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Abstract

In this thesis, we study the problem of performance prediction for open-domain multi-

hop Question Answering (QA), where the task is to estimate the difficulty of evaluat-

ing a multi-hop question over a corpus. Despite the extensive research on predicting

the performance of ad-hoc and QA retrieval models, there has been a lack of study

on the estimation of the difficulty of multi-hop questions. The problem is challenging

due to the multi-step nature of the retrieval process, potential dependency of the

steps and the reasoning involved. To tackle this challenge, we propose multHP, a

novel pre-retrieval method for predicting the performance of open-domain multi-hop

questions. Our evaluation on one of the largest multi-hop QA dataset shows that

the proposed model is a strong predictor of the performance of several modern QA

systems, outperforming traditional single-hop query performance prediction methods.

Furthermore, given the dynamic nature of information retrieval in multi-hop question

answering, post-retrieval methods offer a more accurate means of measuring the dif-

ficulty of multi-hop questions compared to pre-retrieval methods. Thus, we present

a post-retrieval method tailored for multi-hop question answering, highlighting the

limitations of other methods proposed in the ad-hoc retrieval domain that may not

be applicable in this specific context. We demonstrate that our approach can be

effectively used to optimize the parameters of the systems, such as the number of

documents to be retrieved, resulting in improved overall retrieval performance.
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Chapter 1

Introduction

1.1 Motivation

The task of open-domain Question Answering (QA)–answering questions over a mas-

sive collection of documents–has received much attention lately due to the rise of

conversational assistant systems such as Apple Siri, Amazon Alexa, Microsoft Cor-

tana, and Google Assistant. Refer to Figure 1.1 for an illustrative example: imagine

someone running low on gas, asking Siri for the closest gas station. Without delay,

Siri promptly supplies the answer.

Traditional IR models (e.g., BM25 [1]) have been particularly popular as retrievers

in this task [2–5] thanks to their simplicity and fast response time. The retrieve-

and-read framework consists of two components, a retriever and a reader, where the

retriever extracts relevant documents from a large collection of documents, and the

reader aggregates information in the retrieved documents and extracts the answer

[2]. Our work is focused on a particular open-domain QA, referred to as multi-hop

QA, where one has to reason with the information that is spread over more than one

document in the collection to reach an answer.

Despite extensive prior studies on performance prediction in ad-hoc retrieval sys-

tems, to the best of our knowledge, there has been no study on performance prediction

of multi-hop questions. Ad-hoc retrieval refers to the process of retrieving relevant

information from a large collection of unstructured data in response to a user’s query.
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Figure 1.1: One real-world application of QA in our daily life

We claim that multi-hop QA can be different from the ad-hoc retrieval or even ques-

tion answering due to the following reasons:

• Previous works on performance prediction in ad-hoc retrieval focus on the

question-document interaction to capture syntactic or semantic similarity in

order to estimate the performance of the retriever. However, in multi-hop QA,

missing clues play a crucial role in satisfying the information need in the ques-

tion.

• In ad-hoc retrieval, the estimator needs to estimate the performance based on a

single query. Nevertheless, the nature of multi-hop retrieval is an iterative task

that involves updating the question and extracting new information related to

the question’s information need. Therefore, the performance predictor needs to

incorporate multiple questions rather than just a single one.

• Unlike ad-hoc retrieval systems, where we look for a single set of retrieved doc-

uments and evaluate the retriever’s performance using a single metric (e.g., av-

erage precision), in multi-hop QA, we have different sets of retrieved documents

corresponding to different questions with varying information needs.
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• Although there have been a few studies that focus on performance prediction in

question answering systems, they do not consider the unique characteristics of

open-domain QA. Thus, there has been a lack of extensive study on performance

prediction in the context of open-domain question answering.

1.2 Background

Consider the question “In what year did the young actor who co-starred with Sid-

ney Poitier in Little Nikita die, and what was the cause of death?”. To answer this

question, one may first retrieve a document that mentions both Sidney Poitier and

Little Nikita. This can be, for example, a document that lists the cast members of

Little Nikita. From this document, one may find out that the question is referring

to River Phoenix. The document about Little Nikita is less likely to give more infor-

mation about River Phoenix though. Hence in another retrieval step, the Wikipedia

document of River Phoenix may be retrieved to find out that the actor died in 1993

due to drug intoxication. This is one form of multi-hop, referred to as a bridge ques-

tion. It is called a bridge question because we need to find a missing entity, River

Phoenix, that serves as a bridge to the information need expressed in the question

(cause of death). Another form of multi-hop include questions that must compare

pieces of information or reason over facts spread in multiple documents. For instance,

the question “Were Stanley Kubrick and Elio Petri from different countries?” is a

comparison question. First, both documents about Stanley Kubrick and Elio Petri

will be retrieved, and after a reasoning process that compares their nationalities, the

question can be answered.

The examples mentioned above demonstrate that answering a question only re-

quires two documents to fulfill the information need. However, in the case of multi-

hop questions, the answer may require more than two documents, or in a broader

sense, n documents may be needed. This leads to the notion of creating more com-

plex questions by combining a sequence of bridge and comparison reasoning. An
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instance of such a question is “Do the director of the film 2001: A Space Odyssey

and the director of the film The Assassin belong to the same country?”. This ques-

tion involves a 4-hop bridge-comparison scenario, where one must deduce the bridge

entities and perform comparisons to obtain an answer.

The models that utilize the retrieve-and-read framework [2] in open-domain QA

fail in multi-hop questions for a few reasons. First, the clues for answering the ques-

tions are often spread over multiple supporting documents, and the retriever cannot

find all required clues in one step of the retrieval, as shown in our Little Nikita exam-

ple. Hence an iterative retrieve-and-read process may be needed [6]. Second, many

questions require some form of reasoning over the facts described in supporting doc-

uments, and standard retrievers are oblivious to such a chain of reasoning when the

facts are spread in multiple documents.

Several datasets have been proposed for the task of answering multi-hop questions,

taking into account the aforementioned types of such questions. HotpotQA was intro-

duced by Yang et al. [7] as a large-scale dataset that includes questions which demand

reasoning over one or two Wikipedia documents. The questions in HotpotQA are cat-

egorized as either bridge or comparison retrieval path types, as they can be answered

by referring to a maximum of two documents. A shortcoming of HotpotQA is the lack

of a complete explanation for the reasoning process from the question to the answer.

To overcome this challenge, Ho et al. [8] present 2WikiMultiHopQA, a dataset that

includes 2-hop and 4-hop questions. Unlike HotpotQA, 2WikiMultiHopQA includes a

new type of information called evidence, which is a set of triples collected from Wiki-

data. In addition to both bridge and comparison retrieval paths, 2WikiMultiHopQA

also includes bridge-comparison questions that require the inference of a bridge entity

and a comparison to be made. Trivedi et al. [9] claim that models trained on previous

benchmarks such as HotpotQA can rely on shortcuts to find a correct answer due to

reasons such as overly specific question and train-test leakage. To develop a high-

quality multi-hop dataset that addresses these issues, they introduce a bottom-up

4



Dataset Question Type #Examples

HotpotQA [7]

1-hop 18,089

2-hop 94,690

Total 112,779

2WikiMultiHopQA [8]

2-hop 152,446

4-hop 40,160

Total 192,606

MuSiQue-Ans [9]

2-hop 16,899

3-hop 5,910

4-hop 2,005

Total 24,814

Table 1.1: Number of examples in different datasets for various question types, in-
cluding 1 to 4 hops.

approach for constructing the MuSiQue-Ans dataset. MuSiQue-Ans includes more

complex questions that require 2 to 4 pieces of information to answer. Table 1.1

shows the statistics of HotpotQA, 2WikiMultiHopQA, and MuSiQue-Ans.

The difficulty of answering questions can be affected by various factors, including

the information need in the question and the statistics of the corpus (e.g., Wikipedia).

We can categorize a question as difficult when the retriever fails to retrieve relevant

documents effectively for that particular question. Based on this definition, an ex-

ploration of the task of query performance prediction is justified. Query performance

prediction refers to the process of estimating the probable effectiveness or quality

of search results for a given query prior to the actual retrieval process. It involves

predicting the extent to which a set of documents or search results will align with

the user’s information needs and expectations. Drawing upon the comprehensive

discourse presented by Carmel and colleagues [10], it becomes evident that the mul-

tifaceted landscape of existing prediction approaches can be adeptly organized into a

unified taxonomy, as illustrated in Figure 1.2.
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Figure 1.2: Taxonomy of existing query performance prediction methods [10].

When it comes to answering multi-hop questions, relevant documents need to be

retrieved from different sources before attempting to answer the question. These

documents are then used to derive the answer, making the process more complex and

challenging.

The primary focus of this study is to assess the level of difficulty involved in find-

ing all the necessary information required to answer multi-hop questions. Assessing

the difficulty holds significant implications for enhancing retrieval systems in various

aspects. Gaining insights into the difficulty level of queries empowers us to opti-

mize retriever performance through a multitude of strategies (Figure 1.3b). One of

its prime applications lies in the initiation of targeted query expansion for queries

that are underspecified or ambiguous, thereby refining the retrieval outcomes (Figure

1.3a). This predictive understanding can also facilitate query enhancement before

the search even begins, enabling users to formulate more effective queries initially.

Furthermore, the ability to anticipate query difficulty contributes to the refinement

of user feedback mechanisms. Users can be presented with personalized suggestions

to improve their query based on predicted retrieval challenges.
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(a) Query Enhancement (b) Optimizing Retrieval Process

Figure 1.3: Two applications of performance prediction

The integration of these approaches underscores the value of query performance

prediction as a proactive strategy for enhancing retrieval effectiveness and user satis-

faction. Consequently, investigating this field becomes imperative, offering a deeper

understanding of query intricacies and opening avenues for innovative approaches to

search optimization.

1.3 Problem Definition

The specific question we investigate in this study is if the performance of a multi-hop

question can be predicted and if such a prediction is a good proxy for the performance

of multi-hop QA systems, some of which are more complex. Query Performance

Prediction (QPP) plays an important role in resource allocation and evaluating the

performance of different systems. For example, QPP can assist a search engine in

allocating additional resources to more difficult questions. Even though QPP has

been extensively studied, with methods ranging from statistical approaches [11–14]

to more recent neural models [15–17], we are not aware of any such work on multi-hop
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questions.

There are two paradigms for the task of performance prediction. In the pre-retrieval

paradigm, the predictor estimates the performance of a retriever for a particular query

based on both the query’s terms and the statistics of the document collection. This

approach, known as pre-retrieval Query Performance Prediction (pre-retrieval QPP),

can be formally viewed as a function where the inputs are a question q and a large set

of documents Dcol. The goal is to estimate the query’s performance without executing

an actual retrieval process, i.e.,

ŷq ← µpre(q,Dcol). (1.1)

The estimate here is independent of the retriever. Although pre-retrieval methods

have the advantage of low processing costs, the query alone is often not expressive

enough for reliable prediction of the quality of the search results. To tackle this

difficulty, post-retrieval methods have been proposed as an alternative to measure

the quality of the retrieved results (Dq), based on the given query. These methods

may lead to stronger performance prediction as they have access to the retrieved

documents. A post-retrieval predictor can be formulated as the following function:

ŷq ← µpost(q,Dq, Dcol,M) (1.2)

In contrast to pre-retrieval methods, post-retrieval approaches are highly reliant on

specific retrievers and necessitate updates when the retriever or its parameters are

altered.

In this thesis, we aim to investigate the problem of measuring the difficulty of multi-

hop questions in both QPP paradigm. First, we introduce a pre-retrieval method for

multi-hop QA called multHP, which utilizes retrieval paths to decompose each ques-

tion into a few retrieval steps, starting from the question and ending with a document

that has an answer. Our method is independent of any specific types of retrievers, al-

lowing us to predict the performance of various retrievers. Additionally, our approach
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builds upon the concept where the retriever selects documents randomly based solely

on the information of the most specific term in the question. This approach, referred

to as the specificity method, is well-documented in the literature. We show that

retrieval path types can be detected from questions and that the performance of a

multi-hop question can be estimated based on the performance of its retrieval steps,

for which corpus-based statistics are more likely to be available and standard QPP

models may be applicable. Considering the dynamic nature of information retrieval

in multi-hop QA, post-retrieval methods can measure the difficulty of a multi-hop

question much more precisely compared to pre-retrieval methods. Therefore, we in-

troduce Unified Model, a post-retrieval method specifically designed for multi-hop QA

and show that other methods proposed in ad-hoc retrieval may not be applicable in

this domain. It is important to note that our work is constrained by the abundance

of resources available for 2-hop retrieval [6, 7, 18] and the scarcity of comprehensive

studies conducted on n-hop retrieval. As a result, our focus is limited to performance

prediction exclusively for 2-hop questions.

1.4 Contribution

Our contributions can be summarized as follows:

• We define the task of performance prediction in multi-hop question answer-

ing. To the best of our knowledge, our work is the first to study performance

prediction specifically in the domain of multi-hop QA.

• We introduce retrieval paths as a representation of the sequential retrieval steps

taken by a QA system, starting from a multi-hop question and leading to an

answer. Building upon these paths, we develop a pre-retrieval performance

prediction model that leverages retrieval paths to estimate the level of difficulty

associated with answering a multi-hop question.
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• We further propose a post-retrieval approach for multi-hop question perfor-

mance prediction, utilizing semantic features of retrieved documents and the

given question.

• Our evaluation reveals that the proposed methods serve as strong predictors of

the actual performance of several Open-domain QA retrievers, including both

sparse and dense models. Furthermore, our methods outperform the relevant

QPP baselines from the existing literature.

1.5 Outline

The rest of this thesis is structured as follows. In Chapter 2, we provide a com-

prehensive review of the existing literature on Multi-hop QA and Query Performance

Prediction. This chapter serves as a foundation for understanding the current state of

the field and the research gaps that exist. Chapter 3 presents our retrieval paths and

our proposed method of estimating difficulty scores using a pre-retrieval paradigm.

Additionally, we present the results of our experiments, demonstrating the superior-

ity of our method compared to previous pre-retrieval methods proposed for ad-hoc

retrieval. In Chapter 4, we introduce our post-retrieval method, which builds upon

the idea of retrieval-paths in our pre-retrieval framework. We outline the improve-

ments made and discuss the limitations. Finally, Chapter 5 concludes this study by

summarizing the key findings and contributions. We also discuss potential future

research directions, highlighting areas where further investigation can expand upon

the work presented in this thesis.
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Chapter 2

Literature Review

Multi-hop question answering is a complex task that involves finding answers to

questions that require multiple pieces of information from various sources. This task

can be considered as an intersection of two domains, namely information retrieval

(IR) and question answering (QA). On the retriever side, the focus is on answering

the question “How relevant information scattered between multiple documents can be

retrieved from a large collection of documents?”. The line of studies on question

answering aims to answer the question “How scattered information in a limited set

of documents can be processed to answer the question?”. In this study, our primary

focus lies on the former question as it pertains to the performance of the retriever,

while the second question is associated with the performance of the QA module.

Query performance prediction (QPP) holds a significant position in the literature

of information retrieval (IR), aiming to address the question of “What would be the

performance of a retriever for a given query?”. QPP methods find applications in

various domains, including search engine optimization, query reformulation, resource

allocation, and user assistance. Existing approaches in the QPP literature can be

classified into two main categories: pre-retrieval and post-retrieval. Both categories

will be thoroughly discussed in the following sections.
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2.1 Open-domain Multi-hop Question Answering

The release of large-scale datasets for multi-hop QA [7–9, 19] has invigorated the

research interest in this area. The studies predominantly utilize an iterative retrieve-

and-read framework to secure the supporting documents, where the performance is

closely linked to that of the retriever (see [20] for a survey).

2.1.1 Iterative retrievers

An essential step in iterative retrievers is extracting the clues from the documents

retrieved for the current hop and updating the query for the next hop. Qi et al. [6]

propose GoldEn, an iterative retrieve-and-read approach that uses both the question

and the retrieved documents at each step to generate a query for the next step to find

all missing entities. The query generation is done using a supervised model that is

trained on the semantic overlap between retrieved contexts and the documents to be

retrieved. This approach is shown to perform well on HotpotQA when integrated with

DrQA reader [2]. Since missing entities play an important role in the retrieval process,

Xiong et al. [21] employ entity linking to extract bridge entities from the retrieved

documents instead of query generation. They leverage a hybrid TF-IDF and BM25

approach to retrieve the first set of documents. Similarly, Zhang et al. [22] propose an

iterative document reranking method, where they retrieve documents using TF-IDF.

For each subsequent hop, the authors update the question with extracted information

and repeat this process until either an answer is found or a maximum number of

hop-retrieval is reached. It is worth noting that these approaches all utilize sparse

retrievers.

Due to the great success of deep contextualized language model (e.g., BERT[23])

in open-domain retrieval tasks, such as DPR [24], dense retrievers are used in multi-

hop QA for better capturing the query semantics as well. Xiong et al. [18] propose a

dense retriever within an iterative ”read-and-retrieve” framework that extracts top-

12



k document paths, including chains of documents that lead us to all the required

information. Relevant documents are retrieved based on their MIPS between the

query and document dense vectors. Zhang et al. [25] take another step further and

developed a pure rank-based framework that generates document sequences for each

path and reranks paths for answer extraction. This framework considers both the local

and global information of hops during the ranking process, ensuring the identification

of the best paths among all steps. In an attempt to address the explainability of dense

retrievers, Wu et al. [26] represent each document with a set of triple facts in the form

of <subject, predicate, object>. In each retrieval step, the question is updated with

a fact from a supporting document, instead of using the whole document.

Furthermore, there is a line of study [27, 28] that leverages both sparse and dense

retrievers. Sparse retrievers, due to their ability to quickly retrieve documents based

on syntactic information, have been used to narrow down the search space. Subse-

quently, dense retrievers extract documents with high semantic similarity to the given

question. Feldman and El-Yaniv [27] employ a TF-IDF retriever to narrow the search

space and rank documents based on the maximum inner product between the encoded

question and the top paragraphs. Similarly, Nie et al. [28] introduce a pipeline system

for Machine Reading at Scale (MRS), which utilizes hierarchical semantic retrieval at

both paragraph and sentence levels following the initial narrowing of the search space

using TF-IDF.

Unlike previous iterative studies, Asai et al. [29] introduce an approach that does

not require determining the number of reasoning steps, as it can adapt to a varied

number of hops. Their approach is based on constructing a graph of paragraphs from

a large collection, such as Wikipedia, using hyperlinks to represent the relationships

between documents. They train a retriever using a recurrent neural network to score

each reasoning path in the graph, and choose top-1 evidence path for the QA module.

Zhu et al. [30] present an adaptive iterative retriever for open-domain QA. They

claimed that applying the same retrieval function (e.g., BM25, Dense Paragraph
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Retriever, or hyperlink) multiple times may not extract new relevant information, so

they proposed an adaptive retriever that can determine which retrieval function to

use at each step based on the information need.

Since answering a multi-hop question involves an iterative process, our study pri-

marily focuses on methods that utilize the iterative retrieve-and-read framework.

Additionally, considering that dense retrievers employ semantic features while sparse

retrievers primarily extract syntactic features, our aim is to analyze the impact of dif-

ferent retriever types. Our proposed Query Performance Prediction (QPP) method

estimates the performance independent of the specific retriever model being used.

Therefore, for our evaluation, we select MDR as our fixed dense retriever and GoldEn

as our sparse method.

2.1.2 Using entities in retrievals

The main challenge in retrieving supporting documents for multi-hop QA is missing

entities and that the question text may not be enough to find all relevant documents.

Several studies utilize the relationship between different entities, including those ex-

plicitly mentioned and those missing, to retrieve relevant evidence. Das et al. [31]

propose an entity-centric retrieval method. They extract an initial set of relevant

documents for a question using a sparse retriever (e.g., BM25) and then link all en-

tity mentions in the retrieved paragraphs to the corresponding paragraphs in the

Wikipedia corpus. The extracted paragraphs are ranked based on their relevance to

the question using a BERT-based reranker. Ding et al. [32] propose a dual-system for

extracting the supporting clues and an answer. System 1 extracts all question-relevant

entities and candidate answers from extracted paragraphs and encode their seman-

tics. System 2, conduct the reasoning procedure and collects clues to help System 1

to extract better entities and answers for the next hop. Shao et al. [33] reduce the

search space by retrieving the top-k paragraphs using DrQA [2]. Additionally, they

include both paragraphs whose titles are mentioned in the query and paragraphs that
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are connected through hyperlinks. Other works [34, 35] also incorporate entity-level

relations in their multi-step retrievers.

Similar to the aforementioned approaches, our performance prediction model also

incorporates entities mentioned in questions in its estimation. Since sparse retriev-

ers utilize the term distribution of a query and corpus statistics to retrieve relevant

documents, we demonstrate that the difficulty of a question can be estimated by

considering its entity mentions.

2.2 Query Performance Prediction

Numerous studies have been conducted on query performance prediction, and various

methods have been proposed based on different hypotheses and principles. Kurland et

al. [36] establish a mathematical foundation for this task and classify the query perfor-

mance prediction methods into pre-retrieval and post-retrieval. Pre-retrieval methods

attempt to predict query performance before the retrieval process, while post-retrieval

methods focus on predicting performance after the results have been obtained. In the

following subsections, we review the literature on these two paradigms and discuss

their strengths and limitations.

2.2.1 Pre-retrieval Methods

Pre-retrieval approaches are specifically designed to predict query performance with-

out executing a retrieval step. These methods rely solely on the content of the query

itself and corpus statistics. Statistical pre-retrieval query performance prediction

methods may be classified into several groups including similarity-based, coherence-

bsed and specificity-based [10]. Similarity-based approaches estimate the query per-

formance based on the similarity between the query and the document collection.

Collection Query Similarity [37] assumes that the collection can be treated as a single

large document, and measures the similarity of a query to this document. Queries

that are more similar to the collection are considered easier to evaluate.
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Coherency-based approaches, such as Query Coherence Score [38] and VAR [37],

measure the inter-similarity of documents containing the query terms. Query Coher-

ence Score [38] reflects the average pairwise similarity between all pairs of documents.

Computing a coherence score is usually has a high computation cost. VAR [37] is

an alternative approach that measures the variance of the term weights (e.g., TF-

IDF) over the documents containing it in the collection. If the variation of term

weight distribution is low, it will be harder for the retrieval model to distinguish be-

tween highly relevant and less relevant documents, making the query more difficult.

Relatedness-based methods, such as Point-wise Mutual Information [39], make use

of the co-occurrence of query terms in the collection. The frequency of co-occurring

query terms indicates how easy or difficult the query is to answer.

Finally, specificity-based methods calculate the specificity of query terms based on

their distribution over the given collection of documents. Examples of specificity-

based methods include Inverse Document Frequency [40] and Simplified Coherence

Score [41]. These methods aim to determine the relevance of query terms to the

document collection, which in turn affects the predicted performance of the query.

The main shortcomings of frequency-based specificity methods is ignoring semantic

equivalency between query and corpus terms. To tackle this challenge, Roy et al. [42]

introduced a specificity-based metric, called Pclarity, based on the idea that the number

of clusters around the neighborhood of a term may indicate its specificity. In another

similar idea, Arabzadeh et al. [43] proposed three specificity metrics: neighborhood-

based, graph-based, and cluster-based. These metrics are based on neural embeddings

and the geometric relations between the embedding vectors.

Being a pre-retrieval method, our approach also uses query terms and corpus statis-

tics in the estimation process but it differs from previous specificity-based approaches

in two important aspects. First, our approach does the estimation in the context of

retrieval paths and question types, allowing us to provide more accurate estimation

for each retrieval path. Second, given the nature of questions in open-domain set-
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tings, we aim at using in our estimation salient question terms that play a role in an

effective retrieval, rather than considering all question terms.

2.2.2 Post-retrieval Methods

Unsupervised QPP

In contrast to pre-retrieval approaches, post-retrieval methods estimate the difficulty

of a query after retrieving a result set. The post-retrieval methods have been classified

into three paradigms [10]: clarity-based, robustness-based, and similarity distribution.

Clarity-based approaches evaluate how well the retrieved results relate to the query’s

topics, where a strong relationship between the results and the query indicates good

results. Cronen-Townsend et al. [40] present Clarity Score, as a measures of query

ambiguity, based on the idea that if the query is unambiguous, the top-ranked re-

sults will have a cohesive topic. In another study, Carmel et al. [44] show that the

difficulty of a question strongly depends on the distances between three components:

the textual expression of the query, the set of relevant documents, and the entire

collection. They use Jensen-Shanon divergence (JSD) to measure the distance and

calculate a difficulty score. Hauff et al. [11] analyze the sensitivity of a few query

prediction algorithms, both pre-retrieval and post-retrieval, in the context of a web

search engine, showing that these algorithms are sensitive to the choice of parameters

and the retrieval method. They further propose an improved clarity score for web

collections.

The robustness paradigm focuses on evaluating the resilience of retrieved results

when subjected to perturbations in the query, retrieved results, and retrieval method.

The aim is to determine how well the retrieved documents withstand changes and

variations. The level of difficulty posed by the query is inversely proportional to the

robustness of the results. In other words, if the retrieved documents are more robust,

the query is less challenging. Zhou and Croft [45] introduced Query Feedback (QF)

as a way to evaluate the robustness of a query by using query perturbation. This
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involves updating the query with terms from the retrieved results, and then retrieving

a second list of results based on the updated query. The degree of overlap between

the two result lists is then used to determine a robustness score for the query. The

higher the degree of overlap between the two lists, the easier the query is considered

to be.

Score-based methods aim to analyze the score distribution of the retrieved docu-

ments in order to determine the level of difficulty of a query. Weighted Information

Gain (WIG) [45] is a technique used to determine this level of difficulty by calculating

the divergence between the mean retrieval score of the top-k documents and that of the

collection. Essentially, the more closely related the top-k documents are to the query,

in terms of their similarity to a general non-relevant document (the collection), the

more successful the retrieval is likely to be. Normalized Query Commitment (NQC)

[14] estimates the potential query drift in the top-retrieved documents by measuring

the standard deviation of retrieval scores in these documents, and normalizing it by

the score of the entire collection. A high standard deviation indicates lower query

drift of the top-k documents, which leads to better query performance.

Supervised QPP

In recent years, the success of neural-based models in various domains of information

retrieval and natural language processing has led to a growing interest in formulating

post-retrieval query performance prediction as a supervised learning problem. This

approach involves predicting the quality of retrieved results, measured in terms of, for

example, in terms of average precision, based on the given question and the retrieved

documents.

Zamani et al. [46] proposed a novel neural-based model, called NeuralQPP, which

leveraged multiple statistical post-retrieval methods such as Clarity, Normalized Query

Commitment, and Utility Estimation Framework as weak supervision signals. Arabzadeh

et al. [16] proposed an alternative approach to extracting hand-crafted features from
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retrieved documents. They instead fine-tuned a BERT [23] model to generate contex-

tualized embeddings specifically for the task of predicting query performance. They

developed two neural network architectures: cross-encoder and bi-encoder networks.

The cross-encoder network allowed for deeper associations between the query and

documents by processing them together in a single model. However, this architecture

was slower during inference due to the lack of offline computation. To address this

issue, they introduced a bi-encoder architecture, which utilized a Siamese network

with parallel encoders for queries and documents. While this architecture reduced

inference time, the encoders needed to be updated separately.

While other works aim to predict a real number as a model performance on a spe-

cific query, Datta et al. [17] argue that measuring the difficulty of a query requires

considering its relative difficulty compared to other queries rather than evaluating it

in isolation. To address this issue, they introduced a supervised model that can learn

a comparison function for evaluating the relative difficulty between pairs of queries.

Moreover, they utilized an interaction-based model, rather than a representation-

based one, to learn the correlation between the query and the top-k documents.

Building upon the previous idea, Chen et al. [47] propose a group-wise Query Perfor-

mance Prediction approach that incorporates cross-document and cross-query con-

text. This extended framework allows estimating the query difficulty for not just two

queries, but for multiple queries within a group. By leveraging the context provided

by multiple documents and queries together, it can gain a more comprehensive un-

derstanding of query difficulty and improve the accuracy of performance estimation.

Datta et al. [48] present qppBERT-PL, an end-to-end neural cross-encoder trained

in a point-wise manner on individual queries, but in a list-wise manner over the top

ranked documents. Unlike previous works, they formulate the performance prediction

as a classification problem, aiming to estimate the number of relevant documents in

each document list.

While the aforementioned supervised QPP methods primarily focus on ad-hoc re-
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trieval systems, it is worth noting that there are multiple studies conducted in the

context of Question Answering (QA). This is due to the crucial role that retrieval

systems play in open-domain QA pipelines. Retrieval systems are essential for re-

trieving relevant information from a large corpus, which is then used by downstream

QA components to generate answers. The performance and effectiveness of retrieval

systems significantly impact the overall performance of open-domain QA systems.

Consequently, researchers have dedicated efforts to investigate and enhance retrieval

systems specifically tailored for the QA domain.

In pursuit of this goal, Krikon et al. [49] introduced a framework for predicting

the effectiveness of a set of passages retrieved for a given question. They decomposed

the effectiveness into two components: (1) the probability that the retrieved passages

satisfy the information need of the question, and (2) the probability that the passages

contain the answers. The first component was estimated using post-retrieval query

performance predictors, such as the clarity score [40], as well as other metrics proposed

in previous studies [14, 45]. These predictors assess the degree to which the retrieved

passages fulfill the information requirements of the question. The second component

relied on the presence of named entities within the passages that have the potential

to answer the question. By considering the occurrence of relevant named entities,

the framework aims to gauge the likelihood that the retrieved passages contain the

answers sought by the question.

Hashemi et al. [15] study the problem of performance prediction for non-factoid

questions and develop a neural model that estimates the performance based on three

components: (1) the scores assigned to candidate answers by the QA system, (2)

query performance, estimated using pre-retrieval QPP models, and (3) the content of

top k retrieved answers.

Roitman et al. [50] examined the decision-making process of accepting the best

answer from a search engine for a user query. They explored the utility of different

feature sets in this context, including learning-to-rank features such as the answer’s
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Figure 2.1: Comparative placement of our study in performance prediction and multi-
hop QA domains

TF-IDF score. They also incorporated query performance prediction (QPP) methods,

such as AvgIDF and WIG, to assess the quality of the retrieved answers. Addition-

ally, they employed answer-level QPP measures (e.g., ColScoreDiff [51] and MaxPsg1

[52]) to further evaluate the relevance and effectiveness of candidate answers. Their

investigation aims to gain insights into the decision-making criteria for accepting the

best answer from a search engine based on these various feature sets.

Considering all the post-retrieval methods proposed for ad-hoc retrieval and ques-

tion answering, an interesting question is if these approaches can be applied to the

multi-hop question task. The retrieval step holds a critical role in this task, as

it involves retrieving relevant information from a large corpus to answer complex,

multi-step questions. By estimating the difficulty of these questions beforehand, we

can make informed decisions on parameter settings and choose optimal strategies to

achieve the best results while maintaining efficiency. Query performance prediction in

the context of multi-hop questions can guide the design and optimization of retrieval

systems, leading to more effective and efficient solutions for this challenging task.

As Figure 2.1 shows, our work is positioned at the intersection of multi-hop QA and

performance prediction. We aim to leverage the concept presented by [31], utilizing

question entities for performance prediction and analyzing its effectiveness across

various retriever types.
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Chapter 3

Pre-retrieval QPP

Our approach to estimate the performance of a multi-hop question is based on es-

timating the performance of its hops and combining the estimates. In this section,

we present retrieval paths as steps a QA system must go through to gather evidence

for a multi-hop question. We then analyze those paths, in terms of the difficulty

of retrieving evidence under each path and present our approach for estimating the

performance.

3.1 Retrieval Paths

For a multi-hop question, one must collect evidence from two or more relevant doc-

uments to be able to answer the question. In open domain settings, those relevant

documents are retrieved from a large collection of documents. A challenge that is

unique to multi-hop questions is that the question may not have enough information

to retrieve all relevant documents. Consider a question that must gather information

from two supporting documents d1 and d2. The relationship between those documents

and the question can fall into the following cases:

• There is enough information in the question that allows both supporting docu-

ments d1 and d2 to be retrieved. These supporting documents may or may not

be closely related.

• The question has enough information to allow only one supporting document

22



(a) Bridge (b) Comparison (c) Mixed

Figure 3.1: Retrieval path types

d1 to be retrieved; the other supporting document can be retrieved with the

information in both d1 and the question.

The relatedness between the question and the supporting documents and between

two documents may be established syntactically, based on common terms and phrases.

The relatedness may also be defined at the semantic level, for example, based on the

embedding of the question and those of the documents. The former is the approach

taken by a sparse retriever whereas the latter is employed in dense retrievers. For the

simplicity of our analysis, we assume the relatedness is defined syntactically.

Consider a graph where each node denotes a document or a question and each

edge indicates the relatedness between two documents. The steps a retriever takes

to reach from a question to its answer can be described as a set of paths, all starting

from the question and ending with an answer. Figure 3.1 shows the set of retrieval

paths that can be formed between a question and its two supporting documents.

The path in Figure 3.1a, referred to as a bridge retrieval path, describes a scenario

where the second document cannot be easily retrieved without retrieving the first

document. This may describe, for example, a question about an entity that is not

explicitly mentioned in the question, but the question provides enough context to

retrieve document d1 where the entity name is given. The path in Figure 3.1b dubbed

as comparison retrieval path, represent a scenario where both supporting documents

can be retrieved with the information given in the question, but the reasoning for an
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answer needs both documents. For example, the question may ask if two persons,

each described in a separate document, have the same nationality. It should be noted

that, despite the naming, the reasoning can take forms other than a comparison such

as an aggregation function. For example, each document may give financial data

about a company and the question may ask for the total assets of a parent company

that owns two companies. For some questions, the retrieval path type may not be

known or easy to detect. This can happen when the two documents are closely related

and and they are also closely related to the question text, as depicted in Figure 3.1c.

This is called mixed retrieval path meaning that the retriever may consider it as

bridge or comparison. Retrieval paths may be generalized to n-hop questions, with n

nodes representing the supporting documents and the edges describing possible steps

a retriever can take.

3.2 Retrieval Paths in HotpotQA

To study the prevalence of retrieval paths, we construct those paths for questions in

HotpotQA, one of the largest multi-hop QA datasets that is public. For each question

in the dataset, the question and its two supporting documents form the nodes of the

graph. An edge is added between d1 and d2, deeming them as relevant, if there is a

common term between the two documents and the probability of finding that term

in an arbitrary document is low (i.e. below a threshold Pthr).

Similarly, edges are added between q and d1 and between q and d2 if a relevance

can be established. The value of Pthr may be determined experimentally based on the

corpus statistics. If Pthr is close to 0, most of the retrieval paths will form incomplete

graphs. On the other hand, when Pthr is close to 1, there will be edges for more

general terms or even stop words and the number of mixed types will increase.

With Pthr is set to 0.001, our study of multi-hop questions in the training set of

HotpotQA reveals that about 20% of the questions demonstrate a bridge retrieval

path, whereas the number of questions that show a comparison retrieval path is
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Ret. path Example

Bridge Question: What year was the actor that co-starred with Sidney
Poitier in Little Nikita born?
Context 1: Little Nikita is a 1988 American cult drama film
directed by Richard Benjamin and starring River Phoenix and
Sidney Poitier. The film marks the first collaboration between
Phoenix and Poitier (the second being Sneakers in 1992).
Context 2: River Jude Phoenix (born River Jude Bottom; August
23, 1970, October 31, 1993) was an American actor, musician, and
activist. He was the older brother of Rain Phoenix , Joaquin
Phoenix , Liberty Phoenix , and Summer Phoenix .
Answer: 1970

Comparison Question: Were Stanley Kubrick and Elio Petri from different
countries?
Context 1: Elio Petri (29 January 1929 2013 10 November 1982)
was an Italian political filmmaker.
Context 2: Stanley Kubrick (July 26, 1928 March 7, 1999) was an
American film director, screenwriter, producer, cinematographer,
editor, and photographer. He is ... extensive set designs, and
evocative use of music.
Answer: yes

Table 3.1: Two examples of retrieval paths from the HotpotQA dataset. The named
entities mentioned in both the question and the contexts, shown in red, may assist
the retriever in finding the supporting documents. The common entities between the
two contexts, shown in violet entities, may also help.
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around 14%. A majority 63% of questions show a mixed retrieval path with enough

overlapping terms between the questions and their supporting documents. In the

development set, our findings indicate that approximately 19% of the questions ex-

hibit a bridge retrieval path, around 15% show a comparison retrieval path, and 63%,

display a mixed retrieval path. Clearly, these are some rough estimates, based on our

threshold setting of relatedness (Pthr). Table 3.1 gives an example of each retrieval

path. For less than 3% of questions in both training and development sets, no re-

trieval path could be detected due to the lack of more specific common terms. For

example, the question “Who released the 2012 record of Red?” forms an incomplete

graph, because Red, the name of an album, is also commonly used as a color.

Our analysis of the dataset also reveals that some questions can be answered with

only one supporting document, and they are not really multi-hop. The retrieval

paths for these questions show a strong relatedness edge between the question and

one supporting document and the answer also appears in the same document. While

the second supporting document is related to the question, it is not required for

extracting the answer. For example, the question “Who was known by his stage

name Aladin and helped organizations improve their performance as a consultant?”

can be answered by the document with title “Eenasul Fateh” and text “Eenasul Fateh

also known by his stage name Aladin, is a bangladeshi-british cultural practitioner,

magician, live artist and former international management consultant” in the content.

The second document given for this question is “Management consulting” which is

not necessary to answer the question.

3.3 Difficulty Estimation based on Retrieval Paths

The difficulty of a question is often tied to its ambiguity with respect to the collection

being searched, which may be estimated using a clarity score [40] or a coherence

score [38]. However, such scorings ignore the multi-hop structure of questions and

the complex relationships that hold between documents retrieved for each hop. In our
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approach, each multi-hop question is assigned a retrieval path, and the difficulty of

the question can be measured by the cost of retrieving the context documents along

the path. The cost here refers to the number of additional documents retrieved.

Let P (c|q) denote the probability of reaching from question q a context document

c that is needed to answer the question. The smaller the probability, the larger

the number of documents the retriever has to retrieve before finding c. When this

probability is one, there is enough evidence to reach the context without incurring

additional costs. The expected number of documents to be retrieved, or the cost,

may be denoted by 1/P (c|q). We use the terms contexts and supporting documents

interchangeably in this paper.

Now consider a question q associated with a 2-hop bridge retrieval path and context

documents c1 and c2, as shown in Figure 3.1a. The probability of retrieving both

contexts can be written as

Pret = P (c1|q)× P (c2|q, c1) (3.1)

where P (c1|q) is the probability of reaching c1 from q and P (c2|q, c1) is the probability

of reaching c2 from q and c1. Here c1 denotes a context that is directly reachable from

q but c2 can be reached only after retrieving c1. For a comparison retrieval path,

both contexts can be retrieved independently, and the probability of retrieving both

contexts can be expressed as

Pret = P (c1|q)× P (c2|q). (3.2)

For a mixed retrieval path, the retriever has three options: (1) retrieve c1 first and c2

next, (2) retrieve c2 first and c1 next, and (3) retrieve both c1 and c2 independently.

It is reasonable to assume that the retriever will take the path with the highest

probability (or the least cost), i.e.

Pret = max{P (c1|q)× P (c2|q),

P (c1|q)× P (c2|q, c1),

P (c2|q)× P (c1|q, c2)}.

(3.3)
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It is possible that a given question does not follow any of the aforementioned

retrieval paths, for example, when the question does not provide enough evidence to

efficiently retrieve any of its contexts. These are rare cases though, examples of which

were reported for the HotpotQA dataset in the previous section. We consider these

questions difficult, with Pret ≈ 0.

Finally, estimating the difficulty of a question is hinged on estimating the model

parameters, as addressed next.

3.4 Estimating the Model Parameters

Under a pre-retrieval setting, our probabilities can be estimated based on the question

and maybe the corpus statistics. This means we may not have enough information

about some of the hops (e.g., the 2nd-hop document in a bridge question).

3.4.1 Estimating the probabilities

Suppose the retrieval path of a question is known, and the goal is to estimate the

probabilities of reaching the hops on the path1. A sparse retriever will use the terms

of the question to find the context documents, but selecting those terms for each hop

of a multi-hop question is not straightforward. Unlike a single-hop retriever that uses

all question terms in the retrieval, a multi-hop retriever may use named entities that

are mentioned and their relationships to guide the search [7]. On the same basis,

named entities are good candidates for retrieving the supporting documents at each

hop.

Sometimes the question has long phrases (e.g., the title of a song) that appear

as a whole in context documents, and those phrases may not be detected as named

entities. Yadegari et al. [53] study those phrases, referred to as frozen phrases, and

show that identifying them can improve the retrieval models in open-domain QA.

Thus frozen phrases may also be considered.

1In the next subsection, we discuss how retrieval paths can be predicted.
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We utilize publicly available code for extracting named entities2 and frozen phrases3.

However, named entities or frozen phrases may not appear verbatim in the supporting

documents, and this will be a problem in calculating the probabilities. For example,

consider the question “Which singer is in the duo Sugarland, Jennifer Nettles or

Roger Taylor?” from the HotpotQA dataset. In the supporting documents, “Roger

Meddows Taylor” appears instead of “Roger Taylor.” To deal with this problem,

we extract unigrams, bigrams, and trigrams4 from named entities. We only extract

unigrams from frozen phrases because named entities are already extracted by the

named entity extraction module, and the remaining terms in frozen phrases may not

be consecutive. With this strategy, it is more likely that some n-grams will appear in

supporting documents. Let NGq denote all those n-grams of query q.

Now consider questions that follow a comparison retrieval path. A hypothesis is

that such questions are expected to mention two or more entities (see the example

given in Table 3.1) and each hop closely relates to one of those entities. Based on this

hypothesis, a 2-hop retriever may extract two unique named entities of the question

and retrieve the relevant documents of each named entity. Our probabilities are also

estimated based on those unique named entities and frozen phrases. In particular,

we select the two most specific n-grams n1, n2 ∈ NGq to represent the two contexts

of q, and estimate P (c1|q) = P (c1|n1) =
1

N(n1)
and P (c2|q) = P (c2|n2) =

1
N(n2)

, where

N(n) ̸= 0 denotes the number of documents that mention n-gram n.

For a bridge question, the probabilities may be estimated similarly, with the ex-

ception that only the first context c1 can be reached from the question. In particular,

the probability of reaching the first context may be estimated under a Max scheme,

i.e.

P (c1|q) = maxt∈NGq ,N(t)>0
1

N(t)
. (3.4)

This is an optimistic estimation that assumes the most specific n-gram (i.e., the

2https://huggingface.co/Jean-Baptiste/roberta-large-ner-english
3https://github.com/Aashena/Frozen-Phrases
4These are consecutive terms forming bigrams and trigrams.
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one with the highest probability) appears in the first supporting document. Since

a pre-retrieval method does not have any additional information about the retrieved

documents in the second hop, the probability of reaching the second hop in Equations

3.1 and 3.3 can be set to a constant (i.e., P (c2|q, c1) = Phop2).

3.4.2 Detecting the retrieval path of questions

To use our performance prediction models in Eq. 3.1 and 3.2, one must know the

retrieval path of questions. Generally, detecting the retrieval path of a question

without detailed information about the supporting documents is not easy. However,

the structure of a question and the relationships between the entities mentioned often

provide clues on the retrieval path the question may take. Based on those features, a

classifier may be trained to detect the retrieval path type of a question.

3.5 Experimental Evaluation

3.5.1 Datasets

HotpotQA [7], one of the largest public benchmark for multi-hop QA, includes

113k Wikipedia-based question-answer pairs. The dataset is broken down to 90k

train set, 7.4k dev set, 7.4k test-distractor where 2 gold paragraphs are mixed with

8 distractors (closed-domain) and 7.4k test-fullwiki where the relevant paragraphs

include the first paragraph of all Wikipedia articles (open-domain). The train set is

also broken down to 18k train-easy (mostly single-hop), 56.8k train-medium (multi-

hop) and 15.7k train-hard (multi-hop hard) questions. The train-easy set is detected

by labelling the turkers who tended to type single-hop questions. The train-medium

class includes questions that could be answered with high confidence using a QA

system built upon Clark and Gardner [54] with some of the SOTA techniques added

[7]. Questions in the train and dev sets are also tagged as either bridge or comparison.

WikiPassageQA [55], is the largest non-factoid open-domain QA dataset including

4k questions created from 863 Wikipedia documents. The dataset consists of train,
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dev and test sets including 3332, 417, and 416 questions. Each question can be

answered with multiple passages from one long document.

WikiQA [56] is an open-domain dataset including 3k single-hop questions created

from Bing query logs and it broken into train, dev and test sets including 2118, 296,

and 633 questions. In WikiQA, each question can be answered with a Wikipedia

document.

3.5.2 Evaluation Metrics

Correlation with the average precision

The quality of our query difficulty estimation may be gauged in terms of the corre-

lation between our model performance estimates and the actual performance of the

retrievers, as commonly done in ad-hoc and QA retrieval [11, 16, 44]. We report

this metric in terms of Pearson’s correlation (P-ρ), Spearman’s correlation (S-ρ), and

Kendall’s correlation (K-τ). Significant test results at p-values 0.01 and 0.001 against

the null hypothesis that the distributions are uncorrelated are also reported.

As a measure of the performance of a retriever on a question, we use the average

precision in retrieving documents that are needed to answer the question. However,

unlike ad-hoc retrieval where there is one list of retrieved documents, multi-hop QA

retrieval involves retrieving supporting documents for multiple hops. To aggregate

these results into a single list, we interleave the documents from different hops, with

the first document from the first hop, followed by the first document from the second

hop, etc. This strategy, which is also used in Xiong et al. [18], evenly combines the

results for different hops and is expected to describe the behaviour of retrievers.

Pairwise difficulty estimation accuracy

Pairwise difficulty estimation, which determines which one of two questions is more

challenging to evaluate, is a more modern performance metric utilized in recent post-

retrieval studies [17]. This metric is more intuitive compared to correlation, which
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can be challenging due to the the disparity between the distribution of the estimated

scores and the distribution of the actual evaluation metric, such as average precision.

We compare the difficulty of question pairs by utilizing the estimated scores obtained

from pre-retrieval models. These scores indicate whether q1 is more difficult than

q2. Furthermore, by considering the positions of supporting documents in the list of

retrieved documents, we can say that q1 is more challenging than q2 if the number

of retrieved documents to cover both supporting documents is greater for q1. Hence,

the accuracy of a model can be estimated based on the labels it assigns to question

pairs and the actual labels of those pairs during evaluation.

Paragraph exact match and recall

Question difficulty classes may be defined and each question may be assigned to a

class based on a performance prediction model. The actual performance of retriev-

ers on those classes can show how good the prediction model has performed. Our

question classes include easy, hard and extra hard. The actual performance of a QA

system on each class is measured in terms of the fraction of questions whose sup-

porting documents are all retrieved and the fraction of questions that at least one of

their supporting documents is found. These performance measures are referred to in

the literature [18, 25] as Paragraph Exact Match (PEM) and Paragraph Recall (PR)

respectively.

Answer exact match and F1-score

For the end-to-end performance of a QA system, we use Exact Match (EM) and the

F1 score, following the prior work on QA evaluation[6, 7, 18, 25]. The former measures

if a returned answer exactly matches the ground truth and the latter combines the

precision and recall in terms of the number of common words between a predicted

answer and the ground truth.
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QPP Baseline
Bridge Comparison Mixed

MDR GoldEn MDR GoldEn MDR GoldEn

SCS [41] 49.93 50.86 51.34 54.06 53.71 54.81

maxSCQ [37] 53.94 54.03 53.85 56.83 54.67 55.26

avgSCQ [37] 52.46 52.05 51.67 57.15 55.46 56.01

maxIDF [40] 53.81 53.83 53.78 57.03 54.61 55.20

avgIDF [40] 52.44 51.99 51.52 56.99 55.41 55.91

maxIEF [43] 52.11 51.19 50.56 50.92 51.08 50.50

avgIEF [43] 50.23 50.21 50.37 50.07 50.21 50.15

multHP (ours) 58.82 58.90 52.50 57.73 57.39 58.06

Table 3.2: Pairwise difficulty estimation accuracy compared to pre-retrieval QPP
baselines

Question
QPP Baseline

MDR GoldEn

Type P-ρ S-ρ K-τ P-ρ S-ρ K-τ

Bridge

maxSCQ [37] 0.1418 0.1263 0.0907 0.1477 0.1479 0.1081

maxIDF [40] 0.1405 0.1259 0.0904 0.1431 0.1450 0.1061

maxIEF [43] 0.0266 0.0304 0.0220 0.0164 0.0067 0.0050

multHP (ours) 0.2342 0.2480 0.1849 0.2858 0.3088 0.2369

Comparison

maxSCQ [37] 0.0866 0.1051 0.0829 0.1794 0.1977 0.1548

maxIDF [40] 0.0783 0.0941 0.0742 0.1923 0.2050 0.1604

maxIEF [43] -0.0195 -0.0076 -0.0055 0.0342 0.0070 0.0057

multHP (ours) 0.0460 0.1139 0.0894 0.1130 0.2597 0.2024

Table 3.3: Correlation between the difficulty prediction of pre-retrieval models and
the actual retriever performance, in terms of average precision, of MDR and GoldEn
on HotpotQA (results are statistically significance at p-value < 0.001)
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3.5.3 Code

Our implementation includes the following components.

• Multi-hop question analysis, encompassing all functions related to generating

retrieval paths and categorizing them based on their question types.

• Pre-retrieval performance predictor, comprising functions that process each

question by calculating the probability of its successful retrieval.

• Post-retrieval training component, including all necessary classes and functions

for training a neural network.

We make our code publicly available on GitHub 5.

3.5.4 Retrieval Models and QPP Baselines

In the absence of prior research on QPP in multi-hop QA settings, we use the fol-

lowing pre-retrieval methods commonly used in ad-hoc retrieval tasks as baselines for

comparison: (1) Inverse Document Frequency (IDF) [40, 57], which predicts query

performance by considering the specificity of the question terms, with higher values

indicating an easier question to answer; (2) Simplified Clarity Score (SCS) [38], which

estimates query performance by taking into account both the query length and the

specificity by computing the divergence between the simplified query language model

and the collection language model; (3) Collection Query Similarity (SCQ) [37], which

predicts the performance based on the similarity between the query and the collec-

tion documents; (4) Inverse Edge Frequency (IEF) [43], which estimates question

specificity within an embedding space, taking into account the number of close neigh-

bors associated with each term. These predictors are aggregated over question terms

using max and average functions, resulting in maxIEF, avgIEF, maxIDF, avgIDF,

maxSCQ, avgSCQ, and SCS.

5https://github.com/MhmDSmdi/performance-prediction-for-multihop-QA.git
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With the performance of open-domain QA systems typically bounded by the re-

trievers [28, 58], query difficulty may be quantified in terms of the performance of

the retrievers. We utilize two multi-hop and one single-hop QA retrievers in our

evaluation. GoldEn [6] is a sparse model built on top of DrQA [2]. We used the au-

thors public code 6 and instructions to train the retriever on the HotpotQA dataset.

MDR [18] is a dense model that retrieves the relevant documents based on the inner

product score between a question and documents embedding vectors. In our work, we

used the public code 7 and retriever checkpoint provided by the authors. We utilized

the same hyperparameters as reported in the original study, with the exception of the

number of retrieved documents, which we set to 5 per hop. We also used DrQA [2]

as a single-hop retriever.

3.5.5 Compared to Pre-retrieval QPP Baselines

Pairwise Difficulty Comparison

Table 3.2 shows the accuracy of correctly predicting the pairwise difficulty of ques-

tions. The results are categorized based on the question types introduced in Section

3.3. There are 5,918 Bridge questions (17,508,403 question pairs), and our metric out-

performs all of the baselines with over 4.87% improvement (corresponding to more

than 852k question pairs) in both retrievers. In Comparison questions, our multHP

slightly improves the accuracy, while our estimate for MDR’s performance does not

exceed the baselines. Based on our analysis, MDR performs quite well in retrieving

both supportive documents, and our predicted scores for questions may not accu-

rately estimate the retriever’s performance. In addition to Bridge and Comparison

questions, we leverage Equation 3.3 to demonstrate the effectiveness of our proposed

formulations even when the question type is not specified. In the Mixed type, our

multHP outperformed all of the baselines with improvements of 1.93% and 2.05% in

terms of accuracy for the MDR and GoldEn models, respectively.

6https://github.com/qipeng/golden-retriever
7https://github.com/facebookresearch/multihop dense retrieval
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Multi-hop Pointwise Correlation

Table 3.3 shows the correlation between the predicted query performance scores and

the actual performance of the retrievers. The results are broken down to question

types, in terms of comparison or bridge, since the calculations are slightly different

and the retrieval path of a question can be easily predicted. Our predicted scores

showed a significant correlation with the actual performance of the both retrievers

for bridge questions. However, the Pearson correlation for comparison questions was

lower for MDR [18] simply because MDR performs quite well in comparison questions

due to the fact that both entities are mentioned in the questions. This results in both

supporting documents being placed in the low ranks of the retrieved results for ei-

ther one hop or both, and an estimation solely based on a random document selection

model may not correlate with the actual average precision. Ultimately, in comparison

questions, neither our estimated scores nor those of our baseline methods show strong

correlation with the actual performance of the MDR retriever. Our analysis of five

retrieved documents showed that the average ranks of the two supporting documents

that appeared in the 1st hop were 1.71 and 1.72 for MDR, and those ranks were 1.63

and 4.52 for GoldEn. The difference in the average ranking of the second document

in the hop 1 indicates that MDR performs exceptionally well on these questions. Be-

sides, considering the disparity in scale between our estimated scores and the average

precision, particularly for comparison questions, Spearman and Kendall coefficients

may serve as better indicators of performance due to their rank-based nature.

Comparing the results of syntactic metrics such as multHP and SCQ with the

Inverse Edge Frequency (IEF) semantic metric [43] shows that the mere semantics

of terms may not be a good estimator of specificity. One of the main challenges of

embedding-based metrics is out-of-vocabulary terms, wwhich include many named

entities. Most multi-hop questions are factoid questions that include named entities,

and these named entities may not map well to the embedding space. Furthermore,
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QPP Model
WikiPassageQA WikiQA

P-ρ S-ρ K-τ P-ρ S-ρ K-τ

maxSCQ [37] 0.1107 0.1363 ∗ 0.0980 ∗ -0.0015 -0.0230 -0.0168

maxIDF [40] 0.1096 0.1287 ∗ 0.0929 ∗ -0.0402 -0.0432 -0.0321

maxIEF [43] 0.1164 0.0823 0.0621 -0.0816 -0.0801 -0.0602

multHP (ours) 0.1889 † 0.2507 † 0.1833 † 0.1030 ∗ 0.1280 ∗ 0.0981 ∗

Table 3.4: Correlation between the difficulty prediction of QPP models and the actual
retriever performance, in terms of average precision, of DrQA on WikiPassageQA and
WikiQA datasets (∗ and † denote the correlations with p-value less than 0.01 and
0.001 respectively)

IEF merely leverages the embedding space and ignores the corpus statistics, which

are good predictors for retrieval performance prediction.

The same results was observed using GoldEn [6], a sparse retriever. As shown in

Table 3.3, the correlation between our estimated difficulty score and the actual perfor-

mance of the GoldEn retriever was much more pronounced, compared to the baselines,

for bridge questions. However, for comparison questions, our approach did not per-

form better than the baselines. Our error analysis shows that the GoldEn retriever

could not find the supporting documents for questions that we estimated as easy

questions with a fairly high score. For instance, consider the question “Which pizza

shop opened first, Toppers Pizza or America’s Incredible Pizza Company?”. Based on

our probabilities, P (c1|Toppers P izza) = 0.33 and P (c2|America′s Incredible) = 1,

but the GoldEn retriever failed to retrieve the supporting document “America’s In-

credible Pizza Company”. In this particular case, GoldEn query generator emit-

ted two queries, “pizza shop opened first, Toppers Pizza” and “Pizza,” to retrieve

the supporting documents. These queries failed to retrieve the second entity. Also

in some cases, the GoldEn retriever could extract supporting documents for ques-

tions that we estimated as difficult to retrieve. Consider the comparison ques-

tion “Hayden is a singer-songwriter from Canada, but where does Buck-Tick hail
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from?”. Our approach correctly extracted the two entities, computed the probabil-

ities P (c1|Buck − Tick) = 0.0164 and P (c2|Hayden) = 0.0011, and estimated the

Pret ≈ 1.8 × 10−5. However, Golden retriever extracted both supporting documents

easily at top of the result set using the two queries “Hayden is a singer-songwriter from

Canada” and “Buck-Tick”. In this case, we underestimated the probability of find-

ing a relevant document by considering only one entity per query while the retriever

leveraged all information in the query, such as “singer-songwriter” and “Canada” in

this example.

Single-hop Pointwise Correlation

To show how our model performs on single-hop questions, we evaluated our approach

on the test sets of WikiPassageQA [55] and WikiQA [56], two open domain QA

datasets using DrQA retriever, following the setting as explained in Section 3.5.5.

We used the setting of our bridge questions where the estimation is done based on

the first hop. From Table 3.4, we can observe that while the correlations are not very

strong, our estimates show a stronger correlation with the actual performance of the

system, compared to the baselines, and the results are statistically significant. This

is mostly because of our term selection strategies and the use of named entities and

frozen phrases for our performance prediction.

3.5.6 Performance Across Difficulty Classes

Retriever performance results

In another experiment, we wanted to illustrate the performance drop in different

difficulty classes. To this aim, we categorized the questions of HotpotQA’s dev set

into different difficulty classes and evaluated the performance of the retrievers on

those class. A similar categorization is done in the work of Mothe et al. [59]. To

set threshold scores for categorizing questions into different difficulty classes, we used

the percentile-based strategy [59]. For bridge questions, we set Phop2 = 0.125 to
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Class

Model

DrQA (k=100) GoldEn (k=5) MDR(k=1)

PEM PR PEM PR EMjoint F1joint PEM PR EMjoint F1joint

Easy 33.07 84.70 67.01 95.78 20.68 43.87 71.50 89.97 36.86 59.66

Hard 27.49 77.27 60.31 88.63 20.25 39.31 63.94 83.59 35.62 55.68

Ex. Hard 22.69 71.45 51.61 80.09 16.95 35.27 56.71 73.65 31.49 48.06

Table 3.5: Retrieval performance (in terms of PEM and PR) and end-to-end per-
formance (in terms of EM and F1) of three models across three difficulty classes,
predicted using the Max scheme, showcasing performance degradation for more chal-
lenging questions

calibrate the score difference between bridge and comparison questions. We named

these difficulty classes extra hard (1st quartile), hard (2nd quartile), easy (3rd and

4th quartiles). We merged 3rd and 4th quartiles into one class because we observed

that there was no noticeable difficulty gap between these two sets.

Table 3.5 shows the performance of three retrievers, with their default settings, on

different question classes in terms of PEM and PR under Max scheme. We can see

more than 10%, 16%, and 15% performance drop between easy and extra hard classes

of DrQA, GoldEn, and MDR respectively in terms of PEM. Since both supporting

documents are required to answer a multi-hop question, by comparing the results of

the retrievers on question classes, we can conclude that the number of questions that

cannot be answered in hard and extra hard classes are considerably larger than the

number of such questions in the easy class.

End-to-end performance results

Our analysis so far shows that our QPP model is quite effective in predicting the

performance of multi-hop QA retrievers. In this section, we want to evaluate how this

translates to predicting the end-to-end performance of our QA systems on different

difficulty classes. To evaluate the performance in both document retrieval and answer

extraction phases, we used the standard answer and supporting facts given in the
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dataset, and calculated Exact Match (EM) and F1 score on questions with different

classes of difficulty. Tables 3.5 shows the results of GoldEn and MDR models, in

an end-to-end setting, in terms of joint EM and F1 score for answer extraction and

supporting sentences prediction. We can observe a declining performance between

easy and extra hard classes. It should be noted that our difficulty score estimation

is merely based on the retrieval paths, and some questions that are deemed difficult

to answer, using the QPP model, may not pose much challenge to the QA system in

finding the supporting documents.

3.5.7 Two Use Cases

Query performance prediction may serve multiple purposes, including providing valu-

able feedback to users, enhancing content quality, and optimizing resource allocation

for retrieval processes. In this study, our focus is twofold: initially, we employ perfor-

mance prediction to annotate the HotpotQA test set, a task particularly challenging

due to the absence of labels. Subsequently, we introduce an innovative adaptive

retriever that boasts both reduced runtime and improved performance when com-

pared to static retrievers. Importantly, all the applications highlighted above find

their utility within the post-retrieval paradigm, showcasing the adaptable nature of

performance prediction across various scenarios.

Dataset annotation

Annotating datasets such as HotpotQA can help in evaluating the models, and our

performance prediction can be used in the annotation process. In particular, detecting

question difficulty prior to the retrieval phase may allow, for example, the models to

be evaluated on more difficult subsets. One may also choose simpler models for easy

questions and more complex models to answer difficult questions. The train and dev

sets in HotpotQA have annotations for the question difficulty and the type of retrieval

path, but those annotations are not given for the test set. The test set of HotpotQA
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does not have question types (e.g., comparison or bridge). For our experiments on

the test set, we trained a type detection model, as discussed in Section 3.4.2. To

train the model, we used 80% of the HotpotQA train set for training and the other

20% as the development set because the test set does not have retrieval path types

of questions. For training, we utilized the [CLS] embedding created by RoBERTabase

followed by a hidden layer with size 128 to extract high-level features. Finally, the

last layer is a softmax layer to predict the probability of each type (i.e., bridge or

comparison). We used relu activation function and set learning rate 5e−5, batch size

64, and epoch 3. We evaluated this model using the actual dev set of HotpotQA, and

its performance was 99.63%, 94.64%, and 97.07% in terms of precision, recall, and

F1-score respectively.

Adaptive retrievers

Improving the performance of models is possible by detecting the difficulty levels

of questions and maybe allocating additional resources for more difficult questions.

Figure 3.2 shows how retrieving additional documents improves the end-to-end per-

formance of MDR model. We can observe that increasing the number of retrieved

documents have most positive impact on the extra hard set compared to the easy set.

To take another step forward, we built an adaptive retriever that retrieved more

passages for questions that were detected to be difficult. In particular, the retriever

fed ck documents to the reader where c was set based on the difficulty class and k

varied from 1 to 20. Figure 3.3 shows the results with c set to 1 for easy, 4 for hard and

4 and 5 for extra hard. Given a limited running time budget, a higher performance,

in terms of F1-score, is achieved using the adaptive retriever compared to a constant

one that retrieves the same number of documents for all questions irrespective of their

difficulty classes. This means the adaptive retriever saves time on easy questions by

retrieving fewer documents and spends the saved time on retrieving more documents

for difficult questions, which improve the performance of the model. We can also
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Figure 3.2: Improvements in the end-to-end performance of MDR [18], in terms
of F1-score, across different difficulty classes and varying the number of additional
document retrieved, showing larger improvements for more difficult classes

see a sharp increase in the performance of the constant retriever as k is increased

from 1 to 3, indicating that all questions including easy ones benefit from larger k

values. However, for k ≥ 5, easy questions do not benefit as much as hard questions.

One possible explanation is that top-ranking documents tend to contain relevant

information for easier questions more often than for harder ones.
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Figure 3.3: Performance, in terms of F1-score, of MDR [18] with the adaptive retriever
compared to a constant retriever while k varied, showing that the adaptive retriever
achieves a higher performance under the same budget
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Chapter 4

Post-retrieval QPP

4.1 Motivation

In the previous chapter, we defined the task of performance prediction from the pre-

retrieval viewpoint. However, we believe that relying only on syntactic relatedness

between question and documents, as introduced in Section 3.1, is not sufficient for

estimating performance precisely. Also, in multi-hop QA, the primary factor that

determines the difficulty of bridge questions is missing information, which can be

found within the retrieved documents. As we ignored this factor in our proposed

formulation in Section 3.4, we aim to tackle these challenges and conduct further re-

search on potential improvements. Our goal is to develop a post-retrieval performance

prediction method for multi-hop QA.

Recent studies on performance prediction in ad-hoc retrieval [16, 17] have demon-

strated that considering semantic interactions between the query and the top retrieved

documents can enhance the accuracy of performance estimation for the model. They

formulate the performance prediction as a supervised-task and leverage semantic fea-

tures to estimate a real-number as the model’s performance. Similar to this line of

work, we aim to look at the problem from a post-retrieval viewpoint and propose a

model that leverages both semantic features and retrieval scores.

Unlike our pre-retrieval method (Chapter 3), this approach would not be con-

strained by a fixed number of hops. Taking into account the iterative nature of
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multi-hop QA, multi-hop retrievers perform a retrieval step and reasoning in each it-

eration to extract missing information and update the question. Thus, we consider the

performance prediction for a 2-hop question, which involves one full cycle of retrieval

and reasoning, as the fundamental building block of our method. Building upon

the retrieval paths introduced in Chapter 3, we define two main steps, bridge-step

and comparison-step. Using multiple bridge and comparisons steps, we can construct

complex n-hop questions for n > 2, following the approach of Ho et al. [8]. Therefore,

our proposed method handles performance prediction for n-hop questions by utiliz-

ing a step prediction model. However, our evaluation is limited to 2-hop questions,

closely following our pre-retrieval work in Chapter 3. Further study and evaluation

of the work for n-hop questions where n > 2 is left to the future work.

4.2 Methodology

For a given 2-hop question q, our objective is to predict the performance of the

retriever by considering the results of the top-k supporting documents Dq obtained

from a fixed retrieval systemM. This prediction involves estimating a real value that

reflects the retriever’s effectiveness in handling the multi-hop question based on the

information retrieved from the top documents.

In the literature of supervised performance prediction for ad-hoc retrieval, feature

extraction plays a pivotal role in achieving an accurate model, with many proposed

methods aiming to capture the semantic interactions [17, 48]. However, the main dis-

tinction between ad-hoc and multi-hop retrieval lies in the presence of multiple sets of

documents rather than a single list, necessitating the capture of semantic interactions

between them. To address this, we propose a unified model that leverages various

types of features commonly used in the literature of performance prediction. The

following subsections delve into the details of extracted features and the architecture

our unified model.
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4.2.1 Feature Extraction

We highlight the significance of feature extraction in supervised post-retrieval meth-

ods for question difficulty estimation, building upon previous studies [15, 17, 43]. We

present our approach, which focuses on extracting three sets of features to capture

various aspects of the multi-hop question answering process: (1) Specificity-based,

(2) Score-based, and (3) Question-dependent features.

Specificity-based

These features capture the relationship between a given question and the retrieved

documents at each hop. By considering the specificity of the information retrieved

and its relevance to the question, we gain insights into the alignment of the retrieved

documents with the question’s information need. Specificity-based features help us

measure the degree of connection and coherence between the question and the sup-

porting documents. Motivated by previous studies in performance prediction [15], we

employ the BERT [23] encoder to extract semantic features from the given question

and the documents retrieved at different hops. To capture the interactions between

the question and each retrieved document set, we adopt pair-encoding using BERT.

This approach enables us to generate a joint representation that considers the spe-

cific context provided by each document, and we can effectively capture the semantic

relationships between them. It is important to note that in the multi-hop reasoning

process, retrievers often update the question at each hop based on the newly retrieved

information. In our framework, we account for this dynamic nature by using the up-

dated question representation, which is obtained by simply concatenating the top-1

document with the question. A similar approach is taken by Xiong et al. [18]. This

ensures that our model considers the evolving question context, enhancing its ability

to estimate question difficulty accurately.

46



(a) Type detection architecture
(b) Architecture for detecting the pres-
ence of bridge entities

Figure 4.1: Question-dependent feature extractor models

Score-based

Previous studies [14, 15] have demonstrated that considering the distribution of re-

trieval scores associated with the retrieved documents can serve as a reliable estimator

of retrieval performance. By analyzing the scores, we can assess the relevance and

importance of the retrieved documents for each hop, so they provide a quantitative

measure of the strength of evidence and the confidence level associated with the re-

trieved information. In our method, we used the retrieval scores corresponding to

retrieved documents in 1st and 2nd Hop called Hop1 and Hop2 scores in Figure 4.2

as additional features and concatenate them to the extracted semantic features to

give the model more information about the retrieved documents.

Question-dependent

Additionally, we integrate features that are specifically related to the multi-hop ques-

tion, the question type, and the probability of finding a bridge entity for a bridge
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question. The former helps the model differentiate between score prediction for bridge

and comparison questions, while the latter addresses the distinct challenges and de-

mands of multi-hop reasoning. The HotpotQA dataset includes question types and

bridge entities in both the train and dev sets. We train a dedicated model using the

HotpotQA training set to predict whether the given question is bridge or compari-

son (Figure 4.1a). We employ BERT to extract contextualized representations of the

question, particularly the [CLS] token and feed it into a fully-connected layer with

sigmoid activation. Similarly, for estimating whether a bridge entity appears in the

given document, we develop another model with the same architecture (Figure 4.1b).

To capture the semantic interaction between the question and its corresponding top-1

retrieved results, we utilize BERT pair-encoding and feed the representation vector

into a fully-connected layer with sigmoid activation to predict the presence of the

bridge entity in the document.

By combining the three sets of extracted features, we create a comprehensive fea-

ture representation for each question. This representation captures the specific as-

pects of the multi-hop question answering task, including the relationship between

the question and the retrieved documents, the distribution of retrieval scores, and the

task-specific characteristics. These features serve as valuable inputs for the estimation

of probabilities required for bridge reasoning and comparison steps.

4.2.2 Unified Model Architecture

The architecture of our unified model is illustrated in Figure 4.2. For extracting se-

mantic interaction between the question and the documents retrieved for each hop,

we utilize the pooling-output (i.e., ϕBERT
CLS ⊂ Rd) of BERT, allowing us to obtain a

comprehensive representation that incorporates the overall meaning and contextual

information. Considering the iterative nature of multi-hop retrieval, the first repre-

sentation vector is fed into a fully-connected layer, i.e. ϕfc(ϕ
BERT
CLS (q, dhop1k )), where

ϕfc : R
d → Rdfc , q is the original question, dhop1k is k-th document in the 1st hop. Pro-
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Figure 4.2: The architecture od our Unified Model

jecting the representation into a different feature space can potentially improve the

model’s ability to capture relevant patterns and introduce non-linearity, thereby en-

hancing its ability to handle added complexity. However, we refrained from adding an

additional fully-connected layer for the question and hop2 representation to prevent

overcomplicating the model and potential overfitting.

Secondly, we update the question by concatenating the top-1 document from the

1st hop and feed it into BERT to extract contextualized representations. Finally, we

concatenate all the extracted specificity features, question-dependent features, and

retrieval scores to form a vector, which is then passed into the classification layer. The

classification layer is a fully-connected layer with sigmoid activation, constraining the

output between 0 and 1.

To train the unified model, we mix all question types together and give the model

more freedom to make decisions about learning how to extract features based on the
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question types. Similar to the prior works [43], we train the model by minimizing

the binary cross entropy of the output of the sigmoid function and the ground truth

label.

4.3 Experimental Evaluation

4.3.1 Datasets

The HotpotQA dataset serves as the foundation for our experiments. In the full-wiki

setting, it encompasses a large collection of 2-hop questions that necessitate multiple

retrieval steps and reasoning to achieve accurate answers. More detailed information

about HotpotQA is provided in Section 3.5.2.

4.3.2 Evaluation Metrics

To assess the performance of our supervised QPP method, we employ the evaluation

metrics described in Section 3.5.2. In addition to measuring the correlation with

average precision, we also evaluate the performance of our QPP method by correlating

it with the number of documents required to complete the task. We believe that easy

questions may necessitate fewer document retrievals compared to difficult questions.

Given that this number corresponds to the final index of the supporting documents

(considering both hops), we referred to it as reciprocal rank (RR) in our study. This

metric primarily focuses on the total number of documents needed to gather all the

necessary information for answering the question accurately.

4.3.3 Settings

We used the BERT pre-trained model [23] with 12 layers and attention heads with

d = 768 dimensions for extracting contextualized features from the input text. For

all of our experiments, we trained all models for 3 epochs and set the batch size to

8, learning rate to 2e− 5, maximum length to 256, and hidden-layers size to 128. To

prevent overfitting of our model on the training set, we add dropout with p = 0.25
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Retriever QPP Baseline
AP RR

P S K P S K

GoldEn [6]

BERT-QPP [43] 0.7878 0.7843 0.6210 0.6855 0.6968 0.5522

Unified Model 0.8198 0.8266 0.6535 0.6993 0.6946 0.553

− Bridge Prob. 0.8078 0.8139 0.6438 0.6853 0.6909 0.5449

− Doc. Semantic 0.4301 0.4265 0.3115 0.3869 0.4022 0.3118

MDR [18]

BERT-QPP [43] 0.7809 0.6752 0.5196 0.6081 0.5824 0.4519

Unified Model 0.8074 0.6927 0.5328 0.629 0.5936 0.4576

− Bridge Prob. 0.7875 0.682 0.5242 0.614 0.5791 0.4486

− Doc. Semantic 0.4924 0.4570 0.3423 0.3905 0.3980 0.3058

Table 4.1: Performance of our proposed method compared to previous post-retrieval
approaches using the GoldEn retriever. Bold and underline indicate the 1st and 2nd
best performance, respectively.

to the hidden layers. For each hop, we use the top-1 document due to transformer

input length limitations. Additionally, our aim is to minimize the retrieval time during

inference. Retrieving more documents for post-retrieval performance prediction would

essentially be akin to performing retrieval, and it would diminish the effectiveness of

performance prediction. Moreover, BERT-QPP only supports one document, while

for a 2-hop question, we have two supporting documents. To ensure a fair comparison,

we concatenate both documents as one context for their model.

4.3.4 Results & Discussions

Our main results for evaluating our post-retrieval method reported in Table 4.1. We

used GoldEn and MDR as fixed retrievers and trained our unified model using their

retrieval results, considering both average precision and reciprocal rank. Observing

the correlation coefficients for average precision, we found that our Unified Model

consistently outperformed the previous state-of-the-art model in ad-hoc retrieval on

both retrievers. However, the results in terms of reciprocal rank were not as stable.
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(a) Average precision (b) Reciprocal rank

Figure 4.3: Kernel Density Estimation (KDE) plots of actual scores for GoldEn and
MDR

The Unified Model demonstrated superiority in Pearson and Kendall coefficients,

while in Spearman correlation, it matched the performance of BERT-QPP.

Since bridge probability is a crucial feature specifically related to multi-hop QA, we

conducted an evaluation to measure its effectiveness. Removing the bridge probabil-

ity as an additional feature resulted in a decrease in performance across all correlation

coefficients and evaluation metrics. This finding indicates that the bridge probability

feature significantly assists the model in making better predictions. Moreover, when

we remove all features related to the retrieved documents, which includes both se-

mantic features and retrieval scores, there is a drastic decrease in performance for all

correlation coefficients. Consequently, the model’s performance becomes equivalent

to that of a pre-retrieval model trained using supervised learning. This observation

underscores the critical importance of document features for accurate performance

estimation in the post-retrieval paradigm.

In addition to unexpected fluctuations in the correlation values for Reciprocal Rank

(RR), we observe a performance gap between Average Precision (AP) and reciprocal

rank. This suggests that both Unified Model and BERT-QPP may not excel at
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(a) GoldEn (Average precision) (b) GoldEn (Reciprocal rank)

(c) MDR (Average precision) (d) MDR (Reciprocal rank)

Figure 4.4: Kernel Density Estimation (KDE) plots of predicted scores using the
Unified Model and actual scores in different settings

predicting RR performance as effectively as they do for AP. Our analysis has led to

some hypotheses to explain this phenomenon.

Figure 4.3 illustrate the Kernel Density Estimation (KDE) of actual score distribu-

tion. We can observe that the average precision score distribution differs significantly

from the reciprocal rank distribution for both retrievers. While both scores are im-

balanced, the reciprocal rank is more imbalanced as it depends on the number of

retrieved documents and there are some datapoints for which no sample exists in
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the dataset. For instance, no question requires the retriever to retrieve 8 documents,

whereas there are several questions that only require 2 or more than 10 documents

to obtain all the necessary information. This imbalance may have an adverse effect

on training our model, causing the model to predict a value for which there is no

corresponding datapoint in the dataset (orange areas that do not have any overlap

with blue ones). Moreover, this issue with the actual score distribution causes the

model not to train well, as evident from the correlation scores reported in Figure

4.4.
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Chapter 5

Conclusions & Future Work

5.1 Conclusions

The main goal of this project was introducing the task of query performance prediction

for multi-hop questions. In Chapter 1, we covered the main concepts of MHQA and

QPP and discussed about our motivation for applying QPP in MHQA. In Chapter

2, we reviewed recent studies with a focus on applying QPP to ad-hoc retrieval and

question answering, different methods proposed for multi-hop retrieval, and different

QPP approaches that were categorized into pre-retrieval and post-retrival paradigms.

To take the first step of defining the task of performance prediction in multi-hop

retrieval, we presented a pre-retrieval method to estimate a difficulty score of a multi-

hop question based on the clues in the question (Chapter 3). We analyzed multi-hop

questions in the HotpotQA dataset and proposed retrieval paths based on overlapping

terms between the question and its supporting documents. Our experimental evalua-

tion showed significant correlations between the performance of the retrievers used in

our evaluation and our estimated difficulty scores, and those correlations were much

higher than those obtained by our QPP baselines from the literature. The same trend

was observed for the end-to-end models with the performance considerably dropped

for the questions that were deemed difficult by our model. Determining the difficulty

of a multi-hop question using a pre-retrieval method can assist the retrievers to have

a better chance of retrieving all required documents to answer the question.
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In the QPP literature, it has been shown that post-retrieval models are more accu-

rate than pre-retrieval methods since they have more information about the retrieval

process. To take another step further, we presented a generalized post-retrieval frame-

work specifically designed for multi-hop QA. In Chapter 4, our generalized framework

for any-hop retrieval is reviewed and we introduced distinct models for bridge and

comparison questions. Based on our experimental results, there is strong correlation

between our estimated performance prediction and the retrievers actual performance.

5.2 Future Work

As a potential avenue for future research, our models can be further enhanced by ex-

ploring more refined retrieval path types and fine-tuning the corresponding parameter

settings. By considering a wider range of path types and optimizing the associated

parameters, we can improve the accuracy and effectiveness of our QPP framework in

estimating question difficulty and predicting retrieval performance.

Additionally, an interesting direction for future work involves analyzing the impact

of our difficulty score estimation on downstream tasks. By evaluating the performance

of downstream tasks, such as answer generation or passage ranking, using our esti-

mated difficulty scores, we can gain insights into the relationship between question

difficulty and the performance of subsequent tasks. This analysis can contribute to the

development of more efficient and effective systems for multi-hop question answering.

Furthermore, it is worth exploring the connection between our approach and pre-

dicting optimal parameter settings for retrievers. By investigating how our difficulty

score estimation correlates with the optimal number of retrieved documents, we can

provide valuable insights into the parameter settings that yield the best retrieval

performance. This research direction can contribute to improving the efficiency and

effectiveness of retrievers in multi-hop question answering scenarios.
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