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Abstract 

Physical simulations are in general very computationally intensive and required large and costly 

computing resources. Most of those simulations are rarely interactive as the link between 

visualization, interaction, and simulation is too slow.  The recent development of parallel 

Graphic Processing Unit (GPU) on graphic cards has enabled us to develop real-time interactive 

simulators of complex physical phenomenon. In this thesis, two GPU-based implementations of 

interactive physical simulations are presented: (1) visualization of the electron probability 

distribution of a hydrogen atom, (2) visualization and simulation of particle based fluid dynamic 

model using smoothed particle hydrodynamics.  These simulations were developed in the context 

of the Microscopic and Subatomic Visualization (MASAV) project as a demonstration of the 

capabilities of the GPU to create realistic interactive physical simulators for scientific education. 
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CHAPTER 1 -  

Introduction 

The main goal of the Microscopic and Subatomic Visualization (MASAV) project 

[Pinfold, 2008] is to visualize the fundamental quantum nature of matter at the birth of 

the universe during the Big Bang, similar conditions will be recreated and studied with 

the highest energy accelerator in the world - the Large Hadrons Collider (LHC) or “Big 

Bang Machine” - at the European Centre for particle physics research (CERN) situated 

near Geneva, Switzerland (see Figure 1.1).  

 

Figure 1.1: The LHC: with circumference radius of 27km buried 100m underneath the 
French-Swiss countryside. 

            This thesis is a pilot project and is one of the first contributions to the MASAV 

project. The MASAV project is very large but this pilot project focuses on creating a real-

time interface to help illustrate the basic aims of the MASAV project, i.e. to reveal a 
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glimpse of the microcosm as envisaged by the latest theoretical and experimental efforts 

at CERN. In order to do so a basic toolbox was developed to render and simulate in real-

time the atomic structures of the hydrogen and the interaction of molecules in a fluid.  

 

Figure 1.2: Project Structure: Electron Cloud, Hydrogen Molecule and Fluid Particles 

 

           This thesis consists of two major parts: atomic electron probability distribution 

visualization and molecular fluid flow simulation, as shown at Figure 1.2. The first part 

starts with the advanced real-time visualization of the electron probability distribution of 

the hydrogen atom in various energy states. In order to do so, Chapter 2 and Chapter 3 

introduce two new rendering algorithms for electron distribution visualization: a point-

based Radiosity algorithm using a Monte Carlo diffusion model where the electron 

distribution is lit as if it was part of a nebula where the nebula center or star is the atomic 

nucleus. The second project uses the lighting model produced by the Nebula 

Visualization  (NV) to pre-render the electron probability distribution using a GPU 
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implementation of a volume rendering algorithm based on ray casting. Using this 

combination of volume rendering and pre-calculated inner radiosity, we will demonstrate 

that it is possible to observe in more detail the structure of the electron probability 

distribution.  In Chapter 4, we journey out of the atomic level to consider the fluid flow 

of a group of small molecules, with a GPU implementation of a Smoothed Particle 

Hydrodynamics (SPH) simulation.  SPH simulates the attraction and repulsion forces 

between fluid molecules and their motion.    

          Instead of reviewing this pertinent literature in one large literature review chapter, 

we present this information in each individual chapter. 

1.1 Real-time Implementation Using CUDA 

This thesis describes the implementations both for CPU (Central Processing Unit) and 

GPU (Graphics Processing Unit) of the various elements of the MASAV toolbox. Real-

time implementation of these algorithms is now made possible with the use of GPUs’ 

computing capability with thousands of thread computing elements and very fast memory 

that surpass by orders of magnitude the capability of the standard CPU.  In order to 

program the GPU, we decided to choose CUDA (Computer Unified Device Architecture), 

one of the most popular and newest programming models for GPU programming.  As 

most parallel algorithm implementations are specific to the hardware architecture, let’s 

review a general programming framework for CUDA and let’s review the basic building 

block of the GPU hardware.  
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1.1.1 Basic GPU Architecture 

With the increasing requirement for large dataset computation and visualization, the 

modern GPU has recently evolved, providing multiple Teraflops at very low cost. Two 

dominant computing architectures exist in parallel computing today: Multiple Instruction 

Multiple Data (MIMD) and Single Instruction Multiple Data (SIMD). Most MIMD 

architectures have to handle different instruction sequences and procedures, and is at the 

base of the modern CPU. On the other hand, SIMD architecture has been used for data 

intensive applications such as graphical rendering, image pixels computation, point-cloud 

processing, and etc. As an example of a highly efficient SIMD parallel model, CUDA 

was introduced by NVIDIA Corporation to abstract the real GPU hardware into a SIMD 

like architecture that can compute more than 60,000 data element in parallel on a high-

end GPU [NVIDIA, 2007]. During the computation, each GPU program executes the 

same instruction sequence simultaneously on different index of data element. This mode 

of computation is ideal for graphics and scientific computing and for the MASAV project.  

For example, in the fluid simulation in Chapter 4, all the particles exert forces on other 

neighbouring particles at the same time, which is the natural fundamental phenomenon in 

real physical world and is ideal for GPU implementation. In the following sections let’s 

review the building blocks of CUDA. 

1.1.2 Grid of Thread Blocks 

In CUDA, each kernel function calling the GPUs creates a grid of thread blocks, with a 

limited number of threads in a block. A thread is a small piece of code running on a 

single core. In fact a GPU is not really SIMD architecture but, more realistically, a Single 

Thread Multiple Data (STMD) architecture where a basic processing sequence called a 
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thread, is processing in parallel multiple data. This model allows a larger number of 

threads to execute the same program (called kernel) with one invocation. The blocks are 

identifiable via block ID (one- or two-dimensional arrays), which leads to a reduction in 

thread cooperation.  

 

Figure 1.3: Tread Processing in CUDA [NVIDIA, 2007] 
 

            Figure 1.3 shows a CUDA program containing two kernel functions running on a 

group of blocks called a Grid. In Kernel-1, Grid-1 is designed as two-dimensional array 

in both grid size and block size. So every block in the grid has a unique two-dimensional 

index and it is the same for every thread in a specific block. 

1.1.3 Memory in CUDA 

There are three different levels of memory in a GPU, as shown at Figure 1.4:  

• Global-level Memories consists of Global Memory, Constant Memory and 

Texture Memory. All global-level memories could be read from and written to by 



6 
 

the Host (CPU Program), and kept constant during kernel launches by the same 

application.   

• Block-level Memory or Shared Memory is designed to be shared by all the threads 

in the same block during an application. As on-chip memory, shared memory is 

much faster than global-level memories, and in some extreme cases when all 

threads in only one block, the speed of shared memory fetching could even match 

that of accessing registers. 

• Thread-level Memories like registers and local memory are on-chip memories and 

have the best read and write speed for threads, on which the kernel functions are 

really running.  

The global memory space is not cached but its addresses could be simultaneously 

accessed by every thread of a kernel function. Compared to other memories in the device, 

global memory has the lowest read/write speed. Constant memory space is cached; 

therefore, a read from constant memory costs one memory read only on a cache miss. For 

all the threads of a kernel, reading from the constant cache is as fast as reading from a 

register as long as all the threads read the same address. The cost increases linearly with 

the rise of the number of different addresses read by all threads. The texture memory 

space is also cached; hence a texture fetch costs one memory read from device memory 

only on a cache miss.  The texture cache is optimized for 2D spatial locality, so threads of 

the same kernel that read texture addresses that are close together will achieve the best 

performance. By contrast, as in the on-chip memory, the shared memory space is much 

faster than the local and global memory spaces. In fact, for all threads within one SIMD 

group or "warp”, accessing the shared memory is as fast as accessing a register, as long 
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as there are no bank conflicts between the threads -- shared memory is divided into 

equally-sized memory modules, called banks, which can be accessed simultaneously and 

yields n times higher bandwidth where n indicates the number of distinct memory 

addresses in a shared memory [NVIDIA, 2007]. 

 

Figure 1.4: Memory Model in CUDA Framework [NVIDIA, 2007] 

 

1.1.4 Grid of Thread Blocks 

In CUDA, each kernel function calling the GPUs creates a grid of thread blocks, with 

limited number of threads in a block. This model allows larger number of threads to 

execute the same kernel with one invocation. The blocks are identifiable via block ID 

(one- or two-dimensional arrays), which leads to a reduction in thread cooperation.  

1.1.5 Basic Development Environment 
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A typical development environment for CUDA programming on Windows consists of 

Visual Studio and CUDA Software Development Kit (SDK). The CUDA programming 

has always been a challenging and time-consuming task, not only because of the settings 

of environmental parameters with multiple compilers from both C++ and CUDA, but also 

because of the lack of debugging tools until August, 2010 when NSIGHT (also called 

Nexus) was officially released by NVIDIA. In general, CUDA programmers prefer to 

write and debug the code in C++ first and then adapt into CUDA line by line. Visual 

Studio serves only in the host part, as the programmers have no access to variable values 

on GPU device.  

            Recent development at NVIDIA for the CUDA community is the release of the 

industry’s first development environment NSIGHT for GPU programming and 

debugging. This powerful plug-in allows programmers to develop for both GPUs and 

CPUs within Microsoft Visual Studio environment. With the help of NSIGHT, one can 

debug computing kernels directly on the GPU hardware, examine thousands of threads 

executing in parallel using the familiar Locals, Watch, Memory and Breakpoints 

functions in Visual Studio. One can view GPU memory directly using the standard 

memory windows in Visual Studio. Conditional breakpoints can be used to quickly 

identify and correct errors in massively parallel code and identify memory access 

violations using the CUDA C/C++ Memory Checker. For more information please see 

the pertinent literature at: http://www.nvidia.com .             

            All the CUDA programs for this thesis have been developed with manual 

debugging before NSIGHT.  

http://www.nvidia.com/�
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1.2 Thesis Contributions  

The first part of the thesis focuses on the atomic structure of the hydrogen atom. In 

Chapter 2, using a physical analogy between a nebula system and the electron cloud of a 

hydrogen atom, we developed a new lighting algorithm by introducing a Monte Carlo 

diffusion model used in astrophysics research for an electron cloud model. The algorithm 

was implemented in both CPU and GPU and a detailed comparison and analysis in terms 

of speed performance was performed.  Speed-up of two orders of magnitude was 

achieved. 

            In order to present more detail information of an electron clouds structure, 

especially near low probability areas, a GPU ray-casting-based volume rendering 

algorithm was added to the result of the point-based radiosity calculation to allow real-

time visualization of the electron cloud distribution. By acting on the control bar of the 

interface, the user can compare the basic distribution (derived from the results of nebula 

radiosity calculation) and the interaction of light with the probability density create by the 

volume rendering in order to get a deep understanding of the inner structure inside 

electron cloud at different energy states. Analysis on the experimental results and speed 

performance is given at the end of that chapter. In this case as well real-time performance 

was achieved. 

            The thesis then journeyed at the molecular interaction level where we 

implemented a Smoothed Particle Hydrodynamics (SPH) algorithm. SPH simulates the 

motion of molecules controlled by attractive and repulsive forces between all fluid 

molecules and the external forces applied to them. We have improved the precision of the 

SPH implementation by a classical 4th order Runge Kutta integration method without any 
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loss of performance for the GPU. We also found the proper adjustment of different forces’ 

parameters which enables SPH to simulate not only the motion of water-like fluid, but as 

well the explosion of thin fluid such as gas, and even the motion of thick heavy fluid such 

as wet mud. Speed-up in the order of 20 to 30 times was achieved. 
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CHAPTER 2 -  

Visualization of the Hydrogen Atom Electron Distribution Using a Nebula 

Metaphor 

In this chapter, we represent a method for rendering the electron probability distribution 

of a hydrogen atom using a Nebula visualization model [Magnor, 2005] based on a 

Monte-Carlo algorithm. The basic idea lies in the similarity between the hydrogen atom 

electron probability distribution and its astronomical counterpart, a nebula where the 

interstellar dust is similar from a graphic viewpoint to the hydrogen atom electron density 

probability.  We will demonstrate that such a visualization technique will allow us to 

better understand how the hydrogen atom electron probability distribution evolves with 

its energy state. As the first element of our contribution to the MASAV toolbox, point-

based technique is used as it is much easier to narrow down the huge gap between 

macrophysics of astronomy and our atomic model. The following sections introduce the 

background knowledge for nebula cloud simulation: Section 2.1 describes the reason for 

choosing a reflection nebula visualization algorithm rather than any other methods. 

Section 2.2 introduces the necessary background knowledge both in atomic physics and 

astronomy.  Section 2.3 describes in detail the reflection nebula visualization algorithm. 

Section 2.4 describes the GPU implementation of the proposed rendering algorithm. 

Section 2.5 presents the experimental results and compares the GPU implementation with 

its CPU version. 

2.1 Nebula vs. Electron Probability Distribution  

A good visualization model is necessary in order to convey detailed information to the 

users of the atomic structure and its properties for various quantum energy levels. As we 
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decided to render an electron density distribution like a cloud, there are many modeling 

techniques and rendering methods to choose from. Some widely used mature lighting 

techniques include global illumination with photons [Jensen, 1996] [Christensen, 1997], 

various volume rendering algorithms such as: ray–casting [Amanatides and Fournier, 

1984], texture mapping [Weinhaus and Devarjan, 1997], or splatting [Zwicker et al., 

2001], and finally radiosity [Durand et al, 1999] algorithms from which our proposed 

algorithm is borrowed. Widely used for flat planes rendering such as polygon, global 

illumination algorithms are not really able to deal with large point models as they tend to 

gives poor visualization result and miss use of the rendering pipeline as each point must 

be converted into spheres raising the polygon count by a factor of at least 8. It is really 

difficult to determine the size and normal of every particle in the system in order to 

perform a Phong shading model. Volume rendering algorithms, although perfect for 

observing volume data from the outside, are not directly applicable to our problem as we 

would like to have the lighting source to come from the inside, as if the electron 

probability density were lit by the atomic nucleus revealing the electron probability 

distribution from the inside-out. In many ways volume rendering techniques can be 

applied to our problem if one can compute a lighting model from the inside-out using the 

proposed radiosity technique.  

In Section 2.2, we will demonstrate the similarity between the two models, and 

explain the reason why one would prefer to use reflection nebula visualization model for 

electron probability distribution rendering. Each reflection nebula system contains at least 

one star and the surrounding interstellar dust. This interstellar dust does not produce light, 

but reflects, refracts and absorbs light energy while photons traverse the region. All 
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photons come from one single source, the star in a one-star reflection nebula system. The 

intensity of the light fades away from the center to the boundary after so many reflections, 

refractions, and absorptions revealing the internal distribution of the cloud. Similarly, 

when we try to find a meaningful method for rendering an electron probability density, 

one can represent thousands of copies of a single electron traversing space according to 

the probability distribution and its energy, one can view those models as if the electrons 

would create a smoke or dust around the nucleus, called for now on an “electron cloud”. 

A well-known lighting model that has been successfully implemented for dust or smoke 

can be equally useful to visualize an electron probability density distribution. Although 

an electron cloud is not actually a cloud which contains millions of electrons, but only the 

probability of the electron to be presented at that position, where the local electron 

probability density represent one (or many) electrons’ possible appearance.  

Another consideration is the advantage of a reflection nebula model in the 

placement of the light source. In such a nebula system, the light is from the single star (or 

the sum of multiple outcomes of many of them, if there is more than one star). For a 

single–star system, the sun is always placed in the middle, which gives enough 

information to present a better display of the inner-structure to an observer. A nucleus-

electrons system could be considered as single-star system. This solves the problem of 

normal rendering paradigm which assumes the placement of a light source outside the 

cloud and would hide the true distribution of the probability density. In this respect, the 

lighting method of a nebula system matches perfectly our needs.  

2.1.1 Physics & Astronomy Background 

2.1.1.1 Atom Nucleus & Electron Probability Density 
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Figure 2.1: Planetary Model (Bohr Model) of the Atomic Structure [Milstid, 2010]. 

 
An atom consists of a tiny dense core in the center and some electrons outside the core 

moving around it. Figure 2.1 shows an inexact image of an atomic structure, called the 

Bohr model [Sapirstein, 1995]. At the center, the small core, called nucleus, corresponds 

to most of the mass of the whole atom as electrons are very light. There are two kinds of 

particles in the nucleus: proton and neutrons, where the proton is charged and its mass is 

slightly larger than the neutron that is not charged. In different atoms, the number of 

protons and neutrons can change but, in general, the same element will always have the 

same number of proton but not necessarily the same number of neutron. In this case those 

elements are called isotope. The proton attracts the electrons by Coulombian law and the 

proton and neutron are attracted by strong forces primarily and by weak forces when they 

are very close to each other. Further subdivision of the proton and neutron bring up to the 

quarks which states define a neutron from proton in family call leptons. In this case the 

quarks are define by their internal state (up/down, charm/strange, top/bottom) are they are 

attracted to each other by a Quantum Chromo-dynamic Field called Gluons which is 

responsible for the strong force. 
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Ultimately the MASAV project would be able to visualize the atom all the way to 

the quarks but for this pilot project, we will limit ourselves to a quantum probability 

analysis of the electron.  

2.1.1.2 Electron Wave Function 

A wave function, in quantum mechanics, is a function from space to complex numbers 

describing the motion of sub-atomic particles in an electromagnetic field. The modulus of 

the wave function is equal to the probability that the particle is at a specific position in 

space. The hydrogen atom wave function is the wave function in the case of one single 

electron been attracted by a single proton in three-dimensional space and is expressed in a 

spherical coordinate system by:                      

                                                                 𝜓𝑛,𝑙,𝑚(𝑟, 𝜃, 𝜑)                                                              (2.1) 

where r represents the distance of the electron from the nucleus, and 𝜃 and 𝜑 are two 

angles in polar coordinates system. A probability density function representing the 

probability of an electron to be located at a distance r and at an angle θ and φ is given and 

at a given quantum state (n, l, m) is:  �𝜓𝑛,𝑙,𝑚�
2
. Because the probability density of each 

possible state should integrate over all space to 1, the norm of the wave function must be 

1: 

  � 𝜓𝑛,𝑙,𝑚|𝑟, 𝜃, 𝜑|2 d𝑣 = 1
 

v
                                                   (2.2) 

 State 

The term “state” is used to describe the total energy of the electron. The shape of the 

probability density of the electron differs drastically depending on its quantized 
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energy state. Generally speaking, a lower energy always leads to a more compact 

probability distribution that looks like orbit in a planetary system. The number of 

possible energy states also differs from one atom to another. Smaller and lighter-

weighted atoms have fewer possible quantized states than large heavy atoms. 

 n, l, m, s 

For the same atom, each state of electron has its unique quantum numbers n, l, m and 

s. These four parameters represent the principal, azimuthal, magnetic and spin 

quantum numbers of an atomic orbital. 

            The principal quantum number n represents the total energy of each orbital 

and increases as the electron is more distant from the nucleus increases. The sets of 

orbitals with the same n-value are often referred to as electron shells or energy 

levels. 

            The azimuthal (or angular momentum quantum number) l determines the 

angular momentum energy of different sub-shells or sub-orbits on the same shell. In 

each orbital determined by the principal quantum number n, the possible number of 

sub-orbitals l ranges from 0 to n-1. 

            The magnetic quantum number m refers to the direction of the angular 

momentum vector as the electron rotates around the nucleus. The magnetic quantum 

number m does not affect the electron's energy, but it does affect its probability 

distribution in space. The value of m could be chosen as any integer from between –l 

to l. 

http://en.wikipedia.org/wiki/Vector_(geometric)�
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            As the fourth quantum number, the spin quantum number s determines the 

angular momentum as it rorates around on itself. Since spin does not affect the 

position of the electron, this parameter is not useful in our point-based model. 

            At Table 2.1 one can see examples of possible values of the principal, angular 

and magnetic quantum numbers at different energy states, from state 1 to state 10. 

Table2.1: Quantum numbers for ten energy states. 

 

 Bohr Radius  

As mentioned previously, the simplest atom, hydrogen, has a single electron orbiting 

the nucleus and its smallest possible orbit, with lowest energy, is called the Bohr 

radius and is the most likely position of the electron when the atom is at its lowest 

energy state. As the radius of the basic state, the Bohr radius of hydrogen has a value 

of 5.2917720859 × 10−11 m. 

 Polar & Cartesian Coordinates 

In Polar Coordinates, positions in 3D space are determined by their own specific r, 𝜃 

and 𝜑 values. Here r represents the distance from the center, and 𝜃 and 𝜑 are two 

angles in polar coordinates system. Accordingly, in the Cartesian Coordinates system 

which use x, y and z coordinates to represent the position of a particle, a conversion 

between its x, y and z value and their counterparts in polar system are defined by: 

State 1 2 3 4 5 6 7 8 9 10 

N 1 2 2 2 3 3 3 3 3 3 

L 0 0 1 1 0 1 1 2 2 2 

M 0 0 0 1 0 0 1 0 1 2 
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 �
      𝑥 =  𝑟 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑,                                                                          

𝑦 =  𝑟 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜑,     0 ≤ 𝜃 ≤  𝜋,   0 ≤ 𝜑 ≤ 2𝜋              
     𝑧 =  𝑟 𝑐𝑜𝑠𝜑,                                                                                  

�                 (2.3)                      

One can see at Table 2.2 various hydrogen electron wave functions for every energy state 

from n,l,m (1, 0, 0) to n,l,m (3, 2, 2). For these wave functions, the Bohr radius of the 

fundamental state is denoted as a0, and any other state n is equal to:  𝑎𝑛= 𝑎0𝑛2. 

Table 2.2: Electron wave functions for some basic energy states 

 

2.1.1.3 Reflection Nebula & Interstellar Dust 

In astronomical research, a reflection nebula is a cloud of gas or dust in the region near 

one or multiple central stars. The cloud of gas cannot be seen until it scatters and absorbs 

photon energy from the central star(s). The amount of light strength reaching the viewer 

depends on local gas density all the way from the star to the viewer. In some region 

within the boundary of reflection nebula, because of the high density of dust, all light is 

absorbed, and so caused one type of reflection nebula called a dark nebula. In other cases, 
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a portion of light, after scattering and absorbing, could reach the viewers’ position 

through the gas. 

            The term interstellar dust refers to the low density chemical smoke-like materials 

between the stars. Compared to the density of air in the Earth’s atmosphere, the density 

of interstellar dust is extraordinary low, experiment shows that if the density of 

interstellar dust in the space if condensed as thick as Earth’s air, all light emitted by stars 

other than the sun will be totally blocked from reaching us [J. Binney and M. Merrifield, 

1998].  

2.1.2 Related Work of Reflection Nebula Visualization 

Henyey and Greenstein [1938] provided the first fundamental formula for the 

computation for brightness and color of reflection nebula. Later astronomy researchers 

used this model into their own work such as A. Witt and G. Walker [1982] who used this 

formulation into their own phase function to simulate interstellar grains, K. Sellgren and 

M. Werner [1992] derived their model to compute infrared radiation produced by dust, S. 

Gibson and K. Nordsieck [2003] and K. Gordon [2004] cited this work to explain and 

analyze the dust property and scattering geometry of reflection nebula. 

            Nadeau et al. [2001] was able to animate and visualize a nebula system from a 

large amount of observational data. With volume rendering, Magnor [2004] rebuild a 

planetary nebula with constrained amount of input data of emissive volume to simulate 

ionized gas, which consider the local volume to emit light. Magnor [2005] published a 

new method to consider accurately that a reflection nebula changes the color of light due 

to wavelength-dependent scattering and extinction properties of interstellar dust. In 

addition, Magnor introduced a Monte-Carlo simulation into the visualization model to 
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simulation multiple scattering within the local cubic subspace, which was very efficient 

in terms of computational power. 

            In the following section, we will describe a visualization algorithm based on the 

simulation of a reflection nebula system (but for an electron cloud instead of interstellar 

dust) where the central star is the nucleus emitting a monochromatic light in all directions. 

2.2 Algorithm Overview 

The following are the three major parts of the proposed visualization algorithm: 

• Particle cloud creation using probability density distribution  

• Pre-calculation based on Monte-Carlo simulation  

• Visualization of the electron cloud using a GPU  

            As shown in Figure 2.2, after choosing an energy state, a point cloud is first 

generated into a quantized space around the hydrogen nucleus, according to the local 

probability density function of the specific state. Then the initial parameters of a modified 

version of a Monte-Carlo Simulation (MCS) representing the multiple scattering of light 

in the subspace-level local synthetic cloud are performed. These pre-computed results are 

then stored into a 2D array that is then sent to the GPU memory, and a GPU kernel 

function is called to run in parallel the interactive visualization program using the MCS 

results for multiple scattering at every local subspace. In the following sections, we will 

describe the algorithm in more details. 

2.2.1 Electron Cloud Creation  

As described in the previous section, the electron wave function of the hydrogen atom is 

defined by 𝜓𝑛,𝑙,𝑚(𝑟, 𝜃, 𝜑) . One can use this function to calculate the spatial distribution 
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of a synthetic electron cloud. Using this scheme, the probability density function |𝜓|2 is 

used to give a specific probability value at a specific particle position. So the main idea 

behind particle placement becomes how to map the local probability value to the local 

particle properties. 

 

Figure 2.2: Flow chart of the proposed atomic visualization algorithm. 

            Possible methods include: 1) to equally place particles in the 3D space and assign 

different RGB & transparency values to a specific particle according to the local density 
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of the electron probability density at the particle’s position; 2)  to use the local density 

value of particle numbers to represent the local density value of probability. In our 

project, we chose the second method because the first method gives the illusion of a 

uniform distribution of particle placement around the nucleus leading to a 

misunderstanding of the physics reality. On the other hand the second method, apart from 

being more realistic physically, the local density of particle at each location could be 

easily used for volume rendering (see Chapter 3 for details). 

            So the main idea is for each loop, increase the radius and then produce a sphere 

with the present radius; for each particle (r, θ, φ) on the surface of the sphere (Figure 2.3 

shows a point on the surface of sphere determined by a polar coordinate), consider it as 

the “local center” and calculate its local density probability value from the wave function. 

Then place a corresponding number of particles arbitrarily around the local center with a 

small offset on its position. The algorithm terminates when the radius exceeds the max 

possible radius outside the nuclear. Pseudo-code of the detailed implementation of the 

particle placement algorithm is provided in Algorithm 2.1. 

Algorithm 2.1: Pseudo-code of the particle placement 

               r = r0;  // r0 is the radius of the central nuclear of in atom 

               while  r < r_max 

                          for θ  0 up to 2π 

                                   for 𝜃  0 up to π 

                                           f    𝜓𝑛,𝑙,𝑚(𝑟, 𝜃, 𝜑)  

                                           f  f ^2; 

                                          Place particles according to probability density value f; 

                           r  r + r_inc;  // Increase the radius by r_inc in the end of every loop 
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            As shown previously, inside the loop, when we place a particle according to its 

probability density value, an arbitrary function is chosen to place a specific number of 

particle near the “local center”, which means, a small offset vector (dx, dy, dz) is added 

to the local center (x, y, z) equally converted from the present polar coordinate (r, θ,φ). 

 

                Figure 2.3: Point on the surface of a sphere [Compendium, 2007]. 

2.2.2 Visualization Model  

In the visualization model a 3D grid is used as a technique of neighbor searching and is 

used to divide the whole space into subspaces, called cubes or cells. As shown in Figure 

2.4 (a), each point has its own coordinate which lies in a corresponding cube. We develop 

a hash table where each element in the table represents one cube in the 3D grid. When 

one needs to search the local particle neighbors (as used in Chapter 4 SPH fluid 

simulation method), a 3D grid is an easy and efficient structure to use.  We then compute 

a particle’s hash value according to its position, and then go to the relative element in the 

hash table and find out the information of other particles in the same cube, or check other 
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cubes in other elements. Figure 2.4 (b) shows cubic data structure used. Although the size 

of the cube is equal to each other, they are not necessarily identical to the coordinate 

system. The detailed implementation of a 3D grid will be provided in Section 4.2. 

       
     Figure 2.4 (a): Point in 3D Grid                                  Figure 2.4 (b): 3D Grid 
        [Euclideanspace, 1998]                                                  [APEmille, 2006] 
 

Figure 2.4: 3D grid and the cubic data structure used. 
 
 

            The creation of the hash table takes place after the computation of all particle 

positions, and the particles within the same cube are mapped into the same hash table 

element to calculate the number of particles as the local density value. As shown in 

Figure 2.5, particles p4 and p6 have different positions but have the same hash value, so 

they are considered in the same cube in 3D grid, and then mapped into hash table element 

No.2 and the local density number of cube No.2 is “2”. So after going through every 

particle in particle LIST, the number in every element in N_LIST shows the local density 

value in every cube in the space. 
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Figure 2.5: Particle list and hash table. 

            The visualization model (Figure 2.6) and three relative equations (Equations 2.4, 

2.5 and 2.6) are from [Magnor 2005], which deals with the color (RGB) values of the 

particles.  

 

Figure 2.6: Visualization model used in [Magnor 2005] 

          In Figure 2.6, one can see that light from the star experiences three type source 

intensities (the central star shown in the figure) to the viewer’s eye.  

            First, if one considers that the star radiant energy is Φstar, then the energy Lill 

(Equation 2.4) represents the portion of the star Φstar radiant energy received by a cube, at 

position (x, y, z) located at a distance r from the star. The accumulated optical depth is 
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equal to τopt = τsct   / a and represent the ratio of the average percentage of radiation 

incident to a dust particle that is being scattered.  The constant a is the albedo and is set 

equal to 0.6. The scattering depth is equal to τsct = σsct * l, where l is the size of cube and 

σsct , is the local scattering coefficient.  τsct is directly proportional to the local particle 

density:                                               

𝐿𝑖𝑙𝑙 =  𝛷𝑠𝑡𝑎𝑟
4𝜋 𝑟2  𝑒− 

∫ 𝜏𝑜𝑝𝑡
𝑟
0 �𝑟′�

𝑟  𝑑𝑟′
    .                                (2.4) 

            After being scattered by all particles in local cube in which a particle located at (x, 

y, z), the amount of light emitted from the cube is calculated by Equation 2.5. Here, the 

value of P (τsct, θ) had already been established in Monte-Carlo simulation. The 

parameter θ is the intersection angle between the original direction r from the energy 

source to the particle, and the new direction l from the particle to the viewer’s eye, and 

τsct indicates the local cube’s scattering depth, which is also, proportional to local particle 

density value:                          

𝐿sct =  𝐿ill ∙ 𝑃(𝜏sct, 𝜃)   .                                               (2.5) 

            Similar to Equation 2.5, the accumulated optical depth τopt  is calculated using 

Equation 2.6 to set the portion of energy which could eventually reach the observer’s eye. 

The final energy value Lsct is considered directionally proportional to the green value G. 

The red and blue values are set equal to the green value: 

 𝐿sct =  𝐿ill ∙ 𝑒− 
∫ 𝜏𝑜𝑝𝑡

𝑙
0 �𝑙′�

𝑙 𝑑𝑙′
         .                                   (2.6) 
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2.2.3 Monte-Carlo Simulation 

The visualization approach is based on a full Monte-Carlo simulation, which is pre-

computed before the process of coloring the particles at set intensity values. The benefit 

of Monte-Carlo simulation is that it represent a multiple-scattering probability 

distribution which could be used in any arbitrary volume medium (a cube of particles), 

even for a single-particle phase function [Magnor 2005]. 

 

Figure 2.7: Monte-Carlo Simulation 

          However, unlike Magnor’s work, our Electron Cloud Visualization project only 

considers inside-cell multiple scattering probabilities. Other multiple scattering 

phenomena, such as the scattering of photons between different cubes of particles, are not 

taken into consideration in this implementation. 

           The main Monte-Carlo procedure (as shown in Figure 2.7) is the following: emit N 

photons - each with a weight w0 = 1/N with a starting point X0 on the surface of one 

sphere with a center C and a radius that is the same value as the size of cube (marked as l) 

in 3D grid. All photons have the same original direction d0. Scattering each photon 
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happens after it travels for a distance r from the previous position Xi and direction di, and 

reaches the new position Xi+1. After scattering, the new direction di+1 is computed and 

the photon starts to travel for a distance r from the new position Xi+1 again. In this 

scheme the weight of the photon always decreases with a fixed factor:  wi+1 = wi * a, 

where the constant a = 0.6 is the albedo. 

            The simulation stops when, for every photon, one of the following two conditions 

happens: if the new position is out of the boundary of the sphere, in which case the 

photon’s current weight wi is added into a special approximate directional bin B[cosθ]; or 

if after n scattering the photon weight drop down below a fixed threshold.  As long as 

there is any photon in the system with its weight higher than the threshold or inside the 

sphere, the simulation continues [Magnor 2005]. 

             The following is the detailed description on how a particle travelling a distance r 

from an original position Xi and direction di to its new position Xi+1, and new direction 

di+1 is computed: 

• Parameters: 

u, v, w – Three random variables ranging from  [0,1] 

a – Dust albedo; a= 0.6 in our project 

g – Dust anisotropic factor, g=0.6 in our project 

             l – Cube size, or length of sphere radius 

            X0   – Initial position 

d0 – Initial direction 

            C – Center of the sphere 

            τsct – the scattering depth, and τsct = σsct * l         
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            σsct  – local scattering coefficient, directly proportional to the local particle density                 

• The travelling length  [Magnor 2005]: 

𝑟 = − ln (1−𝑢)
𝜎𝑠𝑐𝑡

. 

• Get New position Xi+1  from the present position Xi  [Magnor 2005]: 

Xi+1 = Xi + r ∙ di 

• Get New direction di+1 (d’x, d’y, d’z) from the present direction di (dx, dy, dz) 

1. Scattering anisotropy is considered by the use of Henyey-Greenstein’s 

function [Magnor 2005]: 

cos𝜃 =  
1

2𝑔   ∙ � 1 + 𝑔2 −  �
1 −  𝑔2

1 − 𝑔 + 2𝑔𝑣 �
2

 � 

             ϕ = 2πw. 
Both random variables v, w are uniformly distributed. 

2. If the present direction di (dx, dy, dz) is almost parallel to the z-axis, e.g., 

||dz|| > 0.9999, then: 

𝑑𝑥
′  =   sinθ cosϕ 

𝑑𝑦
′  =   sinθ sinϕ 

𝑑𝑧
′  =  𝑑𝑧

 ‖𝑑𝑧‖ ∙  cos 𝜃 . 

3. Otherwise, in the normal case: 

𝑑𝑥
′ =  

sin𝜃
 𝜁

 ∙ �𝑑𝑥 𝑑𝑧 cos𝜙 –  𝑑𝑦 sin𝜙� +  𝑑𝑥 cos𝜃   

𝑑𝑦
′ =  

sin𝜃
 𝜁

 ∙ �𝑑𝑦 𝑑𝑧 cos𝜙 – 𝑑𝑥 sin𝜙� + 𝑑𝑦 cos𝜃   

𝑑𝑧
′ = - ζ ∙  sinθ cosϕ + dz cosθ 
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𝜁 =  �1 − 𝑑𝑧
2   . 

            The output of the full Monte-Carlo simulation is a two-dimensional [1000 * 72] 

array P (τsct, θ), in which τsct  varies from 0 to 10 by 0.01, and θ varies from -1 to +1 by 

1/36. With a specific accumulated scattering depth τsct, the simulation storage bin B[cosθ] 

establishes one row of the 2D array. 

2.3 Experimental Results and Analysis 

The algorithm was implemented on a CPU and GPU using a computer with 3.0 GB of 

memory with an Intel Core2 Duo CPU P8400 (2.26 GHz and 2.27 GHz) and an NVIDIA 

Quadro FX 5800 Graphics Card.  

            The CPU version computes the color of every particle serially according to the 

visualization model.  For a specific particle, the program traces a ray from the energy 

source to the particle, and after a scattering event, the residual lighting energy is traced 

from the particle to the viewer’s eyes. The amount of energy left when the ray reaches the 

viewer eyes will determine the final color of the particle, in the perspective of the viewer. 

Particle_List is traversed from top to bottom to finish this procedure, and then a 

“Rendering Phase” after all particle colors being computed.  

            In contrast, the GPU version requires transferring data from host to device for the 

use in parallel computation. Before calling of kernel functions, constant values including 

Source_Power, Source_Position and Viewer_Postion, are transferred into the GPU 

constant memory; and large datasets, including Particle_List, Density_List and a 2D 

Mont_Carlo_Result are transferred into GPU texture memory. By a linear assignment of 

threads, the procedure of the CPU version is executed on GPU in parallel, and results in a 
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3D texture containing RGB of each particle as the output of device. In this 

implementation, we use the same linear assignment of threads and texture memory 

storage method as we will introduced in Chapter 4.  

 
 

Figure 2.8: Details of state1 (N = 1, L = 0, M = 0)      

 

            Figure 2.8 shows an image of the electron cloud with a lower energy state using a 

middle-level intensity energy source. The result is convincing and physically correct 

because the particles which are near the center (the energy source) should have more 

luminous energy then the one in the outer regions where the energy fades away gradually 

as photons go through all the inner particles.  

            As discussed previously, interactivity was important for the MASAV project. By 

using the GPU implementation, one can change interactively the viewpoint and the power 

of the energy source revealing different aspects of the electron cloud. A control bar on the 

user interface provides over 10 steps of different source strength to choose from. In each 
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case, the time required to compute the change to power sources change is not noticeable 

for the GPU version. 

Figure 2.9 shows three different atomic energy states (State1, State3 and State8) 

for different lighting conditions: lowest (50K Lumens), middle (250K Lumens), and high 

(500K Lumens). State1 forms a sphere, State2 has two face-to-face portions of hemi-

spheres and State8 has a ring round an empty middle space between two hemi-spheres. 

One can notice that no matter how strong the light source is, one could always see the 

lighting power fading away from the center to the outer layers of the electron cloud. One 

can also notice that the light intensity is proportional the local density of the electron, 

visually revealing the true nature of the distribution.  

 

Figure 2.9 (a): Energy State1 (N = 1, L = 0, M = 0)      

 

Figure 2.9 (b): Energy State3 (N = 2, L = 1, M = 0)       
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Figure 2.9 (c): Energy State8 (N = 3, L = 2, M = 0)                                                                  

Figure 2.9: Energy State1, State3 and State8 with lighting strength: 50K (left image), 
250K (middle image), and 500 K (right image) Lumens. 

 

            Our program provides viewer’s position at three different positions, from top, left 

and front in the same energy strength. As shown in Figure 2.10, one can see in Figure 

2.10(b) that most particles in the middle region have very limited intensity compare with 

the same particles in Figure 2.10(a) and Figure 2.10(c), revealing the true density 

distribution of the electron.  

            Detailed information on the performance of the two implementations of the ten 

atomic energy states is provided in Table 2.3. The first row indicates the number of 

particles used to render each electron cloud state and their relative time to create the 

electron cloud in seconds. Roughly speaking, the time and number of particles is 

approximately linear.   

            “ColorCPU” and “ColorGPU” rows provide the time to color the cloud and the 

intensity computation for the CPU and the GPU version. Experimental results show the 

CPU has relatively poor performance (tens of seconds). One can see that the average 
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speed-up of the GPU version is at least 150 times faster than the CPU version, opening 

the door to real-time interaction.  

 

(a)Top                                       (b) Left                                     (c) Front 

Figure 2.10: Result of energy State8 (N = 3, L = 2, M = 0) from tree viewing directions. 
 

2.7 Remarks 

The idea of comparing the atomic electron distribution to a gas in a nebula seems to work. 

One can easily see that the proposed rendering technique conveys more information on 

the inner structure of the electron cloud distribution but does not reveal the outer structure 

very well. In the next chapter, we will show that by combining the radiosity algorithm 

with a real-time ray tracing rendering, we will be able to fulfil our requirement of 

displaying in a realistic way the electron distribution of the hydrogen atom in real-time, 

allowing for true interactive visualization and exploration. 
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Table 2.3: CPU vs. GPU Speed for Various Atomic Energy States 

State 1 2 3 4 5 

N 1 2 2 2 3 

L 0 0 1 1 0 

M 0 0 0 1 0 

No. Particle (unit) 630720 483552 316512 1124640 452016 

Electron Cloud Creation (sec) 4.1 3.6 3.2 9.8 3.8 

Color CPU (sec) 44.7 35.5 26.4 67.4 34.3 

Color GPU (sec) 0.288 0.227 0.164 0.516 0.211 

GPU/CPU (multiple) 155 156 160 131 163 

 

State 6 7 8 9 10 

N 3 3 3 3 3 

L 1 1 2 2 2 

M 0 1 0 1 2 

No. Particle (unit) 318528 1123632 165312 132192 1000001 

Electron cloud Creation (sec) 3.2 10.3 1.9 1.5 8.7 

Color CPU (sec) 24.8 67.1 29.3 27.5 64.1 

Color GPU (sec) 0.161 0.499 0.126 0.105 0.197 

GPU/CPU (multiple) 154 134 233 260 325 
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CHAPTER 3 -  

Volume Rendering 

Facing the reality that our proposed algorithm method produces satisfactory result which 

conveys more information on the interior of the electron cloud, but lays little emphasis on 

outer-structure description, we decided to establish a bridge between our present radiosity 

based algorithm and some perspective rendering method that would better highlight the 

outer structures. As a sophisticated technique developed for many years to conveniently 

3D density information, Volume Rendering (VR) was chosen. 

3.1 Introduction to Volume Rendering 

Volume Rendering is a widely-used rendering technique for visualizing volumetric data. 

In practice, the input of volume rendering is often produced by medical imaging data 

such as Magnetic Resonance (MR) [Lauterbur, 1973] and Computed Tomography (CT) 

[Herman, 2009] to display organ details inside the human body. Other usage of volume 

rendering are to render Confocal Microscopy (CM) data, an optical imaging technique 

that is used to increase the optical resolution and contrast of a micrograph by using point 

illumination and a spatial pinhole to eliminate out-of-focus light in specimens that are 

thicker than the focal plane [Tsien et al., 1995].  Figure 3.1 shows two examples of 

Volume Rendering result of a tooth and skull. 

            Volume rendering tries to simulate the transmission of light through a semi-

transparent material which is proportional to the local material property represented by 

block or voxels if the data is organized as a 3D grid [Subramanian and Fussell, 1990] 

[Zuiderveld et al., 1992]. The light sent out from the ray source can be absorbed, 

diffracted, scattered, and emitted by the local voxel as the light traverse the data set. 
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Since each local volume has different optical properties, an integration process is needed. 

Figure 3.2 shows the standard ray tracing model as an outer light source emits light into a 

3D grid of semi-transparent material represented as voxels. Similar to the nebula case, the 

light is absorbed, scattered, reflected depending of the local material properties. Each 

time the light path is changed its power is reduced until it reaches a specific pixel of the 

simulated sensor. 

 

 
Figure 3.1 (a): Tooth 

 
 

 
Figure 3.1 (b): Skull 

 
 

Figure 3.1: Volume rendering examples [Kruger and Westermann, 2003]. 
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Figure 3.2: Basic principle of ray tracing [Lacroute, 1995]. 

 

Ray tracing, although accurate, is very complex for the general case as one has to 

represent complex optical interactions.  One can develop a simplified rendering algorithm 

that is based on the following assumptions (as shown in Figure 3.3):  

• Single Scattering: all the photons travelling to the output image are 

scattered only once after being sent out from the light source.  

• Half Absorption: absorption between the light source and the scattering 

event are ignored; we only consider scattering events in the direction of 

the image plane.  

• Isotropic Condition:  the portion of light after scattering is uniformly 

absorbed and re-emitted in all possible directions. 

           With the assumptions of single scattering and half absorption, one can avoid the 

integration computation process from light source to volume [Lacroute, 1995], which is 

approximately half the computation compared to the more accurate Monte Carlos 

rendering model. The only disadvantage is that this model cannot be used to produce 

shadows, as there is no absorption between the light source and the local volume. In this 

new model, each voxel gets the energy from the light sources according to its relative 
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position with the source, and then re-emits the energy to the image plane. The local 

voxel’s scalar value is mapped into a RGBA vector according to a pre-calculated lookup 

table and integrated in the direction of a specific pixel in the image plane.  

 

                Figure 3.3: A simplified visualization model of VR [Lacroute, 1995]. 

3.2 GPU-Based Ray Casting 

The use of VR for interactive applications has been greatly constrained by its high 

requirement for computational power. A typical implementations of volume rendering 

uses a group of dataset (generally images) in sequence according there spatial position in 

space as the input. In the early implementation, brute-force techniques were used and 

required hundreds of seconds to render a common medical dataset on a computer.  In 

order to reduce the large amount of consumption time, optimized algorithms have been 

developed by different researchers to further accelerate the processing: like early ray 

termination and empty-space skipping [Levoy 1990; Danskin and Hanrahan 1992; 

Sobierajski 1994; Yagel and Shi 1993; Freund and Sloan 1997] approaches. Although 

those effects have high value in computing science and medical imaging research, and the 

results were encouraging – the running time in some algorithms has been reduced down 
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to the range of tens of seconds, which, however, is still far from real-time rendering.  The 

limitation of CPU computational power still seems to be an insurmountable obstacle for 

real-time man-machine interaction of volume rendering. 

            The feasibility of GPU-based Ray Casting depends on the possibility of parallel 

processing of the output image pixels generation: each pixel sends out a ray which goes 

independently through a semi-transparent material. Each ray computation is the same, 

fetching information from the same dataset (but different fragment of it), using the same 

rendering algorithm and writing the result to the same data in the same image plane. A 

graphics card using SIMD architecture could apply the same computation to each pixel in 

parallel. 

            Purcell and his colleague proposed a stream model for volume rendering with ray-

tracing on GPU computation in [Purcell et al., 2002], which was considered the most 

relevant work for our rendering problem. They developed a high efficiency structure to 

use the graphics card’s power by making use of parallel fragment units and high 

bandwidth to texture memory. It is considered as a SIMD algorithm because each 

fragment unit fetch its own information from the input stream of homogeneous data 

created by a rasterization stage.  

            While implementing VR in ray-casting model, we used a skeleton code from 

CUDA SDK and made use of the result of Monte Carlo point-based model to add a 

radiosity component to the ray-casting results.  

3.3 Algorithm Overview 

The key to volume ray-casting on GPU is to establish an effective parallel model that 

give a one-to-one mapping between 2D output texture pixels and GPU chips which 
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execute the ray-casting algorithm in parallel. In previous sections, after the introduction 

of CUDA hardware structures, we consider NVIDIA graphics card as blocks of threads, 

so ray casting implementation based on dividing the whole Output image (2D) into sub-

areas, each have the same size as a threads block and inside the sub-areas the operation 

on each pixel, is assigned on one single thread in that block.  

3.3.1 Overall Algorithm of GPU Ray-Casting Volume Rendering 

As shown in Figure 3.4, the whole algorithm of GPU Ray Casting consists of the 

following steps: 

1. Transfer the density probability and the radiosity results (computed by the 

Monte Carlo simulation) into GPU texture memory; 

2. Perform thread-pixel assignment;  

3. Perform ray-box intersection check; 

4. Re-sample the input scalar value into RGBA pixel value ; 

5. Interpolate the re-sampled RGBA values for each pixels of the imaging plane; 

6. Output 2D image from device to host for rendering. 
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Figure 3.4: Flow chart of the proposed ray casting volume rendering. 

 
 

              To initiate the algorithm, the program inputs is the 3D texture which contains a 

probability density value and a RGB result of the Monte Carlo simulation for each sub-

cell in the whole 3D grid space. Then we assign each thread on the GPU its unique pixel 

position (x, y, z) according to a two-dimensional mapping from the thread index and the 

pixel position:  

x = blockIdx.x * blockDim.x + threadIdx.x 

y = blockIdx.y * blockDim.y + threadIdx.y 

         z = C0           
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Here, z has a constant value c0. Each block has a two-dimensional index number 

blockIdx(x, y), and another 2D vector blockDim(x, y) indicating the maximum possible 

value of blockIdx.x and blockIdx.y. Perform the same for a thread index threadIdx(x, y). 

The block area size (blockDim.x * blockDim.y) has been fixed before running the kernel 

function. Using this technique it is possible to divide the 2D image into sub-sections 

which has exactly the same size of a block, where each thread has a corresponding pixel.  

 
Figure 3.5: GPU-based visualization model. 

 
            As the pixel position is assigned to a specific thread, a ray is sent from each pixel 

of the image to the origin of the coordinate system to determine the ray-grid intersection 

points, see Figure 3.5. A Ray – Box intersection algorithm provided by CUDA SDK has 

solved the problem of efficiently finding two intersection points FarPoint and NearPoint. 

This algorithm will be described in Section 3.3.3 in detail. The program then traces back 

from FarPoint, via the origin and NearPoint, goes to the thread’s assigned pixel. In the 

ray direction, we gradually add increment to its length and get the new position (px, py, pz). 

The input texture provides the probability density and RGB result from the Monte Carlo 

simulation of the cell which contains that position (px, py, pz). In Monte Carlo simulation, 

the resulting Red and Blue values are the same to the final Green value, so in practice our 
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input of RGB only contains one single floating point value – Green [Magnor 2005]. One 

simple linear interpolation converts the Green value and the probability density value into 

one single scalar value between [0.0, 1.0], and the transformation function transfers the 

scalar result into a 4-dimensional floating-point vector (float4) RGBA (color and alpha 

transparency value). Because we consider the space empty between NearPoint and pixel, 

only the in-box part between far and near points is taken into consideration. The loop 

continues to resample the new scalar values and interpolate the result into summary value 

with a lerp function, until the ray reaches the NearPoint and the integrated value is given 

to the pixel as its RGBA. This thread-level loop is executed in parallel for each pixel on 

its assigned GPU tread. At the end, the 2D image output is transferred from GPU 

memory to host memory. 

3.3.2 Fusion of the Probability Density Rendering & RGB Results of the Monte Carlo 

Simulation 

A pre-calculation procedure is required to bridge the Nebula Metaphor simulation to 

volume rendering. The problem is that the Nebula Metaphor simulation uses a point-

based method, in which each particle has its unique position, color and probability. So it 

is necessary to use some simple tricks to convert this multiple data into two scalar values 

(radiosity and density) for each cell. The most obvious is to compute the radiosity inside 

the cell by simply computing the average particle radiosity values of the particle inside 

the cell. The cell density is computed by the ratio of the number of particle in the cell 

relative to the total amount of particle used, i.e.,         

𝑝(𝑖) =   𝑁𝑢𝑚𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝐶𝑒𝑙𝑙𝑁𝑜.𝑖
𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑁𝑢𝑚

  , 
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� 𝑝(𝑖) = 1      .
𝑁𝑜.𝑜𝑓 𝐶𝑒𝑙𝑙𝑠

𝑖=0

 

Here, p (i) indicates the probability value of this cell, NumParticleInCellNo.i is the local 

particle number of the ith cell, and ParticleNum is the number of all particles in the whole 

3D grid. For the green values, g (i) indicates the average value for this cell, particle 

(j).green indicates the green value of a specific particle j that is inside cell i as defined by: 

𝑔(𝑖) = �
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 (𝑗). 𝑔𝑟𝑒𝑒𝑛

 𝑁𝑢𝑚𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝐶𝑒𝑙𝑙𝑁𝑜. 𝑖
𝑗

 ,    𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 (𝑗) ∈ 𝑐𝑒𝑙𝑙(𝑖).  

One simple linear interpolation between the Green value and probability density value is 

then performed: 

𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑠 ∙ 𝑔(i) +  𝑡 ∙ 𝑝(𝑖)  .  

Here, s, t are both constant between [0.0, 1.0] and s > t. In sample, the g (i) makes a 

larger contribution because we need a lighting model with volume rendering method 

rather than a classical density field volume rendering method. The value of g (i) from the 

Nebula Metaphor result is the basic part in the final result; and probability density p (i) 

describes not lighting but distributions of volume in the grid space, and provides an 

indispensible continuous change of volume colors without any threshold. For example, in 

point-based method, if the threshold of probability density value for placing one single 

particle is 0.1, the space with a smaller value than 0.1 is ignored and consider empty. 

However, volume rendering method still renders a relative color in this space and 

provides more interior and exterior information in this case. By the interpolation between 

the two inputs, we combine the advantage of the two methods as a volume rendering 

lighting model. 
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3.3.3 Ray – Box Intersection 

The Ray – Box Intersection algorithms is performed using Kay and Kayjia’s “Slabs” 

method [Kay and Kayjia, 1996]. The term “slab” represents the space between a pair of 

parallel planes. And this method use slabs both in ray – box intersection computation and 

ray – volume intersection examination. Here, a ray is defined as Ray (T) = O + T * d, 

where O(x, y, z) indicates the ray origin and d(x, y, z) represents the ray direction. 

Algorithm 3.1 gives the details of the algorithm in pseudo code. 

Algorithm 3.1: Slabs Ray – Box intersection method. 

 Tnear = - infinity, Tfar = infinity  // output Tnear and Tfar  

 For the pair of X planes Xl and Xh, do: 

       if direction dx = 0 then the ray is parallel to the X planes 

       if origin Ox is not between the slabs ( Ox < Xl or Ox > Xh)  

       then return false    //this example using x planes Xl and Xh 

       else if the ray is not parallel to the plane then 

       begin: 

       T1 = (Xl – Ox) / dx 

       T2 = (Xh - Ox) / dx      // compute the intersection distance T1, T2 of the planes 

       If T1 > T2, swap (T1, T2)      // since T1 is the intersection with near plane 

       If T1 > Tnear, Tnear =T1     // want largest Tnear 

       If T2 < Tfar, Tfar=T2     // want smallest Tfar 

       If Tnear > Tfar, return false    // box is missed so return false 

       If Tfar < 0, return false   // box is behind ray return false 

       end; 

 For the pair of Y and Z planes Yl, Yh and Zl, Zh do the same tests. 

If Box survived all above tests, return true with intersection point Tnear and exit point Tfar. 
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            As shown in Algorithm 3.1, Tfar is chosen as the smallest from all the Tfar in X, Y 

and Z slabs, and Tnear is selected as the largest. The result of the algorithm provided two 

values (T1 and T2) to determine two endpoints on the ray.  

3.3.4 Transform Function for Texture Re-sampling 

 

Figure 3.6: Difference between Wrap and Clamp [NVIDIA, 2008]. 

A 2D transfer matrix is stored in host memory when the kernel functions are activated. 

The matrix, in which each element is a float4 vector, is then copied into the card global 

constant memory and reformed into a 1D texture called TransferTex. This texture, 

however long and value-distributed, will later be normalized (mapping between [0, width] 

texture into [0, 1] coordinate) and then wrapped (to deal with out-boundary cases). Figure 

3.6 from NVIDIA CUDA programming guide explained in detail the difference between 

wrapped texture and clamped texture operation in dealing with the margin. 

            So when a GPU thread fetches its own local probability density value and average 

radiosity value from the input texture, the scalar value in [0, 1] then determines a relative 

position in the TransferTex, which provides a corresponding RGBA float4 vector.  
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3.3.5 Linear Interpolation for Integrated Pixel Value 

A linear interpolation “lerp” function is performed between the present summary value 

and the new transferred float4 value. A lerp function “lerp (a, b, amt)” calculates a 

number between two numbers a, b at a specific increment amt. The amt parameter is the 

amount to interpolate between the two values, where 0.0 equal to the first point, 0.1 is 

very near the first point, 0.5 is half-way in between, etc. The lerp function is convenient 

for creating motion along a straight path and for drawing dotted lines. 

3.4 Experimental Results and Analysis 

The machine running the program is an NVIDIA Quadro FX5800 Graphics card and an 

Intel Core2 Duo P8400 (2.26 GHz and 2.27 GHz) CPU. Our volume size is 60x60x60. 

The average processing time is 151 milliseconds including transferring the data from 

CPU to GPU in real time, while different electron cloud energy states have very limited 

value of variation (<5 milliseconds) from this value. Besides the data transferring time, 

the VR computation time is from 32 to 37 milliseconds, with their comparative Frame per 

Second (fps) between 27 fps to 31 fps. From the users’ experience viewpoint, while the 

user dragging the controlling bar to adjust the source power, the final image is given 

simultaneously at the end of the mouse event with no noticeable delay. In our design, the 

local electron cloud particles change colors from blue, via green to red, which indicates 

the change of energy from low radiance to high level of radiance. See Figure 3.7 as an 

example where the amount of energy received from the source decreases.  
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Figure 3.7 (a) 50K Lumens                     Figure 3.7 (b) 150K Lumens 

 

Figure 3.7(c) 200K Lumens                    Figure 3.7 (d) 250K Lumens 

 

Figure 3.7 (e) 300K Lumens                 Figure 3.7 (f) 350K Lumens 
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Figure 3.7 (g) 400K Lumens           Figure 3.7 (h) 500K Lumens 

Figure 3.7: Energy State1 (N = 1, L = 0, M = 0) from 50K to 500K Lumens 

 

            As shown in Figure 3.7 (a), at the beginning of the program, when the power 

source is in the middle in the default lowest value, most of the particles’ colors are dark 

and their transparency has the highest score. In the middle-level of the atomic energy 

states, the region of red particles increases gradually with the increase of energy, which 

means that stronger energy radiates to outer area from the center. At the end, as shown in 

Figure 3.7 (h), the source power gets strong enough to heat the whole model into red. 

Figure 3.8 shows a similar energy increase result for State5 (a sphere-like state) of  the 

electron cloud.  

            The reason that different states have little deviation in speed performance from 

the average value lies in the input of our program: the input is a 3D texture containing 

60x60x60 volume input values of every small cube in the whole space, and all ten 

electron cloud states differ only in the those value, not the size of the input. 
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Figure 3.8 (a) 50K Lumens                       Figure 3.8 (b) 150K Lumens 

 

Figure 3.8 (c) 200K Lumens                   Figure 3.8 (d) 250K Lumens 

 

Figure 3.8 (e) 300K Lumens                  Figure 3.8 (f) 350K Lumens 
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Figure 3.8 (g) 400K Lumens                     Figure 3.8(h) 500K Lumens 

Figure 3.8: Energy State5 (N = 3, L = 0, M = 0) from 50K to 500K Lumens 

 

 

Figure 3.9 (a) 150K Lumens                         Figure 3.9 (b) 400K Lumens 

Figure 3.9: Energy State3 (N = 2, L = 1, M = 0) with lighting conditions: 150K and 400K 
Lumens 

 

            In other render energy states such as State 3, State 8 and State 10 shown in Figure 

3.9, Figure 3.10 and Figure 3.11, one can see the importance of the rendering produced 

by the Monte Carlo simulation to be the basic framework of the structure. The increment 
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added to low-density blocks leads to a big change in their color so that when the user 

controls the program interactively, they could gain a better understanding of the electron.  

 

Figure 3.10 (a) 150K Lumens                  Figure 3.10 (b) 400K Lumens 

Figure 3.10: Energy State8 (N = 3, L = 2, M = 0) with lighting conditions: 150K and 
400K Lumens 

 

 
Figure 3.11 (a) 150K Lumens                Figure 3.11 (b) 400K Lumens 

Figure 3.11: Energy State 10 (N = 3, L = 2, M = 2) with lighting conditions: 150K and 
400K Lumens 
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CHAPTER 4 -  

Particle-Based Fluid Motion Simulation 

This Chapter introduced an implementation of a point-based fluid simulation technique 

using Smoothed Particle Hydrodynamics (SPH). We first developed the code on CPU to 

verify the correctness of the SPH implementation. Then, faced with the constraint of 

limited computational power of the CPU and its inability to run and render the simulation 

in real-time, we transformed the code to a CUDA implementation. In this chapter, we 

will first describe in detail the basic theory behind SPH, then its GPU and CPU 

implementation. Towards the end of the chapter we will demonstrate some experimental 

results and then provided a detailed performance analysis of the difference between the 

CPU and the GPU implementation. 

4.1 Related Work 

In fluid dynamics simulation there are three main approaches to solve numerically the 

problem: continuous, Lagrangian, and Eulerian frameworks. The famous Navier-Stoke 

equation [Foster et al. 1997, 2001] falls in the first category and has been used to study 

the behaviour of fluids in various conditions for decades. The Navier-Stoke equations 

arise from applying Newton's second law to fluid motion, together with the assumption 

that the fluid stress is the sum of a diffusing viscous term (proportional to the gradient of 

velocity), plus a pressure term. For the discrete version of the problem, the assumption 

here is that the fluid traverses elementary volume elements preserving the basic 

assumptions of the Navier-Stoke equations. The solutions of the Navier–Stokes equations 

result in a flow field, which is a description of the velocity of the fluid at a given point in 
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space and time. This is different from what one normally sees in classical mechanics, 

where solutions are typically trajectories of position of a particle. This is a problem for 

real-time simulation as there is a disconnection between rendering and simulation. To 

solve this problem Stam et al. [Stam et al. 1999] introduce a semi-Lagrangian framework 

where particle motions are visualized using an advection equation. Stam’s work later 

inspired Enright et al [2002], who developed an atomic-level algorithm dealing with 

Lagrangian particles. Carlson et al.[2004] contributed a method for the interplay between 

rigid body and fluid, and a method for  animating a viscoelastic fluid was presented by 

Goktekin et al. [2004]. Two and three-dimensional techniques, such as vortex particle 

and surface tension, were then introduced by Irving et al. [2006]. 

            For pure Lagrangian methods, the main contributions came from two major 

particle-based fluid dynamic simulation methods: the Moving Particle Semi-implicit 

(MPS) method and Smoothed Particle Hydrodynamics (SPH). MPS was originally used 

by Koshizuka et al. [1996] in Nuclear Science research to study the incompressibility of 

molecule by solving the Poisson equation, and then was introduced to computer graphics 

by Premoze et al. [2003].  

            Monaghan et al. [1992] originally developed SPH in the context of astronomy 

simulation of galaxies, and later by Muller who experimented and demonstrated that SPH 

could be successfully applied into computer graphics. After years of rapid development 

of GPU computational power, Amada et al. [2004] was the first to use the GPU for the 

acceleration of SPH. The main problem is that their method for neighbouring particle 

search was based on CPU computations (which take almost half of the computational 

power) not including the very inefficient transfer of data between CPU and GPU. Both 
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Kolb et al. [2005] and Harada et al. [2007] were the first researchers to entirely 

implement SPH on the GPU. The major problem with Kolb’s implementation lies in the 

interpolation error, because in their method they first compute physical values of the grid 

and then use those values to interpolate particles’ values.  

            Our implementation is mainly based on Harada’s work, which contained a new 

neighbour-searching method for inter-particle force computation and all the values for 

each particle was calculated individually without any need for grid-level computation. 

However, Harada used explicit Euler integration which is known to be imprecise for long 

integration periods. To improve Harada’s SPH implementation, we use a 4th order Runge-

Kutta method for integration. 

4.2 Smoothed Particle Hydrodynamics (SPH) 

4.2.1 Data Structure 

To use particles to represent the movement of fluid, we need a data structure containing 

position, color, normal (optional, for light effects), radius and the velocity of a particle. 

The code below shows the data structure used in our program, where bold characters 

represent vectors: 

Particle 

{   

    position (x, y, z); 

    velocity (vx, vy, vz); 

    color (r, b, g); 

    normal (nx, ny, nz);  

 } 
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4.2.2 Neighbor Search Using a 3D Grid 

A 3D grid is used to represent the whole space in which the fluid motion happens. See 

detailed information in Harris’s work [2003]. In our algorithm, we use a hash function to 

assign a neighbour bucket to a specific visible point (surfel) according to its position: 

 Grid 

We consider the whole cubic space as one single grid. The term ‘grid’ is also used 

in this thesis in CUDA graphics card memory structure description, to express the 

whole patch of different blocks of parallel threads in a running kernel function. 

 Cell / Cube 

In the large grid, space is divided into equal-size subspaces with the shape of cube, 

called ‘cells’ or ‘cubes’. Each cell has its own unified index for all particles in the 

same cell. The total number of cubes in the grid is computed by using the length 

of grid and the length of cell: 

 L = x / CellLength 

M = y / CellLength                                                 

                                                N = z / CellLength                                                (4.1) 

               So, in total, there are "𝐿 ∙ 𝑀 ∙ 𝑁" small cells in the full grid. 

 Hash Value 

The hash number is computed according to the hash Equation 4.2. The main idea 

is to put the present particle, of which we search for the neighbours, in the center 

of an invisible sphere in 3D space, search all possible cells which may contain 

particles inside the sphere, calculate relative values for the inside particles while 

ignoring the outside-sphere particles in these cells. The equation is: 
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                         HashValue = x ∙ M ∙ N  +  y ∙ N  +  z  .                                     (4.2) 

            In practice, the search radius equals the cubic cell length, and for every particle, 

one has to search  3 × 3 × 3  cells to make sure that we successfully take every 

neighbouring particle into consideration. As shown in Figure 4.1, the search for 

neighbours is similar to picking up a Braille Rubik’s Cube and the searching sphere is 

exactly the internally tangent sphere of the Braille Rubik’s Cube. The central cell in a 

Braille Rubik’s Cube represents the cell that contains the current particles and the central 

cell and its 26 neighbouring cells must be taken into consideration. No matter how many 

particles there are inside each cell, if the particle we are considering is near the boundary 

of the central cell, we still need to search all the neighbour cells. 

 

Figure 4.1: Braille Rubik’s cube to represent the neighbourhood search [Spice, 2010]. 

4.2.3 Algorithm Overview 

The proposed particle system was designed to run entirely on the GPU, and to minimize 

the transfer time between the host computer and the GPU card, hence fully exploiting the 

real GPU computational potentials. A similar project, called Particle System, is provided 

in CUDA SDK for programmers, which contains the same framework as we requires but 



59 
 

in different physical models. In this thesis, we implement SPH on that framework and 

added all necessary modifications. The basic simulation loop is composed of the 

following stages: 

1. Bucket Generation; 

2. Density Computation; 

3. Velocity Update; 

4. Position Update. 

           A flow chart is provided in Figure 4.8. Once a simulation loop is complete with all 

particle positions updated, the rendering phase takes place and the particles are sent 

through the graphics pipeline to create an image frame. 

4.2.3.1 Bucket Generation 

The first stage of our simulation loop is responsible for advancing the particles in time, 

integrating the governing equation. Then for each particle, we build a bucket to store all 

neighbours for future computation, using the method for fetching neighbouring particles 

described in Section 4.2.2.  

4.2.3.2 Density Computation 

In SPH, a physical value at position x is calculated as a weighted sum of physical values 

ϕj from every one of the neighbouring particles. The function ϕ (x) is expressed by:                                         

𝜙(𝐱) = ∑  𝑚𝑗 ∙ 𝜙𝑗

𝜌𝑗
 𝑾�𝐱 − 𝐱𝑗�𝑗         .                                  (4.3) 

So in order to get the density formula ρ(x) for a specific particle at x:  
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   𝜌(𝐱) = ∑  𝑚𝑗 ∙ 𝑾�𝐱 − 𝐱𝑗�𝑗                      .                          (4.4) 

The force of viscosity F vis and the pressure force F press for a specific particle pi are given 

by Equations 4.5 and 4.6, and the parameters in these equations are shown in Equation 

4.7 [Harada et al. 2007]. In theory, the viscosity force comes from the relative velocity 

between two neighbouring particles attracting each other, and the pressure force using the 

incompressibility condition and the Coulombian forces is in Equation 4.6. 

   F𝑖
𝑣𝑖𝑠 = 𝑣 ∑ m𝑗 ∙ 𝐯𝑗 −𝐯𝑖

ρ𝑗
 ∙ ∇𝑊𝑣𝑖𝑠�𝐫𝑖𝑗�𝑗              ,                            (4.5)                  

F𝑖
𝑝𝑟𝑒𝑠𝑠 = −𝑘𝑝 ∙ ∑  𝑚𝑗 ∙ 𝜌𝑗 −𝜌𝑖

2𝜌𝑗
 ∙ ∇𝑊𝑝𝑟𝑒𝑠𝑠�𝐫𝑖𝑗�𝑗            ,                       (4.6) 

                                  ∇𝑊𝑝𝑟𝑒𝑠𝑠 (𝐫) =  45
𝜋𝑟𝑒

6  �𝑟𝑒 – |𝐫|�
3 𝐫

|𝐫|
  , 

                                    ∇𝑊𝑣𝑖𝑠 (𝐫) =  45
𝜋𝑟𝑒

6  �𝑟𝑒 – |𝐫|� , 

          𝑾(𝐫) = 315
64𝜋 𝑟𝑒

9 (𝑟𝑒
2 −  |𝐫|2)3      .                                   (4.7) 

In Equations 4.5, 4.6 and 4.7, re is the effective distance between neighbouring particles, 

which are considered to contribute to the local density and forces, and r stands for a 

radius vector with its direction from a specific neighbour particle to the central particle.  

The parameter v in Equation 4.5 is called the Dynamic Viscosity Constant (DVC), and kp, 

called the Pressure Constant (PC) in Equation 4.6, is a constant value that used to adjust 

the pressure force. 
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4.2.3.3 Velocity & Position Update 

After the computation of density and two forces, the program calculates the acceleration 

of each particle from its total force (the combination of viscosity and pressure force).  

            The original numerical solution of ordinary differential equation to update 

velocity v and position p in the work of Harada et al. [2007] was based on the Euler 

method: v1 = v0 + a dt  and P1 = P0 + v dt, where dt is the time offset between two 

sequential iterations. 

 

Figure 4.2: Euler method [Thacker, R., 2007]. 

 

            A standard Euler method denotes the time offset as h and is widely used in 

engineering or scientific computation. As shown in Figure 4.2, in order to compute a new 

result y1 of function y (x) = f (x), we let y1 = y0 + hf0, where f1 = f (x1, y1) predict forward 

from y1; and y2 = y1 + hf1, where f2 = f(x2, y2); and so on. The problem with the Euler 

method, as we can see clearly contains both a large local error per iteration, and an 

accumulative global error which could be unacceptable after a few iterations. Roughly 

speaking, if the local error is O (hn) then the global error will be O (hn-1). This happens 

because n = (xn - x0)/h and you sum over n intervals [Thacker, R., 2007]. 
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            The Euler method is flawed because we use the beginning of the interval to 

predict the end. There are other higher-order methods with more sub-steps of evaluation 

using midpoint values as well to further reduce interpolation error. Runge-Kutta, 

provided by R. England [1968], is one of the most widely used interpolation methods as a 

solution for ordinary differential equations. The Runge-Kutta methods series considers 

the Euler’s as its own first order solution and extends the interpolation into a higher-order 

scheme. The classical Runge-Kutta (the 4th order version) is a 4-step iteration described 

in Equations 4.8 to 4.12. See Figure 4.3 for details: the 1st step is to initialize the original 

position of the curve (the left dot point in the figure), which is fixed by Equation 4.8. Step 

2 and 3 calculate the slope and position at midpoint from Equation 4.9 and 4.10, and 

finally the slope of target position is given by Equation 4.11. The resulting value from the 

previous step is immediately inserted into the next iteration for consideration and at the 

end of the four steps, the final interpolation value of next position yn+1 (shown as the right 

dot node at position yn+1 in Figure 4.3) is provided with all values in each of the 4 steps 

(see Equation 4.12 for detail). 

 

Figure 4.3: Classical (4th Order) Runge-Kutta method [Press, W., et al., 1992]. 
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The Runge-Kutta equations are:                                                                  

𝑓0 = 𝑓(𝑥0, 𝑦0)               ,                                              (4.8)                      

𝑓1
2

= 𝑓 �𝑥0 + ℎ
2

, 𝑦0 + ℎ
2

𝑓0�   ,                                    (4.9)                 

 𝑓1
2

= 𝑓 �𝑥0 + ℎ
2

, 𝑦0 + ℎ
2

𝑓1
2
�   ,                                 (4.10)                               

𝑓1 = 𝑓 �𝑥0 + ℎ, 𝑦0 + ℎ𝑓1
2
�  ,                                  (4.11)           

𝑦1 = 𝑦0 + ℎ
6

�𝑓0 + 2𝑓1
2
+ 2𝑓1

2
+ 𝑓1�  .                   (4.12) 

 

            The interpretation of the sum over interior points gives an average slope. The 

local error is proportional to h5, so halving h leads to a 1/32 reduction in the local discrete 

error [Thacker, R., 2007]. Thacker provided a detailed comparison of global error for 

different h-values using the Runge-Kutta method, Euler method and improved Euler 

method in Figure 4.4, where the improved Euler method could be considered as an 

intermediate method from the original Euler to Runge-Kutta. This is the reason we chose 

use Runge Kutta to solve our SPH integration problem. The experimental results in 

Figure 4.4 demonstrate that by comparison with Euler method with the same h, the 

Runge-Kutta method greatly reduces the global error between two sequential integrated 

positions, and on average, the error in Runge-Kutta is approximately at powers three 

times smaller than that the Euler method, while the time offset h varies from 0.01 to 0.1. 

            Above all, with the same time step, Runge Kutta provides much more accuracy 

than the Euler method but may require more computational power which affects its speed 

performance. In the later sections, we will compare the result of both Euler and Runge 

Kutta version of SPH in terms of speed. 
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Figure 4.4: Comparison of classical Runge Kutta and Euler method errors.                    
[Thacker, 2007] 

4.3 CPU Implementation 

 

 

Figure 4.5: CPU implementation data structures. 

 

            In the CPU version, we use a “vector” in standard C++ as the structures of 

Particle List, Neighbour List and Force List, as shown in Figure 4.5 in left, middle and 

right positions. For each element of Particle List, its position coordinates x, y and z are 

used to compute the hash value as a mapping between Particle List and Neighbour List. 
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In the Neighbour List, column Index store indices of all particles with the same local hash 

value. And the Force List is used to store the total force exerted on a specific particle for 

the future position & velocity update process. For every iteration, we first updates the 

Particle List according to the previous Force List, and then, use the new position of every 

element in Particle List to construct a new Neighbour List, and store the newly calculated 

force values in Force List one by one. The element from Particle List and Force List has 

a 1-to-1 mapping, that is, p1 in Particle List has it force F_p1 stored in Force List with 

the same index.  

            The programming pipelines of CPU and GPU are the same, and we will be 

introduced in the following section. 

4.4 GPU Implementation 

This section introduces the implementation detail of the GPU version of SPH. 

4.4.1 Thread Assignment 

 

Figure 4.6: Linear thread assignments. 

 

We use a linear assignment of threads in the GPU computation, in which, only the x 

coordinate of the block index and block dimension are used. The function is:  
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Index = blockIdx.x ∙ blockDim.x + threadIdx.x   . 

As shown in Figure 4.6, each block in the kernel grid has an unique index, which only 

uses the x value: blockIdx.x; and within each block, the number of threads equals to block 

dimension’s x value, so the thread index value varies from 0 to  blockDim.x-1. 

4.4.2 Hardware Memory & Data Structure 

 

 

Figure 4.7: Six key dataset in GPU global memory in the form of texture. 

 

As the particles can move to any position in the whole 3D grid, the memory which stores 

the position and velocity values of the neighbouring particles could be rather randomly 

distributed. If we use global memory arrays to obtain this data, there will always be un-

coalesced. For this reason, we bind the global memory arrays to textures and use texture 

lookups (tex1Dfetch) instead (see Figure 4.7), which improves performance by 45% since 

texture reads are cached [Green, S., 2008].  As an additional optimization when using the 

sorting method, we actually re-order the position and velocity arrays into sorted order to 
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improve the coherence of the texture lookups during the collision processing stage. With 

the benefit from its design in CUDA SDK, the texture is fast to fetch. And considering 

the feasibility, a texture could be used because the number of fluid particles in the system 

stays unchanged during the simulation.  

            We chose not to use shared memory in the system for SPH because the physical 

reality of SPH method allows large numbers of fluid particles have the possibility to 

gather together in some specific time in one dense area, and the size of shared memory 

may be exceeded by the memory space required by the specific cell’s particles; and more 

over, our demand of flexibility of the project allows the user to adjust the size of each cell 

in the 3D grid. Large cell length leads to larger number of particles in one cube, which 

again makes the whole system unreliable. And finally, unlike the global memory, texture 

memory is cached, so a texture fetch costs one memory read from device memory only 

on a cache miss. The texture cache is optimized for 2D spatial locality, so threads of the 

same warp that read texture addresses that are close together will achieve best 

performance. With only the texture cache but shared memory, the program’s performance 

is satisfying. 
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4.4.3 Program Pipeline &Major Kernel Functions 

 

Figure 4.8: SPH programming pipeline. 

          In the beginning of each loop, as shown in Figure 4.8, kernel function ‘CalcHash’ 

first fetch the information of the present particle and produces a new position hash table 

P_Hash. Then a ‘Rearrange’ function is called to arrange the particle-ordered OldPos into 

cell-ordered NewPos to store the position for all particles. Then on each thread, a unique 

index of its corresponding particle is assigned and a bucket for this specific particle is 

built by “Bucket Generator”. On the same thread, the particle’s density value and 

according pressure force and viscosity force is then calculated. A texture called OldVel 

storing the previous velocity value for each particle is always updated for the use of 

computation for viscosity force in next iteration. With the particles’ present velocity 

(stored in NewVel) and old position (in NewPos), its newest position will be integrated 

with Runge Kutta 4th order method and inserted into OldPos again. The program keeps 

running until some pre-fixed time or a QUIT button pressed by users. 
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4.5 Experimental Results and Analysis 

4.5.1 Correctness 

         

 

Figure 4.9: Simple CPU implementation for validation. 
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We firstly produced a simple CPU version with about 2K fluid particles to validate the 

correctness of the simulation. We lay much stress on the result when fluid particles 

impinge a solid HEAVY obstacle which is also made by hundreds of solid particles that 

share all properties with fluid particle but have a huge mass. 

            As shown in Figure 4.9, we lay the fluid particles, which all have an original 

velocity to the left, at the right side of the box, and place the obstacle containing only 

solid particles in the middle of the box. When the difference between fluid particles and 

obstacle particles gradually reduces to the effective radius of SPH, pressure force and 

viscosity force is computed and exert according effect on the fluid particles’ velocity.  

4.5.2 Results  

In the official CPU and GPU version of SPH, we experimented both with the same 

number of particles in three different physical models including the gas explosion, fluid 

motion within a tank and some wet mud. The only difference lies in the adjustment of 

comparative portions of attraction force (viscosity) and repulsion force (pressure) in the 

total force exerted on a specific particle from all neighbouring particles. This could be 

realized only to change the attraction force, when they overcome the repulsive pressure 

force, will give all the fluid particles an inner-directed exert which prevent any particle to 

escape from the group, which looks from outside, more like some viscid mud. On the 

other hand, when the pressure force becomes the dominating force, particles could hardly 

get close to each other, and so that all pushed out to some low-density regions.  

             Images in Figure 4.10 from (a) to (e) shows in time sequence of a group of cube-

shaped placed particles to explode in the tank. All boundaries in of cube-shaped tank are 
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rigid and could rebound any particle rushing onto it with damping of the particle’s 

velocity. 

 

Figure 4.10 (a) Start                       Figure 4.10 (b) 0.8 sec. later 

 

 

 

Figure 4.10 (c) 1.5 sec. later          Figure 4.10 (d) 3.0 sec. later 
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Figure 4.10 (e) 5.0 sec. later 

Figure 4.10: Experimental result of an explosion (Dynamic Viscosity Constant 𝑣 =
5.37 × 10−9, Pressure Constant 𝑘𝑝 = 1.22 × 10−7 ). 

 

 

Figure 4.11(a) Start                      Figure 4.11 (b) 1.5 sec. later 

 

            Similarly, images in Figure 4.11 and 4.12 show that, from two different viewing 

positions, some fluid motions in a tank after placing a small cube inside the tank. This 

simulation could be considered as the case that suddenly takes off all six transparent 

planes of the inside glass cube, and the fluid particles drops to the ground of the tank first, 
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some may bounce up then interact with other particles which are still falling down. When 

local density values of the lower layer begin to increase, particles will press some out-

layered particles horizontally (see in Figure 4.11(b) for detail).  

 

Figure 4.11 (c) 2.5 sec. later               Figure 4.11 (d) 4.0 sec. later 

 

Figure 4.11 (e) 5.5 sec. later               Figure 4.11 (f) 8.0 sec. later 

Figure 4.11: Experimental result of fluid motion (Dynamic Viscosity Constant 𝑣 =
5.35 × 10−5, Pressure Constant 𝑘𝑝 = 1.41 × 10−5 ) 

 

            After the rebound damping, continuous exert of the gravity and viscosity force 

from neighbouring particles which reduces the intensity of relative motion between the 
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particles, none of the particles could reach their original height again. While the pressure 

force continues to give horizontal push, the fluid spreads to wider places. As in Figure 

4.11 (e), some particles near the boundary corners could be push to the up by a suddenly 

dense particle cluster, and the rebound from the tank wall.            

 

Figure 4.12 (a) Start                               Figure 4.12 (b) 1.5 sec. later 

 

Figure 4.12 (c) 3.0 sec. later                   Figure 4.12 (d) 4.0 sec. later 
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Figure 4.12 (e) 5.5 sec later                   Figure 4.12 (f) 7.0 sec. later 

Figure 4.12: Experimental Result of Fluid Motion at other Viewing Position (Dynamic 
Viscosity Constant 𝑣 = 5.35 × 10−5, Pressure Constant 𝑘𝑝 = 1.41 × 10−5 ) 

 

         Figure 4.12 images shows the same simulation but at another viewing direction.  

From this direction, the result is more apparent and gives the impression that a big dam 

experiencing a sudden burst of a large water pressure burst. In terms of the comparative 

portion between attraction and repulsion forces, the fluid motion is the in-between case of 

explosion and viscous wet mud, in which the viscosity value and pressure influence have 

a better balance with each other. 

 

Figure 4.13 (a) Start                                 Figure 4.13 (b) 1.5 sec. later 
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Figure 4.13 (c) 2.5 sec. later               Figure 4.13 (d) 4.0 sec. later 

 

 

Figure 4.13 (e) 8.0 sec. later                  Figure 4.13 (f) 10.0 sec. later 

Figure 4.13: Experimental Result of Wet Mud (Dynamic Viscosity Constant 𝑣 = 3.73 ×
 10−4, Pressure Constant 𝑘𝑝 = 1.50 × 10−5 ) 

 

  Unlike fluid motion and explosion, the rebound of particles in the wet mud model 

seems unnoticeable, as shown in Figure 4.13 (d), and the reason is quite simple: as a 

resisting force, the viscosity force, which is comparatively much larger in this model than 

others, reduced the damped velocity of the rebounding force immediately, and then, with 
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more particles falling down to the lower layer, local density and viscosity force continues 

to increase and further contains the upper rebounded particles.   

   The relation among the particles begins to change when most the particles lay on the 

ground and has very limited vertical velocity. By pressure force, periphery particles start 

to move to low-density areas, as shown in Figure 4.13 (e). After a while, with a 

continuous repulsive force from inside and its relative acceleration onto the outer 

particles, their velocity increases over than the threshold for attractive force to prevent 

them from escaping. So as shown in Figure 4.13 (f), some particles ran out of the group 

region. 

4.5.3 Performance Analysis 

The code included in the GPU version simulates 32,728 fluid particles on an NVIDIA 

Quadro FX 5800 at 8.8 frames per second (fps) in the steady state for the fluid motion 

model, 10.5 fps for the wet mud and 7.2 fps for the explosion model. It uses the sort-

based algorithm provided in CUDA SDK. This algorithm improves the coherence of 

memory access so it is considered currently the fastest method [Green, S., 2008]. The 

ability of CUDA to perform scattered memory writes makes it possible to build dynamic 

data structures on the GPU. Sorting can be used to improve memory coherence when 

accessing these kinds of data structures. This combined with the computational power of 

the GPU makes it possible to simulate large systems of interacting particles at interactive 

rates. And the code included in the CPU version simulates the same number of fluid 

particles in the same environment (with gravity and wall-particle collision) on an Intel 

Core2 Duo P8400 CPU (2.26 GHz and 2.27 GHz) with Memory (RAM) 3.0 GB.  
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             Table 4.1 shows the experimental results in speed performance: in the first part 

“CPU Performance”, we provide the CPU version of the SPH code in different model and 

different integration methods (Euler or Runge Kutta), and compare the speed decrease 

from Euler to Runge Kutta. We offered the similar information of GPU version of the 

SPH in the “GPU Performance” part in Table 4.1 as well. Finally in the last part, we 

compared GPU vs. CUP speed performance and calculate the acceleration ratio.   

Table 4.1: Performance Comparison 

CPU Performance 

 Fluid Motion Wet Mud Explosion 

CPU + Euler (fps) 0.41 0.31 0.48 

CPU + RK (fps) 0.25 0.21 0.35 

CPU  RK / Euler  61% 67% 73% 

GPU Performance 

GPU + Euler (fps) 8.8 10.5 7.2 

GPU + RK (fps) 8.6 10.4 7.0 

GPU Euler / RK  97% 99% 97% 

GPU vs. CPU Speed Comparison 

Euler GPU / CPU 21 34 15 

RK GPU / CPU 34 50 20 

 

             By comparing the Euler and Runge Kutta integration methods, one could 

conclude that with the same time step h, Runge Kutta method requires more computation 
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than Euler so that has slower speed in both CPU and GPU version. But the difference 

affects the speed on CPU version much more than on the GPU version: RK has about 70% 

of the speed of Euler in CPU, but only has less 3% speed drop in GPU version. So the 

Runge Kutta method seems more suitable to be used in GPU version of SPH to reduce 

the integration error. 

            A comparison  between the different fluid models shows that both CPU and GPU 

versions vary enormously  from equally-placed particles searching (such as the Explosion) 

to unevenly-placed particles searching (such as wet mud in which all the particles are in 

the same ground floors of cells in steady state). The decrease in fps in the CPU version is 

due to the fact that unevenly placed particles model has a larger number of neighbours so 

that the bucket of each particle may contain more neighbouring particles to search; in 

another word, in the sequential CPU computation, the Wet Mud model provided larger 

neighbouring density value for every particle, so that the total number of neighbouring 

particles of all the particles in the system increased considerably, which greatly reduce 

the performance. In the GPU models the performance of the Explosion model is even 

worse than Wet Mud. This is because of the “Rearrange” step in GPU, which move and 

rearrange the different memory spaces of NewPos according to the newly calculated 

position values. In Wet Mud, all the particles remains in the bottom floors of the cells in 

the space, so that very few position values in the NewPos texture have to be moved to 

new places, while the task much heavier in evenly placed particles models. Although for 

each particle in Wet Mud, the threads in the GPU computation has to deal with more 

neighbours than Explosion, the difference in this parallel computation is relatively slight 
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compared to the difference of rearrange position data in texture memory, and so that Wet 

Mud, in total, exceeded Explosion in GPU result . 

            The comparison between CPU and GPU is tabulated at Table 4.1, we found that 

the GPU version is 15 – 34 times faster than the CPU version in different models with 

Euler method; and with Runge Kutta, the GPU version has even a better performance: 20 

– 50 times faster than the CPU version. 
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Conclusion  

In this thesis, we presented real-time techniques to visualize the electron statistical 

distribution of the hydrogen atom at various energy states and the real-time dynamic fluid 

simulation or molecules/particles using SPH. 

By using a nebula visualization lighting metaphor based on Monte Carlo diffusion, 

we are able to visualize a point-based electron cloud model on both CPU and GPU. The 

result successfully shows that the lighting energy distribution in different spatial area 

does improve the perception of the subtle changes in the electron density distribution. We 

were able to demonstrate that the GPU version exceeds its CPU counterpart by over 100 

times in speed. This is good news for the MASAV project as it is now possible to 

visualize and explore the electron distribution of the hydrogen atom in real-time. 

 Faced with the reality that the point-based method fails to describe low density 

areas because of the threshold of particle placement, and notify its disadvantage in 

enhancing only interior information, in Chapter 3, we implemented a Ray-Casting 

Volume Rendering technique that complements this algorithm. By changing lighting 

strength, the user could easily gain a deep understanding on electron probability 

distribution in different areas. Because of the same size input, the results of different 

models have similar speed performance: their processing time varies from 32 to 37 

milliseconds, which converts into update speeds between 27 to 31 fps. 

Finally, in Chapter 4, we simulated the fluid dynamics of large sets of particles 

using SPH. By changing parameters of the pressure force and viscosity force, we are able 

to create three fluid models, including explosive gas, water and wet mud. Experiment 
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results also show that the Runge Kutta integration method does affect significantly the 

performance of the CPU version compared to its Euler counterpart. This is bad news as 

the Runge Kutta method is 100 times more precise than the Euler method. But on the 

contrary, the GPU version is not affected much by the use of the Runge-Kutta integration 

method resulting in a high-speed performance with no loss of precision. The acceleration 

of GPU over CPU varies for different model and different integration methods, but in 

general, GPU speed performance is 20-50 times faster for SPH than its CPU version. 

 These experimentations with GPU implementation demonstrate without any 

doubt the power of this new processor to solve physics problems. It is indeed now 

possible to create new interface to teach complex physics as if you were performing an 

experiment in real-time. This is good news for the MASAV project as it is now possible 

to foresee the development of more complex physical simulator that could illustrate in an 

intuitive way new development in physics such as the physics of sub-atomic particles like 

quarks and leptons, and the collision of those particles in the LHC. 

The new development of the GPU is truly promising and impressive. This year 

introduction by NVIDIA of the FERMI processor is a sign of thing to come. With over 3 

billion transistors, 512 CUDA cores, error correcting memory and double precision 

floating arithmetic it is truly a revolution in computing but also a scientific revolution in 

simulation as contrary to the previous paradigm one can now render and simulate on the 

same hardware. In addition to the new hardware, this year`s introduction of the NSIGHT 

development environment makes parallel code development much easier to debug. This 

is critical for the future as parallel code development is not a trivial thing to do especially 

with massive datasets like those in physics and engineering.  
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