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Reservoir depcsitian occurs over [Et'si?‘" 1 e aﬂd lhus. most reservoirs are

lﬂd the presence ot' dlﬂ‘cmnt zone ~* uids aﬂfm mcks in th: faﬁmnm. \Vhen an
enhanced recovery method, such .+ -ream-rk~-ling, is implemented for a heavy-oil
reservoir, the reservoir resembles  :ompossr reservoir. Because of the gravity override
effect, the fluid front of the swept reggon - ot vertical, but tilted or inclined. Sometimes,
reservoirs are accompanied by a bowee- i - or a gas-cap zone of various sizes. In the
presence of a bottom-water or a gas-cap rone, the well is partially-penetrated to avoid or
delay the water or gas coning problem.

In this study, a new analytical solution for multi-layer, composite reservoirs with
pseudosteady state interlayer crossflow has been developed. Fluid flow in the reservoir has
been treated as a generalized cigenvalue problem. The developed analytical solution for an
n-layer composite reservoir is applicable for a tilted or irregularly-shaped discontinuity
boundary, and for closed, constant-pressure, and infinite outer-boundary conditions. For
tilted front :ue:. a pleudoneadymte (pn) ﬂmv pericd exim in some lveriie sense lnd

MA cCOfTe n fmmheendsvglgpd mmheﬂimﬂd mepudm
from pss analysis. Well-test analysis under infinite and finite bottom-water conditions has
been considered and the effect of aquifer size on well-test analysis has been investigated.

For pantially-penetrating wells in multi-layer reservoirs, new analytical expressions for the
pseudoskin factor have been developed for both closed top and bottom boundaries, and
with bottom-water zones and/or gas caps. Evaluation of the pseudoskin factor using these
expressions requires a knowledge of two parameters when the top and the botiom
boundaries are closed, and three parameters in the presence of a botiom-water sone or a gas
cap, regardiess of the number of layers. The estimated pseudoskin factor is very close 10
mmmnmmnmwﬁm
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1.0 INTRODUCTION

different fluid and/or rocks is a mmgfﬁniﬁWdrMthyﬁi
may be communicating or non-communicating. Formation crossflow is present when
the layers are communicating. When the layers do not communicate with each other,
except through the wellbore, then the reservoir is termed a "commingled reservoir”. A
or more regions of different rock and/or fluid properties.

m-hyﬁd.mmmw&lmnhnfmﬂndnplmm
is created in the reservoir. Ungllyﬂgﬂuﬂﬂminmdum is not vertical, but

thick, homogenecous reservoir owing to gravity override effects. Figure 1.1
inclined line shows the fluid front and @ is the angle of inclination. Vertical arrows
ﬂmqﬂfemyEMHwinﬂﬂtLWhEnhmhhmhpm-dnh

Mﬂhqﬂfahm:lmmm'

Uﬁ'lm-mmmlnmm&l\ﬂﬂﬂyﬁ
mnﬂﬂmhmﬁhm-ﬁhm::

sudoskin factor”. Several analytical expressions are available in the lisersture? 0
mnmmﬁa—ﬂmhnmﬂﬁ




Numerous studies have been reported in the literature on layered and composite
reservoirs, and Gomes and Ambastha! have presented an extensive literature review on
these studies. Most of these studies are limited to layered systems without composite
zones in the radial direction or 0 single-layer, composite reservoirs.

A limited number of studies have been conducted on multi-layer, composite reservoirs.
Satman? presented injectivity and falloff responses for a commingled, multi-layer
composite reservoir and introduced the concept of a tilted front. Satman and Oskay*
considered the discontinuity boundary as a tilted front (inclined front) 10 account for the
gravity override effect and modelled the reservoir as a multi-layer, composite reservoir
without formation crossflow.

The objective of this study is 1o develop an snalytical solution for a multi-layer, composite
reservoir with preudosteady-state formation crossflow and conduct transient pressure
analysis for thermal recovery processes, such as sieam-flooding, in which the gravity
override effect is important. Because of layering or the gravity override effects, the fluid
boundary is tilted or irregularly-shaped. The objective of this study is 10 investigate the
effect of the tilted or irregularty-shaped front on transient pressure analysis. The objective
includes an investigation of the pseudoskin factors for partially-penctrating wells in multi-
" yer reservoirs with or without a bottom-waser condition. The objective also includes a
study of the transient pressure behaviour for wells in  multi-layer, composie reservoirs
under finite or infinite botiom-water conditions.

Chapter 2 presents the development and the verification of the analytical solution for muls-
layer composise reservoirs with pssudosicady-stats (pps) formation crossflow. Using the
sigeavalues and cigeavectons of the sysiem, this method computes transient pressuss
behaviour more efficiently than the method described by Aabarci of al.* Ths developed
model can handis tiked or iregularly-shaped fluid fronts, multiple, composits segions,



bottom-water condition, partially-penetrating wells, and all commonly-used outer-boundary
conditions. Chapter 3 presents well test analysis for multi-layer composite reservoirs with
tilted fronts. The effects of the front angle and layer refinement on transient pressure
10 estimate the swept volume has been investigated and a correction factor has been
developed 10 correct the swept volume from pss analysis.

Chapter 4 presents new analytical expressions for pseudoskin factors for partially-
penetrating wells in multi-layer reservoirs with both closed top and bottom boundaries and
with bottom-water zones or gas caps. These new pseudoskin expressions are very easy 1o
Mﬂmnmhnmﬂ;hmmmalmmms

the effect of aquifer size on transient pressure analysis has been investigated.

msmmnmummmﬂmmmm
program has been written in FORTRAN 77. Eigenvalues and eigenvectors have been
some studies 10 exiend this work.

Appendices A, B, C, D, and E show the derivations of some sxpressions ia detail.
show published or presemted papers from this study.
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2.0 MODEL DEVELOPMENT
3.1 Introduction

fluid and/or rocks is 8 common cause for reservoir heterogeneity. Figures 2.1a and 2.1b
show a layered reservoir and a laysred, composite reservoir, respectively. The horizontal
ehnmﬂﬁﬂn;ﬂmmdiﬂmmmym:mmﬂrnﬁnwul
composite reservoir. The tilsed line in Figure 2.1b shows the discontinuity boundary or the
fluid front. A layered, composite reservoir situstion oocurs when all or some of the layers

2.1 lists the relevant papers on layered reservoirs. One aspect in which the studies differ is
n-hlybymm mmmm.ﬂm:m

esistance 10 crossflow is confined 10 the
mmuumnm-ﬁ—am This assumption reduces s
two-dimensional problem 10 2 one-dimensional problem. Transient cvossfiow wsilisss the




Responses of layered reservoirs may be summarized as follows: for commingled
reservoirs, the time noeded 10 reach pscudosicady state is an order of magnitude higher than
that for homogeneous reservoirs; semi-log analysis can be used to estimate the average
permeability-thickness product and the skin effect; initially, a crossflow system and a
commingled system have the same responses; then there is a transition period and, finally,

Satman?! presented drawdown and buildup responses for a commingled, multi-layered
composite reservoir. In his model, he considered different discontinuity boundary radii for
different layers. He used the concept of a tilied front for layered composite reservoirs,
because the fluid front would propagate at different rates in different layers. For enhanced
recovery processes, such as steam flooding, Satman and Oskay?* considered the
discontinuity boundary as a tilted front s0 account for the gravity-override effects and
modelled the reservoir as a multi-layer, composite reservoir without crossflow. They
concluded that the tilted front model is a better representation of the actual ressrvoir then the
sharp-fromt model when the gravity override effect is present. Hatzignation gt 2l *f
m.mmmmmmmmmm
-@mammmmmnnﬂmuw
mﬁumm“ﬁDMMMﬁdm“’ﬂﬁ
and considered pseudosteady stase crossfiow between the layers. They conducted a limised
sensidivity study and weed a type-curve matching sschniqus 10 locase the front in a particuler
mmmmmn:mm&:mm
m*mhﬂhhtvﬁﬁ.hﬁﬁy nﬂ,ﬁ-ﬂuﬂh
mmmammnm_ﬁhﬁmm




2.2 Model Development

This study considers an n-layer, radial, composite reservoir as shown in Figure 2.2. A

mmetrically located well fully penetrates the reservoir. The well produces at a constant
flow rate and pscudosteady-state formation crossflow is present between the layers. The
problem is solved by starting with the approach of Anbarci gt al.%. In Figure 2.2, the
discontinuity boundary in each layer is represented by a vertical solid line. These
discontinuity boundaries have been vertically extended across all the layers. As a result,
reservoir may have m number of regions in each layer. Therefore, the reservoir is divided

properties. In Figure 2.2, the shaded and non-shaded arcas represent two different fluid

discontinuity boundary. In each layer, the discontinuity boundary is placed st a differemt
location 10 simulste a tilted-from discontinuity boundary for the reservoir and for this
particular situstion, m=n+1. Layers are assumed 10 be of constant thicknesses throughout

The crossflow between layers within the reservoir is modelied as in the semi-permenble
wall model proposed by Geo™. Thus, crossflow resistance is assumed 10 bs conflned 1o

| model are as follows:




2. The effects of gravity and capillary forces are negligible.
3. The flow in the formation is described by Darcy's law.

4. When a fluid crosses the boundary of its zone, it behaves as the fluid on the downstream
@i

The flow equation for zone i,j can be written as:

('}L(%**%)“Nh%hxum-m)

where X, , and X, ; are defined as follows:
-2 ,
"% PR M 0

Xy = et — eesesimmsesssssssesssssessssssssrsssesssssssssssssenss (2.3)
fﬁu*(%ﬁkﬂ

PO =D, frallIand] ....coccincrernnrenneninnncssenssensaessessnsesssees (26)



p.,-pu(r..t)-;j(%ilihfmj- l,..n T RPN ¢ 2 )

‘l"c%*h“'j-zl(ﬁl)i%i)“ﬁ forjml,..n i (2.8)

Paj=Pia  for rdesandjml,n ..., (29)
Finite system with a constant pressure equal 10 the initial pressure at the outer boundary:
Puj=Pin  for mergjandjml, .0 .. snnnees (2.10)
ey T I X T

Py ™ Py fﬁf*iﬂ i=1,..ml lﬂj =1,. Sestesessessansansansenns (2-‘2)

%‘ n,%l for rmRandi=1,..m-1o0djm 1,8 .ooorerrercrrnnnene (2213)
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L eeeteenntesaneeesareessreessressnnos 2.15)
o=z Cheesiensreassasstrrerrrrarsersserssnranansane
rerrreeresnnsersasensserens (2.16)
m,.-zqi(%(h Y, N
' verereenrerensesessesnenes (2.17)
M-Z}E | R

@-#m. et saes
ﬁf)-i(kul evererie s sasssssssssssresssssessassssssssesssessesnneses(2.19)
g:!
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lm = Xai SRt EEeieeeeineeterar it ntaa e heetentenrennntenttetnonnnnnnnnnnse (2.24)
)
m
Initial condition:
pw(rD.O)-O. foralliandj ....ooccovnnniiiiiinree (2026)
M'PDIJUD)-S,'(E) [0 L VR U 2.27)
L
o _ ¢ (apm)
l-cu‘"_’ K = ¥ sessassssssevsssssssssessnsnascsscastsssnesee
- “2 NG |1 e (2.28)
Outer boundary conditions
Infinitely large system:
Pom; =0, for rp=repjandj=l, ..t ......oiiiiniicnenncneeeeeeneene (3.30)
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Interface conditions defining pressure and flow rate continuity between the zones of a layer:

Poiy=Poietj form=Roiandi=1,..m-land j=1,..0 .......cenene.. (2.32)

%l-u“:-a"g‘;—‘i fooo=Roiandi=1l,..miandjsl,.cn ..., (2.33)

The Laplace transformation of Equations (2.21), and (2.27) through (2.33), yields:

m(?%ﬁ‘)-mﬁwm-mn

FABIPOL - POGIR  coiiiiiii s enseeeeseeeraeessnssaes 2.34)
Inner boundary condition:
PeD=Por 1) -3 a—’i) fOrjm il covccininiieessnene (2.38)
1= copupt -Him(‘—f"*f)‘ et ssesessasssissssssesssessssssssessessse | (2,36)
Ouwser boundary conditions:
Infinitcly large system:
Pouy=0, for m—reeandjol, .. 8 .oocvenerevrenernrennnrenineeneressssenesenee (2.37)

Pouj =0 f0f = rpya0d =L, . B ..ovvoeeireeneeanneesseenesssesenees (2.38)
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Finite system with a closed outer boundary:

Interface conditions defining pressure and flow rate continuity between the zones of a layer:

Poy=Poisy forrp=Rpiandi=1,..m-1 and j=1,..n .................. . (2.40)

%'Mud%i- fooro=Rpi andi=],.m-landj=1,..n ............. (2.41)

Equation (2.34) has the form of a modified Bessel's equation and thus, assume a solution

of the following form for Equation (2.34):

Y ‘_'&u%%!m s (249)

Aot +(0%- e - A - 20 POy + ABBOG1 =0 e (2.44)

Equation (2.44) has the form of a generalized eigenvalue system. As poimed out by Ehlig-
Mmﬂmﬂ?i;;:,,,,au)m-mmmmmﬂmxﬁ
only if its coefficient matrix is singular. Thus, the deserminant of the coefficient

0 be 2er0. The coefficient matrix is an axm by axm tridiagonal matrix. The cosfficient
matrix can be divided into m smaller real-symmetric, positive-definitive tridiagonal
metrices, where the 02 wsrms act as the eigenvalues, and these eigenvalues are slways
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and, from each determinant, n eigenvalues can be obtained. Now, a general solution for
each zone can be written as:

-ZIA KBy loo )L e (245)

AL =ESAY, ... ettt ssesssssossssesssenesersssnsenens | (2:46)

where Ej is the eigenvector for region i, and this eigenvector can be calculated from

Equation (2.44). Constants A} and B} are 10 be desermined from the boundary conditions.

Pouy =2 [A% ESKaONDMBAELINGMD) ceoocevecieenienceecesesesessens (2.48)
| ]

Equation (2.48) contains 2nxm constants (0 be evaluated from the boundary conditions.
: (A.'Eulcdci‘)ﬂ"a.ﬂo%‘)) > 2
z[wﬂn‘(A“EuK:(ﬂ;") B‘E.uh(al)l] L P TP « X )

%E:@q‘[ﬁ%ﬁk‘q‘)-lﬂ%l‘q‘ﬂ forjel, el cooeercrreenen. (2.50)

3 [Abed Kdoh o)+ 0B, ok o0

fOrmp—eeand Jm 1, M e eseeresessaneesan (2.51)
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The condition that the pressure is bounded yields:
)38 LTI T AT S (2.52)
=l

A constant-pressure, outer boundary condition yields:

g[.\ Ex Kook roy) + BEEX ok rp)] =0  for je1,..n e (2.53)

i[A‘LE{.K.(asrq)a-BgE;l.(ugrﬂ)]io for j=1,..n ..., (2.54)
=l

The imterface conditions defining continuity in pressure and flow rate yield, respectively:
3 e} Ko Rl BB i Rl

z [AH E%y Kdok, Roi)+ B, E%y e, R[:l)]

forjml,..n and iml,oml e, (2.88)

5 [0t 2 o R B ot Kol -
_};[Ah EY; Kil ok, Ro)- BE, EX, 1 o, Ror)

solved 1 find 2axm values of the cocfficients AY and B%.
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Thus, the preceding solution models transient fluid flow in an nalnygri campmhe reservoir
eigenvectors of the system and is computationally more efficient than other methods
proposed in the literature. For example, for a 3-layer, composite reservoir (m=6), this new
solution requires the solution of only 60 simultaneous equations, whereas the method
proposed by Anbarci g al.% requires the solution of 300 simultaneous equations to solve
the same pmblemi By lsﬂ;ninj a constant-pressure huunduy at the top or at the bottom,

solution is also capable of ming any irregularly-shaped fluid-front by dividiilj the
To include bottom-water drive, the lower boundary of the bottom layer is considered as &
zone is considered infinite and Equation (2.4) is modified as follows:

Xegmade  forimbm s (2.48)

Also, in the diffusivity equation for layer ju1, P, is replaced by the initial pressure, pin.
Similarly, 10 include a gas-cap drive, the upper boundary of the 1op layer is considered as a
constant-pressure boundary, and the vertical permeability of the gas-cap zone is considered
%0 be infinite. Therefore, Equation (2.5) is modified as follows:
(.% foriel,. rressrssesssssessssasssssnsssaes sssssessenee (2.58)
al

For a parially- ﬂhﬁrb—ﬁymﬂn-ﬁmm
HMQT)ﬂ(ﬂ)nMnmmhmmwﬁ
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well. For layers that are not open to flow to the wellbore, the inner boundary condition can
be written as:

% =0, forr=r, andj=layers not open to flow 1o the wellbore ................ (2.8a)
For a partially-penetrating well, Equations (2.7), (2.8) and (2.8a) together describe the
2.3 Solution Methodology

The following steps were involved to solve Equation (2.48) at any region i and layer j:

1. From Equation (2.44), eigenvalues and cigenvectors were calculated using an
2. From the boundary conditions, 2nxm simultaneous equations were set up and then
solved using Gauss' climination routine from the IMSL Math/Library® for the constants A%
and BY.

3. Dimensionless pressure in Laplace space is calculated using Equation (2.48) and then
4. The wellbore siorage effect is included using the following well-known

K i i} B
F-nfcg,,* 1 O ONRPRRRORRO - X. 1 )

-ﬂhﬁmﬂuﬂﬂﬂghfmﬁm:mnmmwh
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based on the minimum front radius, R,, instead of the wellbore radius, and by calculating
Bessel's functions in exponentiated form.
2.4 Model Validation

The analytical solution was validated by generating some well-known pressure transient
responses for various cases of homogeneous, composite, and layered reservoirs, which are
subsets of the general solution developed. Figure 2.3 shows a comparison of results
generated by the new analytical solution with an Agarwal gt al.¢? type-curve for
homogeneous reservoirs. Homogeneous reservoir responses were generated by setting
identical reservoir properties for each of the layers of s two-layer reservoir and by setting
very high crossflow ( of the order of 10° ) parameters. The responses were generased for
different wellbore-siorage and skin effects. Figure 2.3 shows a successful masch between
the two solutions. Figure 2.4 shows a comparison of the responses of this study with Tariq
and Ramey's solution'® for a two-layer, commingled reservoir with a closed outer
boundary. Commingled layered reservoir responses were generated by setting different
layer properties for each layer and by assigning very small ( of the order of 10 )
study with the Eggenschwiler g1 21 solution for a single-layer, two-region composise
reservoir. In the model, a single-layer, composite reservoir is obtained by dividing a two-

19



and Ramey's solution®’ for a three-region composite reservoir. The three-region composite
recervoir response was generated by dividing a 2-layer reservoir into three regions and
setting different fluid properties for each region. The layers were assigned identical fluid
and rock properties in each region and very high crossflow parameters. Figure 2.7 shows
pressure derivative responses for different mobility ratios between zones one and two and
the responses show a good maich between the two solutions.

Figure 2.8 shows the effect of crossflow on pressure transient responses for s two-layer
reservoir. The upper and the lower straight lines represent commingled and homogeneous
reservoir responses, respectively. Initially, the reservoir behaves like a commingled
reservoir. Then, depending on the crossflow parameter A, there is a transition period
for a commingled reservoir to those for a homogencous reservoir. At late time, the
reservoir behaviour 10 homogeneous reservoir behaviour depends on the crossfllow
obeervation is consistent with layered reservoir behaviour reported in the liserature.

Figure 2.9 shows the pressure drawdown responses of a partially-penctrating well in a
two-layer reservoir subject to bottom-water drive. The upper layer is open 1o flow and the
lower layer is closed. For a penetration ratio of 0.5, the two curves show the responses for
effect on the pressure drawdown responses.




2.5 Future Possibilities

In this study, a general analytical solution for an n-layer, composite reservoir with
pseudosteady siate interlayer crossflow has been developed and validated. Formation
crossflow has been modelled as pseudosteady state interlayer crossflow. This method is
very general and computationally efficient. This method has an advantage over the finite
difference method in that this method does not require extensive discretization like the finice

A reservoir undergoing a thermal recovery process has been idealized as a single-layer,
composite reservoir for a long timeS)4458-71, Thig new model can be used to analyze more
Effects of gravity override or underride, viscous fingering, and so forth, on a discontinuity
boundary can be treated as a tilted or any other irregularly-shaped front and its effects on
pressure transient responses can be studied. Pressure transient analysis of both drawdown
and buildup tests can be studied with this model.

layer, the same way as has been done for the discontinuity boundaries. This will crease
very small horizownal and vertical permeabilities 10 them.

Another possibility is 10 use automated type-curve maiching 10 analyzs rate and pressure
measurements from different layers of layered, composite reservoirs. The effoct of a gas
cap or bottom-water can be included by properly specifying pressure and semi-
prmeabilities at the appropri ,,Myﬁyﬁdlmﬂmmiﬁln
or bottom, respectively. Transient pressure responses of a partiall
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layered reservoir subject to the effects of a bottom-water and/or a gas cap can be
investigated with this model. The proposed analytical solution may also lead 10 new and/or
improved methods for analyzing well test data from multi-layered, composite reservoirs
with formation crossflow. Efforts are underway to develop some simplified type-curves for
the system under study.

2.6 Conclusions

1. A genenl, analytical solution for pressure transient responses for an n-layer, composite

2. The new, analytical solution developed in this study is a more efficient and versatile
solution than presently-available solutions in the lirerature,

3. The new analytical solution of this study offers new possibilities so analyze more
complicated well-testing scenarios than the possibilities offered by presently-available
solutions.
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Figure 2.1a : Layered reservoir with interiayer crossflow.
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Figure 2.2: Schematic of an n-layer composite reservoir in a radial geometry
with two different rock and/or fluid types in each layer.
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3.0 WELL TEST ANALYSIS FOR THERMAL RECOVERY SYSTEMS

3.1 Introduction

Most reservoirs are heterogeneous in nature. The presence of layers and zones of
different fluid and/or rocks is a common cause for reservoir heterogeneity. Figures
3.1aand 3.1b show a layered reservoir and a layered composite reservoir, respectively.
The horizontal lines show the layering and the arrows show the presence of crossflow.
The layers may be communicating or non-communicating. Formation crossflow is
present when the layers are communicating. When the layers do not communicate with
each other, except through the wellbore, then the reservoir is termed a “commingled
reservoir”. A layered, composite reservoir situation occurs when all or some of the
layers have two or more regions of different rock and/or fluid properties.

Thermal recovery processes, such as sieam-flooding, are widely used in heavy-oil
reservoirs. As a result of steam-flooding, a swept region is created in the reservoir. A
layered reservoir resembles a laysred composite reservoir because of sieam-flooding.
Usually, the fluid front in such a reservoir is not vertical, but tilsed or inclined because
of the gravity override effect. The tilted line in Figure 3.1b shows the discontinuity
boundary or the fluid front and 0 is the angle of inclination. A tiked front can also occur

in a thick, homogeneous reservoir due 10 gravity override effects.

Numerous studies have been reporsed in the literature on layered reservoirs. Among
many researchers, Lefkovits et. al.!, Tariq and Ramey? and Bourdet® have conducted
soms significant studies on layered reservoirs. Gomes and Ambastha? have done an
extensive liserature revisw on layered and composits reservoirs. Responses of lsyered
reservoirs may be summarized as follows: ianitially, a crossfiow syssem and a
commingied sysiem have the sams response; thea there is a transition period and,
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finally, the crossflow system behaves like an equivalent homogeneous system.
Eggenschwiler et al.* have developed an analytical solution for a single-layer,
composite reservoir and used the pseudosteady-state analysis method to cstimate the
swept volume. Ambastha® has presented an extensive study on single-layer, composite
reservoirs based on pressure derivative responses. The responses of a single-layer,
composite reservoir, without wellbore storage and skin effects, consist of the following
steps: Mﬂﬂly.mmg;m:mmmmmmwﬂiuhhm
region (inner region); then, there is a transition period during which the swept region
may show pseudosteady-state flow behaviour if the mobility contrast between the
swept and the unswept regions is sufficiently large; and finally, the responses show a
mmmmﬂﬂ)mmmqmﬂgmwﬁ(m)m
if the reservoir is large enough.

A limited number of studies have been conducted on multilayered, composite
reservoirs. Satman’ presented injectivity and falloff responses for s commingled,
multilayered composite reservoir. In his model, Satman? considered different
front for layered, composite reservoirs, because the fluid front would propagste at
different rates in different layers. Satman? described the methods 10 estimase the
properties of the swept region, distance 10 the ncarest boundary, and the swept volume
from transient pressure responses. But he did not consider the effect of the
discontinuity boundary shape in his study. For eahanced recovery processes, such as
secam flooding, Satmen and Oskay® considered the discontinuity bowndary s a tiked
front (inclined front) 10 accoumt for the gravity override effect and modelled the
reservoir as a muki-layer, composite reservoir without formation crossflow. They
concluded that the tilted front mode! is a better representation of the actual reservoir than
the sharp-front model whes the gravity overrids effect is preseat. For an inclined-front



reservoir, Satman and Oskay® observed that the time to reach pseudosteady-state (pss)
can be much longer than that for a sharp-front reservoir, and conventional pss analysis
results in considerable underestimation of the swept volume. Hatzignatiou gt al.’

presented a solution for interference pressure transient behaviour in a two-layer,

from the observation well data. Anbarci gt al.'® presented an analytical solution for a
two-layer, composite reservoir. They included wellbore storage and skin, and
considered pseudosieady-state crossflow between the layers. They conducted a limited
sensitivity study and used a type-curve matching technique to locate the front in a

The preceding discussion shows that a systematic and in-depth study for the transient
pressure behaviour of an inclined-front, multilayered, composite reservoir with
gravity override effect is important, and which can be modelled as a multilayered,

composite reservoir with pseudosteady-stase formation crossflow. Although not a
limitation of the model, this study assumes that all the layers of the reservoir are of
an angle of inclination. The inclined front in each layer has beea apprentinted by an
equivalemt vertical front (Figure 3.1d). In the absence of actual physical layers, a
sumber of mathematical layers is assumed 10 be present in the reservoir for the sicp




in the swept region are assigned a constant value of mobility, and all layers in the
unswept region are assigned a different, but constant, value of mobility corresponding
t0 a specified mobility ratio. Assignment of storativities is carried out in exactly the
same manner as the mobilities. Appendix A shows the calculation procedure of various
front radii using a minimum front radius, layer thicknesses, total reservoir thickness,
and the angle of inclination. A representation of an inclined front, as shown in Figure
3.2, has been used in Appendix A. Appendix B describes the derivation of the average
front radius for inclined front reservoirs. Appendices A and B follow the approach
presented by Kiome!!.

3.2 Effect of Front Angle

mmmwmmm“mﬂﬁngh;ppﬁdmgm—hﬁ
reservoir, the discontinuity boundary may be tilied because of the gravity override
effect. Satman’ modelled a tilted front in a two-layer, commingled reservoir by locating
the two discontinuity boundaries at two different locations. Later, Satman and Oskay®
studied the effect of a tilted front in a multi-layer, composite reservoir without
formation crossflow. They conducted a limited study by varying the front angle as well
as the minimum front radius o investigase the effect on transient pressure responses.
For tilwed fronts, Satman and Oskay® observed that the swept volume is underestimase
obscrved that it takes a longer time 10 reach pseudosteady-state for reservoirs with tiked
MM&Mﬁ&MMMM:Wm
techaique for locating the pseudosseady-stme period.

Figures 3.3 through 3.7 show the effect of fromt angle on preziure derivative
responses. These responses are for a three-Isyer reservoir with a mobilicy rasio M=10,
storativity ratio Fy=1, and a fully-penctrating well. Wellbore siorags and the skin effect
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are neglected. The minimum discontinuity boundary distance is the same for all
responses and is Rpwia = 500. Figures 3.3 through 3.5 show the responses when
crossflow is present between the layers, and Figures 3.6 and 3.7 show the responses
of a commingled reservoir. These figures show that the transient responses of a
layered, composite reservoir with a tilted front consist of the following flow regime
sequences: a radial-flow period corresponding to the swept region, a transition period
which depends on the front angle, total reservoir thickness, as well as the mobility and
the storativity contrast between the swept and the unswept regions, and a second radial-
flow period corresponding 10 the unswept region. After the second radial-flow period,
boundary effects will be observed for finite reservoirs. However, this study is limited
00 infinite reservoirs as well tests for thermal recovery situations are seldom run long
enough to observe the effects of outer boundaries. Figures 3.3 and 3.6 show the
responses for very thick reservoirs with hp = 1000. For thick reservoirs, the effect of
the front angle is more apparent and for smaller front angles, deviation from the first,
radial-flow period occurs later than for the sharp-front reservoirs. Figure 3.5 shows
that the transient pressure responses of very thin reservoirs do not exhibit much effect
due to the front angle and therefore transient pressure analysis of thin reservoirs can be
performed with a sharp-front model. This conclusion is consistent with Kiome's'!
observation for thin, commingled, composite reservoirs with a tiled front, where he
observed very little effect of the front angle on the transient, wellbore pressure.

A comparison of Figures 3.3 and 3.4 with Figures 3.6 and 3.7, respectively, shows
that crossflow does not make a significant difference in thess particula: situations with
ko/k = 0.1 for the crossflow system. When the well is partiaily peactrated and kK is
not very small, crossflow must be takea into consideration 10 gemerats proper
responsss. Pigures 3.8 and 3.9 show the effect of crossflow on pressure-derivative
responses of a fully- and partially-penstrating well, respectively. In Figure 3.8, the

41



solid line represents a commingled reservoir, and the data points represent various
crossflow cases. In Figure 3.8, ky/k has been varied between 0.01 and 10. Figure 3.8
shows that the crossflow system responses are the same as commingled sysiem
responses for fully-penetrating wells. For partially-penetrating wells, Figure 3.9 shows
the effect of crossflow on wellbore responses. In Figure 3.9, the penetration ratio is
0.5 and k.J/k has been varied as 0.01, 0.1 and 1. Initially, the crossflow systems and
the commingled system have the same response. Then, for crossflow systems, the fluid

.nddaewdlbaemmi:mnﬂamdbyh:huﬂnedmdﬂgmmme

Hmsﬂm:whnldmﬁrdiﬁm:mdmm limensionless reservoir
mmwmmmmﬂmmmﬁﬂu

3.3 Layer Refinement Effect

In this study, a composite reservoir with an inclined or tilted front has been
approximated by a multi-layer, composite reservoir with a step approximation of the
inclined front. The layer refinement effect is studied by varying the number of
mﬂmil@nﬂlllﬁhﬂﬁi@ﬁﬂmﬁﬁﬁm

mm.mnmymu-m.gm lscontinuity distance Ro,,, = 500,
and & dimensionless reservoir thickness ho = 500. The sumber of layers have beon
varied as 2, 3, S and 10 layers. All the layers in the swept 20ne have boon assigned the
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zones. Pseudosteady-state crossflow is present between the layers with k,/k =0.1.
Figures 3.10 and 3.11 show responses for front angles of 30° and 60°, respectively.
From these two figures, it is observed that the smaller the front angle is, the more
apparent the layer refinement effects are. Layer refinement effects also depend on the
reservoir thickness. Very thin reservoirs and reservoirs with sharp fronts do not show
any layer refinement effect. This observation is also consistent with Kiome's!! findings
for commingled, composite reservoirs. Layer refinement effects occur because by
increasing the number of layers, the definition of the fluid front is improved. Figures
3.10 and 3.11 also show that increasing the number of layers from S 10 10 makes very
litle change in the responses. Therefore, for a particular reservoir situation, there is a
maximum number of layers beyond which the layer refinement effect would not
improve the responses significantly. Larsen'? has reported a similar layer refinement
effect. To minimize the layer refinement effect, a reservoir consisting of five layers is
3.4 Effect of Mobility and Storativity Ratio

Figures 3.12 through 3.14 show the effect of mobility ratio on semi-log pressure
derivative responses. Figures 3.12, 3.13 and 3.14 are for front angles of 30°, 60° and
90°, respectively. For all these figures, the dimensionless minimum front radius (Rpes,
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angles for a reservoir with a mobility ratio of 100. Figure 3.15 shows that a reservoir
with a sharp front (90°) deviates from the first radial flow period earlier than the tilted
front reservoirs and this deviation depends on the front angle. The higher the front
mgleh.meeaﬂiaﬂmemdsvhmﬁnmmeﬂmrﬁujﬂwmhd.ﬁhm
because in a tilted front reservoir, when the pressure response reaches the minimum
ﬁm&fadnmtddwhmugmmlﬂlmmwmeﬁmnﬂm
mmsmmmmmummmmdmmm
mmehym.dnwubmsdllmhmxnhﬂ:ﬂﬁdmﬂawpﬁﬂd‘
although the pressure response has already reached the minimum front radius. In a
sharp front reservoir, the pressure response in all the layers reaches the front at the
same time and, thus, the wellbore response devistes eartier. For tilied front cases, Table
3.1 shows that the delay in deviation from the first radial flow period and the delay in
MbmwdumﬂMM-hllbp(wa.:l)Mngmm
period are equal 1o the ratio of the average front radius 10 the minimum front radius. In
Table 3.1, the mobility ratio is varied between 10 and 1000 and the storativity ratio is
varied between 1 and 1000. For a fixed minimum front radius, as the front angle
bmmu.dnuvmpndimhmnﬁhgﬁmefﬁehgﬂpaﬂmh
umummmmmm&umnmmhgmfam
thmuummdfﬁmultdfmtmﬁumxﬂn

th.
(WH'OJ‘a ESJ)

Riav
= —Vp

where, (1on1)end 800 (tpR)mes 27¢ the time 10 the end of the first, radial-flow period and
sespectively.
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For a sharp-front reservoir, Rp,., and Rp,,,, are identical. Although Table 3.1 shows
results for Rp, = 500, Equations (3.1) and (3.2) have been tested for Roy, values of
300 through 1000 with satisfactory results. Equation (3.1) is important, since it shows
does for sharp-front reservoirs. Thus, the deviation time method can not be used 0
locate the minimum discontinuity boundary as is currently believed®. According 10
Equation (3.1), the end of the first, radial-flow period occurs at a dimensionless time of
0.18, and this dimensionless time is based on the geometric mean of Romia and Rpgvg,
not 0n Rp..,. A similar modification can be made 10 the other design equations for the
ond of the first, radial-flow period developed by Sosa g1 al.'* and Tang!’, which are

Figures 3.16 through 3.18 show the effect of the storativity ratio, F,, on the semi-log

somewhat similar 1o that of the mobility ratio, but, unlike the mobility ratio, the

3.5 Pocud

swept segion of a composies ressrvoir acts like a clossd reservoir for soms time and the
wansiont presswre sesponses are similar 10 the late-tims responses of a ciosed ressrvolir.
with dimsnsioniess time during the pss flow period for a well in a single-layer,
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PuD = 2% tpa + 2ln(Mi)-l- 3In(2.2458/C,) a.n
Here, the dimensionless time, tpa, is based on the swept area. Equation (3.3) shows
that during the pss period, pressure is linearly related with time and, thus, the Canesian

Eggenschwiler gt al.% developed the solution for the transient-pressure responses of a

estimaie the swept volume. From material balance, Eggenschwiler et al.S derived the
relationship betwoen the swept volume and the Cartesian slope as:
, B
V—’-s{— .
*“ma 3.4
Eggenschwiler g1 al.* also pointed out that estimation of the swept volume from
Equation (3.4) is independent of the geometry of the swept volume. Thus, the pss
analytical method might be applicable for multilayered, composite reservoirs with

3.6 Pocudosteady-state Analysis

with 1e3PeCt 10 tpgyeg, Which is defined a3 tonuy = WREL,. Here Rp,,, is the

Al thess figures are for a mobility ratio M = 1000 and a ssorativity ratio F, = 1. Figuss
30°, 45°, 60", and 90°. When the fromt is at 90°, the discontinuity boundary moves as &
piston and the front is calied a sharp front. In ths cass of a sherp front, the sverags
radiug of the swept region is equal 10 the minimum frost radius, Rp... During the
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swept boundaries. When dimensionless time is based on the average front radius, the
Carwssian slope should be 2 for sharp-front cases. In Figure 3.19, at early times the
Canesian derivatives form a single straight line with a slope of -1 for all front angles,
and this corresponds 10 the first infinite-acting radial flow period. Then the Cartesian
slopes tend 10 become constant, which represents the pscudosteady-state period. At late
times all the responses form another straight line of slope -1, which represents the
period, the Canesian slopes for different front angles are approximasely constant, but

depend on the front angle. This can be explained with reference 10 Figure 3.1b. Whea
the well starts producing, the pressure transient starts 10 move away from the well.
Assuming that the layer diffusivities do not vary much from layer 10 layer, the pressure

significant for more acuss fromt angles. Thus, in the true senss, pssudos tate flo
occurs oaly in some average sense and, thus, it is not possible 10 get a constant
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the pseudosteady-state period, the calculated swept volume will be considerably
underestimated. One way to solve this problem is to develop a correction factor which,
where m,y is the Cantesian slope for a sharp-front reservoir. In Table 3.2, hp has been
varied between 100 and 400 and Rpwi has been varied between 300 and 1000. For

dmmmm rgmmmmmm

swept volume can be cosrected by multiplying it by & comrection factor, f, ® Rpewy/Romia
state flow period is affected by reservoir thickness as well. Figures 3.20 and 3.21
show the responses for a dimensionless reservoir thickness of 300 and 100,
mmmmmummmm v
and m/m,,, hﬂﬁmwﬂﬂmﬂd@a&hﬁmm
m:wpnﬂnlh.mm“mmemmmhm
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deviation time method based on Equation (3.1). If the two geometric means do not
agroe, the assumed value of Rpy, is adjusted and the above procedure is repeated until

Figures 3.22 through 3.24 show the effect of reservoir thickness on pseudosteady-
state analysis. These figures show responses for a five-layered reservoir and for

ﬂﬂlﬁﬂwﬁ also decreases. Since it has been shown before that Rogw/Roms

= m/ My, nummmummmnmm
front response. For the conditions specified in Figures 3.22 through 3.24, the
responses for hyp = 100 are very close t0 the sharp-front reservoir and, thus, a reservoir
with hp = 100 or less can be considered as a thin reservoir for pseudosteady-state
that as the front angle increases, the effect of the reservoir thickness decreases, since
decreases and the responses become closer 10 the sharp-front response.

for Rpgia of 300 and 1000, respectively. Fwﬁsmﬁmn;h:ﬂ EoeTV
thickness, as Ry, becomes smaller, mﬁmmmﬁlﬂﬁn
deviation from the sharp-front response is also larger. AWH;-:S.K&D“
results for hyp = 400 (hp = 300 in Figure 3.25), the ratios Rp,.,/8 of various froms
*E“ﬁﬂ““ﬂhﬂﬂ“ﬁhm
since Ry, = 1000 in Figure 3.26.
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Figures 3.27 and 3.28 show the effect of mobility ratio on the Cartesian pressure
derivatives. Figures 3.27 and 3.28 describe responses for front angles of 45° and 60°,
respectively. Both of these figures are for a storativity ratio, F, = 1. Figures 3.27 and
3.28 show that the mobility ratio does not change the Cartesian slope. An increase in
the mobility ratio increases the length of the pseudosteady-state period and delays the
beginning of the second radial flow period. For a pss analysis 1o be possible, the
mobility ratio, M, should be significantly greater than 10 for F,=1. A comparison
between Figures 3.27 and 3.28 shows that as the front angle moves closer 10 90°, the
Cartesian slope moves closer to 2.

Figures 3.29 and 3.30 show the effect of the storativity ratio, F,, on the Cartesian

derivatives. Figures 3.29 and 3.30 are for front angles of 45° and 60°, respectively.

Like the mobility ratios, the higher storativity ratios increase the length of the

slope of the pseudosteady-state period. Thus, Figures 3.27 through 3.30 suggest that

3.7 Conclusions

For multi-layer, composite reservoirs with tilied fronts, the following conclusions have
0 the maximum derivative for tiked-fromt reservoirs.




2. The deviation time method yields an estimate of the geometric mean of the
minimum front radius and the average front radius of the swept region.

3. For inclined fronts, traditional pseudostcady-state analysis does not produce a
constant Cartesian slope which is independent of the front angle and the
reservoir thickness. For an inclined-front reservoir, pseudosteady-state flow

exists in some average sense.

4. A correction factor has been developed to estimate the correct swept volume
from the pseudosteady-state analysis for situations where a tilted front is

crossflow system can be analyzed using a commingled system solution for a
fully-penctrating well. However, crossflow must be taken into account for
proper analysis of thermal well test responses for partially-penctrating wells.
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Table 3.1: Effect of front angle on (ipri)eas 8nd (tpr)mes fOr Various mobility and

storativity ratios.
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Table 3.2: Equivalance between the ratios of Rpyy/Rpms 80d my/mey for inclined front

reservoirs (for M=1000 and F, =1).
0 7538 295 1.51 m;
hp = 400 4s5° 642.3 2.52 1.28 .27
Rona=300 | 60° $80.3 2.33 1.16 1.17
%0 $00.0 20 1.0 1.0
0 687.3 2.68 1.37 1.4
o = 300 4s° 60S.4 248 121 1.
Rouo=300 | e0r $59.7 228 1.12 1.4
%0 $00.0 20 1.0 10
k1 559.7 2.26 1.12 1.13
hp= 100 43 5340 2.12 1.07 1.06
Rea=300 | 60 $19.5 208 1.04 1.04
i 4 900 20 1.0 10
0 ”824 3.19 1.64 1.9
hp = 300 4 409 2.7 1.36 1.35
Rea =30 | 60 360.8 242 1.20 1.21
i g 300 20 i 1.0 10
ki 12449 246 1.4 1.3
hp = 400 I 11388 228 1.4 1.4
Rowu = 1000] @0 107838 2.20 1.08 110
w0 1000 20 1.0 10
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Figure 3.2: Schematic of the swept section of a two-layer composise reservoir.
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4.0 PSEUDOSKIN UNDER VARIOUS RESERVOIR CONDITIONS
4.1 Introduction

Reservoir deposition occurs over a geologic period of time and, because of this, many
reservoirs are layered insicad of being homogeneous. Oil reservoirs are ofien accompanied
by a bottom-water zone and/or a gas cap. In such situations, wells are completed over a
fraction of the productive zone to delay water and/or gas coning. These wells are known as
partially-penetrating wells. Because of partial penetration, pressure transient responses
show an additional pressure drop in comparison 1o the pressure drop for a fully-penetrating
well. This additional pressure drop is referred 10 as pseudoskin. Partially-penctrating wells
have their own characteristic responses which, if not properly evaluated, may lead 10 errors
htheinmnﬁmdwell-mmmpmﬂmhmhlﬂnﬂyihsm
transient responses and the pseudoskin factor in a partially-penetrated, multi-layer
reservoir with or without a bottom-water zone or a gas cap.

Muskat! studied partially-penetrating wells in single-layer reservoirs under steady-state
conditions using the method of images and estimated the productivity loss because of
partial penetration. Nisle? presented buildup pressure transient responses for a partially-
penctrating well in a single-layer homogencous reservoir. He considered a panially-
penetrating well in an infinite slab and used the method of images 10 solve the problem. He
used the ratio of the slopes of these two straight lines 10 estimate the penetration ratio.
Brons and Marting’ observed three sequences in pressure transient responses of a parsially-
mmﬂhlmﬂe-hmwmlnﬂﬂmwﬁﬁiﬁp
corresponding 10 the open interval thickness, a transition period, and a psoudoradial flow
WMIMMng@,i”i;;,,mmy presented an
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in the horizontal and the vertical permeabilities when defining dimensionless wellbore

thickness and their pseudoskin factor had 1o be numerically evaluated.

Bilhanz and Ramey*used a two-dimensional, finite-difference model to study wellbore
storage and skin effects in a single-layer, partially-penectrated reservoir. They concluded
that the radial flow period and the transition to pseudoradial flow period may be masked in
the presence of significant wellbore storage. They extended the Brons and Maning?
pseudoskin expression to anisotropic reservoirs and discussed methods 10 estimate

horizontal and vertical permeabilities.

Streltsova-Adams* used Laplace and Hankel transformations to solve the partial-penetration

terms of infinite sine and cosine series. She considered the presence of a gas cap as a
constant-pressure boundary in her solution. She investigated the effect of open interval
(penetrated portion) location on the pseudoskin factor and concluded that the pseudoskin
factor is minimum for centrally-located open intervals, other paramciers remaining
unchanged. She also observed that for a reservoir with a gas cap, the pseudoskin factor is
lower than that for a reservoir with no gas cap, when the open interval is adjacent 10 the
constant-pressure boundary. Saidikowski® investigated the combined effect of wellbore
damage and partial penetration on transient pressure analysis and presented a relationship
for the total skin obtained from transient pressure analysis with wellbore skin and
pscudoskin. Buhidma and Raghavan’ studied drawdown and buildup behaviour of a
partially-penetrating well in a square reservoir subject 10 bottom-water drive. Using
Green's function to obtain the solution, they concluded that, under bottom-water drive,
methods presented by Brons and Marting? and other ers. Although a pseudoradial
pecudoskin developed in this study can be used 10 estimase the pseudoskin factor under
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these reservoir conditions.

Using a two-dimensional finite-difference simulator, Reynolds gt al.* graphically presented
the pressure transient responses of a partially-penetrated, two-layer reservoir. Analyzing
the steady-state analytical solution, they identified the correlating parameters and then
obtained a correlation for the pseudoskin factor by regressional analysis. They also
concluded that by using different layers for different fluid regions, a multi-phase flow
sysiem can be approximated by a layered, single-phase flow system.

Papatzacos® used the method of images to0 solve the partial-penetration problem for a single-
layer, homogencous reservoir and derived an expression for the pseudoskin factor in terms

of the dimensionless open interval, its location and the dimensionless wellbore radius.

Olarewaju and Lee!? studied the buildup pressure behaviour of a partially-penetrating well
in a two-layer reservoir with closed top and bottom boundaries. Uf the two layers they
considered, one layer is open to flow and the other layer is closed. In the closed layer, they
which may limit the applicability of their model. Olarewaju and Lee™ considered crossflow
for the closed layer. By regressional analysis, they developed a series of expressions
correlating the pseudoskin facior with the penetration ratio for various ky/k; values.

penetrated, multi-layer reservoirs with transient crossflow. Using the same numerical
model, Yeh and Reynolds'? graphically presented pseudoskin factors for a partially-
penctrated, multi-layer reservoir. Using regressional analysis, they obtained an expression

Vrbik!? derived a simplified approximate expression for a single-layer, homogsnsous
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reservoir in terms of three correlating parameters which are related to the dimensionless
open interval length, its location and the dimensionless wellbore radius. Ding and
Reynolds'4 extended Papatzacos® expression for the pseudoskin for a single-layer reservoir

to that for a multi-layer reservoir and reported a good match with simulated results.

Shah and Thambynayagam'S presented an analytical solution for a two-layer, partially-
penetrated reservoir by successive application of Laplace and Hankel transformations. They
considered transient crossflow between the two layers and the presence of a gas-cap drive.
They presented some pressure transient responses for fully- and partially-penetrating wells
and they did not study the pseudoskin factor because of the partial penetration.

Table 4.1 summarizes most of the studies'2 conducted on partially-penetrated reservoirs
and on the pseudoskin factor. Table 4.1 shows that most of the studies considered single-
layer reservoirs and only a limited number of studies have focussed on partially-penetrated,
multi-layer reservoirs. The partially-penetrated, multi-layer reservoir problem has been
studied either by using a numerical simulator with graphical presentation of pressure
transient responses and pscudoskin values (Yeh and Reynolds'!'?), or by extending
the single-layer expression of pseudoskin to the multi-layer case by redefining some of
the parameters ( Ding and Reynolds'4). Table 4.1 also shows that very few studies have
been conducted for a partially-penetrated reservoir subject 1o a bottom-water or a gas-cap
drive.

This study attempts to give some new insights into understanding partially-pene:rated,
multi-layer reservoirs and covers both pressure transient responses and pseudoskin factors
in situations where the top and bottom boundaries are closed and where one of the
boundaries is at a constant pressure because of a bottom-water or a gas-cap drive.

4.2 Pocudoskin Factor Expression for Closed Top and Bottom Boundaries
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Figure 4.1 schematically shows a two-layer, partially-penetrated reservoir . In this study,

the !iyers are numbered from the bottom to the top. Thus, layer 1 is :lmy: the bottom-

upper boundary of Layer 2 and the lower boundary of L:ycr 1 are considered as closed
boundaries. Psc idosteady-state crossflow is considered between the two layers. Appendix
C shows a detailed derivation of the pressure transient solution and the late-time limiting
solution for this case. From the late-time limiting solution, we obtain the expression for

pseudoskin as:

(1-x)
o =% 4.1)

where s, denotes the pseudoskin, and A, and x denote the dimensionless crossflow
parameter and the mobility-thickness ratio of the open interval, respectively. Equation (4.1)
can be extended for a multi-layer reservoir by appropriately defining A, and x as:

(4.2)

Equation (4.2), ¥ mﬁ,. nbylﬁh]tehﬁvidnﬂhys ckness
mﬂucpammnmnydﬂuummngqmmm
parameters of the open interval, respectively. For multi-layer reservoirs, instead of
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considering the crossflow parameters of each and every layer, only the top and bottom
boundary crossflow parameters of the open interval are considered in defining the average
crossflow parameter. This was done because Equation (4.2) gives better results with an
average crossflow parameter defined in this manner, rather than with an average crossfiow
parameter which considers the crossflow parameters of each and every layer. A similar
observation is made by Ding and Reynolds'* in defining the average vertical permeability.
Irrespective of the number of layers in the reservoir, only two parameters (that is, k and

Z.A ) are required to estimate the pseudoskin using Equation (4.2).

For a single-layer, anisotropic reservoir, the mobility-thickness ratio, x, and the crossflow
parameter, A,, reduce to the penetration ratio (b) and 2b2/hp?, respectively. With these

simplifications, Equation (4.1) reduces to:

s

K( hji1-b)
where, h"'%‘\/:k.f (4.4)

(4.3)

Equation (4.3) estimates the pscudoskin factor for a single-layer, anisotropic reservoir with
closed top and bottom boundaries. Equation (4.3) is also applicable for homogeneous
reservoirs witl, an appropriate change (that is, k = k,) in the definition of hy.

4.3 Pseudoskin Factor Expression for a Gas-Cap or a Bottom-Water Drive

Figure 4.2 schematically shows a two-layer, partially-penetrated reservoir subject 10 a gas
cap drive. The gas cap is considered 10 be very large compared 10 the size of the reservoir
boundary. An infinitely-large bottom-water zone can be treated in a similar fashion. A finise
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appropriate properties, and a partially penetrating well in such a reservoir can be treated in
the same way as in the previous section. Layer 1 is penetrated and Layer 2 is closed at the
wellbore. The upper boundary of Layer 2 is considered as a constant-pressure boundary
because of the gas cap, whereas the lower boundary of Layer 1 is considered as a closed
boundary. Pseudosteady-state crossflow is considered between the two layers. Appendix D
shows a detailed derivation of the pressure transient solution and late-time limiting solution.
From the late-time limiting solution, the pseudoskin expression can be obtsined as:
221.Ko(020) 8;.Ko(0;1) ) ) Kot

- (a20-81L)%02. K (021) ~ (a21- ;%0 1 K1 (01D

where s, denotes the pseudoskin factor, and 0,1, Gz, 81, 8y, and by, are late-time limiting
values defined by Equations (D.22) through (D.26) and (D.30) in Appendix D. The
variable, Ac, in Equations (D.22) through (D.26), is the crossflow parameter between the
reservoir and the gas cap and this parameter is required to calculate the late-time limiting
values in Equation (4.5). Equation (4.5) estimates the pseudoskin in a two-layer, partially-
penetrated reservoir subject to a gas-cap or a bottom-water drive. Equation (4.5) is also
applicable for a multi-layer reservoir having any arbitrary number of layers
representing the open interval and any arbitrary location of the open interval, provided
x and A, are calculated by adding the individual layer mobility-thickness ratio of the open
interval, and by adding the top and bottom boundary crossflow parameters of the open
interval, respectively. Irrespective of the number of layers in the reservoir, only three
perameters (that s, X , A4 and Ac) are required 10 estimate the pseudoskin. An effort was
made to simplify Equation (4.5) for a single-layer reservoir without much success.

4.4 Accuracy of Pseudoskin Factor Expressions

For multilayered reservoirs, Table 4.2 compares the estimased pseudoskins using the
simplified expressions of Equations (4.2) and (4.5) with those calculated using the actual
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analytical solutions. Layered reservos - ‘aver are considered. Various cases
of reservoir configuration in Table + <d 1= Table 4.3. In Table 4.2, for a
particular reservoir, syc denotes = . :.. orrect’ pseudoskin from the analytical
solution of Gomes and Ambastha- s hich 15 the late-time dimensionless pressure
difference between the response -# ixc paruail- penctrating well and that of the fully-
penetrating well at a particular time ~here .y 3, denotes the estimated pseudoskin using
the simplified expressions of Equet+:- 4 2) and (4.5). For different values of open
imerval mobility-thickness ratio (¥) and crossflow pararaeter () and for different open
interval locations, pseudoskin factors are estimated for layered reservoirs having a different
number of layers. For both the closed top and bnttom boundaries and the bottom-water
zone, Table 4.2 shows an excellent maich between the estimated and the actual pseudoskins
for all the different cases considered.

4.5 Comparison with Reference 3

Figure 4.3 compares the pseudoskin factors estimated using Equation (4.3) of this study
with those from Figure 2 of the Brons and Marting? study for a single-layer, homogeneous
reservoir. Figure 4.3 shows that, except for small penetration ratios (b < 0.3), the
pseudoskin factors estimated using Equation (4.3) are very close to those estimated in the
Brons and Marting?® study. The difference between the two pseudoskin values increases
with a decrease in penetration ratios. Also, pseudoskin factors calculated from Equation
(4.3) are consistently higher than those from the Brons and Marting? study. The reason for
the differences in pseudoskin values may be the difference in crossflow modelling in the
two studies. For the pseudoskin factor comparison shown in Figure 4.3, Figure 4.4 shows
the ratio of the pseudoskin factor obtained from the Brons and Marting?® study 10 that
obtained from this study. When the penetration ratio is not very small (b > 0.2), the
peeudoskin ratio for a particular hfr, is approximasely constant. Thus, the pseudoskin
factor obtained from this study can be corrected 10 the Brons and Marting® peeudoskin
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value by multiplying by the pseudoskin ratio.
4.6 Comparison with References 12 and 14

Table 4.4 compares the pscudoskin factors estimated from this study with those estimated
from the Yeh and Reynolds'? and Ding and Reynolds'* studies. Various cases in Table 4.4
refer 1o different data sets. The cases in Table 4.4 are not related to the cases in Table 4.3.
Table 4.4 shows data for a three-layer reservoir with closed top and bottom boundaries and
with layer 3 open 10 tiow. These data are taken from the Ding and Reynolds' study. In
Table 4.4, sevr and ssor denote the pseudoskin obtained from the Yeh and Reynolds'?
study and the Ding and Reynolds'* study, respectively. Table 4.4 shows that the
pseudoskins obtained in this study are very close to those of the Ding and Reynolds'*
study, and of the Yeh and Reynolds'? study. Ding and Reynolds'® reported a good match
between their pseudoskin and that obtained from the numerical simulator. In most cases,
pseudoskin factors obtained from the analytical solution as well as from the the
simplified expression developed in this study are observed 10 be greater than those obtained
from the Ding and Reynolds'* study, and from the Yeh and Reynolds' study. This is
probably because of the pseudosteady state crossflow assumption in the developmen
analytical model of this study. The significance of this assumption is that the resistance to
vmbﬂhwi:mnsﬂmhelhﬁﬁhﬂehﬁd:wmﬁs&dduﬁfmyﬂ@ﬂh
when shale streaks are present in the interiayer areas.

Figure 4.5 shows the effect of the crossflow parameter, AA, on the pressure derivative
responscs of a two-layer reservoir with different open interval mobility-thickness ratios, .
The crossflow parameter (A,) has been varied between 0.5x10% and 0.5x10-7, and the



crossflow parameter and mobility-thickness ratio, the early time responses show radial
flow behaviour with a constant semi-log slope of 0.5/x. At very early times, 1. semi-log
slopes are slightly lower than their constant value because of the numerical errors
introduced in solving the system of equations. After some time, the responses show a
transition from radial flow behaviour, and the time at which the transition occurs is a strong
function of the crossflow parameter and the mobility-thickness ratio. At late times, all

responses show pscudoradial flow behaviour with a semi-log slope of 0.5. Again, the time

flow period ends and the sooner the pseudoradial flow period begins. The lower the
mobility-thickness ratio is, the earlier the radial flow period ends and the later the
pseudoradial flow period begins. Analysis of the -=ssure derivative responses shown in
Figure 4.5 results in the following criteria for the end of the radial flow period and the

tn = 0.0196 x2/As (4.6)
and

tre = 0.658 / (AA7%) 4.7

and have been shown 10 be applicable for three-layer and five-layer reservoirs. Table 4.5
shows the data used 10 obtain Equations (4.6) and (4.7). Figures 4.6 and 4.7 show the
verification of the accuracy of Equations (4.6) and (4.7), respectively.

Bilhartz and Ramey* used a two onal, finite-difference mode! 10 study the pressurs
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transient responses of a p’mially;penetming well with wellbore storage and skin effects.

of radial flow and the begmmng of the pseudoradial flow periods as follow:
i =0.02 h} @8

and

‘o = "“(h.x ['“ ‘*’"‘ (ﬂ!)“’s (ih")cﬂs (3&)} -In (0. 02)] (4.9)

where, hp, is defined by Equation (4.4).
For a single-layer reservoir, Equations (4.6) and (4.7) degenerate to the following forms:

txy = 0.0098 h} .10

o = 0.329 0. “.11)

The time for the end of the first radial flow period given by Equation (4.10) is about half of
that given by Equation (4.8). Thus, the first radial flow period ends earlier as predicted by
Equation (4.10) than by Equation (4.8). For a single-layer reservoir, Equation (4.11)
estimates the time for the beginning of the second radial flow period, tp = 837,500 with a
flow period estimated from Equation (4.11) is approximately 2 10 4 times greaser than that
estimated from Equation (4.9).Thus, according 10 the time criteria obtained in this study,




the times predicted by Bilhartz and Rumey's* corrrelations. Some of the differences in these
time criteria may be attributed 10 different ways of modelling the crossflow in these two
studies. However, a smaller tp; and a larger tp; based on pressure derivative responses

(Equations (4.10) and (4.11)) than those based on pressure responses (Equations (4.8) and

period from this study (Equation 4.11) and that from the Bilhariz and Ramey* study
(Equation 4.9) for a single-layer reservoir. Equation (4.9) is not applicable for all
penetration ratios. Equation (4.9) becomes meaningless for b 2 2/3 because cos (3xh,/4h)
becomes zero or negative. However computationally, Equation (4.9) is applicable for b <
0.64, because beyond this penetration ratio, t,, becomes negative. To the best of my
knowledge, this limitation of Equation (4.9) has not been pointed out in the literature. But
Equation (4.11) has been derived for 0.1 < b < 0.8 and for h, between 100 and 10,000,
Although there is no mathematical or computational limitation 1o Equation (4.11), t, value

this case.

Figure 4.9 compares the pressure transient responses from this study with those from
Figure 3 of Bilhariz and Ramey's* study. Figure 4.9 graphs dimensionless wellbore
pressure against dimensionless time for penetration ratios of 0.23 and 0.5. mitially, the
responses show a straight line corresponding 10 the first radial flow period with a semi-log
slope of 0.5/b. Afver the first radial flow period, there is a transition period after which, the
responses again show straight lines corresponding 10 the second radial (pssudoradial) flow




penctration ratios of 0.25 and 0.5, pseudoskin factors obtained from this study are 19.6
and 3.98, respectively, whereas those obtained from Bilhartz and Ramey's* study are
17.83 and 5.47, respectively. Thus, the pseudoskin factors obtained from the two studies

are very rlnse,

4.8 Effects of Gas-Cap (or Bottom-Water) Drive on Pseudoskin and

Comparison with Reference §

Table 4.6 shows the effects of a gas cap on the pseudoskin factor for a three-layer reservoir
with k; = ky = ky = 4.9346x10-'* m? and with h = 200 m. The various cases of reservoir
configuration in Table 4.6 are explained in Table 4.3. Cases 1 and 2 show pseudoskins
when there is no gas cap and Cases 3 and 4 show pseudoskins when the reservoir is
subject to a gas-cap drive. In the absence of the gas cap, the pseudoskin is lower when the
open interval is away from the top or the bottom boundary than when the open interval is
located adjacent to the top or the bottom boundary.This happens because the crossflow
parameter, L\. is higher when the open interval is away from the top or bottom boundary.
But Case 3 shows that when the gas cap is present, the pseudoskin is smaller when the
open interval is adjacent to the constant-pressure boundary than when the open interval is
is adjacent 10 the constant-pressure boundary, the wellbore pressure stabilizes faster than
when the open interval is away from the constant-pressure boundary. Similar observations
were also made by Strelisova-Adams’. The above observations are also valid for the

Figure 4.10 compares the pseudoskin factors from this study with those from the
Slehonom’mdyfcr’ o wﬂlhlmgﬁmnnm

mmllomm-fgmwiﬁﬁmﬁmﬁdeh
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Streltsova-Adams® study. The solid lines in Figure 4.10 show the pseudoskin factors
estimated from Equation (4.5) of this study for various penetration ratios and under a gas-
cap condition. Streltsova-Adams’ estimated the pseudoskin by taking the difference
between the late-time pressure responses of a partially-penctrating well and a fully-
penetrating well in a particular reservoir. Figure 4.10 shows that the pseudoskin factors
estimated in this study differ only slightly from those obtained in the Strelisova-Adams®
study, exept for small penetration ratios (b < 0.3). Pseudoskin factors estimated in this
study are slightly higher than those obtained in the Streltisova-Adams$ study. This is likely

factor comparison show a in Figure 4.10, Figure 4.11 shows the ratio of the pscudoskin
factor obtained in the Strelsova-Adams® study to that obtained in this study. Although the
pseudoskin factors obtained from the two studies are very close, the pseudoskin facior
obeained from this study can be corrected 10 that of Streltsova- Adams$ pseudoskin value by
multiplying by the pseudoskin ratio.

4.9 Comparison with Reference 10

Figure 4.12 shows a comparison of the pseudoskin factors obtained from Equation (4.1) of
this study with those obtained from Figure 8 of Olarewaju and Lee's' study. Figure 4.12
graphs the pseudoskin factors against various penetration ratios for a two-layer reservoir
with layer two open to flow and layer one closed. Note that because of the reverse order of
the numbering of the layers, ky/k, of this study is equal 10 k,/; in Olarewaju and Lee's'®
study. Figure 4.12 shows that the pseudoskin factors obtained from this study are
significantly higher ( more than double when ky/k =1) than those obained from Olarewaju
and Lee's! study. The reason for this may be the assumption that Olarewaju snd Loe'®
made in developing their model. They assumed that there is no radial flow component in
the closed layer (that is, layer one). Because of this restriction, fluid particles travel shoner
distances and oaly vertically 10 move from the closed layer 10 the open layer (layer two). If



there were a radial flow component in the closed layer, fluid particles would have travelled
longer distances to move from the closed layer to the open layer and this would have
caused higher pressure drops; that is, higher pseudoskin factors. Thus, neglecting the
radial flow component in the closed layer may not be a satisfactory assumption while

studying ;' ssure-transient responses for partially-penetrating wells.

4.10 Effect of Layer Refinement on Pseudoskin Factor

Table 4.7 shows the effects of layer refinement on the pseudéskin factor. For a particular
mathematical layers 10 study the effect of layer refinement on the pscudoskin factor. In
Table 4.7, Cases 1 through 3 represent a reservoir height of 30 m with an open interval

michenﬂlomindcggsdmmughsﬁpﬁgm a reservoir thickness of 100 m with an
i sses of 30 m and

mndividadimg!.Z:ndihyeﬁ.mremlninﬁble4_7ﬂﬁw:mﬂm
in the pseudoskin factor as the number of mathematical layers increases and this decrease in
pseudoskin factor is greater when the reservoir thickness is larger. But the value of the
p:emmfmmbiligsnuhenumbeaf”f ematical layers is further increased.

4.11 Conclusions

1. Pressure transient responses and pseudoskin factors for a pertially-penetrated, multi-




the pseudoskin factors can be estimated from these expressions with reasonable
perind depend on the crossflow parameter and the mobility-thickness ratio of the open
interval Simplified expressions have been derived for these time criteria .

4. Pseudoskin factors obtained from this study have been compared with those obtained
from other studies in the literature and these comparisons have shown good matches
with all but one of the studies.
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Table 4.2: Comparison of pseudoskin factors estimated from the simplified expression with
those from the actual analytical solution. P!

— — Wﬁwd ©op and bowom] “Botiom Watey
x Aa NCGA NC Ac NoA e
(one Toblo 43) X107 X107

1 0.601 430 $196 | sa97 | s97 | ses | sezs
1 0.702 418 3321 | 3323 | s97 | 3600 | 3679
2 0429 | 0375 ] 10577 | 10650 | 474 | 10977 | 11150
3 0333 | 6525 | 15273 | 15200 | 4.74 | 15555 | 1547
4 0763 | 0277 | 247 | 2492 | 47 | 28% | 2860
(] 0640 | 0648 | 4310 | 4300 | 0222 | 4490 | 4620
6 0480 | 1292 | 7966 | 7980 | 0222 | s0es | su10

Table 4.3: Reservoir configurations considered

in Tables 4.2 and 4.6.
Case No. of layers | Penceratod layer
1 2 —2
— 3 3
- I 2 :
4 3 243
2 2 240
- 3 L 244
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Table 4.4: Comparison of pseudoskin factors estimated from this study with those

estimated from other studies for a three-layer reservoir with closed top and
bottom boundaries and with layer 3 open to flow (h = 200 m and k) =
4.9346x10'" m?)

Cavw o 2 3 4 s
Y 0.50 010 | om0 049 T ot0
Y 0.40 0.10 DIO 70.02 'osao
kyk; N 71007 0.2 0.25 o.u? ) 0.857
ki - 0.10 1.60 T 717.507 0!2; ) 1.5 |
tuﬂ- 100 1,;” in.oi .04 7 ;,o
k;ﬁaf W 71 0 0.16 o,inis B szso 70.514
kyky 1000 70539” 7 39.06 7 1.58 ] mdn
h;ﬁ- | @.of 50.0 7 W’so,mo 00 stm
A i :gin 7 1309 m 77730.21 B 4150
noA uﬂ 3290 7 32.90 7 ius Jo,ao
a 13.38 15.35 ) 25,35 m.o; 14;4
aoR 7 1,5.47 26.33 ] 26.33 7 20.03 rsuii




Table 4.5: Data for the development of Equations (4.6) and (4.7)

o1 x2 /Ap 02 Kk 2,)

328 12500 1.500x10° 2.309x10°

900 30000 1.800x10% 2.828x10°

1500 1.125x10° 2.200x10% 4.000x10°

2500 1.250x10% 1.500x10% 2.309x10%

12000 5.000x10° 1.9350x10% 2.828x10%

21000 1.125x108 2.800x10% 4.000x10%

25000 1.250x10% 1.500x107 2.309x107

100000 5.000x10% 1.850x107 2.828x107

220000 11252107 2.650x107 4.000x107

Table 4.6: Effect of gas cap (bottom-water) on pseudoskin factor ( three-layer reservoir,
h=20m,k;=k;=ky=49346x10* m?)

3 2 0.333 047
4 3 0.333 1.9




Table 4.7

Effect of Ilyer refinement on pseudoskin factor (k = 2.9477x10'4 m2, k, =

2.9477x10°13

Cuve Total reservoir Open inerval Number of Layers | Pseudoskin Facior,
thicknoss, m | thickness, m _ — 5

10

2

11.74

2 |  » 0 s |  ne
T "0 0 | s T
. 100  w | 2 | e

s 0 Y B 2689

26.55
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Figure 4.1: Schematic of a two-layer, partially-penctrated resevoir
with closed top and bottom boundaries.
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Figure 4.5: Effect of the crossflow parameter and the mobility-thickness ratio
on pressure derivative responses.
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8.0 THERMAL WELL TEST ANALYSIS UNDER BOTTOM-WATER
CONDITIONS

5.1 Introduction

The steam injection process is widely used in heavy oil recovery operations. As a result of
steam injection, at least two regions of different fluid properties are created and the
reservoir resembles a composite reservoir. Because of the gravity override effect, an
inclined fluid front is created between the hot and the cold zones. In many cases, heavy oil
reservoirs are accompanied by a bottom-water zone. The purpose of this study is 10
investigate the transient pressure behaviour of a steam-stimulated heavy oil reservoir
under bottom-water conditions.

A reservoir undergoing a thermal recovery process has been idealized as a composie
reservoir for a long time!<$. But most of the studies consider piston-like movement of the
fluid front, neglecting the gravity-override effect. Satman” used the concept of a tiked
(inclined) front in the pressure transient analysis of a two-layer composite reservolr. He
suggested that the fluid front would propagase at different rates in different layers. For
0 account for the gravity override effect and modelled the reservoir as & mubti-layer
better representation of the actual reservoir.

According 10 published reports on sicam-drive projects®™, the gravity override effect is &

101



containing heavy oil. He presented some temperature profiles obtained from his model
which showed a very strong gravity override effect. Blevins et al.? discussed the
application of steam-flooding for light oil reservoirs. They mentioned that the gravity
override effect also exists for light oll reservoirs, although it is less prominent than that for

Recently, Nasr and Pierce!? studied steamflooding in a scaled, oil-sand reservoir through a

situation, both the stimulation well (with good injectivity) and the producing well are
partially perforated 10 avoid injecting the steam into the botiom-water region and 10 avoid a
water-coning problem, respectively. For a partially-penetrating well, transient pressure
avergence. This additional pressure drop is referred 10 a3 & “pesudoskin® in the Hesrature.
Streltsova-Adams'? investigated the peoudoskin under bottom-water or gas cap conditions,
in which she graphically mﬁd the m&n factor. Gomes and Ambastha'¢
boundaries and for a bottom-water condition. They also presented an extensive Heerature

mm&&m&:w&mnﬂmh:hﬁyﬂ
Gomes and Ambasthe!? for mubti-layer composits reservoirs has been used 00 generats the
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8.2 Modelling of Infinite and Finite Bottom-Water Zones

Figures 3.1 and 5.2 show two different bottom-water situations, where a heavy-oil
reservoir has undergone a steam-flooding process. Though there is no limitation 10 the
number of layers that can be used in the analytical model, this study uses two layers 10
represent the reservoir and one layer to represent the finise botiom-water zone (for the finite
botiom-water case) unless mentioned otherwise. Wellbore storage and skin are neglected in
this study. In Figure 3.1, the bottom-water zone is very large compared 10 the size of the
reservoir. Thus, the boundary between the the bottom-water zone and the reservoir has
well has been partially penetrated to avoid or delay the waser coning problem. In Figure
3.1, Zones 1 and 3 represent the swept zone, and Zones 2 and 4 represent the unswept

Zone 1. Thus, the swept front has propagated further in Zone 3 than in Zone 1. Although
Zone 1 is considered as a part of the swept zone, it may have differenst fluid properties thas
Zone 3. In Figure $.1, a discontinuity boundary between Zones | and 2 is denosed as R,.
The discontinuity boundary between Zones 3 and 4 is denoted as R;. In dimensionless
form, R, and R;, have been represented by Rp and Rpg, respectively. In reality, a botom-
water 20ne may not be very large for all reservoirs. Figure 5.2 shows a heavy-oil reservols
with a finite bottom-water zone. As in Figure 5.1, Zones | and 3 represent the swept 2one
swept fronts have been located at different positions in Zowes | and 2. In Piguss 3.2, Ry,
and betweea Zones 3 and 4, respectively.
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5.3 Infinitely Large Bottom-Water Zone and No Bottom-Water Zone Cases

The reservoir configuration considered in this section is shown schematically in Figure 5.1.
Since the aquifer is very large, the water-oil contact has been represented as a constant-
pressure boundary. Rp, and Rp; are the dimensionless discontinuity boundary radii
between Zones 1 and 2, and between Zones 3 and 4, respectively. For an infinite bottom-
water condition, A, represents the crossflow parameter between layers | and 2 and Ac
represents the crossflow between Layer 1 and the bottom-water layer. Figure 5.3 shows
the effect of mobility-thickness ratio on wellbore pressure. The mobility-thickness ratio has
been defined as:

Iy -

(kuil’.- (5.1)

In defining the mobility-thickness ratio, reservoir and fluid properties of the swept zone
(Zones |1 and 3) have been used. For example, for the case depicted by Figure §.1,
kW) penswntt = (K1 )zons 80D (Kt host = (KWAL)20ne1 + (KIVIA)20nes- In 8 limiting case,
where the penetrated and the non-penetrated sections in the swept zone have the sams
The mobility-thickness ratio has been varied by changing the thickness of Layer 1 for a
fixed thickness of Layer 2. Changing the mobility-thickness ratio i this way also changes
the crossflow parameter boecause the thickness of Layer 1 appears in the definidons of both
A4 and Ac. Figure 3.3 shows that, initially, the responses show the radial flow period
comesponding 10 the swept 2one mobility of the penctrased inserval of the ressrvoir. Afver
soms time, the well feels the presence of the bosom-water aone and the welibore responses
show constant pressure values. The smaller the mobility-thickness ratio is, the loager it
takes for the wellbore pressure 10 attain the constant value. This lme-time constant pop
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penetration. This additional pressure drop is known as the “pseudoskin factor”. The
pseudoskin factor depends on the mobility-thickness ratio. A m atical expression for
this "pseudoskin” has been presented in Reference 14.

Figures 5.4 through 5.6 show the effect of mobility-thickness ratio on the semi-log
pressure derivative responses. Figures 5.4, 5.5 and 5.6 show responses for mobility ratios
of 10, 100, and 1000, respectively. For all these figures, the properties of Zones 1 and 3
are assumed to be the same, and Rp, and Rp; are assumed to be S00 and 600, respectively.
Initially, semi-log pressure derivatives are constant, which corresponds 1o the first radial-
flow period (m) and the mobility-thickness ratio (x) is :

m = 52)

In Equation 5.2, the constant 0.5 is the dimensionless semi-log slope for a fully-penetrating
well. For a homogeneous reservoir, the mobility-thickness ratio becomes the penetration
ratio. In Figures 5.4 through 5.6, the initial constant values of the semi-log slopes decreass
swept and the unswept regions. The effect of the discontinuity boundary and, therefore,
log pressure derivative 10 sharply decline toward aero, which is equivalent 10 attalament of
8 constant p.p value at lats time.,

80 bottom-water soae situation, Figure 5.7 shows the effect of the mobility-thickness ratio
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case, both the bottom and the top boundaries are closed and the responses graphed are for
M = 10. Initially, the responses show the first radial flow period with a semi-log slope =
0.5/x. Then there is a transition flow period. During the transition period, the effect of the
buumwmwmﬂhwb&nfelhﬁnb&nmm&ammmmcmm

unswept region with a dimensionless semi-log slope m = 0.5M. A comparison of Fi;m
3.7 with Figures 3.4 through 5.6 shows that the transition flow period does not develop
cﬁmplaeiy in the presence of the bottom-water zone. This is e;pec—inlly true for higher

transition flow period develops to a certain extent and, thus, pseudosteady-state analysis
may be possible. As expected, the second radial flow period does not occur in the presence

Figures 5.8 through 5.10 show the effect of mobility-thickness ratio on Cartesian pressure
derivatives. Figures 5.8, 5.9, and 5.10 are for mobility ratios of 10, 100, and 1000,
respectively. For these figures, dimensionless time is based on the discontinuity boundary
distance between Zones 3 and 4 (Rpo). In Figure 5.8 (M=10), the transition flow period is
of very short duration and, thus, a pseudosteady-state flow period with a constant
ﬂﬁmmm..muhemﬂmmmm imensionless Canesian
slope for a fully-pesctrating well with a sharp front. The preceding statement is trus whea
the swept front is vertical (sharp), and whea the tw0p and the bottom boundaries of the
MWMMM“MMW&_" 3 y-stat
mm-mmmmmamxghﬁmnﬂgm
Cantesian slopes for the )
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than the value of 2/x discussed before, because of the effects of the bottom-water zone and
the tilted-front.

To understand the differences between the Canesian derivative responses for an infinite
bottom-water zone and no bottom-water zone, Figure 5.11 shows the effect of the
mobility-thickness ratio on the Cartesian pressure derivative for a reservoir with no bottom-
period is more developed in comparison to the responses shown on Figure 5.8, and after
the transition flow period, all responses merge 10 another -1 slope line cc onding to the

the definitions of the crossflow parameters. By changing the horizontal permeability of the
penetrated layer (that is, Layer 2 in Figure S.1), the mobility-thickness ratio of the
vertical permeability of the penetrated layer has not been changed while changing the
penctrased layer (Layer 2). Thus, in Figure 5.12, the mobility-thickness ratio has been
varied independently, without varying the crossflow parameters. A comparison of Pigure
mobility-thickness ratio is varied independently without affecting the crossflow parameters.
For small mobility-thickness ratios (x < 0.6), Figure 5.12 shows that the wellbore
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assigning a small horizontal permeability 1o Layer 2. Thus, the pressure transient can move
more casily (because of less resistance) in the vertical direction than in the horizontal
direction for small mobility-thickness ratios. However, when a small mobility-thickness
ratio is obtained because of a small penetrated thickness (as in the case of Figures 5.5 and
3.6), the responses reach the front boundary before the wellbore responses are dominated

Figure 5.13 shows the effect of storativity ratio on the semi-log pressure derivative

.3. The storativity ratio influences the responses during the intermediate time period after
the end of the first radial flow period. But for the reservoir parameters utilized in Figure
3.13, increasing the storativity ratio above 10 does not affect the wellbore responses due 10
the presence of a bottom-water zone .

Figure 3.14 shows the effect of the dimensionless discontinuity radius in Layer 1 (Rp;) on

for M = 100, F, = 100, and x = 0.5. The discontinuity radius, Rp,, has beea varied as

bottom-water zone dominaies the wellbore pressure. But when Rp, = 1000, the wellbore
responses do not feel the fluid front, because the wellbore response is dominased by the
Figures 3.13 and 5.16 show the effect of the crossflow paramesers on the semi-log
croesflow parameser between the penetrated | and the non-penetrated section of the reservoir,

Bverywhere cise in the reservois, k, = 0.1k. The crossflow parameter ranges shown on
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Figures 3.13 and 5.16 correspond to vertical permeabilities of 2.4x10-'$ m? (2.4 mD) 10
9.5x10-' m? (0.001 mD). Figures S.1S and $.16 are for mobility ratios of 100 and 1000,
respectively, and for x =0.5. Figures S.15 and 5.16 show that, as the crossflow
parameters decrease, the transition flow period after the first radial flow period becomes
longer, and it takes a longer time for the pressure transient 10 reach the bottom-water aone.
Figures 5.17 and $.18 show the corresponding Cartesian derivative graphs. In Figures
3.17 and $.18, dimensionless time has been computed based on Rpg. For small crossflow
parameters, the responses in Figures 5.17 and S.18 show some flattening of the Cartesian
derivative and thus, some modification of traditional pseudosseady-state analysis may be
possible. In Figures 5.17 and 5.18, a horizontal line corresponding 1o a Cartesian
derivative of 4 (that is, 2/x) has been shown for comparison purposes. A Cartesian
derivative of 4 is expected when x = (.5 and for a sharp-front reservoir with no bottom-
water zone. When the front is tilted, the Cartesian slope is higher (for small crossflow
parameters) than that for a sharp-front reservoir and the swept volume obtained from
pecudosteady-state analysis is underestimated. This has been explained in more detail in

Chapeer 3.

$.4 Finite Aquifers

In reality, most of the aquifers accompanying the reservoirs are finite in size. Figure 5.2
schematically shows a finite bottom-waser zone accompanying a reservoir. Figures 3.19
and 3.20 show the effect of aquifer mobility-thickness ratio on the semi-log pressure
derivative responses. Aquifer mobility-thickness ratio hes been defined as:

Iy

v (5.3)
m
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Figures 3.19 and 3.20 are for mobility ratios of 100 and 1000, respectively. For both the
reservoir and the aquifer, k, = 0.1k. Figures 5.19 and 5.20 show that after the first radial
flow period, wellbore responses are affected by the non-penetrated section of the reservoir
and the aquifer. At late time, the responses show a second radial flow period correspondin
10 the total mobility-thickness ratio of the reservoir and the aquifer. As the aquifer size
becomes larger (that is, x, becomes larger), the response for a reservoir with a finite
bottom-water zone approaches that for a reservoir with an infinite bottom-water zone. In
Figures 5.19 and 5.20, afier the transition flow period, semi-log slopes become constant at
lase times. For higher values of x, (x, >0.1), the value of this constant semi-log slope is
the bottom-water zone because of the much higher mobility in the bottom-water zone
compared 10 the mobility in the reservoir. However, when x, becomes smaller (x, <0.1),
the pressure transient response is also affected by the unswept region of the reservoir and,
unswept zones of the reservoir. To quantify the relative effects of i, and M on the late-time

In Figures 5.19 and 3.20, the responses have been presented when Layer 2 is penetrated
and Layer 1 is closed (see Figure 5.2). However, when the reservoir does not possess
sufficient injectivity, the well is penetrated closer 10 the bottom-waser zons %0 take
advantage of the higher injectivity of the bottom-water zone. Figure 5.21 shows the semi-
2 is closed. A comparison of Figures 5.21 and 5.19 shows the effect of the botsom-water

because, in Figure 5.21, Layer 1 is penstrated which is closer 10 the botiom-waler 30ne
then Layer 2. However, late-time responses in Figure 5.21 ase the same as those of Pigure
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3.19, because, at late-time, responses are dominated by the bottom-water zone for the both

In the plecedmg discussion of a finite :quifer. the bottom-water zone has been represented

zones. FigmeslzmmeeﬁmofhyeﬂnghﬂieMn—wmmmmiﬂlﬂ-bg
pressure derivative responses. Figure 5.22 shows responses for an aquifer mobility-
thickness ratio (x,) of 50. A very large x, value has been chosen to enforce the layering
effect. In Figure 5.22, the solid line represents responses when the bottom-water aone
consists of a single layer. The solid circles and triangles represent the responses when the
with that for a single-layer bottom-water zone. Thus, for the analysis done in this study,
the bottom-water zone can be adequately represented by a single layer without causing

Figures 5.23 and 5.24 show the effect of a closed outer boundary on wellbore respoases
for a reservoir with a finite bottom-water zone. In Figures 5.23 and 5.24, the well is
partially-penetrating with x = 0.5 and x, = 1. Figure 5.23 shows the effect of the owter
qﬁhnmﬁmhnﬂnmﬂmhﬁhﬂnﬁgmmuhm
uﬁ;-nsz! Mhﬂﬂhhrﬂdhﬁhd.hm“h
affected sequentially by the pressure transient in the non-penstrased section of the seservoir,
by the fluid front between the swept snd the unswept 20nes of the reservols, and by the
pressure ransient in the aquifer before the effect of the outer boundary is folt. This is moss
clearly shown in Figure 5.24, which shows the comrespondis ] :
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respouses. Initially, the responses show the first radial flow period corresponding 10 the
penetrated section of the reservoir with a semi-log slope of 1.0 ( that is, 0.5/x ). As the
before the pressure transient reaches the fluid front, when the semi-log slope increases
because of the mobility contrast. Then, because the pressure transient responses at the
wellbore are dominated by the aquifer, the semi-log slope decreases again and reaches a
constant value of 0.5/x, before the effects of the outer boundaries of the reservoir and the
aquifer are felt. In this particular case, the semi-log slope reaches a value of 0.5 when the
transient pressure responses at the wellbore are dominated by the bottom-water zone,
because the mobility-thickness ratio of the botiom-water zone, x,, equals 1.0. The
aforementioned flow regimes and their sequences depend on a particular aquifer-reservoir
system and the properties of the reservoir and the aquifer.

8.8 Conclusions

1. Bottom-water conditions, both finite and infinite, can be represented by the multi-layer
composite reservoir model used in this study. The effects of mobility-thickness ratio of the
penetrated section, crossflow parameters and the mobility-thickness ratio of the aquifer (for
a finite aquifer) on transient pressure behaviour have been investigased.

lmmddnbomn-mmh&hufmmmﬁwmﬂ
occurs when the reservoir has a high vertical permeabilicy. But if the vertical permeability is
very small compared 10 the horizontal permeability, a brief pscudosteady-state flow period
may be obeerved.

1Fuaﬂanifaham-hw.mwmwoﬁbﬁy.ﬁ
2e0ervoir system and its properties.

112



References

1. Eggenschwiler, M., Ramey, H.J., Jr., Satman, A., and Cinco-Ley, H.: “Interpretation
of Injection Well Pressure Transient Data in Thermal Oil Recovery,” paper SPE 8908
presented at the 1980 Regional Meeting, Los Angeles, CA, April 9-11.

2. Ambastha, A. K. and Ramey, H.J., Jr.: "Thermal Recovery Well Test Design and
Imerpretation,” SPEFE (June 1989) 173-180.

3. Walsh, JW,, Ramey, H.J., Jr., and Brigham, W.E.: "Thermal Injection Well Falloff
Testing," paper SPE 10227 presented at the 1981 Annual Meeting, San Amonio, TX,
Oct. 5-7.

4. Da Prat, G., Bockh, A., and Prado, L.: "Use of Pressure Falloff Tests 10 Locate the
Buming Front in the Miga Field, Eastern Venezuela,” paper SPE 13667 presented at

3. Sunislav, J.F., Easwaran, C.V., and Kokal, S.L.: "Interpretation of Thermal
Injection Well Testing,” SPEFE (June 1989) 181-86.
449-458.
Banks,” paper SPE 10264 presented ot the 1981 Annual Meeting, Ssn Antonio, TX,
Oct. 5-7.

8. Sastman, A. snd Oskay, M.M.: “Effect of a Tilked Front on Well Test Analysis,” paper
SPE 14701 available from SPE (198S).

113



9. Blevins, T.R., Aseltine, R.J., and Kirk, R.S.: "Analysis of s Steam-Drive Project,
Inglewood Field, California,” JPT (Sept. 1969) 1141-350.

10. Myhill, N.A. and Stegemier, G.L.: "Sieam-Drive Correlation and Prediction.” JPT
(Feb. 1978) 173-82.

11. Singhal, A.K.: "Physical Model Study of Inverted Seven-Spot Steamfloods in a Pool
Containing Conventional Heavy Oil,” JCPT (July 1980) 123-34,

12. Nass, T.N. and Pierce, G.E.: "Sweamflooding Cold Lake Oil Reservoirs Through a
ster Zone: A Scaled Physical Model Study,” SPERE (may 1993) 94-100.

13. Streitsova-Adams, T.D.: “Pressure Drawdown in a Well with Limited Flow Entry,”
JPT (Nov. 1978) 1469-76.

14. Gomes, E. and Ambastha, A.K.: "Analytical Expressions for Pseudoskin for
Pantially-Penetrating Wells Under Various Reservoir Conditions” paper SPE 26484
presented at the 1993 Annual Meeting, Housson, TX, Oct. 3-6.

1S. Gomes, E. and Ambastha, A.K.: "An Analytical Pressure-Transient Model for
Multilayered, Composite Reservoirs with Pscudosteady-Stase Formation Crossflow”
AOSTRA Journal of Research, Vol. 8, no. 2, (1992) p. 63-77; also paper SPE 26049

114



Waell

Figure 3.1: Steam-flooded heavy oil reservoir with an infinisely-
bottom-water region. y-large
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Figure 5.2: Sicam-flooded heavy oil reservoir with a finise bonom-water
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Pigure 3.11: Effect of mobility-thickness ratio on the Cartesian pressure derivative
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6.0 AN ANALYTICAL PRESSURE-TRANSIENT MODEL FOR
COMPLEX RESERVOIR SCENARIOS

6.1 Introduction

Reservoir heterogeneity is usually described by layers and zones of different rock
applied, the reservoir resembles a composite reservoir. Because of reservoir
The presence of aquifers and gas caps can further complicate the situation. Numerous
studies have been reported in the litcrature on layered and composise reservoirs. Gomes

In this study an n-layer, radial, composite reservoir as shown in Figure 6.1 has been
considered. A symmetrically located well fully penctrates the reservoir. The well
between the layers. In Figure 6.1, the discontinuity boundary in each layer is
of sones in each layer. Therefors, the reservoir is divided into & X m s0nes and each
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zone may be identified by (ij), in which i and j denote the zone and the layer,
respectively. Each zone may have different rock and/or fluid properties, and can have a
variable length in the radial direction, depending on the discontinuity boundary
locations. In an actual reservoir, n x m zones of different rock and/or fluid properties
may not be needed. In Figure 6.1, the shaded and non-shaded areas represent two
different fluid and/or rock types. Each layer has only two different rock and/or fluid
types separated by a discontinuity boundary. In each layer, the discontinuity boundary
is placed at a different location to simulase a tilted-front discontinuity boundary for the
reservoir and for this particular situation, msn+1. Though layers of equal thic

accounted for in the model presenied in this paper.

assumed 10 be confined 10 the interiayer boundary and flow in each layer is horizontal.
considered closed, when there is no aquifer or gas cap present. If an aquifer or a gas
presence of an aquifer or a gas cap, the well is partially perforated 10 delay water or gas
weing the mode! discussed in this paper.

6.3 Selution Description

The diffusivity equations for all zones(i,j) in a cylindrical coordinate system has besn
boundery conditions of the various aones, & system of simuitaneous, linear equations
hes been derived and solved 10 obtain transiont pressure responses for each some.
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Details of this solution hi. /e been presented by Gomes and Ambastha!. A general
solution for dimensionless pressure in Laplace space (Poi.j) for zone(i,j) has been

obtained as:
Po -i’, [A% EX, Ko(o Fro) + BY, B, Io(o}m)): (6.1)
ks]

where of and EJ; are the eigenvalues and the eigenvector, respectively, for Region i
and Layer j. Constants A¥ and B} are 10 be determined from the boundary conditions.
The boundary conditions are: the inner boundary condition (wellbore condition), the
continuity conditions between zones. Equation (6.1) contains 2n X m constants 10 be

radius. To evaluate the transient pressure response at the wellbore, the solution
represented in Equation (6.1) is evaluated at rp=1. As discussed in Gomes and
Ambastha!, this new solution uses the eigenvalues and eigenvectors of the system and
is computationally more efficient than other methods proposed in the liserature.

6.4 Solution Algorithm

The computer program for the solution has been written in FORTRAN 77 and
utilised in writing the source code:

Masia Program: GENERAL

1. open output files 10 store results

2. read al. the ascesenry input data from an input dam file
3. calll Subroutine TAB 10 compute fromt radii, if required
4. compute the averags front radius, RDAV

3. non-dimeasionalize the wellbore and fromt radii
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6. compute transmissibilities, TS(i,j), and storativities, ST(ij), of each zone
7. compute crossflow parameters, XA(i,j) and XB(i,j), of each zone

8. generate a set of time vectors, TD

9. call Subroutine INVERT 10 invent the results from Laplace space to real space

Subroutine INVERT

9.1 Subroutine Invert uses the Stehfest? algorithm to invern results from
Laplace space to real space

9.2 call Subroutine LAP to compute results in Laplace space

Subroutine LAP

9.2.1 set up the coefficient matrices, A(jj) and BB(jj), and compute the

9.2.2 set up the augmented matrices, AA(kk) and B(k), from the boundary
conditions and solve the resulting system of equations using the
IMSL.Math Library*

9.2.3 compute the wellbore pressure and ks derivative in Laplace spsce and
transfer it 10 Subroutine INVERT

9.3 invert the pressure and the pressure derivative 10 real space and transfer it 0
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Bessel's functions in exponentiated form. Because of the exponentiation of Bessel's
functions, equations obtained from the boundary conditions are multiplied by
exponentiation factors, and if this is not corrected, the solution will generate erroneous
results. During computation of the wellbore pressure, the results are divided by the
corresponding exponentiation factors to reverse the exponentiation effects.

6.5 Model Validation

The new analytical solution has been validated by generating some well-known
transient-pressure responses for various cases of homogeneous, composite, and
layered reservoirs, which are subsets of the general solution developed. Results
obtained from this solution have been compared against Agarwal g al.$ type-curves for
homogeneous reservoirs, Tariq and Ramey's® study on layered reservoirs,
Eggenschwiler gt al.” study on composite reservoirs, and Ambastha and Ramey'ss?
study on two- and three-region, composite reservoirs. These comparisons have shown
excellent matches of the results obtained from this new solution with those obtained
model discussed in this paper is capsble of generating transient pressure responses for
partially-penctrating wells. A study regarding partially-penetrating wells using the
model of this paper is presented in Gomes and Ambastha'®,

6.6 Reservoirs with Complex Fromt Shapes
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front by specifying a front angle and a minimum front radius. Both reservoirs shown in
Figures 6.2 and 6.3 consist of three layers. The non-shaded and the shaded areas
represent the swept and the unswept regions, respectively. In Figure 6.2, Layer 2 has a
very high permeability compared to the other layers and, thus, the swept front in Layer
2 propagates the maximum distance. In Figure 6.3, Layer 3 has a very high
permeability, whereas Layer 2 has a very low permeability resulting in a complex front
shape. Although, the swept fronts in Figures 6.2 and 6.3 have very different shapes,
the swept zones in both these figures have equal swept volumes and minimum front
radii. Thus, the two reservoirs have identical average front radii.

Figures 6.4 and 6.5 show the responses for the reservoirs described by Figures 6.2
and 6.3. Figure 6.4 shows the wellbore pressure responses with time. The line and the
solid circles represent the responses corresponding to Figures 6.2 and 6.3,
respectively. The two responses follow each other very closely. Figure 6.5 shows the
comresponding semi-log pressure derivative responses. Figures 6.4 and 6.5 show that,
pressure derivative responses are not very sensitive 10 the shape of the swept zones.
This example represents one application of this new, multi-purpose pressure-transient
model, which should become increasingly useful to the petroleum engineering
community in the foreseeable future.

6.7 Summary
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computer program has been demonstrated by considering transient pressure behaviour
for reservoirs with complex front shapes.
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Figure 6.1: Schematic of an n-layer, composite reservoir in radial geometry

with two different rock and/or fluid types in each layer.
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Figure 6.2: Complex swept zones resulting from very high permeability in Layer 2.

136



Pes

|f FEPETTI PR BT | i bl

T S — = -
10 10 to 10 10

ﬂ;m:&dsﬁgﬂnmxmmmm“nmm

aaL amn e oo At B s o

.0 Rosg = 935191
o '= = 300
Re=l hp =150

lj !lli

137



7.0 DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS

7.1 Discussion

In this study, an analytical solution for a multi-layer, composite reservoir with
pseudosteady-state formation crossflow has been developed and validated. The new
analytical solution is applicable for tilted or irregularly-shaped fluid fronts, multiple
composite regions, and for closed, constant pressure and infinite outer boundary
conditions. This new solution is computationally very efficient and requires solution of an
order of magnitude fewer equations as compared 10 the other methods in the liserature. The
new solution is very versatile and can treat partially-penetrating wells subject o finite and
inflinite bottom-water conditions for well sesting purposes.

In steam-flooding projects, because of the gravity override effect, the fluid front of the
swept region is not vertical, but tilted or inclined. For tilted front reservoirs, this study
shows that transient pressure responses are sensitive 1 the front shape. The time 10 the end
of the first radial flow period and the responses for the transition flow period betweea the
first and v:e second radial flow period are affected by the shape of the fluid front. This
study shows that design equations for the end of the first radial flow period applicabls for a
sharp-front, single-layer reservoir are not adequass for tilted front reservoirs. Based on
presours derivative responses, modified design equations have besn derived for the end of
the firn radial flow period and for the time 10 the maximum semi-log pressuse derivative
during the transition flow period. For tilied front cases and with sufficient mobility and
undvlthumtbm_udbmmﬂsﬁy“hh
posudosteady-stats (pes) flow period exists in some sverags sense and that pes analysis
assuming & sherp fromt will result in considerabie underestimation of the swept volums. A
cosection factor has beea developed 10 correct the estimated swept volume from the pes

analysis.
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For reservoirs under bottom-water or gas-cap drives, the wells are partially-penetrated 10
avoid or delay water or gas production. For partially-penctrating wells in maulti-layer
reservoirs, this study has developed mew analytical expressions for pseudoskin for both
closed top and bottom boundaries and for bottom-water or gas cap conditions. These

These new analytical expressions are also applicable 10 the corresponding homogeneou
have been derived for the end of the first radial flow period and for the beginning of the

considered. A finite aquifer has been modelled as a layer of finite thickness having
approprise properties, and an infinite aquifer has been modelled as a constant-pressure

ﬂmﬂnﬂum“ﬁhﬂb“hdﬁmd“

hlﬂﬂ.hmmm‘ﬂnmmﬁr As expected, the

mﬂhm‘nﬁrﬁhﬂmh* sudost s flow period eccurs

(thet is, the crossflow parameter) is small, & brief period of pesudostsady-state flow
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7.2 Conclusions

In this study, the transient pressure behaviour of a multi-layer, composite reservoir has
been investigated. To accommodate the gravity override effect, tilted and irregularly-shaped
fluid fronts have been considered. The behaviour of partially-penetrating wells in reservoirs
with finise and infinite bottom-water conditions has been investigated. Based on this study,

the following has been concluded:

New Analytical Solution

composite reservoir with pseudosteady-state formation crossflow has been developed
and validated.

2. The new analytical solution developed in this study is computationally more efficient
and versatile in use than presently-available solutions in the liserature.

3. The new analytical solution offers new possibilities 10 analyze more complicased well-

Tikted Fromnt Reservoirs

1. Design equations for the time 10 the end of the first radial flow period for a sharp-fromt
desiga equations have been developed for the time 10 the end of the first radial flow
period, and for the time 10 the occurrence of the maximum semi-log siops during the
wansition flow period.

2. The deviation time method yiclds an estimess of the gsometric mean of the minimum
front radius and the average fromt radius of the swept region.
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3. For inclined front reservoirs, pseudosteady-state (pss) occurs in some average sense

4. A correction factor has been developed to estimate the correct swept volume from the
pscudosteady-state analysis for situations where a dlted front is suspected.

3. For the cases considered in this study, thermal well test responses obtained from a
crossflow system can be analyzed using a commingled system solution for a fully-
Partially-Penetrating Wells and Pseudoskin

lmmmmemmﬂfw:WIyﬂm}ﬂlhn
multi-layer reservoir can be studied analytically by a {
model.

2. Simplified expressions for pseudoskin factors have been derived for multi-layer
reservoirs with or a without bottom-water or a gas-cap drive and pseudoskin factors
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Composite Reservoirs Under Bottom-Water Conditions

1. Bottom-waier conditions, both finise and infinits, can be represented by the multi-layer
composite reservoir model used in this study. Effects of various parameters of the
reservoir-aquifer system on transient pressure behaviour have been investigated.

2. The presence of the bottom-water zone is felt before the pseudosteady-state flow period
occurs when the reservoir has a high vertical permeability. However, if the vertical
permeability is very small compared to the horizontal permeability, a shont

pecudosieady-state flow period may be observed.

3. For a finite aquifer in a multi-layer, composise reservoir with a closed ouser boundary,
the occurrence of vasious flow regimes and their sequences depend on the particular
reservoir-aquifer system and its properties.

Irregulariy-Shaped Fronmts

1. For irregularly-shaped fronts, when the minimum front radius and the swept volums
are equal, pressure and pressure derivative responses are not very seasitive 10 the shape
of the swept zones.

7.3 Recommendations
Puture studies in multi-layer, composies reservoir should address the following:

1. Pressure falloff data for mubti-layer, composits reservoirs with tilked and irvegularly-
shaped fluid fromts can be ssudied using this aew analytical model.

2. The new analytical model can be used for automatic type-curve matching for complex
sessrvoir scenarios.
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3. Extension of this new model to multi-phase well-testing situations will make this model
more general.

143



Appendix A: Calculation of Layer Front Radil for Inclined Front Reservoirs
(after Kiome!!)

This appendix describes the calculation procedure of various layer front radii for inclined

numbered from bottom 10 10p. For Layer 1, line R')R’2 is drawn in such a way that the

Considering the half-cones OBR'; and OAR',,

Ry R3 R2-R A

R’z =R’y + oot @ ! (A3)
R'z= (0 +hy)oot® (A49)

The volums of the half cone frustrum ABR', R'; y:
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Vermd E[RE O + b)) - R0 (A.5)

Equatons (A.1) and (A.S) yield:

V. EZewnalod oI
Ver=E un (R} - R}] (A6)

Equating the volume of the half-cylinder ABCR, and the half-cone frustrum, V¢ yields:

A48 (a3 ) wn

Making use of Equation (A.3) in Equation (A.7) yields:

R'} + (oot O) R +[!‘%- Rf] =0 (A8)

For a specified minimum front radius R, and a front angle 6, it can be writien:

w2 (oot ) + Vco0)® + 4 [R] - (b cot 0P
e -2 (A9)

2 Oyc0t @) + Voot 07 + 4R - (b con OF 3
, 2 = " (A.10)

R’

(A.3) and (A.7) can be writien as:

For any Layer j, Equations

R'j =R + hjoot 0 AD

», Vsn"l’:"‘ R}) (A.12)

For a particular Layer j with a layer thickness h;, and with an angle of inclination 0,
Bauations (A.11) and (A.12) can be used 10 calculass the front radius R;.
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Appendix B: Defining an Average Radius for a Muiti-layered, Composite
Reservoir with an Inclined Front (after Kiome!!)

This appendix deacribes the calculation procedure of the average front radius for a tilted-
front reservoir for Chapeer 3. The swept volume of a multi-layer, composite reservoir with
rn inclined front can be represented by an equivalent swept volume in a single-layer,
composite reservoir with a sharp front. This is done by equating the pore volume-
compressibility products for the corresponding reservoirs. The expression for the average
radius has been derived following Kiome's'! approach .

Consider an n-layer, composite reservoir (Figure 3.1b) with a layer front radius R; and
swept volume storativity (¢c;h);, where j represents the layer number. Let the equivalen
single-layer reservoir have a storativity of (¢c)yr per unit reservoir thickness. Equating the
storativity values for the two reservoirs gives:

.g (0cih) = (gc,hr Ew o

whese h; is the thickness of Layer j. Rearranging Equation (B.1) yields:

(ocker= 3 (e} / 1, N
= B.2)

whaeb.-’g b

To obtain an appropriase definition of the average front radius, Ry, the summation of the
layer pore volume and the compressibility product for all the layers has 10 be equal 10 the
pore volume-compressibility product of the single-layer system. Thus:
£ (sanrn} o (oo her iy 0 -
ol @J3)
Rearanging Equation (B.3) yields:
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v (ﬁilrﬂho (B.4)

Substituting for (#cour from Equation (B.2) into Equation (B.4) yields:
K (0cR2n)
Revg = L I——
i‘ (ocim)
F

The transient-pressure responses of a multi-layer, composite reservoir can be compared

with that of a single-layer, composite reservoir having equivalent reservoir properties. For

example, transient-pressure responses of a multi-layer, composite reservoir having an

inclined front with an average front radius of Revg can be compared with that of s single-

hm.mﬂnmmh;nmmm“llm This definition of the
tion (B.S) as:

(B.5)

(B.6)

Equation (B.6) describes R,., 23 a root-mean-square front radius. Satman and Oskay?
mnmmihmﬂﬁ“ﬂhmﬂhmm
10 the front as the repressatativ mmmm-: Dximal nadequats
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Appendix C: Pseudoskin Factor for Closed Top and Bottom Boundaries

This appendix shows the derivation of the late-time pressure and the pseudoskin factor
expressions when the top and the bottom boundaries are closed for multi-layer reservoirs.

This pseudoskin expression has been discussed in Chapter 4.

Late-Time Behaviour of a Partially-Penetrating Well in a Two-layer
Reservoir with Pseudosteady-State Crossflow.

Figure 4.1 schematically shows a two-layer, partially-penetrated reservoir. Layer 1 is
penetrated and Layer 2 is closed at the wellbore. The upper boundary of Layer 2 and the
lower boundary of Layer 1 are considered as closed boundaries. Pseudosteady-stase

crossflow is considered between the two layers. The problem is solved following the steps
taken by Bourdet®. The diffusivity Equations for the two layers are:

() (3—;5’- + }%L)-«qm.%l +Xalpr - P2) (C.1)
($h), (a—;n’é%)'(hhh?ddm ) (C2)

Initial condition: py = p; = p, (C3)

Ouner boundary condition: Em py= lim py=p;, (C.9)
T=phes 1 =hee

laner boundary condition: Assuming Layer 1 is penetrated and Layer 2 is closed, and
neglecting wellbore storage and skin yield:

h*P. for ree,, (C.9)

@L.o (C.6)
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a=2e(lh) "%L.. .7

Dimensionless variables are defined as follows:

por.2 = 2 () pia - p1.2) (C.8)

o T R (C9)

where, (§F) = (), + (41, and (C.10)
(6cih) = (ecihh + (ecih), (C.11)

All other dimensionless paramesers are defined in the Nomenclature.

form as:

x Vpoy -ngwum - Po2) (C.12)

(1) ¥puz = (1 - P2+ Anlpoe - pov) (€13

Initial condition: ppy(rp.0) = pra(rp.0) = 0 (C.14)

Outer boundary condition: lim pyy= im py=0 (C.15)
fo—dhee fo—poe

Inner boundary condition: ppy(1.tp) = pup (C.16)

mL'.o (.17
la x(%L' c.18)
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Taking the Laplace transform of Equations (C.12) through (C.18) yields:

x V2poy = ol Pox + A(Pox - Pre) (C.19)
(1 - %) Voo = (1 - &) Poa + APz - Por) (C.20)
(C.21)

Outer boundary condition: 'Iim P = 'lhn P =0

Inner boundary condition: Ppy(1./) = Pup (C.22)

‘%Ll -0 (C.23)
l.. ,‘%L' (C.24)

Solutions of Equations (C.19) and (C.20) are modified Bessel's functions, Ly(0Orp) and
Ke(Orp), where O is the eigenvalue of the system. For an infinite system, only the Ke(Orp)
function applies. Therefore,

Por = AKe(Ovp) (C.29)
Poa = B'Ko(orp) (C.26)

Equations (C.19) and (C.20) together with Equations (C.25) and (C.26) yield:

%P A'Ke(Orp) = el A'Ko(Orp) + AA[AKe(Orp) - B'Ko(0rp)) (C.27)
(1 - ¥IO?BKy(orp) = (1 - 4 B'Ke(Orp) + AA[BKe(Omp) - AKe(OrD)) (C28)
w(cm-u(cwuam.

[0t el <A JA + 2B =0 (C.29)
A" +[(1 - a0 (1 -t -AJ8 = 0 (C30)
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Non-trivial solutions are possible, if the determinant is zevo, that is,

(x02- ool - AA)[(1 - x)02-(1 - @) -An)-A2 =0 (C.31)
Equation (C.31) can be reorganized as:
ot - [" ol o *"A]u’ [‘“”::’;J]'- 0 (€32)

o}.g[ a "“” o :M)u] (C.33)
-x
o - %[(l-:n)l:h o +dy). ] €30
(o) A o sdgf . 2 B .
ma-[ A ‘#)za-ﬂ—l‘?; (C.35)

Putting 0f and f from Equations (C.33) and (C.34), respectively, into Equation (C.30)

and rearanging yield:

..-‘i"h-uil;[(l-u)l-(n-x)u}] (C.36)
q-%-l+ﬂ(l-u’l-(l-x)o§] (C.37)

Putting A, = ,B; and A;= a B, in Equations (C.25) and (C.26) ylelds:
Pou = 8 B1 Ke(0, rp) + 228, Ke(0;37D) (C.38)
ez =B, Ke(0, ) +B,Ke(0;7) (C.%)
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K;(0,)

Equations (C.38) and (C.39) together with Equation (C.24) yields:

-‘L, = 8, B,0,K,(01) + 2B,0;K,(0;) (C.41)
Equations (C.40) and (C.41) yields:

- 1
B (a3 -ay )%l 61K (0y) (c42)
B; = 1 (C.43)

(22 - 8y )x! 32K (02)

Now, Equation (C.38) becomes:

.. 9Ko(0)) yKo(@) (C.44)
Peo (22 - .l)dolxl(ol)*(‘z -y xl 02K (03)

Equation (C.44) represents the pressure transient responses of a partially-penetrating well
haWWhhﬂmmMMmeMb
real space using the Sichfest algorithm®.

Late-Time Behaviour for a Partially-Penctrating Well with No Bottom-
Water Zone or Gas Cap

At late time tp—ses and / -+ 0, and Equations (C.33) through (C.37) become:

l-hiO A-‘E?o ;A-‘;'r%ﬁ +l....)+A......) F- - (C.49)
‘:od-‘?.o &0%4![ ....... ]+ A....... i -m (C.46)
g=X et St B can
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Appendix E shows the simplification proposed in Equation (C.47) in detail.

[ (1-l-(1-x)0 | '
Bm ay= lim [1+—0 —— 1 (u k=l ~ 28
(=0 10 | G (C4®)

im a= lim F]*h—my-u_‘)é
im0 it Aa

=1 (C.49)
Using the late-time limits shown in Equations (C.43) through (C.49) , Equation (C.44)
may be writien as:

~ KolT) ~ g0
* KGN (€30

The first serm in Equation (C.50) is a constant and it represents the addition pressure drop
whole reservoir. So, for a two-layer reservoir, the expression for pseudoskin is:




where, K = Total mobility-thickness ratio of the open interval

Equation (C.52) is applicable for a multi-layer reservoir having any arbitrary number of
hyﬁ:mkingnpﬂg whmﬂﬁmynﬁmbaﬂmdﬁeminm In

thickness ratio of the open interval and by ldﬂinj the lower and the upper hnundnry
crossflow parameters, respectively. hmp:ﬁwﬁhnunﬁaﬂhmhﬂam
only two parameters are required (o estimate the pseudoskin. i eatment for

mvﬂ'wbjm&:mdﬁve(mlhﬁmmﬁW)hmme
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Appendix D: Pseudoskin Factor for a Gas-Cap Condition

This appendix shows the derivation of the late-time pressure and the pscudoskin factor
expressions when the multi-layer reservoir is under an infinitely-large gas-cap drive. This

peeudoskin expression has been discussed in Chapter 4.

Late-Time Behaviour of a Partially-Penetrated Well in a Two-layer
Reservoir Subject to a Gas-Cap Drive.

mmdzmmnydmamhw.mw-muwmnam
cap drive. The gas cap is assumed 10 be very large compared 10 the size of the reservoir and
ummmmmmpmum»uumm
Layer 1 is penetrated and Layer 2 is closed at the wellbore. The upper boundary of Layer 2
is considered as a constant-pressure boundary because of gas cap, whereas the lower
boundary of Layer 1 is considered as a closed boundary. Pseudosteady-state crossflow is
considered between the two layers. The diffusivity Equations for the two layers are:

I (52 1) = oo X -1 .

(k) (%*{%)-(hhb%+ Xalp2 - P1) + XcAp2 - ) D.2)

Inner and ower boundary conditions, and the initial condition are the same as in Appendix
C. In dimensionless form, the differential equations and the bowndary conditions can be

written as:
x Vipry -%*Mm-m) @.3)
n-nV’m-n--@+um-m+km @A)
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Initial condition: pp(rp,0) = ppo(rp0) =0

Outer boundary condition: tm ppy= lim ppe=0
To=pe fo—pim

Inner boundary condition: pp(1.tp) = p.p

(3),..-0
=
Following the same steps as in Appendix C, one can obtain:
[ 00?- aaf-AuJA +AaB =0
AMA +[(1- )02 (1- @) - Ax - AcB =0
Non-trivial solutions are possible, if the determinant is 2ero, that is,
(1002 aar - A)[ (1 - wh03- (1 - ¥ - An - M) AR =0

Equation (D.12) can be rearganized as:

o - [(l—n)l-tiﬁlc ”*h].,’t (ﬂ+hi(lgﬂ)l*h*k] 1‘2\.0

(1- x)

I-x
%[l(l—-)l#l‘-&lc !'h) A]
o - 4((!--)1*&*1: wedy). ]
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(D.3)
(D.6)

(D.7)
(D.8)

(D.9)

(D.10)

(D.11)

(D.12)

(D.13)

(D.14)

(D.13)



N + A+ Ac L . &l +).Ai( 1-0) +AA+A§]5- Air

whers, A = [((n-
l=-x X x(1- x)

(D.16)

Putting of and 0f from Equations (D.14) and (D.19), respectively, inio Equation (D.11)
and rearranging, one can write:

"'%,L'“tlf + {01 - ¥ - (1 - wio} (D.17)
.2--32;-1+%f+i1;[(l-m)l-(l-x)c§] (Blg)

As in Appendix A, putting A, = a,B, and A;= 2;B; in the solution yields:
Por = 21 B Ko(0, rp) + 22B2K0o(6;D) (D.19)
Poe =B Ko (0, 1) +B2Ko(0;m) (D.20)

Again, following the same steps as in Appendix C, one can obtain the expression for the
wellbore pressure as:

Poo=-—Ke©@) . 5Ke(o;) (D.21)
(a2 -y d 6, K1 (0)) (a3 - ) ) 6;K(0,)

Equation (D.21) represents pressure transient responses in Laplace space of a partially-
peactrating well in 3 two-layer reservoir subject 10 a gas-cap drive and these responses are
numerically invenied 10 real space using the Sichfest Algorithm®.

Late-Time Behaviour for a Partislly-Pencirating Well Under s Gas-cap
Drive

At lass time tp~ee and ! —» 0, and Equations (D. 14) sheough (D.18) become:
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e el -
c"-:'od'd"%. 1-x {‘ 1-x _".‘A,’G‘L-%tﬂ @2
im A-“ - (l—“_A-:tP D.24)

i oy ey =142 ""’[—4“‘*—“{( 1-x ”(l-x)lt ]

1 =0 As 2, l=-x
(D.23)
I VN [ r)[_zg.nc [[2a+ 2c ‘J
E'n.olz = A 2, l-x +—A ( r l-% I
(D.26)

Using the late-time limits shown in Equations (D.22) through (D.26), Equation (D.21) may
be written as:

- — ko akelp)
Peon (@ - ‘ll-)“"ll.'(l(ﬂu) (gL - a1 63 Ky (0) ®.27)

Equation (D.27) denotes the limiting pressure drop in Laplace space for a partially-
penetrating well subject 10 a gas-cap drive. Taking the inverse Laplace wransform of
Equation (D.27), one can obtain the corresponding pressure drop in the real spacs as:

— .0 TY] _Ke(G)
Peor. (a2 - 800 Ky (0 ) ‘('IL'.H-”:LKI(‘N) .29

Performing the sams treatment for a fully-penetrating well in a two-layer reservoir subject
0 & gas-cap drive, one can obtain:
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(D.29)

because of the partial penetration of a two-layer reservoir subject to a gas-cap drive.
Therefore, the expression for the pseudoskin for this case is:

o = —21K0O) o0y _ (4319 Kol
(a20-4,0%05, K, (030D (a1 !l l)ﬁl Ko~

(D.31)

Equation (D.31) estimates the pseudoskin in a two-layer, partially-penetrated reservoir
subject 10 a gas-cap or a bottom-water drive. Equation (D.31) is also applicable for a mulsi-
Irvespective of the number of layers in the reservoir, only three parameters (X, A4, Ac) are
required 10 estimate the peeudoskin factor.
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Appendix E: Late-Time Approximation of of
This appendix shows the simplification proposed in Equation (C.47) of Appendix C in

PTIEE

wd, n 4- h["_m”*h “":l‘ T (E.2)
I w(l-x)

G {‘*.; *(ff

im A= lim
| =pem { =dem

n)(; LA
‘S ﬁ

Aﬁ*g

iu ae ( +$A fo E4

Expanding Equation (E.4) using the binomial theorem ylelds:
| Y }

hA-‘ ( g-LA ;...(l L‘Nl L"- Y PR B

@) "" *

Neglecting the higher order terms in / in Equation (E.5) ylelds:
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A= I%LE-F%A* (ll%.e)(zg. w] (B.6)

At late times, the reservoir behaves like a fully-penetrated, equivalent homogeneous
with » pseudoskin. Thus, at late time, x = @ = 1, and Equation (E.6) becomes:

“'.%‘:*Q"’ E"ﬂ)'] E.7)

Now, Equation (E.1) becomes:
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Appendix F: Computer Program
This appendix shows the computer program for the analytical solution developed in this
study. This computer program has been described in Chapeer 6.

SOURCE CODE FOR THE PROGRAM: GENERAL

C Source code for program GENERAL 10 generate the transient pressure responses for a
C (This program is writien in FORTRAN 77 and in SI units)

C
PROGRAM GENERAL

oo AON

aOOKOONON



DOOOOOOODNNONDONNNOO

OO0 OOOOONONONNONDNONON

RD(J) --- Wellbore radius (j=1) and front radii (j=2.3,....
RDAY --- Average front radius

SK(J) --- Wellbore skin at the jth layer

ST(1.J) --- Storativity for zone i and layer

TD --- Dimensionless time

TPD --- Dimensionless producing time

TS(1J) --- Transmissibility for layer j and zone i

TTS --- Total transmissibility

TST --- Total storativity

XB(U)-—-Cmmowpammfurmnei mdhyg'jmﬂj l

IMPLICIT REAL*8(A-H,0-2)

DIMENSION TD(20),H(3),RED(3),RK(4,3),RMU(4,3),PHI(4,3),RK V(4,3
+ )CT4.3)

COMMON/GMV/ CD.RD(S).SK(S).ST (4, 3);1‘5(43)“(3.3).1@3,
+ NLAYER,XA(4,3),XB(4,3)JWELL

Opening output files

For drawdown

PD --- Contains PWD as a function of TD data
PDP - Contains semi-log slope as a function of TD data
PDC --- Contains Cartesian slope as a function of TD data

For buildup

PD --- Contains PWDS as s function of delta TDE data

PDP - Contains Agarwal slope as a function of TDE data

PDC --- Contains Cantesian siope as a function of delta TDA data
PDH - Contains MDH slope as a function of delta TDE data

OPEN(UNIT=? FILE=PD' STATUS=OLD)
OPEN(UNIT=8 FILE=PDF STATUS='OLD)
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OPEN(UNIT=9,FILE='PDC ,STATUS='OLD’)
OPEN(UNIT=10,FILE«'PDH .STATUS='OLD’)

PRINT*,'GIVE THE VALUE OF NLAYER'
READ(S,*)NLAYER
NN=NLAYER+!

PRESSURE WILL BE CALCULATED
READ(S,*)JWELL
PRINT*,'READ THE VALUE OF CD AND SKIN'
READ(S,*)CD(SK(I),I=1 NLAYER)
PRINT*,'# OF CYCLES OF DATA REQUIRED'
READ(S5,*)NC
READ(S,*)TDI
PRINT*'NUMBER OF TERMS TO BE USED IN STEHFEST
READ(S,*)NTFRM

PRINT*,'l --- DRAWDOWN'
PRINT®,2 --- BUILDUP

PRINT®,'] --- INFINITE
READ(S ))00C

PRINT*, SUPPLY CODES FOR GAS CAP AND BOTTOM WATER'
PRINT®,'] --- NOGAS CAP OR BOTTOM WATER'

PRINT®,2 - GAS CAV
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PRINT®,’3 --- BOTTOM WATER'
READ(S,*)KXCODE

IF(ICODE.EQ.2)THEN
PRINT*,'DIMENSIONLESS PRODUCING TIME(BASED ON RW)'
READ(S,*)TPD

ENDIF

IFJOODE.NE.1)THEN
PRINT*,DIMENSIONLESS OUTER RADIUS '
READ(S,*)RD(NLAYER+2)

ELSE
For infinite reservoir a fictitious radius is supplied

RD(NLAYER+2)=1.0D30

ENDIF

PRINT*,READ THE VALUES OF PERMEABILITIES RK(1,J), I=ZONE,

J=sLAYER'’
READ(S,*X(RK(1,J),1=1 NN),J=1 NLAYER)

PRINT*,READ THE VALUES OF VERTICAL PERMS RKV(LJ))
READ(S,*)X(RKV(1,)),I=1 ,NN) J«1 NLAYER)

PRINT*,/READ THE VALUES OF VISCOSITIES, RMU(.))
READ(S,*X(RMU(1,)),I=1 NN),J=1,NLAYER)

PRINT*/READ THE VALUES OF POROSITIES , PHI(1,))
READ(S,*X(PHI(1,]),1=1 NN),J=1 NLAYER)

PRINT*,READ THE VALUES OF COMPRESSIBILITIES, CT(1))
READ(S,*X(CT(1.J),I=1, NN),J=| ,NLAYER)

PRINT*, READ THE VALUES OF LAYER THICKNESS H(J) AND HT,
READ(S,*)HT,(H()),J=1 NLAYER)

PRINT*,'OPTION FOR RDAVG CALC., IRDAV=] OR O

READ(S,*)IRDAV

PRINT®,OPTION FOR FRONT RADII CALC., IRADiI=] OR O

READ(S,*

IFIRADILEQ.1)THEN

FRONT ANGLE

READ(S,*)RD(1),RD(2),ANGLE
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onNnoOOn

00

ELSE

PRINT*,PRINT WELLBORE RADIUS AND THE FRONT RADII'
READ(S,*XRD(J)J=1,NN)

PRINT*,/ENTER CODE , LOODE, FOR FULLY- OR PARTIALLY

PENETRATING WELL, 0 = FULL 1 = PARTIAL PENETRATION'

READ(S,*)LLOODE

PRINTS,'NPL(J)=0 (NONPENETRATED), NPL(J)=1 (PENETRATED)
READ(S,*XNPL(J),J=1,NLAYER)

ENDIF

Subroutine TAB calculates front radii when minimum front radius and front angle are
CALL TAB(NLAYER,ANGLE H(J) HT RD)

DO 31 J=1 NLAYER

ClePHK1J)*CT(1 ))*H())
C2=C1*RD(J+1)*RD(J+1)
SUMI=8UM1+CI
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C Non-dimensionalize the radii based on minimum front radius, RD(2)
A2=RD(2)
AlsRD(1)
DO 4 I=]1,NN+1
RD(N=RD(1VA2
4 CONTINUE
C
C Compute the transmissibilities, TS(1,J) and storativities, ST(1.J)
DO 18 J=1 NLAYER
DO 18 Is1 NN
TS(1.J)=RK(1.J)*HUVRMU(LJ)
ST(1.J)=PHI(1.))*CT(1.J)*H(J)
18 CONTINUE
C Compute crossflow parameter, XA(1,J)
DO 12 I=],NN
DO 12 J=] NLAYER
IF(J.LEQ.NLAYER)THEN
IF(KCODE.EQ.2)THEN
XA(1.J)=2.00D00*RK V(IJXH(J)*RMU(1.)))
ELSE
XA®,J)=0.0D00
ENDIF
ELSE
XA(1,J)=2.0D00*RK V(LJ)*RKV(LJ+ 1 AHJ)*RMU(1,))
+ SRKV(LI+1)+H(J+1)*RMU(1J+1)*RKV(1.)))
ENDIF
12 CONTINUE
C Compuse crossflow parameser, XB(1.J)
DO 13 I=1,LNN
DO 13 J=] NLAYER
IF(J.BQ.1)THEN
IR(KOCODE.BQ.3)THEN
XB(1.J)=2.00D00*RKV(1)HU)*RMU(1.)))
ELSE

XB(1.J)=0.0D00
ENDIF
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ELSE
XB(1.J)=2.0D00*RKV(I1J)*RKV(1J-1)XH(J)*RMU(L))
+ *RKV(J-1)+H(J-1)*RMU(1,J-1)*RK V(1))
ENDIF
13 CONTINUE
C  PRINT*((XA(1J), I=1,NN),J=]1 NLAYER)
C  PRINT*,((XB(1.J), I=1 NN),J=1,NLAYER)
C Calculate mobility ratios, RM(1,J)
DO 14 I=1 NLAYER
DO 14 )J=1 NLAYER
RM(L))=TS(1+1 J¥YTS(1.))
14 CONTINUE
C Calculate the total transmissibility and storativity
DO 15 J=1 NLAYER
TTS=TTS+TS(1.J)
TST=TST+ST(1,))
1S CONTINUE
DO 16 I=1 NN
DO 16 J=]1 NLAYER
16 CONTINUE
DO 17 I=1 NN

DO 17 J=1 NLAYER

C  Al=Wellbore radius
XA(QD=A1*AI*XA(LIVTTS
XB(1J)=A1*A1*XB(1IIVTTS

17 NTINUE

C  PRINT*((XB(L)), I=1 NN),J=1,NLAYER)
Pi=2.*ASIN(1.0)
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C
C Generate the first set of TD vector
TD(1)=TD1
TD(2)=1.5*TDI
TD(3)=2.0*TD1
TD(4)=2.5*TDI
TD(S)=3.0*TD!1
TD(6)=3.5*TD1
TD(7)=4.0*TD1
TD(8)=4.5*TDI
TD(9)=5.0*TD1
TD(10)=6.0*TD1
TD(11)=7.0*TDI
TD(12)=8.0*TDI
TD(13)=9.0*TD1
C  Generac and print the pressure transient responses
IF(ICODE.EQ.2)THEN
CALL INVERT(TPD,NTERM,PD1,PDP))
ENDIF
DO 1 I=1,NC
DO 2J=],13
SPC=TD(J)
IFGOODE.EQ.2)THEN
SPC1=SPC+TPD
CALL INVERT(SPC1,NTERM,PD2, PDP2)
ENDIF
CALL INVERT(SPC,NTERM,PD PDP)
IF(JOODE.EQ.1)PDC=PDP
IF(JCODE.EQ.2)THEN
PD=PD1+PD-PD2
PDC=PDP-PDP2
PDH=SPCI/TPD*SPC*PDC
ENDIF
PDP=SPC*PDC
IFICODE.EQ.2)THEN
SPCH=SPC1/SPC
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C
C

C

ENDIF
Report the results
Convert dimensionless time on the basis of wellbore radius
SPCaSPC*A2*A2/A1/Al
PDC=PDC
WRITE(7,9)SPC,PD
WRITE(8,9)SPC,PDP
For Cartesian derivative report time based on RDAV
WRITE(9.9)SPC/RDAV/RDAV,.PDC
IF(ICODE.EQ.2, WRITE(10,9)SPC,PDH
TD())=10.*TD(J)

2 CONTINUE
1 CONTINUE
9 FORMAT(2X,F20.6,2X,F20.6)

OO0 n

e Mo NeNe

STOP
END

This subroutine LAP calculates cigenvalues, eigenvectors and Bessel functions from
IMSL.MATH Library. It calculates all coefficients and solves a sysiem of
simultaneous linear eyuations using IMSL.MATH Library. Finally, it calculates the
wellbore pressure and its derivative

SUBROUTINE LAP(S,PWDL PDPL)
IMPLICIT REAL*8(A-H,0-2)

+ AA(21,21),B(21),X(21),SGMA(4,3),BB(3,3)
COMMON/GM1/ CD,RDX($),SK(3),ST(4,3),T5(4,3),RM(3,3) JOODE,
+ NLAYER,XA(4,3),XB(4,3) JWELL,LCODE,NPL(3)

NN=NLAYER+I|

DO 19 I=1,NN

DO 19 J=]1 NLAYER
XAAD=XATJVRD(1 YRD(1)
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XB(1J)=XB(LJ)RD(1)/RD(1)
19 CONTINUE
NCODA=I
LDA=NLAYER
LDB=NLAYER
N=NLAYER
LDEVEC=NLAYER
IPATH=1
DO 100 I=1,NN
DO 11 J=1,NLAYER
DO 11 J1=1,NLAYER
BB(J,J1)=0.0D00
A(J.J1)=0.00D00
11 CONTINUE
DO 12 J=1 NLAYER
IF(J.EQ.1)THEN
AU J+1)=-XA(L))
ELSEIF(J.EQ.NLAYER)THEN
A(JJ-1)=-XB(1)
ELSE
AU J+1)=-XA(L))
AUJ-1)=-XB(1J)
ENDIF
AUJ)=ST(1J)*S+XA(1I)+XB(1))
BB(JJ)=TS(1,))
12 CONTINUE
C  Cakulat cigenvalues(EVAL(J)) and eigenvecton
CALL DGVCSP(N.A LDA,BB,LDB.EVAL.EVEC.LDEVEC)

C
DO 13 J=1 NLAYER
DO 13 J1=] NLAYER
AEKLJJ1)=EVEC()J1)
13 CONTINUE
DO 14 J=1 NLAYER
SGMA(L))=EVAL())
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SGMA(1.J)= DSQRT(SGMA(L)))
14 CONTINUE
100 CONTINUE
C
C Initialize the augmented matrix
C
NN1=2*N*NN-N
DO 1511=1,NNI
DO 1512=1,NNI
AA(11,12)=0.0D00
B(11)=0.00D00
15 CONTINUE
C  Setting up the matrices AA(1,J) and B(J) from
C  boundary conditions
Nl=N-1
C Wellbore condition
I=1
DO 16 J=1,N-1
DO 16 K=1,N
AA(J K)=AEI(1J,K)*DBSKOE(SGMA(1,K)*RD(1))
+SK(J)*RD(1)*AEI(1.) K)*SGMA(1,K)*DBSK1E(SGMA(I,K)*RD
1)
-AEI(1,J+1,K)*DBSKOE(SGMA(I,K)*RDX(1))
-SK(J+1)*AEI(1.J+1 K)*SGMA(IK)*DBSK 1 E(SGMA(1,K)*RD(
1)*RIX1)
N2=N*N+N+K
AA(JN2)=AEI(1,J, K)*DBSIOE(SGMA(LK)*RD(1))
-SK(J)*RD(1)*AEI(1,J,K)*SGMA(1,K)*DBSI 1 E(SGMA(1, K)*RD
)
-AEI(1J+1 K)*DBSIOE(SGMA(1,K)*RD(1))
+SK(J+1)*AEI(1J+1 K)*SGMA(1,K)*DBSI1 E(SGMA(I,K)*RIDX(!
)*RD(1)
DO 18 K=I,N

+ o+ + &

+
+
16 CO!

+

+

+
6
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SUMI1=0.0D00
SUM2=0.00DC0
DO 17 J=1,N
S1=TS(1,J)*RD(1)*AEI(1,J K)*SGMA(I K ;*DBSK1E(SGMA(I,LK)*RD(1))
SUMI1=SUMI1+S1
$2=-TS(1,J)*RD(1)*AEI(1,J,K)*SGMA(I,LK)*DBSI1E(SGMA(1,K)*RD(1))
SUM2=SUM2+82

17 CONTINUE
AA(N,K)=SUM!
N3=N*N+N+K
AA(N,N3)=SUM2

18 CONTINUE
B(N)=1.00D00/S

C
C For partial penetration
ELSEIF(LOCODE.EQ.1)THEN
I=]
DO 20 J=1, NLAYER
DO 20 K=],N
IF(NPL(J).EQ.0)THEN
AA(JK)=-AEl(1,J,K)*DBSKI1E(SGMA(I,K)*RD(1))*RD(I)*SGMA(1,K)
N2=N*N+N+K
AA(J,N2)=AEI(1,J K)*DBSI1E(SGMA(1,K)*RD(1))*RD(I)*SGMA(1 K)
ENDIF
20 OONTINUE
DO 16 J=1.N-1,1
DO 16 K=1,N
IRNPL(J).EQ.1.AND.NPL(J+1).EQ.1)THEN
AA(J K)=AEKIJ K)*DBSKOE(SGMA(®1,K)*RDX(1))
+SK(J)*RD(1)*AEI(1,) K)*SGMA(1.K)*DBSK 1E(SGMA(1,K)*RD
1))
-AEl(1)+1 K)*DBSKOE(SGMA(1,K)*RD(1))
-SK(J+1)*AEl(1}+1 K)*SGMA(I K)*DBSK1E(SGMA(1.K)*RD(
DY*RD(1)
N2=N*N+N+K
AA(N2)=AEL(L) K)*DBSIOESGMA(LK)*RDX1))

AN JE SR
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-SK(J)*RD(1)*AEI(1,J,K)*SGMA(1,K)*DBSI 1 E(SGMA(1,K)*RD
¢)))
-AEI(1,J+1,K)*DBSIOE(SGMA(1,LK)*RD(1))
+SK(J+1)*AEI(1,)+1,K)*SGMA(1,K)*DBSI1 E(SGMA (1,K)*RD(1
))*RD(1)
ENDIF

+ 4+ + + 4+

16 CONTINUE

DO 18 K=1,N

SUM1=0.0D00

SUM2=0.00D00

DO 17 J=1,N

IF(NPL()).EQ.1)THEN

S1=TS(1J)*RD(1)*AEI(1,] K)*SGMA(I,K)*DBSK 1E(SGMA(I,K)*RD(1))
SUMI1=SUMI1+S1
$2=-TS(1J)*RD(1)*AEI(1,},K)*SGMA(1,K)*DBSI1E(SGMA(1,K)*RDX(1))
SUM2=SUM2+S2

ENDIF

17 CONTINUE

AA(NK)=SUMI
N3=aN*N+N+K
AA(N,N3)=SUM2

18 CONTINUE

C

B(N)=1.00D00/S
ENDIF

C¢ss¢  Setting up equations from interface boundary conditions

C

DO 200 I=1,N

DO 200 J=1 N

DO 200 K=1.,N
IF(LLT.N)THEN

N3=I*N+]

NdaN*(l-1}+K
ARG1=SGMA(1.K)*RD(1)
ARG2=SGMA(I+1 X)*RD(I)

FACTOR1=SGMA(1K)*(RD(I)-RD(I+1))
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000

NN

p]

C
C

IF(FACTOR.LT.-174.0D00)FACTOR 1 =-170.0D00
Equations from pressure continuity condition

AA(N3,N4)=AEI(1J ,K)*DBSKOE(SGMA(I,K)*RD(1+1))* DEXP(FACTOR1)
AA(N3,NS)=-AEI(I+1,],K)*DBSKOE(SGMA(I+1,K)*RD(I+1))
N6=N*N+N+N*(I-1)+K

AA(N3NG6)=AEI(1.J K)*DBSIOE(SGMA(I,K)*RD(1+1))*DEXP(-FACTOR 1)
N7=N+N6

AA(N3,N7)=-AEK(1+1,J,K)*DBSIOE(SGMA(I+],K)*RD(I+1))

Equations from flow continuity condition

NE8=N*N+I*N+J

AA(N8,N4)=AEI(1,) K)*SGMA(1LK)*DBSK1E(SGMA(I,LK)*RD(I+1))*DEXP(
+ FACTOR1})

AA(NSNS)=-AEI(I+1,J,K)*SGMA(1+1 K)*DBSK1E(SGMA(I+1 K)*RD(I+1)
+ )*RM(1J)

AA(N8,N6)=-AEI(1J K)*SGMA(1.K)*DBSI1E(SGMA(I.K)*RD(I+1))*DEXP
+ (-FACTORI)

AA(N8,N7)=AEI(I1+1,J,K)*SGMA(I+1, K)*DBSI1E(SGMA(1+1 K)*RD(1+1))
+ *RM(L,))

ELSE

N3=I*N+)

N4=N*(I-1)+K

ARG1=SGMA(IK)*RD(])

ARG2=SGMA(1+1 K)*RD(I)

FACTOR 1=SGMA(L,K)*(RD(I)-RD(1+1))
IRFACTOR1.LT.-174.0D00)FACTOR 1 =-170.0D00

AA(N3,N4)=AEK1J K)*DBSKOE(SGMA(LK)*RD(1+1))*DEXP(FACTOR1)
NSeN+N*(l-1)}+K
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N6=N*N+N+N*(I-1)+K
AA(N3,N6)=AEI(1,J K)*DBSICE(SC + - i +1N*DEXP(-FACTOR1)
C
C Equations from flow continuity .« =xfiticon
C
N7=N+N6
N8=N*N+I*N+J
AA(N8,N4)=AEI(1,), K)*SGMA(E.X 1*i 3K 1 EB{SGMA(1,K)*RD(1+1))*DEXP(
+ FACTOR))
AA(N8,NS)=-AEI(1+1,J K)*SGMA(1+ | KYDBSKIE(SGMA(I+1,K)*RD(1+1)
+ )*RM(1))
AA(N8,N6)=-AEI(1,),K)*SGMA(1,K)*DBSI E(SGMA(I,K)*RD(I+1))*DEXP
+ (-FACTOR1)
ENDIF
200 CONTINUE

Outer boundary conditions

NOON0OON

For infinite outer boundary
IFJCODE.EQ.1)THEN

a

ELSEIF(JOODE.EQ.2)THEN
C For closed outer boundary
DO 25 J=1,N
DO 25 K=],N
N9=2*N*N+N+J
N10=N*N+K
ARG3=SGMA(N+1,K)*RD(NN)
FACTOR2=SGMA(N+1,K)*(RD(NN)-RD(NN+1))
IRFACTOR2.LT.-174.0D00)FACTOR2=-170.0D00
AA(NIN10)=AEI(N+1,] K)*SGMA(N+1,K)*DBSKI1E(SGMA(N+1,K)*RD(NN+1
+ ))*DEXP(FACTOR2)
N11=2*N*N+N+K
AA(NIN11)=-AEI(N+1,J,K)*SGMA(N+1,K)*DBSI1E(SGMA(N+1,K)*RD(NN+
+ 1)*'DEXP(-FACTOR2)
25 CONTINUE
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C
ELSEIFJCODE.EQ.3)THEN
C For constant pressure outer boundary
DO 25J=1,N
DO 25 K=1,N
N9=2*N*N+N+J
N10=N*N+K
ARG3=SGMA(N+1,K)*RD(NN)
FACTOR2=SGMA(N+1,K)*(RD(NN)-RD(NN+1))
AA(N9,N10)=AEI(}+1,J K)*DBSKOE(SGMA(N+1 K)*RD(NN+1
+ ))*DEXP(FACTOR2)
N11=2¢*N*N+N+K
AA(N9,N11)=AEI(N+1,J,K)*DBSIOE(SGMA(N+1,K)*RD(NN+
+ 1))*DEXP(-FACTOR2)
25 CONTINUE
ENDIF
C Solve the system of equations using IMSL.MATH Library
NEQ=2*N*(N+1)-N
LDA2=NEQ
CALL DLSARG(NEQ,AA,LDA2,B,IPATH.X)

PRINT*, THE SOLN=, '(X(1),1=1,12)

oMol o]

Calculate the wellbore pressure

FACT1=0.00D00

SUM=0.00D00

J=JWELL

I=]

DO 220 K=1,N

N12=N*N+N+K

PW= AEI(1J K)*DBSKO(SGMA(ILK)*RD(D)*X(K)*DEXP(SGMA(I,K)*RD(
+ D

+ +AEKL) K)*DBSIN(SGMA(LK)*RD(D))*X(N12)*DEXP(-SGMA(LK)
+  RD(D)

+ +SK(U)*AEI(1J.K)*SGMA(1K)*DBSK1(SGMA(I,K)*RD(1))*X(K)
+ *DEXP(SGMA(LK)*RD())*RD()
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+ -SK(J)*AEI(LJ,K)*SGMA(LK)*DBSI1(SGMA(LK)*RD(1))*X(N12)

+ *DEXP(-SGMA(I,K)*RD(I))*RD(I)

SUM=SUM+PW

220 CONTINUE

C
C

C

PWDL=SUM
PWDL=PWDL/(1.0D00+CD*S*S*PWDL)
PDPL=S*PWDL
RETURN
END
SUBROUTINE INVERT(TD,N,PD,PDP)
THIS subroutine inverts PWD and PDP from Laplace space to real space using
Stehfest algorithm
IMPLICIT REAL*8(A-H,0-Z)

DIMENSION G(50),V(50),4(25)
Now if the array V(I) was calculated before the program goes directly to the end
of the subroutine
M=777
IF(NEQM)GO TO 17
M=N
DLOGTW=0.6931471805599
NHs=N/2
The factorials of 1 TO N are calculated into armay G
G(1)=1
DO 1 Is2,N
GM)=G(I-1)*1
COONTINUE
Terms with K only are calculated into array H
H(1)=2/G(NH-1)
DO 6 1=2,NH
Fls]
IKI-NHM,5,6

4 H(D=FI**NH*G(2*IVNG(NH-D*G1)*G(I-1))

GOTO6

3 H(M=FI**NH*G(2*ING()*G(1-1))
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6 CONTINUE
C
C Theterms -1**NH+1 are calculated
C First the term for I=])
SN=2*(NH-NH/2*2)-1

The rest of the SN'S are calculated in the main routine
The array V(I) is calculated
DO 7I=],N
C First set V(I)=0
V(I)=0.
C The limits for K are established
C The lower limit is KI1=INTEG((I+1/2))
Kil=(1+1)2
C The upper limit is K2=MIN(I,N/2)
K2=I
IF(K2-NH)8,8,9
9 K2=NH
C The summation term in V(I) is calculated
8 DO 10K=K1K2
IF(2*K-D12,13,12
12 IF(1-K)11,14,11
11 V()=V(D+HKMG(-K)*G(2*K-]))
GOTO 10
13 V()=V(D)+H(KMG(I-K)
GOTO10
14 V(D=V(I)+H(KMVG(2*K-I)
10 CONTINUE
C
C The V(1) amay is finally calculated by weighting according 0 SN

HDon

V()=SN*V(I)
SN=-SN
7 OONTINUE




17 PD=0.)
PDP=0.0
A=DLOGTW/TD
DO 151=1,N
ARG=A*]
CALL LAP(ARG,PWDL,PDPL)
PD=PD+V(I)*PWDL
PDP=PDP+V(I)*PDPL
1S CONTINUE
PD=PD*A
PDP=PDP*A
RETURN
END
C
8885055062420 080 2000800 20000000000088 58S AR kRt Retbabid
SUBROUTINE TAB(NLAYER,ANGLE HHT,RD)
C This subroutine computes the front radii when front angle and minimum front
C radius are supplied
IMPLICIT REAL*8(A-H,0-2)
DIMENSION RD(NLAYER),H(NLAYER)
P1=2.0°ASIN(1.0)
C Converting the angle to radians
THETA=PI*ANGLE/180.0
STEP=H/DTAN(THETA)
F1=RD(2)*RD(2)-STEP*STEP/3.0
BOTTOMR=(DSQRT(F1%4.0+STEP*STEP)-STEP)2.0
TOPR=BOTTOMR+STEP
C Calculate the radii

DO 12 I=2,NLAYER,!
IF(ANGLE.EQ.90.0)THEN
RD(+1)=RD(T)

ELSE

BOTTOMR=TOPR
TOPR=BOTTOMR+STEP
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ENDIF
12 CONTINUE
PRINT*,RD
RETURN
END

181



Appendix G: Published Paper From Chapter 2 -

This appendix shows the published paper from Chapter 2 of this study in AOSTRA Journul
of Research, Volume 8, Number 2 , Spring 1992. This paper was originally presented as
SPE 26049 at the 1993 SPE Western Regional Meeting, held in Anchorage, AK, May 26-
28, 1993.
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An Analytical Pressure-Transient Model for
Multi-Layered, Composite Reservoirs With
Pseudosteady-State Formation Crossflow

Edmond Gomes and Anil K. Ambastha*®

Mining, Metallurgical, and Petroleum Engineering Deparoment, University of Albersa, Edmonton, Alberta, Canada
T6G 2G6. Received Sepiember 22, 1992; in revised Jorm, May 4, 1993

Abstrect. Rescrvoir deposition occurs over

geologic periods of time. Although reservoirs

arc assumed homogeneous for simplicity of analysis, most reservoirs are heierogencous in
naturc. Some common forms of heterogencity are the presence of layers and the presence of
different zones of Nuids and/or rocks in the formation.

In this swudy, a new analytical solution for multi-layered composite reservoirs with
pscudosteady -siate ﬁ!ﬁhwmﬂn\vhﬂmm Fluid flow in the reservoir has
been treated as a generalized cigenvalue problem. The developed analytical solution for an
n-layered composite reservoir is applicable for any | regularly-shaped discontinuity

i d, const ressure and infinie owler boundary conditions. This new

this method requires solution of an mer-ur-—m fewer simultancous equations as
compared (o other methods proposed in the lilerature. This methc is also very versatile

can handle multiple composite regions (more than two), and pertially-penctrating wells
subject to mwerm ;:-c:pﬁm for well esting purposss. This analyucal

Keywords: Pressure-transient modellayered

crossflow,

INTRODUCTION

mﬂmmmdﬂhmm

Mlamlbmlmmunhgﬂ
Mum-lﬁmﬁ-hmﬂ
coomflow. The layers may be communicating or non-
e layers are ting. When the layers do not
communicate with each other, except through the
mmuwmmrm
because of artificial as well as natural Pprocesses.

183

Numerous siudies have been reporied in the
Sudiss difier is the way they model crossfiow botwesn
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Figure 1. (a) Layered reservoir with interlayer
crossflow; (b) radial, layered composite reservoir
wits a tilted front.

and transient crossflow. Paeudosteady-siate crossflow
mﬂmd:mmmcmﬂowhmm
the inicriayer boundary and the flow is horizontal within
each layer. This assumption reduces a iwo-dimensional
pmbleiﬂ 10 i ﬂne-dimemmml pmblem Tnnlienl

:qnlinn Ior each llytr Table 1 also shows llm‘
although numerous studics have appeared on layered
reservoins with formation crossflow, very little work has
been reporied for layered, composite reservoirs with
formation crossflow. Responses of layered reservoirs
may be summarized as follows: for commingled
rescrvoirs, the time needed 10 reach pecudosteady-state
is an order of magnitude higher than that for homo-
gencous resermir: scmi-log analysis can be Ild o

the skin eﬂ‘ecl iﬂililllj. a crossfiow system and 2
commingied sysiem have the same responees; then there
is a transition period and, finally, the crossflow sysiem
behaves like an equivalent homogansous sysiam.
Saiman (22) presented drawdown and buildup
reaponscs for a commingied, multi-layered composiee
reservoir. In his model, he considered difforent discon-
ﬂylﬂiﬁylﬂhmm Ha woed the
md:ﬂhhhﬁ' -po m

hdiﬁemhyen m“ﬂmm
such as sicam flooding. Sastman and Uskay [35) consi-
dered the discontinuity boundary as a tiked fromt o
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account for the gravily overvide effect and mudelied the
reservoir as a multi-layered composite reservoir without
crossflow. They concluded that the tilied front model is
a betier representation of the actual reservoir than the
sharp-front model when the gravily override effect is
presert. Hatzignatiou et al (45) presented a solution (or
interference pressure transicnt behaviour in a two-

layered reservoir having pseudosieady-siste formation
crossflow and described a lyp:{ung matching tech-

nique 10 estimate the reservoir parameters. Anbarci ef al.
(53] presented an analytical solution for a two-layer,
composite reservoir. They included wellbore storage
between the layers. They conducied a limited sensitivity
study and used a type-curve maiching lechnique Lo
locate the front location in a particular layer. The
pmmdl ceding dlmﬁk’:ﬁ shnws ih:l s gemﬂl lolmim I’m

hedgm In uﬂl nudy. we prcs:nl an lmlynul
solution and s validation for multi-layered, composite

Weamﬁiennnhyer rﬂial cmnngmr
Mymﬁ:gsfvﬂr m-:umg-
crossflow is present between the layers. The problem is
solved following the approach of Anbarci ef al. [35). In
Figure 2, the discontinuity boundary in cach layer is
represcnied by a vertical solid line. These discontinuity
boundaries have been vertically exiended across all the

[ T

Figure 2. Schematic diagram of an a-layered
composite seservoir in radial geometry with two

'

:" I-_f ‘i
‘rdl;-
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layers. As a result, depending on the total numbci ol
discontinuity boundaries and their locations, an a-layer
reservoir may have m number of regions in each layer.
Therefore, the reservoir is divided inio a x m zones and
each zone may be identified by (i), in which i and j
denote the region and the layer, respectively. Each zonc
may have different rock and/or fluld properties, and can
have varisble length in the radial direction depending on
the discontinuity boundary locations. In an actual
reservoir, we may not need a x m zones of different rock
and/or fluid properties. In Figure 2, the shaded and non-
shaded areas represent two different fluid and/ur rock
types. Each layer has only two different rock and/or
fluid types separated by a discontinuity boundary. In
each layer, the discontinuity boundary is phced ata
diﬁeﬁnhﬂﬂmlpimuhgnﬂlﬂtm,, C '

snuatmn m=an+ I L:yen are nnumed to b: of
is modelled as in the semi-permeable wall model
proposed by Gao [29]). Thus, crossflow resistamce is
assumed 0 be confined 10 the inerlayer boundary and
flow in each layer is horizontal. It is also assumed tha
the upper boundary of the top layer and the lower
boundary of the botiom layer are closed. Other assump-
tions for the development of the mathematical moded are
as follows:

L mﬁinﬂlﬂﬂym-ﬂm

3. The ﬂaw in the formation can be described by
4. When a fluid crosscs the boundary of its zone, it
The flow equation for zone {/ can be writien as:

o4, [iﬂ a,.u] ),
Xaiy (’u - }Jﬂ) *Xp (754' - ?i.;-—l]
where X, jand Xg, ; are defined as follows:

B

ig+l

@ x,;
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(3) xjm. = ’;;l Lth
L' R ‘,‘
Yy

(WA |

(5) X, =0 fori=1,.m

Initial condition: We assume that initially all zones are
initial pressure and thus,
(6) P 0 =p, for all i and

Inner boundary condition:

dp
] o )
0) P =Py j (w9 - 5, (r “ar ]r ) fory 1. a

©) Ppj=Pin for 7 -+ wand ) = Ia
Finite system with a constant pressure at the outer
10 p,,=p,

P i(lif'sigliﬂj':!,.;!

¥,
an— -0 forr=r andj=l, .

The flow equations for different 20nes in the samc
lnyer are coupled using the following interface

onditions defining pressure and flow rate contineity
mgﬂem

(IIDFQ-:-?H‘ forr=r andi=1,. .m |

andy=-1,.n
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— ,, ﬁ:rrgr andi=1, .. m

Let us introduce the following dimensionless

variables:

- _.'A
(s) ey = 5

(19) &Z’-} =’}:;l (%]I _

o %) -

meuﬁeﬂnwmlhnmﬂmm
conditions in terms of dismens =

write:

3. (),

Poi,
]

&
(1) K..J.( 3

¢ lNJ (’Bg - F[if.jo!) + l‘lu (Fﬁ,l - ’EJ—I) .

wheee,

187

th

(26) pp, ;(rp0) =0, for all i and

(‘ﬂ)p_p:pm(l b] [
T 5 (3

mm;m

Pinite system with & constant pressure at the outer

Pﬁ"’) forj=l, .
LN

(28)1 =

forrp—veandj=1,..n

mph‘ioi i-'r -rgﬁj- -
(S)*—’a""!o fﬂrr =y ﬂﬂj-l
D
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Interface conditions defining pressurc and flow rate
continuity between the zones of a laycr:

(32) pyy,, = Ppiary forrp=rp andi=1, .m-1

andj=1,..n
P, P
Di.j Diel, _
(33) 3 'M.',,' 3 for ry =rp,
D D andi=1,. m-|
andj=1, n

The Laplace transformation of Egs. (21), and (27)
through (33), yiclds:

2 ]
(39« TPy 1 oy |, !
A T s Pix

+2 0 (Povj = Poiyer) * 2w (Povy ~ v )

Inner boundary condition:

ap,,,
(35)?.0'50,_]0.0-:’( ::'] fory=1, ... n

_ 8 dPpr,
007 =CoPuo!~ 3 K"’( dr“J'

J = D

Outer boundary conditions:
Infinitely large system:

(37)i’hn_j =0, torpy e and; 1, a

Finite system with a constant pressure at the outer

boundary:

(n)pw-o. forry=ry and ;= 1. .. n

Finite system with a closed outer boundary:

(9 Poms g,
dro

Imerface conditions defining pressure and flow rate
continwity between the zones of a layer:

lonoxrnqand[=l, Y |

IonD-ln_.andc:I.. m- 1
andj=1,.. . n

(""‘u.i P,

dp dp
o ey B
(41) I M._, " de for ™ e
n b andi -1, m |\
andy =1, . n

Eq. (34) has the form of a modified Bessel's
cquation. Let us assume a solution of the following
form for Eq. (34):

@) py, =4, ; Ko[0) + By, o (o)

Introducing Eq. (42) into the left-hand side of Fy
(34), we get:

Poij y 9P, 2
(43) X.j drg 0-’; ar =%, 9P, -

Substituting Eq. (43) into Eq. (34) results in the
following general equation:

@Or, ;i Poxjur ’("2".',,' mo Ay, "nu]ini.;

’A’Ilo.[pll.) 1 =0

Eq. (44) has the form of a generalized eigenvalue
system. As pointed out by Ehlig-Economides and
Joseph (/). Eq. (44) has a non-trivial solution (d.c..M
# 0) if and only if its coefficient matrix is singular.
Thus, the deserminant of the cocflicient matrix has 0 be
zero. The cocfficient matrix isan s X m by s x m
tridiagonal matrix. The coefficient matrix can be
divided into m smaller real-symmetric, positive-
definitive tridiagonal matrices, whese the 62 act as the
cigenvalucs, and these cigenvalues are always positive.
The determinant of cach of these matrices is an ath osder
polynomial in 02, and, from each determinant, &
cigeavalues can be obtained. Now, a general solution
for each zomc can be writien as.

(O, - z. [A:,- Ko (0,‘ ’D) ‘ l: LN (o“ ,D)] .

. : .
Constants A}, snd B, can be split into two pants as
follows:
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S & &
(46)A = EH.A
ns' - ¢ s

(W] iJ i

\uhere E‘ is the eigenvector for region {, and this
cigenvec jmﬁéﬂﬂllﬁlﬁ(ﬁiﬂq (44). Constants
A} and 8, are 10 be determined from the boundary
mtuons Now, a general solution for region i and
layer j becomes:

o) + 8] £, o "D]]

8) pyy,, Z [A. gu xn

Eq. (48) contains 2a x m constants 10 be evalused
from the boundary conditions. For the inner boundary
condition, without considering wellbore storage, we can
write:;

(sn)—-z-r.,Za [A £, K, (o)
-8 El.i’l (’n)]

Hﬂﬁﬁﬂﬂ“rmmiﬂﬁﬂ

(SI)t[A o) + P E. J:.(q_pn)]-o
forry—+=andjul, ...

forj=1,..na

(Sz)t !:. =0 forj=1,..n
' ) |

A constant pressure owter boundary condition
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) [A:n En; Ko (6"“ dﬁl)

k=1
+BLEn, Io(‘ r@]] =0
f@rjél. Y ]

(5412 [ AnEn, ] | |
+,B:i E;l h [c_‘_ rpq]] =0

forj=1,..n

The interface conditions defining pressure and flow
rate continuity yleld:

(55).2[“.5,‘,5'( o) + 85 £ o ‘D')]

‘.g[ Gl Ein! (n n-)

"‘!:ﬂ Em., ( Fint m)]
forj=1,...aandi=],.. . m-1
(Sﬁ)ti[ A (ﬂ T ) B; Eul|(ﬂ‘r )]

'Z [“m ol 1 m na]

m Euu ("m m]
for/=1,...amdi=1,..m-1

h(i?)mlﬁ)ﬂﬁlﬁlﬂﬂh!-
which can be solved 1o find

. oQuations
nx-vﬁadnﬂua‘gﬁ
hhpﬁﬁﬂ-iﬂﬁﬂﬁﬂd
flow ia an s-layer, compesits resrvels with pesude-
sieady-sime crossfllow. This new solution uses the
sigeavalues and cigeaveciors of the sysicm and is
computistionally more efficiont then other metheds
poapased in the litoraswse. Por example, for & S-leyer,
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composilc reservoir (m = 6), this new solution requires
the solution of only 60 simultancous equations, whereas
the method proposed by Anbarci et al. [55] requires the
solution of 300 simullancou: equauom o solve lhc

Muyudnwporatwmm ml:rzwmluuan
can include a gas cap or a boitom-water drive, respec-
tively. This new solution is also capable of treating any
irregularly shaped fluid front by dividing the reservoir
into a number of mathematical layers.

To include a bottom-water drive, the lower bound-
ary of the botiom laycr is considered as a constam-
pressure boundary. Mathematically, the vertical
permeability of the bottom-water zone is considered
infinitc and Eq. (4) is modified as follows:

(“)x.“: fori=1, .. m

Also, in the diffusivity equation for layer j = 1,
Pij1 is replaced by the initial pressure, p,,. Similarly, 10
include a gas-cap drive. the upper boundary of the top
layer is considered as a constant-pressure boundary, and
the vertical permeability of the gas-cap zone is
considered infinite. Thereforc, Eq. (5) is modified as
follows:

(SO)XMH-: h: fori=1,..m
if].

+.1s0, in the diffusivity cquation for layer j = a,
P.y¢1 i replaced by the initial pressure, p,.

For a partially penctrating well, the inner boundary
(t)nwﬁduﬁnmﬂywyﬁthﬁnmtly
the well. For layers that arc not opea 0 flow 10 the
as:

(W';r'l" = 0, forrs=r, and j=layers not open

For a panially pencirating well, Eqs. (7) (I)
(82) sogcether describe the wncr boundary condition.
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The following sieps were utilized 10 solve Eq, (48)

al any region { and layer j:

I. From Eq. (44), cigenvalues and eipnva:m were
calculaied using an approprisie subroutine from the
IMSL Math/Library (60).

2. From the boundary conditions, 2a x m simul-
tancous equations were sel up and then solved
using Gauss’ elimination routine from the IMSL
MatVLibrary (60) for the constants A% and 8%

3. Dimensionless pressure in Laplace space is
calculated using Eq. (48) and then numerically
invenied using the Sichfest algorithm (6/).

4. The wellbore storage effect is included using the
following well known relationship:

“ows 1
(Npp= - .

i ('p‘ﬂ)fn:n

The computation process involves repeated
arguments nl‘ Bengl’ fumim create an overflow
This
pmuen is overcome by un; a dnmmﬂm radius,
rp. based on the minimum front radivs, 7,,, inssead of

the wellbore radius, and by calculating Bessel's
functions in exponentisted form.

MODEL VALIDATION

The new analytical solution was validated by
generating some well-known pte::ure iransiest
resporaes for various cases of homo COMmposiie,
ﬂhylﬂm-&iﬁﬂ_:ﬂﬂﬂ
solution developed. Figure 3 shows a compe
mmnnmmmm-
Agarwal ¢t al. [62) 1ype-curve for hom )
reservoirs. mm“m
gencrated by setting identical reserveir prapernties for
ﬂﬂEMﬂlm“ﬁh“
Mhmm“ﬂ:ﬁh
m:mlmﬂ-ﬂh-ﬁﬁm

sohutions. Pigure 4 shows 3 comparieon ef the seaponees
ﬂﬁﬂyﬂﬁ:ﬁllﬂl‘yilﬂnllﬂhl
mnhyer wmﬁﬁ;mﬁ“
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Figure 3. Comparison of this study with Agarwal
et al.’s |62) solution for 2 homogeneous reservoir.

10 VT v

. Tﬁﬂﬁ!ﬂq"ﬂ'
— This study

R e

100 108 108 T4
L+
Ramey's [/9) solution for a two-layer reservoir with
closed outer boundary.

sm.mlit“dﬂniy-ﬁﬁe
Eggonschwiler ¢ ol. (63) solution for & single-layer,
properiies for them. In cach region, the layers are
high crossflow parameter. The I-SpORses were
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18 v ey e

10" 10 T e?

Figure S. Comparison of this study with
Eggenachwiler ¢t al.'s (63) solution for & iwo-region

generated for differem mobility ratios and Figure $
6 shows a comparison of the results of this study with
for a single-layer, two-region, composite reservoir.
solutions. One important aspect of the new solution is
its versmilty. Figure 7 shows a com rison of this sudy
with Ambastha and Ramey's solution [65) for a three-
region composite reservoir. The three-region composite
reservoir response was gencrated by dividing a two-

et W 0 e e e
ﬂlmyilﬁlmlmalmmm
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Figure 7. Comparison of this study with Ambastha
and Ramey's (65) study for an infinitely large, three-
region, COMposite reservoir.

layer reservoir into three regions and setting different
fluid properties for each region. The layers were
assigned identical fluid and rock propenies in each
region and very high crossflow parameters. Figure 7
shows pressure derivative responses for different
mobility ratios between zones one and two, and the
responses show a good match between the two solutions.

Figure 8 shows the effect of crossflow on pressure
Mmt«amumm.mm
and the lower straigiu lines represent commingled and
homogeneous reservoir responses, respectively.
Initially, the reservoir behaves like a commingled
reservoir. Then, depending on the crossflow parameter
A, there is a transition period during which the crossflow
effect becomes important and the responses change from

1 Y ananans S —

Ty

0! 100 10! 10 10° 10t

Figure 8. Effect of crossflow on wellbore pressurc
for & two-layer seservoir.
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thosc for a commingled reservoir to those for a
homogencous reservoir. At late time, the reservoir

transition from commingled reservoir behaviour to
homogeneous reservoir behaviour depends on the
crossflow parameter. The higher the crossfiow
observation is consistent with layered reservoir
behaviour reported in the liserature.

Figure 9 shows the pressure drawdown responses of
a partially penetrating well in a two-layer reservoir
subjcct 1o botiom-water drive. The upper layer is open
to flow and the lower layer is closed. For a penctration
natio of 0.5, the two curves show the responses for two
diffcrent crossflow perameters. Both curves show radial
flow characteristics until the effect of the constant-
pressure boundary becomes dominant. Similar
observations have been made by Strelisova-Adams [60)
and Buhidma and Raghavan (67). For a lower crossflow

pressure boundary t0 have a dominant effect on the

pressure drawdown responses.
x ooy Y P — —— e
25l Two-layer reservow
Penetr 3tion ratio = 0.5
20.
Ao 1S} =1
_. A
‘0/ - 5% 107
- 65x10%
s.
o aasand. amd. s s ssisrml i kil - g & i
10° 108 107 10
b

Figure 9. Pressure drawdown sesponse of 3 panially
penctrating well in a two-layer reservoir subject 1o
bottom-water drive.

In this study, & general anslytical solution for an &
layer composite reservoir with pssudosicady-siate
Formation crosflow has been medelied as pscudo-




ceriain advantages over the finite-difference method in
that this method docs not have a numerical dispersion
problem and rounding off eror like the finite-difference
A rescrvoir undergoing a thermal recovery process
has been idealized as a singlc-layer, composite reservoir
for s long time (63,64,68-7/). This new model can be
used 10 analyze more general scenarios of heterogeneous
reservoirs undergoing thermal fecovery processes.
Effects of gravity override or underride, viscous
fingering, esc., on a discontinuity boundary can be
treated as a tilied or any other imegularly shaped fromt
ﬁmeﬂsummmlmmmm be
studied. Pressure transient analysis of both drawdown
and buildup tests can be studied with this model.

This new model can also accommodate the
nmmmmumnnmmmmmq
distance, 7o This can be done by venically exiending
lhembuduynrmumngmmnhg
been done for the discontinuity boundaries. This will
creaic some mathematical zones (which do not exist)
which will be taken care of by assigning very small
horizontal and vertical permeabilities (0 them.

Another possibility is 10 use aviomated type-curve
matching 1o analyze rate and pressure measurements
from different layers of Isyered, composite reservoirs.
The effect of a gas cap or bottom-water has been
included by properly specifying pressure and semi-
FH]MH“EWHMIWBMI
constant-pressure boundary at the top or bottom,
mnﬁuwﬂliﬁlhmmﬂnﬁmuh
cffects of a bottom-water and/or a gas cap can be
solution may also lead 10 new and/or improved methods
for analyzing well test data from multi-layered,
composite reservoirs with formation crossfiow. Efforts
are wnderway (0 develop some simplificd type-curves

is 2 more efficiemt and versatile solution than
pecscntly available solutions in the liseratuse.
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possibilitics to analyze morc complicaied well-
lesting scenarios than the possibilities offered by
presently available solutions.
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Wellbore storage coefficient, m*/Pa
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Appendix H: Presented Paper From Chapter 4

This appendix shows the paper SPE 26484 presented at the 1993 SPE Annual Meeting,
held in Houston, TX, October 3-6, 1993,
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Analytical Expressions for Pseudoskin for Partially Penetrating
Wells Under Various Reservoir Conditions
Edmond Gomes and A.K. Ambastha, U. of Alberta
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Many times, oil tescrvows afe sccompanied by bullom.waler Rescrvoir depusition occurs uver geulogic period of time and.
sones amdior gas caps, and ihese reservoirs afe produced using hun-rnl,hl.-:!y nmmnhyﬂd -ugdu(
partislly -pencirating wells. An extra pressure dvop occun sreund | | 5. D0 irs ae o
mbﬂhhmpﬁnﬂm bocamse of partial peeeiration. water sme andior & gas cop. In sich sustons, wells are
rrelstions have been prascnied in the liserstuwre o e_ﬁndn-lﬁmﬂliem“mnmhhyﬁu
osiimate p-dmin for a pantially-pemsirating well locsted coming. These wells are known as partislly-penetrating
mlmm;hyiﬂmﬂlﬁ:hﬂl_-i tnlk,
tosem boundenies. This study sms to develop new analysicel mmi—ﬁty!mnhpﬂmm
capressions for preudoshin for paruslly-penstrating wells in | for o felly-penewating well. This sdditionsl pressers deop is
multi-layered reservoirs with both closed top and botiom | referred 1o 0 pesudoskin. Paniislly -penatvaiing wells have their
powndaries, and with botlum water somes and/or gas caps. A | own charactetistic respomses which. il not properly evalusied,
poeudusready-saie wterlayer cromfllow hes been ssumed in this may lead 10 emors in the imerpretation of well-test deta. The
study purpnse of this paper is 10 study the pressure WaRtiont FspaRses

These mew amalyiial expressions are simple and easy 10 we. reservuir with of withowt & Bulm- waler ARE OF & §85 CIp.
knowindge of twe perameiers when the top and the boum | Muskat! siudied partially-peneirsting wells in single-layered

hﬂh--ﬁ:ﬂ.-ﬂb—miﬁ“d- m-_ﬁmm-qninh—iﬂ
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ANALYTICAL EXPRESSIONS FOR PSEUDOSKIN POR PARTIALLY PENETRATING WELLS

2 UNDER VARIOUS RESERVOIR CONDITIONS

vertical permcabilities when  deflining dimensionless wellbore
thickness  and their pscudoskin facior had 10 be numerically
evalvated.

Bilhartz and Ramey* used 3 2. finuic difference model 1 study
wellbore siorage and skin cffects in a single-layered, pactislly-
penctrated rescrvoir. They concluded that radiat flow period and
iransition 1o pscudoradial Mow period may be masked in the
pressnce of significant wellbore siorage. They eatended Broms snd
Maruing? pscudoskin cxpression for anisoltopic reservoirs snd
discussed methods 1o estimatc horizontal and  vertical
permcabilities.

Strehisova-Adams? used Laplace and Hankel wansformations 1o
solve partial-penetration problem in a single-layered reservou and
detived an capression for pseudoskin facior in terms of infinite
sine and comne seres. She comsidered the presence of 4 ges cap a8
& constant-pressure boundary in her solution She nvestigated the
eflect of open anternval  (enetrated porson) location on
mreudoskin facior and concluded that pseudoskin facior 1s
mimmum for conirally-loceied open intervals, other parameters
temaning unchanged. She sl observed that for a rescrvoir with o
pas cap, the pseudosk.n (actor is lower than that for & rescrvoir
with no gas cap. when the upen interval s ajscent to the
constant-pre-sure boundary. Buhidma and Raghaven® studved
drawdown and buildup behaviowr of a partially-penetrsting well in
4 square teservour subjpoct w0 botlom-watet drive. Using Green's
lunction for solution, they concludod tha uader bottom-water
dive, preudoradial flow docs not exist and peeudoskin factor cen
ot be calculated by the methods presented by Rrums snd Marting’
and other researchers. Alhough peeudoradial flow peried dess aet
exist under bollom-waler or gas-cap dive. the eapression for
preudoskin developed i (s study can b used 10 cstimate the
pecudoskin factor under these reservoir conditions.

Using a 2.D finite-diffcrence simulator, Reymolds ei al.’
graphically presenied the pressure transiemt responses of »
pertisily-penstreied, two-laycred reservon. Analyzing the sisady-
sste saslylical solution, they ideniliod ihe correlating
parameters and then oblained » correlation fur pacudoskin facior
by tegressional snalysis. They siso concluded that wing different
hyasluﬂbmﬂﬁdmﬂ.nmm-mm:mmh
approdimated by a layered, single-phase flow sysiem.

Papatzacos® used the method of images 10 solve pertial.
ponsisstion problem for s single-layered. i
ond dovived an eapression for peeuduskin
dimonsioniess open imterval, is location end dimensionless
wellbuore radius.

Using a numerical simulator, Yeh and Reynokds'® pressniod same
type-curves for partially-ponetrated, multi-laysred resesvous with
Uansient crossflow. Using the same numercal model, Yoh and
Reynolds'' graphically presentcd preudoskin factors for s
partially-penetraied, mulii-layersd reservonr. Using regresssnal
analysis, they obtained an eapression for prevdoshin (actor.

Vibik'? derived a simplified approsimate eapression fur 8 ungle
layered, homogeneous reservoir in terms of these cotivlating
parameters which are relsted io dimensionless vpen mservel
longth, us location and dimemsioniess wellbore radius. Ding and
Reynolds'? exicnded Papatzacos® eaxpression for prouhoshmn for &
single-layered reservoir o that fur 5 muli layered ressrvon snd
reported good match with simulsied resulis

Shah and yagam'? presentod an snslyin sl sulubon ki &
iwo-layeted. pattially -pensirsied reservanr by sucieanive
application of Laplace snd Hankeél wansfirmations. They
considered ansient crossfllow hetween the iwo layers snd the
presence of » gas-cap ive. They presenied some Pruiswre
wansient responses for (uily. and parisily pencirsting wells vl
did not study the preudoskin (acior Becane of the parual
penciration.

Table | summanizes most of the studies' '? conduntod un parslly -
pencisaied resorvous and peewduskin fuctor. Toble | shows that
mcflhmmlﬁhhyﬂdmmiﬂﬂyl
mulii-layered reservoirs. Partislly - peneiraied, mulii- layvred

simulster with graphicol presemistion of presswre uansiont
responses and peovdoskin valuse (Yoh and Reynolda!®il) o by
sstonding the single-loyored expression of proudechin =
Reynolds'?). Toble | slso shows thet very few sudies hove buun
munmﬁgﬂmuipnhgmﬁ
waler ot & gas-cap drive.

T&Mww.ﬁu“u-ymi;

pressure iransient responses aml  paswdushin fucsnrs o sionstinns
the boundaries is ot 2 constant preseure bocouss of o battem. wase
o 8 gas-cap drive.
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e
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where sp denotes the pseudoskin, and A, snd x denote
dimensioniess crossflow parameter and mobility-thickness ratio
of the open imerval, respeciively. Equation (1) can be sxtended for
o mulli-leysred rerervoir by approprisiely defining A, and x as:

4Vara)
" Vs sl

wheve, & = toial mobility-thickness ratio of the open inierval

(l-')

a

(l -') )

o
I3

l
L

K. AMBASTHA )

Equation (3) i akio applicable for humugencous reservoirs with
an spprogeisie change (i.c., k = ky) in the delimiwon of hy.

Figure 2 schemaiically shows s 1wo-layered, partially-panstraicd
reservoir subject 10 a gas-cap drive. Layer | is ponotratad and laycr
2 18 closed o the wellbure. The upper boundary of the layer 2 is
comiderod as @ consland-pressure buundary becaune of the gas cap,
whereas the lower boundary of the layer | is considered o3 a closed
houndary. Prewdosiandy -suiie crossflow i considered beiween the
two laycrs. Appendis B shows a detsiled derivation of the pressure
transivat solution snd laie-time limiting soluiion. From Iste-time
limiting solution, we obtsin the posudoskin cxpression as:

pKd0y) s KelOw)
(ng.-un. 000n. Ki(03.) (an.- 8y, MOy, Kl(i!u)

s

%

m(lmﬂ(!:m- Appindis B. Tlut-uﬂi.lf "
uw(ln)mﬂﬁxnlﬁm;ﬁm
hmhmnﬂhpmgjhpﬁ-ﬂ-nw
© colculate the lute-time limiting values in aguation (3). Equation
(S)mﬁpni—i-ﬂalwhy-ﬂ,mw
teservoir subject i & gas-cap or 5 botiom-water drive. Bquation (3)
is oo appliceble for 2 multi-laywred rmeervoir having any
arbiwery un- -l l!yqn _i-lnii ] q—i-iul gﬂ




4 UNDER VARIOUS RESERVOIR CONDITIONS

imterval mobility-thickness ratio () and crossfiow parametsr (1)
and for differem open inierval locations, psewdoskin factors are
layers. For both the closed top and bottom boundaries and the
botiom-waier zone, Table 2 shows excellent maich baiwesn ihe
ostimated and the scwunl pasudotking for all different cases

C tiasa with Reference 3

Figwe 3 compares the pseudoskin faciors estmated from oquaiin
(3) of this shudy with those from Figure 2 of Broms and Marting?
that, except for small peneiration ratios (b < 0.3), the peeudoskin
factors estimaisd from cquation (3) are very close to those
estimated from Brons and Mariing? study. The dilference beiwoen
the two pseudoskin values increases with the decrease in
pensiration ratios. Also, pscudoskin faciors calculated from
oquation (3) are comsisiently higher than those of Rroms and
Marting® study. The reason for the differences in preduskin valucs
may be the difference in crossflow modelling in the (wo studies.

with thosy estimated from Yeh and Reymokds'' and Ding and

Reynolds'’ studies. Various cases in Table 4 refer 1o different dota
sots. Coses in Toble 4 wrc w0t relaied 10 coses in Table 3. Table 4
m;nitiﬂhlqglcpnlgﬂn.ﬁﬁedm-eﬂen
from Ding snd Reynolds nﬂyh’l‘:ﬂ:inv?lﬁdmm

Ding and Reynoids' oy, nd of Yoh and Reynolds'' sudy.

This )

Sﬁh-ﬁdm-m—p-ihm-hmu

dwivative seepamsns of & twe-layeved sesarveir with different open
inervel ebiliy-thichnsss rmie, . The cumllor puammw

mobility-thickness ratio (x) has been vasied beiween 029 snd
0.75. For all values of the cromflow peramerer and the mobliy-
thickness ratio, the esrly time responses shaw radial flow
behaviows with & constamt semi-log slope of 0.5/x. At very suly
time, the somi-log slopss are slightly lower than their constant
Womsition from the radial flow behaviows, snd the time m which
the tramsition occurs is & swong function of the crossflow
parameiar snd the mobility-thickness ratio. Al late time, all
of 0.5. Again, the 1ime 10 the beginning of the peeuduradial New
1 2 function of the crossfiow parameter and the mobnlity -
thickness ratin. The higher the crossflow parameters sre, the
flow petind begins. The lower  the mobility - thickness ratio s,
the earhier  the  radisl  (low perid ends and the later the
meudoradial flow perod begins.  Analysis of the prette
devivaive responscs shown  Figure 4 resulis i the following
cnitena for the end of the radial Bow poeriod snd the hegwmng of
the paeudorsdial (sccomd radish) Now period as:

i = 00196 /A, (s)
th1 = 0.658 / (ALv&) )

Equations (6) and (7) dewcribo the times by which the somi-lng
pressure devivatives are witam 5% of the correct slops valuse.
Equations (6) and (7) have boen exiended for ressrviis heoving
more tham two layers hy replacing Ay and & by A, amd &,
respeclively, and have been wesied 10 be applicable far dwre
pressire wansiemt respomigs of o partislly pemetrating well with
wellbore storage and shin effects. Based on sn analysn of preseuse

o = 002 8} (L))
e o) = = ]

whare, by it defined by equation (4).
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posudoskia (sctor for »

§ = 494410 m" and

n-ui-ﬁk.ii,

v pooudoskins

y Toble 3. Cases 1 and 2 thow

ars alse valid for the

Tie shove ebuervations

by s

pensating
toserveis. Flgue / she
Boehonre-Aduma’ sy,

i

the ond of the first Tadial Nlow peviod

i

aquation (10) is shout half of that given by squation (1).

0150508 o for by borwoen 100 and 10,000, Alheugh thre

s oo mathomatical or computstionsl limication o

- (1)

'ﬁ,‘!“?“ eolouloted 44 & = | becemes physicelly mesningloss.
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flow component in the closed layer, Nuid particles would have

wravelled longer distances 10 move from the clossd layer 10 the
open layer and this would have caused higher pressure drops, ie.,
higher pssudeskin factors. Thus. megleciing the radisl Now
mhl&ochu‘lny«uaynlh::ﬂimnﬁy
soumption while studying pressure transient responses for
partially -ponstrating wells.

Klfect_of Laysr Rsfinement en Pasudashis Faciar
Taﬂo‘nhowllncmmoflamnfmspﬁh:kﬁ
facter. For & particular reservois thickness and open imterval, the
reservois is divided im0 a sumber of mathematical layers 10 study
the effocts of layer refinement on pseudoskin factor. In Table 6,
cases | through 3 represent s reservoir height of 30 m with an
open interval thickness of 10 m. and cases 4 thyough & represent :
reservoir thickness of 100 m with an open imerval thickneas of
20 m. respoctively. For both reservoir thicknesses of 30 m and
100 m. the open interval is considered as & single layer, and the
cMMddﬂMhﬁvMMl.!ﬂllﬁ:ﬁ;
The resulis in Table 6 show s small decresss in peoudoskin

Cancinsisas

1. Pressure wansient and psewdoskin faciors fer »
pertially-penetrated, multi-laysred reserveir con be
analytically studied by a peeudosieady-siste crossfliow madel.

FFTrg @

e B Bl

i

Comstant in equation (A .29)

Corstants in equstions (A.35) and (A.}7)
Constant in equation (A.26)

Constants in equations (A.36) and (A.)7)

Constants i squations {A.36) ad (A.3T)
Limiting values of i 5) m lp—=
Constant deflinad by equation (8.30)
Total sysem compressibility, Pa'!
Formation thickness, m

oquation (4)

Horizomal permesbility, m'
Vertical permeability, m?
Frasswe, Pa

tion (B.28)

MOWAL N+ Sph )
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1.2 =  Layer mumber

D = Dimensionless

w = Wyllote

L = piting valug 8 lp—=

Open = Layers represeniing perforsied inierval

Gresh Symbals

0,6).07 = Eigenvalues

. = Mobility-thickness ratio = (khw),_, / (ki)

« = Total mobility-thickness ratio I‘nr s mubii-
Isysred reservoir

9 = Pariisl

Ap = Cromsflow parameier for & iwo-layered reservoir

_ « 1Xu/ (khin)

s = Crouflow perameter for a multi-layered
FEsET Vol

Ac = Crossllow paamecicr beiween the reservoir and
the gas cap « 2Xcs (k)

" = Viscosity, Pasec

) = Sweslivity rslio = (ml;l(i:i)

¢ Porosuy

A = Expression defined by Equation (A 13)
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Eeﬁ-%iuﬁpﬁ) A1)

(Ianﬁig:(!eg%*lgﬁim; (A.13)

crossflow is considered betwoen the 1s. " " , A.|
m:;m;n_pu-nm Initial condition:  pg, (1p.0) = Pyzt?p.0) = O A4

im pms= lim pa=0 (A19)

m‘%&%’-(ﬂl%*nwm A R el oo
Ay 7' ' o bou condition: Poullip) = Pep n1
m(%*;%,-(@].%*uﬁm (A2

inidial condition: pj = p2 = g (A

[ fary : lim = lim =) (A
yiokds:

lnes boundwy condition: Acsuming loyer | is peneweted and :
mii“d“*—pdhn— £ VP = ol s + Al - o) Am

(0 - )PP (1 - ol s ¢ Aflioe - Piw) “wm
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Outer boundary condition’  im oy = lim  pua=0 (A21)
T e

tnner boundary condition: Poi(}J ) = Pen (A.22)
‘ =0 (A23)
t)lo L) d]
L=..“QE>1 (A24)
1 orp

Soluvons of cquations (A.19) and (A.20) are modified Bessel's
functions, Ig(0rp) and Ky(Orp)), where O is the eigenvalue of the
system. For an infinite system, only Kg(01p) function spplics.
Thetefore,

o = AKg(Orn) (A2%)

P2 = BKeor) (A-26)

Equations (A.19) and (A.20) logether with equations (A.23) and
(A.26) yield:

o’ AKgiOrp) = sl AKd(OW) + AMIAKs(OvD) - BKe(OvD)] (A.27)

(1 - <)o’BKetovp) = (| - W) BKe(Orp) + A BKelOv) - AKe(Ovo)

(A.28)
Equations (A.27) and (A 28) reduce to:
(oo o -AJAcaiB=0 (A29)
MA [0t (1wl - AJB -0 (A30)

Noa-wivial selutions ase possible, il the determinant is 2000, ie.,

(wo? ot - A (1- %) (1 - 0¥ -2 -A2=0 (A31)
Baueson (A.31) can be rearganized ss:
¢- ["""‘“ PRI PR CTUE X3 W Jrps
* o1 %)
This polynsrmisl has e pusisive rests and they we:
(A33)

o ffro ot won).
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olx L{ () ~a) +Aa A30)

i)

where, A = [(" “ol *’a, (A3$)
1-x %(1- %)

Puuting of and 9} from equations (A.33) and (A.34), respectively,
in equation (A.30) and reaTanging. we can write:

..-ét-n-l-[(l-u)l -(:-x)a}] (A.36)
By Aa

"B&I'Q-L{(l —“,l -(' —()0,] (A37)
B, Aa

Putting Aj = a1B| and A= B2 in equations (A.25) and (A.26)
yield:

o1 = :B1Ke(0110) + 2B Ke(Ox0) (A.M8)

oz =B, Ke(6:1p) +B:Ko(Oxp) (A39)

Equations (A.38) and (A.39) together with equations (A.22) and
(A.23) yield:

B, = . Bokio)
“okdo)

(A.40)

Equations (A.38) and (A.39) together with equation (A.24) yield:

# = 3,810/K1(01) + 280:K\(02) (A.41)
From equations (A .40) and (A 4]) . we get:
s . + (A"z
(0 - )l 84K1(G1) )
e —d (A8
(a3 - s nd 0K (07) )
Now, equation (A38) becomes:
Fon-—Nsto) __ __ oieSy) (A4

(o - ) OKi(®) (a3 - s OKi(O)
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At lste time tp—ee and | — 0, and equations (A 33) through (A.37)
become:

lim &= lim (_KA_,_M «slr....,,]u't,......jF=

1 -«)

x

10 t 0LV -

(A 45)

lm of= lim [_M_..AA.1[....(,.]*1'[.,.,___]]=_laa
e R Y R o

lim o= lim (A47)

J—:—‘Q ‘.J;ﬂg-!} =]
1 =40 102

jl-x ¥ jJ-g K

Appendix C shows the simplificstion proposed in equation (A 47)
in detail.
[l *

I e

=K=l

k=1 (A 48)
"

('--i:l—xpg:]

lim &= lim
[ ] 1 =40

(A49)

(l-oh-(l—x»d]_,
10 1 =40 A

Using the laste-time limits shown in squations (A.45) dwough
(AA49) , squation (A.44) may be writien ss:

responie for the whole reservou. %o, fir » 1wo layerad ressrvon,
the expression for pesudoskin ix:

Wats)
==L

(I - )
Equation (A.51) can be extended Ivr 3 muly layeted 1eservou by
appioprisiely defining x and A,

4t

5 V)

whete, X = total mobihiy thickness rat0 of the open interval

T
| 4

(A3

(1 -%)
h: i' -
K

(A.32)

(ASZ)-mﬁxliﬂnhﬁrﬁmﬁﬁ
sny whitrary locstion of the open imterval In equation (A.32), &
the uppsr bowndary crossflow parameters, reipectively.
lrres ﬂﬂh-ﬁhﬂhymﬁhlmﬂym

¢ roqui 0 estimaie the pisudoshin. A similes

m‘%*%""“%*lﬁ-m*!ﬁw el



loaner ond ewvier boundery conditions. and initial condit-on are the
sams o in Appendiz A. In dimensionless form, the differentis)
oquetions and the boundary conditions can bs writien as:

«Vpu --%‘-'Mm - po1) (®.3)

(1-%)9'poe = (1 »d%oldmz-mhkm (B4)

Initial condition:  pp;(1p.0) = ppx(rp.0) = 0 ®.3)

Owier boundary condition:  lim ppi = lim ppy=0  (B.6)
D Do

lanes boundary condition: pp)(1.4p) = Pu (B.7)
(&D .. |- (R.8)
l‘_“gzp_. h.9)

[ ]

Fellowing the same steps 85 in Appendia A, we can obtain:

[wo w-adasam-0 (8.10)

MAol(1-x)ot(1 -0 -2a- AR =0 ®.11)

Nea-trivisl selutions ase possible. if the determinant is zevo, i.c..
(oo’ a2 (1 - do™. (1 - ) -2 L =0
Bquetien (B.12) can be reorganized as:
¢- l‘:"_".‘_‘_‘s.d_h].a.

1-%

(ool A [ (1-ad sda o) - A2 o
T

(1)

(( B}))

This palynamisl has twe posisive rests and these are:

effrene .
effrtenen.uy )

(B.14)

(8.13)

E. COMES AND A. K. AMBASTHA n

where, A=
[((l - et e | !u | (A (100N shaedc] - AP
1-x ®(1- x)

(h.16)

Putting 6] and o} from equations (B.14) and (B.15), respoctively,
n equation (B.11) and rcamvanging. we can wiite:

...%-utot[(l-ul—(l-m.] TR}

Mopede (1 -wh-01 - ,
u-g- " M{h o - (1 - ol ] R.AN)

As in Appendix A, putling A; = 3,8, and Ay= 3,8, in the solution
yields:
o = 3B, Ke(011p) + 1B Ke(Gx0) (B.19)

i =B1Ke(04t0) +BKe(O¥D) (B.20)

ﬂﬂ‘

At late tims tp—o=s and [ — 0, and oquations (B.14) dweugh (B.18)

eth = .h_k d Hlacic, h
v':.: “ % (l-l)l:.]

j-x & 1-x
a.12)

A e ]

[

.-4..;.;{3.;&._&.«3.&.
2| -« « -
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12 UNDER VARIOUS RESERVOIR CONDITIONS SPE il
Equation (B.31) estimates the pssudoskin in 8 twe-layered,
Ihn As ( M—P (B.24) | portially-penotrated reservoir subject 10 a gas-cap or & botem
1-x (1 -xk water drive. Equetion (B.31) is also applicable for & mwhi-leyered
reservoir having any arbitrary number of layers consisiing the
open interval snd sny arbitrary locstion of ihe -p- -u-rul.
Imq-lu-l*k provided x and A, are cakculsted by adding the individual layer
140 mobility-thickness ratio of the open imterval snd by adding the
( !! ! k lower and the upper boundary croasfllow parammiars of ihe apen
+ ‘( ‘ , (B.25) | interval, respaciively. Patameter, Ag . is the croesfllow puamsin
Da L 1-x 1-x I-x beiween (he reservoir and the gas cap or the boom waler sane.
Irvespective of the number of layers in the reservou. only theee
“m.’_.‘.“k parameicrs (K, Ay . Ac)  are tequeted io estimate the paeudoskm
10 Aa facior.
.('-")[_h_k M. 'AA__k o] 4 ,] w26 | Anaeatin &
1-x - (- Late Time Apprerimation of ol
(u'.a;: the luc-(::e limits shown in equations (B.22) through | FTo™ APPondin A,
.26), equation (B.21) may he writien as:
g’ l{(..;&. &. ‘1...! . ”), I Wwhn
Poom = - oy KO ) . ag Ke(Ga) B2
(an - supd OuXKi(O)  (ay - s/ 63K (0a) , .
IR R RN STV
Equation (B.27) denotes the limiting pressure drop in Laplace | #nd- hm A = lim “*‘_‘w _ IS ’ ’ ) A‘Lv «2
space for & parsially-penstrating well subject 10 s gas-cap drive. e ' st v
Taking inverse Laplace wansformation of equation (R.27), we
obtain the corresponding pressure drop in the resl space as: Equation (C.2) can he writien as
hon=- auKelOn ) + —taKeon) ®28) | imaA
(s - s OuKi(Ou)  (2a. - a 90u Ki(On) 1= 7
- w
Performing ths same westmem for s fully-penewating well in 8 ' \
twe-layeved reservoir subject 10 a gascap drive, we oblsin: =lim —‘L-hr 1e2dx %y, . 1x | *L
el ALEC I YY" ALLL w(1-x)
m.(’l' Ou) K02 ) (R.29) -x % t-x ¥
LY (Cc.3)
where, . b
Neglecting the tctm comtaming /¢ and rearrangng sspuateon (C.3)
W =(1- s )xan + 1- x)ouKe(OwKi(Oa) yickds:
-(1- s Moy + 1- <)By KefOn MK y(On ) (3.30) (l;; nN_l; Q,
tima=tim|2a Ml f-x "y | o
Difierense botweon equations (B.28) and (B.29) is the sdditionsl | 1o 1 —galj-gx ¥ (A 2
mh“dh-ﬁdm‘ of a two-loyered ) Y
mm the eapression for -e
ao—ielon) _ skdow ‘1:-..".2;&,

(n - )ai(0n) (2a- 80 )8y K0y)

anou Kdou)Kdoy)
Y
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SHL. 26484 E GOMES AND A K. AMBASTHA
Neglecung the higher otder tesms an | i equation (C8) ywelds
A l o, ‘l w “"(2& 1y ] (C.6)
b & I« F

At late ume, the rescrvoir bhehaver like 8 fully-penetrated,
equivslent homogencous tysiem with & preudoskin Thus. at late

ume, x @ |, and equation (C 6) becomes

A A .la"l w Q,I o
L S O «n

Now, cquation (€7 1) becomes

o vy (o }}
| )

Number of Gas Cap or Pseudoskin
Year Authoris) Rel.  Solubon Method(a) Layers  Bown Waer(h)  Estimation(c)
_m | FLHGSN _ C B G G R E
1949 Mushat . o R . T —
1958 Nuske ] . i . »
1961  Brons and Manng 3 o 1 . .
1968 Odch 18 . 1 . .
1968  Scth 16 L] 1 [ .
196% Kasem and Seth 17 . 1 . .
197  Ganganen and Ramey ] ] s 1 . *
1977 Rithart? and Ramey 4 . 1 . »
197 Suclusove-Adams 5 * i . . .
1980  Bulidma and Raghavan 6 . i . .
1984 Reynolds 1. al 7 . 2 * .
1986 Vreink 19 . 1 .
1987  Papatzocos ] ¢ i .
1989 Olarewap and Loe 9 . 2 . .
1999 Yeh and Reynolds 10 . n . .
1999 Yeh and Reynolds " . n . .
1991 Vibsk 12 . ) .
1991 Dwng and Reynolds 13} . [ ] .
1992  Shah snd Thanbynsysgam 14 L) 2 ) » .
1999 Thes study - * ) » s .
&

Isbilatnd of smagee Coglund

H’ *’ 7,

Galloas’s lnnias

13
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14 UNDER VARIOUS RESERVOIR CONTHTION SPE Jo4Bd
Table 2: Comparison of pssudoskin faciors esumated from the simplified expression and Table 1 Reservou configwations
that from the actual analytical solution. corsuderad in Tables 2 and §
Reservou — Clesed wp ond Wan o ]
Ceonfigutation x i botiem  bounderies Y Case Ko of 1 Penrised
Case A ®0A L Ac wNoA aC layes. [
{s0e Tole 3) a0’ a0’ ) _ —
] 0.702 418 3.3 3323 .97 3 680 1479 1 2 ?
2 0.429 0.37 10.577 10.650 44 10977 [ 11.1%0 2 3 ‘
3 0.33)3 652 15.273 15.200 4.74 15.553 1 13.4% . -
1 1 b)
4 0.763 0.28 2.47¢ 2.492 474 2.830 2.850 4 3 TR
s 0640 | 06S «aNno0 6300 | 022 | 4490 | 4820 3 s AL
. 0480 1 1.29 | 7966 | 7900 | 022 | s08e | 5100 6 b a4

Tebis 4: Comperisen of peouderkin foston enimated hvm Gis Sudy with hslgdh-!--dmhli‘*ﬂ
vocorvair with clased sap and buttem Soundasios and with leyer 3 apan 10 flow (h = 300 m and k) = 49308210 " )

Cose ] 2 b 4 5
MA ] -
! 0.50 e.10 0.00 e . ele
WA 0.40 e.10 010 002 e
- : -
W3 100 0.1 0.23 o4l ] 0837
&k ) )
1 0.10 1» 1.60 02 .
A o ) ]
Wl 10.0 H 19 e 1 | a0
- .
¥a 10 o5 e.16 ~ase | esem
kyfkyy 1900 .°»” XY 158 inmn
Vi Y [T 0.0 we e
e "N n.» %0 »® AN
A 5.8 2% i 12.90 9.5 e
"R 13.38 8.3 % »n0n .04
aan Y] ) %.9 ne
1 _

212



Table 5 Effact of gas cap (bottom-waler) on pasudoskin facior

E. GOMES AND A K. AMBASTHA

{ thies Iayersd resarvoid. b= 200m. k) = k3 = k3 -

49346210 ' m?)

Table &: Effect of layer rafmemen: on

n (actor
(k= 294710 ml ik, = 2H77ﬁil"ﬁ‘)

f-l-'mr ] ; _ B c Total 'gﬁl Hﬁ'ﬁ P?—
Casn -anhgurstiion E . ﬁiﬁ 3 ﬁi pile _ BN TRSETVOir mlarva [- ] ]
N ~ Cose :ﬁ, ) - shin thickneas | thickness | Layers | Facwor,
fone Tobied) | _ e L m m
) 2 om] o [ 1526 -1 -1
= = — i 30 _10 2 10.74
2 3 63| 1.%0 Mo 14.44 S o )
S e e e e 2 30 10 3 H.QT
' 2 0y ]| o047 Yer 150 ] 13%)
. E— ———t— - 2 o 1 o L s 1 uge
e ) o] 1% Yo 1.50 | 1488
—_— N N N A S a | 100 w 1 2 1 e
3 100 ) 3 1 e
_ oo J » | s 233
G Cap
— — - o m e e s ol e A A W W A WS W
2 2
1 ] I | K
- = — o - 7! = o




16 UNDER VARIOUS RESERVOIR CONDITIONS SPE 26484

— __ — .e T ————— iy = —
r— — A 2 ¥ _

i-g'ﬁgﬁ_.i E- i

Posudushin, 3,
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. o) s o1 oy

&1 &1 63 64 &3 68 &1 s

) L
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