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C h a p t e r  1 

I n t r o d u c t i o n

1.1 The Study of Fluid M otions

From the aspects of dimension, fluid flows can take a variety of forms ranging 

from nano, micro to macroflows. Both liquid and gaseous flows have been the 

subject of fluid motions. Nevertheless, it is advantageous to develop a numerical 

model capable of effectively simulating the motion of different flows.

In the community of traditional fluid dynamics, fluid motion is described by 

the continuity equation

§f + V - ( W ) = 0  (1.1)

and the Navier-Stokes equations 

d(pV)
d t

p V  ■ VV =  - V P  +  juV V  +  F  (1.2)

where V  is the velocity vector, p is the density of the solution, P  is the pressure, 

p, is the viscosity of the solution and F  represents another external force except 

the pressure P. The Navier-Stokes equation is a second-order partial differential 

equation which does not have a known analytic solution except for a small 

number of special cases. Fortunately, the advent of computer technology makes
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it possible to solve the Navier-Stokes equation numerically for fluid flows.

1.2 N um erical M ethods in Fluid Study

Traditional Computational Fluid Dynamics (CFD) has developed many nu­

merical techniques to solve the continuity equations (1.1) and Navier-Stokes 

equation (1.2) or similar equations according to different situations. Some al­

ternative methods are also available.

Num erical Solution of the Navier-Stokes Equations

The most popular method in CFD is the numerical solution of equations (1.1) 

and (1.2). Given the continuity and Navier-Stokes equations and a set of suit­

able boundary conditions, it is possible to solve the problems on a grid via the 

standard numerical methods and techniques such as finite volume, finite differ­

ence and finite element. This works well for simple flows while more complex 

problems usually require a more complex approach. There are many standard 

texts on numerical methods in fluids including J. H. Ferziger et.al [1], P. Roch 

[2] and J. Connor et.al.[3], etc..

M olecular D ynam ics (M D)

Molecular Dynamics is a direct method to simulate a fluid by modelling the 

individual molecules which make up the fluid. The system should behave as 

a fluid [4], provided the inter-molecular interactions, such as van der Waals 

interaction, are modelled correctly. Different situations can be modelled by 

changing the average energy of the molecules and their separation.

The main disadvantages with such an approach are that large computer 

resources are required and many simulations take hours to evolve a fraction

2
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of a second [5]. The system must also be updated in small time-steps, new 

position and velocity of all particles being calculated from a knowledge of their 

previous position and velocity, taking into account any external forces which act 

on them. Any particles which collided during the previous time-step have to be 

identified and their new trajectories calculated. This is strictly time consuming 

when considering even a very small volume of fluid. Even when a gas is being 

considered where there are fewer molecules and a larger time-step, the number 

of molecules which can be considered is severely limited.

Direct Sim ulation M onte Carlo (DSM C)

Direct Simulation Monte Carlo (DSMC), which was first proposed by Bird [6] 

for the simulation of rarefied gas flows, is a direct particle simulation method 

based on kinetic theory. The fundamental idea is to track a large number of 

statistically representative particles. The particle motion and interactions are 

then used to modify their positions, velocities, or chemical reactions. Conser­

vation of mass, momentum, and energy is enforced to machine accuracy. The 

primary approximation of DSMC is to uncouple the molecular motions and the 

intermolecular collisions over small time intervals. Particle motions are mod­

eled deterministically, while the collisions are treated statistically. Symmetries 

in physical space can be used to reduce the number of grid dimensions and the 

storage requirements for molecular spatial information.

However, modeling collision is always a three-dimensional calculation. The 

limitations of DSMC are the same as those of classical kinetic theory: the 

assumption of molecular chaos and the restriction to dilute gases. More details 

are available in Oran et. al.’s review paper [7].

3
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Lattice Boltzm ann M odel (LBM )

Over the past ten years, a new method for the computer simulation of fluids 

has been developed: the lattice gas model [8, 9]. Instead of considering a 

large number of individual molecules in the molecular dynamics approach, a 

much smaller number of fluid particles are considered. A fluid particle is a 

large group of molecules which although much larger than a molecule is still 

considerably smaller than the smallest length scale of the simulation. This 

reduces the amount of data which needs to be stored since large simulations can 

be performed using less than one million particles. In a lattice gas model, the 

particles are restricted to move on the links of a regular underlying grid and the 

motion evolves in discrete time-steps. The conservation laws axe incorporated 

into update rules which are applied at each discrete time.

A lattice gas model in which the state of the fluid needs to be known only 

at the lattice sites and only at discrete times can run much faster in a computer 

than a MD or DSMC simulation. The lattice gas model has another big advan­

tage since all collisions occur at the same time. This is a particular advantage 

if the simulation is being run on parallel computers. These two time saving 

advantages of the lattice gas model allow simulations in a significantly larger 

scale to be performed.

The Lattice Boltzmann model (LBM) has evolved from the lattice gas model. 

There are a number of difficulties, for instance, the lack of Galilean invariance 

and large collision matrices, with the lattice gas approach to fluid modelling. 

Various modifications have been made to overcome these difficulties and the 

outcome is the LBM. As the name suggests, this technique involves simulating

4
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the Boltzmann equation

^  +  £ . V /  +  G - V €/  =  f i( /)  (1.3)

where f1(f) is a collision function, G is the body force per unit mass, £ is the 

particle velocity and /  is the distribution function. The distribution function 

is a statistical parameter from which the macroscopic properties of the fluid 

can be found. The simulation of the Boltzmann equation is performed on a 

regular lattice and the form of the collision function 0 ( / )  is taken to be the 

BGK collision operator which was first considered to represent collisions in the 

non-discrete Boltzmann equation [10]. The computation reflects the evolution 

from the lattice gas model. The model is updated in the same manner as 

the lattice gas model except that, instead of considering individual particles to 

be travelling along the links, it is the distribution function which is evolved. 

The LBM has the advantages associated with the lattice gas model and all the 

lattice gas difficulties have been overcome. Thus, LBM is an ideal tool in fluid 

simulation, especially in complex fluid.

1.3 Electrokinetic Transport Phenom ena

The first discovery of electrokinetic phenomena occurred about two centuries 

ago. In 1808, Reuss [11] discovered electroosmotic effects and Quinke [12] dis­

covered the streaming potential phenomenon in 1859. Electrokinetic theory is 

widely applied to many fields such as chemistry, chemical engineering, aerospace 

science, biology, medicine, environment, civil and mechanical engineering. Elec­

trokinetic phenomena are essential issues in colloid and interface/surface science, 

playing important roles in industry: mining, ceramics, paints, pharmaceutics,

5
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paper making, waste water treatment and petroleum.

In general, when a solid surface is immersed in an aqueous solution, a double 

layer of electrical charges (also known as the electrical double layer, or EDL) 

near to the interface will be formed between the liquid and solid wall where 

counter-ions and co-ions in an aqueous solution are preferentially distributed so 

that the net charge density is non-zero [13-15]. It is the net charge or the EDL 

that induces the electrokinetics including four principal phenomena: stream­

ing potential, electroosmosis, electrophoresis and sedimentation potential. For 

pressure-driven flow, the effect of EDL during an externally applied pressure 

gradient is to retard liquid flow, also known as an electroviscous effect, and 

induce a streaming potential at equilibrium [16, 17]. When an electric field is 

applied between two ends of the channel, the excess counter-ions in the EDL 

will be driven by the electric body force and pull the liquid due to viscous force, 

resulting in an electroosmotic flow. Motion of charged particles in a station­

ary electrolyte under an externally applied electric field is called electrophoresis 

which can be used as species separation. A sedimentation potential is created, 

when charged particles are moved under gravitational or centrifugal fields.

1.4 O bjectives

Numerical studies of electrokinetic transport phenomena in nano and microflu- 

idic system have followed the traditional route, common to most numerical 

problems, of solving the modified Navier-Stokes equations subject to a set of 

boundary and initial conditions. However, this traditional method has many 

difficulties in these complex phenomena occurring in the region of electrical dou­

ble layer. Since the complexity of nano and microfluidic systems is essentially 

due to the microscopic interparticle interactions, the LBM simulation provides

6
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an excellent alternative to model such complex fluid dynamics problems [18-21]. 

Therefore, the main objectives of this thesis are:

1. To show the lattice Boltzmann model (LBM) by incorporating an external 

force is an effective computational tool to simulate pressure-driven and 

electroosmotic flows in nano and microchannels;

2. To investigate effect of nonuniform surface potential on mixing and flow 

rate in nano and microchannels;

3. To study influence of nonuniform surface potential on potential distribu­

tion along flow direction and flow rate in nano and microchannels with 

requirements of flow rate and current continuity;

4. To compare the results of the simulations with the theoretical predictions 

and existing experimental results.

1.5 Preview

In Chapter 2, the development of LBM will be reviewed and the details of LBM 

scheme in the thesis will be given.

In Chapter 3, the basic idea of EDL theory and the corresponding governing 

equations will be presented. Furthermore, the induced electrokinetic transport 

phenomena by EDL will be discussed.

In Chapter 4, electroosmotic flows in straight rectangular channels are simu­

lated by the LBM in the presence of an externally applied electric field. Effects 

of channel height, electrolyte concentration, surface potential, electric double 

layer thickness and applied electric field on the velocity profile will be studied 

and compared with the corresponding analytical solutions.

7
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In Chapter 5, the LBM is used to simulate flow field in a rectangular mi­

crochannel with nonuniform (step change) surface potentials. The simulation 

results indicate that local circulations can occur near a heterogeneous region 

with nonuniform surface potentials, in agreement with those by other authors. 

Largest circulations, which imply a highest mixing efficiency due to convection 

and short-range diffusion, were found when the average surface potential is zero, 

regardless of whether the distribution of the heterogeneous patches is symmet­

ric or asymmetric. More importantly, it is illustrated that there is a trade-off 

between the mixing and flow efficiency in EOF microfluidics. One should not 

simply focus on mixing and neglect liquid transport, as performed in the litera­

ture. Excellent mixing could lead to a poor transport of electroosmotic flow in 

microchannels.

In Chapter 6, the LBM coupled with the constraint of current continuity 

is utilized to simulate the microfluidic flow field in a rectangular microchannel 

with a step variation of surface potentials. This current continuity has often 

been neglected in electroosmotic flow regarding nonuniform (heterogeneous) mi­

crochannels. Results show that step variation of ion distribution caused by step 

variation surface potential will influence significantly the electrical potential dis­

tribution along the channel and volumetric flow rate. The volumetric flow rate 

could have been overestimated by as much as 70% without consideration of the 

current continuity constraint.

Finally, in Chapter 7, conclusions are summarized and future work is out­

lined.

8
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C h a p t e r  2

L a t t i c e  B o l t z m a n n  M e t h o d

2.1 Introduction

In recent years, the Lattice Boltzmann Method (LBM) has been developed 

in a state that it can be an alternative and promising numerical scheme for 

fluid flow simulation and modeling physics in fluids. This method evolved from 

the lattice gas model known as Lattice Gas Celluar Automata (LGCA) [8] . 

Both are methods for the simulation of fluid flows which are distinctive from 

molecular dynamics (MD) or Direct Simulation Monte Carlo (DSMC) on the one 

hand and methods based on the discretization of partial differential equations 

(finite difference, finite volumes, finite elements, and spectral method) on the 

other. The principle of the LBM is to construct a dynamical system on a 

simple lattice involving a number of quantities that can be interpreted as a 

single-particle distribution function of fictitious particles on the link of a lattice. 

These quantities then evolve at each time step through a two-step procedure. 

The first step is to advance the fluid particles to the next lattice site along their 

direction of motion. The second step is to simulate particle collisions by relaxing 

the distribution toward an equilibrium distribution using a linear relaxation 

parameter. The macroscopic density, velocity and energy are calculated as the

9
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moment of the single-particle distribution functions. The obvious advantages 

of the LBM are the parallelism of the approach [22-25], the simplicity of the 

programming, and the capability of easily incorporating microscopic interactions 

[26-29]. In this chapter, the development of the LBM will be reviewed and a 

Lattice Boltzmann equation with an external force term and a corresponding 

equilibrium distribution function for microfluidics will be derived [30] .

2.2 D evelopm ent of Lattice Boltzm ann M odel (LBM )

2.2.1 From LGCA to  LBM

The LBM originated from LGCA, which is a discrete lattice kinetics utilizing a 

discrete lattice and discrete time. LGCA was proposed by J. Conway [31] . The 

first LGCA model called HPP model was given in 1973 by Hardy, Pomeau and 

de Pazzis [32, 33] . The name was derived from the names of the three authors. 

Although the HPP model conserves mass and momentum, it does not yield 

the desired Navier-Stokes equation in the macroscopic limit. In 1986, Frisch, 

Hasslacher and Pomeau showed that a LGCA model over a lattice with a larger 

symmetry yields the incompressible Navier-Stokes equation in the macroscopic 

limit [34] . This model with hexagonal symmetry is named FHP according 

to the names of the three authors. The discovery of the symmetry constraint 

was the start for a rapid development of lattice-gas methods. The theoretical 

foundations were worked out by Wolfram [35] and by Frisch et al. [36] .

The FHP model on hexagonal lattice is governed by

Ni(x + £iAt, t + At) = Ni(x,t)  + n(Ni(x,t)) ,  i = 1...6 (2.1)

where Ni(x, t) is the boolean particle distribution representing the presence/absence

10
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of a particle with velocity £i(x, t), Q,(Ni(x, t )) is the collision operator reflecting 

the collision rules by which particles interact on the nodes. These collision rules 

must satisfy mass and momentum conservation. It was shown that microscopic 

collision rules applied in FHP lead to the following macroscopic equation [37]

^  = - ( g ( p ) V - V ) V - ± V P  + v V 2V  (2.2)

where V  is the velocity vector, p is the density (average number of particles on 

the node), v is the kinematic viscosity. Eq. (2.2) resembles the Navier-Stokes 

equation for incompressible fluids, except for the fact that there is a density 

function g(p) in front of the convection term ( g{p) =  for FHP model). 

This artifact is known as non-Galilean invariance of LGCA. To cope with this 

unphysical effect, the rest particles were introduced in FHP II model, allowing 

one to set the non-Galilean term close to unity. The central ideas in the papers 

contemporary with the FHP papers include the cellular automation model [35] 

and the 3D model using four-dimensional face-centered-hyper-cubic (FCHC) 

lattice [38].

In these early LGCA models, a boolean particle distribution was used. 

Therefore, at this point, one major artifact of all the LGCA models was the 

statistical noise due to boolean value dynamics. This led to the averaging over 

large number of lattice points and time steps to produce smooth flow field. The 

main feature of the LBM is replacing the boolean particle distribution values 

by particle distribution function and thus reducing the statistical noise and 

neglecting individual particle motion and particle-particle correlation in the ki­

netic equations [39]. Historically the following stages in the development of the 

LBM can be distinguished:

11
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1. Lattice Boltzmann equations have been used already at the cradle of 

lattice-gas cellular automata by Frisch et al. to calculate the viscosity 

of LGCA in 1987 [36].

2. Lattice Boltzmann model as an independent numerical method for hydro- 

dynamic simulations was introduced by McNamara and Zanetti in 1988 

[39]. The motivation for moving from LGCA to LBM was to reduce statis­

tical noise. The Boolean fields were replaced by continuous distributions 

over the FHP and FCHC lattices; Fermi-Dirac distributions were used as 

equilibrium functions.

3. Linearized collision operator was introduced by Higuera and Jimenez in 

1989 [40],

4. Boltzmann instead of Fermi-Dirac distributions is used to avoid the non- 

Galilean invariance of LGCA.

5. The collision operator has been replaced by the BGK (also called single 

time relaxation) approximation by Koelman in 1991 [41] , Qian et al. in 

1992 [42] and others.

The lattice BGK models mark a new level of abstraction: collisions are not 

anymore defined explicitly.

2.2.2 The BG K  Approxim ation

One of the major problems when dealing with the Boltzmann equation (1.3) 

is the complicated nature of the collision function f1(f). It is therefore not 

surprising that alternative, simpler expressions have been proposed. The idea 

behind this replacement is that a large amount of the detail of the two-body

12
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interaction, which is contained in the Boltzmann collision operator, is unlikely 

to influence significantly the values of the macroscopic quantities [43]. Any 

replacement collision function must satisfy the conservation of mass, momentum 

and energy.

Based on the assumptions that the particle distribution can be expanded 

about its local equilibrium state [36, 44] and that the local particle distribution 

relaxes to equilibrium state at a single-time-relaxation rate [10, 42, 45, 46] , the 

linearized form of collision function f i( /)  can be obtained

a ( / )  =  4 < /<  -  / ”’ ) (2-3)

where / f 9 is the equilibrium distribution function depending on local macro­

scopic variables, i.e. p and V, and the relaxation time A. This model is fre­

quently called the BGK model after Bhatnagar, Gross and Krook who first 

introduced it in 1954 [10] .

2.3 Derivation of a D2Q9 Lattice Boltzm ann M odel

2.3.1 D iscretization of Tim e

He et al. [19, 20] showed that the Lattice Boltzmann equation can be directly 

derived from the continuous Boltzmann equation discretized in some special 

manner in both time and phase space. The continuous Boltzmann equation 

with a single-relaxation-time as a collision model discussed in section 2.2.2 is 

given by
d f  f  -  f eq
^ + e - V /  +  G - V ^ /  =  - ^ -  (2.4)

13
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For a steady fluid immersed in a conservative force field, the equilibrium dis­

tribution function is defined by adding a Boltzmann factor to the Maxwell- 

Boltzmann distribution [47]

2 '

/ ' , =  (2^ eXP(“̂ )eXP(_li2?'J < 2 ' 5 )

where U(x) is a potential energy of conservative force field, po is the density 

of the fluid when U(x) is equal to 0, Kb is the Boltzmann constant, T  is the 

temperature, cs and D are the speed of sound in a fluid and dimensionality of 

space, respectively. The macroscopic density p, velocity V, and energy e are 

calculated as the moment of the distribution function /

p =  J  f d t  p V  = J  a n  pe =  5 /  (f -  V )JM  (2-6)

Martys et al. [48] have pointed out that G • V ^/ is identical to G • V ^ f eq up 

to the second order because the first two Hermite coefficients of the distribution

function are always the same as those in the local Maxwellian distribution.
6 -  V

Thus, by assuming V $/ ~  V ^ /e9 = ------ r— f eq ,

| + f - V / + i / = ( i  + ^ r M ) / -  (2.7)

can be obtained consequently. Eq. (2.7) can be formally rewritten in the form 

of an ordinary differential equation

14
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where

<2 -9)

is the time derivative along the characteristic line £, and

is the reciprocal of equivalent relaxation time due to the action of external force. 

The above inhomogeneous ordinary differential equation can be integrated over 

a small time step of 8 t

f ( x  + £5U f , t + St) = exp ^ ^  ^  exp f eq(x +  f , t + t’)dt’+

exp xV̂’̂
(2 .11)

Assuming that St is small enough and f eq is smooth enough locally, the following 

first-order approximation can be made

r ( x + c, t + t f) = r q(x , £  t ) + U r q( x + e, * +  <$*)-
°* (2 .12)

r(x,^t)}+0(5?), i ' epU]

Therefore, Eq. (2.11) becomes

f ( x + £5t, £,t + 5t) = exp ^ ^  j A ^ exp -  1^ f eq(x, f , t)+

 ̂((x - 0 exp (x)+ x) ̂ eq(yX+t Su t + (2-13)
f eq{x, f, t ) )} + exp ( _ x) ^  ̂

15
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Substituting the Taylor expansion of the term exp ^ ±  into Eq. (2.13) and 

neglecting the term of order 0(6^) or smaller, then Eq. (2.13) is simplified as

f ( x  + f 8 t , f , t + 6 t) -  f ( x ,  £,t) = - ^  ( j ( x ,  f , t) -  j , f eq{x, *)) (2-14)

where r  — is a dimensionless relaxation time. Eq. (2.14) is the evolution
6t

equation of the distribution function f (x ,  £, t) with discrete time.

2.3.2 H ydrodynam ic M om ents

Although f eq is expressed as an explicit function of time t, the time depen­

dence of f eq is solely through hydrodynamics variable p, V, and T. Namely, 

f eq(x, £, t) = f eq(x, £, p, V, T). Therefore, p, V, and T  must be computed before 

constructing the equilibrium distribution function f eq so that the calculation of 

p, V, and T  becomes one of the most crucial steps in discretizing the Boltzmann 

equation.

To numerically evaluate the hydrodynamic moments of Eq. (2.6), appropri­

ate discretization in momentum space £ must be accomplished, i.e.

J  m r q( ^ u ) ^  = J 2 w ^ ) f eq( x , u t )  (2 .1 5 )
a

where ^ (O  is a polynomial of £, Wa is a weighted coefficient of the quadrature, 

and is the discrete velocity set or the abscissas of the quadrature. Accord­

ingly, the hydrodynamic moments of Eq. (2.6) can be computed by

P = Y , f °  ?V  =  I N « / «  Pe =  j I > « - V )2/«  <2-16)
a  cx cx

16
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@6 6 : 6 ;

e.

5x

Figure 2.1: Velocity vectors of a D2Q9 Lattice Boltzmann model; Sx is the 
dimension of the lattice

where f a = f a(x , t ) =  Waf ( x ,£ a,t).

2.3.3 Lattice Boltzm ann Equation on a D2Q 9 Lattice

The Lattice Boltzmann equation has three ingredients: (1) an evolution equa­

tion, in the similar form of Eq. (2.14) with discretized time and phase space 

in which configuration space is of a lattice structure and the momentum space 

is reduced to a small set of discrete momenta; (2) conservation constraints in 

the form of the hydrodynamic moments; (3) a proper equilibrium distribution 

function which leads to the Navier-Stokes equations [8]. In what follows, the 

low Mach number expansion is applied to the Maxwell-Boltzmann distribution 

function with a Boltzmann factor. In the Lattice Boltzmann equation, the 

equilibrium distribution function f eq(x,£,t)  is obtained by a truncated small

17
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velocity expansion

Po (  U (x ) \  (  (
(2ttc2 ) d / 2 6XP ^ K bT  J 6XP V 2 c2s

£2

(2.17)

The equilibrium distribution function with truncated small velocity expansion 

is used as follows

„ f 1 + L X + ( k v l - V l )
1 4  + 2 4  2 4 )

Calculating the hydrodynamic moments of f eq is equivalent to evaluating the 

following integral in general

1 =  1  75 eXp ( - ^ )  I  ,/,K ) exp

(, +  4  2  4  2 4 )

(2.19)

If a two-dimensional Lattice Boltzmann model with nine discrete velocities 

on a square grid of dimensions 5X (D2Q9 LBM) shown in Figure 2.1 is consid­

ered, the microscopic velocity £ in the continuous Boltzmann equation can be

18
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expressed as the discrete velocities eQ as follows

en =

(0,0)

I cos
7r(a — 1) 

2 , sin

1 cos
7r(a — 5) 

2 +
 

i 
i

n(a  — 1)

, sm
7T {ex. — 5) 7r

2 +  4

a  =  0

a  =  1, 2,3,4

72c a  =  5,6, 7, 8

(2 .20 )

where a  is the notation of the 9-bit discrete velocities shown in Figure 2.1,
£

c = —  =  V 3 cs, and Sx and St are the lattice constant and time step size,
St

respectively. To order the 9-bit LBM model on a square lattice space, the 

Cartesian coordinate system is used and, accordingly, can be set to

nh  =  £ m £ n  ^ 771,71 S x  s y (2 .21 )

where £_x and £y are the x  and y component of £. The integral of the moments 

in Eq. (2.19) can be rewritten as

T P O1 = — exp 
7r

U{x)
~ ~k JT
V 2

(V2cs)m+n

2(V^;/rrj^-l/n T VyImIn-|-l)
V 2 c

+
+ 2VX

(2 .22 )

where

L
Im =  I S™ exp(—̂  )<k, q (2.23)

l+oo V^Cs

Im is the rath order moment of the weight function exp(—q2) on the real axis. 

The third-order Hermite formula is the optimal choice to evaluate Im for the
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purpose of deriving the 9-bit LBM model

j=i

/ i r mUjSj (2.24)

The three abscissas of the quadrature are

tl =  “ V I C2 _ 0 ’ C3_ V 5
(2.25)

and the corresponding weighted coefficients are

u>i
7T

<̂2 , U)\
7T

(2.26)

Then, the integral of the moment in Eq. (2.22) becomes

r Po
1  = ~  exP \ ^  T;r V

U(x)

 J-

where =  (&,£,•). The equilibrium distribution can be identified from the 

above equation

j  U>iUJj 
7T PO

(  f / ( x ) \ /  f - V  ( £ - V) 2 V 2\exp(- )̂(1 +V+V-si) ( 2 ' 2 8 )

By employing the notation of the 9-bit discrete velocities and the weight coef­

ficients, the equilibrium function of the 9-bit LBM model can be obtained

/<
eq U (x ) \

u ap0 exp ( -  - ^ 7  ) \  , (eq • V ) , (eq • V )2
21

2 c*
V_
2c2

(2.29)
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where
( 4-  i — j  — 2 a  =  0 

9 J
(2.30)

Thus, the evolution equation Eq. (2.14) can be rewritten as

fdips T 6a ,t T 5fj f a ix,  eQ, £)

J fa (x ,ea,t) -
(ea -  V) • G (2.31)

1 + r S t

The hydrodynamic moments on the square lattice can be computed by

and according to the Lattice Boltzmann model, the kinematic viscosity can be 

expressed as

and the Navier-Stokes equation can be derived from Eq. (2.29) and (2.31) 

through the Chapman-Enskog method [8, 49] .

2.4 External Force Term

F
In the Lattice Boltzmann equation, the external force term G =  — where F

(2.32)

P
can be expressed as

F —  F ext  + qa(Eint +  f  X B i n t )  + Fy (2.34)
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where Y ext represents the external forces, including pressure and Lorentz force 

associated with any externally applied electric and magnetic fields; and 

B int are internally smoothed electric and magnetic fields due to the motion of 

all charged particles inside the fluid, respectively; Fy  is a single equivalent force 

due to intermolecular attraction. In the case of an electrokinetic flow, if gravity 

and any induced magnetic field are negligible, the body force F  depends only 

on the externally applied pressure and induced electric field for pressure-driven 

flow. For electroosmotic flow, F  depends on the externally applied electric 

field and ion distribution in the channels. For example, the external force in 

electroosmotic flow can be calculated by

F  =  Pe^ext (2.35)

where pe is the net charge density at any point in the liquid and E ext the 

externally applied electric field strength.

2.5 Boundary Conditions

The boundary conditions (BC), playing a crucial role in LBM method, are dis­

tinguished into two basic classes : Elementary and Complex [25]. Elementary 

implies that the physical boundary is aligned with the grid coordinates and the 

distinctive mark is that the mesh cells are not cut through. A staircase approx­

imation is used for complex surfaces. Complex boundaries, on the contrary, can 

take virtually any shape, including mesh-cutting surface. Consequently, they 

can describe complex shapes more accurately, making it more difficult to imple­

ment. In this thesis, only the elementary boundary condition is utilized because 

of the simple shape of the rectangular channel. In the following part, periodic
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and no-slip boundary conditions for elementary boundaries will be reviewed. 

Other boundary conditions which are not used in this thesis, such as free-slip, 

sliding walls, and open inlet/outlets, can be found in the book by Sauro Succi 

[25].

Periodic Boundary Condition

The periodic boundary condition is one of the simplest boundary conditions. It 

is typically intended to isolate bulk phenomena from the actual boundaries of 

the real physical system and consequently it is adequate for physical phenomena 

where surface effects play a negligible role. In nano and microfluidics, if the inlet 

and outlet effect are not to be considered, the periodic boundary condition is a 

good choice. As shown in Figure 2.2, particles leave from the right to the left

• f ,

*  / *f /

A

f,

f.

Figure 2.2: Periodic boundary. Particles leaving from the right to the left and 
vice versa : f a — ► f a (a = 1 ~  8).

and vice versa according to the advection rules, namely, f a — ► f'a (a =  1 ~  8).
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N o-slip Boundary Conditions

Another simplest boundary condition is the so-called “no-slip” situation, namely, 

zero fluid velocity at a given solid surface. In the LBM method, there are two 

types of implementations: on-grid [25, 50-53] and mid-grid [25, 54] . The on- 

grid condition means that the physical boundary lies exactly on the grid node, 

whereas the mid-grid case refers to the situation where the boundary lies in 

between two grid lines or on the links.

1—

Wall ^ \ \ y  ' Wal1
f, f* £ •  V  •

( a )  (b )

Figure 2.3: No-slip boundary condition: (a) On-grid bounce-back (b) Mid-grid 
bounce-back.

As shown in Figure 2.3 (a), the on-grid bounce-back just reverses all pop­

ulations sitting on a boundary node after advection to obtain the unknown 

distributions / 2, fs  and / 6

h{x ,  y ) =  h ( x ,  y) f 5 (x, y) =  f 7(x, y) / 6(x, y) = f 8 (x, y) (2.36)

The mid-grid bounce-back scheme shown in Figure 2.3 (b) reads:

f 2 (x,y) = U(x + l , y  + l) f 5 (x,y) = f 7(x + l , y  + l) f 6 (x, y) =  / 8(x + 1, y +1)

(2.37)

Obviously, the other wall is handled in the same way.
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In the LBM algorithm in this thesis, the on-grid bounce-back boundary 

condition at the wall is applied for a no-slip boundary condition; the periodic 

boundary condition is used at the outlet and inlet for the flexibility that the 

results in a short section can be extended to a long channel. The drawback 

of the periodic boundary condition is the inability to simulate inlet and outlet 

effects.
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C h a p t e r  3

A s p e c t s  o f  N a n o  a n d  M i c r o f l u i d i c s

3.1 Introduction

In nano and microfluidic systems, the key aspects include the electric dou­

ble layer (EDL) and the induced electrokinetic transport phenomena such as 

streaming potential, electroosmosis, electrophoresis, etc. In this chapter, the 

basic idea of EDL theory and electrokinetic transport phenomena will be pre­

sented.

Figure 3.1: Schematic of an electric double layer near a plate wall and a particle.

3.2 The Electrical Double Layer (EDL)

Solution

particle
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In general, when a solid surface is immersed in an aqueous solution, a double 

layer of electrical charges (also known as the electrical double layer, or EDL) 

near to the interface will be formed between the liquid and solid wall where 

counter-ions and co-ions in an aqueous solution are preferentially distributed so 

that the net charge density is non-zero [13-15]. It is the net charge or the EDL 

that induces the electrokinetics including four principal phenomena: stream­

ing potential, electroosmosis, electrophoresis and sedimentation potential. Two 

schematic diagram for electric double layer near a plate and particle are shown 

in Figure 3.1. Given the surface is negatively charged, the density of the counter­

ions (cation) is higher than that of the co-ion (anion) in the EDL region near 

to the wall or the particle surface. The thickness of the EDL is normally re­

garded as the distance from the solid surface to a position where the net charge 

decreases to zero (neutral solution).

The concept of double layer was introduced by Helmholtz in 1879 [55] . 

In the early 1900s, the diffusive double layer was developed independently by 

Gouy [56] and Chapman [57] . Usually, the EDL is divided into two layers: an 

inner/compact layer of immobile counter-ions and a diffusion layer with transi­

tions from the extreme excess of counter-ions at the boundary of the immobile 

layer to a balance of counter-ions and co-ions in the neutral bulk solution. The 

potential at the interface between the inner layer and diffusion layer is called zeta 

potential (surface potential) whose characteristic is the key point of the elec­

trokinetic phenomena. Depending on different materials being in contact with 

an aqueous solution, the interfacial charges originate from various mechanism: 

ionization of surface group, charged crystal surface, specific ion adsorption, etc. 

[13, 15, 58],

Mathematically, Poisson-Boltzmann equation is the most popular model to
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describe the ionic and potential distribution in EDL [13, 15, 58]. According to 

electrostatic theory, the potential is governed by the Poisson equation

(3.1)

where 0  is the electric potential due to the EDL, pe is the net charge density, e

is the dimensionless dielectric permittivity of electrolyte solution and Eq is the 

dielectric permittivity of vacuum. Assuming that the Boltzmann distribution 

applies, the equilibrium Boltzmann distribution equation can be used to describe 

the ionic concentration as follows

where n* is the ionic number concentration of the Ah species, z% is the valence 

of type-i ions, nQ0 is the ionic number concentration at the neutral state where 

•0 =  0, and e is the elementary charge. The charge density can be expressed in 

terms of Boltzmann distribution for a symmetric electrolyte, i.e. z+ = — z,

and is given by

Substituting the above expression into Eq. (3.1), the nonlinear Poisson-Boltzmann 

equation is obtained

If zeip/KbT  is small (i.e., \ip\ < 25 mV), smh.(ze)ip/KbT) «  ze^/AVT; whereby

(3.2)

(3,3)

(3.4)
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Table 3.1: EDL thickness of KC1 solution with different ionic molar concentra­
tions C

Ionic molar concentration: C  (M) EDL thickness: £ (nm)
10“2 3.04
1(T3 9.62
HT4 30.40
1(T5 96.20

the Debye-Hiickel approximation is invoked, Eq. (3.3) can be rewritten as

27?
* = (3 -5)

and Eq. (3.4) can be linearized as

where

v V = = ( 3 -6)

2n 72p2

*2 =  ^  <3-7>

and called Debye length for a z : z electrolyte, represents the thickness of 

EDL. In Table 3.1, the EDL thickness of KC1 solution with different ionic molar 

concentrations C  are given. In fact, Debye-Hiickel approximation gives a good 

agreement with experiments when surface potential is up to 100 mV [13].

3.3 Electrokinetic Transport Phenom ena

Electrokinetics is a phenomenon associated with the movement of the bulk elec­

trolyte solution or a liquid carrying a free charge relative to a stationary charged 

surface under the influence of an externally applied force such as gravity, pres­

sure and electric field [58]. In practice, channels used in nano or microfluidic
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Figure 3.2: Schematic of pressure-driven flow and © represents the net charges 
in the channel.

devices are fabricated by means of modern micromachining technology. The 

cross section of these channels resembles a rectangular shape [59]. Thus, re­

search on electrokinetic transport phenomena in a straight rectangular chan­

nel is important. Electrokinetic transport phenomena in channels are usually 

divided into three groups: pressure-driven flow, electroosmotic flow and elec­

trophoresis. In this thesis, the first two phenomena are considered by the LBM 

because pressure-driven and electroosmotic flow are the two main methods for 

pumping solution in most microfluidics applications. In this section, the basic 

concept and the relative phenomena of pressure-driven and electroosmotic flows 

are presented briefly.

3.3.1 Pressure-D riven Flow

When a fluid is forced through a channel under an applied pressure gradient, 

the counter-ions in the mobile part of the electric double layer (EDL) are car­

ried toward the downstream end (Figure 3.2), so that an electric current called 

the streaming or convection current is induced in the pressure-driven flow di­

rection. Corresponding to this streaming current, an electrokinetic potential
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named streaming potential is built up along the channel. This flow-induced 

streaming potential acts to drive the counter-ions in the mobile part of the 

EDL to move in the direction opposite to the streaming current, i.e., opposite 

to the pressure-driven flow direction, generating an electrical current called con­

duction current. The motion of the ions will cause the liquid to move, resulting 

in a liquid flow against the pressure-driven flow. Therefore, compared to the 

flow rate predicted by the traditional fluid mechanics theory without EDL ef­

fect, the flow rate here is reduced; the liquid would appear to have a higher 

viscosity. This is usually referred to as an electroviscous effect [16, 17].

An important parameter for the strength of the streaming potential or the 

electroviscous effect is the thickness of the EDL. As shown in Eq. (3.7), the EDL 

thickness ^ increases when ion concentration decreases, which implies that the 

largest effects of the streaming potential can be expected for de-ionized water 

(which contains a small but finite ion concentration). Consequently, by adding 

salt to increase the ion concentration, the EDL-thickness can be made very 

thin and thus minimizing the opposing force due to the streaming potential. 

Therefore, the effect of EDL is neglected in macroscopic channels where the EDL 

thickness is relatively small. However, when the EDL thickness is comparable 

with the characteristic size of the flow channel, this effect can be significant.

3.3.2 E lectroosm otic Flow

When an electric field is applied between two ends of the channel, the exces­

sive counter-ions (net charges) in the EDL will be driven by the electric body 

force and these ions pull the liquid due to viscous drag force, resulting in an 

electroosmotic flow (Figure 3.3). The characteristics of the electroosmotic flow 

in a microchannel depend on the nature of the surface potential, i.e., whether
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Figure 3.3: Schematic of electroosmosis and © represents the net charges in the 
channel.

it is uniform or nonuniform.

3.4 Current Continuity

From the electrokinetic theory, the total current in the steady state consists of 

three components: bulk conduction current Zcf>, surface conduction current Ics, 

and convection current Is [58, 60, 61]. The total current I t can be calculated by

The convection current Ia for a slit rectangular channel shown in Figure 4.1 is 

defined by

In the above equation, ux(x ,y ) is the velocity profile in x  direction, which 

changes in the y direction for microflows with uniform surface potential; while 

ux(x,y)  changes in both the x  and y directions with nonuniform surface poten­

tial. Thus, with the knowledge of net ion distribution and velocity profile, the 

convection current can be evaluated. The conduction current Ic includes two

I  Is T Icb T I  s (3.8)

h =  U r i x . y i p A x . y j W d y
Jo

H
(3.9)
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parts: Icb and Ics, and can be calculated by

Ic = Icb +  Ics — A cXbj- +  Pw^sJ' — (^6 +  (3.10)

where A c and Pw, respectively, are the cross-section area and wetted perimeter of 

the channel, Xb is the bulk conductivity, (j) is the streaming potential in pressure- 

driven flow or the imposed electric potential in electroosmotic flow by setting 

the potential at the outlet to be 0 V, and A.s is the surface conductivity. For 

a rectangular cross section channel with |  <  1 shown in Figure 4.1, ^  ~  

thus Eq. (3.10) can be simplified to

IC = W H (  A6 +  ^ ) |  (3-11)

The surface conductance effects can be neglected when the channel is large (e.g. 

H  > 200

3.5 EDL in Num erical M odelling

Generally, numerical modelling of electrokinetic flow in nano- or microchannels 

is complicated due to the Debye-Hiickel EDL thickness, of the order of a few 

nanometers shown in Table 3.1, when the geometrical parameters in submicron 

or micrometer range. It is intractable to take into account the ratio between 

two geometry parameters because discretization of the geometry would require 

an enormous computer memory. One method to solve this problem is by artifi­

cially inflating the order of EDL thickness to that of the channel dimension and 

therefore a qualitative and relative description can be given instead of a real 

quantitative one [62, 63] . The second approach is by applying a slip boundary
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condition [64] . By this method, the EDL length scale is eliminated completely 

and description of the EDL is no longer needed. However, it is well-known 

that the electrical body force responsible for electroosmotic flow depends on the 

local net-charge density. Therefore, in this simulation, the Poisson-Boltzmann 

equation is solved to describe the potential and ion distribution in the EDL and 

the real dimension of EDL is used in the LBM.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C h a p t e r  4

S i m u l a t i o n  o f  E l e c t r o o s m o t i c  F l o w  w i t h  

U n i f o r m  Z e t a  P o t e n t i a l

4.1 Introduction

Computer simulations of fluid dynamics problems involving nano and microscale 

surface interactions are of both fundamental and practical importance in the 

development of Micro-Electro-Mechanical Systems (MEMS) and Lab-on-Chip 

devices [65-67]. Typically, the above mentioned microfluidic systems consist of a 

thin glass plate with a network of microchannels etched into the surface. In these 

channels, the electrolyte solution is in contact with the glass plate surface, which 

is generally the charged plane. Thus, counter-ions accumulate near the plane 

and co-ions deplete from this region, thereby creating a EDL in the solution 

near the wall. This EDL plays a key role in microfluidic transport phenomena, 

such as electroosmosis. The EDL thickness, which is from several nanometers 

to a few hundreds of nanometers depending on the ionic concentration of the 

e lec tro ly te  so lu tion  (see tab le  3.1), is sm all in  com parison  w ith  th e  heigh t of 

microchannels, but is in the same order of the height of nanochannels. The 

interfacial electrokinetic and wettability are strongly related to the interfacial
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properties and geometry so that adequate description of fluid in microchannels 

is not an easy task. Traditional computational fluid dynamics (CFD) method 

which relies on the use of the Navier-Stokes equations [62, 68-70] has many 

difficulties in simulating such phenomena due to the presence of an electric 

double layer.

Currently, several alternative approaches are available to simulate microflows. 

First, a popular method is the Direct Simulation Monte Carlo (DSMC) algo­

rithm. Many articles [6, 7, 71] present an extended review of the DSMC method 

for low-pressure rarefied gas flow applications; while Oran et al. [7] addressed 

its use on the microfluidic application. Although DSMC is popular for anal­

ysis of high-speed rarefied gas flow, it is not effective for simulation of gas or 

liquid microflows. It suffers from slow convergence and large statistical noise, 

and requires extensive number of simulated molecules. An alternative to the 

DSMC method is a Molecular Dynamics (MD) method which can be used to 

simulate liquid flow [72] . Many researchers employ this method to simulate 

the electroosmosis in nano-diameter channels [73, 74] . However, since MD re­

quires modeling of every molecule, it is computational expensive and is usually 

applied to very small channel systems. For a smaller channel system, e.g., a 

2-nm-wide channel, the MD simulation can be done fairly quickly; while for a 

larger system, e.g., a 6-nm-wide channel, the efficiency of this method is low.

Since the complexity of nano and microfluidic systems is essentially due to 

the microscopic interparticle interactions, the LBM simulation provides an ex­

cellent alternative to model such complex fluid dynamics problems [18-21]. The 

LBM, which can recover the Navier-Stokes equations from the discrete lattice 

Boltzmann equation with sufficient lattice symmetry, has a relatively simple 

algorithm and is an alternative to the solution of the Navier-Stoke equations
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[42, 75]. Recently, a discrete Lattice Boltzmann equation was introduced for 

liquid microflows with electrokinetic transport phenomena by Li et al. [47]. In 

addition, the LBM has been used to simulate electro-viscous effects on pressure- 

driven liquid flow in microchannels and excellent agreement with experimental 

results was found [30, 76-78] .

In this chapter, electroosmotic flows in straight rectangular nano and mi­

crochannels are simulated via the LBM in the presence of an externally applied 

electric field. Effects of the channel height, electrolyte concentration, surface 

potential, electric double layer thickness and applied electric field on the ve­

locity profile will be studied and compared with the corresponding analytical 

solutions.

4.2 Description of the Physical System  

Electrical field

H

W

t-
(a) 3D (b) 2D

Figure 4.1: Geometry of a rectangular microchannel with a length L, width W  
and height H.

The electroosmotic flow to be considered in this chapter is fully developed, 

i.e., no end effects are present. The channel geometry is depicted in Figure

4.1. This rectangular microchannel has a length L, width W  and height H.
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The height-to-width ratio in the channel is much less than 1, allowing us to 

assume a two-dimensional flow and neglect any influence of the side walls on 

the polarization of the electrolyte and the flow field.

In the electroosmotic flow, the electric field is governed by the Poisson equa­

tion

where T is the total electric potential. In general, ion concentration is affected 

by both the distribution of the externally applied potential in electroosmotic 

flow or streaming potential in pressure-driven flow, (p, and the distribution of the 

potential, ip, associated with the electrical double layer with surface potential, 

ips. If one assumes that the ion distribution near the wall is unaffected by 

(p and the principle of superposition for the potential is available, the total 

electric potential, T, is given by the summation of the surface potential and 

the externally applied potential or the streaming potential, i.e., 4/ — ip + <p. 

Therefore, Eq. (4.1) can be rewritten as a Laplace equation

which is used to control the externally applied electric field or the streaming 

potential along the channel, and the Poisson equation (3.1) in Chapter 3 for the 

potential distribution in the EDL region. In a straight channel with uniform 

surface potential, the governing equations for the ion distribution essentially 

reduce to a one-dimensional problem. Therefore, Eqs. (3.6) with the Debye- 

Hiickel approximation may be simplified as

V2>E = - h . (4.1)
££o

V 2(/> =  0 (4.2)

d2ip 2ncx>z2e2it yj A n o q ^  c  2 i

dy2 ££0kbT (4.3)
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The boundary conditions for solving the Poisson-Boltzmann equation (4.3), are 

given by

ip — 'ips at y = 0, H  and ^  =  0 at y = ^  (4.4)

Eq. (4.3) is a linear one-dimensional ordinary differential equation that can be 

solved analytically, subjected to the boundary conditions given in Eq. (4.4). 

The net charge density at any point in the channel can be obtained using Eq. 

(3.5) after the electrical potential distribution ip has been found.

Flow Field by N avier-Stokes Equations

The general Navier-Stokes equation for incompressible steady flow is given by

pv  • V V  =  - V P  +  |UV2V  +  F  (4.5)

For a steady-state, one-dimensional and fully developed flow, the velocity com­

ponents are described by u = u(y), v  = 0 and w = 0. Additionally, if the 

flow is driven by an externally applied electric field rather than a pressure, the 

first term on the right hand side of Eq. (4.5) drops out. Thus, the general 

Navier-Stokes equation (4.5) can be simplified to

d2u
^  =  x (46)

where Fx is the body force due to the externally applied electric field Ex. The 

relationship between Fx and the electric field strength Ex is given by

Fx = peEx (4.7)
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Substituting Eqs. (3.5) and (4.7) into Eq. (4.6) yields

(4.8)

The boundary conditions for this one-dimensional problem are

u = 0 at y =  0, H  and —  =  0 at y =  —
ay 2

(4.9)

The electric strength E x can be obtained by solving Laplace equation (4.2). 

Finally, Eq. (4.6) can be solved analytically and the solution subjected to the 

boundary conditions above is given by

4.3 R esults and Discussion

In this section, simulation results are presented for the effect of the channel 

height to the EDL thickness ratio kH,  the electric potential of the solid surface 

ips, and the externally applied electric field (f) on the velocity profiles. The simu-

solution with z : z — 1 : 1 (e.g., KC1) are used and the solution has similar phys­

ical properties as water at 298 °K: p ~  103kg/m 3, e ~  6.95 x 10~loC2/ J  • m, p, ~  

10_3N • s/m 2

4.3.1 Effect o f the Channel H eight to  the EDL Thickness Ratio: k H

This section presents how the channel height to the EDL thickness ratio k H  will 

affect the velocity profiles. The ratio k H  can be changed by two methods: one

(4.10)

lated results will be compared with the analytical solution (4.10). A symmetric
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5.0
—  Analytical Solution 

° LBM SolutionC = 10 M

4.0
C = 10 M

V, 3.0

e  2.0■
>5

C = 1 0 ' M

0.0

Height of the Channel (nm)

Figure 4.2: Electroosmotic velocity profiles for KC1 solution with different ionic 
molar concentrations C (C =  10~2 M, 10-3 M, 10-4 M, channel height H  = 50 
nm, tpg = —25 mV, Ex =  250 V/m).

approach is to change the ionic concentration of the solution while keeping the 

channel height constant. The EDL thickness will decrease with increasing ionic 

concentration. The EDL thickness of KC1 solution with different ionic molar 

concentrations are given in Table 3.1. The other method is to change the height 

of the channels while keeping the ionic concentration constant.

The electroosmosis velocity profiles for different kH  values are plotted in 

Figures 4.2 and 4.3. The circle represents the results simulated by LBM and 

the solid line represents the analytical solutions. For each curve in the Figure

4.2, the ionic molar concentration is changed while the same channel height 

(H =  50 nm), electric potential of the solid surface (ipa = —25 mV), and 

externally applied electric field (Ex =  250 V/m) are constant. The velocity 

profiles are different from each other because the thickness of the EDL decreases 

with the increase in the ionic molar concentration. For the solution with a higher
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20.0 —  Analytical Solution 
o LBM Solution

=1 15.0

^ 10.0

5.0

0.0 700 800600200 300 400
Height of the Channel (nm)

500
Channel

100

Figure 4.3: Electroosmotic velocity profiles for different channel heights H  (H = 
50 nm, 100 nm, 200 nm, 400 nm, 800 nm, C = 10~4 M, ipa =  —25 mV, Ex — 1000 
V/m).

ionic molar concentration (e.g., C  =  10-2 M), the ratio of the height and the 

thickness of the EDL (k H  =  16) is much larger than 1, suggesting that there is 

a thin electric double layer. Thus, the fluid moves as a plug under the influence 

of an electric field along the charged surface. However, for the solution with 

a lower ionic molar concentration (e.g., C  =  10-4 M), k H  is 1.6, implying a 

thick electric double layer. Thus, a parabolic velocity profile is obtained due to 

the large overlap of the double layer with a virtually constant net free charge 

density across the channel. This gives rise to a fluid body force similar to that of 

a pressure gradient. In addition, for the flow with a smaller EDL thickness due 

to a higher ionic molar concentration, a finer lattice constant 5X is used because 

a certain number of lattices is required to capture the EDL electrokinetic effect 

on flow behavior.

For each curve in Figure 4.3, the value of k H  is varied by changing the
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1.0
—  Analytical Solution 

° LBM Solution\|ts = -25 mV

V. 0.6

t|/s = -10 mVC 0.4

0.2

0.0

Height of the Channel (nm)

Figure 4.4: Electroosmotic velocity profiles for different surface potential in the 
same channel (H  — 50 nm, C  =  10-2 M, Ex = 50 V/m, k H  =  16).

channel height and keeping other parameters constant. In this simulation, the 

ionic molar concentration of the solution is 10-4 M, so that the lattice constant 

8X remains the same for each channel due to the same EDL thickness of 30.4 

nm. Both the velocity profile and maximum velocity depend on the height of 

channels. For example, the velocity profile of the flow with the height of 800 

nm is like a plug due to a large nH  value of 27. The maximum velocity for each 

channel increases with the height H  until H  = 400 nm. As can be seen from 

Figures 4.2 and 4.3, good agreement can be obtained between the simulated 

and the analytical results.

4.3.2 Effect o f Electric Potential o f the Solid Surface: ijja

Here, the surface potential ij)s can be controlled and the electroosmotic flow with 

two different surface potentials: =  -2 5  mV and -1 0  mV are simulated. The
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5.0
—  Analytical Solution 
° LBM SolutionE  =250  V/m

4.0

'■£ 3.0

S  2.0

E  = 5 0  V/m

E = 10 V /m

Height of the Channel (nm)

Figure 4.5: Electroosmotic velocity profiles for different externally applied elec­
tric field in the same channel (H =  50 nm, C  =  10-2 M, ips =  —25 mV, 
kH  =  16).

ionic molar concentration of the solution is 10“2 M and the externally applied 

electric field Ex is 50 V/m. From the results shown in Figure 4.4, the simulated 

results show that higher values for the electric potential of the solid surface will 

produce a higher flow velocity as expected.

4.3.3 Effect o f Externally Applied Electric Field: Ex

Electroosmotic flow depends not only on the local net charge density in the 

fluid but also on the externally applied electric field because the fluid motion 

is driven by the electrical body force acting on the ions in the diffuse layer 

of the EDL. Keeping the ionic molar concentration and the surface potential 

constant, the fluid velocity can be increased by increasing the electric strength 

Ex. Figure 4.5 shows the electroosmotic velocity profiles for KC1 solution with 

different externally applied electrical field in the same microchannel. The ionic
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concentration is 10-2 M and the surface potential ips is —25 mV. Prom Figure 

4.5, it is obvious that the LBM model prediction matches well with the analytical 

result.

4.4 Summ ary

Electroosmotic flow in a straight rectangular microchannel using a D2Q9 Lattice 

Boltzmann model are simulated. Effects of channel height, surface potential, 

and applied electric field on the velocity profile were studied and compared 

with the corresponding analytical solutions. Excellent agreement was found. 

The LBM model considered here is shown to be an effective computational tool 

for complex microfluidic systems where an externally applied electric field is 

imposed.
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C h a p t e r  5

S i m u l a t i o n  o f  E l e c t r o o s m o t i c  F l o w  w i t h  

N o n u n i f o r m  Z e t a  P o t e n t i a l

5.1 Introduction

MicroChannel network devices have been widely used in various areas of chem­

istry and biochemistry. In such microfluidic devices, electroosmosis is often uti­

lized as the tool for fluid transport and mixing simultaneously. The Reynolds 

number of electroosmotic flow in microfluidic devices is usually very small, and 

quite often to achieve a sufficient mixing in electroosmotic microchannel flow 

can be a challenge. Obtaining a complete mixing in either pressure or electric 

driven microfluidic devices requires both a long mixing channel and an extended 

retention time to attain a homogeneous solution.

In general, the devices to enhance mixing in microchannel are classified into 

two categories: passive and active mixer. Complex specific channel geometry is 

used in passive mixer to increase the interfacial area between the mixing liquids. 

For example, Liu et al. [79] proposed a 3D serpentine channel which enhance 

mixing via chaotic advection. Strook et al. [80, 81] presented a mixing channel 

with patterned grooves by creating spiral circulation around the flow axis at low
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Reynolds number. These methods can achieve complete mixing within a short 

channel length. However, difficulty remains in the fabrication of complicated 

geometries for practical application. Compared with passive mixers, active mix­

ers introduce moving parts inside microchannels by applying either an external 

unsteady pressure perturbation [82] or a sinusoidally alternating electric field 

[83] to stir the flow stream.

Recently, electroosmotic flow provides an attractive means for controlling 

fluid motion in microfluidic devices. The characteristics of electroosmotic flow 

in a microchannel depend on the nature of the surface potential of the channel 

wall, i.e. whether it is uniform or nonuniform. Most previous studies have 

focused on electroosmotic flow with uniform surface electric potential Vb [62, 84]. 

Ajdari [85, 86] investigated electroosmosis with nonuniform surface potential 

and found circulation regions generated by application of oppositely charged 

surface heterogeneities to the microchannel wall. The phenomena were also 

observed experimentally by Strook et. al. [64],

Prom the literature mentioned above, electroosmotic flow with nonuniform 

surface potential appears to be an excellent alternative to enhance mixing in 

microfluidics via manipulation of electrical charge distribution in the electric 

double layer (EDL). It is noted, however, that there is a trade-off between 

such mixing and flow efficiency and this important factor has often been ig­

nored. That is, excellent mixing could imply poor flow efficiency. Therefore, 

the purpose of this study is to investigate this trade-off for electroosmotic flow 

in heterogeneous microchannels by means of the LBM [18-21, 30, 47, 76]. The 

results from the simulation can be used as guidelines for the optimization and 

design of microdevices in terms of mixing and species transport.
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5.2 D escription of the Physical System

L„
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(a) (b)

Figure 5.1: Schematic of the patterned surfaces with (a) a symmetric (b) asym­
metric stepwise variation of surface potential, -ip and L are the surface potential 
and length of the heterogeneous patches, respectively. The subscripts n  and p 
represent the negatively and positively charged surfaces, respectively.

In this chapter, a stepwise surface potential for the heterogeneous microchan­

nel system is employed as shown in Figure 5.1. The microchannel has a width 

of 500 nm. The patterned surface in Figure 5.1(a) is heterogeneous with sym­

metrically distributed patches for the lower and upper channel walls; whereas 

Figure 5.1(b) represents a heterogeneous case where the patches on the lower 

and upper walls are asymmetric. ipn and xpp are defined as the surface potentials 

for the negatively and positively charged patches, respectively.

Generally speaking, it is challenging to obtain heterogeneous surface in mi­

crochannel via fabrication techniques alone. In practice, there are two methods 

to achieve a heterogeneous surface. One is to coat the microchannel walls with 

different materials [64]; the other is to establish an electrical field perpendicular 

to the microchannel wall via microelectrodes which are embedded inside the 

solid near the solid-liquid interface [87]. It has been shown that the surface 

potential can be controlled both spatially and temporally.
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Average Surface Potential

The average surface potential i p a v g  of the channel shown in Figure 5.1 can be 

calculated from
ippLp T

(5.1)
Lp T Ln

where Lp and Ln are the lengths of the positively and negatively charged patches, 

respectively. In the simulation, ipn is set to be —25 mV while ipp is varied from 

0 to 100 mV; the length Ln and Lp are also adjusted in terms of the ratio Ln/ L p 

to be either 1 or 4.

Electrical Field

In microchannels with nonuniform surface potential, the governing equations 

for ion distributions is a two-dimensional problem. The nonlinear Poisson- 

Boltzmann equation (3.4) becomes

which can be solved numerically subject to the boundary conditions given by

the lower and upper wall, respectively. The net charge density at any point 

in the channel can be obtained using Eq. (3.3) after the electrical potential 

distribution ip has been found.

geneous by implementing ip\{x) and ip2 (x) according to real applications. In

(5.2)

ip = ipi{x) at y =  0 and ip = ip2 {x) at y  =  H  (5.3)

ipi(x) and ip2 (x ) are both function of x  and represent the surface potential at

The surface potential of microchannel walls can be homogeneous or hetero-
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this chapter, ipi(x) and 02 (^) are stepwise pattern shown in Figure 5.1. In this 

model, there are three main assumptions: (1) conductivity is buffer-dominated; 

that is, it is constant and independent of the local species concentration; (2) 

charge distribution near the wall is unaffected by an externally applied field; (3) 

external convective flow does not disturb the EDL distribution. These assump­

tions are generally valid when the EDL thickness is small, or equivalently, high 

ionic solution concentration (> 1CT4 M) and low Reynolds number Re.

Flow Field

(a) (b)

Figure 5.2: Schematic of an electroosmotic flow near the double layer region for 
(a) a homogeneous surface and (b) a homogeneous surface with a heterogeneous 
patch. 1 / k  is the double layer thickness.

The flow field in microchannels with nonuniform surface potential can be 

obtained numerically rather than analytically. A schematic illustrating how 

circulation can occur in heterogeneous microchannels is shown in Figure 5.2, 

where the electric double layer thickness is shown as 1/ k . In Figure 5.2(a), 

an electroosmotically driven flow over a homogeneous surface with a surface 

potential 0  =  —0 0 (0o > 0) is presented. The excess positive ions of the 

electric double layer (EDL) are driven by the electroosmotic body force when 

an external electric field (negative downstream) is applied across two ends of the 

microchannel. This drags the bulk fluid due to viscous effect. The same effect
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also happens for a heterogeneous surface with a step change nonuniform surface 

potential shown in Figure 5.2(b); in this case, the electroosmotic body force is 

applied to both regions of excess negative and positive ions. As a result, the 

flow near the positively charge patch with ip — V'o (4>o > 0) is in the opposite 

direction to that of the homogeneous regions (ip = —ipo). The interaction of 

these local flow fields with the bulk results in regional circulation zone as shown 

in Figure 5.2(b) [64, 85, 86].

5.3 R esults and Discussion

5.3.1 Influence of the Nonuniform  Surface Potential on the V elocity  

Profiles

The simulation results are presented here for a 1 : 1 electrolyte with an ionic 

molar concentration of 10~4 M having an EDL thickness of 30.4 nm. The ex­

ternally applied electric field was set to be 1000 V /m  for the following 4 cases.

1. Sym m etric w ith  Ln/ L p — 1

The surface potentials ipp are set to vary from 0 to 25 mV in a 5 mV increment 

while ipn remains a constant value of —25 mV for Ln/ L p =  1. Figure 5.3(a)-(c) 

shows a series of velocity field generated by modeling the heterogeneous sur­

face with symmetrically distributed patches; symmetric implies that the surface 

potentials on the upper and lower walls are exactly the same in terms of both 

magnitude and sign. As expected, the flow fields presented in these figures 

exhibit local circulations near the heterogeneous region with a positive surface 

potential. No circulation was found in Figure 5.3(a) when ipp = 0 mV. The 

largest circulation results from setting ipp — \ipn\ in Figure 5.3(c) where the av­

erage surface potential ipavg is zero. From Figure 5.3(c), the sizes of the vortex
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appear to be the same when ipp = \ipn\ — 25 mV. It was found that the absolute 

values of the maximum velocities in each vortex are the same. The flow fields 

for ifip = 5, 10 and 15 mV are similar to that shown in Figure 5.3(b) and not 

shown.
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= 0 mV v n * -2 5  mV

= 0 mV v n = -2 5  mV

•25 mVV = 20 mV

•25 mVV = 20 mV

(e) (f)

Figure 5.3: Velocity profiles for a symmetrically arranged nonuniform surface 
potential when ipn — —25 mV and (a) 4>p = 0 mV and Ln/ L p =  1; (b) ipp =  20 
mV and Ln/ L p = 1; (c) ipp = 25 mV and Ln/ L p = 1; (d) ^ p — 0 mV and Ln/ L p 
= 4; (e) ipp = 75 mV and Ln/ L p =  4; (f) ipp = 100 mV and Ln/ L p — 4 .
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2. Sym m etric w ith Ln/ L p =  4

Here, the ratio of T„/Tp is set to be 4 while ipp varies from 0 to 100 mV in a 25 

mV increment while ipn remains a constant value of —25 mV. As shown in Figure 

5.3(d)-(f), the magnitude of the circulation increases as ipp increases from 0 mV 

(Figure 5.3(d)) to 100 mV (Figure 5.3(f)). Contrary to the results in Figure 

5.3(c), the sizes of the vortex in Figure 5.3(f) are not the same for a different 

Ln/L p ratio; that is, the larger the dimension Ln, the larger is the circulation 

size. However, the absolute value of the maximum velocity, in the region where 

ip is positive (ipp), is larger than that with a negative ip value (ipn). Thus, the 

patterns of the flow fields are dramatically different due to the magnitude and 

size of the positively charged heterogeneous regions. The circulation regions 

expands as the magnitude of the heterogeneous surface potential ipp increases. 

These expanded circulation regions force the bulk to flow through a narrower 

channel cross section [cf. Figures 5.3(c) and 5.3(f)], resulting in a shorter local 

diffusion length which enhances mixing.

3. A sym m etric w ith  Ln/ L p =  1

This section is similar to those studied above, except that the heterogeneous 

patches here are arranged asymmetrically for the upper and lower channel walls. 

The velocity field generated from the asymmetric heterogeneous surfaces are 

shown in Figure 5.4(a)-(c) where ipp increases from 0 to 25 mV in a 5 mV 

increment while ipn is set to be a constant value of —25 mV. Other flow fields 

with ipp =  5, 10 and 15 mV are not shown. Similar to the symmetric case given 

above, local circulation region can be obtained near the heterogeneous patch 

with a positive surface potential ipp. The different sizes of circulation regions 

are due to both the magnitude (ipp) and dimension (Lp) of the heterogeneous 

patches. It is also apparent that the flow field patterns are different from the
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symmetric case above. Compared to the flow fields in Figures 5.3(c) and 5.4(c), 

the direction of the vortex has changed as a result of rearrangement (whether 

symmetric or asymmetric) of the heterogeneous patches.
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Vn = -25m V  v p = 75m V v n = -25m V  y p *100m V

(e) (f)

Figure 5.4: Velocity profiles for an asymmetrically arranged nonuniform surface 
potential when -0n — —25 mV and (a) ^ p = 0 mV and Ln/ L p =  1; (b) tjjp = 20 
mV and Ln/ L p — 1; (c) ipp = 25 mV and Ln/ L p =  1; (d) =  0 mV and Ln/ L p
=  4; (e) V’p =  75 mV and Ln/ L p = 4; (f) =  100 mV and Ln/ L p — 4 .
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4. A sym m etric w ith Ln/ L p =  4

The ratio of Ln/ L p is set to 4 here for an asymmetric arrangement of the het­

erogeneous patches. The simulation was based on V'n =  — 25 mV while ripp 

increases from 0 to 100 mV in a 25 mV increment; the results are shown in 

Figure 5.4(d)—(f), where the circulation magnitude increases from zero (Figure 

5.4(d)) to the largest in Figure 5.4(f) when is 100 mV (i.e., i})avg — 0 mV). 

The flow field in Figure 5.4(f) shows that the sizes of the vortex are not same 

when Ln ^  Lv\ that is, the larger the dimension Ln. the bigger is the circulation 

size. However, the absolute value of the maximum velocity in the ipp region is 

larger than that of the ipn region. Because of the asymmetric distribution and 

dimension of the charged patches, the flow field in Figure 5.4(f) is the most 

tortuous. For example, the bulk flow in Figure 5.3(b) and 5.3(e) are forced to 

converge into a narrow stream by the symmetric circulation region while the 

flow fields shown in Figures 5.4(b) and 5.4(e) are more tortuous as a result of 

the offset, asymmetric circulation region. In addition, movement perpendicular 

to the applied field can be generated in the circulation regions by comparing 

Figures 5.3(c), 5.3(f), 5.4(c) and 5.4(f). Such kind of motion could be particu­

larly useful in system mixing. On the other hand, near the junction of positively 

and negatively charged regions is a stagnation point which may be useful for 

manipulation of macromolecules or cells in a fluid environment.
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5.3.2 Influence of the Nonuniform  Surface Potential on the Volu­

m etric Flow R ate

According to the mass continuity condition, the volumetric flow rate at any 

cross section of the channel are the same and can be calculated by

direction. For a 2D simulation, Eq.(5.4) can be simplified as the velocity u and 

is independent of the width z. In order to study the systematic effect of tpP 

on the volumetric flow rate, Q is normalized by the maximum flow rate Q m a x ,  

i.e., the flow rate of the same channel having a uniform surface potential of ip = 

—25 mV. As discussed before, it is anticipated that nonuniform surface potential 

affects not only the flow field but also the flow rate for liquid transport. The 

dependence of electroosmotic flow rate on the nonuniform surface potential is 

illustrated below:

1. Effect o f ipp on Q / Q m a x

The effect of ipp on the normalized flow rate Q / Q m ax  is shown in Figure 5.5 using 

the results discussed above. In Figure 5.5, filled diamonds and squares represent 

the normalized volumetric flow rate versus the values of tpp for symmetrically 

distributed charged patches; while circles and triangles represent similar results 

for asymmetrically arranged patches. The normalized flow rates Q / Q m a x  for 

Ln/L p =  4 (as ipp increases from 0 to 100 mV in a 25 mV increment) are 

shown as curve A. Those of Ln/ L v =  1 (as ipp increases from 0 to 25 mV in 

a 5 mV increment) are shown as curve B. From this figure, Q / Q m a x  decreases 

linearly as ipp increases for both curves A and B. From each line, it is concluded

Q = J  u(y,z)Wdyd,  (5.4)

where Q is the volumetric flow rate and u(y, z) is the local velocity in the x
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Figure 5.5: Normalized volumetric flow rate versus surface potential of the 
positively charged region ipp when 'ipn = —25 mV. Curve A represents the case 
of Ln/ L p — 4 and tpp =  0, 25, 50, 75, and 100 mV; Curve B represents the case 
of Ln/ L p =  1 and i/>p =  0, 5, 10, 15, 20, and 25 mV.

that arrangement of nonuniform surface potential, i.e. either symmetric or 

asymmetric, does not affect this linear relation. Comparing with curves A and 

B shows that for the same surface potential i/p, Q/Qmax for Ln/ L p =  1 is smaller 

than that when Ln/ L p =  4.

2. Effect o f Lp/{Lp Ln) on Q / Q m a x

Using the previous simulation results, Figure 5.6 shows that the dependence of 

the normalized flow rate Q / Q m a x  on the ratio R  = Lp/ (L n +  Lp). These results 

were obtained by adjusting Lp for R  = 0, 0.2, 0.4 and 0.5 while the values of ipn, 

't/p and Ln are set to be constant. In Figure 5.6, the circles and filled squares 

represent the normalized volumetric flow rate versus the length of the positively 

charged region Lp in the microchannel with symmetrically and asymmetrically 

distributed charged patches, respectively. It is again apparent that Q / Q m a x
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Figure 5.6: Normalized volumetric flow rate versus length ratio of the positively 
charged region Lp/ (L p + Ln) for ipp =  \ipn\ =  25 mV.

decreases linearly as the ratio Lp/ (L p +  Ln) increases for both symmetric and 

asymmetric cases. Thus, arrangement of the nonuniform surface potential, i.e. 

symmetric or asymmetric, will have no effect on the normalized flow rate.

It is then instructive to study how the normalized flow rate Q jQ max changes 

with the heterogeneous surface potentials. From Eq.(5.1), an average surface 

potential i/javg has been defined and can be calculated in terms of both the 

magnitude of the surface potential ipp and length Lp of the heterogeneous patch. 

Figure 5.7 shows the results for the normalized flow rate with the average surface 

potential, using the data from Figures 5.5 and 5.6. The normalized flow rate 

Q / Q m a x  indeed depends only on the average surface potential ipavg even though 

the individual flow field could have been different. That is to say, once an 

average surface potential is known, the normalized flow rate remains the same 

and does not depend on the heterogeneous pattern of the surface. Therefore,
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Figure 5.7: Normalized volumetric flow rate versus average surface potential 
ipavg when 'tpn =  —25 mV and □: Ln/ L p =  1 and -ipp — 0, 5, 10, 15, 20, and 25 
mV; ♦: ipp = 25 mV and LP/(L P + Ln) =  0, 0.2, 0.4, and 0.5; o : Ln/ L p =  4 
and 'tpp = 0, 25, 50, 75, and 100 mV.

it is safe to conclude that arrangement of nonuniform surface potential, i.e. 

symmetric or asymmetric, has no affect on the flow rate and the average surface 

potential defined in Eq.(5.1) is a means by which electroosmotic flow rate can 

be evaluated in a microchannel with nonuniform surface potentials.

5.3.3 Trade-off betw een M ixing and Flow Efficiency of Microfluidics 

w ith  H eterogeneous Surfaces

According to results in Figures 5.3 and 5.4, the complex pattern of the hetero­

geneous surface potential will enhance mixing due to circulation and tortuosity 

and should result in a higher mixing efficiency. In order to obtain larger circu­

lation and tortuosity, the average surface potential xpavg calculated by Eq. (5.1) 

should be as close to zero as possible. However, from the flow rate discussion

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



above in Figure 5.7, as il>avg approaches zero, the normalized flow rate Q / Q m a x  

also decreases to zero. Indeed, there is a trade-off between the mixing efficiency 

and flow efficiency via circulation induced by heterogeneous surface potential. 

Thus, design and applications of such phenomena for mixing should be carefully 

considered. On the one hand, mixing is required; on the other, liquid transport 

is also an important issue for electroosmotic flow.

5.4 Summ ary

In this chapter, the LBM with the Poisson-Boltzmann equation has been used 

to simulate electroosmotic flow in a 0.5 /im microchannel with heterogeneous 

surface potential. The simulation results indicate that local circulations can 

be obtained near the heterogeneous region, in agreement with those obtained 

by other authors using traditional CFD method. Different patterns of the het­

erogeneous surface potential cause different magnitude of the circulation. The 

largest circulation, which implies the highest mixing efficiency due to convec­

tion and short-range diffusion, was found when the average surface potential is 

zero. A zero average surface potential, however, implies zero flow rate. It has 

been shown that there is a clear trade-off between the mixing efficiency and flow 

efficiency in microfluidics with heterogeneous surfaces.
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C h a p t e r  6

S i m u l a t i o n  o f  E l e c t r o k i n e t i c  F l o w s  w i t h  

C o n s t r a i n t s  o f  C u r r e n t  C o n t i n u i t y

6.1 Introduction

Pressure-driven flow and electroosmotic flow are two main methods in most mi- 

crofluidics applications. These flows are usually laminar due to the low Reynolds 

number. For electrokinetic flows in microchannels with homogeneous surface po­

tential, analytical solutions are available in cylindrical capillaries [88, 89], slit 

channel [90], and straight rectangular microchannels [91, 92]. If the surface po­

tentials of these channels are heterogeneous, the electrokinetic problems have to 

be solved numerically and the characteristics of the flow would depend on both 

the pattern of the surface potential (i.e. whether the surface charge is a step or 

continuous change) and the potential distribution along the channel. For elec­

troosmotic flows, the flow field could be changed from laminar to multidirection 

with circulation as discussed in the chapter 5 [64, 85, 86]. However, in most of 

such models, current continuity across sections of non-uniform microchannels is 

not automatically satisfied. Until recently, Yang et al. [93] proposed a model to 

describe the behavior in circular microchannels with nonuniform surface poten-
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tials where the continuities of flow rate and electrical current were considered 

simultaneously by solving the modified Navier-Stokes and Poisson-Boltzmann 

equations.

In this chapter, the LBM is employed to simulate electrokinetic flows with 

step change surface potentials by considering both flow rate and current con­

tinuities. The continuity of flow rate is satisfied automatically in the LBM 

scheme. Prom the simulation results, a step change potential distribution along 

the channel and a reduced flow rate due to the constraint of current continuity 

for a step change potential distribution along a channel in both pressure-driven 

and electroosmotic flow are obtained. The results indicate that step change in 

surface potential and hence ion distribution influence significantly the electrical 

potential distribution along the channel, velocity profiles and volumetric flow 

rate.

6.2 D escription of the Physical System  

Electric Field

In this chapter, the geometry of the channel with step-changing surface po­

tential is shown in Figure 6.1. The electric field and the ion distribution can 

be obtained by numerically solving the nonlinear Poisson-Boltzmann equation 

(5.2) subject to the same boundary conditions as that (Eqs. (5.3)) in Chapter 

5. The potential distribution along the channels can be evaluated through the 

solution of Laplace Eq. (4.2).
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Figure 6.1: Geometry of a 2D heterogeneous microchannel, consisting of two 
different sections, 0 i and ■02 are the two stepwise variation of surface potentials 
for the heterogeneous channel.

Constraints o f Current Continuity

Pressure-D riven Flow For steady-state pressure-driven electrokinetic flow 

in nano and microchannels, the total electric current It defined by Eq. (3.8)

in Chapter 3 should be zero so that the constraint of current continuity on the

flow system is

I t  =  0 (6 .1)

Once the flow field is known, the convection current or the streaming current 

will be evaluated by Eq. (3.9). Combining Eqs. (3.10) and (6.1), the streaming 

potential can be determined from

ux(x,y)pe(x,y)dy  ^

(Xb + XŜ ) H  
A c

The conduction current can be obtained by Eq. (3.10) or (3.11). The strength 

of the induced electric field E  is y . As the induced streaming potential will pro-
Li

duce an electroosmotic effect, an additional body force caused by the streaming 

potential acting on the EDL will be applied to the LBM equation as well as 

pressure body force; the velocity will then be recalculated in order to obtain a 

more accurate streaming potential.

6 =  - L
fJo
H
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Electroosm otic Flow In electroosmotic flow, the total current I t can be 

calculated by substituting Eqs. (3.9) and (3.10) into Eq. (3.8) in Chapter 3. 

For the heterogeneous nano and microchannel with nonuniform surface potential 

(ipi and 1P2 ) represented as two sections in Figure 6.1, the constraint of current 

continuity is I t\ =  In and hence

iti = /  uxi(x ,y )p ei(x ,y )W d y  + A cXbE 1 + PwXslEi 
Jo

= /  ux2 (x ,y)pe2 (x ,y)W dy + A cXbE 2 + PwXs2 E 2 
Jo

E x =  

E 2 =

In
(pi — (p2

(6.3)

£ 1
<p2 ~  03

Subscripts 1 and 2 represent the properties to the left and right sections in 

Figure 6.1, respectively. By considering this constraint, the electric potential 

02 at the junction between the two different surface potentials (ip\ and 0 2) can 

be evaluated according to the velocity profile and externally applied electric 

potential <pi when 03 =  0 V. For instance, if the surface potential of the left 

section is set to be zero ip\ =  0 (i.e. no EDL effect), the net charge pe 1 and 

surface conductivity Asl are zero, Eq. (6.3) can be simplified to

Itx =  Ac\bEi

= /  Ux2 (x, y)pe2(x, y)W dy  +  A cXbE 2 + PwXs2E2 
Jo

=  In  (6-4)

01 —  02E i =

E 2 =
^ 2

66

Li
02
u

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In this case, <j)2 can be calculated by

Ac^ ~  -  f f  ux2 {x,y)pe2 (x ,y)W dy

h  = AcAfe A cXb Pw \ s2 (6‘5)
L\ L2 L 2

6.3 R esults and Discussion

As mentioned earlier, the purpose of this study is to investigate the effect of 

nonuniform surface potential on the potential distribution along the channel 

and volumetric flow rate by considering the current continuity using the LBM 

in which the continuity of flow rate is satisfied automatically. A stepwise vari­

ation of surface potential is selected and shown in Figure 6.1 where ipi and 0 2 

are the surface potentials of the left and right sections with a length of L\ and 

L2, respectively. A symmetric electrolyte solution (KC1) with z : z = 1 : 1 

was employed and its physical properties are similar to those of water at 298° K: 

p ~  103 kg/m 3, e ~  6.95 x 10-10 C2/J-m, and p  ~  10_3N-s/m2. The bulk 

conductivity Aj, of the solution is 1.42 x 10-3 S/m  and the surface conductivity 

A.s. is 1.64 nS [94]. In this simulation, the variation of the surface potential is as­

sumed not to influence the bulk and surface conductance for the KC1 electrolyte 

solution. The ionic molar concentration of solution is set to be 10-4 M with a 

EDL thickness 1 /k of 30.4 nm. The height of the channel H  is assumed to be 

500 nm for kH  = 16. At this ratio, the EDL will not overlap and a plug-like 

electroosmotic flow can be obtained.

6.3.1 Pressure-D riven Flow

It is well-known that a streaming potential sets up when a liquid is forced 

through a microchannel under an applied pressure gradient. The streaming
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Figure 6.2: Streaming potential along a 1 cm rectangular microchannel (H  — 
500 nm) with a uniform surface potential for ip = —25 to —100 mV, in a 25 mV 
increment. The pressure gradient is dP /dx  =  10 MPa/m.

potential can be obtained by considering the constraint of current continuity as 

shown in Eq. (6.1). For a channel with uniform surface potential, the streaming 

potential is proportional to the surface potential and the distribution along the 

channel is linear as shown in Figure 6.2 for tp = —25 to —100 mV, in a 25 mV 

increment.

For a channel with nonuniform surface potential such as a stepwise variation 

of surface potential, the streaming potential (p will be different. In the simu­

lation, the surface potential of the section to the left -01 in Figure 6.1 is set 

as 0 while that of the right "02 to be negatively charged. The junction of two 

sections is at the mid-point of the channel having a length of 1.0 cm (L =  2L\ 

=  2L2). The convection current Is in the left section will be zero because of 

zero net charge in the solution due to no EDL, so that the streaming potential 

is also zero. For the section to the right, a streaming potential will be set up
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Figure 6.3: Streaming potential along a 1 cm rectangular microchannel (H  = 
500 nm) with a nonuniform surface potential for fa  =  —25 to —100 mV, in a 
25 mV increment. The pressure gradient is dP /dx  =  10 MPa/m.

and the results are presented in Figure 6.3 for fa  =  —25 to —100 mV, in a 

25 mV increment. This result indicates that streaming potential relates to the 

surface potential and ion distribution associated with the surface potential, in 

agreement with intuition.

6.3.2 E lectroosm otic Flow

The constraint of current continuity is, however, not apparent in electroosmotic 

flow. In this section, the volumetric flow rate and potential distribution for 

electroosmotic flow in a channel are calculated with a stepwise variation of 

surface potential. The constraint of current continuity is also considered and 

the results are compared against those without such a constraint. The externally 

applied potentials are set fa  =  100 V at the inlet and fa — 0 V at the outlet. 

The surface potential of the left section fa  in Figure 6.1 is set to 0 while that
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of the right ipi to be negatively charged.

Potential D istribution along the Channel

For a channel with a uniform surface potential, the electric potential distribution 

along the channel governed by the Laplace equation (4.2) is linear and the 

electric field strength E  is constant based on the assumptions of a thin EDL and 

constant permittivity e. Thus, the potential </>2 at the junction equals and 

hence 0 2 =  50 mV. When the surface potential is nonuniform such as that shown 

in Figure 6.1, the potential distribution along the channel depends whether or 

not current continuity is considered. If the constraint of current continuity I ti — 

I t2 is not involved, the potential distribution is usually regarded as identical to 

the case with a uniform surface potential, i.e., 02 =  However, the realistic

situation is that current continuity should also be considered in electroosmotic 

flow for nonuniform surface potential and the potential distribution along the 

channel between (f>i and </>3 will not be linear. For a stepwise variation in surface 

potential, there is a step change in the potential distribution as given in Figure 

6.4. As can be seen from this figure, the potential at junction </>2 becomes 15 

mV, rather than 50 mV. This represents a 70% (35 mV) decrease from the 

linear assumption [</>2 =  (100 — 0)/2 =  50 mV] when the constraint of current 

continuity is considered.

The above phenomenon can be explained by the analogy of an equivalent 

electrical circuit shown in Figure 6.5. In this circuit, the conductance Ai and 

A2 correspond to the conductance for the left and right sections in Figure 6.1, 

respectively. Compared to the electroosmotic system mentioned earlier, Ai =  A& 

and A2 is the sum of the bulk conductance Ab, surface conductance Xs and 

the equivalent conductance due to convective current Is. Obviously, the value
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Figure 6.4: Distribution of potential along a 1 cm rectangular microchannel 
(H  = 500 nm) with a stepwise variation of surface potential (-01 =  0 mV and 
■02 =  —5 mV.) when the constraint of current continuity is considered in elec­
troosmotic flow

of Ai is smaller than A2. Thus, the resistance R\ should be higher than R 2- 

According to Ohm’s law and the current continuity I\ =  / 2 in a series circuit, 

^ p ^ 2 =  can be obtained so that the (p2 for Ri > R 2 should be smaller

than that for R\ = R 2, given that the (pi and (pi are fixed at the same value. 

This analogy applies to the electroosmotic system when nonuniform surface 

potential and current continuity are involved; the potential 02 at the junction 

between the two heterogeneous sections will decrease significantly from the case 

with uniform surface potential or without current constraint. Nevertheless, the 

potential distribution in each section remains linear as shown in Figure 6.4.

Figure 6.6 presents the ratio of the potential (p2/(pi for different surface 

potentials ip2 of the section on the right. The potential 02 is normalized by the 

potential (pi at the inlet. From this figure, the potential <p2/(pi or (p2 increases 

nonlinearly with the surface potential ip\. The variation of the potential A<p2
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Figure 6.5: An electrical circuit analogy to electroosmotic flow in heterogeneous 
microchannel in Figure 6.1.

as a function of ip2 is relatively small (~  1 V) and is due to the assumption 

of constant surface conductivity As and bulk conductivity A;, in the simulation. 

This small variation is induced only by the change in the convective current 

which is only a small fraction of the conduction current.

As a result, the apparent conductivity for the right section with an EDL ef­

fect in Figure 6.1 is higher than that of the left section when bulk conductivity 

is considered. This difference is attributed to the surface conductance and con­

vection current terms. Furthermore, the small variation of potential <fi2 with the 

surface potential 4>2 is a consequence of the convection current in electroosmotic 

flow.

Flow R ate

Figure 6.7 shows the results of the flow rate versus the variation of the surface 

potential in the section on the right 4>2 of the heterogeneous channel. In order 

to eliminate the effect of channel width W  in a 2D simulation problem, the
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Figure 6 .6 : Normalized potential at the junction of the two heterogeneous sec­
tions in Figure 6.1 versus the surface potential of the right section 0 2 with 
current continuity when ipi = 0 mV and 0 1 =  100 V.

volumetric flow rate is normalized by the maximum flow rate Qmax when the 

surface potential -02 is —100 mV without consideration of current continuity. 

In this figure, circles and squares represent the volumetric flow rate with and 

without the constraint of the current continuity, respectively. As can be seen, 

the flow rates in both cases are inversely proportional to the negative surface 

potential, as is well known. However, the flow rate with the constraint of the 

current continuity is much smaller than that without the constraint. As dis­

cussed above, electroosmotic flow is induced by acting the externally applied 

electric potential on the excess counter-ions in the EDL. In other words, both 

the externally applied electric potential and EDL will influence the velocity pro­

file and hence volumetric flow rate. For the electroosmotic system simulated in 

this chapter, the effective driving potential is the difference between 02  and 03 

because the surface potential 0 1 of the left section in Figure 6.1 is zero. Thus,
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Figure 6.7: Normalized volumetric flow rate in electroosmotic flow versus the 
surface potential of the right section fa  with and without the constraint of 
current continuity

the decrease of the potential fa  due to the constraint of current continuity will 

induce a smaller driving force so that the flow rate will become smaller for 

the same surface potential. As a result, the flow rate can be overestimated by 

as much as 70% if the constraint of current continuity is not satisfied in the 

simulated system.

6.4 Summ ary

The LBM is used to simulate electrokinetic flow field in a 500 nm channel by 

consideration of both flow rate and current continuities. For pressure-driven 

flow, the constraint of current continuity results in the well-known streaming 

potential effect from the electrical double layer. However, for electroosmotic flow 

with this constraint under a step variation in surface potential, the potential dis-
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tribution along the channel is also a step function. As the potential distribution 

varies, the effective potential to drive the flow due to an EDL effect decreases 

significantly and hence the flow rate becomes smaller. The volumetric flow rate 

without consideration of current continuity could have been overestimated by 

as much as 70%.
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C h a p t e r  7

C o n c l u s i o n s  a n d  F u t u r e  W o r k

7.1 Sum m ary of the R esults

In this thesis, an equilibrium distribution function in the presence of external 

forces was employed to derive the lattice Boltzmann equation with an additional 

(external) force term for microfluidics of electrolyte solution. Coupling with 

the Poisson-Boltzmann equation for charge distribution, the LBM was used to 

simulate electroosmotic flow and pressure-driven flow in straight rectangular 

nano and micro channels. The conclusions are summarized below:

Electroosmotic flow in a straight rectangular microchannel was simulated 

using a D2Q9 lattice Boltzmann model. Effects of channel height, surface poten­

tial, and applied electric field on the velocity profile were studied and compared 

with the corresponding analytical solutions. Excellent agreement was found. 

The LBM model considered here is shown to be an effective computational tool 

for complex microfluidic systems where an externally applied electric field is 

imposed.

The LBM was used to simulate the electroosmotic flow in nano and mi­

crochannels with heterogeneous surface potential. The simulation results indi­

cate that local circulations can occur near a heterogeneous region with nonuni-
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form surface potentials, in agreement with those from other studies. Largest 

circulations, which imply a highest mixing efficiency due to convection and 

short-range diffusion, were found when the average surface potential is zero, 

regardless of whether the distribution of the heterogeneous patches is symmet­

ric or asymmetric. A zero average surface potential, however, implies zero flow 

rate. Therefore, more importantly, it has been illustrated that there is a trade­

off between mixing and flow efficiencies in EOF microfluidics. One should not 

simply focus on mixing and neglect liquid transport. Excellent mixing could 

lead to a poor transport of electroosmotic flow in microchannels. The results 

from the simulation can be used as guidelines for the optimization and design 

of microdevices in terms of mixing and species transport.

The LBM is utilized to simulate electrokinetic flow field in a 500 nm channel 

by consideration of both flow rate and current continuities. For pressure-driven 

flow, the constraint of current continuity results in the well-known streaming 

potential effect from the electrical double layer. However, for electroosmotic 

flow with this constraint under a step variation in surface potential, the po­

tential distribution along the channel is also a step function. As the potential 

distribution varies, the effective potential to drive the flow due to an EDL effect 

decreases significantly so that the flow rate will become smaller for the same 

surface potential. Therefore, the volumetric flow rate could have been over­

estimated by as much as 70% without consideration of the current continuity 

constraint.

7 .2  F u tu r e  W o r k

The LBM has been demonstrated to be an effective computational tool to sim­

ulate the electrokinetic transport phenomena. However, there are still many
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interesting questions for further investigation.

1. As mentioned in Chapter 5, the size of the circulation are used to represent 

the mixing efficiency qualitatively. However, it is necessary to quantify 

mixing and hence a multicomponent LBM scheme is required. In addition, 

in the simulation of mixing, charged particles can be involved so that 

another electrokinetic phenomenon, electrophoresis, can be considered in 

the LBM model.

2. In this thesis, the ion and potential distribution are governed by the 

Poisson-Boltzmann equation. The results are only valid for the fully de­

veloped region where the charge density was assumed to follow the Boltz­

mann equilibrium distribution. The effect of entry and multidirection 

flow field on the ion distribution has been neglected. To investigate the 

effect of entry region and the multidirection flow on the flow characteristics 

without assuming the Boltzmann equation for ion density distribution, the 

Nernst-Planck equation, also called convection-diffusion-migration (CDM) 

equation, should be coupled with the LBM method. This CDM equation 

can be solved by LBM method. In the future work, an appropriate LBM 

scheme should be developed to solve for the ion and potential distribution 

and flow field simultaneously.

3. The geometry of the channel in the simulation is simple so that the bound­

ary condition can be easily implemented. For a more complex geometry 

in other applications, a complicated boundary condition is required for 

more accurate results.
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