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ABSTRACT 

Soil health refers to “the capacity of soil to function as a vital living system”, implying not only 

the capacity of soil to providing services of human interest, but also its capacity to provide 

ecological services, which makes ecosystems sustainable for the long term. The assessment of 

soil health in agricultural systems is crucial for the sustainability of both agriculture and soil. 

While agriculture depends on soil resources and their ability to support plant growth and crop 

productivity, the intensification of management in these systems represents a stress to the soil 

environment and can lead to soil degradation. The assessment of soil health could provide 

insights about the impact of the different agricultural practices on soil attributes. Given that soil 

health is a non-directly quantifiable feature that reflects multiple soil physical, chemical, and 

biological attributes, measurable indicators are used as proxies of the soil condition and 

integrated into single-score indexes. However, many of the developed indexes overlook the role 

of microbial communities in the soil health. Microorganisms play a crucial role in soil 

functionality, are involved in biogeochemical cycling, and contribute to the availability of 

nutrients in soil. They form symbiotic relationships with plants and are basal feeders of trophic 

networks in these systems. Moreover, microbial communities are sensitive to the changes in the 

soil environment. Changes in soil microbial communities should therefore provide information 

regarding shifts in processes occurring in soils from different natural and managed systems. 

Though, due to functional redundancy in microbial communities, shifts in their structure may be 

independent from changes in soil processes.  
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In Alberta, the Soil Quality Monitoring Program (SQMP) conducted from 1997 to 2007 

aimed to characterize soil quality over time from benchmark sites across the province by 

evaluating multiple soil physico-chemical parameters. However, no biological indicators of the 

soil quality were included at the time. Given that agricultural practices could affect the soil 

environment and microbial communities are sensitive to environmental changes, I revisited the 

SQMP benchmark sites and evaluated bacterial communities from soils undergoing different 

agricultural practices (i.e., tillage intensity, crop type, herbicide use, and fertilization method). I 

assessed the effect of agricultural practices on bacterial community composition, heterogeneity, 

diversity, and co-occurrence via high-throughput sequencing of the 16S rRNA marker gene and 

statistical and multivariate analyses. pH and ecoregion were important drivers of bacterial 

community composition. Agricultural practices influenced the heterogeneity and evenness of 

bacterial communities but did not play a major role in shaping their composition. On the other 

hand, co-occurrence network analyses revealed that the complexity and behavior of interactions 

among the members of the soil bacterial community are altered by different agricultural 

practices. These changes in the community dynamics could indicate changes in microbial 

functionality, and the capacity of the community to overcome environmental stress, which in 

turn could influence the functionality of the soil system. Altogether, my results indicate that 

bacterial community composition is insensitive to different agricultural practices such as tillage, 

fertilization, crop type and herbicide usage. However, co-occurrence network metrics may be 

promising indicators of soil health in agricultural systems. 
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1. Chapter 1. Literature review 

1.1. Soil health 

1.1.1 Soil health concept 

Soil underpins multiple natural and managed systems on earth by supporting the delivery of 

multiple ecosystem services (i.e., multifunctionality) (Lal, 2016). Ecosystem services are defined 

as “the benefits that humans derive from ecosystems” (Bünemann et al., 2018; Costanza et al., 

2017). Namely, soil is habitat for biodiversity, and it sustains plant productivity by providing the 

nutrients needed for their growth and development (Lal, 2016). Soil also harbors hydrological 

cycles and helps moderate global climate through C sequestration and the control of gaseous 

fluxes (Lal, 2016). Moreover, soil supports multiple human needs by being the source of 

industrial and pharmaceutical raw materials, and an archive of climate, nature, and human 

history (Lal, 2016). 

To identify the condition and capabilities of soil to provide ecosystem services, several 

concepts, and definitions regarding the status of soil have been proposed over the past decades 

(Amacher et al., 2007). These concepts are considered primarily from an agricultural perspective 

where the principal objective has been to optimize crop productivity. From soil fertility to land 

quality, to soil quality, to soil health, these concepts have been replaced and, in some cases, used 

interchangeably (Bünemann et al., 2018). For instance, soil fertility refers directly to the nutrients 

and water available in soil for plant growth, disregarding other functions and aspects of the 

change on soil condition over time and space (Bünemann et al., 2018). Land quality was 

proposed in the context of soil monitoring and aimed to integrate soil physical and chemical 

characteristics over time, as well as the vegetation supported in soil (Bünemann et al., 2018). 
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Later, the concept of soil quality was introduced as “the soil's fitness to support crop growth 

without resulting in soil degradation or otherwise harming the environment” (Acton et al., 1995; 

Bünemann et al., 2018). This definition was proposed from an agricultural view that ignored any 

soil attributes and functions that did not relate directly to crop productivity. Hence, the concept 

was criticized, and as a means to encompass different soil-ecosystems and dynamism, 

differentiation between soil quality and soil health was proposed (Bünemann et al., 2018; 

Pankhurst & CAB International, 1997). The latter term has been redefined as “the continued 

capacity of soil to function as a vital living system to sustain biological productivity, maintain 

environmental quality and promote plant, animal and human health” (Bünemann et al., 2018; 

Pankhurst & CAB International, 1997). Despite the two terms overlapping to some extent, a 

scientific argument has been raised around how the terms differ and must not be interchanged, 

given that soil health refers not only to functions that are of human interest but also provides a 

holistic ecological view that considers the interaction of multiple soil functions and perceives 

soil as a bi-directional living resource that influences life, and at the same time is influenced by 

time, space and the diversity of life (Bünemann et al., 2018; Lal, 2016; Norris et al., 2020; 

Pankhurst & CAB International, 1997; Pawlett et al., 2021). Hence, soil health integrates soil 

biological attributes, and considers their contribution to soil functionality in different ecosystems 

or under different land-uses, characteristics that were overlooked in the previous concepts 

(Bünemann et al., 2018). 

1.1.2. Soil health indicators and indexes 

The concept of a soil health index was first introduced by Rust et al. (1972) in response to 

the rising concerns regarding soil and water toxicity and contamination as a result of the excess 

of N fertilizer use in agricultural systems (Rust et al., 1972). The index was developed as a tool 
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to achieve a N input equal to the N output, which considered as input all organic and inorganic 

amendments as well as organic matter mineralization and plant residue, and as output nitrogen 

losses processes and plant uptake (Rust et al., 1972). Since then, the concept has evolved to 

include various physical, chemical, and biological soil properties assessed using a plethora of 

statistical tools that have produced many proposed soil health indexes relative to reference soils 

(Lal, 1998). A soil health index integrates multiple soil properties into a single value that implies 

the condition of soil (Amacher et al., 2007). Given that soil health is a non-directly quantifiable 

feature that reflects multiple and variable soil attributes, inherent parameters of soil (physical, 

chemical, and biological) are used as proxy indicators of soil health (Adetunji et al., 2017; 

Pankhurst & CAB International, 1997). A soil health indicator must be a measurable (group of) 

characteristic(s) that is(are) able to reveal the capacity of a soil to provide ecosystem functions 

(Fierer et al., 2021; Pankhurst & CAB International, 1997). Ideal indicators are both sensitive 

and rapid in response to environmental or management changes (Adetunji et al., 2017; Pankhurst 

& CAB International, 1997). Most soil health indexes assess the condition of soil relative to 

baseline values for soil health indicators in reference soils, which allow the identification of a 

soil health gap in cultivated land (Lal, 1998; Maharjan et al., 2020). Under an agricultural 

framework, reference soils should be native, uncultivated, and undisturbed soils located in an 

agroecosystem that resembles climatic and environmental conditions to those of the evaluated 

site (Maharjan et al., 2020). 

Soil systems are complex, meaning that (i) isolated indicators are not an accurate 

representation of the entire soil condition and processes, and (ii) single indicators may not be 

equally relevant for the system functioning and health (Norris et al., 2020). For this reason, 

indicators are rarely assessed individually, and multiple indicators are commonly integrated as 

https://www.zotero.org/google-docs/?tkuCv5
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part of soil health indexes (Adetunji et al., 2017; Amacher et al., 2007; Fine et al., 2017; 

Laishram et al., 2012; Lal, 2016; Pankhurst & CAB International, 1997; R. Xue et al., 2019). In 

these indexes, a minimum data set of indicators is identified, then scaled up and integrated into a 

single score (Laishram et al., 2012). A soil health index for forest soils was proposed using 19 

different measurements of soil physical and chemical attributes, which included bulk density, 

pH, total organic C in mineral soils, total N, exchangeable Na, and several exchangeable cations 

(Amacher et al., 2007). A threshold was assigned to each parameter and a score of -1, 0, 1, or 2 

was assigned correspondingly (Amacher et al., 2007). The weight given to each parameter for 

the overall score was equivalent and assumes that all soil attributes are equally relevant to soil 

health and disregards any possible correlations between them (Amacher et al., 2007). 

Lal (1998) proposed an index using a scoring scheme relative to baseline or threshold 

values for each indicator in native reference sites, with the concept that native soil functioning 

represents the full soil functional potential. Indicators corresponding to “critical soil functions” 

for different soil uses were assigned a higher weight for the overall index score (Lal, 1998). The 

index consisted of a minimum data set that included soil texture, depth of plant rooting, 

infiltration and bulk density, water holding capacity, organic matter, pH, EC, extractable N, P, K, 

microbial biomass C and N, potentially mineralizable N or N in organic residues, and soil 

respiration (Lal, 1998). Physical indicators considered were mostly related to soil water retention 

and transport, and soil erosion; chemical attributes were related to soil fertility and thresholds for 

microbial activity and biological indicators were related to potential microbial activity (Lal, 

1998). 

More recently, The Comprehensive Assessment of Soil Health (CASH) index was 

developed by Cornell University using 15 physical, chemical, and biological indicators. These 
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were: soil texture, wet aggregate stability, available water capacity, root penetration resistance, 

active carbon, extractable protein, and root health rating (Fine et al., 2017; Moebius-Clune, 

2016). For the index, the scoring weight of each indicator was calculated as a cumulative normal 

distribution considering their mean and variation and derived from a Gaussian function (Fine et 

al., 2017; Moebius-Clune, 2016). 

Commonly used physical indicators include saturated hydraulic conductivity and 

porosity, which also provide insights into the soil compaction and aeration, which are also a 

reflection of management practices or ecological events (Norris et al., 2020; Pankhurst & CAB 

International, 1997). Chemical indicators include feature most pertinent to soil suitability and 

toxicology for plant growth, such as Cation Exchange Capacity (CEC), major elements, nutrients 

availability, heavy metals, and for arid regions, Sodium Adsorption Ratio (SAR), (Pankhurst & 

CAB International, 1997). Biological indicators include enzymatic activity, abundance of 

microorganisms, abundance of soil fauna, root disease, soil biodiversity, food web structure, 

plant growth and plant diversity among others, which accounts for the above-ground and below-

ground organisms in soil, at micro and macro scales (Pankhurst & CAB International, 1997).  

1.1.2.1. Limitations of soil health indexes 

Despite the notable advantages of soil health indexes, there is bias in their interpretation 

and use. For instance, most soil quality indexes do not explicitly include biological factors 

(Amacher et al., 2007; Lal, 1998). Biological attributes are often inferred from physico-chemical 

indicators (Amacher et al., 2007; Lal, 1998). However, the variability of these attributes may 

differ since biological indicators may respond differently to perturbations (Pérez-Valera et al., 

2015). Furthermore, the resolutions of biological parameters largely depend on the scale of the 

measurements, which could lead to inaccurate estimation of these attributes (Meyer et al., 2018). 
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Some of the methods used for the assessment of biological indicators only account for specific 

functions of soil and for a limited and selective proportion of the entire biological communities 

(Lal, 1998). Moreover, there is no consensus on how soil health is assessed, how each soil health 

indicator should be interpreted, and how indicative each type of soil attribute is for the overall 

soil health (Xue et al., 2019). 

Also, identifying the spatiotemporal variability of each soil health indicator is needed to 

determine its suitability to reveal both short-term and long-term changes in soil health, and also 

to ensure the repeatability of the use of each indicator, by excluding those with low and large 

variability (Carini et al., 2020; Fierer et al., 2021; Hurisso et al., 2018). Considering the variation 

of soil health indicators in time and space is also crucial to guarantee they are representative of 

the real status of an entire landscape or region (Carini et al., 2020; Doran & Parkin, 1994a; Fierer 

et al., 2021; Lal & Soil and Water Conservation Society (U.S.), 1994). However, discrepancies 

still exist regarding sampling scale and method required for the use of each index, ranging from 

sampling a single point in a land space, to large plots or transects, and from single moments in 

time to seasonal or yearly sampling events (Lal, 1998). 

1.1.3. History of soil health in North America 

In North America, particular interest in soil quality was awakened after the droughts of 

the 1930s or the so-called “Dust Bowl'' years, in which dust storms, soil erosion (i.e., 

susceptibility to wind action), crop failure, and the complete loss of topsoil were common in the 

southern Great Plains, leading to economic depression and raising concerns about soil 

degradation (Baveye et al., 2011; Hansen & Libecap, 2004; Montanarella, 2015). During these 

years, the temperatures of the sea-surface and the atmospheric circulations caused intensified 

droughts in the Southern Great Plains (Amacher et al., 2007; Lee & Gill, 2015). Added to the 
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droughts, the dry techniques (non-irrigated farming in arid regions) and the intensive tillage 

practiced for agriculture at the time caused loss of soil cohesion (i.e., force that binds particles 

together) and land cover, which in turn lead to soil erodibility (Lee & Gill, 2015). In response to 

the “Dust Bowl” years, soil has been recognized as a non-renewable resource that requires 

attention for its conservation (Montanarella, 2015). Therefore, governments and scientific 

research to evaluate and monitor soil condition as well as to promote sustainable agricultural 

practices that ensure the conservation of the soil resource are widespread (Baveye et al., 2011; 

Cathcart et al., 2008; Hansen & Libecap, 2004; Montanarella, 2015). To prevent soil erosion, 

irrigation systems were implemented, as were deep plowing techniques to replace clay to the soil 

surface after being translocated by water percolation (i.e., water movement through the soil 

matrix) (Lee & Gill, 2015). Tillage intensity was reduced and has been performed with crop 

residue on the land surface (Lee, 2015). Since the 1930s the governments started motivating 

landowners to plant native grasslands as part of soil conservation programs, some included 

economic incentives such as the ‘Soil Bank Program’ started in the 1950s in the U.S., and the 

‘Conservation Reserve Program’ started in 1985 to the current date in Canada (Lee, 2015). 

Another threat for soil conservation is desertification (i.e., land degradation and loss of 

soil fertility) of the Great Plains due to the interaction and change of the urban, agricultural, and 

animal use of soil (Le Houérou, 1996). In other words, desertification occurs due to an abuse in 

the use of the resource (Le Houérou, 1996). The destruction of perennial vegetation leads to a 

cascade of effects that negatively impact soil health and functional capacity (Le Houérou, 1996). 

The loss of perennial vegetation causes a change in the input of organic matter to soil, which 

modifies (i) the physical structure of soil by destabilizing soil aggregates, leading to soil 

compaction and changing the water retention, drainage capacity, porosity, and oxygen 
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availability; (ii) the nutrients availability and chemical properties of soil, reducing biological 

activity and hindering biogeochemical cycles important for soil functionality and fertility (Le 

Houérou, 1996). These changes make soil more vulnerable to destruction and the phenomenon 

could be exacerbated by global climate change (Hatfield et al., 2014; Le Houérou, 1996). More 

frequent extreme weather events coupled with climatic changes could lead to increased soil 

erosion, soil temperature changes, reduced water availability, changes in soil organic matter 

content, reduced crop productivity and defense against new pathogenic organisms that benefit 

from the changing climate (Hatfield et al., 2014). All these changes together force human 

activity to modify patterns, including timing, location, and farming management practices, which 

in turn have an important impact on global food markets and economies (Hatfield et al., 2014). 

1.2. Soil health and agriculture 

Agricultural productivity is dependent on the soil’s ability to provide ecosystem services 

and serve as a plant growth medium (Food and Agriculture Organization of the United Nations, 

2017; Lal, 2016). Agriculture comprises the domestication of animals and plants for human 

consumption and is recognized as a key factor for the development of human civilizations 

(Harris & Fuller, 2014; “World Development Report 2008: Agriculture for Development,” 

2008). Agriculture is important because there is an increasing demand for food production as 

global human population continues to growth (Food and Agriculture Organization of the United 

Nations, 2017). Agricultural productivity is often associated with economic growth and poverty 

reduction (The World Bank, 2008). In contrast, low agricultural productivity prevents the 

industrial growth of a nation and this is reflected in a lower per capita income (Gollin et al., 

2002). 
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By 2050 the global population is expected to reach 9 billion people that need to be fed 

(Hatfield et al., 2014). While agriculture benefits from soil, the increasing population along with 

the increasing consumption patterns and need for food, fiber and fuel production are imposing 

more and more stress and degradation on soil and water, both non-renewable resources, essential 

for agricultural production (Hatfield et al., 2014). Human demands have led to the conversion of 

natural ecosystems into large agricultural lands (Tardy et al., 2015). For instance, the global 

forest cover loss caused by the shift to croplands is around 5 million hectares a year, which 

corresponds to 24% of the total global annual forest cover loss (Curtis et al., 2018). In North 

America, grasslands are the most common land cover affected by land transformation, where 

almost 220 thousand km2 of the Great Plains were converted to croplands from 2009 to 2015 

(Gaworecki, 2016). It is estimated that more than 50% of the original temperate grassland had 

been affected by land conversion as of 2016 and keeps declining (Kraus, 2016). 

Temperate grasslands, which include the Canadian Great Plains are crucial for 

biodiversity conservation (Kraus, 2016). This ecosystem is habitat of more than sixty animal 

species in Canada and play an important role in carbon sequestration and water filtration for 

several water streams (Kraus, 2016). In 2008, the temperate grassland ecosystem was identified 

as the world’s most endangered ecosystem and the most affected by land use (Kraus, 2016). 

Beyond land conversion, land use intensification, mechanization, and the development of new 

agricultural practices also influence and alter soil properties and can contribute to soil 

degradation (Hatfield et al., 2014). 

Under an agricultural framework, soil health is relevant because it determines farming 

sustainability and productivity to a large extent. Therefore, it is fundamental to determine and 

identify management practices that are sustainable in the long term, promote soil resource 
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conservation and help overcome climate change impact (Doran & Parkin, 1994b; Hatfield et al., 

2014; Lal, 2016).  

1.3. Soil microbiology 

Microorganisms, specifically bacteria and fungi, are the most abundant belowground 

organisms in terms of both biomass and individuals per gram of soil, and they play important 

roles in many ecosystem functions (Coleman et al., 2018; Tardy et al., 2015; Trivedi et al., 

2016). Microorganisms influence nutrient cycling and ensure the availability of nutrients for 

plant uptake by being involved in nitrification and fixation of N, solubilization of P, reduction of 

S, C sequestration, and decomposition of organic matter (Coleman et al., 2018; Fierer et al., 

2021). Further, soil microorganisms can produce and promote the production of auxins that favor 

plant growth, largely by stimulating root development (Gusain et al., 2015; A. L. Khan et al., 

2016). Some bacteria and fungi can establish symbiotic relationships with plants and protect 

them from diseases through antagonistic relationships with pathogenic bacteria, fungi, and other 

pathogenic organisms (Coleman et al., 2018; Saia et al., 2015; Trivedi et al., 2017). Additionally, 

microbes are important for the establishment of trophic relationships among soil organisms, 

principally by being a food source for nematodes and protozoans (Coleman et al., 2018). Given 

the numerous interactions of microbes with other above and below-soil organisms, the structure 

and diversity of microbial communities is influenced by them (Coleman et al., 2018; Gusain et 

al., 2015; A. L. Khan et al., 2016). Moreover, different microbial species have specific 

physicochemical requirements and limitations for their growth and metabolic activity. For 

instance, microorganisms require specific conditions of air and water in soil, specific substrates, 

and specific pH and temperature ranges (Coleman et al., 2018). Therefore, the environmental 

characteristics that shape the soil microbial habitat also influences the structure and diversity of 
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microbial communities (Bowles et al., 2014; Kuzyakov & Blagodatskaya, 2015; Tardy et al., 

2015; Trivedi et al., 2016; Habig & Swanepoel, 2015). 

1.3.1. Microbial community diversity, structure, interactions, and ecosystem 

functionality 

Multifunctionality is understood as multiple ecosystem functions or services that occur 

simultaneously in the system (Delgado-Baquerizo et al., 2016). In order to examine the 

relationship between microbial diversity and ecosystem services in soil, a multifunctionality 

index was developed derived from the plant productivity, net nitrogen mineralization in soil, 

concentration of nitrate, ammonium, DNA and available phosphorus (Delgado-Baquerizo et al., 

2016). Results from the study suggest a positive correlation between overall microbial diversity 

and ecosystem multifunctionality for both bacteria and fungi in different ecosystems including, 

grasslands, woodlands, and arable lands (Delgado-Baquerizo et al., 2016). As biodiversity 

increases, the ecosystem functionality increases. Biodiversity could refer to phylogenetic and 

morphological diversity, species richness (i.e., number of species) or evenness (i.e., species 

relative abundance) (Purvis & Hector, 2000). The correlation between biodiversity and 

ecosystem functionality is due to three main reasons: (i) Different species have different resource 

needs; therefore, communities with higher richness utilize more of the overall soil resource, 

increasing productivity in turn (i.e. resource partitioning) (Bell et al., 2005; Loreau & Hector, 

2001; Louca et al., 2018). (ii) Given that some species have a higher contribution to the 

ecosystem functionality (i.e., Keystone taxa), communities with higher species richness have a 

higher chance of including keystone taxa in its composition (Bell et al., 2005; Loreau & Hector, 

2001). (iii) Individual ecosystem functions are shared by different taxa (i.e., functional 
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redundancy). Consequently, communities with higher diversity have a higher chance of 

maintaining ecosystem functions after environmental changes (Yachi & Loreau, 1999). 

While diversity of bacterial communities has been clearly correlated to ecosystem 

functionality, shifts in the structure of microbial communities is not consistently associated with 

changes in ecosystem functionality (Bell et al., 2005; Bissett et al., 2011; Jeanbille et al., 2016; 

Yachi & Loreau, 1999). Some studies indicate that functional redundancy implies communities 

with different structure not necessarily differ in their functionality (Bissett et al., 2011), while 

other studies have reported that shifts in the structure of microbial communities are associated 

with physico-chemical factors that reflect ecosystem functionality or below-ground processes 

(Jeanbille et al., 2016). For instance, when evaluating archaeal, fungal, and bacterial community 

structures form different farmed soil systems and unfarmed soils in Australia, multivariate 

analysis of Terminal restriction fragment length polymorphism (T-RFLP) data revealed 

significantly different microbial communities in farmed and unfarmed systems (Bissett et al., 

2011). However, community level physiological profiling (CCLPP) exhibited no differences in 

the functionality of microbial communities from agricultural sites compared to that of 

communities in unfarmed soils (Bissett et al., 2011). Moreover, actual and potential N 

transformation evaluated through targeted extra-cellular enzyme assays (EEA) before and after 

fertilizer addition respectively, revealed only significant differences in the nitrification potential, 

which was significantly higher in unfarmed sites compared to farmed soils (Bissett et al., 2011). 

These results indicate the ecosystem functionality does reflect the microbial community structure 

differences between farmed and unfarmed soils, despite N transformation potential differing 

between the two communities (Bissett et al., 2011). In contrast, clear association of the structure 

of microbial community and ecosystem functionality was identified under the influence of soil 
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pH (Jeanbille et al., 2016). 16S rRNA marker gene analyses indicated changes in pH across 

topographic sequences under the same land cover led to changes in microbial community 

structure (Jeanbille et al., 2016). Structural changes of the community included differences in the 

abundance of Keystone taxa correlated the metabolic potential of polysaccharide and 

monosaccharides (Jeanbille et al., 2016). 

The contradictory results in the numerous studies regarding the relationship between soil 

bacterial community composition and ecosystem functionality could be attributed to some level 

to the sensitivity and accuracy of the methods used for assessing functionality, or to the level of 

patchiness in the different systems (Pérez-Valera et al., 2015). The relationship between edaphic 

parameters, overall microbial diversity and ecosystem functionality may only be evident in 

highly heterogeneous systems, whereas in systems with low heterogeneity, the microbial 

community structure may drive soil functionality to a greater extent (Pérez-Valera et al., 2015). 

Given the sensitivity of bacterial communities to the changing environment, the behavior of 

microbial communities may present high variation between different systems and sites (Pérez-

Valera et al., 2015). Overcoming those limitations and revealing the association of microbial 

dynamics with microbial and ecosystem functionality remains a challenge that requires both 

experimental and modeling approaches combined (Widder et al., 2016).  

Coexistence of microbial species reflects the environmental processes that shaped their 

communities (Pérez-Valera et al., 2015). Thus, the interactions between the members of a 

microbial community provide insights regarding the community functionality (Bissett et al., 

2011; Cardona et al., 2016; Faust & Raes, 2012). It has been reported that in non-patchy systems, 

the coexistence of different taxa is a better predictor of soil microbial functionality when 

compared to overall diversity (Pérez-Valera et al., 2015). Changes in microbial interaction can 
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occur before species exclusion and can sooner reveal variation in microbial communities that 

diversity parameters cannot (Karimi et al., 2017). Co-occurrence network analysis are used to 

recognize patterns in coexistence and interactions of microbial communities; and also allow the 

identifications keystone taxa link to environmental processes (Banerjee et al., 2019; Karimi et 

al., 2017; Ma et al., 2018; Zheng et al., 2018). Altogether, the structure, diversity and dynamics 

of soil microbial communities are important for determining and preserving essential functions 

in soil, though in specific systems one may play a major role than the other (Girvan et al., 2005; 

Pérez-Valera et al., 2015; Tardy et al., 2015). Therefore, it is important to determine how the 

three aspects of microbial communities are affected by the influence of environmental changes in 

different systems and by the influence of other soil organisms (Bowles et al., 2014; Coleman et 

al., 2018; Delgado-Baquerizo et al., 2016; Kuzyakov & Blagodatskaya, 2015; Louca et al., 2018; 

Pérez-Valera et al., 2015; Tardy et al., 2015; Trivedi et al., 2016).  

1.3.2 Soil physico-chemistry and soil microbial community association 

Several studies suggest the composition of microbial communities is regulated by 

different physico-chemical parameters in different ecosystems, these parameters include soil 

organic carbon content, pH, water content, soil salinity, and soil porosity and compaction 

(Delgado-Baquerizo et al., 2016; Fierer & Jackson, 2006; Jeanbille et al., 2016; Lin et al., 2019; 

Rousk et al., 2010). However, among these parameters, pH is the only to be consistent across 

studies and has shown a clear correlation with soil microbial community composition at both 

large and small scales in different ecosystems (Fierer & Jackson, 2006; Rousk et al., 2010; 

Delgado-Baquerizo, 2017). Soil pH influences microbial growth, diversity, structure, and 

activity, which in turn affects soil functionality (Cai et al., 2018; Chen et al., 2018; Fierer & 

Jackson, 2006; J. Liu et al., 2018; Oehl et al., 2017; Rousk et al., 2010; Sheng & Zhu, 2018; C. 
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Wang et al., 2018; Zhou et al., 2017). Delgado-Baquerizo et al, (2017) suggest that the influence 

of microbial community composition and diversity on soil multifunctionality can be controlled 

by changes in soil pH. For instance, when evaluating the relationship between soil pH and 

microbial carbon cycling in acidic soils subjected to different land use intensification levels, 

where liming is applied, two different microbial mechanisms for SOC accumulation were 

identified (Malik et al., 2018): (i) when soil pH increases above an identified threshold of 6.2, 

acidic stress is alleviated leading to an increase in carbon use efficiency (CUE) as microbial 

biomass is synthesized (Malik et al., 2018). (ii) Below a pH of 6.2 microbial growth and organic 

matter decomposition are reduced, leading to unutilized organic C accumulation (Malik et al., 

2018).  

 1.3.3. Studying soil microbial communities 

For years, the characterization and quantification of soil microbial community 

composition relied on low-resolution techniques that offered broad and limited information. For 

instance, only a small proportion of the known microorganisms are culturable and can be 

recovered with culture-dependent techniques such as enrichment and isolation cultures (Coleman 

et al., 2018), which can lead to underestimation of microbial diversity in the system. Other 

methods based on substrate-induced respiration select only for fast growing members of the 

microbial communities with metabolic pathways specific for the evaluated substrates, and 

therefore, underestimating the metabolic diversity of complex systems (Coleman et al., 2018; 

Elsas et al., 1997; Vieira & Nahas, 2005). 

More recently, DNA-based analysis introduced a promising alternative to study those 

under-looked microbial communities and their functionality in soil (Fierer et al., 2021; Norris et 

al., 2020). There is still no consensus on the use of genomic methods as indicators of soil health; 
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however, some approaches have been proposed. For example, high-throughput sequencing of 

marker genes (e.g., 16S rRNA gene for the study of bacterial and archaeal communities), which 

are genes that are present in all organisms from a same phylogenetic lineage but variable enough 

to allow identify different taxonomic groups, have been broadly used to assess microbial 

community structure, and diversity (Armalytė et al., 2019; Cai et al., 2018; Chen et al., 2018; 

Lupatini et al., 2017; Merloti et al., 2019; Oehl et al., 2017; Ren et al., 2016; Wolińska et al., 

2017). Marker genes are used to infer the abundance of microbial taxa groups and allow to 

evaluate the correlation between shift in community composition and other soil health indicators 

(Fierer et al., 2021). Microbial taxa are obtained from the high-throughput sequencing of marker 

genes as Amplicon Sequence Variants (ASVs), which are sequences that vary in single 

nucleotides, and represent microbial species based on their DNA (Callahan et al., 2017). 

Taxonomy is assigned to each individual specie by comparing to a taxonomic database (Callahan 

et al., 2017). High throughput sequencing of marker genes is also used to identify indicator 

species, which are species associated to certain soil conditions, for example to a specific pH or 

temperature, or to specific soil functions, such as nitrifying organisms, P solubilizers, OM 

decomposers, methanogens (Fierer et al., 2021). Thus, indicator species can be used to infer soil 

functions in a fast and low-cost manner, providing a practical way for decision-making and land 

management (Fierer et al., 2021). Although barcoding of amplicon sequences alone allows for 

thorough characterization of microbial community structure, it does not provide information 

about soil microbial functionality (Fierer et al., 2021). Also, this method relies heavily in 

complex multivariate analysis, such as ordinations used to compare the composition of different 

microbial communities, which have complex interpretations. 
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 -Omic- approaches are the different disciplines aiming to obtain a holistic view of 

collective communities based on different biological molecules, and they could be used to assess 

soil microbial functionality (Fierer et al., 2021; Prosser, 2015). For instance, to characterize 

microbial communities with metagenomic approaches, all microbial genomes in an 

environmental sample are studied, and by evaluating gene composition of the metagenomes, the 

metabolic potential of microbial communities is assessed, providing information about soil 

potential functionality (Kroeger et al., 2018; Manoharan et al., 2017; Miura et al., 2019). 

Metagenome analyses could be either genome- or gene-centric (Nissen et al., 2021; Taş et al., 

2021). Genome-centric metagenomics consist in the reconstruction of entire genomes by 

“grouping metagenomic sequences of an organisms of origin” (Nissen et al., 2021), which allow 

the functional characterization of unknown organisms (Nissen et al., 2021). On the other hand, 

gene-centric approaches are targeted and focus on specific genes by annotation of short 

sequences, and it is used to quantify gene abundance (Taş et al., 2021). 

Other “-omic” approaches are useful to assess direct functionality of microbial 

communities in environmental samples and better understand processes occurring in soil 

(Baraniya et al., 2018; Malik et al., 2018; Nair & Raja, 2017; Vailati-Riboni et al., 2017). For 

example, meta-transcriptomics and meta-proteomics are used to study messenger RNA 

molecules and proteins of entire communities, respectively, providing insight into the actual 

contribution of biological communities to the system functionality (Dubey et al., 2020). 

 1.3.4. Microbial communities in agricultural systems 

The contribution of soil bacterial and fungal communities to soil functionality has been 

broadly studied (Delgado-Baquerizo et al., 2016; Louca et al., 2018; Pérez-Valera et al., 2015). 

For instance, in agricultural systems microbial functionality contributes to soil fertility, which 
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affects crop yields (Coleman et al., 2018). Every cultivated crop or plant requires soil nutrients 

for growth that microbes make available (Coleman et al., 2018). Overall, N and P are the most 

studied limited nutrients among agricultural soil (Brady & Weil, 2010). These nutrients are 

mineralized while organic matter is decomposed by microbes (Coleman et al., 2018). To satisfy 

C needs microbes access organic matter, while obtaining organic N and P from this source, 

which are nutrients needed for the synthesis of proteins and amino acids (Coleman et al., 2018). 

By the effect of enzymatic activity, N and P excess is released to the soil matrix and made 

available for plants or microbial transformations in form of ammonium and phosphates 

(inorganic forms of these nutrients), respectively (Coleman et al., 2018). Agricultural practices 

could potentially shape microbial communities with different potential metabolic capacities to 

cycle C and mineralize N and P (Schimel et al, 2012; Bissett et al., 2011; Habig & Swanepoel, 

2015). When comparing till vs. no-tillage systems, Habig & Swanepoel (2015) reported that no-

tillage increased microbial diversity and the associated capacity to decompose organic matter, 

and mineralize N and P. The structure of microbial communities also drives C cycling in soil 

(Habig & Swanepoel, 2015). 

1.3.4.1. Impact of agricultural practices on microbial community parameters: previous insights 

Many soil functions are the result of biological processes performed by belowground 

organisms (Brady & Weil, 2010; Coleman et al., 2018). The intensification of land use imposed 

by agriculture affects those processes either directly by the loss of biodiversity or indirectly by 

changing physical and chemical environmental conditions that consequently affect the functional 

groups of microorganisms (Cai et al., 2018; Chen et al., 2018; Merloti et al., 2019). For instance, 

microorganisms, earthworms, and microarthropods in soil are affected by the broad use of 

fertilizers and pesticides, high intensity tillage, and low plant diversity (Bardgett & Cook, 1998; 
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Doran & Werner, 1990; Edwards et al., 2020; F. Miura et al., 2008). The increasing use of heavy 

machinery in arable land causes soil compaction, which in turn leads to the loss of soil functions 

due to decreased hydraulic conductivity and mechanical inhibition of root growth (de Lima et al., 

2017; Keller et al., 2019; Shah et al., 2017; Stoessel et al., 2018). The disruption of root growth 

causes a reduction in crop yield and affects the microbial environment (de Lima et al., 2017; 

Keller et al., 2019; Shah et al., 2017; Stoessel et al., 2018).  

Different farming systems can shape soil physico-chemical properties and the 

composition of microbial communities (Habig & Swanepoel, 2015). For instance, when 

comparing soil physicochemical parameters and microbial composition under different un-

fertilized or fertilized systems, and systems with either chemical or biological plant protection, 

both nutrient content and pH vary across the different farming systems (Hartmann et al., 2015). 

Interestingly, unfertilized soils differ the most among all the treatments in that study (Hartmann 

et al., 2015). Bacterial and fungal communities differ between fertilized and unfertilized soils, 

where 49% of the taxa identified are associated with the management system and 10% of these 

taxa determined the differences among the soil microbial communities (Hartmann et al., 2015). 

Overall, crops biologically protected and fertilized with compost harbor the highest microbial 

diversity, whereas mineral fertilization and chemical plant protection harbor bacterial and fungal 

communities with the least diversity (Hartmann et al., 2015). Likewise, a study evaluating the 

influence of organic fertilization, crop rotation and tillage systems on soil microbial diversity 

suggests that zero-tillage and highly fertilized systems promote soil microbial diversity, while 

different cropping systems could either promote or reduce diversity (Habig & Swanepoel, 2015). 

Crops represent an important C source for soil microorganisms (Habig & Swanepoel, 2015). 

Different crop rotations could ensure the input of multiple C types, which along with the direct 
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input of SOM from organic fertilization and the low disturbance in zero-tillage systems create 

new niches, increasing the number of microbial species that can utilize the available nutrients 

(Habig & Swanepoel, 2015). 

Several studies have addressed the impact of agricultural practices on microbial 

communities using high throughput sequencing (Cai et al., 2018; Chen et al., 2018; Merloti et al., 

2019; Oehl et al., 2017; Wolińska et al., 2017). For instance, barcoding of the ITS and 16S rRNA 

marker genes revealed that fungal diversity is affected by farming systems to a larger extent than 

bacterial diversity when evaluating the long-term impact of different cropping systems on 

microbial communities (Chen et al., 2018). Both bacterial and fungal communities in farming 

systems were different from those found in forest plantation and abandoned agricultural sites 

considered as natural succession ecosystems (Chen et al., 2018). Agricultural systems play an 

important role in regulating the abundance of habitat-specific taxa in both fungal and bacterial 

communities, the mechanism of which is proposed to be through the influence of varying soil pH 

and N from different fertilization methods (Chen et al., 2018). To evaluate the impact of land 

conversion to agriculture, a study conducted in China compared microbial communities under 

different land uses at several stages of forest succession and in agricultural land (Cai et al., 

2018). Changes in the differential abundance of the dominant taxa were observed, and site-

specific genera were identified for both bacterial and fungal communities (Cai et al., 2018). 

However, a significant reduction in fungal richness and an increase in bacterial richness was 

detected in agricultural soils compared to forest succession soils, with no differences in overall 

microbial diversity across any of the sites (Cai et al., 2018). Likewise, shifts in microbial 

communities as a result of forest conversion into croplands in the Amazon have been reported as 

a consequence of the subsequent changes in the soil chemistry (Merloti et al., 2019). For 
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example, qPCR results revealed a higher abundance of nitrifying and denitrifying bacteria in 

agricultural soils when compared to forest soils (Merloti et al., 2019). 

Furthermore, arbuscular mycorrhizal fungi (AMF) richness decreases in croplands 

compared to grasslands; and patterns in the distribution of specific species have been identified 

(Oehl et al., 2017). For instance, some species are associated with land use intensity, others with 

nutrient availability, and others with parameters related to soil pH, which indicates the potential 

of specific species as indicators of soil functions (Oehl et al., 2017). In one particularly clear 

example of using microbial markers of soil function, a comparative analysis of the abundance of 

Bacteroidetes in arable soils and wetlands showed a reduction of the phylum abundance in arable 

soils, and a preference of its members to colonize soils originated from loess material and 

particles from standing water over soils originating from limestone parent material (Wolińska et 

al., 2017). Given the sensitivity of Bacteroidetes species to land use, and their association with 

specific soil types, the phylum is proposed as a suitable indicator of these two soil characteristics 

(Wolińska et al., 2017). 

When comparing the microbial community of soils under conventional management with 

tillage, conventional management with no-tillage, and organic management systems with 

moldboard plough tillage, no significant differences were identified in the overall microbial 

diversity of the three systems (Banerjee et al., 2019). However, the three farming systems harbor 

different bacterial communities, indicating a significant influence of the agricultural practices on 

community structure, but not on the overall diversity (Banerjee et al., 2019). These differences 

were further studied through co-occurrence network analysis, revealing that organic practices 

among all farming systems promote the highest number of interacting species and interactions 

between them (Banerjee et al., 2019). The authors argue that organic management of soils 
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represents a lower land use intensity with higher resilience (i.e., capacity to overcome 

environmental stress, without the loss of functionality in the system) than conventionally 

managed systems, which is reflected in the complexity of the network connectivity and the 

higher abundance of keystone taxa in organic soils (Banerjee et al., 2019). 

In recent years, the study of the effect of organic and conventional agricultural practices 

on microbial communities have received particular attention (Armalytė et al., 2019; Habig & 

Swanepoel, 2015; Lupatini et al., 2017). Using high throughput sequencing of the 16S rRNA 

marker gene, the structure, diversity, and richness of bacterial communities were evaluated under 

conventional and organic managed farmlands with chemical or non-chemical pathogenic control 

practices (Lupatini et al., 2017). Results from this study show higher richness and more 

heterogeneous and diverse microbial communities under non-chemical fertilization practices 

regardless of the pathogenic control method used (Lupatini et al., 2017). However, chemical, and 

non-chemical pathogen control practices do not affect the heterogeneity or diversity of microbial 

communities and only change the community composition, with overrepresentation of specific 

taxa under non-chemical fertilization and control practices (Lupatini et al., 2017). Aligned with 

these results, soils with similar structure and pH, show stable and similar microbial communities 

under conventional and organic farming systems, with no significant differences in any of the 

highly abundant taxa at the phylum level (Armalytė et al., 2019). However, at the genus level, 

there are small differences in the abundance of the least prevalent bacterial genera; while 

Rhodanobacter is found exclusively in conventional systems (Armalytė et al., 2019). 

Individual agricultural practices could have different impacts on soil microbial 

communities (Habig & Swanepoel, 2015). The direct input of organic fertilizers, such as 

compost or manure increases soil organic matter and therefore, triggers an increase in the 
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number of microorganisms that can utilize the available substrates (Habig & Swanepoel, 2015). 

Furthermore, the replacement of tillage with less disruptive plant protection methods, such as 

manual weed removal or biological control, allows more vulnerable microorganisms to 

proliferate and thrive in the environment, thereby contributing to increased soil microbial 

diversity (Lupwayi et al., 1998). In long-term studies, crop rotation systems have also revealed 

an impact on microbial community composition (Chavarría et al., 2016). For instance, soil 

undergoing monoculture for decades showed lower microbial diversity than those subjected to 

plant rotation systems (Chavarría et al., 2016). This difference is likely due to the single type of 

C input from monoculture sources, which over time narrows the niche to specialized 

microorganisms (Chavarría et al., 2016). Moreover, the crop type heavily influences fungal 

diversity in agricultural systems, primarily by the establishment of symbiotic relationships of 

fungi with specific plant families (Coleman et al., 2018; Hartmann et al., 2015). 

 1.4. Regenerative agriculture 

Agricultural systems drastically change soil environments and represent a threat to 

biodiversity conservation compared to natural ecosystems (Rodrigues et al., 2013). For example, 

the transformation of forest to agricultural lands results in the homogenization of soil microbial 

communities (Rodrigues et al., 2013). Therefore, considering that some agricultural practices 

represent more disruption to the soil environment than others, regenerative agriculture aims to 

improve approaches and reduce the conflict between productive land use and biodiversity 

conservation in agricultural lands (Bender et al., 2016). 

Regenerative agriculture involves an alternative land management approach, which 

includes the use of less disruptive practices to promote conservation of more diverse and 
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functional microbial communities (Bender et al., 2016). Under a sustainable agricultural 

framework, crop management promotes the elimination of tillage and the selection of plants to 

ensure diversity through the implementation of crop rotation, intercropping systems, or N-fixing 

legumes alternation (Bender et al., 2016). These cropping practices can stimulate the formation 

and input of organic matter and the creation of new habitats for diverse microbial communities, 

while it also enhances the availability of growth-limiting nutrients (Bender et al., 2016). Further, 

sustainable agricultural management considers soil bio-augmentation practices, which consists of 

the genetic manipulation and direct addition of functional microbial organisms to soil (Bender et 

al., 2016). Genetic manipulation refers to plant breeding and to the direct transformation of 

microbial-derived ecosystem functions to enhance nutrient cycling capacity, or to suppress 

denitrification mechanisms (Bender et al., 2016). In addition, the inoculation of beneficial 

organisms to soil, such as mycorrhiza or plant growth-promoting bacteria, could enhance 

nutrient uptake by plants, reduce nutrient loss, and stimulate C accumulation; contributing to soil 

health and plant productivity (Bender et al., 2016). Altogether, sustainable soil management 

strategies could also maximize OM accumulation and SOC storage by increasing microbial 

CUE. Through the selection of crop types and conservation strategies the input of OM increases 

to either generate positive feedback on microbial growth efficiency and biomass incorporation 

(Malik et al., 2018) or decrease the decomposition rates. 

 1.5. Soil Quality Monitoring Program (SQMP) 

The Soil Quality Monitoring Program (SQMP) was an initiative started in 1997, aiming 

to: (i) determine and monitor soil quality across the province of Alberta, (ii) evaluate the impact 

of the common farming practices on soil health, and (iii) identify and promote sustainable 

agricultural practices that ensure the conservation of soil (Cathcart et al., 2008). The program 
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consisted of nine consecutive years of sampling, from 1998 to 2006, in which soils from forty-

two established benchmark sites, representing the farming practices in each of the seven 

agricultural ecoregions of the province, were collected and analyzed. Pedological 

characterization of the sites was conducted as a first stage of the project (Cathcart et al., 2008). 

Soil sampling was conducted yearly, after harvest and before the soil reached 5 °C, consisting of 

composite samples at three slope positions along a catena (Upper, Middle and Lower) and two 

depths (0–15cm and 15–30cm) at each site (Cathcart et al., 2008). Soil physical and chemical 

indicators considered included: soil texture, bulk density, organic matter, pH, electro 

conductivity, ammonium, nitrates, phosphates, potassium, sulfates, organic carbon, light fraction 

of carbon, and light fraction of nitrogen (Cathcart et al., 2008). 

Over the course of the SQMP, the most common farming practices across Alberta 

consisted of annual cultivations, increasing forage usage in rotation, and reduced tillage, with 

irrigation practices in the Mixed Grassland ecoregion (Cathcart et al., 2008). Agricultural 

practices remained without major changes for the duration of the study (Cathcart et al., 2008). 

The temporal factor was mostly correlated with bulk density, which decreases over time, and to 

phosphorus concentrations which increases over time (Cathcart, 2008). The authors claimed that 

these two parameters are an important reflection of the long-term effect of farming practices 

(Cathcart et al., 2008). 

Overall, the Northern regions of the province exhibit a higher content of organic carbon 

than the Southern regions, with lower carbon content in the upper slope position (Cathcart et al., 

2008). The nutrient profile showed high levels of variation and no specific patterns (Cathcart et 

al., 2008). Soil texture, pH, cation exchange capacity and CaCO3 differ between different 

ecoregions of Alberta (Cathcart et al., 2008). These differences can be attributed to soil 
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formation processes and location-specific agricultural practices, even though the association of 

the latter with the mentioned physico-chemical parameters and soil health was not directly 

evaluated in the study (Cathcart et al., 2008). 

Survey data on farming practices was gathered for each benchmark site; however, this 

information was not integrated with the physical and chemical soil health indicators (Cathcart et 

al., 2008). Instead, main agricultural practices were grouped by ecoregion (Cathcart et al., 2008). 

Due to the high variation in physical and chemical soil health indicators, this approach did not 

allow the identification of patterns relevant to management practices (Cathcart et al., 2008). No 

biological indicators of soil health were included in the study (Cathcart et al., 2008; Chavarría et 

al., 2016; Habig & Swanepoel, 2015; Lupwayi et al., 1998). However, the data from the study 

remains available and soil samples collected were archived for future usage (Cathcart et al., 

2008). 

1.5.1. Agricultural Ecoregions of Alberta considered for the SQMP 

National ecological classification of Alberta’s territory consists of ecozones, ecoregions, 

and ecodistricts (from highest to lowest hierarchy) (Ecological Stratification Working Group, 

1996). Ecozones correspond to units with common biotic and abiotic characteristics at a 

subcontinental level; within ecozones, ecoregions are characterized by shared climatic conditions 

and dominant vegetation; and within ecoregions, ecodistricts share land relief, soil type, and land 

use (Ecological Stratification Working Group, 1996). New classification systems have been 

proposed provincially, with different hierarchical levels that consist of natural regions and 

subregions that differ from those first introduced nationally (Downing & Pettapiece, 2006). 
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Most agricultural activity in the province of Alberta is located across seven ecoregions: 

Mixed Grasslands, Moist Mixed Grasslands, Aspen Parklands, Fescue Grasslands, Peace 

Lowland, Boreal Transition, and Mid-Boreal Uplands (Cathcart et al., 2008). 

1.5.1.1. Mixed Grasslands ecoregions 

As part of the Prairies ecozone, the Mixed Grasslands (MG) ecoregion is semi-arid and is 

dominated by short and mid-sized grasses and sedges, accounting for approximately 95% of the 

above-ground vegetation, with no tree species found, except for valleys were shading and limited 

growth of deciduous trees occurs (Downing & Pettapiece, 2006). In Alberta, this ecoregion 

extends across the southern border with the United States, covering around 4.5 million hectares 

of land, with a mean elevation of 795 meters above sea level (m.a.s.l.) (Cathcart et al., 2008; 

Downing & Pettapiece, 2006). The Mixed Grasslands have mean annual temperatures (MAT) of 

5°C, 17.9°C for summer and -12.8°C during winter (Cathcart et al., 2008; Downing & 

Pettapiece, 2006). The mean annual precipitation fluctuates between 314 mm and 363 mm and 

moisture insufficiency is common during the summertime (Cathcart et al., 2008). The dominant 

soils in this ecoregion are Brown Chernozemic, Brunisolic and Solonetzic, predominantly with 

loamy texture, from glacial till, Cretaceous, lacustrine, and eolian deposits (Downing & 

Pettapiece, 2006). These conditions together mainly support the production of cereal grains; 

practicing fallow rotations is common in the region (Downing & Pettapiece, 2006). 

1.5.1.2. Moist Mixed Grasslands 

This ecoregion consists of the northern grasslands of the Prairies ecozone, with 

characteristic semi-arid conditions and a mean elevation of 880 m.a.s.l. (Cathcart et al., 2008; 

Downing & Pettapiece, 2006). The dominant vegetation are short and mid-sized grasses and 

deciduous shrubs. Deciduous trees can be found in valleys and river terraces (Downing & 
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Pettapiece, 2006). The dominant soils found in this ecoregion are Brown and Dark Brown 

Chernozems, and high occurrence of Solonetzic soils with sandy to clayey texture from glacial 

till and Cretaceous and lacustrine sediments (Downing & Pettapiece, 2006). The Moist Mixed 

Grasslands ecoregion presents a MAT of 2.5°C, with summer temperature of 16.9°C and winter 

temperature of -10.8°C (Cathcart et al., 2008; Downing & Pettapiece, 2006). Mean annual 

precipitation fluctuates between 368 mm and 422 mm (Cathcart et al., 2008). About 80% of the 

ecoregion is used for cultivation with focus on cereal grains and oilseeds; fallow rotations and 

minor irrigation in the southern region are standard agricultural practice (Downing & Pettapiece, 

2006). 

 1.5.1.3. Aspen Parklands 

In Alberta, this ecoregion as part of the Prairies ecozone extends throughout the northern 

apex of central Alberta and represents the transition between the Prairies and the boreal forests 

(Downing & Pettapiece, 2006). It is located in the transitional grassland climatic zone with a 

mean elevation of 775 m.a.s.l. (Cathcart et al., 2008; Downing & Pettapiece, 2006). Dominant 

vegetation consists of deciduous trees, mixed- tall shrubs, and fescue grasslands. Black 

Chernozemic and Gleysolic soils with loamy texture are predominant in the area, with 

Cretaceous shale, glacial till, lacustrine and fluvioglacial deposit parent material (Downing & 

Pettapiece, 2006). MAP fluctuates between 391 mm and 478 mm (Cathcart et al., 2008). The 

Aspen Parklands present a mean annual temperature of 1.5°C degrees, 16.5°C during summer, 

and –14.3°C during winter (Cathcart et al., 2008; Downing & Pettapiece, 2006). Soil conditions 

and fertility favors the productivity of several crops, such as a variety of cereal grains, oilseeds, 

forages, and specialty crops; continuous cropping of grain crops is common (Downing & 

Pettapiece, 2006).  
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 1.5.1.4. Fescue Grasslands 

This ecoregion consists of 14,926 km2 and is found in the Chinook belt climatic zone in 

southwestern Alberta bordering the Rocky Mountain Foothills and is part of the Prairies 

ecozone, with a mean elevation of 1100 m.a.s.l. (Cathcart et al., 2008; Downing & Pettapiece, 

2006). Dominant vegetation includes fescue grasslands, forbs, shrubs, and deciduous trees 

adjacent to watercourses in shaded locations (Downing & Pettapiece, 2006). Dark Brown and 

Black Chernozemic soils are predominant with loamy to clayey texture originating from shale, 

glacial till and lacustrine sediments (Downing & Pettapiece, 2006). Mean annual precipitation 

fluctuates between 427mm and 537mm, and the MAT is approximately 3.5°C, with 15.6°C 

during summer and -9.5°C during winter (Cathcart et al., 2008; Downing & Pettapiece, 2006). 

Agricultural practices include grazing, as well as grain and oilseed production, with tillage 

happening in the cultivated areas mostly in the northern portion of the ecoregion (Downing & 

Pettapiece, 2006). 

1.5.1.5. Peace Lowland 

As part of the Boreal Plains ecozone, this ecoregion extends across north-central Alberta 

and shows a sub-humid climate, with a mean elevation of 536 m.a.s.l. (Cathcart et al., 2008; 

Downing & Pettapiece, 2006). Dominant vegetation consists of deciduous trees, mixed-tall 

shrubs, and herbs. In Alberta Gray Luvisols, Solonetzic and Dark Gray Chernozemic soils are 

predominant, with clayey to sandy texture from till, and lacustrine and fluvial sediments 

(Downing & Pettapiece, 2006). This ecoregion presents a mean annual precipitation ranging 

from 435 mm to 517 mm and a MAT of 0.5°C, with 13.3°C during summer and -17.2°C during 

winter (Cathcart et al., 2008; Downing & Pettapiece, 2006). Agricultural activity in the region 

focuses on annual cropping of small grains and grasses (Downing & Pettapiece, 2006). 
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 1.5.1.6. Boreal transition 

This ecoregion encompasses central Alberta and is part of the Boreal Plains ecozone, 

with a sub-humid climate and a mean elevation of 697 m.as.l. (Cathcart et al., 2008; Downing & 

Pettapiece, 2006). Dominant vegetation consists of deciduous boreal forest, along with mixed 

herbs, tall shrubs, and sedges (Downing & Pettapiece, 2006). Gray Luvisolic and Dark Gray 

Chernozemic soils are predominant in the area, with Cretaceous shale glacial till and lacustrine 

sediments parent material (Downing & Pettapiece, 2006). Mean annual precipitation in the 

region fluctuates between 428 mm and 535 mm and presents a MAT of 1°C, 15.9°C during 

summer, and -15°C during winter (Cathcart et al., 2008; Downing & Pettapiece, 2006). 

Agricultural activity is important in the region with approximately 70% of the land designated to 

farming, dominated by cereal grains, oilseeds, and hay production (Downing & Pettapiece, 

2006). 

 1.5.1.7. Mid-Boreal uplands 

The Mid-Boreal Uplands consist of multiple separate upland areas. As part of the Boreal 

Plains ecozone, in Alberta this ecoregion extends throughout the Alberta Plateau from the north-

central region of the province to the Rocky Mountains foothills. It has a sub-humid climate and a 

mean elevation of 640 m.a.s.l. (Cathcart et al., 2008; Downing & Pettapiece, 2006). Vegetation 

in these areas consists of mixed-boreal coniferous and deciduous forest (Downing & Pettapiece, 

2006). Permafrost can rarely be found in peatlands and Gray Luvisolic soils are predominant, 

with low occurrence of Gleysolic and Brunisolic soils (Downing & Pettapiece, 2006). These 

soils exhibit mainly a loamy to clayey texture from Cretaceous shales, glacial till and lacustrine 

sediments, and coarse-textured soils from fluvioglacial sediments can also be found (Downing & 

Pettapiece, 2006). The mean annual precipitation in the region fluctuates between 400mm and 
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550mm, and the MAT is between -1°C and 1°C, with 15.5°C during summer and -16.4°C during 

winter (Cathcart et al., 2008; Downing & Pettapiece, 2006). Agricultural activity occurs in the 

southern portion of the ecoregion but is limited in the northern portion given the short growing 

season (Downing & Pettapiece, 2006). 

1.6. Research project 

1.6.1. Scientific problem 

Agricultural practices and land intensification represent major changes and perturbations 

to the soil environment. These practices alter soil physical, chemical, and biological attributes, 

thereby affecting soil functionality and overall health. In Alberta, there are approximately 

210,000 km2 of land used for agricultural purposes and impacted by farming practices. 

Therefore, assessing soil health becomes fundamental to ensure the long-term sustainability of 

agriculture as well as the conservation of the soil resource. Using soil physical and chemical 

indicators, the SQMP attempted to establish baseline data to be used as part of a long-term 

monitor program to assess changes in soil health across the different land slope positions and 

agricultural ecoregions of Alberta. However, the soil attributes measured by the SQMP did not 

allow the identification of major patterns (Cathcart et al., 2008) and the differences in soil 

condition were mainly attributed to the slope position. No biological attributes of soil were 

included in the SQMP and the relationships between the findings and the agricultural practices 

were not assessed, leaving a knowledge gap regarding whether farming practices in the province 

are related to soil biological degradation. The challenge of this study therefore is to identify soil 

biological characteristics that can be measured in order to evaluate the impact of agricultural 

practices in the soil health  
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1.6.2. Research questions and hypothesis 

Biological indicators of soil health were not included in the SQMP, in part due to the low 

practicability, and the high level of expertise required to do so (Cathcart et al., 2008). 

Considering the rapid growth of microorganisms along with their sensitivity to changes in soil 

physico-chemical properties and environmental conditions, such as those caused by agricultural 

practices, microbial communities appear to be suitable indicators of soil health in farming 

systems (Bowles et al., 2014; Tardy et al., 2015; Trivedi et al., 2016). Moreover, the SQMP 

findings indicate slope position and ecoregions may as well alter the soil physico-chemical 

environment in which microbes inhabit, possibly influencing microbial community structure and 

diversity in turn. 

Promoting microbial diversity in agricultural soils is crucial to enhance system 

functionality, and in turn to promote soil health (Habig & Swanepoel, 2015). High-throughput 

sequencing techniques currently available bring an affordable and practical opportunity to assess 

microbial communities in soil. Therefore, in this study I addressed the following questions:  

1. Do slope positions and ecoregions influence soil bacterial diversity and the structure of 

soil bacterial communities? 

2. How do agricultural practices in Alberta affect soil microbial community composition 

and diversity? 

I hypothesize that both slope position and ecoregions shape soil bacterial community 

structure and diversity. I also hypothesize that land management practices are important drivers 

of bacterial community structure and diversity. Hence, practices that are more disruptive to the 
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soil environment such as high tillage or chemical herbicide use, reduce soil microbial diversity 

and exhibit different microbial community structure than that of microbial communities 

undergoing more sustainable practices. 
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2. Chapter 2: Drivers of soil bacterial community composition in 

agricultural systems of Alberta and impact of farming practices 

on bacterial community structure, diversity, and dynamics. 

2.1. Introduction 

 Soil provides multiple ecosystem functions (Coleman et al., 2018; Lal, 2016). Namely, 

soil supports biological productivity, maintains environmental quality, and promotes plant, 

animal, and human health (Lal, 2016). The continued capacity of soil to perform these functions 

as a “vital living system” is known as soil health (Lal, 2016). Soil health is a non-directly 

quantifiable feature that reflects multiple soil physical, chemical, and biological attributes. Thus, 

in order to assess and quantify soil health, several indexes have been developed, commonly 

overlooking soil biological attributes fundamental for soil functioning (Adetunji et al., 2017; 

Amacher et al., 2007; Fine et al., 2017; Laishram et al., 2012; Lal, 2016; Pankhurst & CAB 

International, 1997; Xue et al., 2019). 

A soil health index is a single value that represents an integrative measure of the capacity 

of soil to perform ecosystem functions that imply the condition of soil (Adetunji et al., 2017; 

Bünemann et al., 2018; Pankhurst & CAB International, 1997). Given that soil health is a non-

directly quantifiable feature that considers multiple soil attributes, it is assessed using soil 

physical, chemical and biological attributes as measurable proxy indicators of the soil condition 

at a point in time and space (Adetunji et al., 2017; Bünemann et al., 2018; Pankhurst & CAB 

International, 1997). Single indicators are not representative of the entire soil condition and 

processes and are nor equally relevant for soil health (Norris et al., 2020). Therefore, to achieve a 

holistic and more sensitive and accurate view of soil health, indicators for all three type of 
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attributes must be considered (Adetunji et al., 2017; Amacher et al., 2007; Fine et al., 2017; 

Laishram et al., 2012; Lal, 2016; Pankhurst & CAB International, 1997; Xue et al., 2019). 

Some agricultural practices could potentially alter the soil's physical and chemical 

environment (Coleman et al., 2018; Lal, 2016). For instance, some heavy tillage practices cause 

physical disruption of the soil structure, could cause changes in soil aeration and drainage, and 

induce soil compaction in the long term (Ampoorter et al., 2007). The overuse of fertilizers, 

herbicides, and other chemical agents, can cause changes in the soil physicochemical properties; 

the availability, type, and amount of soil nutrients; and can trigger the accumulation of soil 

contaminants in soil (Carbonetto et al., 2014). Different crop types could also change soil 

chemistry (Habig & Swanepoel, 2015; Z. Li et al., 2021). Exudates from plants could potentially 

alter soil pH (Amacher et al., 2007; X. Li et al., 2014; Q. Liu et al., 2021; Niu et al., 2020), and 

different crops have different nutritional needs, which changes nutrients uptake from the soil (X. 

Li et al., 2014; Q. Liu et al., 2021; Niu et al., 2020). In agricultural systems, cover crops 

represent an important input of C to the soil (Duval et al., 2016). Different crops can provide 

different types of C, meaning that monocultures restrict the soil environment to a single C type 

(Duval et al., 2016). These physico-chemical and biological changes stress microbial 

communities living in soil and alter their composition and dynamics (Leff et al., 2015; Merloti et 

al., 2019). 

In Alberta, the Soil Quality Monitoring Program (SQMP) was initiated in 1997 and 

aimed to monitor soil conditions across the province, assess the impact of the most common 

agricultural practices (Cathcart et al., 2008), and provide guidelines for management to 

landowners (Cathcart et al., 2008). The program was conducted over nine consecutive years with 

a yearly soil sampling of benchmark sites paired with a pedological characterization and a survey 
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about agricultural practices at each site (Cathcart et al., 2008). Throughout the province, there 

was a decrease in soil bulk density and an increase in soil phosphorus concentrations over time 

(Cathcart et al., 2008). Ecoregions also differed in their pH, cation exchange capacity (CEC), and 

CaCO3 content; and these differences were attributed to different soil formation processes 

(Cathcart et al., 2008). The high variation in the nutrient profiles of the different soils of the 

province did not allow the identification of patterns or differences across ecoregion or slope 

positions (Cathcart et al., 2008). Organic C content was lower in the upper slope position of the 

landscape when compared to middle and lower slopes, and organic C was also higher in the 

northern regions of the province (Cathcart et al., 2008). The impact of the agricultural practices 

on the soil physical and chemical parameters was not assessed but information from the survey 

remains in a database (Cathcart et al., 2008). 

Microorganisms are crucial for soil functioning (Coleman et al., 2018; Fierer et al., 2021; 

Gusain et al., 2015; A. L. Khan et al., 2016; Tardy et al., 2015; Trivedi et al., 2016). They are 

basal feeders of trophic relationships (Coleman et al., 2018), form symbiotic interactions with 

plants (Coleman et al., 2018), and they can promote or produce auxins that stimulate root growth 

(A. L. Khan et al., 2016). Finally, they are involved in nutrient cycling, making the latter 

available for plant uptake (Coleman et al., 2018; Fierer et al., 2021; Gusain et al., 2015; A. L. 

Khan et al., 2016; Tardy et al., 2015; Trivedi et al., 2016). However, different soil 

microorganisms require specific physical and chemical conditions for their growth and activity; 

and the structure of microbial communities is also influenced by above-ground and below-

ground organisms (Bowles et al., 2014; Coleman et al., 2018; Kuzyakov & Blagodatskaya, 2015; 

Tardy et al., 2015; Trivedi et al., 2016). The contribution of microbial communities to soil 
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functionality along with their sensitivity to changes to the soil environment, make them suitable 

biological indicators of soil health in farming systems (Fierer et al., 2021). 

No biological indicators were included in the original SQMP assessment, in part due to 

the lack of methods available for their accurate assessment at the time and the high level of 

expertise required to analyze results (Cathcart et al., 2008). Modern techniques such as high-

throughput sequencing could provide a high level of resolution at a relatively low cost to assess 

microbial communities in soil (Fierer et al., 2021). Given the influence of the land slope position, 

ecoregions (Cathcart et al., 2008), and farming practices on the soil environment (Coleman et al., 

2018; Lal, 2016), in addition to the potential sensitivity of microbial communities to changes in 

soil, this study aimed to address the following questions: 

1. Do slope positions and ecoregions influence soil bacterial diversity and the structure of 

soil bacterial communities? 

2. How do agricultural practices in Alberta affect soil microbial community composition 

and diversity? 

The overall goal of the study is to identify soil biological characteristics that can be 

measured to evaluate the impact of agricultural practices on soil health. To address the objective, 

I revisited benchmark sites from the SQMP undergoing different crop types, tillage intensities, 

herbicides, and fertilization methods. Soils from these sites were distributed across the main 

agricultural ecoregions of Alberta and were evaluated at three different slope positions. Then, I 

characterized the physico-chemical environment and the bacterial communities of the soils using 

high-throughput sequencing of the 16S rRNA marker gene. I hypothesized that both slope 

position and ecoregions shape soil bacterial community structure and diversity. Also, I 
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hypothesized that agricultural practices are drivers of bacterial community structure and 

diversity; hence, (i) different crop types produce different soil microbial communities, (ii) 

physically disruptive tillage methods reduce soil microbial diversity and produce different 

microbial community structure than low till or no till methods, (iii) different fertilization 

methods produce different soil microbial communities, and (iv) chemical herbicide use reduces 

soil microbial diversity and produces different soil microbial communities than low or low 

herbicide usage. 

2.2. Materials and methods 

2.2.1. Soil sampling 

Soil samples were collected from benchmark sites of the SQMP during the fall of 2019 

after harvest once soil temperature reached ~5°C (Cathcart et al., 2008) (Figure S.1). Separate 

samples were collected for physico-chemical characterization and for microbial analyses. 

Twenty-four sites out of thirty-eight were sampled in 2019 due to the early onset of winter and 

soils freezing. The remaining 18 sites were sampled in fall 2020, following the same sampling 

protocols described here. Three soil samples (0–15 cm in depth) were collected for microbial 

analysis from each of three slope positions along a catena: upper (U), middle (M), and lower (L). 

For microbial analyses nine soil samples were collected per site using a soil sample probe of 5 

cm diameter. Replicates of soil samples were collected as three parallel soil cores at each 

landscape position. For physico-chemical analyses, composite samples were collected as a 

mixture of ten core samples in a three-meter radius from a central point at each slope position, 

for a total of three composite samples per site. Samples for bulk density were collected using a 

density core sampler of 10 cm height × 10 cm diameter. All samples were placed in separate 

labelled plastic bags inside a cooler with blue ice for same-day transportation to the laboratory. 
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2.2.2. Soil physico-chemical parameters  

Routine soil testing was performed by Element Materials Technology in Edmonton, AB 

by standard methods. Physical and chemical parameters measured included: bulk density, 

moisture content, pH, total carbon (C), total nitrogen (N), available ammonium (NH4
+), available 

nitrate (NO3
-), available phosphate PO4

-3, base saturation (BS), total exchange capacity (TEC), 

sodium (Na+), calcium (Ca+2) carbon to nitrogen ratio (C:N), total organic matter content (OM), 

percentage of silt content (0.05 mm–2 mm particle size), percentage of clay content (< 2 mm 

particle size), percentage of sand content (2.0-0.05 mm particle size), electrical conductivity 

(EC), cation exchange capacity (CEC), and chloride (Cl-).  

2.2.3. Samples preparation, DNA extractions and sequencing 

All soil samples for microbial analyses were homogenized by sieving at 4 mm, roots were 

removed by hand, and then soils were frozen at -80°C until DNA extraction was performed. 

Microbial DNA extractions were conducted in duplicates from 0.25 g of the sieved samples 

using the DNeasy PowerSoil Pro® kit (QIAGEN, Toronto, Canada), according to the 

manufacturer’s instructions. Samples were processed in batches of seven or less along with a 

blank. Duplicates of the extraction products for each sample were combined and the DNA 

concentration of the combined samples was measured with Qubit™ dsDNA HS assay kit 

according to the manufacturer’s protocol (Thermo Fisher Scientific, Ottawa, Canada). A mock 

community was created using DNA from 10 known different bacterial species as a positive 

control. Soil DNA samples, positive controls, and extraction blanks were sent to Microbiome 

Insights (Vancouver, Canada) for high throughput sequencing. Primers 515F and 806R targeting 

the V4 region of bacterial 16S rRNA were used to PCR-amplify the DNA of each sample 

(Caporaso et al., 2016). The resulting amplicon was sequenced by the ILLUMINA MiSeq 
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platform using the 250-bp paired-end kit ((V2 500-cycle PE Chemistry, Illumina, USA) based on 

the protocol recommended by the Earth Microbiome Project (EMP). 

2.2.5. Bioinformatics 

The quality profile of the demultiplexed sequences received from Microbiome Insights 

was evaluated separately for forward and reverse reads to determine the trimming and filtering 

parameters required, using the DADA2 package (Callahan et al., 2016) in Rstudio V. 1.3.959 

(RStudio Team, 2020). The last ten nucleotides of the forward reads were trimmed at 240 bp, 

and the last thirty nucleotides of the reverse reads were trimmed at 220 bp. No ‘N’ nucleotides 

were allowed for further generation of Amplicon Sequence Variants (ASVs), and the parameters 

maxEE and truncQ were set as default (Callahan et al., 2016). ASVs consisted of inferred unique 

sequences from the core sample inference algorithm clustered at 100% of similarity in DADA2 

and were considered as analogous to bacterial species in this study (Callahan et al., 2016). Pair-

end reads were merged and mapped to the ASVs previously generated into a table including 

reads count (Callahan et al., 2016). Following this, chimeras were removed, and taxonomy was 

assigned using the Silva database v. 132 in DADA2 (Callahan et al., 2016). Given the large size 

of the combined data from 2019 and 2020, the initial steps of the sequences cleaning and the 

generation of ASVs were performed separately for the two years to improve the computational 

power for data processing. Identification of contaminant ASVs was conducted using the 

Decontam package (Davis et al., 2018), with combined methods of prevalence and frequency, 

and with batch assignation. Indicated contaminants were removed accordingly, obtaining a total 

of 13,352 ASVs for the 2019 samples and 10,587 ASVs for the 2020 samples. ASV tables from 

sampling years 2019 and 2020 were merged, obtaining a total of 18,827 ASVs. Data was 

normalized by rarefaction to 4522 reads (Supplementary Figure 2), which corresponded to the 
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number of reads of the sample with the lowest reads among all, using the “total group” algorithm 

in Mothur v.1.41.3. (Schloss et al., 2009), eliminating blank samples, and obtaining a total of 

17,242 ASVs. Total number of reads obtained at the different stages of samples processing can 

be found in Supplementary Table 1. Finally, using the phyloseq package (McMurdie & Holmes, 

2013) in R, ASVs corresponding to Archaea and mitochondria were removed. 

2.2.3. Agricultural practices survey 

Information regarding specific farming practices of the corresponding sampling year 

(2019 or 2020) was obtained from an online survey based on the original SQMP data (UofA 

Human Ethics Pro00092032). Surveys were voluntarily filled out by landowners or the producers 

from each of the sites; information was gathered for twenty-six of the thirty-eight sites 

(Supplementary Table 2). Information was extracted regarding farming practices, including crop 

type, tillage intensity, herbicide used, and fertilization methods. For this study, answers related to 

tillage intensity and herbicide used were assigned to predetermined categories for each practice 

accordingly as follows (i.) “zero” if no tillage practices were conducted, “low” if there was only 

one tillage pass, and “high” if there were two or more passes; (ii.) “Glyphosate” if the main 

active agent of the herbicide used was glyphosate, “other” if the main active agent of the 

herbicide used was different to glyphosate, including chlorophenol, ethalfluralin, tribenuron-

methyl, and florasulam, or “none” if no herbicide was applied. Fertilization methods included 

fertilization banded with seed, banded without seed, broadcast, and none. Crop types included 

alfalfa seeds, barley, canola, durum, fallow, forage, hay, livestock, sugar beets, wheat, and none. 

Crops under the “none” category consisted only of abandoned sites. Given the low number of 

samples in some of the crop types, for the co-occurrence network analysis fallow sites were 
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combined with none sites, and alfalfa seed sites were combined with sugar beets sites under the 

“special crops” category. 

2.2.6. Statistical analyses 

Statistical analyses were conducted using RStudio v.1.3.959 (RStudio Team, 2020). 

Given the low variation in bacterial community structure observed among replicate samples of 

the same slope position at each site compared to that of samples between sites (Supplementary 

Figure 3), sample replicates were merged to obtain mean values for read counts of ASVs. After 

merging, only one mean sample from the upper slope, one mean sample from the middle slope, 

and one mean sample from the lower slope remained per site. 

Since the initial SQMP survey showed differences in the organic matter content of 

different slope positions and ecoregions, the influence of these two factors on soil bacterial 

community composition was evaluated (Cathcart et al., 2008). Analysis comparing bacterial 

communities and physicochemical parameters across slopes and ecoregions was performed using 

the entire data set. However, for analyses of the agricultural practices data, only the twenty-six 

sites with complete surveys were considered. Each of the agricultural practices evaluated were 

treated separately due to low replicability of treatment combinations, i.e. lack of samples that 

represent all possible combinations of the four agricultural practices. 

For each slope position, ecoregion, tillage intensity, crop type, herbicide, and fertilization 

system, the observed number of ASVs, the Chao1 richness estimator, Inverse Simpson Index, 

and Pielou’s evenness index were calculated using the phyloseq (version 1.30.0; McMurdie & 

Holmes, 2013) and microbiome packages in R (version 1.8.0; Lahti & Shetty, 2017). For 

normally distributed data, an ANOVA test followed by a Tukey pairwise comparison test was 

performed to evaluate significant differences in α-diversity metrics across slope positions, 
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ecoregions and the different agricultural practices. If data were not normally distributed, a 

Kruskal Wallis test followed by a Dunn’s pairwise comparison test was performed following a 

Benjamini & Hochberg adjustment to evaluate significance differences in α-diversity for each 

parameter tested. Relative abundance of the ASVs was calculated and taxonomic profiles of the 

different slope positions, ecoregions, and agricultural practices were visualized in stack bar plots 

generated using phyloseq V 1.30.0 and ggplot2 V 3.3.3 (Wickham, 2016) packages in R. To 

compare the composition of the soil bacterial community between slopes, ecoregions and 

agricultural practices, a Hellinger transformation was applied to the ASV read counts table 

(Legendre & Borcard, 2018), and data were visualized in a non-metric multidimensional scaling 

ordination (NMDS) using Bray-Curtis dissimilarity in the Vegan V 2.5.6 (Oksanen et al., 2019) 

package in R. An PERMANOVA test was used to evaluate pairwise comparisons between the 

corresponding ordination clusters to evaluate differences in the composition of bacterial 

communities across slopes, ecoregions, and agricultural practices (Martinez, 2020). To examine 

differences in heterogeneity of bacterial communities withing each of the evaluated factors, a 

Bray-Curtis dissimilarity matrix was generated, and a pairwise-Wilcox rank test was performed 

on the matrix to examine the significance of the differences. 

To visualize soil physico-chemical profiles across slope positions, ecoregions and 

agricultural practices, physico-chemical data was centered, scaled, and multicollinearity between 

variables was evaluated through a variance inflation factor test with a threshold of 10, using the 

usdm package V1.1-18 in R (Naimi et al., 2014). Highly correlated variables were excluded for 

further analysis: total N, total C, Sand content, and Na concentration. Following, data was 

visualized with a Principal Component Analysis (PCA) using Euclidean distance algorithm for 

each slope, ecoregion, tillage intensity, crop type, herbicide, and fertilization system. Slopes and 

ecoregion were compared using a pairwise PERMANOVAs (Martinez, 2020) test based on the 
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PCA ordination clusters. Differences in the heterogeneity of soil physico-chemical parameters 

were evaluated with the Euclidean distance matrix paired with a Kruskal-Wallis test followed by 

a pairwise-Wilcox rank test. 

The top twenty Indicator species for each of the agricultural practices tested were 

identified through random forest modeling for predictor ASVs with 100 iterations, using 

phyloseq and randomForest V 4.6.14 (Liaw & Wiener, 2002) packages in R (Supplementary 

Figure 8). This model identifies species that are specific to an indicated habitat based on its 

prominence. In this study, indicator ASVs were identified as bacterial species that are affected 

by specific agricultural practices.  

To examine the impact of farming systems on the bacterial community dynamics, 

interactions among soil bacterial communities undergoing the different agricultural practices 

were compared through co-occurrence network analysis using CoNet (Faust & Raes, 2016) in 

Cytoscape V 3.8.0 (Shannon, 2003). Accounting for the different number of samples in each 

category within an agricultural practice, data subsets were generated randomly based on the 

minimum samples in a category, e.g., for tillage intensity practices, if only three sites (nine 

samples) corresponded to high tillage, only three random sites were taken from low tillage and 

zero tillage for the network analyses. Only ASVs representing > 1% of the total community were 

included for co-occurrence analyses (Shannon, 2003). Networks were constructed with a 0.75 

threshold for both Pearson and Spearman correlation, a 0.2 threshold for Bray Curtis 

dissimilarity distance, and a Fisher’s Z P-value threshold of 0.05 for each subset of read counts 

table of ASVs, and their respective taxonomy and physico-chemical data (Shannon, 2003). 

Given the low number of samples in each network, no further filtration was applied, except for a 

parent-child exclusion (Shannon, 2003). Networks of each category within an agricultural 

practice were intersected and compared with an ANOVA test in R. Network aspects evaluated 
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included: (i) size, indicated by the number of nodes, i.e., participating ASVs, (ii) connectivity, 

indicated by the number of edges, i.e., interactions among the participating ASVs, (iii) behavior, 

calculated as positive to negative connections rate, (iv) complexity, indicated by the average 

degree, i.e., edges per node; (v.) modularity, indicated by the average cluster coefficient, i.e., 

proportion of potential links that are occurring, and (vi) centrality, indicated by the average 

closeness centrality, i.e., the distance between each pair of nodes (Banerjee et al., 2019; Karimi 

et al., 2017). 

  A multivariate regression tree was built with 100 cross validations to determine 

predictors of the soil bacterial community distribution among all physical, chemical, and 

agricultural parameters, using the mvpart package (version 1.6.2) in R (Therneau & Atkinson, 

2014). Variables with positive co-linearity were also removed from the analysis as well as 

instantaneous moisture content because it is not an inherent attribute of soil (Naimi et al., 2014).  

2.3. Results 

2.3.1. Impact of slope position and ecoregion on soil attributes: re-evaluating 

SQMP findings 

Non-significant results for the influence of slope position on the different soil attributes 

are found in the following supplementary material: Supplementary Tables 3 and 4, and 

Supplementary Figures 4.A, 5.A, and 6.A. 

Soil physico-chemical properties and composition of soil bacterial communities did not 

differ across slope positions (Table 1). However, the variability of both physico-chemical 

properties and bacterial communities differ across slope positions. Physico-chemical properties 

of soils at mid-slope were the least variable, followed by soils at the upper slope, and lastly by 
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soils at the lower slope (Supplementary Figure 4.B). Bacterial communities at the lower slope 

position had a significantly higher heterogeneity than either middle or upper slope positions 

(Figure 5.B). Bacterial taxonomic profiles at the order level and alpha diversity indexes showed 

no differences according to slope. Overall, slope position only influenced the variability of soil 

bacterial communities and physico-chemical properties, but it did not affect bacterial community 

composition or diversity (Table 1). 

Physical and chemical parameters of soils in the different ecoregions were significantly 

different (Figure 1.A; Supplementary Table 5); these differences can mostly be attributed to 

differences in the variability of these parameters. Variability was significantly lower in the 

Fescue Grasslands ecoregion, followed by Mixed Boreal and Moist Mixed grasslands ecoregion 

when compared to the other agricultural ecoregions of Alberta considered in this study (Figure 

1.B). In a similar manner, bacterial community composition differed across ecoregions (Figure 

2.A; Supplementary Table 6); the only exception was the bacterial communities in the Fescue 

Grasslands and the Moist Mixed Grassland ecoregions, which were not significantly different to 

each other. Differences in bacterial communities across ecoregions were likely influenced by 

their heterogeneity (Figure 2.B). There was comparable bacterial community heterogeneity in 

Aspen Parkland, Boreal Transition, Mixed Grassland, and Peace Lowland ecoregions. Bacterial 

community heterogeneity was significantly lower in Moist Mixed Grassland, Mixed Boreal, and 

Fescue Grassland ecoregions; the bacterial community heterogeneity in these three ecoregions 

did not differ significantly (Figure 2.B). These results follow the same trends found for the 

physical and chemical parameters, except for the Fescue Grassland ecoregion that had the lowest 

variability in soil physical and chemical parameters, but the most heterogeneous bacterial 

community, among all the ecoregions. 
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Taxonomic profiles of bacterial communities at the phylum level were similar across 

ecoregions (Figure 3.A). Nevertheless, specific dominant taxa were overrepresented according to 

the ecoregion, e.g., Firmicutes exhibited a higher abundance in the Mixed Boreal ecoregion 

when compared to all other regions (Figure 3.A). Among all alpha diversity indexes, only 

richness of bacterial communities was significantly different between the Mixed Grassland 

ecoregion and the Aspen Parkland ecoregion, as indicated by the Observed Chao1 indexes 

(Figure 4.A). Altogether, ecoregions influenced soil physico chemical parameters and their 

heterogeneity as well as bacterial community composition and diversity. 

2.3.2. Impact of agricultural practices on soil attributes 

Given the similar responses of bacterial community composition and diversity to the 

various agricultural practices, tillage intensities and crop types are presented as examples 

through the results and discussion referent to the different farming practices. Results about the 

impact of herbicide use and fertilizer are found in the following sections of the supplementary 

material: Supplementary Tables 11-14, and Supplementary Figures 4-7. 

2.3.2.1. Impact of agricultural practices on soil physico-chemical parameters 

Soil physico-chemical profiles did not differ across the evaluated agricultural practices (Table 1, 

Supplementary Tables 7, 9, 11 and 13), with the exception of tillage intensity, which exhibited 

different physico-chemical profiles between zero and no tillage (Figure 1.C; Supplementary 

Table 7). In all cases, the soil physico-chemical variability was influenced by the different 

agricultural practices evaluated (Table 1). Variability was significantly lower in sites with high 

tillage than in sites with zero and low tillage respectively (Figure 1.D). Among crop types, lower 

variability was observed in sites with hay, forage, or no cover crop (Figure 1.F). Sites where 

glyphosate was used exhibited significantly lower heterogeneity in the soil physico-chemical 
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parameters than sites that applied a non-glyphosate-based herbicide type or no herbicide 

(Supplementary Figure 4.D). Unfertilized sites and sites broadcast fertilized showed similar 

levels of physico-chemical heterogeneity, which was significantly higher than that of soils 

fertilized with banded methods (Supplementary Figure 4.F). 

2.3.2.2. Impact of agricultural practices on soil bacterial community composition. 

Despite bacterial community composition overlapping across the different agricultural 

practices, significant (i.e., p-value<0.05) and marginal (i.e., p-value between 0.05 and 0.1) 

differences were observed among them (Table 1; Supplementary Tables 8, 10, 12, 14). These 

differences were mainly attributed to bacterial heterogeneity. For example, soil bacterial 

communities under different tillage intensities exhibited significantly lower heterogeneity for 

high tillage compared to low and zero tillage (Figure 2.D). Across crop types, communities in 

fallow and alfalfa sites were distinct from those with other cover crops (Figure 2.E; 

Supplementary Table 10). Interestingly, bacterial communities in sites without a crop differed 

only when compared communities in canola crops (Supplementary Table 10). Relative to the 

other crops, canola harboured the most different bacterial communities, which were different 

from all other crop types except for communities in sites with livestock (Supplementary Table 

10). Following canola crops, barley and wheat crops also exhibited different soil bacterial 

communities to those found in most crops considered in the study (Supplementary Table 10). 

Marginal differences were observed in bacterial communities between several crop types 

(Supplementary Table 10). Overall, differences observed among soil bacterial communities 

among crop types were also driven by heterogeneity, which was lower in sites with no crop or 

special crops, and higher in wheat crops and sites with livestock (Figure 2.F). Across herbicide 

treatments, significantly lower heterogeneity was observed for bacterial communities undergoing 
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the use of herbicides regardless of whether it was glyphosate or other, and when compared to 

sites with no herbicide use (Supplementary Figure 5.D). Across fertilization methods fertilization 

banded without seed exhibited the least heterogeneous communities followed by those from sites 

with fertilization banded with seed, and then by communities in sites fertilized broadcast or 

unfertilized indistinguishably (Supplementary Figure 5.F). 

2.3.2.3. Impact of agricultural practices on bacterial diversity 

Taxonomic profiles at the phylum level were similar across the different agricultural practices, 

with minimum discrepancies in the relative abundance of dominant taxa (Figures 3.B and 3.C; 

Supplementary Figures 6.B and 6.C). Richness indexes did not differ across any of the 

agricultural practices (Figures 4.B and 4.C; Supplementary Figures 7.B and 7.C). However, 

Pielou’s index indicated an influence of the different farming practices on the evenness of 

bacterial communities, meaning that different practices may lead to an overrepresentation of 

specific taxa in the system. For example, sites with high tillage harbored communities with 

significantly lower evenness when compared to sites with low and high tillage intensities, with 

higher abundance of Verrucomicrobia and Gemmatimonadetes, and lower abundance of 

Bacteroidetes compared to communities under zero tillage (Figure 4.B). Moreover, crop type 

influenced both soil bacterial evenness and richness (Figure 4.C). For instance, the lowest 

evenness was found in communities of sugar beet crops compared to all crop types considered. 

Hay crops exhibited communities with the lowest richness, and the special crops (i.e., alfalfa 

seeds and sugar beets) showed communities with the highest richness among all crop types 

considered. 
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2.3.2.1. Impact of agricultural practices on co-occurrence networks of bacterial communities 

Tillage practices altered the centrality, complexity, and behavior of the bacterial 

community. Co-occurrence network analysis indicated high tillage practices harbor soil bacterial 

communities with the lowest number of nodes but highest number of connections between them, 

when compared to low and zero tillage practices (Table 2.A, Supplementary Figure 9). Low 

tillage exhibited communities with the highest number of nodes among the tillage systems, and 

zero tillage showed the communities with the lowest number of edges (Table 2.A, 

Supplementary Figure 9). Positive to negative connections ratio was higher in soil communities 

with no tillage practices and lower in communities undergoing high tillage practices. Network 

average degree revealed higher complexity of soil bacterial communities under high tillage 

practices than that of communities under low or zero tillage (Table 2.A, Supplementary Figure 

9). However, the clustering coefficient of bacterial communities only differed between high and 

low tillage, exhibiting higher centrality in high intensity systems. 

Differences in the interactions of bacterial communities in different crop types were 

identified (Table 2.B, Supplementary Figure 10), indicating cover crop influence the dynamics of 

soil bacterial communities. Among all crop types, the lowest number of nodes was found in 

communities from special crops and the highest in communities from sites with livestock (Table 

2.B, Supplementary Figure 10). Edges of connectivity were higher in communities from sites 

with no crops and lower in communities from special crops when compared to all crop types. 

Across crop types, positive to negative connections were higher in bacterial communities from 

canola crops and lower in communities from sites with no crop (Table 2.B, Supplementary 

Figure 10). Complexity of soil bacterial communities in uncultivated sites was significantly 

higher than in all crops analyzed (Table 2.B, Supplementary Figure 10). Bacterial communities 
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from special crops and uncultivated sites exhibited significantly higher closeness centrality and 

communities from canola crops exhibited lower centrality than communities from all other crops 

(Table 2.B, Supplementary Figure 10). 

The different herbicides used influenced the interactions among the bacterial community. 

For instance, results revealed soil bacterial communities with a similar number of nodes but 

lower number of connections in sites where glyphosate was applied, when compared to sites that 

used other or no herbicides (Table 2.C, Supplementary Figure 11). A higher positive to negative 

connections ratio was also observed in bacterial communities undergoing the use of glyphosate 

(Table 2.C, Supplementary Figure 11). Moreover, the complexity of the community was 

significantly lower in sites that used glyphosate-based herbicides, followed by that of 

communities with no herbicide used (Table 2.C, Supplementary Figure 11). Both complexity and 

centrality were significantly higher in soil bacterial communities from sites that used non-

glyphosate-based herbicides, compared to sites with no herbicide and sites where glyphosate was 

applied (Table 2.C, Supplementary Figure 11). 

Likewise, co-occurrence network analysis indicated the fertilization method affected 

microbial community dynamics. Among all fertilization systems, soil bacterial communities with 

the highest number of nodes were found in unfertilized sites, followed by sites with fertilization 

banded with seed, and by sites with broadcast fertilization and fertilization banded without seed 

(Table 2.D; Supplementary Figure 12). The interactions of soil bacterial communities from sites 

where fertilizer was applied with seed were the most different, with the lowest number of edges, 

the highest number of positive to negative connections ratio, and with significantly lower 

average degree and closeness centrality than all other fertilization methods (Table 2.D; 

Supplementary Figure 12). 
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2.3.3. Predictors of soil bacterial community composition 

Among all physico-chemical parameters and farming systems, only pH and ecoregions 

predicted bacterial community composition, but together, these two parameters only accounted 

for 14.8% of the biological variation, explaining 11.1% and 3.7% respectively (Figure 5). The 

multivariate regression tree analysis identified a threshold of 6.35 for the soil pH, at which the 

bacterial community composition differentially shifted. When soil pH was higher than the 

threshold, the ecoregion does not influence the bacterial community composition. In contrast, at 

pH lower than 6.35 bacterial communities from soils in the Mixed grassland and Peace Lowland 

ecoregions distinctively shifted from those the other ecoregions included in the study, indicating 

an influence of climate and soil type in biological variability. Contrary to the expected, no 

agricultural practices were found to be a driver of bacterial community composition in Alberta's 

soils. 

2.4. Discussion 

2.4.1. Ecoregion rather than slope position shape soil physico-chemical and 

biological attributes  

I hypothesized that both slope position and ecoregions influence the composition of soil 

bacterial communities. However, contrary to the expected, my results indicate that slope position 

is not a major driver of soil bacterial community structure or diversity in Alberta’s agricultural 

land. The influence of slope position on individual soil physico-chemical parameters has been 

widely reported (Cathcart et al., 2008; Khan et al., 2013; Miheretu & Yimer, 2018). Parameters 

such as soil bulk density, EC, available phosphorus, organic matter, total C, total N, pH, CEC, 

sand, clay, and silt content vary by the slope position in the land (Cathcart et al., 2008; F. Khan 

et al., 2013; Miheretu & Yimer, 2018). However, contrary to these findings, my results suggest 
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that the effect of landscape undulation on individual soil physico-chemical parameters does not 

differentiate the soils; instead, it affects the heterogeneity of the soil physico-chemical 

environment, and in response, the heterogeneity of soil bacterial communities (Table 1), with 

higher variability at the lower slope. Differences in soil physical and chemical heterogeneity are 

presumably due to soil and water erosion processes, which remove or move nutrients, ions, and 

soil particles downwards, from the upper and the middle slope to the lower slope position, 

accumulating them at the bottom with patchiness (Khan et al., 2013; Miheretu & Yimer, 2018). 

In line with  expected, heterogeneity of bacterial communities reflected the variability of soil 

physico-chemical parameters, probably due to the response of bacterial communities to changes 

in the soil environment (Leff et al., 2015; Merloti et al., 2019). In addition, heterogeneity of soil 

physical, chemical, and biological parameters in this study could also be influenced by different 

elevations of the slopes in Alberta’s soils. That is some of the sampled sites corresponded to 

undulated landscapes with sharp slopes; however, the representation of the slope was not 

accurate in flatter sites. Those flat sites may have exhibited more uniform parameters than those 

with pronounced slopes, which may have affected the heterogeneity found for a specific slope 

position. Elevation measurements could be included in future studies to assess the correlation 

between soil parameters and slope.  

Ecoregions in this study represent mainly areas with differences in climatic regimes and 

soil types (Cathcart et al., 2008; Downing & Pettapiece, 2006; Ecological Stratification Working 

Group, 1996). Therefore, differences among the soil physico-chemical parameters could be 

related to either regional climatic conditions, as climate is a soil formation factor and could alter 

soil conditions (Brady & Weil, 2010) (Figure 1.A); or to the origin and composition of different 

parent materials, which could also influence the formation and evolution of the subsoil and 
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topsoil layers over time (Brady & Weil, 2010). The influence of parent material on multiple 

physico-chemical parameters such as pH, EC, nutrient availability, particle size composition, and 

organic carbon content has been reported previously, as has been the differential response of soil 

parameters to agricultural management in soils with different parent material (Gruba & Socha, 

2016; Hartemink & Bridges, 1995; Orgill et al., 2017; Zhang et al., 2019). For instance, under 

the same farming system of unfertilized sisal crops, Ferralsolic soils exhibit a drastic loss of 

fertility when compared to Cambisolic soils, with a drastic acidification and loss of exchangeable 

bases (Hartemink & Bridges, 1995). Resonating with this study, my findings suggest that 

differences in soil physico-chemical properties across ecoregions could be associated with 

different responses of soil type to agricultural practices. Climate differences across ecoregions 

could also be playing a major role in shaping different soil physico-chemical profiles (Soriano-

Soto et al., 1995). However, data obtained in this study is insufficient to differentiate the 

contribution of climate and soil type to the soil physico-chemical behavior. Furthermore, 

different ranges of variability across ecoregions may be attributed to: (i) different agricultural 

practice across sites within the same ecoregion; (ii) differences in the climatic conditions (Orgill 

et al., 2017; Zhang et al., 2019); namely, ecoregions with a larger land extension could undergo 

climatic factors that are specific to smaller areas, thus increasing the variability between sites 

from the same ecoregion; and (iii) different number of sites sampled from each ecoregion. 

Quantification of the different metrics used to evaluate physico-chemical and biological 

attributes of soil may have been affected by the discrepancies in the number of sampled sites 

withing the different ecoregions. For instance, the variation of physico-chemical parameters and 

bacterial communities may be underestimated for the Fescue Grasslands as only one site from 

this ecoregion was included in the study (Figure 1.B). One site is not representative of the 
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spectrum of the soil condition in the ecoregion, and samples from this site are likely more similar 

between them than samples from ecoregions that include numerous sites. In a similar manner, 

other metrics included, such as soil physico-chemical profile, bacterial community composition 

and diversity could have also been biased by this factor. 

Different climatic conditions and soil type may also affect the composition of microbial 

communities across ecoregions (Barreiro et al., 2022). A recent study using PLFA revealed 

bacterial biomass and structure of bacterial communities to be more responsive to regional 

climate than to land-management intensity (Barreiro et al., 2022). Moreover, climatic factors and 

soil physico-chemical parameters were identified as drivers of bacterial niche differentiation 

globally (Barreiro et al., 2022). Several studies have shown the relationship between soil type 

and microbial communities (Trivedi et al., 2017; Ulrich & Becker, 2006; Wagai et al., 2011). In 

arable soils, the bacterial community structure and composition is influenced by soil texture and 

parent material (Ulrich & Becker, 2006). Correspondingly, soil bacterial community composition 

was found to be influenced by ecoregion (Figure 2.A), with the same behavior as the soil 

physico-chemical parameters. Ecoregions shape bacterial community composition and 

heterogeneity (Figure 2.B), likely due to the indirect effects of the soil type and climate history 

on the soil physico-chemical characteristics, which define the resources available and the 

environment of the bacterial habitat (Canarini et al., 2021; Soriano-Soto et al., 1995). For 

instance, parent material largely determines soil pH (Alfaro et al., 2017; Gruba & Socha, 2016; 

Hartemink & Bridges, 1995; Orgill et al., 2017; Zhang et al., 2019), which has been identified in 

multiple studies as an important predictor of bacterial community composition and diversity 

(Alfaro et al., 2017; Lauber et al., 2009; Leff et al., 2015).  
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While ecoregions play an important role in shaping bacterial community composition, 

they have little influence on the overall bacterial diversity, although diversity was reduced in the 

Aspen Parkland and increased in the Mixed Grassland relative to other ecoregions. Soils from 

both ecoregions are predominantly Chernozemic with loamy texture (Cathcart et al., 2008). 

Additionally, climatic conditions of the two ecoregions have similar mean elevation, mean 

annual temperatures, and mean precipitation in respect to other ecoregions (Cathcart et al., 

2008). Differences in soil bacterial diversity by ecoregion may be therefore attributed to other 

factors, such as: (i) the different agricultural practices in these two ecoregions, which results 

indicate have an influence on bacterial diversity. In the Aspen Parkland ecoregion, practices 

include continuous cropping of cereal grains, while in the Mixed Grassland ecoregion fallow is a 

common practice among farmers (Downing & Pettapiece, 2006). In my study, fallow sites 

exhibited an increased overall bacterial diversity than most cultivated sites, which could be 

contributing to the increased diversity in the Mixed Grassland ecoregion and the decreased 

diversity in the Aspen Parklands where fallow practices are uncommon (Downing & Pettapiece, 

2006). (ii) to the effect of the predominantly lower soil pH observed for the Aspen Parkland 

ecoregion; as pH has been reported to correlate with bacterial diversity in arable soils and at 

different spatial scales (Lauber et al., 2009; Rousk et al., 2010). 

2.4.2. Agricultural practices have minimal effect on soil bacterial community 

composition and diversity but affect the dynamics of the community. 

I hypothesized that agricultural practices are drivers of bacterial community composition 

and diversity. Nevertheless, this hypothesis was rejected. Results indicate agricultural practices 

play a major role determining the variability of soil physico-chemical parameters, which has 

been previously observed (Ozgoz et al., 2013; Tsegaye & Hill, 1998) (Table 1; Figures 1.D and 
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1.F). However, differences in the variability of these parameters do not necessarily imply 

changes in the entire soil physico-chemical profiles. For example, soils undergoing high tillage, 

had significantly lower physico-chemical heterogeneity than low and zero tillage (Figure 1.C), 

probably due to the frequency of the soil nutrients redistribution and homogenization process 

that tillage represents (Le Guillou et al., 2019). However, results suggest that only soil 

physicochemical profiles under low and zero tillage are different from each other. The lack of 

distinction of these two profiles from those in high tillage indicate that differences in the 

physico-chemical profiles are unrelated to the heterogeneity of these parameters. All the other 

practices, namely, different crop types, herbicide use, and fertilization systems also affected the 

variability of soil physico-chemical parameters, but unlike tillage, with no effect on the physico-

chemical profiles. 

Given that bacterial community heterogeneity followed similar patterns to those observed 

for the physicochemical variability under the different agricultural practices, results suggest the 

heterogeneity of bacterial communities is indirectly influenced by different practices. For 

example, high homogeneity of soil microbial communities in highly tilled soils was observed 

when compared to that of communities undergoing low tillage or zero-tillage practices (Figure 

2.D); probably as a reflection of the variability of soil physico-chemical parameters influenced 

by the different practices. In line with previous reports, physico-chemical variability across crop 

types was reflected in the heterogeneity of the soil bacterial communities associated with each 

crop (Doi & Ranamukhaarachchi, 2009), except for soils from alfalfa seeds and sugar cane 

crops, which exhibited high physico-chemical heterogeneity but low bacterial heterogeneity 

(Figure 2.F). Nitrogen input from alfalfa (an N-fixer plant) and the sugar-rich roots of sugar beet 

plants may be enriching for soil bacterial communities that are more suitable for homogeneous 
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copiotrophic communities which differentiate from those communities found in other crops 

(Delgado-Baquerizo et al., 2017; Huang et al., 2019; Niu et al., 2020).  

Unlike physico-chemical parameters, for which differences in their variability did not 

imply (or seemed unrelated to) differences the entire soil physico-chemical profile, findings 

revealed that differences in bacterial heterogeneity under different agricultural practices could 

contribute to the differentiation of the composition of soil bacterial communities. These findings 

indicate bacterial community composition exhibit higher resolution than soil physico-chemical 

parameters for revealing differences in the condition of soils from agricultural systems, as it has 

previously been reported (Bouchez et al., 2016; Thiele-Bruhn et al., 2020). In most cases, 

significantly different bacterial communities overlapped in the ordination space but differed in 

their heterogeneity. This pattern was observed for the different tillage intensities, crop types and 

fertilization methods (Supplementary Tables 7, 9, and 13). In contrast, different herbicide used 

doesn’t seem to have a major influence in the composition of bacterial communities since only 

marginal differences were observed between them (Supplementary Figure 11). 

The different agricultural practices played a major role in shaping bacterial diversity in 

this study, mainly by affecting community evenness (Table 1). Across tillage intensities, high 

tillage reduced bacterial evenness the most, probably because tillage represents physical 

disturbance to the environment by physical transformation of the soil habitat and the 

redistribution of nutrients (Le Guillou et al., 2019) (Figure 4.B). The disturbance caused by 

tillage may affect the abundance of the most sensitive species and favor the abundance of 

specific taxa; thus, leading to the reduced evenness in the soil bacterial community (Le Guillou 

et al., 2019). The effect of agricultural practices on soil bacterial abundance and diversity has 

been previously reported. For instance, Habig & Swanepoel (2015) observed the same trend, 
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where bacterial diversity in no-tillage systems compared with tilled systems. Le Guillou et al. 

(2019) reported that while soil microbial biomass decreases with high tillage intensity and 

pesticide use, and increases with permanent pastures or pasture rotations when compared to 

annual cropping; tillage intensity and pastures rotation systems influenced soil bacterial richness 

and evenness more than fertilizer and pesticide use. My results indicated the use of herbicides, 

either glyphosate or other, may alter the abundance of specific groups of bacteria, which could 

be evidenced by the reduction in soil bacterial evenness. Lone et al (2013) reported that the use 

of pesticides and herbicides triggered the accumulation of toxic substances, and changed soil 

chemical characteristics (Lone et al., 2013). Soil chemical changes and toxicity caused by 

herbicide application affects soil microbial groups differently (Du et al., 2018; Lone et al., 2013; 

Singh et al., 2018). For instance, in the short term, growth of fungal and Actinomycete species is 

inhibited after mesosulfuron-methyl applications, but populations of resistant species from these 

groups increase over time (Singh et al., 2018). Lone et al. (2013) also observed different 

responses from microbial groups according to the type and dose of the herbicide used. The 

abundance of phosphorus solubilizers increased with herbicide use, while Actinomycetes and 

Azotobacter species have mixed responses (Lone et al., 2013). Moreover, changes in microbial 

diversity induced by herbicide use have been associated with reduced microbial activity, which 

may impact soil functionality (Du et al., 2018; Kumar et al., 2020; Shrestha et al., 2019). Among 

the evaluated fertilization methods, fertilization banded with seed decreased bacterial evenness 

the most in this study. This fertilization method consists of the direct application of fertilizer to 

the soil in concentrated strips, and close to the furrow where the plant seed is placed (Alberta 

Agriculture and Food, 2008). All fertilized sites included in this study consisted of mineral 

fertilization methods, which favor the presence of copiotrophic organisms that grow in nutrient 

rich environments, over that of oligotrophic organisms that proliferate in nutrient-poor 

https://www.zotero.org/google-docs/?H3JLqM
https://www.zotero.org/google-docs/?H3JLqM
https://www.zotero.org/google-docs/?H3JLqM
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environments (Habig & Swanepoel, 2015). Banded fertilization favors the growth of the crop 

plants, also altering plant-microbe interactions, which could reduce evenness of bacterial 

communities (Chaparro et al., 2014; Hargreaves et al., 2015; Houlden et al., 2008).  

Different crops exhibited both different soil bacterial richness and evenness (Figure 4.C). 

Differences in these diversity metrics could be attributed to: (i) soil physico-chemical 

characteristics influenced by different crop types, which affects nutrient availability and the 

number of species that can coexist in the environment (Q. Liu et al., 2021; Niu et al., 2020), 

and/or (ii) crop plant root exudates and their root-associations influence microbial communities, 

often selecting specific members of the community and increasing their abundance (Chaparro et 

al., 2014; Hargreaves et al., 2015; Houlden et al., 2008). For instance, Niu et al (2020) compared 

fourteen years of continuous alfalfa crops to annual crops of maize, wheat, potato and millet, 

after nine years of continuous alfalfa. They observed that continuous cropping decreased organic 

carbon and N in soils as well as microbial biomass and diversity (Niu et al., 2020). Others have 

reported that different plant species had a greater impact on less abundant microbial taxa at 

specific plant developmental stages and rhizodeposition timing (Chaparro et al., 2014; 

Hargreaves et al., 2015; Houlden et al., 2008; P. Wang et al., 2017).  

Several studies have suggested agricultural systems shape the composition and diversity 

of soil bacterial communities. For instance, when compared to non-agricultural environments 

such as pastures, forest, and successional ecosystems, agricultural sites harbor the most 

homogeneous soil bacterial communities (Banerjee et al., 2019; Cai et al., 2018; Karimi et al., 

2017; Merloti et al., 2019; R. Xue et al., 2019). Altogether, my study indicated agricultural 

practices influence bacterial diversity, mainly by changes in bacterial evenness. Moreover, the 

influence of agricultural practices in the composition of soil bacterial communities, could be 
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attributed mostly to their effect on bacterial heterogeneity. Findings from my study suggest an 

indirect effect of agricultural practices in the heterogeneity of the soil bacterial community, as 

bacterial communities respond to the changes in soil physicochemical variability that different 

practices cause. Nonetheless, results of the multivariate regression tree indicate none of the 

agricultural practices were identified as principal drivers of soil bacterial community 

composition, and instead only pH and ecoregion were found to be important predictors of 

bacterial community composition.  

Nonetheless, in this study, results regarding agricultural practices could have been 

obscured by the different (sometimes low) number of samples withing each of the categories for 

each farming practice. For example, within the tillage intensities, only three sites corresponded 

to high tillage, while low tillage included twelve sites and zero tillage eleven sites. The number 

of samples within each treatment could have a particularly major impact on the variability 

quantification of both soil physico-chemical parameters and bacterial communities. Agricultural 

practices with low number of sites, could have exhibited underestimation of data variability 

compared to practices with higher number of sites. Alpha diversity indexes could have also been 

affected by the different number of samples for each of the practices, specially, when evaluating 

bacterial richness. If treatments with low number of sampled sites also corresponded to sites with 

similar characteristics or within the same region, these are likely to have more similar species 

than treatments with high number of samples from a broader geographical distribution, causing 

underestimation of the number of species within the former treatments (Barreiro et al., 2022). 

Recent studies have shown the influence of environmental factors in microbial 

community stability can be also observed in the changes in interactions between community 

members (Banerjee et al., 2019; Hernandez et al., 2021), as environmental stresses could explain 
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51–78% of the variances in co-ocurrence and co-exclusion patterns of bacterial communities 

(Banerjee et al., 2019; Hernandez et al., 2021). Therefore, in my study, much of the unexplained 

variation of soil bacterial community composition and influence of environmental factors could 

be rather assessed through the analysis of the interactions among bacterial taxa at each site 

(Nunan, 2017; Xue et al., 2022). Results from my study evidenced that soil bacterial interactions 

vary according to different land management practices (Table 3). All community network 

parameters evaluated (namely network size, connectivity, complexity, modularity, behaviour, 

and centrality) were affected by tillage intensity, crop type, herbicide use and fertilization 

methods (Table 3). These results are supported by previous findings in which the complexity of 

the soil microbial community in agricultural systems decreased compared to the bacterial 

community in forest soils and increased with increasing land management intensification (Xue et 

al., 2020; Xue et al., 2022). 

Complexity of microbial communities is often interpreted as interaction diversity and is 

associated with community resilience to environmental stress and plant success (Banerjee et al., 

2019; Karimi et al., 2017; Tao et al., 2018), while centrality is associated with the rate at which a 

community responds to environmental stress (Faust & Raes, 2012). Modularity of co-occurrence 

networks is interpreted as the redundant pathways between species and high modularity is 

associated with more environmental niches (Faust & Raes, 2016; Karimi et al., 2017). A lower 

positive-to-negative interactions rate indicates a more negative behaviour of the community, 

which is associated with negative interactions among community members, such as competition 

and amensalism (Faust & Raes, 2012). Accordingly, when comparing the influence of different 

tillage intensities on soil bacterial communities in this study, the higher complexity and 

centrality observed in the soil bacterial communities undergoing high tillage could be attributed 
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to the frequent physico-chemical disruption of soil, which may create more resilient microbial 

communities over time (Katulanda et al., 2018; Moreno et al., 2019; Pey & Dolliver, 2020; 

Philippot et al., 2021). Correspondingly, the lower modularity observed in the high tillage 

communities indicates that the homogeneity created by high tillage practices may lead to shared 

niches and increase negative interactions among the members of the community via competition 

for resources and space in a constantly changing environment (Faust & Raes, 2012). 

Across crop types, fallow sites favoured bacterial community complexity the most, as 

well as the modularity and the centrality of the community. Higher complexity and centrality 

have been associated with ecosystem functionality and resilience (Banerjee et al., 2019; Faust & 

Raes, 2012; Karimi et al., 2017); therefore, allowing fields to lay fallow may have a positive 

effect of soil bacterial communities. During fallow periods, bacterial communities may be able 

recover from the environmental stress caused by agricultural practices and recover ecosystem 

functionality (Barrios et al., 2005; Styger & Fernandes, 2006). 

While fertilization methods and herbicide use showed little to no significant changes in 

the composition of bacterial communities, co-occurrence networks revealed some of these 

agricultural practices affected the interactions between bacteria. Among herbicide use and 

fertilization methods, both glyphosate-based herbicides and fertilization banded with seed 

negatively affected interactions of microbial communities, resulting in decreased connectivity, 

complexity, and centrality. The effect of these practices could reduce the resilience of soil 

microbial communities and their ability to quickly respond to environmental stress (Faust & 

Raes, 2012). 

https://www.zotero.org/google-docs/?LyDMKA
https://www.zotero.org/google-docs/?LyDMKA
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Altogether my study showed changes in within-community interactions could provide 

additional insights about the effects of agricultural practices on microbial communities, and in 

some instances (e.g. herbicide use and fertilization methods) could reveal alterations that are not 

evident through indicators such as community composition and overall diversity. Similar 

findings have been previously reported, in which loss of interactions in the community occur 

even before major changes in the community composition and diversity can be detected 

(Banerjee et al., 2019; Karimi et al., 2017). Clusters within microbial networks have been 

associated with functional groups performing major functions such as C and N cycling (P. Xue et 

al., 2022); therefore, studying the changes of co-occurrence networks in agricultural systems 

may be a suitable method to assess changes in soil functioning. 

2.4.3. Predictors of soil bacterial community composition 

Among all physico-chemical parameters and agricultural practices assessed during my study, 

only pH and ecoregions were important drivers of soil microbial community composition in 

agricultural systems of Alberta (Figure 5). These results are similar to previous studies, where 

pH has been found to regulate community composition at both large and small scales (Fierer & 

Jackson, 2006) by directly influencing microbial growth and soil nutrient availability (Fierer & 

Jackson, 2006; Malik et al., 2018; Moebius-Clune, 2016; Xu et al., 2020). However, in my study, 

pH only explained 11.1% of the soil bacterial community variation and ecoregions only 

explained 3.7%, leaving most of the variation (85.2%) to be explained by other factors.  

2.5. Conclusions 

This study revealed the effects of agricultural practices on soil bacterial communities in 

Alberta’s soils. The composition of soil bacterial communities was influenced only indirectly by 
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the different practices. Agricultural practices determined the variability of soil physico-chemical 

parameters, which was reflected in the heterogeneity of soil bacterial communities. The 

heterogeneity of bacterial communities contributed to determine the differences in the 

composition of the communities under different practices. Among the different categories, 

bacterial heterogeneity was reduced in soil undergoing high tillage, fertilization banded with 

seed, herbicide application and in soils with no crop, special crops, hay and forage. Moreover, 

the different agricultural practices were found to be drivers of bacterial diversity, specifically by 

altering bacterial evenness. Differences in crop type influenced both soil bacterial richness and 

evenness. The low differentiation of soils physico-chemical profiles under different agricultural 

practices, indicates bacterial community composition has a higher resolution for identifying 

differences in the condition of soils from agricultural system. However, results in this study may 

have been obscured by the dissimilar and low number of samples in some of the categories 

assigned for the farming practices in the province. 

In contrast to the previously observed results of the SQMP in which differences in 

individual soil parameters were attributed to the land slope position, this study found no 

influence of slope position on the various physico-chemical parameters measured or in the 

composition of soil bacterial communities. A low percentage of bacterial community variability 

was explained by pH and ecoregions as important drivers of bacterial community composition in 

agricultural soils.  

Given the observed low resolution of soil bacterial community composition for 

elucidating the impact of agricultural practices in the soil condition, this study provides evidence 

for the potential use of different bacterial community metrics as biological indicators of soil 

health. For instance, the use of co-occurrence networks paired with functional analyses to study 
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the activity of bacterial communities could provide insights about the soil functions that are 

affected by specific agricultural practices. 
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Table 1. Summary of the significance of each variable per treatment. Variables were considered 

significant when at least two categories within treatments differ between them (p < 0.05). AP: 

Aspen Parkland; BT: Boreal transition; FG: Fescue Grassland; MB: Mixed Boreal; MG: Mixed 

grassland; MM: Mixed Moist Grassland; PL: Peace Lowland  
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Table 2. Co-occurrence network metrics for soil bacterial communities undergoing different (A) 

tillage intensities, (B) crop types, (C) herbicide, and (D) Fertilization methods. Different lower-

case letters indicate significant differences across categories within the different practices. Nodes 

correspond to interactive ASVs; Edges correspond to interactions among ASVs; Pos/Neg edges 

correspond to the rate of positive to negative connections; Average degree corresponds to the 

mean number of edges per node; Average cluster coefficient corresponds to the proportion of 

potential links that are occurring; and the Average closeness centrality corresponds to the 

distance between each pair of nodes 
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Figure 1. Principal component analysis of soil physico-chemical parameters clustered according 

to (A) ecoregions (p < 0.05; AP: Aspen Parkland; BT: Boreal transition; FG: Fescue Grassland; 

MB: Mixed Boreal; MG: Mixed grassland; MM: Mixed Moist Grassland; PL: Peace Lowland), 

(C) tillage intensities (p < 0.05), and (E) Crop types (p < 0.05). Length of vectors indicate the 

influence of each parameter in the distribution of the data in the ordination space. Euclidean 

distance of soil physico-chemical parameters between samples within (B) ecoregions, (D) tillage 
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intensities, and (F) crop types. Different lower-case letters indicate significant differences 

according to pairwise Wilcoxon Rank. 
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Figure 2. Non-metric multidimensional scaling ordination of bacterial community composition 

at the ASV level, and clustered according to (A) ecoregions (ordination stress = 0.171282, p > 

0.05; AP: Aspen Parkland; BT: Boreal transition; FG: Fescue Grassland; MB: Mixed Boreal; 

MG: Mixed grassland; MM: Mixed Moist Grassland; PL: Peace Lowland), (C) tillage intensities 

(ordination stress = 0.1546061, p < 0.05)., and (E) crop types (ordination stress = 0.1546061, p < 

0.05). (B) Bray-Curtis Dissimilarity of soil bacterial communities across (B) ecoregions, (D) 
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tillage intensities, and (F) crop types. Different lower-case letters indicate significant differences 

according to pairwise Wilcoxon Rank. 

  



73 
 

 

Figure 3. Taxonomic profile of bacterial communities showing the relative abundance of the 

dominant groups at the Phylum level across (A) ecoregions (AP: Aspen Parkland; BT: Boreal 

transition; FG: Fescue Grassland; MB: Mixed Boreal; MG: Mixed grassland; MM: Mixed Moist 
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Grassland; PL: Peace Lowland), (B) tillage intensities, and (C) crop types. Taxa with an 

abundance < 1% are grouped together. 

  



75 
 

 

Figure 4. Alpha-diversity metrics of bacterial communities across (A) ecoregion (AP: Aspen 

Parkland; BT: Boreal transition; FG: Fescue Grassland; MB: Mixed Boreal; MG: Mixed 

grassland; MM: Mixed Moist Grassland; PL: Peace Lowland), (B) tillage intensities, and (C) 

crop types. Different lower-case letters indicate significant differences. Measures indexes 
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included observed number of ASVs, Chao1 index, Inverse Simpson index, and Pielou’s 

evenness; shown in separate plots. 
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Figure 5. Multivariate regression tree showing the identified predictors of bacterial community 

composition in the agricultural soils of Alberta. pH and ecoregions explained 11.1% and 3.8% of 

the variation of bacterial communities respectively. AP: Aspen Parkland; BT: Boreal transition; 

FG: Fescue Grassland; MB: Mixed Boreal; MG: Mixed grassland; MM: Mixed Moist Grassland; 

PL: Peace Lowland 
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3. CHAPTER 3 

3.1. Main Findings 

Assessing soil health in agricultural systems could provide insights into the impact of 

agricultural practices on the soil attributes and is key to ensure agriculture and soil sustainability 

over time (Giri & Varma, 2020; Mijangos Amezaga, 2009). Some efforts have been made to 

determine a measurement for soil health globally and in different systems (Adetunji et al., 2017; 

Amacher et al., 2007; Fine et al., 2017; Laishram et al., 2012; Lal, 2016; Maharjan et al., 2020; 

Moebius-Clune, 2016; Norris et al., 2020; Pankhurst & CAB International, 1997; Rust et al., 

1972; R. Xue et al., 2019). However, given the huge variation and the different relevance of 

system-specific factors affecting soil attributes, these metrics have low applicability. Some soil 

health metrics, focus on the assessment of soil physico-chemical attributes and the soil ability to 

provide services of human interest, disregarding soil biological importance and the ecological 

productivity and functionality implied in soil health (Amacher et al., 2007; Fine et al., 2017; Lal, 

1998; Pérez-Valera et al., 2015), thus approaching more the soil quality concept. In Alberta, the 

Soil Quality Monitoring program was a governmental effort that focused on monitoring and 

evaluating the physico-chemical attributes of soils across the province (Cathcart et al., 2008). 

This program set an important step towards the assessment of the soil condition province wide. 

Given the important role of microbial communities in soil functionality and their 

sensitivity to soil physico-chemical changes (Coleman et al., 2018; Fierer & Jackson, 2006; 

Gusain et al., 2015; Tardy et al., 2015; Trivedi et al., 2017), I evaluated the potential of multiple 

bacterial community metrics as biological indicators that could help close the gap between soil 

quality and soil health assessment in agricultural systems. Consequently, I evaluated the impact 
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of different agricultural practices on soil bacterial community composition, heterogeneity, 

diversity and on the interactions among the members of the soil bacterial community. 

Previous finding from the SQMP indicated differences in individual soil physico-

chemical attributes are associated with land undulations and ecoregional climatic and 

pedological differences (Cathcart et al., 2008). Contrary to my expectations, results from this 

study indicate that landscape position does not play a major role shaping the soil physico 

chemical profiles or the composition and diversity of bacterial communities from the agricultural 

soils of Alberta. While slope position determines individual physico-chemical parameters 

(Cathcart et al., 2008), these variations are not enough to differentiate the overall geo-physico-

chemical parameters. In turn, bacterial communities inhabiting soils with similar physico-

chemical characteristics did not differ across slopes. Despite following the same sampling 

methodology used for the SQMP, in this study the lack of differentiation of soil attributes across 

landscape positions could be attributed to the high variability caused by differential slope 

elevation from site to site, which was not considered in this study, and which may have changed 

over time. While some of the sites had pronounced slope elevation, others lacked them or 

presented only small undulations in the terrain. The lack of pronounced slopes at most sites 

sampled could have caused an underestimation of the overall effect of landscape position on both 

the edaphic and the biological parameters and is an important aspect to consider for future 

studies. Including measurement of the elevation of each sampling point, could elucidate a more 

accurate impact of the land topography on soil physical, chemical and biological attributes.  

This study revealed different ways in which agricultural practices alter soil microbial 

communities. Overall, different farming practices influenced the heterogeneity and evenness of 

the community, as well as the interactions among its members. While tillage intensity, crop type 

and fertilization methods exhibited small differences on the composition of bacterial 
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communities, none of the differences in soil bacterial communities could be consistently 

attributed directly to each of the practices. Instead, agricultural practices influenced the 

variability of soil physico-chemical parameters, which in turn determine the variability and 

composition of bacterial communities in soil. These findings are in line with previous studies, in 

which the heterogeneity of bacterial communities is altered by farming practices and reduced in 

farming systems compared to native or successional environments, indicating low variability in 

agricultural systems (Le Guillou et al., 2019; Banerjee et al., 2019; Cai et al., 2018; Karimi et al., 

2017; Merloti et al., 2019; Xue et al., 2019). Specific agricultural practices can induce the 

overrepresentation of individual taxa, which could explain the influence of farming practices on 

bacterial evenness as observed in this study (Le Guillou et al., 2019; Du et al., 2018; Lone et al., 

n.d.; (Habig & Swanepoel, 2015). 

Despite differences in soil bacterial community composition that were identified under 

different agricultural practices, the differentiation of communities in the ordination space was not 

clear. On the other hand, complexity, and behavior of interactions among the bacterial 

community was clearly affected by the different farming practices and may be correlated to soil 

functionality and overall health. Hence, this study indicates the co-occurrence network of 

bacterial communities could be a better biological indicator of soil health than the composition 

of the community. 

Among all agricultural practices and physico-chemical parameters included in the study, 

only pH and ecoregions were found as important drivers of soil bacterial community 

composition, despite only explaining ~11% and ~3% of the total variation respectively. The 

threshold for a shift in bacterial community composition was a soil pH of 6.35. pH has 

previously been identified as a major regulator of bacterial community composition at small and 

large scales, by its influence on the availability of soil nutrients and its impact on bacterial 
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growth (Fierer & Jackson, 2006; Malik et al., 2018; Moebius-Clune, 2016; Xu et al., 2020). 

Moreover, pH has been found to alter soil bacterial metabolic activity (Malik et al., 2018; 

Moebius-Clune et al., 2016; Xu et al., 2020). Identifying how bacterial functionality is altered 

across the pH threshold in response to agricultural practices could provide insights into which 

practices that favor soil functionality and soil health, which may be an important step toward 

reevaluating land management policies and strategies in Alberta’s agricultural soils in the future. 

Bacterial communities in soil with pH < 6.35 were also shaped by ecoregion. Ecoregions 

in this study represented areas with different soil types and climate. Bacterial community 

composition is influenced by the soil texture, parent material, and climatic history; these factors 

ultimately shape the soil environment in which bacterial communities are found (Canarini et al., 

2021; Trivedi et al., 2016; Ulrich & Becker, 2006; Wagai et al., 2011).  

3.2. Contributions, improvements, and future directions 

This project is large-scale study in evaluating microbial communities in a non-controlled 

environment. Samples were collected from farm operations, considering the most common 

practices performed in the agricultural region of Alberta. This is an asset, because it evaluates the 

real applicability of bacterial communities as soil health indicators. Obtaining data from farm 

representative farm operations allows the development of a framework that is customized, 

applicable and serves as a guide for land management and regional policy making. However, 

there were also disadvantages. For instance, isolation of different treatments or variables to 

evaluate their effect is not possible; there is noise from unmeasured and uncontrolled variables; 

and there is no control over the number of samples in each of the categories assigned for the 

agricultural practices given that the information regarding these practices was obtained after 

sampling collection. For example, having uneven number of sampled sites for the different 
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tillage intensities could influence the heterogeneity of bacterial communities and soil physico-

chemical parameters. Differential response of soil attributes has been reported for different soil 

types (Gruba & Socha, 2016; Hartemink & Bridges, 1995; Orgill et al., 2017; Ulrich & Becker, 

2006), meaning that sites that have similar soil types and are subjected to the same agricultural 

practice likely have a more similar bacterial communities than sites with different soil types 

(Ulrich & Becker, 2006). Therefore, if tillage intensities with low number of samples include 

only soils from closer locations with similar soil types and climatic conditions, low heterogeneity 

(i.e., underestimated) will be observed in the attributes of these soils. This bias could apply to the 

heterogeneity of biological and physico-chemical parameters, and to the alpha diversity metrics 

of bacterial communities under all agricultural practices included, as well as for ecoregions. 

Future assessment of soil health in agricultural systems of the province could benefit from a 

preliminary evaluation of farming-practices-survey responses to determine uniformity in the 

distribution of sites and practices. Paring field analysis with experiments in controlled 

environments, where different agricultural practices are simulated separately may reduce noise 

and skew in some of the biological and physico-chemical results. Increasing the number of sites 

sampled could ensure a minimum number of samples per treatment, allowing to test the 

hypotheses more accurately. Another alternative to eliminate the effect of uneven number of 

samples on statistical analyses is to subsample the data randomly selecting a determined number 

of samples from each treatment to test, and excluding those treatment that do not have enough 

samples to be tested. 

Diversity and co-occurrence metrics to evaluate soil bacterial communities in this study 

elucidated differences in response to the most common agricultural practices in Alberta. This 

study represents the first step towards the addition of microbial communities as part of an 

assessment of soil health province wide. On the other hand, composition of soil bacterial 
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community alone did not provide enough resolution to clearly differentiate soils undergoing 

different agricultural practices and thus may not be a suitable indicator for soil health in 

agricultural systems, perhaps due to the low sensitivity of bacterial communities in these 

systems, which has been previously reported (Barreiro et al., 2022; Chen et al., 2018). Soil 

microbial communities are shaped by different drivers, depending on their broad taxonomic 

affiliation (Barreiro et al., 2022). For example, a recent study shows soil microbial community 

structure is mainly shaped by the physico-chemical environment. In that study, bacterial 

communities were more sensitive to region and climate, while soil fungal communities had a 

stronger response to management intensity (Barreiro et al., 2022).Hence, the assessment of 

fungal community composition and diversity through marker gene sequencing could better 

elucidate the impact of different practices on soil biological attributes in agricultural systems 

than bacterial community composition and diversity. 

Based on the 16S rRNA analysis performed in this study, different agricultural practices 

do not clearly shift soil bacterial community composition. However, agricultural practices did 

affect activity of community members and their subsequent ability to interact. Thus, elucidating 

how these changes in the interactions of soil bacterial community members could affect soil 

functionality and health is the next step. For instance, evaluating the correlation of co-occurrence 

network analyses metrics with the expression of functional genes from q-PCR analyses could 

indicate which functions are altered by changes in community activity (Shi et al., 2020). Another 

alternative is the use of metaproteomics or metatranscriptomics to evaluate enzymatic activity 

and gene expression of the bacterial community respectively, which could provide information 

about the metabolic traits and pathways to and associated co-occurrence network configuration 

(Dubey et al., 2020). Insights into the broad functional potential of a bacterial community 
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configuration could be evaluated with metagenomics, by characterizing functional traits of the 

keystone taxa identified from co-occurrence networks (Goel et al., 2017). 

Altogether, multiple directions can follow this work. Namely, (i) the assessment of soil 

fungal community composition, which may exhibit higher sensitivity and resolution than that of 

bacterial community composition; and may elucidate the impact of agricultural practices on soil 

biological attributes; (ii) the assessment of soil bacterial community functionality and its 

association with different configurations and behavior of interactions among the community; 

which could provide insights into the soil functions affected by the different agricultural 

practices; (iii) the determination of land undulation influence on soil physico-chemical and 

biological attributes via the comparison of parameters at different slope positions along a 

gradient of land elevation; (iv) the preliminary selection of well-distributed and representative 

sites for future monitoring of soil health based on producers surveys; which may result in more 

precise and accurate findings; and (V) The comparison between soil attributes of agricultural and 

reference sites, which may allow the integration of biological indicators into a soil health index.  

3.3 Integrating soil biological indicators into a soil health index  

The biological data obtained in this study could be integrated along with soil physico-

chemical parameters into a soil health index metric that provides a ranking value of the soil 

condition with respect to the baseline condition of reference soil from undisturbed native 

environments. Native soils could be used as waypoints to determine how far away (and in what 

direction) a soil is from the “starting point”. For sites that do not have a nearby native area, soils 

from farmstead or uncultivated lowly disturbed soils from near fences could be used as the 

reference (Maharjan et al., 2020). Soil health indexes can aid in making decisions regarding land 

management, based on the score difference between agricultural soil sites and native or naturally 
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occurring systems, which are considered to be more sustainable on the long term (Lal, 1998). 

However, under an agricultural framework the distance of a soil to any of these different 

reference soils proposed does not imply productivity, predictability, and disease suppression 

capacity, which are all aspect of interest for the agricultural industry. To determine some of these 

aspects as part of the soil health assessment of agricultural soils, different tests could be 

performed in controlled conditions (i.e., green house or growth chamber). These tests could 

include indicators of potential productivity, and disease suppression capacity that could be 

measured for the reference and the evaluated soils. Indicators of potential productivity could 

include germination rate per area, plant growth-rate, plant biomass or even foliar nutrient content 

(Gheysari et al., 2017; Natale et al., 2002; Nikolaychenko et al., n.d.). Indicators for disease 

suppression capacity could include disease incidence (i.e., proportion of diseased plants) and 

severity (i.e., proportion of plan area affected per individual) (Seem, 1984), which could be 

determined for the pathogens already present in the soils or after the soil inoculation with 

selected pathogens of importance for a specific crop. Integrating these measurements with soil 

physico-chemical parameters and metrics of soil microbial communities into a single soil health 

score could provide a more informative and holistic view for land management of agricultural 

systems. 

Soil health indexes are often derived from multivariate analyses, which simultaneously 

integrate different types of variables, and when introduced in simple arithmetic equations can 

provide a single numeric score (Beck & Hatch, 2009; Mukhopadhyay et al., 2014). From the 

results of this study, I propose to develop a soil health index (SHI) that includes ecological and 

structural aspects of the system. Namely, (i) soil physico chemical parameters that best explain 

the variation between samples, (ii) soil bacterial community composition derived from the Bray-

Curtis dissimilarity with respect to native reference sites, and (iii) the soil bacterial overall 
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diversity determined from the Inverse Simpson index, which considers both richness and 

evenness of bacterial communities. Soil physico-chemical parameters to include in the index 

could be selected via principal component analysis (PCA) (Hogberg et al., 2020). Only principal 

components (PCs) that have an eigenvalue higher than 1.0 and explain >5.0 % of the total 

variation would be considered (Hogberg et al., 2020). For each considered PC, the variable with 

the highest absolute eigenvector would be selected along with variables with eigenvectors within 

10% of that value (Hogberg et al., 2020). The raw score for a site would be calculated as the sum 

of each selected variable value times the eigenvector of the corresponding principal component. 

The final score for the physico-chemical aspect would be calculated as the difference between 

the sum for the disturbed site and the sum of the reference site (Hogberg et al., 2020). The 

equation would be as follows: 

i. Physico-chemical contribution = Physico-chemical score natural site - Physico-chemical 

score evaluated site 

Physico-chemical contribution = Σ (eigenvector PC n* X variable) - Σ (eigenvector 

PC n* X variable) 

Where n is the number of the significant Principal Component and determines the weight of each 

physico-chemical variable. And X is the scaled-mean-value of selected variables (e.g., pH) for a 

site. 

Bacterial abundance data could be Hellinger-transformed to avoid double zeros that may 

lead to misinterpretation of species absence in a site (Legendre & Borcard, 2018). Transformed 

abundance data could then be used to construct a dissimilarity matrix such as Bray-Curtis, which 

has been reported to efficiently detect gradients in species composition (Minchin, 1987). The 

contribution of the bacterial community composition aspect would correspond to the mean 

dissimilarity value of a site with respect to the reference sites, which results in a value between 
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zero and 1. The closer the score is to zero the more it would resembles the bacterial community 

composition of native reference soils. 

ii. Contribution of bacterial community composition = mean Bray-Curtis dissimilarity 

value of a site with respect to the reference native site. 

The contribution of bacterial overall diversity could be calculated as the difference 

between the mean-diversity index of natural sites and the mean-diversity index of the evaluated 

site. 

iii. Alpha diversity contribution = (Inverse Simpson index natural site - Inverse Simpson 

index evaluated site) 

To integrate the three aspects, the contribution value of each aspect needs to be scaled 

and the weight of each one needs to be determined. Weight coefficients would be multiplied by 

each of the scaled aspect-contribution values. The final score would be the absolute value of the 

following equation, and the closer it is to zero, the more it resembles the health of native 

reference soils: 

SHI = |(coefficient physico-chemical * Physico-chemical contribution) + (coefficient community 

composition * contribution of bacterial community composition) + (coefficient diversity * 

contribution of alpha diversity contribution)| 

There are still some limitations for the development of this index. Namely, the different 

nature of the data from each aspect hinders the integration of all datasets in a single matrix that 

allows the identification of weight coefficients. Moreover, given that results from this study 

indicated bacterial communities differ from one region to another, reference sites would need to 

be specific for the region where the evaluated site is located, which ensures the reference soils 

resemble environmental characteristics of the evaluated site. Furthermore, findings from the 

study and previous reports suggest bacterial community composition does not have enough 
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sensitivity to identify differences between soils in agricultural systems, and therefore other 

bacterial community metrics would be more suitable as biological indicators of soil health. 

Including metrics derived from cooccurrence network analyses as well as functional traits of 

bacterial communities could improve the discriminatory power of the index between sites. 
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Appendix: Supplementary Material for Chapter 2 

 

Table S.1. Number of reads obtained during data processing for 2019 and 2020 samples. 

Processing steps include reads at the initial input (input), reads after filtering (filtering), forward 

reads after denoising (denoisedF), reverse reads after denoising (denoisedR), reads after merging 

forward and reverse reads (merged), reads after removing chimeras (nonchim)
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Table S.2. Summary of survey responses regarding agricultural practices performed during the corresponding year of sampling 

(2019 or 2020) at each site. Only questions relevant to this study are included in the table. 
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Table S.3. Results from the pairwise PERMANOVA comparing the soil physico-

chemical parameters between different slope positions. The F statistic is a measure of effect-size, 

the R2 indicates the variation explained by the model and the adjusted P-value specifies the 

overall significance of the comparison.
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Table S.4. Results from the pairwise PERMANOVA comparing the bacterial community 

composition between different slope positions. The F statistic is a measure of effect-size, the R2 

indicates the variation explained by the model and the adjusted P-value specifies the overall 

significance of the comparison.
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Table S.5. Results from the pairwise PERMANOVA comparing the soil physico-chemical 

parameters between different ecoregions. The F statistic is a measure of effect-size, the R2 

indicates the variation explained by the model and the adjusted P-value specifies the overall 

significance of the comparison. AP: Aspen Parkland; BT: Boreal transition; FG: Fescue Grassland; 

MB: Mixed Boreal; MG: Mixed grassland; MM: Mixed Moist Grassland; PL: Peace Lowland 
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Table S.6. Results from the pairwise PERMANOVA comparing the bacterial community 

composition between different ecoregions. The F statistic is a measure of effect-size, the R2 

indicates the variation explained by the model and the adjusted P-value specifies the overall 

significance of the comparison. AP: Aspen Parkland; BT: Boreal transition; FG: Fescue Grassland; 

MB: Mixed Boreal; MG: Mixed grassland; MM: Mixed Moist Grassland; PL: Peace Lowland 
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Table S.7. Results from the pairwise PERMANOVA comparing the soil physico-

chemical parameters between different tillage intensities. The F statistic is a measure of effect-

size, the R2 indicates the variation explained by the model and the adjusted P-value specifies the 

overall significance of the comparison.
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Table S.8. Results from the pairwise PERMANOVA comparing the bacterial community 

composition between different tillage intensities. The F statistic is a measure of effect-size, the 

R2 indicates the variation explained by the model and the adjusted P-value specifies the overall 

significance of the comparison.
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Table S.9. Results from the pairwise PERMANOVA comparing the soil physico-

chemical parameters between different crop types. The F statistic is a measure of effect-size, the 

R2 indicates the variation explained by the model and the adjusted P-value specifies the overall 

significance of the comparison.
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Table S.10. Results from the pairwise PERMANOVA comparing the bacterial 

community composition between different crop types. The F statistic is a measure of effect-size, 

the R2 indicates the variation explained by the model and the adjusted P-value specifies the 

overall significance of the comparison.
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Table S.11. Results from the pairwise PERMANOVA comparing the soil physico-

chemical parameters between different herbicides used. The F statistic is a measure of effect-

size, the R2 indicates the variation explained by the model and the adjusted P-value specifies the 

overall significance of the comparison.
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Table S.12. Results from the pairwise PERMANOVA comparing the bacterial 

community composition between different herbicides used. The F statistic is a measure of effect-

size, the R2 indicates the variation explained by the model and the adjusted P-value specifies the 

overall significance of the comparison.
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Table S. 13. Results from the pairwise PERMANOVA comparing the soil physico-

chemical parameters between different fertilization methods. The F statistic is a measure of 

effect-size, the R2 indicates the variation explained by the model and the adjusted P-value 

specifies the overall significance of the comparison.
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Table S.14. Results from the pairwise PERMANOVA comparing the bacterial 

community composition between different fertilization methods. The F statistic is a measure of 

effect-size, the R2 indicates the variation explained by the model and the adjusted P-value 

specifies the overall significance of the comparison.
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Figure S.1. Location of SQMP benchmark sites. Distribution of sites across the main 

agricultural ecoregions of Alberta. Numbers indicate the eco-district of the site and colors 

indicate different ecoregions (Cathcart et al., 2008). 
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Figure S.2. Rarefaction curves for 254 random samples. Each curve indicates the 

subsampled richness level at each level of sequencing intensity from 0 to 10,000 sequences. 

Samples are labeled with the site number followed by the slope letter indicator and the replicate 

number. 
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Figure S.3. Bray-Curtis dissimilarity of soil bacterial communities between the same 

slope position of the different sites, and within slope position replicates for all the sites. Different 

lower-case letters indicate significant differences according to pairwise Wilcoxon Rank. Mean 

dissimilarity of the same slope position between sites (0.458) > mean dissimilarity Within Slopes 

of all sites (0.812). 
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Figure S.4. Principal component analysis of soil physico-chemical parameters clustered 

according to (A) slope positions (p > 0.05), (C) herbicides (p > 0.05), and (E) fertilization 

methods (p > 0.05). Length of vectors indicate the influence of each parameter in the distribution 

of the data in the ordination space. Euclidean distance of soil physicochemical parameters across 

(B) slope position, (D) herbicides, and (F) fertilization methods. Different lower-case letters 

indicate significant differences according to pairwise Wilcoxon Rank. 
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Figure S.5. Non-metric multidimensional scaling ordination of bacterial community composition 

at the ASV level, and clustered according to (A) slope position (ordination stress = 0.171282, p > 

0.05), (C) herbicide (ordination stress = 0.1546061, p > 0.05)., and (E) fertilization (ordination 

stress = 0.1546061, p < 0.05). (B) Bray-Curtis Dissimilarity of soil bacterial communities across 

(B) slope positions, (D) herbicides, and (F) fertilization methods. Different lower-case letters 

indicate significant differences according to pairwise Wilcoxon Rank. 
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Figure S.6. Taxonomic profile of bacterial communities showing the relative abundance of the 

dominant groups at the Phylum level across (A) slope positions (B) herbicides, and (C) 

fertilization methods. Taxa with an abundance < 1% are grouped together. 
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Figure S.7. Alpha-diversity metrics of bacterial communities across (A) slope positions 

(B) herbicides, and (C) fertilization methods. Different lower-case letters indicate significant 

differences. Measures indexes included observed number of ASVs, Chao1 index, Inverse 

Simpson index, and Pielou’s evenness; shown in separate plots. 
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Figure S.8. Top twenty indicator species affected by (A) tillage intensities, (B) crop types, (C) 

herbicides used, (D) fertilization methods fertilization method, according to Random Forest 

Modeling. Higher mean Decrease Gini indicated ASVs more affected by the fertilization 

method. 
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Figure S.9. Co-occurrence network analysis of bacterial communities undergoing (A) 

high tillage, (B) low tillage, and (C) Zero tillage. Each node represents a bacterial ASV, edges 

represent Spearman and Pearson correlations higher than 0.75 (green) or less than -0.75 (red), 

and Bray-Curtis dissimilarity less than 0.2. 
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Figure S.10. Co-occurrence network analysis of bacterial communities from different crop 

types: (A) barley, (B) canola, (C) forage/hay (D) livestock, (E) none/fallow, (F) special crops, 

and (G) wheat/durum. Each node represents a bacterial ASV, edges represent Spearman and 

Pearson correlations higher than 0.75 (green) or less than -0.75 (red), and Bray-Curtis 

dissimilarity less than 0.2. 
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Figure S.11. Co-occurrence network analysis of bacterial communities undergoing the 

use of different herbicides: (A) glyphosate, (B) other, and (C) no/herbicide. Each node represents 

a bacterial ASV, edges represent Spearman and Pearson correlations higher than 0.75 (green) or 

less than -0.75 (red), and Bray-Curtis dissimilarity less than 0.2. 
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Figure S.12. Co-occurrence network analysis of bacterial communities undergoing 

different fertilization methods: (A) banded without seed, (B) banded with seed, (C) broadcast, 

and (D) no-fertilization. Each node represents a bacterial ASV, edges represent Spearman and 

Pearson correlations higher than 0.75 (green) or less than -0.75 (red), and Bray-Curtis 

dissimilarity less than 0.2. 


