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Abstract 

 

This represents a proof-of-concept study of the appropriateness of 

vibrational and NMR spectroscopy for predicting the molecular structure of 

large molecules on the basis of a library of small molecules. Density 

Functional Theory (DFT) B3LYP/6-311G was used generate all spectra. 20 

model compounds comprising two multiple-ringed polynuclear aromatic 

hydrocarbons (PAHs) connected by varying aliphatic chain-lengths were 

investigated. A least squares optimization algorithm was developed to 

determine the contribution of molecular subunits in the model compounds. 
1H and 13C NMR spectroscopy failed to identify subunits unambiguously 

even with a constrained library. By contrast, IR and Raman results 

independently identified 40% and 65% respectively and jointly more than 

80 % of the aromatic groups present; however, the aliphatic chain-length 

was poorly defined in general. IR and Raman spectroscopy are a suitable 

basis for spectral decomposition and should play a greater role in the 

identification of ringed subunits present in ill-defined hydrocarbons. 
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1 Introduction 
 

1.1 Why study molecular structure? 
From elementary physics and chemistry, we have come to appreciate the 

relationship between the structure of a system under investigation and its 

properties or functions. It doesn’t matter how simple or complex the system is, 

most of its properties can be completely explained if there is a detailed description 

of its atomic, electronic, and molecular structure. 

 

Medical science has been radically transformed with the discovery of the building 

blocks of life. The discovery of the molecular units of human life called DNA and 

RNA, and the subsequent mapping of the human genome has enabled scientists to 

better understand how some group of people develop immunity to certain diseases 

whereas others do not. In a recent article published in the New England Journal of 

Medicine [1], even though COPD (Chronic Obstructive Pulmonary Disease) has a 

prevalence of about 50% among heavy smokers, and is projected to be the third 

leading cause of death worldwide by 2020, some smokers still avoid COPD 

because innate and adaptive immunity is an integrated system where cells and 

molecules function in close connection.  

 

The field of nanotechnology has benefited immensely from the manipulation of 

the molecular structure of materials to build functional systems. Nanotechnology 

enables the design of new materials at the atomic and molecular level. For 

instance, properly structured gold nanoparticles can be used to generate enough 

heat from light to treat cancer cells in humans, while carbon nanotubes which are 

1/100,000 the diameter of human hair are so strong that they could be used to 

protect airplanes from lightning strikes and cool computer circuits. 
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From the foregoing, there is no doubt that understanding the molecular nature of 

matter is a key component to not only understanding their function and properties, 

but also improving their function and properties. 

 

1.2 Crude Oil Molecular Structure  
Crude oil or petroleum is a complex organic mixture of 105 to 106 different 

molecules [2]. It must frequently be processed to form products with hydrogen 

content different from that of the original feedstock; hence, the chemistry of the 

refining process focuses primarily on the production of better as well as 

marketable products [3]. Understanding the molecular composition of crude oil is 

therefore critical to selection of production and refining processes and refining 

conditions that translate into better economic value for the crude oil, and 

reduction in flow assurance problems resulting from solid deposits in pipelines, 

including wax, asphaltene, and hydrates during production [4]. 

 

Generally, crude oils are classified for economic value based on API gravity. 

Heavy oils have API gravities of 20 or less, extra or super-heavy oils 10 or less 

whereas a typical light crude oil has an API of about 36-38 [5]. Oil sands (or 

natural Bitumen) are sands saturated with heavy or extra-heavy oil and typically 

have API gravities between 6 and 12 [5]. The largest extra-heavy oil deposit is 

located in the Orinoco heavy oil belt, and contains about 90% of the world’s 

reserves; while 81% of the world’s bitumen reserves are located in Alberta, 

Canada, together, they contain 3,600 billion barrels of oil in place [6].  

 

The depletion of conventional or light crude reserves precipitated by rising global 

demand for energy has created the need to refine and produce heavier crude oil 

sources such as bitumen which account for more than 50% of the world’s reserve 

of fossil fuels [5, 7].  
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1.3 Thermodynamic Applications of 

Molecular Structure 
The macroscopic properties of matter including heat capacity, viscosity, pressure, 

temperature, density, and the energy transformations that affect the changes in 

these properties constitutes branches of applied thermodynamics. The first and 

second laws of thermodynamics comprise the functional relationships that relate 

the energy transformations with these thermophysical properties.  

 

With the increasing need to produce and refine heavier feedstocks, good 

predictions of thermophysical properties for reservoir simulation and surface 

facility design are very important in the petroleum industry. Key thermophysical 

properties include vapour pressure and phase behaviour more broadly, and heat 

capacity. 

 

1.3.1 Group Contribution Equations of State (GC-

EOS) Models 

Efficient design of chemical processes including reservoir simulation requires a 

good understanding of phase behaviour and the ability to predict thermophysical 

properties. These properties can be obtained using an equation of state model; 

which are used to fit experimentally observed phase behaviour data using inputs 

based on measured pure component properties such as critical temperature and 

pressure. There are two major types of EOS models in use today namely the cubic 

equations of state (CEOS) and the group contribution equations of state (GC-

EOS).  

 

CEOS such as the Peng-Robinson (PREOS) are commonly used in reservoir 

simulation to predict phase behaviour of petroleum fluids. The vapour pressure 
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predictions must be accurate in order to provide a usable thermodynamic model. 

This is achieved by modifying the attractive parameter of the CEOS to include 

experimental or estimated vapour pressure data [8]. This approach works well for 

conventional oils due to the small amount of non-distillable fluid, typically about 

5 wt% [8]. However, it cannot be applied to heavy oils and bitumen where 

roughly 60 wt% of the fluids are non-distillable [8].  

 

GC-EOS models provide an alternative means of obtaining these critical 

properties for heavy oils and bitumen because they are based on the contribution 

of each molecular or structural groups present in the compound of interest. The 

original GC method of Coniglio et al. [9] developed for the Peng-Robinson CEOS 

was evaluated by Van Waeyenberghe [10]. For binary mixtures 

(hexane/hexadecane and benzene/ethylbenzene), the GC-EOS PR gave slightly 

better agreement with the experimental data than the critical-property-based 

PREOS. However, in a recent publication, Saber and Shaw [11] reported that the 

combination of the PREOS with the GC method developed by Marrero and Gani 

[12] gave better results than the PREOS. The authors based their results on model 

mixtures containing n-eicosane and n-decylbenzene. Computed density and 

bubble pressure values, along with other properties, are sensitive to the details of 

molecular structure, e.g.: anthracene vs. phenanthrene. Results obtained from this 

work are expected to facilitate better molecular definition, a key enabling 

knowledge base for phase modeling, and technology selection in the petroleum 

industry. 

 

1.3.2 Heat Capacity Prediction 

Heat capacity at either constant pressure or volume is the basis for energy models 

for simulators and is a tool for probing phase transitions of bitumen, residues, and 

asphaltenes because of the close relationship between molecular structure, 

vibration spectra, and heat capacity- particularly in the solid state [13].  Lastovka 
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et al. developed a generalized similarity concept for heat capacity [14, 15], and 

devised correlations based solely on the knowledge of the elemental composition 

for organic solids [16] and ideal gases [17]. The correlations apply to diverse pure 

organic compounds and complex mixtures containing C, H, N, O, and S, using 

universal coefficients. Quantum mechanical calculations played a key role in the 

development of the correlations but the details of molecular structure, beyond 

elemental composition have proven to be of secondary importance. 

 

1.4 Heavy crude oil components  
Organic material deposition, flocculation and plugging usually take place during 

heavy oil and bitumen production near the well bore and in the reservoir, during 

pipeline transportation, in the coke process during refining, during combustion, 

and in engine operations [18, 19]. The deposition is caused by the heavy 

components of the crude oil which self-associate, flocculate, precipitate or even 

polymerize at high temperatures and pressures [19]. Among the heavy petroleum 

components, asphaltenes seem to draw more attention than others, because of 

their intractable nature [20]. 

 

During petroleum refining, the asphaltene constituents are non-distillable and 

remain in the residua fuels as the distillable fractions are removed [18]. 

Asphaltenes agglomerate in crude oils and vacuum residues, and these aggregates 

are usually very poorly soluble in most organic solvents and petroleum 

liquids[19]. Since asphaltenes are structurally incompatible with many organic 

solvents, preventing or removing the deposits they form requires an understanding 

of their molecular arrangements [19]. 

 

The depletion of light crude oil reserves has created a need to refine heavier 

feedstocks including asphaltenes, heavy oils, vacuum residue, and bitumen. These 

ill-defined petroleum fractions, which typically possess aromatic carbon contents 
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exceeding 50% [13] cannot be studied by techniques such as gas chromatography, 

gas chromatography-mass spectrometry, or liquid chromatography, developed for 

hydrocarbons. Physical methods, such as infrared (IR), nuclear magnetic 

resonance (NMR), X-ray spectroscopy [21], and Fourier transform ion cyclotron 

resonance mass spectrometry (FT-ICR MS)  [22] have proven more successful at 

unlocking their molecular structures. For example, using ultra-high FT-ICR MS, 

researchers at Florida State University have identified 20,000 distinct elemental 

compositions in petroleum crude oil [22]. 

 

1.5 Thesis Outline 
The balance of this thesis is organized as follows. Chapter 2 contains a review of 

the current literature regarding molecular structure prediction methods and 

strategies. A brief discussion on the origins of petroleum is presented, as well as 

the chemical constituents of petroleum. The chapter closes with a brief discussion 

of the many-electron problem of quantum mechanics and how the Density 

Function Theory (DFT) provides a workable solution of this intractable problem. 

 

In Chapter 3, the theoretical underpinnings of the methods employed to generate 

and analyze the results reported are presented. Thus a more detailed description of 

the DFT methods is discussed, and the novel spectral optimization algorithm is 

introduced and elaborated upon.  

 

The results obtained from applying the methods in Chapter 3 are reported in 

Chapters 4 and 5. Chapter 4 begins with some more detailed information about 

the computational technique, and the rest of the chapter is a summary of the 

results from infrared and Raman analysis. Chapter 5 highlights the contrast 

between vibrational and Nuclear Magnetic Resonance (NMR) spectroscopy; the 

chapter discusses the results from analyzing NMR data. 
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In Chapter 6, the conclusions drawn from the results and discussions in the thesis 

are presented; and the future direction for the research is recommended 
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2 Literature Review 

2.1 Introduction 
Heavy oil and bitumen represent the most chemically complex variety of 

petroleum; and the elucidation of the molecular structure of their ill-defined, high 

molecular weight constituents poses a huge challenge to the petroleum chemist 

[23].  The focus of this work is linked to the development of a novel approach to 

molecular structure prediction for the ill-defined fraction of petroleum including 

asphaltenes, heavy oil, bitumen, and vacuum residua. 

 

The first part of this review focuses on the various measurement techniques used 

to characterize heavy oil and bitumen fractions. The challenges encountered in 

processing heavier feedstocks can be attributed to the chemical character and 

amount of high-boiling constituents in the feedstock. Individual molecules in ill-

defined hydrocarbons cannot be measured; hence a combination of techniques is 

used and molecular structures are proposed that are consistent with experimental 

data [24]. To obtain information about bulk properties, elemental analysis, 

average molecular weight, nuclear magnetic resonance (NMR), infrared (IR), and 

ultraviolet-visible (UV-Vis) measurements are required. Separation techniques, 

including short path distillation, high performance liquid chromatography (HPLC), 

gas chromatography (GC), and solvent solubility, SARA (Saturates, Aromatics, 

Resins, Asphaltenes) analysis, yield the amounts of various fractions [24]. 

 

This second part of this review focuses on the various molecular structure 

representations used to model and describe the thermophysical properties of the 

heavy oil and bitumen fractions of petroleum. The review focuses on the 

molecular representation of asphaltenes, which represent the heaviest molecular 
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weight fractions of heavy oil and bitumen, and the fraction posing the greatest 

industrial challenges throughout the production and refining process chain. There 

are currently two widely-held views on the molecular structures present in this 

fraction, namely, the archipelago and the pericondensed structures. Literature 

supporting these two perspectives is reviewed in detail. 

 

2.2 Petroleum Origins and Chemistry 
The first scientific theory on the origin of petroleum is attributed to 19th century 

scholars: Berthelot and Mendeleev [25-27]. Berthelot (1876) and Mendeleev 

(1878) both postulated that petroleum was formed deep within the earth’s crust by 

inorganic material. This inorganic theory of the origins of petroleum dominated 

for a long time even though in 1863, the Canadian petroleum geologist T.S. Hunt 

had suggested the organic origin of petroleum [25, 27]. However, the first truly 

comprehensive theory of the organic origins of petroleum was put forward in the 

1930’s by German Chemist Alfred Treibs, who reported the similarity between 

the chemical structure of porphyrins (organic molecules found in petroleum) and 

chlorophyll pigments found in living organisms [25, 27]. In addition, the 

observation of optical activity in petroleum fractions, which the abiogenic 

hypothesis could not account for [28], provided conclusive evidence of the 

biogenic origins of petroleum. 

 

Petroleum is therefore formed from the accumulation of hydrocarbons from living 

organisms; as well as the formation of hydrocarbons by the action of heat on 

biologically formed organic material [29]. The hydrocarbons synthesized directly 

from living organisms or from their molecules account for 10-20% of petroleum; 

while the remaining 80-90% involves the conversion of lipids, proteins, and 

carbohydrates of living material into the organic matter of sedimentary rocks [29]. 

Some of these organic compounds have carbon or skeletal structures that can be 

traced back to a living organism or source material, and are called biomarkers. 
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Biomarkers provide essential information about the geological history of oils and 

source rocks [30]. 

 

The different hydrocarbon groups found in petroleum including heavy oils and 

bitumen are the paraffins, naphthenes or cylco-alkanes, and aromatics. The 

paraffins or alkanes (CnH2n+2) are the second most common constituents of crude 

oil. They form both straight and branched-chains. The straight chain paraffins are 

called normal paraffins or n-paraffins. The terms saturated and aliphatic 

hydrocarbons are also used for this group. The naphthenes or cyclo-alkanes 

(CnH2n) are the most common molecular structures in petroleum, and are formed 

by joining carbon atoms in a ring. The average crude oil contains about 50% 

naphthenes, with the quantities increasing in the heavier fractions and decreasing 

in the lighter fractions [29]. The naphthenes and paraffins are both referred to as 

saturated hydrocarbons because all the available carbon bonds are saturated with 

hydrogen. The aromatic hydrocarbons contain at least one benzene ring. They 

rarely account for 15% of the entire crude oil, and tend to be concentrated in the 

heaviest fractions including heavy oil, bitumen, and vacuum residua; in which 

they make-up about 50% [29]. In addition to hydrocarbons, petroleum also 

contains heteroatoms such as sulfur (S), nitrogen (N), and oxygen (O).  

 

2.3 Heavy oil and Bitumen Definitions 
Natural bitumen (often called tar sands or oil sands) and heavy crude oil differ 

from light crudes by their high viscosity (resistance to flow) at reservoir 

conditions, high density (low API gravity), and significant contents of 

heteroatoms including nitrogen, oxygen, and sulfur compounds, and heavy-metal 

compounds [6]. 

 

They are the products of previously light crude oil that have lost their light-

molecular-weight components through bacterial degradation, water-washing, and 
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evaporation [5, 6]. The loss of light fractions renders the oil heavy with a high 

proportion of asphaltic molecules, which largely determine the increase or 

decrease in the density and viscosity of the oil [31]. They resemble the residuum 

from the refining of light oil, and are more costly to produce and transport; 

requiring additional upgrading to reduce their viscosity and carbon content before 

they can be used as feedstock in a conventional refinery [6]. 

 

Heavy oils, bitumen and vacuum residua are the heaviest fractions of petroleum. 

They contain larger quantities of non-distillable hydrocarbons, which are 

characterized by their higher molecular weight, lower H/C ratio, higher fraction of 

aromatic carbon, higher S and N heteroatom content, and trace levels of Ni and V 

[32].  

 

2.4 Heavy Oil and Bitumen Composition 

Analysis 
Heavy oils and bitumen like other petroleum fractions consist of hydrocarbons, 

resins and asphaltenes [33]. However, compared to conventional or light crude 

oils, heavy oils and bitumen have higher molecular weight fractions including 

asphaltenes and resins [33]. This increase in molecular weight distributions also 

correlates with increasing boiling point thereby rendering distillation methods 

used to analyze light crudes ineffective in heavy oil and bitumen analysis [34].  

The higher the boiling point of a fraction, the more difficult it is to analyze [34]. 

 

For instance, according to Altgelt and Boduszynski [34], the composition of 

naphthas, with a normal boiling range from the start of the distillation process to 

130 °C, can be easily determined by gas chromatography (GC) alone; whereas the 

composition of heavy naphthas (boiling range 130 °C-220 °C) is more difficult, 

and requires the use of gas chromatography/mass spectrometry techniques 
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(GC/MS) to analyze. However, the non-distillable fraction or vacuum residue, 

boiling above 700 °C are by far the most difficult to analyze due to their limited 

volatility and solubility which greatly limit the use of conventional analytical 

techniques for their analysis.  

 

Due to this complexity, it is often impossible, and usually unnecessary to 

determine the individual molecular constituents of the oil [34]; compositional 

analysis are usually conducted by fractionation into predefined chemical groups 

[35] .The isolation of the different fractions is facilitated by the difference in 

solubility of petroleum in paraffin solvents; the soluble fraction is called maltenes, 

while the insoluble fraction is called asphaltenes. As mentioned in Chapter 1, 

asphaltenes are an important component in understanding the structure of heavy 

oils and bitumen; and they will be the subject of the next section. 

 

2.5 Asphaltene Chemistry and Molecular 

Structure 
Asphaltenes are the most aromatic, highest molecular weight, and the most polar 

constituents of crude oil; and were the subject of a very early investigation by 

Boussingault in 1837 [36-38], who described them as the distillation residue of 

bitumen.  

 

They precipitate from crude oil upon the addition of nonpolar, low-boiling 

hydrocarbon solvents such as n-pentane, and n-heptane [18, 36, 39]. The yield and 

quality of asphaltenes depends on how it is separated, the time before filtration, 

the pore size and material of the filter [2].  

 



 
   

 13

Table 2-1: Elemental Composition of Athabasca [40], Duri [39]and Boscan [39] 
Asphaltenes 
 
Wt.% C H N O S 

Athabasca 79.9 8.3 1.2 2.8 7.8 

Duri 87.35 8.22 1.47 2.07 0.39 

Boscan 81.10 7.79 1.11 1.43 6.10 

 

The molecular structure of petroleum asphaltenes is fundamental to understanding 

its colloidal, solubility, thermal and chemical properties[39] . The attempts to 

elucidate the molecular structure of asphaltenes have been hampered by the high 

values and broad distributions of molecular weights and the extreme diversity of 

structural elements within the constituent molecules[40]. The common features of 

the general structures proposed involve variable sizes of polycondensed aromatic 

nuclei, naphthenic rings, sulfide linkages, alkyl side chains, and bridges between 

rings [40].  

 

Although the molecular building blocks of asphaltenes are known [37], the 

molecular structure representation of these fragments has been contentious and 

very ambiguous. T. F. Yen [41] postulated that the asphaltenes were 

pericondensed in nature based on NMR and X-ray results, whereas Strausz et al. 

contend that pericondensed aromatic units play a minor role in petroleum 

asphaltenes [37] based on the ruthenium-ions-catalyzed oxidation (RICO) of 

Athabasca bitumen asphaltenes. Recently, Zhao et al. [42] and Sheremata et al. 

[43] using a combination of NMR, elemental and molecular weight analysis, 

reported different molecular structural representations for the asphaltenes 

obtained from Athabasca bitumen. While Zhao and co-workers reported a 

pericondensed structure, Sheremata et al. report archipelago representations. In a 

paper published in 2009, Boek and co-workers [44] processing Sheremata et al.’s 

data were also able to report pericondensed molecular representations by making 
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changes to the molecular assembly mechanism. Differences were primarily linked 

to the nature of the substructures presumed to be present. 

 

Hence, the ambiguity is not only restricted to the analytical methods employed, 

but also extends to the analysis of asphaltenes obtained from the same source. 

Furthermore, the average molecular structure proposed appears to indicate the 

relative importance researchers place in the type of analytical techniques used 

namely proton versus Carbon-13 NMR, or ion cyclotron spectroscopy and 

fluorescence [20].  

 

However, a central unresolved question is which of these two structural models 

more closely approaches the average structure for these ill-defined petroleum 

fractions. Further, the phase behaviour of these fractions is a key element for the 

development of both refining and production processes [13]. Current models only 

capture a subset of the relevant physics and chemistry of the range of length 

scales asphaltenes intra-act and interact; hence, they are only correlative in nature 

[20]. 

 

2.5.1 The Pericondensed Model 

The pericondensed model (Fig. 2-1) of asphaltenes is characterized by a large 

single aromatic core of carbon atoms from which aliphatic chains extend. This 

model is supported largely by NMR spectroscopy, X-ray diffraction, and 

fluorescence depolarization [43]. 
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Figure 2-1:  Pericondensed molecular structure representation (from Reference 46) 
 

2.5.1.1 NMR Spectroscopy 

Nuclear Magnetic Resonance (NMR) spectroscopy is a very useful technique for 

identifying and analyzing organic compounds, and it is based on the magnetic 

properties of atomic nuclear. The most common forms of NMR spectroscopy are 

those based on the nuclei of 1H and 13C. The 1H gives information about the 

number of protons in an organic sample, while 13C gives information about the 

carbon atoms present [45]. NMR measures aromatic and aliphatic carbon as well 

as hydrogen substitutions [34]. This technique can also detect the presence of 

various structural groups and provide information about their concentration [46]. 

 

Yen et al. [47] used proton-NMR to determine the fraction of saturated 

hydrocarbons in petroleum asphaltenes. The study also showed the presence of 

aromatic and naphthenic structures, and concluded that approximately 29 to 66 

percent of the terminal carbons were in methyl or ethyl groups attached to 

aromatic centers. Sheremata et al. [43] used a combination of 1H and 13C, 

elemental analysis, and vapour pressure osmometry (VPO) in combination with 



 
   

 16

Monte Carlo simulations to elucidate the structure of Athabasca asphaltenes. They 

generated representative asphaltene molecules that were consistent with 

experimental data, and presented the first quantitative molecular representations 

of asphaltenes as archipelago structures. 

 

However, both agree that NMR analysis alone cannot be used to predict the 

structure of complex molecular species such as asphaltenes because the aromatic 

structures present in asphaltenes exhibit very similar NMR signatures. Further, 

NMR results show the concentrations of various chemical groups including 

quaternary and protonated carbon structures, but not necessarily their spatial 

configurations. Thus it is possible to obtain multiple molecular representations 

from the same data set; hence the ambiguity of molecular representations of 

asphaltenes based on NMR data alone. 

 

2.5.1.2 X-ray Diffraction 

X-ray diffraction studies have been used to analyze the petroleum asphaltenes 

since the 1960s. Yen et al. [48, 49] used this technique to determine the 

aromaticity and crystallite parameters of eight petroleum asphaltenes, a petroleum 

resin, a gilsonite asphaltene, and an asphaltene obtained from a visbreaker tar. 

They concluded that asphaltenes were a condensed aromatic sheet, with 

naphthenic and aromatic branches. Shirokoff et al. [50] compared the crystallite 

and aromaticity parameters of asphaltenes from four Saudi Arabian crudes to the 

average structural parameters obtained from NMR; and arrived at the same 

conclusion.  

 

However, Andersen et al. [51] suggest that the aromaticity values used to reach 

the conclusion by the previous authors were in disagreement with those expected 

from NMR and elemental analysis. While Altgelt and Boduszynski [34] contend 

that x-ray data can be misleading when used to translate geometric data into 
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structural information. In addition, they seem to suggest that the determination of 

aromaticity (the fraction of aromatic carbon over total carbon in a molecule) using 

x-ray data is inappropriate and arbitrary.  

 

Hence, for the complete analysis of molecular structures, it is necessary to apply 

all available spectroscopic methods .[45] 

 

2.5.1.3 Fluorescence Spectroscopy 

Fluorescence spectroscopy methods use the optical characteristics of asphaltenes 

to predict their molecular weight and structures. Groenzin et al. [52] used 

fluorescence depolarization techniques to measure the rotational correlation times 

of individual asphaltene molecules. Their findings suggest that the controversy 

surrounding the molecular weight and structure of asphaltenes is due to their 

tendency to aggregate at very low concentrations, 0.06g/L. They propose that 

analytical techniques such as vapour pressure osmometry (VPO) which requires 

large concentrations of asphaltenes generally measure large molecular weights 

due to asphaltene aggregation. Hence, it is their opinion that asphaltenes are 

monomeric, consisting of a single large aromatic core surrounded by aliphatic 

chains corresponding to the low molecular weights (~ 750 g/mol) observed in 

their studies. In a related publication, Andrews et al. [53] measured the 

translational diffusion coefficients of asphaltene molecules at very low 

concentrations, before the onset of aggregation, and also concluded that 

asphaltene molecules are monomeric and not polymeric. They also conclude that 

self-association of asphaltenes are responsible for the diversity in molecular 

structures proposed for asphaltenes. Similar results and conclusions were drawn 

from using time-resolved fluorescence depolarization (TRFD) techniques on 

dilute asphaltene solutions [54]. 
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However, Strausz et al. [55] in their critique of the use of fluorescence techniques 

on dilute asphaltene solutions posit that fluorescence decay time measurements on 

highly complex mixtures like asphaltenes can yield numerical information with no 

physical meaning, the measurements were made using inappropriate equipment 

and methods, and the yield of fluorescence per unit weight strongly depends on 

VPO molecular weight of the asphaltene; which monotonically falls off with 

increasing molecular weight of the separated asphaltene fractions, and the highest 

molecular weight fractions (>17 000 g/mol) barely emit.  

 

In a rebuttal to the above observations, Mullins [56] argues that recent results 

using various analytical techniques support the asphaltene molecular weight and 

structure predicted using the TRFD technique, and not the results of Strausz et al. 

[55]. He contends that because the TRFD is a non-destructive analytical method, 

it is superior to the destructive methods employed by Strausz et al. However, he 

does admit that it is possible to have an asphaltene molecular fraction with more 

than one polynuclear aromatic hydrocarbon (PAH); even though for over a decade 

the TRFD results have suggested that there is a single PAH per asphaltene 

molecule as the dominant structure.  

 

2.5.2 The Archipelago Model 

The archipelago model (Fig. 2-2) as the name suggests represents asphaltenes as a 

collection of aromatic “islands” connected by aliphatic “bridges”. This model is 

supported by data from pyrolysis, oxidation, and thermal degradation [43]. 
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Figure 2-2:  General archipelago structural representation (from Reference 46) 
 
 

2.5.2.1 Pyrolysis, Chemical and thermal degradation 

Strausz et al. [57] posit that the extent of aromatic condensation in asphaltenes is 

very low, hence the pericondensed model does not adequately describe the 

molecular structure of asphaltenes. In their paper, they point out that the infrared, 

NMR, and X-ray diffraction studies on asphaltenes conducted in the 1950’s could 

not account for the presence of naphthenic structures in asphaltenes, which 

resulted in a predominance of aromatic and aliphatic structural components. 

Further, they argue that X-ray diffraction studies of Dickie and Yen [58] which 

suggested that asphaltenes were pericondensed, suffered from an “overestimation 

of the X-ray diffraction signal attributed to large aromatic disks”; thereby 

rendering the method and the predicted model unsuitable to asphaltenes. 

 

They further argue that the products of mild thermolysis of Athabasca Bitumen 

asphaltene could not have been created by the break-up of large condensed 

aromatic clusters. Furthermore, they point out that the presence of copious 

amounts of biomarkers in asphaltenes indicated the presence of sulphides, 

sulphoxides and carboxylic acids which must be accounted for in any model of 

asphaltene molecular structure. 

 

According to Gray [59] asphaltenes must have a variety of aromatic groups 

connected by bridges and substituted aliphatic groups, large molecular weight, 
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and have a large concentration of high boiling fractions (typically ~ 650C) to be 

consistent with experimental observations from cracking and pyrolysis. He 

suggests that an asphaltene molecule with a condensed aromatic core cannot give 

significant yields of volatile products in pyrolysis experiments, whereas an 

asphaltene molecule with a distribution of aromatic centers linked by aliphatic 

chains would produce a very wide range of products from methane to toluene-

insoluble carbon residue. 

 

Peng et al. [60] used a combination of nickel-bromide reduction of the carbon-

sulfide bonds, basic hydrolysis of the ester bonds, and the boron tribomide 

cleavage of the carbon-oxygen bonds to study the chemolysis products of 

Athabasca asphaltenes, and concluded that the molecular structure of asphaltenes 

was characterized by core segments bound by acyclic sulfur linkages. 

 

Finally, Jaffe et al. [61] also confirm that the archipelago model more closely 

describes the behaviour of asphaltenes under selective oxidation or pyrolysis. 

Hence, the archipelago molecular structure model is more consistent with the 

empirical chemolysis and thermolysis products of asphaltenes. 

 

2.6 Molecular Representations 
The chemical complexity and diversity of heavy petroleum fractions including 

asphaltenes make the analysis and modeling of their molecular structures very 

daunting. It is not possible to analyze and quantity the individual components or 

compounds or isomer lumps, because the number and complexity of the 

molecular structures grows rapidly with increasing molecular weight and boiling 

point [61, 62]. 

 

Average molecular structures have been used to represent vacuum residua 

(including asphaltenes). This approach uses correlations that rely on 1H NMR data 
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to calculate average properties including aromaticity and degree of substitution 

[43, 44]. Although these structures are based on characterization information, they 

are inadequate for modeling purposes, because real conversion processes produce 

a wide variety of single-core molecules, which is inconsistent with a single 

starting molecule [61] . In addition, they suffer from limitations due to the 

complexity of the mixtures of heavy petroleum fractions. 

 

More detailed molecular representations have been developed using stochastic 

and quantitative techniques. These techniques allow for a statistical representation 

of molecular structure of heavy petroleum feedstocks using analytical data as 

input. 

 

2.6.1 “Average Molecule” Representation 

According to Boduszynski [62], the complexity of petroleum mixtures increases 

rapidly with increasing boiling point due to the increasing number of atoms in 

each molecule and the vast number of potential structural arrangements or 

isomers. Hence, the characterization of high-boiling petroleum fractions such as 

vacuum residue in terms of individual components is practically impossible. Even 

a combination of the most powerful analytical tools including gas 

chromatography and mass spectrometry (GC/MS) is limited to relatively low-

boiling petroleum fractions because of the immense number of structural isomers 

present in the high-boiling fractions rather than sample volatility. 

 

Consequently, the molecular characterization of asphaltenes, heavy oils and 

vacuum residue has involved the “grouping” of compounds, and the concept of 

“average molecular structure”[62]. The concept of average molecular structure 

determination usually relies on the results of elemental analysis, 1H and 13C 

spectroscopy, and average molecular weight determination to derive the structural 

parameters of the average molecule [63].  
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2.6.1.1 Limitations of the Average Structure Concept 

Boduszynski [63] contends that although the concept of the average molecule has 

been widely used to characterize heavy end petroleum fractions and coal-derived 

liquids from the late 1950’s, it does not provide the required structural 

information for these complex mixtures. 

 

He posits that heavy ends and vacuum residue are represented by a wide 

molecular weight distribution which also extends to relatively small molecules 

rather than consisting wholly of high molecular weight components. This wide 

distribution in molecular weights resulting from significant differences in 

volatility between the different chemical structures that make up these complex 

mixtures is the major limitation of the average structure model. The high 

concentration of polar, hetero-atom containing, polycyclic aromatic compound 

classes in the high boiling fractions and vacuum residua explains the wide 

molecular weight distributions of heavy ends. 

 

He also points out that the use of vapour pressure osmometry (VPO) in average 

molecular weight determination of asphaltenes (with high concentrations of polar 

components) suffers from strong intermolecular associations. These 

intermolecular associations results in the over-estimation of the molecular weights 

of asphaltenes using VPO. 

 

According to Petrakis and Allen, the analytical data on which the average 

structure is based are averaged over all the components in the mixture; and as a 

result the average structure is unlikely to be the dominant one, and may even be 

absent [64]. 

 

As a result of these limitations, and the number of molecules required to represent 

petroleum mixtures, more detailed schemes are required to better describe the 

molecular structure of heavy petroleum fractions 
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2.6.2 Quantitative Molecular Representation 

The need to accurately represent the process chemistry of petroleum feedstocks as 

a means to obtaining good predictions on product properties has led to the 

development of more sophisticated modeling techniques. For complex 

hydrocarbon mixtures, it has been operationally expedient to use lumped kinetic 

schemes, where molecular components are generally grouped by boiling point and 

solubility classes ; these lumps are then represented in reaction models as if each 

were a single pseudo-component [65]. However, these lumps contain several 

molecules that are chemically dissimilar other than the definition of the lump to 

which they belong [65, 66]. The limitations of the lumped models motivated the 

development of a molecular-based approach with the goal of assembling a set of 

representative molecules with properties characteristic of a given feed [65].  

 

Quantitative representations use a combination of advanced analytical 

characterization techniques including 1H, 13C NMR and mass spectrometry, and 

statistical modeling approach to transform structural attributes for heavy 

petroleum fractions into detailed molecular structure representations [65, 67]. 

 

2.6.2.1 Structure-Oriented Lumping 

Quann and Jaffe [66] developed the structure-oriented lumping (SOL) for 

describing the composition, reactions and properties of complex hydrocarbons 

mixtures in 1992; and in 2005, the method was extended to incorporate vacuum 

residua by Jaffe et al [61] Structure-oriented lumping represents individual 

hydrocarbon molecules as vectors of 22 structural increments. The SOL 

increments (Fig. 2-3) consist of three aromatic increments, six naphthenic 

increments, a side-chain increment, and two isomeric descriptors: branches on 

side chains and methyl groups [61]. In addition, a hydrogen increment is used to 

represent unsaturation, two sulfur increments, three nitrogen and three oxygen 
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increments are used to describe heteroatomic hydrocarbons; while a biphenyl 

bridging increment is also specified. 

 

 

 

The SOL approach represented gas oil and lighter petroleum fractions in terms of 

homologous series of single-core molecules such as benzene and alkylated 

benzenes, and heavy fractions such as vacuum residua as multicore molecules 

comprising linked assemblies of single-core species [61]. The molecular 

description is achieved by representing each complex mixture as a table of 

vectors; where each row represents a molecule with each having a concentration 

in weight percent [61]. Fig. 2-4 shows a hydrocarbon structure in the SOL 

representation. 

 

 

 
Figure 2-4: An example of the SOL representation of a hydrocarbon structure (from 
reference 66) 
 

Different molecules with the same set of structural groups (isomers) are lumped 

and represented by the same vector; however, this lumping is achieved at the 

molecular structure level [66]. The structure vector framework allows for the 

construction of rule-based reaction networks involving thousands of components 

Figure 2-3: Depiction of the structure-oriented lumping (SOL) structural increments [61] 
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and many thousands of reactions. In addition, the multicore representation of 

vacuum residua allows for the direct calculation or modeling of their physical and 

chemical properties including elemental composition, molecular weight, boiling 

point and density [61]. 

 

2.6.2.2 Monte Carlo Methods 

Neurock et al. [67] developed a Monte Carlo scheme that allowed for the 

stochastic construction of the molecules of heavy petroleum fractions such as 

vacuum residue and asphaltenes through random sampling of probability density 

functions (PDF’s). The PDF provided the quantitative probability of finding the 

value of a given structural attribute [65]. The attributes, which include number of 

aromatic rings, number of naphthenic rings, and number and length of aliphatic 

sides chains, represent the key structural elements that provide the basis for the 

molecular description of the heavy petroleum fractions [67]; and their 

probabilities of occurrence in a feedstock were determined by using a 

combination of distillation and solubility measurements with a set of analytical 

measurements such as 1H NMR, vapour pressure osmometry (VPO), and 

elemental analysis. 

 

The four basic steps involved in the scheme were (1) the deduction of a chemical 

logic diagram, (2) the compilation of structural cumulative probability 

distributions, (3) stochastic sampling of each distribution, and (4) the construction 

of molecular species. 

 

This four-step approach was applied to an offshore California asphaltene sample. 

The asphaltene molecule was described in terms of unit sheets containing 

aromatic and naphthenic rings, the aliphatic chains attached to each unit sheet, 

and respective lengths of each chain. PDF’s for each of these attributes were 

determined by assigning either a Gaussian or gamma function. The complete 
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molecular representation of the asphaltene feedstock was determined by 

stochastically sampling 10,000 different molecules.  

 

This method was extended by Sheremata et al. to include structural data from 

quantitative 13C NMR [43]. Sheremata’s work was the first quantitative molecular 

representation of asphaltenes as archipelago structures. An asphaltene sample 

obtained from Athabasca vacuum residue was used in this study. The gamma 

distribution was chosen for the PDF’s. The aromatic ring groups used in the study 

are presented in Figure 2-5. 

 
Figure 2-5: Aromatic ring groups used in Sheremata et al.’s [46] asphaltene representation  
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Half of the naphthenic carbons were assumed to be associated with aromatic rings, 

and the other half with aliphatic carbons [43]. The results of the sequential 

optimization required at least five molecules to create a molecular representation 

consistent with experimental data; while a starting population of 50 molecules 

was required for a “high-quality” molecular representation. This is in sharp 

contrast to the 10,000 required for the scheme developed by Neurock et al. The 

calculated molecular weights were in good agreement with values obtained using 

VPO (Fig. 2-6). 

 

Figure 2-6: A model molecular representations of asphaltenes from Sheremata et al. [46].  
The elemental composition and molecular weight are given as C318H395N6O6S8V, and 4133 
g/mol respectively. 
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The molecules generated were composed of branched but not cross-linked 

aromatic and aliphatic bridges due to the absence of analytical data supporting the 

existence of the latter [43]. 

 

In a recent publication, Boek et al. further extended the Sheremata model to 

create a generic asphaltene model by allowing for both three-dimensional and 

two-dimensional asphaltene structures [44]. Their model allowed for the 

generation of both archipelago and pericondensed molecular representations of 

asphaltenes. Aromatic sheets and aliphatic chains were used as the building 

blocks for generating the asphaltene molecule. The number of benzene rings was 

used to denote the size attribute for the aromatic sheets, while the chain-length 

(not necessarily the number of carbons) represented the size attribute of the 

aliphatic building blocks [44]. The aromatic building blocks used in the study are 

presented in Fig. 2-7. 

 

The building blocks were randomly sampled and linked together using a 

connection algorithm which allowed for both pericondensed and archipelago 

structures. A nonlinear optimization procedure was used to select a subset of 

molecules that provided the best agreement with experimental 1H, 13C, elemental 

analysis, and molecular weight (MW) data. They tested MW values of 750 g/mol 

and 4190 g/mol representing pericondensed and archipelago structures 

respectively. The results reported showed that the peri-condensed representation 

was more consistent with experimental MW data. The authors contend that 

Sheremata’s model was flawed because it had been constrained to generate solely 

archipelago structures; while the flexibility of their model ensures that the results 

obtained were more consistent with experimental data. 

 

Consequently, the use of advanced stochastic algorithms such as Monte Carlo 

simulation coupled with experimental NMR (1H and 13C), elemental analysis, and 

MW data to generate representative molecules of complex heavy petroleum 
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feedstocks has not resolved the ambiguity surrounding the nominal average 

molecular structure of asphaltenes. 

 

 

 
Figure 2-7: Schematic representation of aromatic groups used in the molecular 
representations of Boek et al. [44]. 
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2.7 Vibrational Spectroscopy 
Infrared (IR) and Raman spectra are both formed as a result of the absorption of 

electromagnetic radiation at frequencies that correspond to the vibration of 

specific sets of chemical bonds within a molecule [68]. The requirement for 

infrared activity is a net change in dipole moment during vibration of the 

molecules, while a net change in bond polarizability must be observed for Raman 

activity [68]. For molecules with a center of symmetry, fundamental frequencies 

that appear in the infrared spectrum are absent from the Raman, and vice-versa; 

whereas for molecules without a center of symmetry, most vibration frequencies 

are observed in both infrared and Raman spectra [13, 69]. 

 

IR and Raman spectroscopy enable the identification of aromatic, naphthenic, and 

paraffinic [70] structures because each of these structures vibrates at specified 

frequencies. Notably, far-infrared (FIR) vibrations occurring at very low 

frequencies (or wavenumbers) are very important because they represent skeletal 

vibrations [69], thus they are molecule-dependent and provide unambiguous 

fingerprints of specific molecular structures [71, 72]. The complementary nature 

of both provide an almost complete overview of the vibrational behaviour of 

molecules [69]. Infrared spectroscopy has been applied to the accurate 

identification of polycyclic aromatic hydrocarbons[71, 73], which are abundant in 

asphaltenes. 

 

Yen et al. applied infrared spectroscopy to the elucidation of the structure of 

petroleum asphaltenes [74]. Their work focused primarily on developing a better 

understanding of the structure of the saturated components of the non-

hydrocarbon asphaltic fraction of crude oils. By analyzing the frequency bands 

corresponding to various C-H vibrations, they were able to estimate the number of 

carbons existing as naphthenic, paraffinic, and terminal methyl groups. Additional 

structural details including polynuclear aromatic hydrocarbons were also 
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estimated using a correlation between structure and spectra. The results of their 

studied showed that condensed naphthenic rings are present in asphaltenes, while 

the aromatic clusters appear to be pericondensed. 

 

Wilt et al. [75] used a combination of partial least squares (PLS) and Fourier 

transform infrared spectroscopy (FT-IR) to quantitatively determine the 

asphaltene content of petroleum crude oils faster than conventional solvent-based 

methods [75]. Using a training data set of 42 and a predictive data set of 8 crude 

oil samples they developed a model that resulted in a coefficient of determination 

(R2) of 0.95 and 0.96 respectively. 

 

Blanco et al. reported on the use of near infrared (NIR) spectroscopy  to predict 

the physico-chemical properties of 66 various bitumen samples in 2001 [76]. 

They applied PLS regression to the NIR spectrum of these samples to determine 

their viscosity, density, softening point, and chemical composition. The values for 

density reported showed a 0.2% relative standard deviation from the ASTM D-70 

values [76]. 

 

More recently, Hannisdal et al. [77] and Aske et al. [78] used a combination of 

multivariate analysis and vibrational spectroscopy to perform group-type analysis 

of crude oils. The latter performed their analysis using eighteen light crude oil and 

condensate samples, while twenty heavy crude oil samples were analyzed by the 

former. Both concluded however, that a combination of PLS, principal component 

analysis (PCA), IR, and NIR offered a faster alternative to determining the 

saturates, aromatics, resins, and asphaltenes (SARA) contents of heavy and light 

crude oils than conventional fractionation methods. As evidenced from the above, 

the use of vibrational spectroscopic techniques in the structural analysis of 

petroleum fractions including heavy oils and asphaltenes is a very active area of 

research.  
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The determination of vibrational frequencies has been greatly enhanced by 

quantum-mechanical computational methods such as DFT. The theoretically 

predicted frequencies can serve as fingerprints for the identification of 

experimentally observed reactive intermediaries, and the derivation of 

thermochemical information [13, 79]  

 

In this work, the DFT technique as implemented in the commercial molecular 

simulation package Gaussian 03 [80] is used to compute vibrational frequencies 

(IR and Raman inclusive). This software package can compute the vibration 

spectra of molecules both in the ground and excited states using various DFT 

functionals and basis sets[81]. A combination of the three parameter DFT 

exchange functional of Becke-Lee-Yang-Parr [B3-LYP] and the 6-311G basis set 

was selected because this combination yields vibrational frequencies that are in 

close agreement with experimental values [79, 82-85]. 

 

2.8 Density Functional Theory (DFT) 
Density Functional Theory (DFT) is a primarily theory of the electronic structure 

of atoms, molecules and solids in their ground states; and represents one of the 

most successful approaches used in the determination of the electronic structure 

of atoms, molecules and solids [86]. The theory depends on the 3-dimensional 

electron density distribution rather than the 3N-dimensional (where N is the 

number of electrons) electron wave function [87, 88]. It reduces the complex 

many-body wave function, which is the solution of the Schrodinger equation, to 

an effective one-body system represented by the electron density [87]. Several 

excellent molecular quantum chemistry texts have been written that provide a 

clear exposition on the theoretical development of this theory. Some of these texts 

include Essentials of Computational Chemistry: Theories and Models by 

Christopher J. Cramer [89], Modern Chemistry: Introduction to Advanced 

Electronic Structure Theory, by Szabo and Ostlund [88]. 



 
   

 33

However, for the purposes of this work, a brief overview of the key concepts in 

the development of DFT is presented. 

 

2.8.1 Quantum Mechanical Many-Electron 

Problem 

The term “many-electron problem” describes the intractable nature of finding an 

exact mathematical solution for the Schrödinger equation for a system of 

interacting electrons. 

The complete non-relativistic Schrödinger equation for a system of n electrons 

and N nuclei is an eigenvalue equation, the solution of which yields information 

about all the properties of the electrons of an atomic or molecular system, is given 

by: 

 

ˆ ( ) ( )H EΨ = ΨR,r R,r              (2.1) 

where E is the energy of a given eigenstate, and Ĥ , the Hamiltonian operator, 

representing the total energy of the system is  
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                 (2.3) 

The lower and upper case indices (2.2) represent the electrons and nuclei 

respectively, h is Planck’s constant, em  is the electron mass, Im  is the mass of the 

nucleus, and r is the distance between the objects specified by the subscript [90]. 

The first and second terms represent the kinetic energy of the nuclei and electrons 

respectively; the third term represents electron-nucleus interaction energy; the 
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fourth and fifth terms represent the energies due nucleus-nucleus and electron-

electron interactions respectively. The solution of equation (2.1) , ( , )R rψ is the 

many-body wave function for all n electrons (r represents electron positions) and 

N nuclei (R represents nuclear positions) in the system; and is a function of the 

position vector (R, r) where (R, r) = (R1, R2,…,RN, r1,r2,…,rn) . 

 

The Born-Oppenheimer approximation allows for the separation of the total 

wavefunction into an electronic and nuclear component, thus simplifying the 

solution of equation (2.1).  

 

( ) ( ) ( )Ψ =Φ ψR,r R r              (2.4) 

 

This approximation is possible because the nucleus is several orders of magnitude 

heavier than the electrons, and can be treated as stationary relative to the motion 

of the electrons. Hence, the solution of (2.1) now depends on the motion of the 

electrons in the system in general described by the many-electron 

wavefunction ( )ψ r , and the difficult electron-electron interaction term in 

particular; hence, the “many-electron problem”.  

 

The solution of the difficult electron-electron interaction term is the subject of 

several electronic structure theories. Attempts to find approximate solutions to 

this term and by extension the many-body Schrödinger equation will be discussed 

in the following sections. 

 

2.8.2 The Hartree-Fock Approximation 

The Hartree and Hartree-Fock theories were developed in the 1930’s [91] to solve 

the electronic Schrödinger equation obtained after the application of the Born-

Oppenheimer approximation described in the previous section. Since the 

electronic wave function, ( )ψ r depends on the coordinates of all the electrons in 
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the system, Hartree proposed that the wavefunction can be separated into a 

product of one-electron wavefunctions [90]. In order to solve the Schrödinger 

equation, Hartree replaced the electron-electron term with an effective potential; 

which represents the repulsion experienced by one electron as a result of the 

presence of other electrons [90]. With this assumption, the single-electron 

equation of an atom in Hartree’s theory is 

 

1 2 1 1 2 2, ... ) ( ) ( )... ( )n n nψ( =φ φ φr r r r r r              (2.5) 
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where iφ  represents the separable single-electron wavefunctions, and eff
iV is the 

effective potential. 

 

Fock observed that the Hartree Product (2.5) did not satisfy the antisymmetric 

principle (Pauli Exclusion Principle); which states that a wavefunction describing 

an electron must be antisymmetric (result in a sign change) with respect to the 

interchange of any set of spin-state coordinates [92]. To address this shortcoming, 

he suggested the use of a Slater determinant to represent the single-electron 

wavefunctions, and also retained the effective potential from Hartree’s equation, 
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The equations arising from the Hartree-Fock theory need to be solved self-

consistently since the effective potential in both equations are dependent on the 

single-particle wavefunctions iφ .The variational principle states that the best 
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product many-electron wavefunction is the one with the minimum expectation 

value of the energy; this condition  can be used to derive equations for the best 

one-electron wavefunctions [90]. 

 

The Hartree-Fock theory is also referred to as an independent particle model or 

mean field theory, since the assumption of an antisymmetrized product (Slater 

determinant) description of the electrons implies that each electron is independent 

of the others but experiences Coulomb repulsions due to their presence [92]; 

however, it still gives reliable results for many-body problems [93]. 

 

2.8.3 The Kohn-Sham Equations 

In 1964, Hohenberg and Kohn (HK) [94] published a paper that laid the 

foundations for the development of DFT. The paper dealt primarily with the 

development of a theorem for the ground state of an interacting electron gas in an 

external potential. According to HK, the specification of the ground state electron 

density n(r) determines the external potential v(r) uniquely [95] . Since n(r) also 

determines the total number of electrons, N, by integration, it determines the full 

Hamiltonian H, and consequently all properties determined by H; including the 

full many-body wavefunction, Ψ  [95].  

 

The second HK theorem states that there exists a functional, E[n(r)], of the 

electron density, n(r), such that the exact ground state energy is the global 

minimum of this functional. The minimal principle for a given potential v(r) can 

be expressed as [95], 

 

( ) ( ) 0 0[ ( )] [ ( )]v r v rE n r E n r E≥ ≡               (2.8) 

where 0 ( )n r and 0E  are the density and energy of the ground state. This equality 

holds only if 0 ( )n r = ( )n r  
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The energy functional of n(r) is defined as 

 

( )[ ( )] ( ) ( ) [ ( )]v rE n r v r n r dr F n r≡ +∫              (2.9) 

where 

1 ( ) ( )[ ( )] [ ( )] [ ( )]
2s XC

n r n rF n r T n r drdr E n r
r r

′
′≡ + +

′−∫                   (2.10) 

 

[ ( )]sT n r  is the ground state kinetic energy of a set of noninteracting electrons, the 

next term is their interaction energy, and [ ( )]XCE n r  is the exchange-correlation 

energy.  

 

Utilizing the HK theorems, the energy functional, ( )[ ( )]v rE n r  is minimized subject 

to the condition ( )n r dr N=∫  (which implies that the total number of electrons 

in the system is constant), to obtain the orbitals that give rise to the ground state 

energy. This leads to a set of equations called the Kohn-Sham (KS) [96] equations  
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( ) [ ( )] / ( )XC XCv r E n r n r=δ δ                    (2.13) 

 

These equations must be solved self-consistently for jε  and jϕ with an 

appropriate approximation for the exchange correlation energy [ ( )]XCE n r ; thus 

representing the many-particle system in terms of single-particle orbitals. The KS 

orbitals are appropriate for noninteracting electrons, and by introducing the 

modified potential the exact electron density for a system with full interaction is 



 
   

 38

obtained [97].These equations facilitate the reduction of the many-body electron 

problem to a set of single-particle orbitals, and form the basis for the DFT [98].  

Much of the research in DFT has involved the development of approximations for 

the exchange correlation energy term. One of the most successful approximations 

is the Becke, Lee, Yang, and Parr functional also referred to as the BLYP 

functional [91]. 

 

A density functional calculation involves the selection of an appropriate 

functional with a basis set. When a set of single-electron wavefunctions from 

individual atoms are used to construct more complex molecular systems by using 

a linear superposition of the atomic orbitals centered on the individual atoms, the 

set of N equations generated is called a  basis set [89]. The combination 

B3LYP/6-311G uses a B3LYP functional with a 6-311G basis set. 

 

2.9 Structural Units in Petroleum  
The chemical complexity and diversity of petroleum fractions including heavy oil, 

bitumen, vacuum residue and asphaltenes makes it impossible to synthesize 

model compounds that completely describe their physical, chemical and 

thermodynamic properties. However, several studies have identified the chemical 

structures (Fig. 2-8) that are present in petroleum [3, 23, 39, 57, 59, 61, 99]. The 

theoretical vibrational spectra of some of these structures have been studied in this 

work. In addition, varying lengths of aliphatic chains were also used to model the 

aliphatic bridges linking aromatic rings that are characteristic of the observed 

structure of asphaltenes [43, 57]. 

 



 
   

 39

 

 

Figure 2-8: Depiction of the known core structures identified in petroleum[61]  
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2.10 Summary 
The foregoing review highlights the substantial efforts made to elucidate the 

molecular structure of ill-defined hydrocarbons. Definition of the asphaltene 

fraction in particular provides a key illustrative example because for heavy oil, 

bitumen, and vacuum residue asphaltenes are a principal constituent. Hence to 

understand these ill-defined petroleum fractions, an understanding of the physico-

chemical and thermodynamic properties of asphaltenes is absolutely essential.  

 

Molecular structure is an important input for understanding these properties. So 

far both peri-condensed and archipelago molecular structures have been proposed. 

However, it is interesting to note that both sets of structures have been proposed 

using experimental data obtained using exactly the same set of analytical 

characterization techniques namely, 1H and 13C NMR, mass spectroscopy, and 

elemental composition; as well as the same statistical analysis techniques[43, 44].   

 

This ambiguity prompts the hypothesis that 1H and 13C NMR provide information 

on too small a length scale to yield unambiguous molecule scale structures. A 

second hypothesis explored in this work is that techniques providing molecular 

information on larger, but still sub-molecular length scales are required to 

discriminate between the two molecular structural prototypes in particular and for 

ill-defined hydrocarbon species in general. In this work a combination of infra-red 

and Raman spectroscopy is evaluated as a potential basis for unambiguous 

molecular structure definition, in addition to or in lieu of 1H and 13C NMR, mass 

spectroscopy. 
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3 Computational 
Approach 
 

3.1 Introduction 
The development of computational science has enabled the detailed analysis of 

complex physical and chemical systems that are either too expensive to observe 

empirically or intractable to solve analytically. Computational techniques have 

benefited immensely from the growth in the computational speed and accuracy of 

modern computers; this has provided experimentalists the means to create more 

accurate models of real-life systems, and simulate various possible scenarios 

before conducting actual laboratory experiments. 

 

As mentioned in the previous chapter, the many-electron problem is one of the 

most intractable problems in quantum physics. The distribution and motion of 

electrons about the nuclei are governed by the Schrödinger equation, but finding a 

solution to this equation is very difficult. This difficulty is due to the presence of 

the electron-electron interaction term, which makes it impossible to separate the 

many-electron system into one consisting of many single-electron systems. Any 

attempt to probe the structure of atomic and molecular systems thus requires a 

solution of the electron-electron interaction term of the Schrödinger equation. 

 

A major contribution to the approximate solution of the Schrödinger equation 

involved the separation of the nuclei and electronic motion, also known as the 

Born-Oppenheimer approximation. This enabled the electronic component to be 

solved with the nuclear positions as parameter; thus the major computational 

effort is in solving the electronic Schrödinger equation for a given set of nuclear 
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coordinates. The Hartree-Fock (HF) theory approximated the electron-electron 

interaction by an average potential, thus neglecting the correlation between 

electrons [100]. However, the theory laid the foundation for the development of 

more accurate electronic structure methods. It represented the many-electron 

wavefunction solution of the Schrödinger equation as a product of one-electron 

orbitals; the Slater determinant was used to represent these orbitals in order to 

account for antisymmetry of electron spins. 

 

The Density Functional Theory (DFT) can be considered as an improvement on 

the HF theory, where the many-body effect of electron correlation is modeled 

using a functional of the electron density; it is comparable to HF but provides 

significantly better results. However, while the HF model can be improved to 

converge towards the exact solution of the Schrödinger equation by adding 

additional determinants, there is no systematic approach to improving the DFT 

results [100]. 

 

The computational approach applied in this work involved four key steps, 

 

1) Selection of an appropriate exchange-correlation functional 

2) Choosing the right basis set 

3) Frequency calculation, and 

4) Linear Regression Analysis. 

 

The following sections discuss each step in more detail. 

 

3.2 Electronic Structure Methods 
Electronic structure methods are mathematical approximations to the solutions of 

the Schrödinger equation. There are two classes of electronic structure methods: 

Ab initio and Semi-empirical methods.  
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Semi-empirical methods use parameters derived from experimental data to 

simplify the solution of the Schrödinger equation; these parameters are dependent 

on the type of chemical system under investigation. Ab initio methods unlike the 

semi-empirical methods do not depend on experimental parameters; their 

computations are based entirely on the laws of quantum mechanics and solutions 

to the Schrödinger equation are obtained using a series of rigorous mathematical 

approximations [81]. 

 

Semi-empirical methods are relatively inexpensive computationally and provide 

reasonable descriptions of molecular systems and fairly accurate quantitative 

predictions of molecular properties such as energies and structures for systems 

with good parameters. However, ab initio methods provide high quality 

predictions for a broad range of molecular systems, and are not limited to any 

specific system classes [81]. The development of large supercomputing capacity 

has facilitated the application of ab initio methods to large, complex molecular 

systems. 

 

The Hartree-Fock theory is the least expensive ab initio method available, but the 

Density Functional methods provide much better results with the same amount of 

computational resources [81]. While DFT methods account for the correlation 

effects arising from electronic motion, the HF calculations treat this effect as an 

average interaction [100]; this approximation makes the HF results to be less 

accurate than the DFT for certain types of systems with very strong electron 

correlation [81]. 
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3.3 Exchange and Correlation 

Functionals 
The fundamental difference between DFT and other electronic structure methods 

is the use of the electron density instead of the electronic wavefunction to obtain 

all the ground state properties of a quantum-mechanical system as proposed by 

Hohenberg and Kohn[94]. The success of modern DFT methods is based on the 

Kohn-Sham[96] equations which provide for the calculation of the electron 

kinetic energy from an auxiliary set of orbitals used for representing the electron 

density[100].  

 

The exchange-correlation energy arises because the motion of electrons through 

the electron density is not random but avoid one another ;this results in the 

creation of electron-holes around each electron (each electron is surrounded by its 

exchange-correlation hole density) [98]. It consists of three contributions namely, 

the potential energy of the exchange, the potential energy of the correlation, and 

the smaller kinetic energy of the correlation [98]. 

 

As mentioned in Chapter 2, DFT can only be practically useful by generating 

good approximations for the exchange-correlation energy term [ ( )]XCE n r ; which 

is a relatively small component of the total energy of a typical system [98, 100].  

 

The exchange-correlation energy can be separated into exchange and correlation 

functional components [101]  

 

[ ( )] [ ( )] [ ( )]XC X CE n r E n r E n r= +                (3.1) 
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The two functionals can depend only on the electron density, n(r) hence local 

density functionals and/or on the gradient-corrected functionals that depends on 

the both density, n(r) and its gradient ( )n r∇ [101]. 

 

3.3.1 Local Density Approximations (LDA) 

The simplest exchange-correlation energy model is the local density 

approximation (LDA) also called Local Spin-Density Approximations (LSDA) 

[98] where the electron density is assumed to be varying slowly enough for the 

exchange-correlation energy to be calculated using equations derived for a 

uniform electron density [100]. 

 

[ ( )] ( ( )) ( )LDA
XC XCE n r n r n r dr≡ ε∫                (3.2) 

 

where ( ( ))XC n rε is the exchange-correlation energy per particle of a uniform 

interacting electron gas of density n(r). The KS orbitals in the LDA 

approximation are usually very close to the HF orbitals [95]; however the LDA 

underestimates the exchange energies and of atomic and molecular systems by 

roughly 10% [102].  

 

3.3.2 Generalized Gradient Approximations GGA) 

A significant improvement in accuracy can be obtained by making the exchange-

correlation functional dependent also on the first derivative of the electron density 

[98, 100]; this level of approximation is called the generalized gradient 

approximations (GGA) 

 

( ( ), ( ) )GGA
XCE f n r n r dr= ∇∫                 (3.3) 
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where ( ( ), ( ) )f n r n r∇ is a suitably chosen function of its two variables [95]. 

 

The GGA exchange functional developed by Becke [103] is regarded as the first 

to be widely used, and is denoted by “B” [89]; while the Lee, Yang, and Parr 

(LYP) [104] GGA functional has been widely used for the correlation energy 

[100]. A complete specification of the exchange and correlation functionals is 

achieved by concatenating the two acronyms in that order; such that a BLYP 

calculation combines Becke’s GGA exchange with the GGA correlation 

functional of Lee, Yang, and Parr [89].  

 

3.3.3 Hybrid Functionals 

Becke [103, 105] developed hybrid functionals which arise from the combination 

of Hartree-Fock, local, non-local, and gradient-corrected exchange functionals 

[101] to define the exchange-correlation energy. Conceptually, the exchange-

correlation is defined as a mixture of Hartree-Fock and DFT exchange along with 

DFT correlation [81], i.e. 

 
HF HF DFT DFT

XC X XCE c E c E= +       (3.4) 

 

where the c’s  are constants to be determined. 

 

For example, the exchange-correlation functional proposed by Becke [103, 106] is 

of the form 

 
88 91

0 ( )LSDA HF LSDA B PW
XC XC X X X X C CE E a E E a E a E= + − + Δ + Δ  (3.5) 

 

Here 88B
XEΔ  is Becke’s 1988 gradient correction (to the LSDA) [103] for 

exchange functional, and 91PW
CEΔ is the 1991 Perdew-Wang [103, 107] gradient 
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correction to the correlational functional, HF
XE is the Hartree-Fock (exact) 

exchange [103]. Becke suggested coefficients 0a = 0.2, Xa = 0.72, and Ca = 0.81 

based on fitting to heats of formation of small molecules[106]. This is known as 

the Becke three-parameter functional. The Becke3LYP or B3LYP functional uses 

LYP instead of PW91 for the gradient-corrected correlation functional [103, 106]. 

The B3LYP implemented in Gaussian [80, 106] has the form, 

 
3 88

0 0(1 ) (1 )B LYP LSDA HF B LYP VWN
XC X X X X C C C CE a E a E a E a E a E= − + + Δ + + −           (3.6) 

 

where all the constants have the same meaning as in equation (3.5) but VWN 

local correlation functional has been included because the LYP functional does 

not have easily separable local component [106]. 

 

The B3LYP functional and hybrid functionals in general have been shown to 

produce vibrational force fields, frequencies, spectra, and thermochemical 

properties in excellent agreement with experiments; and their level of accuracy is 

far superior to those of LSDA and BLYP functionals [106]. 

 

3.4 Basis Set 
A basis set is an approximation that facilitates the solution of ab initio 

calculations [100]; it is a mathematical representation of the orbitals of a 

molecular system [81]. In quantum mechanics, electrons have a finite probability 

of existing anywhere in space; hence a complete basis set is one that can span the 

entire space. This would require an infinite number of functions, which is 

computationally impossible [81, 100]. 

 

Two major factors influence basis set accuracy (1) the size of the basis set [81], 

and (2) the type of basis set functions used [100]. The smaller the basis set used, 
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the poorer the representation of the molecular orbitals [100], hence, larger basis 

sets more accurately approximate the orbitals by imposing fewer restrictions on 

the locations of the electrons in space [81]. Furthermore, the better a single basis 

function is able to reproduce or represent the orbital, the fewer the number of 

basis functions required to generate a more accurate approximation [100]  

 

There are two types of basis functions commonly used in electronic structure 

calculations: Slater Type Orbitals (STO) and Gaussian Type Orbitals (GTO) 

[100]. The functional forms of STO’s and GTO’s are given in equations (3.7) and 

(3.8) respectively 

 
1

, , . ,( , , ) ( , ) n r
n l m l mr NY r e− −ζ

ζχ θ ϕ = θ ϕ                       (3.7) 

 
22 2

, , . ,( , , ) ( , ) n l r
n l m l mr NY r e− − −ζ

ζχ θ ϕ = θ ϕ                        (3.8) 

 

Here N is normalization constant, and ,l mY  are spherical harmonic functions. As a 

rule of thumb, three GTO’s are usually required to achieve the same level of 

accuracy as one STO [100]. A linear combination of Gaussian functions that 

represents one STO is referred to as a contracted Gaussian function, and the 

individual Gaussian functions in the combination are called primitive 

Gaussians[91]; and a basis set consisting of a single Gaussian function is termed 

uncontracted [81]. However, even though a larger number of GTO basis functions 

are required, their computational efficiency makes them the preferred basis sets 

for electronic structure calculations [81, 100]. 

 

For a more comprehensive discussion on the this subject, please refer to 

Introduction to Computational Chemistry by Frank Jensen [100], and Quantum 

Chemistry by Donald A. McQuarrie [91] 
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3.4.1 Split Valence Basis Sets 

Basis sets assign a group of basis functions to each atom within a molecule to 

approximate its orbitals [81]; and the type and number of functions used depends 

on the level of accuracy required. Minimal basis sets contain the minimum 

number of basis functions required for each atom. An example of a minimal basis 

set is the STO-3G basis set (which uses a contraction of three Gaussian functions 

to represent one Slater type orbital, thus the “3G” in its name). A basis set can be 

made larger by increasing the number of basis functions per atom. Double Zeta 

(DZ) basis sets generate the molecular orbitals by doubling the sizes of the basis 

functions for each atomic orbital. A variation of the double zeta basis set is the 

split valence basis set; this describes the core electrons by a single orbital and the 

valence shell electrons by a sum of orbitals [91, 100]. Split valence basis sets 

allow orbitals to change size , and triple split valence basis sets, like 6-311G, use 

three sizes of contracted Gaussian functions for each orbital-type [81]. 

 

There are Quadruple Zeta (QZ), and Quintuple or Pentuple Zeta (PZ or 5Z) basis 

sets; and each represents the number of basis functions used for each orbital-type 

[100]. Polarized basis sets allow orbitals to change shape by adding orbitals with 

angular momentum functions, while basis sets with diffuse functions allow 

orbitals to occupy a large region of space thus accounting for systems in their 

excited states, and molecules with lone pairs [81]. 

 

Several publications [13, 108, 109] have applied the 6-311G basis set in 

combination with the B3LYP exchange-correlation functional to obtain 

vibrational frequency data in very good agreement with experimental values. 

Hence, the vibrational frequency data used in this work have been generated using 

this same combination 
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3.5 Frequency Calculation 
After selecting the appropriate exchange-correlation functional and basis set, the 

next step is generating the vibrational frequency data. According to the Born-

Oppenheimer approximation, electronic and nuclear motions can be decoupled in 

the Schrodinger equation. The resulting electronic Schrodinger equation is then 

solved for a large number of nuclear geometries to give the potential energy 

surface (PES) [89, 100]. The rotational and vibrational motions of a given set of 

nuclei, N on the PES is described by 3N nuclear coordinates; three coordinates 

each describe the overall translational and vibrational motions with respect to 

three axes [100]. 

 

The PES is a hypersurface defined by the potential energy of a collection of atoms 

over all possible atomic arrangements, and it provides complete information about 

all the possible chemical structures and all isomerization pathways for a given 

collection of atoms [89]. Furthermore, the PES describes how the energy of a 

molecular system varies with small changes in its structure [81]. 

 

Molecular frequencies depend on the second derivative of the energy with respect 

to the nuclear positions; hence frequency calculations are only valid at stationary 

points on the PES, and must be performed on optimized structures [81]. 

 

Geometry optimizations are performed to locate minima on the PES, thereby 

predicting equilibrium structures of molecular systems. The first derivative of the 

energy or gradient indicates the direction along the PES in which the energy 

experiences the most rapid decrease, and it is the negative of the forces on the 

PES. All successful optimizations seek to locate the minima or stationary points. 

At the minima, both the gradient and forces are essentially zero; at this point the 

optimization is complete or converged [81]. 
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The frequency calculation and the optimization are both conducted at the same 

level of theory and basis set; otherwise the results have no validity. Gaussian [80] 

can compute the vibrational spectra of molecules in their ground and excited 

states; and analytic second derivative of the energy with respect to nuclear 

positions are available for the B3LYP DFT theoretical models [81] . 

 

3.6 Linear Regression Analysis 
Exploring relationships between two or more variables forms the basis of many 

engineering and scientific investigations. For instance in engineering 

thermodynamics, establishing the relationship between the phase behaviour of 

petroleum fluids and changes in pressure, temperature and composition is crucial 

to developing reliable equations of state models; which in turn improves the 

design of commercial process simulators and more efficient chemical process 

design.  

 

Regression analysis is a statistical technique that can be used to investigate 

relationships between two or more variables. The technique involves 

approximating the relationship between a response variable and an explanatory 

variable or variables (also called regressors or predictors). If this relationship can 

be defined by a linear function, then it is a linear regression, otherwise it is 

nonlinear. A regression model that contains more than one explanatory variable is 

referred to as a multiple regression model [110]; it is called a simple regression 

model if only one regressor is used. 

 

A multiple linear regression model describing the relationship between a response 

variable, Y, and k regressor variables, xk can be represented by 

 

0 1 1 2 2 k kY x x x=α +α +α + +α +ε"              (3.9) 
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The parameters αj, j = 0, 1,…, n are called regression coefficients; and they 

represent the expected change in response Y per unit change in xj when all the 

remaining regressors xi (i ≠ j) are held constant [110]. ε is a random error term. 

 

3.6.1 Method of Least Squares 

The regression coefficients in equation 3.1 can be estimated by the method of 

least squares [110]. Suppose there are n > k observations, such that xij represents 

the ith observation of variable xj as shown in Table 3.1 

 
Table 3-1:  Sample data for Multiple Linear Regression (from reference 105) 
 

y x1 x2 "  xk 

y1 x11 x12 "  x1k 

y2 x21 x22 "  x2k 

#  #  #   #  

yn xn1 xn2 "  xnk 

 

Each observation (xi1, xi2,…, xik, yi), satisfies the model in equation 3.1, i.e. 

 

0 1 1 2 2

0
1

1, 2,...,

i i i k ik i
k

j ij i
j

y x x x

x i n
=

=α +α +α + +α +ε

=α + α +ε =∑

"
                  (3.10) 

 

The least squares function is 

 
2

2
0

1 1 1

n n k

i i j ij
i i j

L y x
= = =

⎛ ⎞⎟⎜ ⎟= ε = −α − α⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑ ∑ ∑                    (3.11) 
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The minimization of L with respect to the least square estimates [110] of α0, α1,…, 

αk, say 0 1ˆ ˆ ˆ, , , kα α α…  must satisfy 

 

0 1

0
1 10 ˆ ˆ ˆ, , ,

ˆ ˆ2 0
k

n k

i j ij
i j

L y x
= =α α α

⎛ ⎞∂ ⎟⎜ ⎟=− −α − α =⎜ ⎟⎜ ⎟⎜∂α ⎝ ⎠
∑ ∑

…
                  (3.12) 

and 

 

0 1

0
1 10 ˆ ˆ ˆ, , ,
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Simplifying these two equations, we obtain the least squares normal equations 
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                 (3.14) 

 

The normal equations can be solved to obtain the least squares estimators [110] 

of the regression coefficients. 

 

3.7 Thesis Objective 
The goal of this study is to investigate the possibility of using 1H and 13C NMR 

and or IR and Raman vibrational frequency data for a library of small 

hydrocarbon compounds in combination with least squares regression to predict 

the structure of individual large molecules where all spectra are computed on the 
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same basis. This is equivalent to an experiment based study where measurements 

for all molecules are performed on the same spectrometers. This is a proof of 

concept study. Application to ill-defined petroleum fractions is beyond the scope 

of this thesis.  

 

The large compounds (Fig. 3-2) in this study comprise two variable polynuclear 

aromatic groups connected by variable n-alkane chains (octane to dodecane). The 

vibrational frequency and NMR data of these large compounds (representing the 

independent variables) and the corresponding data of a library of six aromatic ring 

and five aliphatic chain compounds (the dependent variables) were analyzed using 

linear regression. The aromatic rings that make-up the library are shown in Fig. 3-

1. The frequency data of the large compounds and the library of molecular 

fragments were obtained using a DFT level of theory and a basis set, which is 

known to yield IR and Raman frequency values consistent with measurement [13, 

108]. Hence, all the analysis and comparisons are between computed spectra only. 

 

The key question the study attempts to answer is the feasibility of representing the 

molecular structure of an unknown hydrocarbon compound as a linear 

combination of known molecular fragments based on vibrational frequency data. 

Further, the regression coefficient of each molecular fragment is used as measure 

of its relative abundance in the compound. 
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Naphthalene

Anthracene

Phenanthrene

Chrysene

Pyrene

Fluoranthene
 

Figure 3-1: The complete library of small aromatic ring groups used in the study; n-alkane 
chains from octane to dodecane make-up the rest of the library 
 
 

 

 
 
Figure 3-2: Model large hydrocarbon compound consisting of 2 Pyrene groups connected 
by an n-Decane chain 
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4 Molecule 

Identification using 

IR and Raman 

Spectroscopy 
 

4.1 Introduction 
In chapter 3, an outline of the computational methods employed in this study is 

provided. This chapter focuses on the specific details relating to the acquisition of 

the frequency data for all the hydrocarbon structural groups listed in chapter 3; as 

well as the model compounds generated using various combinations of these 

structures. In addition, the spectral optimization algorithm implemented to obtain 

the results is discussed. 

 

The model compounds have been constructed using the six aromatic ring groups 

presented in Chapter 3, and five aliphatic chains ranging from octane to dodecane. 

Model compounds have been named to reflect the hydrocarbon groups they 

contain. For instance, a model compound composed of anthracene, decane and 

chrysene has been designated as anthracene + decane+ chrysene (Fig. 4-1). This 

convention has been chosen for convenience and ease of understanding and does 
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not constitute a deliberate disregard for the IUPAC (International Union of Pure 

and Applied Chemistry) naming conventions for chemical structures. 

 

 

 
 
Figure 4-1: Schematic representation of a the model compound comprising Anthracene, 
Decane and chrysene referred to as anthracene + decane + chrysene following the naming 
convention adopted in this study.  
 

4.1.1 Generating Frequency Data 

Gaussian [80] was used to generate vibrational frequency data for this study. This 

software is a powerful tool that allows for the computation of the properties of 

molecular systems in the gas phase or in solution, as well as in their ground or 

excited states [81]. Since this study is exploratory in nature, the frequency data of 

the model compounds studied has been obtained for their ground states and in the 

gas phase. Furthermore, because the computation of molecular properties 

including vibrational frequencies is based on quantum mechanical calculations, it 

is possible to generate a complete frequency spectrum for molecular systems; this 

facilitates the application of the spectral addition technique employed in this 

study.  

 

Frequency calculations or jobs in Gaussian [80] are run using an input file that 

contains a detailed description of the molecular structure of the compound to be 

investigated; and the theoretical model and basis set employed. The Gaussian [80] 

keyword for running a frequency calculation is Freq; while the keyword for 

running an optimization job is Opt. All the frequency calculations were performed 
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after an optimization procedure had been completed on the structures. A summary 

of the data contained in the input file is provided in Table 4-1. 

 
Table 4-1: Input parameters for all the frequency calculations used in the study 
 
Job Type/Keyword Optimization/Opt    

Method Ground State DFT Default Spin B3LYP 

Basis Set 6-311G    

 

Job Type/Keyword Frequency/Freq    

Method Ground State DFT Default Spin B3LYP 

Basis Set 6-311G    

 

A frequency job begins by computing the energy of the optimized input structure 

(which is specified in mixed Cartesian and Z-matrix coordinates); the resulting 

structure is the basis for computing the frequencies [81]. The computed 

frequencies are contained in an output file generated by Gaussian [80]. 

 

GaussView® is a software application that was used to prepare Gaussian [80] job 

inputs and graphically analyze the outputs. The graphical user interface design of 

GaussView® enhances the visualization of Gaussian [80] input and output files 

because a typical Gaussian [80] file is composed of text-only commands.  

 

The frequency calculations were performed for 6 aromatic ring and 5 aliphatic 

chain compounds; as well as for an additional 20 different combinations of these 

compounds. The 20 combinations represented models of ill-defined hydrocarbon 

structures. 
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4.1.2 Spectral Optimization Scheme 

The spectral data generated from Gaussian [80] was exported via GaussView® to 

Microsoft Excel® (Excel) for analysis. Using Excel’s Solver (Solver) add-in, the 

spectral data of the combined aromatic ring and aliphatic chain model compounds 

(independent variable) and the library of pure aromatic ring and aliphatic chain 

compounds (dependent variables) were analyzed by linear regression.  

 

The model developed to find the relationship between these two data sets 

consisted of three parts namely the objective function, linear regression 

coefficients, and model constraints. The objective function was defined as the 

sum of the squared difference between the spectral data of the combined aromatic 

ring and aliphatic chain compounds (CAA) and the pure aromatic ring and 

aliphatic chain compounds (AA’s); and the goal of the optimization was to 

minimize this difference subject to the model constraints by adjusting the linear 

regression coefficients. The regression coefficients were constrained to be 

positive values; and they provided a qualitative measure of the relative abundance 

of each pure AA in the CAA being investigated. 

 

The process flow diagram in Fig. 4-2 is a depiction of the optimization algorithm 

employed in this study. The frequency data ranged from 0-3500 cm-1 with 

intervals of 10cm-1; each AA in the library as well as each of the CAA’s 

investigated had infrared intensities and Raman activities for each frequency data 

point. The product of the linear regression coefficient (coefficient) and the 

infrared intensity (Raman activity) for each AA was summed for each frequency 

data point. This sum represented the predicted infrared intensity (Raman activity) 

for each frequency; while the infrared intensity (Raman activity) of the CAA 

represented the measured values. 

 

The squared difference between the predicted and measured infrared intensity 

(Raman activity) for each frequency was summed to obtain the objective function. 
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Using Solver, this difference was minimized to find the coefficients (the final 

values of the regression coefficients were independent of the initial values chosen, 

so zero was used as the initial value).  

 

The task of analyzing the results was greatly facilitated by the apriori knowledge 

of the structural components of the model compounds. A close observation of the 

results showed that most of the structural components which were absent from the 

model compounds had relatively low coefficients compared to those present. 

Hence, to eliminate spurious (or reduce the ambiguity of) results during the 

analysis, a threshold value of 0.30 was chosen for the coefficients. 

 

4.1.3 Rationale for using Linear Regression 

Coefficients 

The optimization algorithm outlined in the preceding section was performed on 

six model compounds consisting of two identical aromatic rings connected by n-

decane; using a library consisting entirely of aromatic ring and aliphatic chain 

compounds present in the model compounds to test the feasibility of using linear 

regression coefficients to qualitatively predict the relative abundance of the 

various molecular sub-units in the model compounds. For instance, while 

analyzing pyrene + decane + pyrene (Fig. 4-3), the library would contain only 

pyrene and decane. 

 
Since the ratio of the aromatic rings to n-decane in the model compounds is 

qualitatively 2:1, the coefficients should at the minimum reflect this relationship 

for it to be feasible. Hence, the first step in the analysis was to test this hypothesis 

for both infrared and Raman frequency data. The results obtained for all six cases 

investigated were quite satisfactory (qualitatively), and thus provided the 

motivation to extend the technique to a larger library of molecular sub-units; as 

well as various aromatic ring and aliphatic chain combinations. 
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Figure 4-2: Schematic representation of optimization scheme employed in study (the 
process is repeated for Raman activity data) 
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As an illustrative example, pyrene +decane+ pyrene (Fig. 4-3) contains two 

pyrene rings connected by one alkane chain, thus the ratio of pyrene to decane is 

qualitatively 2:1. The infrared data of pyrene and decane (Figures 4-4(a) and 4-

4(b) respectively) constitute the dependent variables, whose coefficients are to be 

determined, while pyrene + decane + decane represents the independent variable. 

The result of the regression analysis shows that the coefficient of pyrene is 1.56, 

while the coefficient of decane is 0.58. It is important to note that even though 

this ratio is greater than 2; it however shows that the coefficients provide a 

qualitative measure of the relative abundance of pyrene and decane in pyrene + 

decane + pyrene.  

 

In Figure 4-4 (c), the difference between the computed (or calculated) spectrum of 

pyrene + decane +pyrene and the spectrum obtained after the spectral 

optimization i.e. the spectrum generated from the sum of 1.56 (pyrene) .and 0.58 

(decane) is shown.  

 

The prominent peaks in the residual spectrum can be attributed to the “extra” C-H 

vibrations. These “extra” vibrations can arise because of the four additional 

hydrogen atoms present in pyrene and decane, but absent in pyrene + decane+ 

pyrene. For the complete set of infrared and Raman results, see Appendix II. 

 

(a) 
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(b) 

 

(c) 
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(d) 

 
Figure 4-3:  (a) Pyrene + decane + pyrene; the ratio of pyrene to decane is 2:1 (b)Infrared 
spectrum of decane (c) Infrared spectrum of pyrene (these two represent the dependent 
variables) (d) Infrared spectrum of pyrene + decane + decane (computed), spectrum obtained 
after the regression analysis (optimized), and the difference between the computed and 
optimized spectra (residual). 
 
 
A more detailed description of the results obtained for all the model compounds 

studied using infrared and Raman spectra is provided in the following sections. 

The results obtained by analyzing the six model compounds consisting of 

identical aromatic rings connected by n-decane with a library of their constituent 

molecules are first presented; afterwards, the results from the entire database of 

model compounds analyzed with the complete library are discussed. 

 

4.2 Infrared Spectra 
Figures 4-4 and 4-5 show the results obtained for pyrene + decane + pyrene 

(PDP) and anthracene + decane + anthracene (ADA) using a library consisting 

of pyrene and decane, and anthracene and decane respectively. The coefficients 
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indicate that the ratio of pyrene to decane in PDP is approximately 2.70; while the 

ratio of anthracene to decane in ADA is approximately 1.94. Qualitatively, these 

results indicate that the contribution of pyrene and anthracene in PDP and ADA 

are at least twice the contribution of decane.  

 

A summary of the coefficients for the six aromatic ring and n-decane model 

compound combinations is presented in Table 4-2. Naphthalene + decane + 

naphthalene has the lowest aromatic ring to n-alkane ratio of 1.02, while the ratio 

of 4.26 for phenanthrene + decane + phenanthrene is the highest. The mean ratio 

for all six cases is 2.39. This result is quite remarkable if the fact that there was no 

bias in the data acquisition or analysis. The results show that this technique can 

qualitatively predict the relative abundance of the molecular constituents of the 

hydrocarbon species under investigation. 
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Figure 4-4:  Linear regression coefficients for pyrene + decane + pyrene using a library 
containing pyrene and decane 
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Figure 4-5:  Linear regression coefficients for anthracene + decane + anthracene using a 
library consisting of anthracene and decane 
 
Subsequently, the algorithm was applied to nine model compounds consisting of 

different aromatic rings connected by n-decane, using the complete library of six 

aromatic ring and five n-alkane chain compounds. The results of this exercise are 

reported in Table 4-4. The linear regression coefficient threshold of 0.3 was used 

to analyze the results. To illustrate the effect of using this approach, the result of 

anthracene + decane + pyrene is presented in Fig. 4-6. Even though anthracene, 

pyrene, and dodecane are correctly identified, the coefficient of 0.36 for 

phenanthrene indicates that the infrared result cannot be accepted as accurate.  
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Table 4-2: Infrared results for the six combinations of two identical aromatic rings joined 
by n-decane used to test the feasibility of using linear regression coefficient values in 
determining the relative abundance of molecular sub-units. 
 
Model Compound Molecular sub-unit (Coefficient) 

anthracene + decane + anthracene anthracene (3.85); decane (1.98) 

chrysene + decane + chrysene chrysene (3.41); decane (1.55) 

fluoranthene + decane + phenanthrene fluoranthene (3.76); decane (1.72) 

naphthalene + decane + fluoranthene naphthalene (2.25); decane (2.21) 

phenanthrene + decane + pyrene phenanthrene (1.65); decane (0.39) 

pyrene + decane + pyrene pyrene (1.56); decane (0.58) 

 

The results showed a general trend: the identification of dodecane and/or 

undecane as the aliphatic chains present even though decane was the n-alkane 

chain used to construct the model compounds. To test the effect of alkane chain 

lengths an additional set of model compounds was developed that consisted of 

different combinations of pyrene and aromatic rings joined by varying even-

numbered n-alkane chains lengths. The results of are presented in Table 4-5. The 

results show an approximately 40% success rate in identifying the molecular sub-

units of the model compounds, but fails to distinguish between n-alkane chain 

lengths. Consequently, the identification of either undecane and/or dodecane has 

been chosen to represent the presence of an n-alkane chain. 

 

Figure 4-7 is an illustration of the identification of dodecane instead of decane in 

pyrene + decane + pyrene using the complete library. The result indicates that 

pyrene is the most dominant structure in the model compound, followed by 

dodecane. This result reveals the strong potentials of using this technique to 

predict the molecular constituents of unknown hydrocarbon structures. Pyrene + 

octane + pyrene and pyrene + dodecane + pyrene both have coefficients of 0.31 

for phenanthrene; however, because the corresponding values of pyrene are 1.28 

and 1.41, the contribution of phenanthrene has been neglected. 
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Figure 4-6:  Infrared results for anthracene + decane + pyrene using a complete library of 
molecular sub-units. 
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Figure 4-7:  Infrared results for pyrene + decane + pyrene showing the coefficients of the 
complete library of molecular sub-units. Dodecane is identified instead on decane 
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The results for all three anthracene-based compounds show the correct 

identification of anthracene, pyrene and dodecane, but the misidentification of 

phenanthrene, which has an average coefficient of 0.37 for all cases (see Fig. 4-6); 

hence the technique fails to accurately identify this set of model compounds. 

However, it should be noted that the coefficients of anthracene, pyrene and 

dodecane are higher than the value for phenanthrene.  

 

For the chrysene compound groups, the correct identification of the molecular 

sub-units is also achieved, with the misidentification of phenanthrene; however, 

unlike in the previous cases, the value of phenanthrene is higher than that of 

chrysene, but less than pyrene and dodecane for the two cases considered. 

Similarly, phenanthrene is misidentified in the naphthalene group of compounds, 

although it has a lower coefficient than naphthalene in all three cases. 

 

In summary, the infrared results showed a 40% success rate in providing 

information regarding the aromatic ring and aliphatic chain compounds present in 

large molecules. While the technique fails to distinguish between aliphatic chains, 

it appears to misidentify phenanthrene sub units as anthracene, chrysene and 

naphthalene to varying degrees,   Hence, the technique is unable to clearly 

identify the model compounds that they comprise. 

 

4.3 Raman Spectra 
Figure 4-8 shows the result obtained when the optimization algorithm is applied 

to phenanthrene + decane + phenanthrene using a library of phenanthrene and 

decane. The ratio of phenanthrene to decane is approximately 2.14; which 

evidently shows that the coefficients of these molecular sub-units provide a 

qualitative measure of their relative abundance in phenanthrene + decane + 

phenanthrene.  
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Figure 4-8:  Raman results for phenanthrene + decane + phenanthrene using a library of its 
components 

 
In Table 4-3, a summary of the results obtained for the six different combinations 

of two identical aromatic rings connected by n-decane model compounds is 

presented. The Raman results show a trend similar to the infrared case discussed 

in the preceding section: the aromatic rings have higher coefficients than n-decane. 

Anthracene + decane + anthracene has the lowest ratio of 1.37, while the ratio of 

2.68 reported for fluoranthene + decane + fluoranthene is the highest. The 

average for all six compounds is approximately 1.79. Again, these values have 

been obtained without any bias in the data acquisition or analysis process. 
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Table 4-3: Raman results for the 6 combinations of two identical aromatic rings joined by 
n-decane used to test the feasibility of using linear regression coefficient values in 
determining the relative abundance of molecular sub-units 
 
Model Compound Molecular sub-unit (Coefficient) 

anthracene + decane + anthracene anthracene (0.06); decane (0.04) 

chrysene + decane + chrysene chrysene (1.52); decane (1.17) 

fluoranthene + decane + phenanthrene fluoranthene (0.08); decane (0.03) 

naphthalene + decane + fluoranthene naphthalene (0.06); decane (0.04) 

phenanthrene + decane + pyrene phenanthrene (0.06); decane (0.03) 

pyrene + decane + pyrene pyrene (1.62); decane (1.05) 

 
As noted in the preceding sections, infrared and Raman data have been analyzed 

in exactly the same way. Hence, the next step in the analysis is the use of the 

complete library of eleven (six aromatic-ring and five n-alkane-chain) compounds. 

In Table 4-4, the Raman results for the nine model compounds comprising two 

different aromatic rings connected by n-decane are presented. Generally the 

results show a vast improvement over the infrared results. In the infrared case, 

only about 30% of the compounds were successfully identified, whereas the 

Raman results show almost 70 % success rate. Once again, the results reported are 

based on the compounds with regression coefficients above the threshold of 0.3 

 

Table 4-5 shows the Raman results for the 14 compounds investigated to evaluate 

the ability of the technique to distinguish between different n-alkane chain-lengths. 

Unfortunately, the Raman results do not fare any better than the infrared ones, and 

n-alkane chain-lengths are still indistinguishable. Hence, the identification of any 

n-alkane chain has been chosen to represent the presence of a bridge linking the 

two aromatic rings  

 

A close look at the results presented in Table 4-5 show that all of the anthracene-, 

chrysene-, and phenanthrene-based compounds are completely identified, while 



 
   

 72

none of the naphthalene-based ones are identified. The results for naphthalene + 

octane + pyrene and pyrene + decane + pyrene are reported in Figures 4-9 and 4-

10 respectively. The results for all three naphthalene-based compounds show the 

misidentification of phenanthrene, while the unsuccessful pyrene-based 

compounds show a misidentification of naphthalene. 

 

Comparing infrared and Raman results reveal their complementary nature. For 

instance, while the Raman results show a complete identification of all the 

anthracene-based model compounds, the infrared results fail to completely 

identify any of them. However, it has to be noted that both sets of results also 

show some similarity; they both fail to identify any of the naphthalene-based 

compounds, but completely identify the phenanthrene-based ones. Furthermore, 

the infrared results for the same set of compounds show a 40% success rate, and 

the Raman equivalent show a 60% success rate. 

 

The complementary nature of both results, coupled with the fact that the infrared 

and Raman data are from the same compounds motivated the use of another level 

of analysis that combined both sets of results. The goal of this exercise was to 

seek an improvement in the level of accuracy obtained when both data sets were 

analyzed independently. 
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Figure 4-9:  Raman result for naphthalene + octane + pyrene using the complete library of 
molecular sub-units 
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Figure 4-10:  Raman results for pyrene + decane + pyrene using the complete library of 
molecular sub-units 
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4.4 Combined Infrared (IR) and Raman 

Spectroscopy 
The combination of the infrared and Raman spectroscopy as a basis for molecule 

identification was motivated by the need to seek ways to improve on the accuracy 

of the optimization algorithm: 40 % using infrared spectroscopy and 65 % for 

Raman spectroscopy (based on the 20 model compounds investigated). An 

illustrative outcome is presented in Figure 4-11 where the infrared and Raman 

results for anthracene + decane + pyrene are plotted on the same chart. The 

jointly identified molecular sub-units of this compound (anthracene, dodecane and 

pyrene) are clear. This approach was applied to the entire database of model 

compounds, and the results are presented in Tables 4-4 and 4-5. 

 

The combination of IR and Raman results produced an improvement in the 

prediction of the molecular sub-units for all the model compounds except for 

those containing naphthalene groups. As Figure 4-12 shows, the apparent 

presence of phenanthrene is once again responsible for this failure to identify 

compounds correctly.  
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Figure 4-11:  Combined IR and Raman result for anthracene + decane + pyrene using the 
complete library of molecular sub-units 
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Figure 4-12:  Combined infrared and Raman result for naphthalene + decane + pyrene using 
the complete library of molecular sub-units 
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Table 4-4: IR, Raman, and combined IR and Raman results for the 9 model compounds 
consisting of different combinations of two aromatic rings connected by an n-decane chain 
(  = Pass;  = Fail) 
 

Model Compound IR Raman IR + Raman 

anthracene + decane + chrysene    

anthracene + decane + pyrene    

chrysene + decane + fluoranthene    

chrysene + decane + phenanthrene    

fluoranthene + decane + phenanthrene    

naphthalene + decane + fluoranthene    

naphthalene + decane + pyrene    

naphthalene + decane + phenanthrene    

phenanthrene + decane + pyrene    

 
 

Table 4-5: Summary of the IR, Raman, and combined IR and Raman results for the 14 
model compounds used to evaluate the influence of n-alkane chain lengths on the 
optimization technique. (  = Pass;  = Fail) 
 

Model Compound IR Raman IR + Raman 

anthracene + octane + pyrene    

anthracene + decane + pyrene    

anthracene + dodecane + pyrene    

pyrene + octane +pyrene    

pyrene + decane +pyrene    

pyrene + dodecane +pyrene    

chrysene + octane + pyrene    

chrysene + dodecane + pyrene    

naphthalene + octane + pyrene    

naphthalene + decane + pyrene    

naphthalene + dodecane + pyrene    

phenanthrene + octane + pyrene    

phenanthrene + decane + pyrene    

phenanthrene + dodecane + pyrene    
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4.5 Compounds with no Library 

Constituents 
The results reported in the preceding sections are based on model compounds 

constructed from the molecular sub-units that make-up the library. Although the 

results are very promising, it is still pertinent to consider a situation where the 

model compound is not composed of any of the molecular sub-units in the library. 

This test is important because a positive identification of the model compound 

would indicate that the spectral optimization process that forms the basis for this 

thesis is unreliable; whereas a negative identification would further strengthen the 

case for molecular structure prediction using this technique. 

 

Figures 4-13 and 4-14 are the schematic representation of the molecular structure 

of azuelene + decane + fluorene, and the combined IR and Raman result 

respectively. Using 0.3 as the threshold of significance for the coefficients, the IR 

result indicates that pyrene and dodecane are identified, while fluoranthene and 

decane are identified in the Raman. However, combining both results reveals that 

none of the molecular sub-units are jointly identified. 

 

 
Figure 4-13:  Schematic representation of azulene + decane + fluorene 
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Figure 4-14:  Combined IR and Raman result for azulene + decane + fluorene using the 
complete library of molecular sub-units 
 

4.6 Analysis of Residuals 
The spectrum that results from the difference between the computed (or 

measured) spectrum and optimized (or predicted) spectrum is the residual 

spectrum. An analysis of the residuals shows that on the average they represent 

25% and 17% of the computed spectra for IR and Raman respectively. Further, it 

was observed that the size of the residuals was independent of the successful 

identification of the molecular sub-units. 

 

For instance, for the three pyrene-based groups successfully identified in the IR 

analysis, the residuals represent 17%, 19%, and 19% for pyrene + octane + 

pyrene, pyrene  + decane + pyrene, and pyrene + dodecane + pyrene 

respectively; while for the three naphthalene-based compounds which were 

unsuccessful namely naphthalene + octane + pyrene, naphthalene + decane + 
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pyrene, and naphthalene + dodecane + pyrene, the residuals represent 16%, 18%, 

and 18%  respectively. A complete set of the results is provided in Appendix I. 

 

4.7 Summary 
The linear regression of the infrared and Raman data of 20 model compounds 

using a library of molecular sub-units was investigated. The linear regression 

coefficients obtained from the minimization process were used to provide an 

indication of the relative abundance of molecular sub-units in the model 

compounds. For compounds correctly identified by way of constituents, average 

compositions are semi quantitative. However the variation among specific cases is 

significant. 40% of the compounds were successfully identified, on the basis of IR 

spectra, while 65 % were correctly identified on the basis of Raman spectra. By 

combining these two sets of independently obtained results more than 80% of 

compounds were identified correctly, and the variation of relative abundance of 

sub units was reduced. Alkane chain length is poorly defined. 
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5 Nuclear Magnetic 
Resonance (NMR) 

 

5.1 Introduction 
As noted in Chapter 2, advanced stochastic algorithms such as Monte Carlo 

simulation have been used to generate molecular representations of asphaltenes 

based on their experimental NMR (1H and 13C) spectroscopy, elemental analysis 

and molecular weight data. However, based on the results reported by Sheremata 

et al. [43] and Boek at al [44], the molecular structure of heavy petroleum 

fractions such as asphaltenes remains ambiguous. While Sheremata et al. 

concluded that asphaltenes had an archipelago representation; Boek et al. were 

able to show that the polycondensed representation was more accurate. It should 

be noted that Boek et al. used 30 aromatic building blocks, which is 10 more than 

Sheremata et al.’s; and the authors also claim that unlike Sheremata et al., they 

did not constrain their results to the archipelago structure.  

 

Following the successful application of the spectral optimization algorithm to the 

vibrational spectra of the model compounds investigated; the ambiguity generated 

in the aforementioned publications motivated the extension of this algorithm to 

NMR spectra. For consistency with infrared and Raman results, the NMR data 

used for this analysis was obtained using exactly the same DFT level of theory 

(B3LYP/6-311G). 
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5.2 NMR Results 
Unlike the vibrational frequency data, the NMR data is characterized by Chemical 

Shift or Shielding Tensor measured in parts per million (ppm) and Degeneracy 

(which represents the number of atoms (Carbon for 13C-NMR, or Hydrogen for 
1H-NMR) with the same Chemical Shift or Shielding Tensor. For ease of analysis, 

the Shielding Tensors have been used instead of the Chemical Shift values. 

 

Tables 5-1 and 5-2 show the results from the analysis conducted using the 

technique outlined in Chapter 4. None of the model compounds were correctly 

identified. Figures 5-1 and 5-2 depict the 13C-NMR result for pyrene + octane + 

pyrene and the 1H-NMR result for anthracene + octane + pyrene respectively. 

These results are typical for all the model compounds studied. A complete set of 

NMR results comprise Appendix III. 

 
Table 5-1: 1H and 13C-NMR results for the 9 model compounds consisting of different 
combinations of two aromatic rings connected by an n-decane chain (  = Pass;  = Fail) 
 

Model Compound 1H-NMR 13C-NMR 

anthracene + decane + chrysene   

anthracene + decane + pyrene   

chrysene + decane + fluoranthene   

chrysene + decane + phenanthrene   

fluoranthene + decane + phenanthrene   

naphthalene + decane + fluoranthene   

naphthalene + decane + pyrene   

naphthalene + decane + phenanthrene   

phenanthrene + decane + pyrene   
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Table 5-2: Summary of the 1H and 13C-NMR results for the 14 model compounds used to 
evaluate the influence of n-alkane chain lengths on the optimization technique. (  = Pass;  
= Fail) 
 

Model Compound 1H –NMR 13C-NMR 

anthracene + octane + pyrene   

anthracene + decane + pyrene   

anthracene + dodecane + pyrene   

pyrene + octane +pyrene   

pyrene + decane +pyrene   

pyrene + dodecane +pyrene   

chrysene + octane + pyrene   

chrysene + dodecane + pyrene   

naphthalene + octane + pyrene   

naphthalene + decane + pyrene   

naphthalene + dodecane + pyrene   

phenanthrene + octane + pyrene   

phenanthrene + decane + pyrene   

phenanthrene + dodecane + pyrene   

 

These results show that irrespective of the model compound used, any 

combination of the aromatic rings can be predicted. Although these results 

suggest that the optimization algorithm that was successful with vibrational 

spectra has completely failed with NMR spectra; it however corroborates the 

findings of Boek et al. and Sheremata et al.: the same NMR data can be used to 

generate a plethora of molecular representations. Further, since the electron 

densities of model compounds studied are very similar, their NMR signatures are 

very nearly the same; this could also account for the lack of resolution observed 

using NMR.  
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Figure 5-1: 13 C NMR Result for pyrene + octane + pyrene using the complete library of 
molecular sub-units 
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Figure 5-2: 1H-NMR result for anthracene + octane + pyrene using the complete library of 
molecular sub-units 
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6 Conclusion 

6.1 Introduction 
This thesis was motivated by the need to reduce the ambiguity of molecular 

representations proposed for ill-defined petroleum fractions including asphaltenes, 

vacuum residues, heavy oils and bitumen. A review of the literature showed that 

the use of vibrational spectroscopy has played a minor role in this debate, whereas 

techniques that rely on Nuclear Magnetic Resonance (NMR) have been heavily 

relied upon.  

 

An optimization technique was developed to explore the feasibility of using 

vibrational frequency data to predict the molecular structure of this class of 

petroleum fractions, and the results are promising. Since this study is exploratory 

in nature, computed spectra were employed. 

 

6.2 Main findings  
The results presented in the preceding chapters support the use of infrared and 

Raman spectroscopy in predicting the molecular structure of hydrocarbon 

structures; and this can be extended to complex, ill-defined hydrocarbons 

including asphaltenes, vacuum residue, and bitumen.  

 

Using infrared data alone, approximately 40% of the model compounds studied 

was completely identified; likewise, the use of Raman data alone resulted in 65% 

identification. The combination of these two methods further boosted the 

accuracy of the technique, leading to more than 80% of the model compounds 

being completely identified. 
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By contrast, a library of NMR spectra (1H and 13C) for small molecules failed to 

identify large model compounds correctly; the results indicate that one set of 

NMR data can be used to construct diverse structures for larger hydrocarbon 

molecules. 

 

The NMR spectrum of a hydrocarbon compound only provides information about 

the individual carbon and hydrogen atoms, and their nearest neighbours; whereas 

the vibrational spectroscopy data of the same compound shows the functional 

groups present. These functional groups represent a collection of carbon and 

hydrogen atoms, rather than individual atoms; therefore the functional groups 

provide a clearer picture of the molecular sub-units present. 

 

Spectral optimization has been used to successfully predict the molecular 

constituents of large model hydrocarbon molecules based on infrared and Raman 

spectroscopy data. Infrared and Raman spectroscopy can therefore play an 

important role in resolving the ambiguity surrounding the molecular structure of 

ill-defined hydrocarbons. 

 

6.3 Recommendations 
The findings presented in this work are based on molecular simulations of 

compounds in their ground states and vapour phase. A study based on 

experimental spectroscopic data of the same set of model compounds followed by 

one including bitumen, asphaltenes, and heavy oils is warranted. Experimental 

work in this area presents numerous challenges. For example, to obtain adequate 

resolution of IR spectra, particularly at low wave numbers, synchrotron based 

experiments will be required and specialized experimental techniques may well be 

required (e.g.: photoacoustic IR). Raman measurements may be performed using 

typical laboratory equipment but samples may well need to be cooled, and care 

must be taken with the selection of laser wavelength. 
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An additional computational study warranted on the basis of the results reported 

here concerns whether IR and RAMAN spectra can discriminate naphthenic or 

partially naphthenic subunits from corresponding polynuclear aromatic ones. This 

remains a challenging experimental area for other forms of spectroscopy. 
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Appendix I 
 
Table A 1 -1: Table depicting the algorithm used to perform least squares optimization of frequency data generated 
 

 LRC1 "  LRCn  CAA  

Freq. 

(cm-1) AA1 "  AAn Predicted(P) 

Measured 

(M) (M-P)2 

f1 IR11 "  IRn1 Σ((LRC1*IR11)+"+(LRCn*IRn1)) IR1 (M-P)1
2 

f2 IR12 "  IRn2 Σ((LRC1*IR12)+"+(LRCn*IRn2)) IR2 (M-P)2
2 

#  #   #  #  #  #  

fi IR1i "  IRni Σ((LRC1*IR1i)+"+(LRCn*IRni)) IRi (M-P)i
2 

                Objective function =          Σ((M-P)1
2+(M-P)2

2+"+(M-P)i
2) 

 
LRC = Linear Regression Coefficient for the n pure aromatic ring or aliphatic chain compound in library (can have only positive values) 
CAA = Combination of aromatic ring and aliphatic chain compounds used to model ill-defined hydrocarbon structures (independent variable) e.g. pyrene + 
decane + pyrene  
AA = Pure aromatic ring or aliphatic chain compounds in the library (dependent variable) e.g. pyrene, decane 
fi

  = Computed (or measured) frequencies at 10cm-1 intervals,  
IRi

  = Computed infrared intensity or Raman activity for a given frequency 
Predicted (P) = Arithmetic sum of the product of regression coefficients and infrared intensities or Raman activities for each frequency, i 
Measured (M) = Computed infrared intensity or Raman activity of the model ill-defined hydrocarbon compound for a given frequency 
Objective function = Sum of squares when LRC≠ 0 
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Calculating the Residuals: 
 

2

2

( )
Residual =

( )
IR or Ramanof CAA

M P−
∑

∑
      (A1.1) 

 
where, 

2( ) 0IR or Raman of CAA LRC⇒ =∑      (A1.2) 
 

 
Table A 1 -2: Table showing the results of the analysis of residuals for the 20 model compounds 
based on infrared spectra 
 

 Sum of squares  

Model Compound LRC=0 LRC≠ 0 Residual  

anthracene + decane + chrysene 2.03E+06 8.85E+05 44% 
anthracene + decane + pyrene 2.24E+05 4.72E+04 21% 
anthracene + octane + pyrene 1.74E+05 4.39E+04 25% 
anthracene + dodecane + pyrene 2.91E+05 6.15E+04 21% 
chrysene + decane + fluoranthene 2.72E+05 1.04E+05 38% 
chrysene + decane + phenanthrene 2.39E+05 9.55E+04 40% 
chrysene + octane + pyrene 1.89E+05 5.10E+04 27% 
chrysene + dodecane + pyrene 3.17E+05 7.15E+04 23% 
fluoranthene + decane + phenanthrene 2.63E+05 9.93E+04 38% 
pyrene + decane +pyrene 2.63E+05 4.89E+04 19% 
pyrene + dodecane +pyrene 3.19E+05 6.03E+04 19% 
pyrene + octane +pyrene 1.89E+05 3.21E+04 17% 
naphthalene + decane + fluoranthene 2.49E+05 9.50E+04 38% 
naphthalene + decane + pyrene 1.99E+05 3.50E+04 18% 
naphthalene + decane + phenanthrene 2.17E+05 8.47E+04 39% 
naphthalene + octane + pyrene 1.48E+05 2.32E+04 16% 
naphthalene + dodecane + pyrene 2.71E+05 4.80E+04 18% 
phenanthrene + decane + pyrene 2.17E+05 4.00E+04 18% 
phenanthrene + octane + pyrene 1.75E+05 3.86E+04 22% 
phenanthrene + dodecane + pyrene 2.85E+05 6.05E+04 21% 
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Table A 1 -3: Table showing the results of the analysis of residuals for the 20 model compounds 
based on Raman spectra 
 

 Sum of squares  

Model Compound LRC=0 LRC≠ 0 Residual 

anthracene + decane + chrysene 2.23E+04 8.13E+03 36% 
anthracene + decane + pyrene 5.25E+06 9.60E+05 18% 
anthracene + octane + pyrene 5.08E+06 1.05E+06 21% 
anthracene + dodecane + pyrene 5.57E+06 9.99E+05 18% 
chrysene + decane + fluoranthene 8.91E+06 1.06E+06 12% 
chrysene + decane + phenanthrene 8.12E+06 1.21E+06 15% 
chrysene + octane + pyrene 9.22E+06 1.67E+06 18% 
chrysene + dodecane + pyrene 9.82E+06 1.74E+06 18% 
fluoranthene + decane + phenanthrene 5.17E+06 1.01E+06 19% 
pyrene + decane + pyrene 7.14E+06 1.57E+06 22% 
pyrene + dodecane +pyrene 7.60E+06 1.61E+06 21% 
pyrene + octane +pyrene 6.89E+06 1.53E+06 22% 
naphthalene + decane + fluoranthene 3.88E+06 3.64E+05 9% 
naphthalene + decane + pyrene 3.40E+06 4.18E+05 12% 
naphthalene + decane + phenanthrene 2.86E+06 4.90E+05 17% 
naphthalene + octane + pyrene 3.17E+06 4.28E+05 14% 
naphthalene + dodecane + pyrene 3.73E+06 4.62E+05 12% 
phenanthrene + decane + pyrene 4.22E+06 4.82E+05 11% 
phenanthrene + octane + pyrene 4.01E+06 5.02E+05 13% 
phenanthrene + dodecane + pyrene 4.54E+06 5.25E+05 12% 
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Appendix II 
Appendix II consists of the files used to perform the regression analysis of all the model 
compounds based on infrared and Raman spectra (to view these files, please contact: 
jmshaw@ualberta.ca). 
 

Appendix III 
Appendix III consists of the files used to perform the regression analysis of all the model 
compounds based on proton and carbon-13 NMR spectra (to view these files, please 
contact: jmshaw@ualberta.ca). 
 
 


