

Adding aspartame (10 µM) directly into authentic tap water containing 1.8 mg/L 

residual monochloramine increased the concentration of DCBQ to 9.0  1.2 ng/L from 8.0  

0.3 ng/L (Table 4.4b) after 24 hours (24 °C). It is likely due to the low concentrations of the 

reactants that did not yield statistically different DCBQ.  This led to examine formation of 

DCBQ in a cup of tap water when a common artificial sweetener package containing a large 

amount of aspartame was added. 

 

Table 4.4 DCBQ detected (a) after 24 hours reaction time under controlled conditions 

between monochloramine and phenylalanine or aspartame at different pH, (b) after 15 

minutes reaction time after the addition of aspartame to authentic chloraminated tap water. 

Data represents the average and standard deviation of triplicate samples (n=3) 

 
 

pH Reactants 
DCBQ in 250 mL 

original sample (ng/L) 

DCBQ Molar 

formation yield (%) 

(a) 

6.5 

monochloramine control N.D. - 

 + 10 µM phenylalanine 9.8  1.0 0.000 6 

 + 10 µM aspartame 0.6  0.04 0.000 04 

 

7.5 

monochloramine control N.D. - 

 + 10 µM phenylalanine N.D. - 

 + 10 µM aspartame 2.0  0.4 0.000 1 

 

8.5 

monochloramine control N.D. - 

 + 10 µM phenylalanine N.D. - 

 + 10 µM aspartame N.D. - 

(b) 

7.7 

Authentic chloraminated  

tap water control 
8.0  0.3 N.A. 

 Authentic chloraminated  

tap water 

+ 10 µM aspartame 

9.0  1.2  

   Difference  1.0 0.000 5 

Where N.D. stands for not detected; N.A. stands for not applicable  

[monochloramine] = 4 mg/L;  

authentic tap water [residual chloramine] = 1.8 mg/L 
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Determination of experimental evidence for the transformation reaction mechanism 

of phenylalanine or aspartame to yield DCBQ was not an aim of this project. However, this 

is an important question to investigate as the existing literature focuses on describing the 

formation of DCBQ from phenolic precursors. In general, phenolic compounds can react 

with halogens (i.e., chlorine and bromine) through either electrophilic aromatic substitution 

(e.g., phenol) or by oxidative electron transfer processes (e.g., hydroquinone). Some 

compounds show both partial oxidation and electrophilic aromatic substitution reaction 

pathways depending on pH.38  2,4,6-Trichlorophenol is rapidly and quantitatively produced 

from chlorination of phenol.37 Heasley et al. found chloramines (i.e., mixture of NH2Cl and 

NHCl2 at pH 6.5) were capable of chlorinating all activated positions (i.e., 2, 4, and 6; ortho 

and para) of the phenol ring.39 They presented an ion radical reaction mechanism for the 

formation of DCBQ from 2,4,6-trichlorophenol under chloramination conditions, adapted as 

Figure 4.4. 

 

Figure 4.4 Formation of DCBQ from 2,4,6-trichlorophenol via an ion radical pathway 

reaction with chloramines. Adapted with permission from Heasley V.L., et al. Investigations 

of the reactions of monochloramine and dichloramine with selected phenols: examination of 

humic acid models and water contaminants. Environ Sci Technol. 2004, 38(19), 5022-5029. 

Copyright (2004) American Chemical Society. 
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Heasley et al. described a strategy to include a radical inhibitor 2,2,6,6-tetramethyl-

1-piperdinyloxy to differentiate between radical mechanisms and ion radical mechanisms.39 

Their study ultimately provided evidence suggesting an ion radical mechanism in the 

formation of DCBQ from 2,4,6-trichlorophenol, Figure 4.4,  was involved in the pathway to 

form DCBQ from phenol in the presence of chloramines at pH 6.5. For DCBQ to be formed 

through reactions with chloramine or free chlorine, halogenation and oxidation of a phenolic 

precursor is likely required. However, neither aspartame nor phenylalanine contain a 

phenolic moiety, and the methylated phenyl group may not react directly with chloramines 

to yield a phenol group. To determine if the formation of DCBQ from aspartame and 

phenylalanine, here, includes a radical pathway, the same strategy could be employed. The 

absence of DCBQ formation in the presence of a radical scavenger could provide solid 

support for a radical-driven pathway to DCBQ. 

4.3.2 DCBQ in Equal Sweetened Authentic Chloraminated Tap Water  

Equal Original contains aspartame and acesulfame as its primary sweetening 

components. In tap water at room temperature, acesulfame is highly stable, making it an 

unlikely DCBQ precursor.40 Therefore, DCBQ formation will most likely be due to 

aspartame and its aromatic component, phenylalanine, which are supported by the formation 

results (Table 4.4a). 

Figure 4.5a shows that after the addition of one packet of Equal the concentration of 

DCBQ was significantly greater (p < 0.01) in one cup of authentic tap water containing 1.8 

mg/L residual monochloramine. The average concentration of DCBQ detected in the 

authentic tap water control was 8.0 ng/L, consistent with concentrations  previously 

determined in tap water collected from the same treatment system. 23,33 Just 15 minutes after 

dissolving one Equal packet in tap water, 11.2 ng/L of DCBQ was detected. No other di-

halogenated HBQs, including 2,6-dibromo- or 2,6-diiodo-1,4-benzoquinone (DBBQ or 

DIBQ), were detected. The concentrations of Br- and I- in the tap water were too low (below 

0.01 mg/L bromide and 0.25 Bq/L iodine-131, respectively) to yield detectable levels of 

either DBP, consistent with our previous studies. 23,33   

Figure 4.5b shows the average peak areas of DCBQ and OH-DCBQ in the same 

samples as Figure 4.5a. Because an OH-DCBQ standard is not commercially available, the 
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exact concentration of OH-DCBQ in each sample was not quantified. However, it is clear in 

Figure 4.5b that the peak areas of OH-DCBQ were substantially higher than those of DCBQ. 

Table 4.5 compared the MS-MRM peak area signal for DCBQ and OH-DCBQ in tap water 

with and without Equal. While the raw signals for each compound individually did not show 

statistically significant differences, the total signal (i.e., DCBQ+OH-DCBQ) was 

significantly increased in tap water after the addition of Equal. A previous study has shown 

that as finished drinking water moves through the distribution system over time, OH-DCBQ 

concentrations increase as DCBQ concentrations decrease, leading to higher OH-DCBQ 

concentrations relative to DCBQ in authentic tap water samples.23 The increased OH-DCBQ 

concentration with distribution distance was correlated with the transformation of DCBQ to 

OH-DCBQ in water. Because this transformation (Figure 4.5b) may have influenced the 

detectable concentration of DCBQ in our sweetened cup of tap water, it was important to 

examine how aspartame may influence the stability of DCBQ in aqueous solution. 

 

 

Figure 4.5 (a) DCBQ detected 15 minutes after dissolving one Equal® packet in 250 mL of 

authentic chloraminated tap water at room temperature (24 oC); (b) Total DCBQ and OH-

DCBQ peak area signal detected in the same samples. Data displayed (mean ± SD) is the 

average of triplicate samples (n=3). Significance evaluated with one-tailed paired Student’s 

T test. 
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Table 4.5 DCBQ, OH-DCBQ, and total (DCBQ + OH-DCBQ) signal in authentic 

chloraminated tap water with and without Equal 

 

Compound DCBQ OH-DCBQ Total (DCBQ + OH-DCBQ) 

Sample TW TW+Equal TW TW+Equal TW TW+Equal 

MS-MRM peak 

area (c.p.s.); n=3 

12200 12800 110000 148000 122200 160800 

8840 17500 120000 119000 128840 136500 

9010 33800 109000 125000 118010 158800 

Student unpaired  

T-test one-tailed  

p-value 

0.0767 0.0684 0.0129 

Conclusion p>0.05; Not-Significant p>0.05; Not-Significant p<0.05; Significant 

 

 

While the reaction mechanism describing the transformation of DCBQ to OH-DCBQ 

under UV conditions has been described in the literature,41 the hydrolysis of DCBQ to OH-

DCBQ in simple aqueous conditions has not. After critical review of previously published 

literature,42-44 a potential pathway was proposed, Figure 4.6. First, the lone pair of electrons 

on oxygen (from water), provided by the aqueous solution, will attack DCBQ via Michael 

addition to intermediate 2 (Eq. 1).42,43 Next, intermediate 2 will undergo keto-enol 

tautomerization yielding intermediates 3 and 4. Since the reaction solution was kept under 

darkness, the 2,6-dichloro-3-hydroxy-1,4-semibenzoquinone free radical (intermediate 5) 

was generated through subsequent oxidation pathways of intermediate 4 by oxygen (O2) (Eq. 

2), superoxide (O2
 -) (Eq. 3), or DCBQ in an excited state (intermediate 6) (Eq. 4).44 HO-

DCBQ was formed through oxidation (Eq. 5 and 6), and/or comproportionation (Eq. 7) of 

intermediate 5.44 
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Figure 4.6 The proposed transformation mechanism of DCBQ to HO-DCBQ in aqueous 

solution 
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4.3.3 Aspartame Enhanced Stability of DCBQ in Optima Water 

 Controlled and simplified laboratory experiments were used to eliminate confounding 

variables. DCBQ at 100 g/L was spiked into Optima water samples containing increasing 

aspartame concentrations (0-210 M). Figure 4.7 represents the peak areas of DCBQ and 

OH-DCBQ, detected under each condition. Figure 4.7 shows that DCBQ stability in aqueous 

solution increases in the presence of aspartame. By 53 hours, the DCBQ signal completely 

disappeared in the Optima water control (4.7a). Conversely, 26.7 % (4.7b), 27.3% (4.7c), 

54.5% (4.7d), and 73.9% (4.7e) of the initial DCBQ remained in the solutions with increasing 

aspartame concentrations. Thus, the increased DCBQ concentration detected in our cup of 

Equal sweetened tap water may be due to a combination of increased stability and formation. 

Nevertheless, it is important to note that the use of a single packet of Equal in tap water 

resulted in an increase in DCBQ concentration, suggesting that artificial sweetener use can 

result in increased human exposure to DBPs. 
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Figure 4.7 Relative proportion of 

DCBQ and its transformation product 

OH-DCBQ at different time intervals in 

Optima water at room temperature (24 
oC) with increasing aspartame 

concentration (i.e., Optima water 

control (a), + 0.57 µmol/L aspartame 

(b), + 5.7 µmol/L aspartame (c), + 28.5 

µmol/L aspartame (d), and + 209.8 

µmol/L aspartame (e)). Data displayed 

(mean ± SD) is the average of triplicate 

samples (n=3). 
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4.3.4 Perspectives  

Overall, residual chloramine (1.8 mg/L) in authentic tap water was found to be 

sufficient to significantly increase the concentration of DCBQ after the addition of one Equal 

packet. Both aspartame and its aromatic amino acid component, phenylalanine, were 

identified as DCBQ precursors under controlled chloramination conditions. Furthermore, the 

presence of aspartame enhanced the stability of DCBQ in aqueous solution, preventing its 

transformation to the less cytotoxic product OH-DCBQ.23,45 Our findings indicate a potential 

increased risk of human exposure to DCBQ with aspartame use. Although DCBQ is a known 

cyto- and genotoxicant in vitro, it is not known whether the low, but elevated concentrations 

detected here pose a risk to human health. 

An HBQ occurrence survey across nine water treatment plants in North America 

detected DCBQ in finished water in 100% of the samples tested at a range from 4.5-274.5 

ng/L.22 The 8.0 ng/L of DCBQ detected in the authentic tap water tested here is on the lower 

end of this range. The addition of Equal to tap waters containing DCBQ at the highest range 

detected in occurrence studies (e.g., 274.5 ng/L)22 may have a greater impact on the exposure 

dose in terms of human health risk, especially if the presence of aspartame prevents its 

transformation and subsequent detoxification. Furthermore, the sampled tap water contained 

negligible levels of free bromide or iodide, preventing formation of the more cytotoxic 

brominated and iodinated HBQs.45 It is important that future studies consider the impact of 

source water characteristics when examining the influence of artificial sweetener use on DBP 

formation, as the potential increase in HBQ concentration following addition of Equal may 

pose a more significant risk at other utilities.46 While the focus of this study was DCBQ, the 

formation of other DBPs in prepared beverages from artificial sweetener use is likely. The 

DOC content in Optima and tap water with and without the addition of 10 µM aspartame or 

1 Equal package was determined, Table 4.6. The persulfate oxidation method detected 1.73 

mg/L DOC from 10 µM aspartame in Optima water, corresponding closely (i.e., within 3% 

difference) to the theoretically calculated value (i.e., 1.68 mg/L), Table 4.6(c). The addition 

of one packet of Equal into the cup of authentic tap water increased DOC levels from 1.8 

mg/L to nearly 1500 mg/L (Table 4.6(b)), suggesting a rich precursor pool for DBP 

formation. Using the same theoretical DOC estimate, the proportion of aspartame in one 
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Equal package (i.e., 214 µM or 63.2 mg/L, Calculation 4.1) could contribute 36.11 mg/L 

DOC, which was approximately 2.5% of the DOC concentration detected in the Optima water 

sample, Table 4.6(c).   

The most efficient means to reduce risk is to eliminate exposure. Previous studies 

have shown that boiling can detoxify treated water by reducing residual chloramine 

concentration as well as volatile and non-volatile DBPs in tap water.47-52 Five minutes of 

boiling was sufficient to reduce brominated and chlorinated DBPs in simulated tap water by 

63% and 61%, respectively,51,52 resulting in a reduction in CHO cell cytotoxicity of the boiled 

water by 77%.47 Boiling tap water was evaluated as a method to remove DCBQ or prevent 

its formation during use of the artificial sweetener Equal. After boiling, DCBQ concentration 

was reduced from 8.0 to 1.6 ng/L (80% reduction; Figure 4.8). Furthermore, DCBQ was not 

detectable after a packet of Equal was added to hot boiled tap water (90 °C) or to boiled tap 

water cooled for 1 hour (34 °C). This is likely due to the reduction in residual chloramine 

from 1.7 to 0.8 mg/L and the increase in pH from 7.5 to 8.0 after boiling (Table 4.7). The 

reduction of residual chloramine limited DCBQ formation, while the higher pH increased 

DCBQ hydrolysis.  

Investigations into the occurrence and formation of DBPs during food and beverage 

preparation is an emerging field of importance. This study contributes understanding to DBP 

exposure pathways by identifying a new DCBQ precursor and the potential to increase 

DCBQ exposure by addition of aspartame to beverages prepared with chloraminated tap 

water. Applying new approaches to identify toxicity forcing agents will help to better 

understand exposure and health risks.18,53-55  
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Table 4.6 (a) Aspartame characteristics, (b) Average DOC in each sample determined with 

the persulfate oxidation method, and (c) Comparison between theoretical and determined 

DOC concentrations 

 

(a) 

Aspartame Characteristics 

Molecular Formaula Molecular Mass Carbon Mass % Carbon 

C14H18N2O5 294.3 g/mol 168.1498 g/mol 57.14% 

(b) 

Sample 
Average NPOC (mg/L), 

[n=3] 

Standard Deviation  
%RSD 

(± mg/L) 

Optima Water (OW) 0.42 0.25 60 

OW + 10 µM aspartame 1.73 0.02 1.1 

OW + Equal 1398 21.49 1.5 

Authentic Tap Water (TW) 1.77 0.09 5.1 

TW + 10 µM aspartame 3.33 0.06 1.9 

TW + Equal 1453 56.93 3.9 

(c) 

Sample 
Theoretical Calculated  

DOC 

Measured DOC  

(in OW) 
% Difference 

10 µM aspartame 

(2.94 mg/L) 1.68 mg/L 1.73 mg/L 2.7% 

1 Equal package 

(63.2 mg/L) 36.11 mg/L 1398 mg/L 97.4% 

 

 

 

 

Table 4.7 pH and residual chloramine concentrations measured 15 minutes after dissolving 

one Equal package in authentic chloraminated tap water without boiling pre-treatment and 1 

h after boiling pre-treatment. Data represents the average of triplicate (n=3) experiments 

 

Sample 

Residual 

Chloramine 

(mg/L) 

pH Sample 

Residual 

Chloramine 

(mg/L) 

pH 

Tap Water  

 
1.8 ± 0.09 7.7 ± 0.2 

Cooled  

Boiled Tap  
0.8 ± 0.01 8.5 ± 0.1 

Tap Water 

+ Equal 
1.7 ± 0.07 7.5 ± 0.1 

 

Cooled  

Boiled Tap + 

Equal 

0.8 ± 0.01 8.0 ± 0.1 
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Figure 4.8 Concentration of DCBQ in authentic chloraminated tap water (TW) after boiling 

pre-treatment alone, and with the addition of one Equal packet immediately after boiling (Hot 

Boiled, 90 °C) or 1 hour after cooling (Cooled Boiled, 34 °C), compared to TW without 

boiling pre-treatment (left two columns, Figure 4.3a) 

 

 

4.4 Conclusion  

Investigations into the occurrence and formation of DBPs during food and beverage 

preparation is an emerging field of importance. This study contributes understanding to the 

overall DBP exposure pathway by identifying a new DCBQ precursor and the potential to 

increase DCBQ exposure by addition of the AS, aspartame, to beverages prepared with 

disinfected tap water. Aspartame could react with monochloramine to form 2,6-dichloro-1,4-

benzoquinone (DCBQ), an emerging DBP more cytotoxic than regulated DBPs.56 Under 

controlled reaction conditions, DCBQ was formed (0.6-9.8 ng/L) from aspartame (pH 6.5 

and 7.5) and its aromatic component phenylalanine (pH 6.5) in the presence of 4 mg/L 

monochloramine. The minor DCBQ yield from chloramination of aspartame and 

phenylalanine indicate other major products could be formed in this reaction. In a cup of 

authentic chloraminated tap water, the concentration of DCBQ increased significantly from 

8.0 to 11.2 ng/L, after adding one packet of Equal artificial sweetener. The presence of 

aspartame in Optima water solutions of DCBQ reduced transformation of DCBQ to its less 

cytotoxic product, 3-hydroxy-2,6-dichloro-1,4-benzoquinone (OH-DCBQ).56 This study 



 122 

identified aspartame as both a new precursor and stabilizer of DCBQ in chloraminated tap 

water. 

Reductions in residual chloramine and DCBQ concentration in authentic tap water 

after boiling pre-treatment provides additional evidence in support of boiling to improve 

water quality before consumption or beverage preparation. However, adding a packet of 

Equal to one cup of tap water increased the dissolved organic content (DOC) by 800 times, 

suggesting the need to understand the formation and subsequent exposure of DBPs via 

consumption of sweetened beverages. Future work investigating DBP formation from 

residual chloramine in tap water during beverage preparation should consider high precursor 

to low disinfectant ratios in their experimental designs.  
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Chapter 5 

Aromatic Amino Acids as Halobenzoquinone Precursors** 

 

“Our greatest weakness lies in giving up. 

The most certain way to succeed is always to try just one more time.” 

– Thomas Edison (1847-1931) 

 

5.1 Introduction 

Free aromatic amino acids (AAAs) are present in raw water at low nmol/L 

concentrations.1 Studies on amino acids as disinfection by-product (DBP) precursors found 

nitriles, aldehydes and chloroaldimines to be the major products under chlorination at neutral 

pH.2,3 More recently, an investigation on the chlorination of adenine and cytosine found 

multiple transformation products with chlorine additions on the heterocyclic ring and the 

aliphatic amine. N-chloramine was formed through chlorine substitution on the primary 

amine functional group.4 Additionally, simple tyrosyl-dipeptides have been identified as 

precursors of chlorinated, brominated, iodinated, and mixed halogenated N-chloramine 

dipeptides.5-7  Due to the structural similarity to halobenzoquinones (HBQs) (Figure 5.1), 

AAAs (i.e., phenylalanine, PHE; tyrosine, TYR; and tryptophan, TRP) are plausible 

precursor candidates. PHE contains a phenyl group, TYR contains a hydroxy phenyl group, 

while TRP is aromatic due to its heterocyclic indole ring.  

The bromide concentration in 23 difference source waters across Canada and the 

United States ranged from 0.024 to 1.12 mg/L.8 Several groundwater sources in Alberta are 

high in Br- or I- due to geomorphological deposits.9,10 Hypochlorous acid (HOCl) can oxidize 

Br- and I- to form reactive intermediates including hypobromous acid (HOBr) and 

hypoiodous acid (HOI)11-13 which have a higher substitution reactivity toward NOM 

compared to HOCl.14 Raw water containing high levels of bromide and iodide can produce 

higher proportions of Br- and I-DBP analogs.15-17 Increasing the bromide concentration in 

                                                 
** The results presented in Chapter 5 are unpublished. The experiment described in Section 5.2.2.2 

and corresponding Figure 5.5 was executed and prepared in 2014 by Dr. Yichao Qian as a post-

doctoral fellow in Li Research Group.   
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drinking water samples resulted in all polar halogenated DBPs (including four newly 

identified groups of aromatic halogenated DBPs, dihalo-4-hydroxybenzaldehydes, dihalo-4-

hydroxybenzoic acids, dihalo-salicylic acids, and trihalophenols), from being less 

brominated to more brominated.18 Phenol, a known HBQ precursor, was found to produce 

higher proportions of DBBQ to DCBQ under high bromide source water concentrations 

compared to normal conditions.19  

In vitro20,21 and in vivo22 studies have identified a trend in the toxicity of halogenated 

DBPs: iodinated > brominated > chlorinated. This halogen substitution trend resulted in a 

reduction in cell density for Chinese Hamster Ovary (CHO) cells after a 72 hour exposure 

period23 for many different DBP classes including: halo acetic acids,8,23,24 halomethanes,8,24 

haloacetamides,25 haloacetaldehydes,26 haloacetonitriles,27 halonitromethanes,28 and 

cyanogen halides29 among others.21  HBQ cyto- and genotoxicity generally follows the 

similar trend: I > Br >> and Cl-HBQs.30  Here the formation of Br- and Cl-HBQs from AAAs 

was investigated under chlorination conditions in the presence of bromide. 

 

Halobenzoquinones (HBQs) 

Dichlorobenzoquinone Dibromobenzoquinone Trichlorobenzoquinone Dichloromethylbenzoquinone 

 
2,6-DCBQ 

 
2,6-DBBQ 

 
TriCBQ 

 
DCMBQ 

Aromatic Amino Acids (AAAs) 

Phenylalanine Tyrosine Tryptophan 

 
PHE 

 
TYR 

 
TRP 

 

Figure 5.1 Structures of experimentally relevant HBQs and AAAs: 2,6-DCBQ, 2,6-DBBQ, 

TriCBQ, and DCMBQ; and PHE, TYR, and TRP, respectively  
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5.2 Materials and Methods 

5.2.1 Chemicals and Materials  

High performance liquid chromatography-tandem mass spectrometry (HPLC-MS) 

grade formic acid (FA, 98%), phenylalanine (PHE), tyrosine (TYR), and tryptophan (TRP) 

and sodium hypochlorite solution (reagent grade, available chlorine 10−15%) were obtained 

from Sigma-Aldrich (St. Louis, MO). Optima LC-MS grade methanol and water, 

hydrochloric acid, and anhydrous dibasic potassium phosphate, were obtained from Thermo 

Fisher Scientific (Fair Lawn, NJ). 2,6-Dibromo-(1,4)-benzoquinone (DBBQ) was purchased 

from Indofine Chemical Company (Hillsborough, NJ). 3,5-Dichloro-2-methyl-(1,4)- 

benzoquinone (DCMBQ) and 2,3,6-trichloro-(1,4)-benzoqui- none (TriCBQ) were 

synthesized by Shanghai Acana Pharmtech (Shanghai, China); 2,6-dichloro-(1,4)-

benzoquinone (DCBQ) was purchased from Sigma-Aldrich (St. Louis, MO). A pH meter 

(Model 15, Accumet) was used to monitor pH.  

5.2.2 Sample Preparation 

5.2.2.1 Chlorination of PHE at Increasing Molar Ratios for 1 and 24 Hours  

A stock solution of PHE (50 mM) standard was prepared on the day of the experiment. 

Working solutions of 5 mL of PHE (1 mM, final) each were used for chlorination reactions 

with varying free Cl2 (0, 15, 30, 150, 750, 1500, 3000 µL of 10% Cl2 from NaOCl). Each 

reaction mixture had a total final volume of 250 mL Optima water and all reactions took 

place in 500 mL amber glass bottles. In these reaction mixtures, the molar ratios of PHE:Cl2 

were 1:0, 1:0.1, 1:0.2, 1:1, 1:5, 1:10, and 1:20, respectively. The reaction mixtures in the 

bottles were covered with aluminum foil and left to react for 1 hour. The same procedures 

were repeated with a reaction time of 24 hours. The solutions were quenched with FA 

(0.25%, final) and a 1-mL aliquot was immediately analysed with a HPLC-MS/MS (MRM) 

method,31 described below. After the method was optimized, HBQs were quantified using an 

external calibration curve that was obtained prior to the sample run on the same day. 
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5.2.2.2 Chlorination of PHE and TYR Over Time 

Reaction solutions containing 1 mM of PHE or TYR with free Cl2 from NaOCl at 5 

and 10 mM were freshly prepared, corresponding to molar ratios of Cl2:AAA of 5:1 and 10:1 

mM, respectively. Aliquots of each reaction mixture were collected and quenched with FA 

(0.25%, final) at given time points ranging from 0.5 to 72 hours, and immediately analysed 

using the HPLC-MS/MS (MRM) method, and quantified with an external calibration curve 

that was obtained in the same day prior to the sample analysis. 

5.2.2.3 Chlorination of PHE, TYR and TRP with Br- for 24 Hours at pH 7.5  

The details of the workflow for chlorination, sample preparation, and the HPLC-

MS/MS analysis have been described in Figure 5.2. High concentration standard solutions 

of PHE (50 mM), TRP (50 mM), and TYR (2 mM), and Br- (100 mM), were prepared the 

day of the experiment. Triplicate AAA reaction solutions were prepared with 10 mL of PHE 

or TRP, or 250 mL of TYR (1 mM, final), 1 mL of Br- (0.2 mM, final), and 3 mL of 10% 

free Cl2 solution (from NaOCl; 10 mM, final). Samples were diluted to a final volume of 500 

mL with phosphate buffer (i.e., 20 mM at pH 7.5, prepared with Optima water) in amber 

glass bottles and left to react in the dark (i.e., wrapped in foil) for 24 hours at room 

temperature. Samples were quenched with FA (0.25%, final) immediately before sample 

clean up and preconcentration with solid phase extraction (SPE) and nitrogen evaporation 

(N2). 

A 625-L aliquot of FA (0.25% v/v, final) was added to acidify the sample to stabilize 

DCBQ before solid phase extraction (SPE). A Waters Oasis HLB cartridge (6 mL, 200 mg) 

mounted in a VISIPREP SPE manifold (Supelco, Bellefonte, PA) was used to desalt and 

concentrate the quenched reaction solutions. First, the SPE cartridges were activated with 

two, 6 mL washes of methanol (0.25% FA, v/v), then rinsed twice with 6 mL of Optima 

water (0.25% FA, v/v). The quenched reaction solution was drawn through the cartridge 

under vacuum at a flow rate of 8 mL/min. Next, the cartridge was washed with two 6 mL 

portions of Optima water (0.25% FA, v/v), one 6 mL portion of 1:1 Optima: MeOH (0.25% 

FA, v/v) and finally the analytes were eluted with 10 mL of methanol (0.25% FA, v/v) into 

graduated test tubes. A TurboVap LV Concentration Nitrogen Evaporation Workstation 

(Caliper Life Sciences, Massachusetts, United States) was used to evaporate the eluate down 
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to 100 μL under a gentle (< 5 psi) nitrogen stream and reconstituted with Optima water 

(0.25% FA, v/v) to a final volume of 500 μL water/methanol (v/v, 4/1).  

 

 

 
 

Figure 5.2 Quantitative chlorination experiments are conducted as follows. Aromatic amino 

acid reactants are prepared individually in optima water, with or without excess bromide, and 

phosphate buffer in an amber glass bottle. The reactant solution is spiked with free chlorine 

(from NaOCl) and left to proceed in darkness. Formic acid (final concentration 0.25%) 

quenches the chlorination reaction and stabilizes HBQs at low pH. Solid phase extraction 

(HLB, reverse phase) cleans up the sample matrix and nitrogen evaporation is employed for 

a final sample pre-concentration of 1000x. Samples are analyzed with high performance 

liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Identifications are 

confirmed by comparing retention time and parent and fragment ion mass transitions with 

pure standards. HBQ concentrations were quantified using standard addition calibration. 

 

 

For standard addition, four 80 L aliquots were removed from the 500 µL 

reconstituted sample. Each aliquot was spiked with 20 L of HBQ methanol solution (e.g., 

yielding 2.5, 5, 10 or 25 g/L additional HBQ (100 µL total)). Samples were analyzed by 

HPLC-MS/MS (5500 QTRAP System; Sciex, Concord, Ontario, Canada) operating in 

multiple reaction monitoring (MRM) mode. The peak areas were used to calibrate against 
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the spiked concentrations. The resulting standard addition calibration curves with linear 

coefficients ranging between 0.989−0.999, were used to determine the concentrations of 

HBQs in each sample by solving for the absolute value of the X-intercept.  

5.2.3 HPLC-MS/MS Method 

The high-performance liquid chromatography tandem mass spectrometry with 

multiple reaction monitoring (HPLC-MS/MS (MRM)) analysis was adapted from previously 

described methods.31 An Agilent 1290 series LC system consisting of an autosampler with 

temperature control and a binary pump (Agilent, Waldbronn, Germany) was used with a Luna 

C18(2) column (100  2.0 mm i.d., 3 μm; Phenomenex, Torrance, CA). The mobile phase 

was comprised of solvent (A), water containing 0.1% FA; and solvent (B), methanol (MeOH) 

containing 0.1% FA. The gradient program is described in Table 5.1. The sample injection 

volume was 20 μL. The autosampler was kept at 4 oC and the column was at room 

temperature. 

Analyte detection by MRM mode was performed using a triple quadrupole ion-trap 

tandem mass spectrometer (Sciex QTRAP 5500, Ontario, Canada). The optimized MS 

instrumental and MRM ion transition detection parameters are listed in Table 5.2 and Table 

5.3. Analyst software version 1.5.2 for Sciex QTRAP 5500 was used for data analysis. An 

example chromatogram for a 60 ppb HBQ standard mixture is shown as Figure 5.3. 

 

 

Table 5.1 HPLC mobile phase gradient program 

Time (min) Solvent A (%) Solvent B (%) Flow Rate (µL/min) 

0.00 80 20 170 

50.00 10 90 170 

55.00 10 90 170 

55.10 80 20 170 

60.00 80 20 170 

 Solvent A: Optima H2O (0.1% FA) 

 Solvent B: Optima MeOH (0.1% FA) 
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Table 5.2 MS instrument operating conditions 

 

Collision Gas Medium 

Curtain Gas 30 psi 

Ion Source Gas 1 50 psi 

Ion Source Gas 2 60 psi 

Ion Spray Voltage -4500 V 

Temperature 450 °C 

Entrance Potential -10 

Dwell Time 200 (msec) 

 5500 Sciex QTrap Mass Spectrometer 

 

 

 

 

Table 5.3 MRM mode analyte ion transitions and detection parameters 

Name 
Rt 

(min) 

Q1 Mass 

(Da) 

Q3 Mass 

(Da) 

DP 

Declustering 

Potential 

CE 

Collision 

Energy 

CXP 

Collision Cell 

Exit Potential  

DCBQ 
* 177 113 -100 -24 -13 

* 177 141 -100 -20 -13 

DCMBQ 
19.7 191 127 -85 -24 -11 

19.7 191 155 -85 -20 -11 

TriCBQ 
20.3 211 175 -80 -18 -11 

20.3 211 35 -80 -30 -15 

DBBQ 
16.5 267 79 -100 -50 -10 

16.5 267 81 -100 -50 -10 

* DCBQ isomers are both detected with the same MRM parameters but elute at 

different retention times. 2,5-DCBQ (12.9 min) and 2,6-DCBQ (13.3 min) 
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Figure 5.3 Example chromatogram displaying a 60-ppb standard mixture of HBQs, 2,5-

DCBQ and 2,6-DCBQ (blue), DBBQ (green), DCMBQ (purple), and TriCBQ (red) detected 

using MS/MS in MRM mode 

 

 

 

5.3 Results and Discussion 

5.3.1 Identification of Aromatic Amino Acids as HBQ Precursors 

HBQs are a class of highly cytotoxic DBPs,32, 33 detected frequently in North 

American tap water.31 Characterizing HBQ precursors is essential to reduce their formation, 

yet this area is not well studied. AAAs are ideal HBQ precursor candidates because of their 

inherent ring structure. First, I optimized a high-performance liquid chromatography mass 

spectrometry (HPLC-MS) method capable of low µg/L detection of HBQs. With this method 

preliminary experiments have confirmed that AAAs can serve as HBQ precursors.  

My initial experiments used relatively high concentrations of PHE and free chlorine 

to directly monitor the formation of HBQs from PHE without extraction. PHE (1 mM) was 
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reacted with increasing concentrations of free chlorine (from NaOCl) ranging from 0.1 to 20 

mM. Direct analysis of the reaction mixtures at 1 and 24 hours after chlorination showed 

HBQ formation from PHE. Both DCBQ and TriCBQ were detected after 1 hour. With 

increasing free chlorine concentrations, DCBQ formation increased while TriCBQ decreased 

(Figure 5.4(a)). After 24 hours, the concentrations of DCBQ increased and followed the 

same trend observed at 1 hour however TriCBQ was no longer detected in the reaction 

mixture (Figure 5.4(b)).  

In the second set of time course experiments, both PHE and TYR produced DCBQ at 

pH 7.5. In this set, only DCBQ was detected as a formation product, unlike in Figure 5.4 

where TriCBQ was also detected after 1 hour of PHE chlorination but not after 24 hours. 

Figure 5.5(a) shows that over time, the formation of DCBQ from PHE was found to steadily 

increase and plateau at 24 hours of chlorination contact time. This is consistent with the trend 

of increased DCBQ from chlorination of PHE at 24 hours compared to 1 hour in Figure 5.4. 

Here, Figure 5.5(b) shows chlorination of TYR produced DCBQ quickly, peaking at 0.5 

hours then decreased dramatically as reaction time increased. For both PHE and TYR, DCBQ 

formation was greater at 5:1 mM than 10:1 mM Cl:AAA reactant ratio. The overall yield of 

DCBQ was greater for TYR than PHE under the same reaction conditions.  

Greater DCBQ formation from TYR can be rationalized due to the phenol group 

located on the aromatic ring. The hydroxyl can activate the ring by electron withdrawal, 

where electron density is polarized away from the ring towards the electronegative oxygen 

atom. More importantly, the lone pair of electrons from oxygen can move around the ring in 

resonance between alternating aromatic carbons. Previous work has found that the chlorine 

demand of TYR and TRP (i.e., 13 and 16 mol/mol, respectively) are much greater than PHE 

(i.e., 2.7 mol/mol) indicating that the activated aromatic ring is essential to their reactivity.34 

The loss of TriCBQ signal after 24 hours of PHE chlorination shown in Figure 5.4 as well 

as the drop in DCBQ concentration detected from chlorination of TYR over time indicates 

that HBQs could be acting as intermediates in the formation of other DBPs.35, 36 
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Figure 5.4 Formation of 2,6-DCBQ and TriCBQ, from phenylalanine after 1 (a) and 24 (b) 

hours of chlorination with free chlorine. Results reflect a single preliminary experiment with 

no replicates  

 

 

The halogenated species of HBQs formed during drinking water treatment depends 

on the quality of source water. The presence of Br- and I- influence the formation of more 

toxic Br- and I-DBP congeners.16, 17 The results in Figures 5.4 and 5.5 have demonstrated 

that PHE and TYR could act as Cl-HBQ precursors. Therefore, Br-HBQs (i.e., DBBQ) were 

expected to form from AAAs during chlorination in high Br- waters. As a proof of concept, 

PHE, TYR and TRP (1 mM) were reacted with free chlorine (NaOCl, 10 mM) in the presence 

of Br- (NaBr, 0.2 mM). Figure 5.6 shows the formation of HBQs from each AAA, 24 hours 

after chlorination in pH 7.5 buffered Optima water containing 0.2 mM Br-. All AAAs formed 

DCBQ with the greatest yields from TRP >> PHE > TYR. After 24 hours at a 5:1, Cl:AAA 

molar ratio, Figure 5.4 shows the relative formation of DCBQ was much greater from TYR 

(i.e., approx. 75 ppb DCBQ) compared to PHE (i.e., approx. 10 ppb DCBQ). At a molar ratio 

of 10:1 of Cl:AAA, the AAAs produced similar amounts of DCBQ at 24 hours, yielding 

approximately less than 10 ppb and 4 ppb from TYR and PHE, respectively. While DCBQ 

formation was in the same magnitude (i.e., both less than 20 ppb DCBQ), Figure 5.6 shows 

that TYR formed less DCBQ than PHE. In the presence of Br-, PHE and TYR both produced 
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greater amounts of the more cyto- and genotoxic HBQ congener, DBBQ, compared to 

DCBQ. This set of experiments was the first to investigate TRP as an HBQ precursor. The 

HBQs formed from TRP as follows DCBQ >> TriCBQ > DBBQ. The TRP reaction solution 

was the only AAA sample to yield detectable TriCBQ under these conditions after 24 hours.  

These preliminary experiments showed the interesting observations of TRP as precursors of 

HBQs. It warrants further investigation into the mechanisms of HBQs formation from TRP.  

 

 

 
 

Figure 5.5 Reaction profiles of the formation of DCBQ from PHE and TYR over time at pH 

7.5. Error bars represent the standard deviation of triplicate sample analysis 

 

(a) (b) 
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Figure 5.6 Formation of HBQs from PHE, TYR, and TRP, 24 hours after chlorination with 

free chlorine (NaOCl) in Optima water in the presence of Br – at pH 7.5.  Error bars represent 

the standard deviation of triplicate sample analysis 

 

 

5.3.2 Relevance of AAAs as DBP Precursors 

This evidence shows AAAs are Cl-HBQ precursors under chlorination conditions and 

yield DBBQ in the presence of Br-. These experiments were conducted under controlled 

laboratory conditions with high purity reagents. Authentic source waters contain a more 

complex mixture of organic content.37, 38 Amino acids, peptides and proteins account for a 

majority (up to 75%) of dissolved organic nitrogen (DON) in source waters.19 Peptides in 

source water can be as high as mg/L.37, 39, 40 Based upon this idea, the Li group has developed 

a new strategy41 to characterize and determine new chlorinated,5 brominated,7 iodinated6 and 

mixed halogenated dipeptide DBPs formed after chlorination or chloramination of a variety 

of combinations of simple dipeptides including AAA tyrosyl-dipeptides. While unbound 

AAAs are not highly concentrated in environmental waters,1 AAAs are integral in natural 
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systems of plants and animals,42 therefore there is a potential that AAAs present as simple 

peptides could similarly serve as an additional HBQ precursor source.  

Drinking water sources both in Canada43 and internationally44 are being increasingly 

impacted by seasonal algal blooms. Algal breakdown products increase the complexity and 

abundance of available proteins and peptides in environmental waters.45 Recently it was 

reported that green algae in lakes and rivers could serve as precursors to DCBQ after 24 hours 

of chlorination at pH 6-9.46 Overall, AAAs both free and bound as natural organic matter 

(e.g., peptides and proteins) may account for a larger source of HBQ precursors than 

previously understood. 

 

5.4 Conclusion 

5.4.1 AAAs as Putative HBQ Precursors 

My preliminarily study has identified AAAs as HBQ DBP precursors and further 

research will lead to a better understanding of the mechanisms of HBQ formation from these 

compounds. The identification of new HBQ precursors can provide essential information to 

decrease their formation during water treatment disinfection processes47 and their distribution 

in treated drinking water in the future. Recently, activated carbon adsorption has been 

proposed as a new approach to remove intermediate aromatic halogenated DBPs in 

chlorinated drinking water.48 Future studies building from this foundational proof of concept 

work will provide information contributing to the overall understanding of DBP exposure 

and provide strategies to reduce exposure and subsequent potential adverse human health 

impacts. 

5.4.2 Future Analysis  

Since collecting these results, the HBQ method was adapted for more efficient future 

experimentation by incorporating all three AAAs as analytes. Currently, detection limits for 

both HBQs and AAAs are in the same order of magnitude (i.e., ppb level, Figure 5.7). After 

the conditions for HBQ formation from AAAs are validated, the impact of halide ions to 

precursors ratios and the effects of varying pH and reactant concentrations could be 

investigated over reaction time. The method could be expanded to incorporate I-HBQ 

congeners to repeat these experiments with a focus on the impact of iodine in the formation 
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of I-HBQs, found to be the most cytotoxic of all halogenated HBQ species. Finally, source 

water samples containing high I- and Br- could be used to conduct chlorination mimicking 

water treatment and HBQ formation could be determined in the authentic, high Br- and I- 

water sample spiked with AAAs.  

 

 

 
 

Figure 5.7 MRM Extracted ion chromatogram for method capable of future simultaneous 

detection of AAAs (TYR, PHE, and TRP) and HBQs (DCBQ, DBBQ, DCMBQ and 

TriCBQ) in negative ionization mode 
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Chapter 6  

Conclusions and Synthesis 

 

“We can do anything we want to do if we stick to it long enough.” 

– Helen Keller (1880-1968) 

 

6.1 Introduction 

 Water is a limited resource. Its quality can be impacted by waste contamination from 

a variety of sources (e.g., municipal, agricultural, industrial, etc.). Pathogens present in 

inadequately treated or untreated drinking water pose an acute risk to human health and can 

tragically result in waterborne-disease outbreaks.1 Pristine water sources continue to decrease 

worldwide, therefore the impact of wastewater on the environment and our drinking water 

must be better understood to improve management strategies.2 Wastewater treatment plants 

minimize the risks of discharge to receiving water bodies.3 Some anthropogenic 

contaminants are incompletely removed by waste treatment processes and do not occur 

naturally in ground or surface waters.4,5 Specific waste indicators can be used to trace and 

mitigate wastewater impact in receiving water bodies by informing treatment strategies 

designed to mitigate negative impacts from wastewater contamination to ensure safe, high 

quality drinking water.6,7 

Disinfection is a lifesaving drinking water treatment technology that can eliminate 

the acute health risk of potentially fatal waterborne pathogens.8 Unfortunately, disinfection 

byproducts (DBPs) are formed as an unintentional consequence from reactions between 

disinfectants and organic matter present in water.9 Epidemiology studies have consistently 

associated long-term consumption of DBPs in chlorinated drinking water with a small, but 

significant, increased potential risk of developing bladder cancer.10 Population wide 

consumption of domestically provided treated drinking water,11,12 coupled with the 

prevalence of bladder cancer13 have justified the ongoing investigation into the formation of, 

and exposure to, DBPs.14–18   

Although trihalomethanes (THMs) and haloacetic acids (HAAs) are the dominant 

DBPs formed during chlorination, they are not the primary drivers of DBP toxicity.19–21 
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Research focus has shifted to identify classes or fractions of DBPs with toxicological 

relevance.22,23 To decrease DBPs in drinking water, substantial efforts are employed at 

drinking water treatment plants to reduce the organic content in source water before 

disinfection.24,25 However, DBPs formed from food and beverage preparation with 

chlor(am)innated water26–29 are highlighting their relevance as an exposure source to DBPs. 

The consistent themes throughout my research revolved around the assessment of 

wastewater indicators and the identification of toxicologically relevant DBP precursors. My 

thesis includes a critical assessment of the recent applications using artificial sweeteners 

(ASs) to assess wastewater impact in environmental waters (Chapters 1 and 2).30 I developed 

a simple and sensitive high throughput high performance liquid chromatography tandem 

mass spectrometry (HPLC-MS/MS) method for the determination of SUC and ACE in 

environmental waters to investigate their occurrence in previously unstudied British 

Columbian surface waters (Chapter 2). Next, I validated this method for ACE determination 

in a recreational water matrix. For the first time, I determined the prevalence of ACE in 

swimming pool and recreational waters collected from BC and Alberta. I applied the strategy 

of ACE as a urinary marker in two swimming pools to estimate the approximate volume of 

urine present (Chapter 3).31 Later, I shifted from investigating non-nutritive ASs (i.e., ACE 

and SUC) as wastewater indicators in environmental and recreational waters to assessing a 

nutritional, peptide based sweetener (i.e., aspartame) and aromatic amino acids (AAAs; i.e., 

phenylalanine (PHE), tyrosine (TYR), and tryptophan (TRP)) as precursors of an important 

class of DBPs, halobenzoquinones (HBQs) under different chlor(am)ination conditions 

(Chapters 4 and 5).   

 

6.2 Advances in Knowledge 

6.2.1 Assessment of Artificial Sweeteners as Wastewater Indicators and Determination 

of Acesulfame and Sucralose in B.C. Surface Waters 

 Appropriate surface and ground water treatment measures can be employed to 

minimize the impact of wastewater contamination if specific indicators can be used to 

monitor the waste.4,5 The occurrence of artificial sweeteners (ASs) in environmental waters 

has been used successfully as an indicator of wastewater impact.30,32 Non-nutritive ASs like 
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acesulfame (ACE) and sucralose (SUC), were generally considered very stable compounds33 

with excellent potential as a waste indicator.6,32,34 My review of the recent literature 

highlighted growing evidence suggesting ASs can undergo significant biologically mediated 

degradation through wastewater treatment processes.30,35,36 Additionally, UV irradiation can 

result in environmental reduction in surface waters because of transformation.37,38 

Furthermore, agricultural pig feed39 and municipal landfill leachate40 were identified as 

potential unaccounted sources of AS contamination in a water body.41  The temporal and 

geographical variation of ASs in wastewater reinforces the importance of accurately 

characterizing AS occurrence in waste sources before investigating their impact in receiving 

water bodies.30 

 Of the expanding reports on the occurrence of ASs in surface and ground water, 

relatively few investigated Canadian environmental water samples. Furthermore, no 

occurrence information for ASs in B.C. environmental waters was found in the existing 

literature. I collected surface water samples from publicly accessible surface water bodies in 

the Thompson Region. Using the high-performance liquid chromatography method that I 

developed for determination of ACE and SUC, I detected ACE in all 12 surface water 

samples at low parts per trillion (i.e., 1-17 ng/L) concentrations. SUC was only quantifiable 

in 2 lake samples. As analytical tools continue to advance, lower detection limits will enhance 

the understanding of the fate and behavior of trace ASs in environmental waters and their 

waste sources, thereby increasing the accuracy of future wastewater impact assessments. 

6.2.2 Evaluation of Acesulfame as a Urinary Indicator in Recreational Waters: 

Occurrence in Swimming Pools and Hot Tubs and Case Study Estimation of Pool Urine 

Volume 

 ASs are pervasive in the common diet42 and have been established as a globally 

occurring anthropological environmental contaminant.30,32,33,43 ASs have several 

characteristics which make them ideal waste indicator compounds. They are specific to 

human waste, undergo incomplete removal from water treatment processes, are present in 

waste sources at concentrations much greater than background levels, undergo minimal 

transformation in the environment, and are detectable with sensitive analytical methods.4,5,31 

While ASs have been used worldwide as wastewater tracers in environmental water bodies 
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this strategy had never been applied to recreational waters (i.e., swimming pools and hot 

tubs). Many components of human bodily fluids (i.e., urine and sweat) can react with the 

disinfectants present in recreational waters to form disinfection byproducts (DBPs).44 

Trichloramine is a recreational water DBP with known adverse health effects including 

ocular and pulmonary irritation.45,46  A primary precursor for trichloramine is urea.47,48 While 

ACE and SUC are both commonly consumed and highly stable, the excretion pathway for 

ACE (i.e., 99% in urine) compared to SUC (i.e., 15% urine, 85% feces)33 make it a more 

precise indicator of urine.   

My study31 aimed to asses ACE as a urinary indicator in recreational waters. The 

HPLC-MS/MS method I optimized for sensitive determination of ACE (i.e., 0.5 ng/L LOD) 

required no sample preconcentration or manual large volume injection. The high-throughput 

analysis of over 250 samples collected from 31 swimming pools and hot tubs from B.C. and 

Alberta detected ACE at 100% occurrence (30-7110 ng/L). These concentrations were up to 

570-fold greater than ACE in the input tap water control samples. The following case study 

that monitored two pools for 3 weeks found the average ACE concentrations (i.e., 156 and 

210 ng/L) had variation of less than 18% over the collection time. Using C1V1=C2V2 the 

approximate volume of urine required to account for average ACE was estimated to be 30 

and 75 L. This publication was the first to report AS occurrence in recreational waters. My 

results demonstrate evidence of human waste contamination of recreational water and 

suggest that ACE could be used as an indicator of urine in recreational waters in similar ways 

as environmental water bodies. 

6.2.3 Identification of Novel Precursors to Halobenzoquinone DBPs under 

Chlor(am)ination Conditions 

Efforts continue to elucidate the link between adverse health effects (i.e., increased 

bladder cancer risk) and consumption of chlorinated drinking water observed consistently by 

epidemiologic studies.10,49 Risk predictions using existing occurrence, toxicity, exposure and 

data for regulated DBPs (i.e., THMs and HAAs) could not be reconciled with the magnitude 

of bladder cancer specific risks estimated in epidemiological reports.14  Therefore, focus has 

shifted to investigate unknown and unregulated DBP classes of potential significance in 

search of compounds sufficiently toxic to potentially explain the epidemiological estimates.22 
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HBQs are more cytotoxic than regulated DBPs.20,50,51 Both in vitro52 and in vivo53,54 toxicity 

assessments have found HBQs induce oxidative stress and damage DNA. HBQs are an 

emerging class of DBPs with continual reports of frequent detection in disinfected drinking 

water across North America50,55,56 and in Japan;57 in Canadian58 and Chinese59 swimming 

pool water; and more recently tea prepared with chlorinated tap water.28  

One strategy to reduce HBQ formation is to identify their precursors and design 

appropriate approaches to remove those precursors before reacting with common 

disinfectants (e.g., chlorine or chloramine). Many of the HBQ precursors identified in 

formation studies share a structural feature: activated aromatics and 6-membered ring 

structures.28,60–62 I optimized the parameters to maximize the sensitivity of a previously 

described HBQ analysis method,50,63 to investigate their formation from novel precursor 

candidates under both controlled laboratory and contextually relevant chlorination and 

chloramination conditions.  

6.2.3.1 Peptide Artificial Sweetener, Aspartame in Chloraminated Water 

Previous studies have identified the formation of DBPs during food and beverage 

preparation with disinfected water.28,29,64 Aspartame is an AS commonly used to sweeten 

beverages.65,66 No reports in the literature have evaluated DBP formation from aspartame in 

a beverage preparation context. It was unclear whether residual chloramine in tap water67,68 

could react with aspartame, during beverage preparation to form HBQs. Aspartame is readily 

available as a calorie-free tabletop alternative sweetener blend under commercially available 

brands like Equal® Original.69 Here, the optimized HPLC-MS/MS analysis method50,62 was 

used to determine that formed 2,6-dichloro-1,4-benzoquinone (DCBQ) concentration 

increased significantly from 8.0 to 11.2 ng/L just fifteen minutes after dissolving one Equal 

AS package into one cup of authentic chloraminated tap water. Under controlled reaction 

conditions mimicking tap water, DCBQ was formed at a molar yield of 0.0001% from 

aspartame after 24 hours. Interestingly, the presence of aspartame in Optima water solutions 

of DCBQ dramatically reduced the transformation of DCBQ to its relatively less cytotoxic 

transformation product OH-DCBQ.50 

The fate of residual disinfectants during food and beverage preparation is most 

important at room temperature. Pre-treatment of tap water by boiling reduces residual 
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chloramine concentration,70 and has been identified as a simple strategy to reduce volatile71,72 

and non-volatile DBPs.73,74 Subsequently boiling can be considered to be a detoxification 

process for tap water as overall human exposure to DBPs is decreased.73 In my investigation, 

DCBQ concentration was significantly reduced to 1.6 ng/L from to 8.0 ng/L after bringing 

the authentic chloraminated tap water to boiling and immediately removing from the heat 

source. Pre-boiling tap water decreased monochloramine, increased pH, and effectively 

eliminated DCBQ formation from aspartame or Equal.  Overall, my work identified 

aspartame, as a new DCBQ precursor source in chloraminated tap water.  

6.2.3.2 Aromatic Amino Acids; Phenylalanine, Tyrosine, and Tryptophan in 

Chlorinated Water with and without Bromide 

Total amino acids (i.e., free and bound) are present in surface waters at wide ranging 

concentrations (i.e., 50-1000 µg/L) due to varying location and environmental conditions.75,76 

Various amino acids have been identified as precursors to DBPs77–79 including odourous 

chloraldimines and chloroaldehydes.80,81 AAAs are ideal HBQ precursor candidates because 

of their inherent ring structure. Under controlled chlorination conditions (i.e., 24 hours, pH 

7) I found that PHE, TYR, and TRP all formed DCBQ with the greatest yields from TRP >> 

PHE > TYR. Natural and anthropogenic sources can alter bromide concentrations in 

environmental waters.82 Source water containing high levels of bromide and iodide can 

produce higher proportions of the more toxic Br- and I-DBP analogs.82–85 The halogenated 

species of HBQs formed during drinking water treatment depends on the raw water source 

characteristics. The presence of Br- influences the formation of more toxic Br-HBQ 

congeners.62 All AAAs formed 2,6-dibromo-1,4-benzoquinone (DBBQ) when they were 

prepared individually with free chlorine in the presence of Br- at pH 8 for 24 hours. PHE and 

TYR both produced greater amounts of the more cyto- and genotoxic HBQ congener, 

DBBQ,86 compared to DCBQ. Whereas TRP was found to yield DCBQ >> TriCBQ > 

DBBQ. 
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6.3 Conclusions 

The application of ASs as wastewater indicators was critically assessed against 

guidelines for ideal tracer compounds using up-to-date literature.31 Despite temporal and 

geographical variation of AS in waste, evidence of microbial degradation during wastewater 

treatment processes, or losses due to environmental degradation or attenuation processes, 

ACE and SUC were still concluded to be useful as indicators of waste impact in ground and 

surface waters. Additionally, CYC was highlighted as a specific indicator of untreated 

waste.87 Relatively higher concentrations of ASs in waste compared to receiving water bodies 

in addition to continuous advancement of sensitive analytical methodologies are attributes 

that outweigh the challenges uncovered in recent literature. 

In Canada, swimming is the third most practiced sport behind golf and hockey.88 The 

formation of irritating DBPs in swimming pools can be reduced by improving swimmer 

hygiene practices. Many additional DBP precursors are introduced into the disinfected (e.g., 

chlorine and chloramine) recreational waters by swimmers who do not rinse off personal care 

products (i.e., shampoos, sunscreen and lotion, or dirt and sweat) in the provided showers 

and use the restroom before swimming.58,89–92 The public perception of pool safety and the 

importance of recreational hygiene practices in key in improving swimmer compliance. The 

international attention generated from ‘Sweetened Swimming Pools and Hot Tubs’31 was 

used to disseminate a few key points for public education. In interviews I promoted 

awareness of proper hygiene habits.93 Additionally, I communicated that the known benefits 

of swimming as regular exercise far outweigh the potential risks associated with chronic DBP 

exposure.  

Toxicological studies continuously demonstrate the cyto- and genotoxic effects of in 

vitro and in vivo HBQ exposure, confirming their relevance among other important DBP 

classes.94 Here, several HBQ-DBP precursors were identified. For the first time an AS, 

aspartame, was confirmed as a precursor DCBQ under chloramination conditions. The 

addition of one Equal AS package to authentic chloraminated tap water resulted in 

significantly greater concentration of DCBQ after 15 minutes. This warrants investigation 

into the formation and subsequent exposure potential of DCBQ and other DBPs via 

consumption of beverages prepared with aspartame or other alternative sweeteners in tap 
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water containing residual disinfectants. Pre-boiling tap water before beverage preparation 

was suggested as a simple strategy to reduce DCBQ exposure.  

All AAAs were identified as viable HBQ precursors. Although environmental levels 

of free AAAs may be low, the potential to form HBQs from compounds containing AAA 

substructures may have broader implications. AAA-containing peptides and precursors are 

abundant in environmental waters as a humic fraction of natural organic matter.75,95 

Furthermore, AAAs are pervasive components of popular food additives like aspartame (i.e., 

PHE) and dietary supplements like protein powder,96 both of which are often mixed with tap 

water containing residual disinfectants. The confirmation of AAAs as HBQ precursors under 

controlled laboratory conditions was a foundational step in understanding their significance 

as components of complex molecules in variable mixtures. 

 

6.4 Future Research 

In Chapter 2, the detection of SUC was limited by lower sensitivity compared to 

ACE. My research has shown that ACE is easily and sensitively detected in all the samples I 

collected, making it a better indicator of wastewater impact in B.C. and Alberta surface water. 

The simple LC-MS method I developed can be used for future studies in the Thompson 

Region to identify and characterize the waste sources contributing AS load into the receiving 

water bodies. Additionally, studies that quantitatively assess wastewater discharge into a 

water body using detected AS concentrations are limited in comparison to AS occurrence 

surveys. Comprehensive knowledge of the dynamic volume and flow rate of the water body 

being investigated requires future collaboration with hydrologists or environmental 

engineers. With careful design of experiments and controls, ASs can serve as effective tracers 

of wastewater impact in water bodies. 

I have discussed limitations using the ACE concentration in the archived urine 

samples to estimate the urine volume in swimming pools in Chapter 3. To address this 

problem, we should survey a local population of swimmers for their urinary ACE levels to 

provide a more accurate characterization of the ‘waste source’. Conducting an investigation 

to precisely monitor the ACE levels in a recreational centre over time is limited by common 

factors. Water is lost to evaporation and splash out and fresh water is continuously added to 



 154 

maintain operational levels therefore the effective volume of the swimming pool at the time 

of collection is highly uncertain. These inaccuracies can inflate errors in the estimate of urine 

volume from average ACE determined in recreational waters. Future studies could better 

understand these challenges by monitoring ACE over time, in hot tubs. Hot tubs are 

completely drained and refilled on a regular schedule.97 Furthermore, urine input into hot 

tubs is diluted orders of magnitude less than swimming pools, resulting in more sensitive 

indication by ACE.  

Many questions remain to understand daily human exposure to HBQs. The results of 

Chapter 4 suggested two potentially confounding effects. The additional formation of 

DCBQ from residual chloramine and aspartame compared to tap water alone and enhanced 

stability of DCBQ (i.e., reduced transformation to OH-DCBQ) in the presence of aspartame. 

Future work could elucidate the impact of aspartame on DCBQ formation under 

chloramination conditions. It can be difficult to weigh the relevance of marginally increased 

DCBQ in the context of overall DBP exposure. The in vitro LC50 of DCBQ is orders of 

magnitude lower20,52 than commonly regulated classes of Cl-DBPs such as THMs98 or 

HAAs.99  To define the forcing agents that generate toxicity in disinfected tap water, ‘TIC-

Tox’ was proposed by Plewa et al. as a strategy to weigh DBP concentration with metrics of 

toxic potency.19,22 With a more substantial data set from a variety of treated water samples, 

TIC-Tox could be used to estimate and compare the potential toxicological weight of 

increased DCBQ in authentic tap water before and after the addition of Equal. These results 

could contextualize whether increased HBQs from sweetened tap water play a role as a 

forcing agent of DBP mediated toxicity of disinfected drinking water. 

Chapter 5 presented preliminary results that demonstrated the formation potential of 

HBQs from AAAs. To effectively monitor the minor formation of HBQs from AAAs, we 

should perform reactions with high molar concentrations of reactants. Several groundwater 

sources in Alberta are high in Br- or I- due to geomorphological deposits.100,101 Future work 

should consider environmentally relevant concentrations of chlorine, and bromide, and 

expand the investigation to include iodide in the reaction mixtures and I-HBQs as potential 

formation products. Iodinated-DBPs include some of the most cyto- and genotoxic DBPs 

discovered to date102 and HBQs follow the same trend.86  
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 Advancements in analytical methodologies to quantify lower concentrations more 

accuracy and monitor changes in their occurrence with more precision will allow DBP 

researchers to continue to piece together the DBP exposome.103  A multidisciplinary research 

effort is required to continue to assess novel DBPs for their toxicological impacts,20 

characterize DBP precursors and their sources, develop methods for comprehensive DBP 

detection,104–106 propose strategies to minimize their formation, 21,107,108 and accurately 

survey their occurrence109 to better understand total exposure to toxicologically relevant 

DBPs.22 

 Above all, while it is necessary to minimize the potential chemical risk 

associated with chronic exposure to DBPs, eliminating the acute risk of waterborne 

pathogens by disinfection treatment technologies remains an undisputed priority for 

drinking water quality.1,110 
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“Now is not the end.  

It is not even the beginning of the end. 

But it is, perhaps, the end of the beginning.” 

– Winston Churchill (1874-1965) 


