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Abstract 

Time series discords, as introduced in by Keogh et al. [5] is described as the subsequence in the 

time series which is maximally different from the rest of the subsequences.  Discovery of time 

series discords has been applied to several diverse domains including space shuttle telemetry, 

industry, and medicine [5] to detect anomalies in the data which can identify equipment failure, 

unusual patterns of activity and health problems.   

In this thesis we will examine the problem of finding time series discords, with detailed analysis 

of the problem and analysis of the effectiveness of prior work.  Three different areas of discord 

discovery will be examined: Top Discord, Variable Length Discords, and Top-K Discords.  In each 

of these areas, we strive to reduce the number or ease the selection of input parameters 

required by the end user.  Emphasis is also placed on improved runtime and scalability of discord 

discovery methods. 
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1 Introduction 

1.1 Problem definition 

The notion of time series discords was introduced by Keogh et al. [5] as the subsequence in a 

time series which is maximally different than the rest of the subsequences, as determined by a 

dissimilarity measure, such as Euclidean distance.  Discovery of time series discords has been 

applied to several diverse domains including space shuttle telemetry, industry, and medicine [5] 

to detect anomalies in the data which can identify equipment failure, unusual patterns of activity 

and health problems.   

An example discord is displayed in Figure 1, where the top two discords are highlighted and are 

the subsequences that differ most from the rest of the time series.  This example of time series 

discords is from the shuttle dataset, where the discord corresponds to an irregular activation 

cycle of the valve.  Discovery of this type of anomaly is important in fault detection. 

 

Figure 1: Illustration of the top 2 time series discords in sensor data from Marotta Valve 

activation cycle from the space shuttle.   

1.2 Difficulties in Finding Time Series discords 

The process to find time series discords begins by extracting the set of all possible subsequences 

of length n from the time series  .  This can be achieved by using a simple sliding window 

technique, where the first subsequence,   , will contain the ordered set of points            

from the time series  .  Subsequence    will contain points             .  This simple process 

will continue until the set is complete with a total of         subsequences. 
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By definition, discord discovery implies that a nearest neighbour search must be conducted for 

each subsequence, and the nearest neighbour search must compare each subsequence to all 

other subsequences for a runtime complexity of         where     is the total number of distinct 

subsequences in  .  A brute force approach is easily implemented using a double nested loop, 

where each subsequence is compared to every other subsequence in order to find its nearest 

neighbour, and then the subsequence with the largest nearest neighbour distance is returned.  

This brute force approach to discovering a time series discords quickly becomes impractical as 

the length of the time series increases, since the time to solve the problem grows quadratically. 

Since the first paper introduced the method Hot SAX [5], others have worked on methods to 

improve the efficient discovery of time series discord [11][1][14].  While each of these authors 

presents improved algorithms to discover time series discords; three major questions arise from 

their work.  First, each of these methods relies on tuning parameters, which will be shown to 

have a significant effect on runtime performance.  Can we reduce or eliminate the need for 

tuning parameters?  Second, these methods have, primarily, been evaluated using a naive 

method of comparison based on the number of calls to the distance function, as the dominating 

computational function, while ignoring the impact of the preprocessing steps.  Is this an 

appropriate method for evaluating performance?  Third, the work presented by Bu et al. [1] 

discusses finding the top-k discords, while providing little in the way of evaluation.  What is the 

performance of this approach and are there better approaches? 

1.3 Thesis Outline  

This work examines three different problems related to discord discovery in time series data.  

First, it examines the problem of top discord discovery, then examines variable length discords 

and finally, extends the top discord problem to the top K discords.   

The work is organized in the following way.  Chapter 1 has introduced the problem of time series 

discords.  Chapter 2 will review related work and introduce some key concepts and definitions.  
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In Chapter 3 will examine the top discord problem, where we will evaluate prior methods and 

propose new methods that are competitive without the need for tuning parameters.  Chapter 4 

will propose a new method for discovery of variable length discords.  The discovery of top-k 

discords will be examined in chapter 5, where prior work will be evaluated and new methods will 

be proposed.  Finally, chapter 6 will summarise the work presented and discuss future work. 

1.4 Thesis Contribution 

In this thesis, we will examine the effectiveness of prior works in finding the top discord, taking 

all preprocessing steps into account, and evaluating the methods in terms of calls to the distance 

function and runtime performance.  We will present a new strategy for tracking nearest 

neighbour distances that will improve both the runtime performance and scalability of the 

methods. The impact of tuning parameter selection will be evaluated and we will present new 

methods that eliminate tuning parameters while maintaining competitive performance.   

We will present a new approach that we have developed to find variable length discords.  This 

new method will determine both the exact position and the length of the discord; where the 

length is within a user specified range.   

The work on the top-k discords will examine and evaluate the performance of prior methods and 

present several new methods for finding the top-k discords.  We will also examine two methods 

for finding all discords within the time series, without the need for the user to specify k (how 

many discords to discover). 
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2 Concepts and Related Work 

2.1 Introduction 

In this chapter, section 2.2 will explain discord discovery in terms of anomaly detection, then 

some basic concepts and definitions will be presented in sections 2.3 through 2.5; including 

discussion of distance measures and Symbolic Aggregate approXimation (SAX).  Then a review of 

related work will be presented in sections 2.6 to 2.8.  The related work falls into three categories: 

discord discovery, time series anomalies and motif discovery.  These classes of work are 

interesting to contrast as they relate to the opposite problems of finding rare versus finding 

frequent patterns in time series data.  Both these problems share many preprocessing steps, and 

can both take advantage of the same discretization techniques, such as SAX, to improve runtime 

performance.  Finally, the datasets used for testing will be introduced in section 2.9, and some 

important implementation details will be discussed in section 2.10. 

2.2 Anomaly Detection and Time Series Discords 

Anomaly detection is a diverse and important problem area which, in general, refers to finding 

patterns in data that differs from expected behaviour.  The survey work by Chandola et al. [2] 

describes three classes of anomalies: point anomalies, where individual instances can be 

considered as anomalous; collective anomalies, where a collection of related data instances are 

anomalous; and contextual anomalies, when the anomalous data is context specific.  Anomalies 

in time series data are often contextual anomalies since individual data points may not be 

anomalous, however, the context, or sequence, of data points may be considered anomalous.   

Many works have been proposed to discover anomalies in data across many diverse domains [2], 

such as fraud detection, system monitoring, intrusion detection, health care, and security 

systems.  The choice of method used to detect anomalies is dependant of the type of data 

(binary, continuous, categorical, ect.) and on the type of anomaly, as listed above.  Chandola et 

al. [2] group these methods into several categories: 
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 Classification based techniques: Labelled data is used to train a model that is then used 

to classify test instances as normal or anomalous.  

 Clustering based techniques: Similar data instances are grouped into clusters using 

unsupervised or semi-supervised techniques, where normal data clusters together and 

anomalous data does not fall into any cluster, or anomalous data is far from any cluster 

centre.  

 Nearest neighbour techniques: This class of techniques assumes that normal data falls 

into dense neighbourhoods, while anomalies are sparse and fall far away from their 

nearest neighbours. 

 Statistical techniques: Anomalies in the data fall into low probability regions of the 

stochastic model which describes the data. 

 Information theoretic: Assumes that anomalies introduce irregularities in the data that 

affect information theoretic measures, such as entropy or Kolomogorov Complexity. 

 Spectral Techniques: Spectral techniques try to embed data into a lower dimensional 

subspace which differentiates between normal and abnormal behaviour. 

Each of these methods have advantages and disadvantages, and are applicable to different types 

of problems and data sets.  This work focuses on discord discovery in real-valued time series 

data.  Discords are contextual anomalies that make comparisons based on the ‘shape’ of data, 

and the approach taken in this work is a nearest neighbour approach.  

As described by Chandola et al. [2], the key advantages of nearest neighbour based techniques is 

that they are purely data-driven, unsupervised approaches and straight-forward to apply to 

different data types; however, these methods can miss anomalies when they have a close 

enough nearest neighbour and can be computationally complex. 
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2.3 Definitions 

Before we delve into the details of discord discovery, some key definitions will be introduced.  

These definitions will apply to all future sections of the work.   

Definition 1: A Time series   of length   is an ordered sequence of real values, where 

                 .  The length of a sequence   is, in general, denoted by    . 

Definition 2: A Subsequence,   , of time series   is an ordered sequence of   starting at position   

sampling   continuous data points such that                     where   is called the 

length of   . 

Definition 3: For a time series   and a subsequence length  ,   will represent the set of all 

possible subsequences of  .      denotes the number of elements in  , i.e.,  

           . 

Definition 4: Two subsequences    and    are called non-overlapping if and only if        . 

The exclusion of overlapping subsequences is important to the problem of time series analysis as 

these subsequences will be very similar by nature of proximity, rather than by the nature of the 

underlying process.  Consider, for example, subsequence    and subsequence   .  In this case 

    points in the subsequences will be the same, offset by a position of 1.  For any     the 

shape of these two subsequences will be next to identical and inclusion of the distance between 

these overlapping subsequences will give non-intuitive results. 

Definition 5: For the purpose of finding time series discords, Distance is a measure of 

dissimilarity between two subsequences where a distance function returns a real value 

such that         (     )           (     ) and         (     )   . 

Definition 6: The Nearest Neighbour to a subsequence    is defined as a non-overlapping 

subsequence    that has the minimum distance to    among all non-overlapping 

subsequences in  . 
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Definition 7: A Time Series Discord, as introduced by Keogh et al. [5], is the subsequence    with 

the largest distance to its non-overlapping nearest neighbour. 

Definition 8: The top k
th

 discord is the subsequence with the k
th

 largest distance to its non-

overlapping nearest neighbour and is non-overlapping with the top K-p discords where 

         . 

2.4 Distance Measure Used 

Current methods in the literature focus on Euclidian distance and this distance measure is used 

exclusively in this thesis.  All methods discussed in this thesis, however, allow for the distance 

function to be replaced with a measure other than Euclidean distance, such as Dynamic Time 

Warping (DTW) [13].   

Changing the distance measure will affect the performance of the methods based on the 

complexity of the distance function and may change the optimal approach taken to solve the 

problem.  For example, if the Euclidian distance function was replaced with a function that is 

significantly more computationally intensive, then an approach with higher pre-processing costs 

that further reduces distance computations may improve overall performance.  Likewise, for a 

lower complexity distance function, additional distance computations may be tolerated in order 

to reduce the complexity in other areas of the algorithm.  Finding the correct balance is 

dependent on the distance function chosen and will require some experimentation. 

The Euclidian distance between two subsequences   and    is defined as: 

    (     )  √∑ (       (  ) 
)

 
 
       Equation 1 

2.5 Symbolic Aggregate approXimation 

Symbolic Aggregate approXimation (SAX), as presented by Lin et al. [7], is a dimensionality 

reducing symbolic approximation for time series data.  An interesting property of the SAX 

approximation is that it provides lower bounding of distance measures.  This means that the 
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distance between two subsequences cannot be less than the distance between the SAX 

representations of those subsequences.   

This symbolic approximation allows for discrete-value algorithms to be applied to real-valued 

time series data, and it can be effectively applied to solving time series problems [7][8].  The 

authors propose a generic framework for solving time series problems that includes: 

approximate data using SAX, find approximate solution, and then refine the approximate solution 

on original data.   

The steps to produce a SAX approximation are illustrated in Figure 2.  A subsequence is first 

normalized to a mean of 0 and standard deviation of 1.  Following the normalization, a piecewise 

aggregate approximation (PAA) [4] of the subsequence is computed for a fixed window size.  

Computing the PAA involves splitting the subsequence into segments equal to the window size 

and then representing each of the windows by the average of the values within that window.  In 

Figure 2, this is represented by the horizontal lines of fixed length.  Each component of the PAA is 

then assigned a symbol (from a fixed alphabet) so that each symbol has an equally probable 

chance of occurring in the PAA based on a normal distribution.  In Figure 2, this is illustrated by 

the dotted horizontal lines and shows the position of the symbol break-points in relation to the 

normal distribution, displayed along the left side of the chart, for an alphabet size of 3.  The 

resulting sequence of symbols obtained by computing the SAX approximation is referred to as a 

SAX word. 
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Figure 2: Illustration of steps to discretize data using SAX.  First, the piecewise aggregate 

approximation is calculated as the average of each equally wide segment of the normalized 

sequence.  Second, each segment is assigned a symbol based on the value of the 

approximation and breakpoints indicated by the dotted lines.  The breakpoints used for symbol 

assignment are selected to give equally probable regions based on a normal distribution.    

2.6 Heuristic Discord Discovery 

The primary objective of this work is to examine time series discords, or anomalies in time series 

data.  As introduced, this is important to many diverse domains such as health care and industry.  

For any process which produces real valued readings over time, it may be important to find 

patterns of activities which differ from the rest of the data.  These anomalies could indicate 

process upset (in the case of industrial data), intrusion detection (in the case of web traffic 

monitoring) or patient illness (in the case of patient monitoring). 

The simple brute force approach, as illustrated in Figure 3, is implemented with two nested loops 

which compares each subsequence to every other subsequence.  This implementation is 

quadratic in runtime complexity, which quickly becomes impractical as the length of the time 

series grows.  
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Figure 3: Pseudo code for brute force discord discovery.  This simple algorithm is implemented 

using a double nested loop which compares each subsequence in the outer loop to every other 

subsequence in the inner loop, while tracking which subsequence has the largest distance to its 

nearest neighbour. 

When comparing the subsequences, it is important to include only ‘non-overlapping’ 

subsequences, as discussed earlier.  In the brute force method, this is accounted for by the 

simple if-statement on line 7, which ensures the difference between the subsequence indices is 

greater than the length of the subsequences.  

Keogh et al. [5] introduces the problem of time series discords and proposes a solution to 

improve the performance of discord discovery over the brute force approach.  The performance 

improvements are based on two simple observations.   

1. In the inner loop, we do not need to find the true nearest neighbour.  We can break out 

of the inner loop as soon as we find a neighbour with a distance that is smaller than the 

current discord distance.  Since the objective is to find the subsequence with the 

maximum distance to its nearest neighbour, any subsequence with a neighbour distance 

smaller than the current discord’s nearest neighbour distance can be ruled out as the 

// S = Set of all distinct subsequences of length n in time series T  

// |S| = |T| -n + 1 

1. Function [Distance, Location] = BruteForce(S) 

2. DiscordPosition = NaN 

3. DiscordDistance = 0 

4. FOR i = 1 to |S|     // outer loop 

5.  NNDist = INFINITY 

6.  FOR j = 1 to |S|    // inner loop 

7.   IF |i-j| > n    // non overlapping 

8.    d = Distance(Si, Sj)  // compute distance 

9.    IF d < NNDist 

10.     NNDist = d 

11.    END 

12.   END 

13.  END      // end inner loop 

14.  IF NNDist > DiscordDistance 

15.   DiscordDistance = NNDist 

16.   DiscordPosition = i 

17.  END 

18. END       // end outer loop 

19. RETURN [DiscordDistance, DiscordPosition] 

20. END 
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discord.  The current nearest neighbour distance is referred to as the Best-So-Far-

Distance, and the optimization is referred to as Early Abandoning. 

2. The performance of an early abandoning discord discovery algorithm is dependent on 

the order in which the subsequences are examined in the inner and outer loops.  In the 

ideal situation, the true discord would be examined in the first outer loop and the 

nearest neighbour to the current subsequence in the outer loop would be considered 

first in the inner loop. 

The ideal loop ordering, referred to in point 2 above, is impractical and would require knowledge 

of the true discord and nearest neighbour distances in order to achieve.  Since an ideal ordering 

is not practical, an approximation is proposed based on the Symbolic Aggregate ApproXimation 

(SAX) [7] of the subsequences.   

Once the SAX representation of each normalized subsequence is obtained, the approximations 

can be used to obtain a good loop ordering for the early abandoning discord discovery algorithm.  

This is achieved by the creation of two data structures.  The first data structure is a listing of all 

distinct SAX words and the count of the words’ frequency.  The second data structure is an 

augmented trie (or prefix tree) of depth equal to the SAX word length, where path from root to 

leaf represents a SAX words and each leaf contains an array of subsequence indexes that map 

word represented by the path the trie.  These data structures are illustrated in Figure 4. 
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Figure 4: Illustration of data structures used in Hot SAX.  The first data structure on the left is a 

listing of all distinct SAX words with a count of how many subsequences map to the word.  The 

second data structure is an augmented trie with non-leaf nodes representing the sax letters of 

the sax word, and the leaf not containing a listing of all subsequences that map to the word. 

For the Hot SAX method, the outer loop of the search proceeds in the order of SAX word 

frequency with infrequent words first, under the assumption that unusually shaped subsequence 

are represented by rare SAX words.  For the inner loop, subsequences that map to the same SAX 

word are examined first, and then all remaining subsequences are examined randomly.   The 

inner loop assumption is that similar subsequences will map to the same word and give small 

distances that can be abandoned on. 

The generalization of this method is referred to as Heuristic Discord Discovery (HDD) where an 

ordering heuristic is used to guide the search in the double nested loop.  For the Hot SAX 

method, SAX is the basis of the ordering heuristic.  Keogh et al. [5] indicate a random ordering 

heuristic could be used, which considers subsequences in random, and note that it performs 

surprisingly well, but only provide a performance evaluation of their SAX based heuristic. 

In the work by Pham et al. [11] it is argued that the use of fixed breakpoints based on a Gaussian 

distribution, when applied to the PAA, is not able to adapt to the unique nature of the data.  They 

propose a k-means based approach to determine adaptive breakpoints, referred to as adaptive 

Symbolic Aggregate approximation (aSAX).  They argue that this adaptive method is able to offer 

Root  
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greater pruning power than the previous approach, since the adaptive breakpoints will prevent 

similar values (after the piecewise aggregate approximation) from being split and assigned 

different symbols.  In their work, the loop ordering proceeds in much the same manner as Hot 

SAX; look at subsequences that map to rare words first in the outer loop, then look at words that 

map to the same word in the inner loop, followed by all other subsequences randomly. 

Bu et al. [1] extend the previous Heuristic Discord Discovery (HDD) works by using a Haar 

Wavelet transform on the data prior to SAX.  This proposed transformation is done in such a way 

as to dynamically determine the appropriate word size for SAX, effectively reducing one of the 

tuning parameters.  The authors also suggest a method for determining the top-k discords, which 

entails finding the top discord and then re-running the algorithm to find the second discord and 

so on until the top-k discords are found.  The work discusses the use of distances computed in 

early iterations to reduce the work required to find the 2
nd

 to the k
th

 discord.  This method is 

claimed to be effective, but no performance results were provided.  The authors recognize the 

difficulty in selecting the discord length and suggest a method to store properties of the Haar 

wavelets in order to efficiently try a range of subsequence lengths; however, no method is 

presented to determine how to select the final discord from the range of potential subsequence 

lengths. 

In the work by Son et al. [14], the authors propose enhancements to HDD by using a symbol 

frequency table and some additional ordering heuristics that can be used to achieve better loop 

ordering.  These loop ordering heuristics look at additional information, such as the likelihood of 

a particular symbol in a particular position, which is contained in the symbol frequency table.  

The paper presents numerous loop ordering heuristics, with differing performance depending on 

the dataset.  As such, it introduces additional unintuitive inputs to the method.  The authors 

compared their work to other works using both runtime and distance calls and show 

improvement.  I have obtained this code and instructions to run from the author; it was compiled 

with optimizations and ran as best as possible.  The code was tested on a range of input 
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parameters.  Performance was very poor for some selection of input parameters and comparable 

to our random search approach (which will be introduced in section 3.4.5) for the best set of 

parameters. 

2.7 Anomaly Detection in Time Series 

Several other methods have been proposed that address the problem of anomaly detection in 

time series datasets that are fundamentally different than that of Heuristic Discord Discovery 

methods presented so far.  

Keogh et al. [6] propose a method for mining sequential data which is robust against length, 

sampling rates, missing values and dimensionality based on Kolmogorov complexity.  The 

proposed method uses a Compression based Dissimilarity Measure (CDM) that is based on the 

compression of two strings and is defined as           
     

          
 where       is the 

compressed size of x concatenated to y and           is the compressed size of x, y 

respectively.  The CDM of two sequences will approach 0 as the similarity increases.  To limit the 

effect of data representation, the authors present SAX as a solution to discretize the data 

beforehand.  This dissimilarity measure is demonstrated in a divide-and-conquer algorithm and 

applied to clustering, anomaly detection and classification problems. 

Previous works discussed require that the data reside in main memory.  To address the problem 

of large (terabyte size) datasets, Yankov et al. [15] present a method that can find discords in 

datasets that exceed the space available in main memory.  This method is able to find the discord 

in two linear scans of the dataset with a tiny buffer of main memory.  The advantages of this 

method are only applicable to these large datasets.  Our work focuses on datasets that fit into 

main memory. 

Cheng el al. [3] developed a robust graph based algorithm that employees a kernel alignment 

method in order to find anomalies in multivariate time series.  This method attempts to find time 

stamps where measurement values in one or more time series deviates significantly from the 
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normal behaviour.  Normal behaviour is described as the expected values of the time series 

based on historical changes as well as its relationship to other time series.   

In the work by Preston et al. [12] the problem of finding sub-intervals, which are statistically 

significant from the underlying noise is addressed.  This work is very different than those 

examined by HDD methods and in our work.  In their work, the authors are interested in 

astronomical data where the noise characteristics are difficult to generalize into a model.  An 

analytical and Monte Carlo approach are proposed to determine areas of interest based on the 

probability of their occurrence, where regions of low probability can be used to determine the 

starting point and size of statistically significant event in the data.  

Luo et al. [9] recognize the challenge in parameter selection for discord discovery.  In their work, 

they propose a parameter free discord search algorithm for quasi-periodic time series, which 

takes advantage of the repetition in the data.  This method was shown to outperform Hot SAX in 

terms of calls to the distance function for periodic datasets.  Testing was also conducted on non-

periodic datasets and the authors only note it is 100s of times faster than brute force. 

2.8 Time Series Motifs 

The goal of motif discovery is to find sub-sequences that occur frequently in the time series, 

rather than rare sub-sequences as in discord discovery.  Often this is described as the pair of 

subsequences that have the shortest distance to each other; however, range motifs are also 

described where sets of subsequences within a specified distance constitute a motif.  Like discord 

discovery, many approaches are distance based and thus understanding this work can lend some 

insight into Discord discovery.  For example, SAX discretization is a common pre-processing step 

in both tasks. 

Yankov et al. [16] attempt to account for the inherent variability of scale in time series data as it 

applies to motif discovery.  Their approach is to define a similarity measure which calculates the 

distance under several scaling factors.  This approach is argued to be better than using distance 
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measures such as Dynamic Time Warping (DTW) [13] when searching for short motifs (which are 

less prone to scaling issues).  The short motifs discovered can then be ‘grown’ into longer 

patterns.  Dynamic Time Warping is a distance measure which is able to ‘warp’ the subsequences 

as the distance is computed to get good alignment of the features in the data.  

Mueen et al. [10] project the d-dimensional data into 1-dimensional space using an arbitrary 

reference point.  Using the triangular inequality, they can lower bound the distance between any 

two points and prune large amounts of search space.  The lower bounded distance can 

effectively and efficiently be calculated on the SAX approximation of the subsequences. 

While these motif discovery methods do share some commonality with discord discovery, such as 

distance measures and preprocessing steps, the works are quite different.  One optimization 

common and effective to motif discovery is the lower bounding of distances.  This is 

unfortunately unavailable to discord discovery, as we are looking for maximum distances and 

there is no method of upper bounding the distance using approximations. 

2.9 Datasets 

All experimentation performed in this thesis was conducted on several diverse datasets that have 

been used in prior works on Discord Discovery.  These datasets were obtained from the Bu et al. 

[1] along with the source code for their work. 

The datasets include: 

 ECG: Electrocardiogram dataset 

 Shuttle: Sensor data from Marotta Valve activation cycle from the space shuttle. 

 ERP 

 Random Walk.  Random walk dataset generated with transition values sampled from a 

normal distribution with mean of 0 and standard deviation of 1.   

 Tickwise 
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The ECG and shuttle dataset are periodic, while the ERP and Random walk datasets do not exhibit 

periodic behaviour.  It is important to differentiate and test on these two classes of data as it has 

a significant impact on our expectation of nearest neighbours.  For example, with the periodic 

datasets, we expect each subsequence to have many near neighbours, since the pattern is 

approximately repeated throughout the data, leading to small distances.  Any deviation from this 

pattern represents a discord.  This is not the case for time series that are not periodic; however 

there are still subsections in the time series data that represent unusual behaviour as compared 

to the rest of the dataset. 

All of the datasets used here, with the exception of shuttle dataset, are quite long and 

experiments were performed on time series of lengths 5,000, 10,000, 50,000 and 100,000 data 

points.  The shuttle dataset is short and only allowed for experiments on time series of 5,000 

data points.  Prior works typically ran experiments on datasets shorter than 10,000 data points.  

One general constraint of this method is that the dataset fits in main memory.  For datasets that 

do not fit in main memory, a significantly different approach would need to be used that limits 

access requests to secondary storage, like the one proposed in the work by Yankov et al. [15]. 

2.10 Implementation 

Algorithms in this work were developed using C# in Microsoft Visual Studio 2010.  When 

implementing prior works, care was taken to maintain the intent of each algorithm while 

ensuring that the resulting performance accurately reflects the effect of the optimizations 

presented.  Deviations in implementation details are noted throughout the thesis.  An example 

deviation is the use of a sorted dictionary, rather than a trie when implementing the Hot SAX 

code.  Both of these data structures offer the same lookup performance of O(log(n)).  

This approach to redevelopment of each method in a common environment is important so that 

runtime differences between algorithms are not due to differences in coding style, language or 

runtime environments.   
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As an aside to this, the actual code, written in C, was obtained for one of the prior algorithms.  

The code was compiled, as received, with optimizations and ran on several datasets.  In addition 

to the code being difficult to read, understand, and test, the runtime performance was slow and 

reported inconsistent discord positions compared with other methods (including simple brute 

force).  The slow performance could be due to the code being optimized for minimizing distance 

calculations, rather than minimizing runtime performance.  

 



19 

3 Top Discord 

3.1 Introduction  

The brute force approach to discord discovery is impractical on large datasets due to the 

quadratic runtime complexity, as already noted.  Current works on improving discord discovery 

are based on the Heuristic Discord Discovery (HDD) and early abandoning as introduced by Keogh 

et al. [5].  This approach proposes the use of a search ordering heuristic to increase the rate of 

early abandoning in order to improve runtime performance.  

The current works have not provided adequate performance evaluation in terms of CPU runtime 

and focus performance evaluation on the number of calls to the distance function.  It is argued 

that computing the distance between subsequences accounts for the majority of the runtime [5], 

however this does not give a true evaluation of the methods.  In order to provide a fair 

comparison between methods, we need to compare them in terms of actual runtime 

performance, to account for the overhead of the ordering heuristics.  For example, one method 

may offer marginal improvement in calls to the distance function at significant preprocessing 

overhead in computing the ordering heuristics.  Overall performance could then be much slower 

than without the proposed optimization. 

In this chapter, we will examine the preprocessing steps in section 3.2.  Then the baseline 

expectation of the complexity of discord discovery will be discussed in section 3.3.  Previously 

published and our new optimizations will be described in section 3.4.  Finally, performance 

evaluation of these optimizations will be presented in section 3.5.  

3.2 Preprocessing  

Given an input time series   of length    , a couple of preprocessing steps are required for all 

methods.   
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First is the extraction of the complete set of all distinct subsequences of length  , where 

subsequence    is given as  

                    . 

The second preprocessing step normalizes each    to a mean of 0 and standard deviation of 1.  As 

will be seen this second preprocessing step takes considerable computation effort.  

3.3 Range of Expected Performance  

Mathematical examination of the problem of discord discovery will allow us to specify best case 

and worst case for performance in terms of calls to the distance function.  Also, careful 

examination of the problem and several datasets will allow us to understand how difficult the 

problem is.  For example, the degree in which the discord is dissimilar from ‘normal’ data 

influences performance.  If a dataset is periodic, such as ECG data, there exists recurring patterns 

which are similar, thus finding a close neighbour should be easier, as any ‘normal’ repeat of the 

pattern should be a close neighbour.  However, it also means that the range of true nearest 

neighbour distances may all be small compared to the range of all pairwise distances.  This 

knowledge will allow us to understand how much room there is left to improve, as compared to 

the best case, for a given method (in terms of the number of distance calls required to find the 

discord).  Any proposed method would need to balance the cost of the overhead with the 

number of distance calls to achieve better performance. 

3.3.1.1 Worst Case Performance 

In the brute force approach, all distances between pairs of non-overlapping subsequences need 

to be calculated.  Due to the symmetry of the distance function, we only need to compute half of 

the total pair wise distances.  This can be computed as: 

                ∑  
     
     

                

 
  Equation 2 
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To illustrate the correctness of this formula, we can think of the simple brute force approach.  In 

the first outer loop, we need to compute the distance to all       non-overlapping 

subsequences.  In the next outer loop, we again need to compute the distance to all non-

overlapping subsequences, except for the reciprocal distance computed in the first outer loop.  In 

the third outer loop, compute the distance to all non-overlapping subsequences, except for the 

two distances computed in the previous two outer loops.  This pattern continues to obtain the 

summation given above. 

As an example, if the time series contains 5,000 data points, and we are looking for a discord of 

length 128 we have: 

                             

                       

               ∑  

     

   

             

It can be seen that for a small dataset, there are a large number of distance calculations that 

must be performed.   For a larger dataset, such as 50,000 data points and subsequence length of 

128, this number quickly grows to 1,237,307,385 distance calls. 

3.3.1.2 Best Case Performance 

In the ideal case, the discord discovery algorithm would look at the true discord in the first 

iteration of the outer loop.  Then it would consider the true nearest neighbour to the 

subsequence in outer loop in the first inner loop.  In this case, the first outer loop would compute 

the distance to all non-overlapping subsequences.  Every subsequent outer loop would abandon 

on the first inner loop.  The number of distance calls would then compute as: 

                            Equation 3 
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This is only 9,489 distance calculations for the same example with 5,000 data points and 99,489 

for the 50,000 data point example.  This is an enormous difference and implies that there may be 

a lot of room to improve over the brute force approach. 

3.3.1.3 Factors Affecting Performance 

As discussed, early abandoning is a simple optimization that allows us to reduce the calls to the 

distance function through the observation that we do not need to know the true nearest 

neighbour of a subsequence in order to rule it out as the discord.  It is sufficient to find a distance 

that is closer than the current best-so-far discord distance to rule out a subsequence as the 

discord.  It can be easily shown that actual performance is dependent on the order in which the 

subsequences are examined.  For example, if processing the subsequences in order, one would 

expect a large difference in performance if the true discord is located at the beginning of the 

time series as opposed to the end of the time series.  This is because the true discord has the 

largest distance to its nearest neighbour and therefore will have greatest pruning power.  This is 

the intuition behind the ordering heuristics as proposed by Keogh et al. [5], where we want to 

examine rare subsequences, and ideally the true discord, early in the search. 

The dataset itself will also have a significant impact on performance and the difficulty of the 

problem.   The first observation is that if the true discord is not too dissimilar from the other 

subsequences, early abandoning will not be as effective compared to the case when the discord 

is very different from the other subsequences.  This is illustrated in Figure 5 and Figure 6.  In 

these two figures, we see a histogram of all pair-wise distances compared to a histogram of all 

nearest neighbour distances for an ECG and a Random walk datasets.   
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Figure 5: Distance distributions for an ECG dataset of 5,000 data points and subsequence length 

of 128.  The chart shows the distribution of true nearest neighbour distances for each 

subsequence, in red, compared to the distribution of all pair wise distances in the dataset, in 

blue. Each bin number corresponds to a fixed-width-bin (of distances), with the smallest bin 

number starting at the smallest pairwise distance and the largest number bin ending at the 

maximum pairwise distance. 

 

Figure 6: Distance distributions for a Random Walk dataset of 5,000 data points and 

subsequence length of 128.  The chart shows the distribution of true nearest neighbour 

distances for each subsequence, in red, compared to the distribution of all pair wise distances 

in the dataset, in blue. Each bin number corresponds to a fixed-width-bin (of distances), with 

the smallest bin number starting at the smallest pairwise distance and the largest number bin 

ending at the maximum pairwise distance 

Comparing the figures between the two datasets shows that the distribution of all pairwise 

distances follows the same general shape; consistent bin membership with a small decrease 

towards the tail ends.  The nearest neighbour distance distributions also have the same general 
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shape for the two datasets, with the majority of subsequences having small nearest neighbour 

distances and a decreasing trend in the number of subsequences as the nearest neighbour 

distances increase.  This general shape holds for all of the datasets examined; however, the range 

in which the nearest neighbour distance distributions extend into the distribution of all pairwise 

distances varies.  As for the two datasets shown above, the ECG dataset has a narrow range of 

nearest neighbour distances as compared to all distances; whereas the random walk dataset has 

a much wider range of nearest neighbour distances.  

There are two consequences of these distributions.  First, the distance between any two 

randomly selected subsequences is almost equally likely to fall into any of the bins of the 

histogram.  Second, finding a good nearest neighbour distance to prune on in the random walk 

dataset should be easier than in the ECG dataset, since more nearest neighbour distances are 

larger than a larger percentage of pairwise distances.  

Figure 7 demonstrates the effect different datasets have when using a linear ordering with early 

abandoning and random ordering heuristic with early abandoning and compares the results to 

the theoretical minimum and maximum number of distance calls for a time series of 5,000 data 

points and subsequence length of 128.  The random search ordering heuristic will be explored in 

section 3.4.5.   

In Figure 7 we can see that the early abandoning coupled with the random ordering heuristic 

provides a huge improvement over the theoretical maximum and that the dataset has a 

significant effect on performance.  The random ordering also offers a significant improvement 

over the linear ordering; however, there is less difference between datasets for the linear 

ordering.  Differences in the linear ordering are caused by factors such as position of discords in 

the dataset.  This figure also gives us an idea of the range available for improvement by any other 

loop ordering heuristics of about 10 to 40 times improvement in distance calls, depending on the 

dataset.   
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Figure 7: Average number of distance calculations to find the discord using a linear and random 

ordering heuristic for ECG and Random Walk datasets compared to minimum number of 

distance calls and the number of distance calls brute force for datasets of 5,000 data points and 

subsequence length of 128.  Values for each of the datasets represent the average of ten runs 

of the experiment. 

The number of actual distance computations performed is surprisingly small given the 

distributions that we have seen in Figure 5 and Figure 6.  For the ECG dataset, finding the true 

discord using 427,505 distance calls means that on average, the outer loop abandons on the 87
th

 

inner loop (as computed by total distance calls divided by total number of outer loops). As for the 

Random Walk Dataset, the outer loop abandons on the 20
th

 inner loop, on average, for this 

experiment.   

 

Figure 8: Number of inner loops required to abandon for outer loops numbered 2 to 500.  

Results are for the ECG and Random Walk datasets of 5,000 data points and subsequence 

length of 128.  The results display the average of 100 runs for each dataset using the random 

search heuristic with early abandoning. 
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Figure 8 displays the average number of distance call required to abandon the inner loop as 

determined experimentally.  In this figure, we can see that the early abandoning rate very quickly 

drops to below 500 inner loops.  By the 200
th

 outer loop (out of 4,872) , Random Walk dataset 

consistently abandons in less than 50 inner loops and the ECG dataset consistently abandons in 

less than 100 inner loops.  With each successive loop, the trend is a further decreasing number of 

inner loops required before abandoning.  Note that the experimental results displayed in Figure 8 

are averaged over 100 repetitions due to the large variability between runs.  Early in the search, 

it is common to see the occasional inner loop abandon in fewer than 5 inner loops.  

3.4 Optimizations 

In order to have a clear understanding of how different optimizations affect the runtime 

performance, we begin with the brute force approach and then build optimizations on top of this 

method.  This allows easy comparisons and demonstrates how the changes affect the runtime 

performance of the method.   

The following sub-sections will examine the following optimizations:   

 3.4.1: effect of removing the square root from distance function 

 3.4.2: early abandonment 

 3.4.3: distance lookup strategies 

 3.4.4: array storage of nearest neighbours 

 3.4.5: random search heuristic 

 3.4.6: effect of different SAX tuning parameters 

 3.4.7: Hot SAX 

 3.4.8: Hot SAX with work hierarchy 

 3.4.9: Sax Self tuning. 
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3.4.1 Remove Square Root from Distance Function 

The strict definition of Euclidian distance, as given, is not needed to find the discord provided 

that the ranking of subsequences based on distance is preserved.  A simple optimization is to 

omit the square root operation in the Euclidian distance function presented in Equation 1.  The 

potential runtime impact of removing the square root was tested and the results are displayed in 

Figure 9.  This optimization has a limited impact on runtime performance particularly as the 

subsequence length increases.  For short subsequences of length 32, the difference is less than 

10 % improvement in time to compute the pairwise distances.  Once the subsequence length 

exceeds 128, the difference is less than 1% increase in runtime.  All other experimentation 

conducted in this work used subsequence lengths greater than or equal to 128, so this would 

have limited impact on the results.   For this work, the same distance function was used by all 

methods implemented (using squared distances).  

 

Figure 9: Runtime comparison for computing Euclidean distance versus squared Euclidean 

distance between two subsequences, i.e. with and without the final square root operation.  

This chart illustrates that the final square root operation has limited impact on the overall 

runtime of the distance calculation as the subsequence length increases.  

3.4.2 Early abandonment 

The key improvement over the brute force approach is the early abandonment optimization, 

which offers significant improvement in terms runtime and calls to the distance function.  Like 

brute force, this method examines each subsequence in the outer loop, and compares it to all 
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other subsequences in the inner loop.  The outer and inner loops progress in order of position in 

the dataset. 

The pseudo code for this algorithm is shown in Figure 10. 

 

Figure 10: Discord search with early abandonment.  The lines which are bold indicate the 

difference from the Brute force approach shown in Figure 3. 

Note that while the pseudo code shown in Figure 10 implements the simple early abandoning 

implementation, in lines 12 to 14, we are still not taking advantage of the symmetry of the 

distance function.  By the time we reach the end of the inner loop, at line 16, we need to be sure 

that we have either abandon the inner loop or have considered every non-overlapping pair of 

subsequences.  Storing pairwise distances that have been computed, will allow us to take 

advantage of symmetry of the distance function, as discussed in the next section. 

3.4.3 Distance Lookups 

Prior works have suggested using a           matrix to store distances computed.  This method 

can effectively be used to guarantee that we call the distance function only once for any pair of 

subsequences.  Provided that we are proceeding in linear order and are not implementing early 

// S = Set of all distinct subsequences of length n in time series T  

// |S| = |T| -n + 1 

1. Function [Distance, Location] = EarlyAbandoning(S) 

2. DiscordPosition = NaN 

3. BestSoFarDistance = 0 

4. FOR i = 1 to |S|     // outer loop 

5.  NNDist = INFINITY 

6.  FOR j = 1 to |S|    // inner loop 

7.   IF |i-j| > n    // non overlapping 

8.    d = Distance(Si, Sj)  // compute distance 

9.    IF d < NNDist 

10.     NNDist = d 

11.    END 

12.    IF NNDist < BestSoFarDistance 

13.     BREAK inner loop // abandon loop 

14.    END 

15.   END 

16.  END      // end inner loop 

17.  IF NNDist > BestSoFarDistance 

18.   BestSoFarDistance = NNDist 

19.   DiscordPosition = i 

20.  END 

21. END       // end outer loop 

22. RETURN [BestSoFarDistance, DiscordPosition] 

23. END 
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abandoning, we can limit calls to the distance function to when    , and then look up the 

distances when    .  This will ensure that the subsequence pair     is considered before     

when   iterates from   to     in the outer loop and   iterates from   to     in the inner loop. 

In the case when we are not proceeding in linear order over the data or are implementing early 

abandoning, we can initialize a         matrix to -1, and then check the appropriate value in our 

distance matrix prior to computing it.  If the distance is greater than or equal to 0, we can use the 

stored distance, otherwise we must compute it.  While this can save on distance calculations, 

there is a time and space cost associated with maintaining a matrix of pair-wise distances.   

This optimization can be implemented using a simple square matrix, as shown in Figure 11; or 

with some additional logic, be implemented with a triangular matrix.  To implement the 

triangular matrix approach, a space is allocated for an upper triangular matrix, and then all 

read/write accesses to the matrix are through the logic 

                                       to ensure that only the upper half of the matrix is 

accessed.  As will be shown in Figure 13, the additional logic of using a triangular matrix (due to 

the min/max functions) will have a small performance impact over using a square matrix, but will 

have half the space requirement.  Applied to the early abandoning method, we see that this 

optimization reduces the number of distance calculations by 15% to 20%; however, it only 

improves the runtime performance as the subsequence length increases, and the computational 

cost of the distance function increases as a consequence. 
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Figure 11: Discord search with early abandoning and distance lookup. 

The primary concern with this strategy is not improvement or degradation in runtime 

performance, but with the additional space requirement.  For a small dataset of 5,000 data 

points and a subsequence length of 128, a 4,873 by 4,873 matrix of distances is required.  

Assuming 8 byte doubles are used, this requires 181 megabytes of storage for the distances 

alone.  This space requirement significantly limits the length of time series that this method can 

be applied to.  Given our hardware setup, this approach limited our dataset to around 10,000 

data points.  Longer datasets would generate out-of-memory exceptions or would require 

additional logic to rely on slow secondary storage options.   

Storage and lookup of pair wise distances in any method was abandoned in this work due to the 

limitations imposed by the       space requirements. Prior works [5][1][14], however, include 

this optimization and only evaluate using relatively small datasets.  This may be due to the 

// S = Set of all distinct subsequences of length n in time series T  

// |S| = |T| -n + 1 

1. Function [Distance, Location] = EarlyAbandoningLookupMatrix(S) 

2. DiscordPosition = NaN 

3. BestSoFarDistance = 0 

4. // create square matrix with cells initialized to -1 

5. Distances[,] = InitSquareMatrix(|S|, -1)   

6. FOR i = 1 to |S|     // outer loop 

7.  NNDist = INFINITY 

8.  FOR j = 1 to |S|    // inner loop 

9.   IF |i-j| > n    // non overlapping 

10.    IF(Distances(i,j) < 0) 

11.     d = Distance(Si, Sj) // compute distance 

12.     Distances(j,i) = d  

13.    ELSE  

14.     d = Distances(i,j)    // retrieve distance 

15.    END 

16.    IF d < NNDist 

17.     NNDist = d 

18.    END 

19.    IF NNDist < BestSoFarDistance 

20.     BREAK inner loop // abandon loop 

21.    END 

22.   END 

23.  END      // end inner loop 

24.  IF NNDist > BestSoFarDistance 

25.   BestSoFarDistance = NNDist 

26.   DiscordPosition = i 

27.  END 

28. END       // end outer loop 

29. RETURN [BestSoFarDistance, DiscordPosition] 

30. END 
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strategy used for performance evaluation in their work of only considering distance 

computations. 

3.4.4 Array storage of Nearest Neighbour Distances 

As an alternative to storing all pairwise distances, we have developed a different approach.   

Given that the objective is to find the nearest neighbour, we only need to concern ourselves with 

the current nearest neighbour distance for each subsequence and we can effectively couple it 

with early abandoning.  This method is illustrated in Figure 12.  First we must initialize an array of 

length |S| to MaxValue of a double.  Then prior to each inner loop, we can see if a nearest 

neighbour for the outer loop subsequence has been found that is less than the current best-so-

far distance.  If so, we can rule out the current subsequence as being the discord without 

entering the inner loop.  Inside the inner loop, we need to update the minimum distance found 

for both subsequences,   and  , in the current inner and outer loops.  

 

Figure 12: Discord search algorithm tracking best-so-far distance for each subsequence.   This 

algorithm implements early abandoning and allows for inner loops to be skipped entirely. 

// S = Set of all distinct subsequences of length n in time series T  

// |S| = |T| -n + 1 

1. Function [Distance, Location] = EarlyAbandoningLookupArray(S) 

2. DiscordPosition = NaN 

3. BestSoFarDistance = 0 

4. // create array matrix with entries initialized to max value  

5. NNDist[] = InitArray(|S|, MaxValue)   

6. FOR i = 1 to |S|     // outer loop 

7.  IF NNDist [i] < BestSoFarDistance 

8.   NEXT i // i cannot be discord skip inner loop 

9.  FOR j = 1 to |S|    // inner loop 

10.   IF |i-j| > n    // non overlapping 

11.    d = Distance(Si, Sj)  // compute distance 

12.    // Update nearest neighbour distances 

13.    NNDist[i] = MIN(NNDist[i], d) 

14.    NNDist[j] = MIN(NNDist[j], d) 

15.    IF NNDist [i] < BestSoFarDistance 

16.     BREAK inner loop // abandon loop 

17.    END 

18.   END 

19.  END      // end inner loop 

20.  IF NNDist [i] > BestSoFarDistance 

21.   BestSoFarDistance = NNDist[i] 

22.   DiscordPosition = i 

23.  END 

24. END       // end outer loop 

25. RETURN [BestSoFarDistance, DiscordPosition] 

26. END 
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This strategy may lead to the situation where some distance pairs are computed twice.  This is 

unavoidable without tracking exactly which distance pairs have been computed since we need to 

ensure that by the end of the inner loop we have abandoned or considered every subsequence.  

However, tracking the nearest neighbour distances for each subsequence can be effective for 

pruning and can be used to skip the inner loop entirely. 

Figure 13 compares the three distance lookup strategies with a ‘no-lookup’ strategy in terms of 

calls to the distance function and runtime.  We can see from the data that the array lookup 

strategy is typically best in terms of distance computations and is always best in terms of runtime 

performance.  It is also interesting to note that while the matrix look-up strategies both reduce 

the number of distance computations over no-lookup strategy, there is minimal improvement on 

runtime performance and for short subsequence. It can in fact lead to an increase in runtime.  

 

Figure 13: Comparison between discord discovery methods implementing early abandoning 

optimization and several strategies for distance lookups.  The charts display the average of ten 

runs for the ECG dataset of 5,000 data points.  All lookup strategies offer an improvement in 

the number of distance calculations over having no lookup strategy.  Runtime performance and 

distances calculations required are typically the best for the array lookup strategy, due to the 

inner loop skipping and computational simplicity.  While using a triangular matrix reduces 

storage requirement, it has a small increase in runtime performance over using a square 

matrix.  These results are consistent among all 5 datasets examined. 

It is also important to note that the loop skipping implemented in the array lookup strategy could 

be used with the matrix lookup strategies but would require either; repeatedly searching for max 
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values along dimensions of the matrix adding to the runtime complexity, or combining the array 

and matrix strategies adding to the space complexity.   

All further work presented in this thesis will implement the array lookup strategy due to the 

increased performance, simplicity and low storage requirement.   

3.4.5 Random Search 

Keogh et al. [5] noted that a random search heuristic could be used in the Heuristic Discord 

Discovery (HDD) framework and noted that the performance is surprisingly good, but no 

performance results or analysis of this approach have been provided.  We will provide both here. 

One of the problems with the early abandoning method is that distances between adjacent 

subsequences are not independent.  This is due to overlap between the subsequences, which 

leads to similar distances, particularly where there is significant overlap.  For example, dist(Si,Sj) is 

expected to be very similar to dist(Si,Sj+1) in all but the most extreme cases.  Similarly, the nearest 

neighbour distance of subsequence Si is expected to be very similar to the nearest neighbour 

distance of subsequence Si+1.  This is illustrated in Figure 14  and Figure 15 where we see the 

average difference between nearest neighbour distances offset by 1 to 150 indexes for two 

different subsequence lengths.   
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Figure 14: Comparison of the average difference between nearest neighbour distances as a 

function of proximity to each other for a subsequence length of 128.  Here we see a clear trend 

of similar nearest neighbour distances for subsequences that are close to each other. 

 

Figure 15: Comparison of the average difference of between nearest neighbour distances as a 

function of proximity to each other for a subsequence length of 512.  Here we see a clear trend 

of similar nearest neighbour distances for subsequences that are close to each other.  
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For all of these four datasets and both subsequence lengths, we can see that close subsequences 

have similar nearest neighbour distances and the nearest neighbour distances increase as the 

distances between the positions of the subsequences increases.   

The implication of this finding is that if the search cannot abandon on loop   in the inner loop, it 

is unlikely that it will be able to abandon on the next inner loop    .  This is due to the fact that 

the shape of the subsequences   and     will be very similar, due their significant overlap and 

thus           will be very similar to            . 

Additionally, if the outer loop i does not have a large nearest neighbour distance, the next outer 

loop i+1 will generally not have a large nearest neighbour distance, as we can conclude from 

Figure 14 and Figure 15.  Therefore, if a subsequence   in the outer loop does not have a large 

nearest neighbour distance that would be good for pruning, then next subsequence     will not 

have a large nearest neighbour distance, and neither will be able to improve on our abandoning 

rate.   

A random search ordering will address the issues highlighted above as compared to a linear 

progression with early abandonment.  The random search method considers the subsequences in 

random order in both the outer and inner loops.  This random ordering will increase the 

variability in each consecutive distance computed and helps increase our chances of finding a 

large best-so-far distance early in the outer loop and finding a near neighbour early in the inner 

loop, regardless of where they are located in the dataset.  To save on overhead, the same 

random ordering can be effectively applied to all inner loops.  The implementation of the random 

search method is presented in Figure 16. 
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Figure 16: Discord search with Random ordering and early abandoning.  Highlighted lines 

indicate changes from the previous early abandoning method which searches in linear order. 

As discussed in the previous section, using the array storage of nearest neighbour distances leads 

to some pairwise distances being computed twice.  In practice, however, this does not occur too 

frequently, as seen in Figure 17, and is not a significant contributor to the overall runtime, as the 

cost of the extra distance computations is less than maintaining and looking up the distances.   

// S = Set of all distinct subsequences of length n in time series T  

// |S| = |T| -n + 1 

1. Function [Distance, Location] = EarlyAbandoningRandomSearch(S) 

2. DiscordPosition = NaN 

3. BestSoFarDistance = 0 

4. // create randomly ordered array of all indexes  

5. OuterSearchOrder[] = GenerateRandomOrdering(|S|) 

6. InnerSearchOrder[] = GenerateRandomOrdering(|S|) 

7. // create array matrix with entries initialized to max value  

8. NNDist[] = InitArray(|S|, MaxValue)   

9. FOREACH i IN OuterSearchOrder    // outer loop 

10.  IF NNDist[i] < BestSoFarDistance 

11.   NEXT i // i cannot be discord skip inner loop 

12.  FOREACH j IN InnserSearchOrder  // inner loop 

13.   IF |i-j| > n    // non overlapping 

14.    d = Distance(Si, Sj)  // compute distance 

15.    // Store distance 

16.    NNDist[i] = MIN(NNDist[i], d) 

17.    NNDist[j] = MIN(NNDist[j], d) 

18.    IF NNDist[i] < BestSoFarDistance 

19.     BREAK inner loop // abandon loop 

20.    END 

21.   END 

22.  END      // end inner loop 

23.  IF NNDist[i] > BestSoFarDistance 

24.   BestSoFarDistance = NNDist[i] 

25.   DiscordPosition = i 

26.  END 

27. END       // end outer loop 

28. RETURN [BestSoFarDistance, DiscordPosition] 

29. END 
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Figure 17: Percentage of duplicate distance calls for the Random Search heuristic, where 

duplicate distance calls are due to the symmetric nature of the distance function.  The data 

represents the average value over ten runs with a time series length of 5,000 and subsequence 

length of 128. 

3.4.5.1 Outer Loop Re-Ordering 

We have developed and tested two variants inspired by the random search ordering heuristic.  

The first variant begins with the random search approach, maintaining the array of nearest 

neighbours for each subsequence.  Then, after a specified number of outer loops, a new outer 

loop ordering is generated based on the current nearest neighbour distances that have been 

computed for each subsequence.   

With each outer loop, the current nearest neighbour distances are updated for both the outer 

loop subsequence and the inner loop subsequence.  With each successive outer loop the current 

nearest neighbour distances begin to approach the true nearest neighbour distances.  So, the 

intuition behind this approach is that the current nearest neighbour distances calculated for each 

subsequence can be used to estimate true nearest neighbour distances for the subsequences.  By 

resorting (in decreasing order of current nearest neighbour distances) the outer loop indexes 

that have not been considered, we will examine subsequences that appear to have large nearest 

neighbour distances earlier in the subsequent outer loops.  The inner loop remains random in 

this method.   
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Experimentation was conducted on all datasets, file lengths of {5000, 10000, 50000, 100000} and 

subsequence lengths of {128, 256, 512} comparing performance in terms of distance calls and 

runtime performance with resorting after 20, 40 and 60 initial loops.  Experimental results for 4 

datasets of length 10,000 and subsequence length of 128 is shown in Figure 18.  Here we see that 

none of the cases is best for all datasets.  This is consistent across all of the experiments 

performed, where we see small performance differences with no case being significantly better.  

However, resorting after 40 loops appeared to give slightly better overall performance in many 

cases.  So, for comparison to other methods, resorting after 40 initial loops will be used in the 

performance evaluation presented in section 3.5. 

 

Figure 18: Number of distance calls required when resorting after 20, 40 and 60 outer loops.  

The figure displays the results for 4 datasets of 10,000 data points and subsequence length of 

128. 

3.4.5.2 Random Search Neighbour Pruning 

The second variant we developed is based on the distance between adjacent subsequences.  

Prior to the double nested loop, the distance between all adjacent subsequences are calculated 

and stored.  Then in the inner loop, if we abandon on subsequence    , that is  
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and abandon on      if 

                                                     

and so on, as long as the summation is less than BestSoFar.  In the above formulas,          

corresponds to the pre-calculated distance between subsequences    and     . 

Due to the triangular inequality (which states that the sum of any two sides of a triangle must be 

greater than the length of the remaining side) this approach will guarantee that the true nearest 

neighbour distance for the subsequence is less than the left hand side of the equation.  In this 

situation, for subsequence    with nearest neighbour    we are saying that  

    (       )      (     )                

We can perform the same pruning for       ,       and so on.   

This approach will be shown to have a significant reduction in the number of full distance 

calculations that must be performed, as well as a significant reduction in runtime over other 

random search approach.   

Evaluation of these two approaches will be presented in detail in Section 3.5. 

3.4.6 SAX Tuning Parameters 

All Sax based methods rely on two parameters: SAX word length and alphabet size.  These 

parameters are used in the discretization of each subsequence to its representative SAX 

approximation.  The SAX word length specifies how many letters are used in the representation 

and the alphabet size specifies the number of letters to use in the discretization. 

Keogh et al. [5] offers guidance on selecting these parameters and suggests that an alphabet size 

of 3 or 4 is best for virtually any task and they set this value to 3 in all their experiments.  For 
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word lengths, the recommendation is to use smaller word lengths for slowly changing datasets 

and longer word lengths for complex datasets.  No further guidance on what is ‘smaller’ and 

‘longer’ or ‘slowly changing’ and ‘complex’ was provided.  

 

Figure 19: Performance of SAX based methods for different word lengths and alphabet sizes in 

terms of average runtime performance.  The row W4-A3 corresponds to a word length of 4 and 

alphabet size of 3.  Results are based on ten repeats of each experiment with subsequence 

lengths of 128, 256 and 512 on a dataset of 10,000 data points.  Word lengths longer than 8 

were excluded due to the extremely poor performance on the majority of datasets. 

Extensive experimentation was performed in this work on a range of input parameters for both 

alphabet size and for word length on each of the datasets and each of the SAX variants that will 

be examined.  Results are presented in Figure 19.  This figure demonstrates the variability in the 

performance for different parameters on the same dataset and different subsequence lengths, as 

well in the variability in the performance for different parameters across different datasets.  The 

figure also shows the clear increase in runtime for increasing subsequence length, which is 

caused by the increasing time to compute the distance between longer subsequences. 
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This resulted in two important findings.  First, optimal performance occurred with a word length 

of 4 and alphabet of 3 to 6 or word length of 8 and alphabet size of 3 or 4.  Second, the choice of 

input parameters has significant effect on runtime performance and demonstrates the danger of 

only reporting the performance of the top set of parameters.  

3.4.7 Hot SAX 

HOT Sax, as described earlier, presents an ordering heuristic to improve the performance of 

discord discovery by ordering the inner and outer loops to increase the rate of early 

abandonment of the inner loop.  This work re-implemented the Hot SAX method based on the 

original paper by Keogh et al. [5] to allow accurate comparison in terms of both runtime 

performance and in terms of distance function calls.  The implementation as presented in Figure 

21 follows the principal of the original method, but differed in the following areas.  First, data 

structures provided by the Microsoft .net libraries were used, rather than custom data 

structures.  Objects with comparable runtime complexity to the data structures discussed in the 

paper were selected and used in our implementation.  For example, a sorted dictionary was used 

instead of a trie for the distinct SAX words, both of which offer log (n) lookup performance.  This 

dictionary stores all distinct SAX words as the key, and then stores a list to all subsequence 

indexes that map to the word as the value.  In addition to the dictionary, an array of SAX words 

was created and sorted in order of the number of subsequences that map to the word.   

The second change to the original method is the use of the array to store nearest neighbour 

distances, rather than a matrix to lookup distances computed.  This was to allow experimentation 

to be performed on larger datasets, and has been shown to improve runtime performance as this 

structure allows for inner loop skipping, improving over the original SAX method. 

Once the SAX data-structures are constructed, the double loop search proceeds by examining 

SAX words in the order of rarest to most frequent in the outer loop.  And then the inner loop 

proceeds in two stages.  In the first stage, all subsequences that map to the same word as being 



42 

considered in the outer loop are examined first, and then in the second stage all remaining 

subsequences (i.e. do not map to the same word) are examined in random order.  This implies 

that the second stage of the inner loop must search for each index in the list of indexes 

considered in the first stage of the inner loop.  While this strategy will ensure that distances are 

only calculated once, my experimentation has shown that this search in the second stage of the 

inner loop has a large negative impact on the runtime performance, as shown in Figure 20, and it 

is faster to recalculate these distances.  Herein is the third change to my implementation of the 

original Hot SAX method; my implementation examines all subsequences in random order in the 

second stage of the inner loop, rather than check if the subsequence was considered in the first 

stage of the inner loop.   

 

Figure 20: Effect of looking up indexes in the second stage of the inner loop.  Data is for four 

dataset of length 10,000 data points, subsequence length of 128, word length of 4 and 

alphabet of 3.  Results are consistent with other sets of tuning parameters. 

The pseudo code for my implementation of HotSAX is presented in Figure 21. 
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Figure 21: Pseudo code for my implementation of Hot SAX algorithm. 

3.4.8 Hot SAX with Word Hierarchy 

In the Hot SAX approach, subsequences that map to the same SAX word are considered first in 

the inner loop, then all remaining subsequences are searched in random order.  When examining 

the rare SAX words early on in the search, we quickly resort to examining all subsequences in 

random order in the second stage of the inner loop, since only a few subsequences map to these 

rare words.  As a better strategy for the inner loop, we would like to examine the subsequences 

that map to the same word as in the current outer loop first, and then consider the remaining 

// S = Set of all distinct subsequences of length n in time series T  

// |S| = |T| -n + 1 

1. Function [Distance, Location] = HotSAX(S, wordLen, alphabetSize) 

2. DiscordPosition = NaN, BestSoFarDistance = 0 

3. // sax structure is sorted dictionary with sax word key and  

4. //  array of indexes that map to word as value 

5. SaxStruct = BuildSaxStructure(S, wordLen, alphabetSize) 

6. // outer word order is array of sax words in  

7. //  increasing order of frequency  

8. OuterWordOrder = GenerateWordOrder(SaxStruct) 

9. InnerSearchOrder[] = GenerateRandomOrdering(|S|) 

10. // create array matrix with entries initialized to max value  

11. NNDist[] = InitArray(|S|, MaxValue)   

12. FOREACH word IN OuterWordOrder   // outer loop 

13.   FOREACH i IN SaxStruct[word] 

14.  IF NNDist[i] < BestSoFarDistance 

15.   NEXT i // i cannot be discord skip inner loop 

16.  // check indexes that map to same word first 

17.  FOREACH j IN SaxStruct[word] 

18.   IF |i-j| > n    // non overlapping 

19.    d = Distance(Si, Sj)  // compute distance 

20.    // Store distance 

21.    … 

22.    IF NNDist[i] < BestSoFarDistance 

23.     BREAK inner loop // abandon loop 

24.   END 

25.  END  

26.  // check all indexes in random order 

27.  FOREACH j IN InnerSearchOrder[] 

28.   IF |i-j| > n    // non overlapping 

29.    d = Distance(Si, Sj)  // compute distance 

30.    // Store distance 

31.    … 

32.    IF NNDist[i] < BestSoFarDistance 

33.     BREAK inner loop // abandon loop 

34.   END 

35.  END      // end inner loop 

36.  IF NNDist[i] > BestSoFarDistance 

37.   BestSoFarDistance = NNDist[i] 

38.   DiscordPosition = i 

39.  END 

40.   END 

41. END       // end outer loop 

43. RETURN [BestSoFarDistance, DiscordPosition] 

43. END 
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subsequences in order of SAX word similarity.   That is to consider the subsequences that map to 

the most similar SAX word in the next outer loop, assuming that similar subsequences map to 

similar SAX words. 

Son et al. [14] implemented this approach using a lower bounding distance measure between 

SAX words based on the symbol breakpoints of a normal distribution.  For example, the following 

table gives the distance between symbols for an alphabet of size 4: 

 A B C D 

A 0 0 0.67 1.34 

B 0 0 0 0.67 

C 0.67 0 0 0 

D 1.34 0.67 0 0 

 

Then for SAX words AAA and AAC, the distance is calculated as              .  While this 

method preserves the strict lower bounding distance between SAX words, it does not 

differentiate between similar SAX works such as AAA and AAB, which may be mapped to by 

nearly identical subsequences but are more likely to be mapped to by slightly different 

subsequences. 

For our implementation, I defined a simple similarity measure between SAX words where the 

distance is the sum of the distance of each SAX letter in each position with symbol differences 

given by the following lookup table: 

 A B C D 

A 0 1 2 3 

B 1 0 1 2 

C 2 1 0 1 

D 3 2 1 0 

 

Where                   and                  .  Then the distance between two SAX 

words can be defined as: 
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                   ∑                 

 

   

 

Using this dissimilarity measure, the distance between AAA and AAC would be 2 and the distance 

between AAA and AAB would be 1. 

Compared to the prior work, this method will preserve the same general ordering, however 

provide slightly more granularity and definition between the similar sax words. 

The algorithm then considers SAX words in increasing order of frequency in the outer loop, and 

then looks at subsequences that map to words in increasing order of distance from the current 

word.  

3.4.9 SAX Self Tuning 

One problem with the Hot SAX approach is the dependence on tuning parameters, as discussed.  

Elimination of the tuning parameters is advantageous as long as it gives consistent and 

comparable performance to other methods, as it simplifies application of discord discovery to 

end users. 

The experimentation on input parameters performed in section 3.4.6 also demonstrated that the 

number of distinct SAX words is related to performance.  There is a balance between separating 

unusual subsequences into rare SAX words and the increasing cost of searching the growing 

number of SAX words.  If the data maps to too few SAX Words, the ‘rare’ Sax words will not be 

rare enough and may represent too many subsequences.  On the other hand if there are too 

many SAX words, many of them will contain a few subsequences.  This increases the time to build 

and search the SAX data structures and too many SAX words will be considered rare, which 

lessens the discriminative power of the heuristic.   

We have developed a self-tuning approach that is based on a target for the minimum number of 

SAX words.  This method will adjust the parameters for the alphabet size and word length until 
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the first combination of parameters produces a discretization that exceeds the target number of 

words.  Since the number of subsequences mapping to each unique SAX word increases with the 

number of subsequences, a simple heuristic was used to determine a target number of SAX 

words that is dependent on the number of subsequences. This was set to the square root of the 

number of subsequences.  The rationale behind this selection is based on experimentation that 

will be shown later which compares the search time to the time to build and access the SAX data 

structures.   

During the preprocessing, word lengths, w, are tested in order of {4, 8, 16, …}.  Once the 

Piecewise Aggregate Approximation is computed for w, then each alphabet size, a, is tested in 

order of {3, 4, 5} creating the SAX data structures for w and a.  Once the first combination of w 

and a that exceeds the target word number this preprocessing step ends and the double loop 

proceeds with the SAX data structures created.  The pseudo code for this step is seen in Figure 

22. 

 

Figure 22: Self tuning method for building sax structures of desired size. 

The steps to build the SAX data structures proceed in order to minimize number of times the PAA 

data structure is built, as this is computationally intensive.  Each of the possible alphabet sizes 

are tested in increasing order on one PAA representation, since the alphabet assignment is 

significantly faster than the PAA computation.  As soon as the target number of words is 

1. Function [SaxStruct] = BuildSaxStructure(S) 

2. w = 4 

3. targetWords = Round(SquareRoot(|S|)) 

4. DO 

5.  double[][] paa = ComputePAA(s, w) 

6.  FOREACH i in {3,4,5}   // for each alphabet size 

7.   SaxStruct = BuildSaxStruct(paa, i) 

8.   IF(SaxStruct.Length > targetWords) 

9.    RETURN SaxStruct 

10.  END // FOREACH 

11.  w = w*2 

12. WHILE(TRUE) // DO 

13. END 
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achieved, we proceed with the current discretization; else we double the word length and retest 

each of the alphabet sizes.  

Once the SAX data structure is created, this method continues in the same manner as in section 

3.4.8. 

3.5 Performance Evaluation  

Three areas of performance will be considered here.  First, we will look at the performance of the 

pre-processing steps, then the performance of input parameters, and finally the performance of 

the discord discovery methods in terms of both distance calculations and total runtime 

performance (including all preprocessing).   

3.5.1 Pre-Processing Performance 

As mentioned before, experimentation was performed in order to determine the cost of the pre-

processing steps.   During experimentation, it was determined that the three pre-processing 

steps that have the largest contribution to the overall runtime are: reading data from disk, 

extracting the subsequences and normalizing the data.  In Figure 23 we can see the contribution 

of each of these steps for a dataset of 50,000 data points and three subsequence lengths.  As 

expected, reading the data from disk is affected only by data length, however extracting the 

subsequences and normalizing the data are affected by both data length and subsequence 

length.  Other preprocessing steps, such as array of nearest neighbour initialization, generating 

random loop orderings have negligible effect on the overall runtime.  These preprocessing steps 

are incurred by all methods, regardless of loop ordering heuristics.  Understanding the fixed 

preprocessing costs is important when evaluating the effectiveness in any discord search 

approach as it allows us to evaluate the margins available for improving the search component of 

the method.  
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Figure 23: Runtime comparison of pre-processing steps by subsequence length.  The data 

summarizes averaged values over multiple runs on each of the datasets of 50,000 data points.  

This is consistent between all data lengths. 

In the next section, we will see the preprocessing costs compared to the overall cost of the 

discord search method. 

3.5.2 Input Parameter Performance 

Correct selection of input parameters is of critical importance for any method implementing the 

SAX approximations for generating loop orderings.  As discussed, there are two input parameters 

used in the computation of the SAX approximations of the subsequences.  These are the alphabet 

size and the word length, where the word length specifies how many regions are used in the 

computation of the piecewise aggregate approximation (PAA), and the alphabet size specifies 

how many regions are used in the discretization of each PAA segment. 

The selection of good input parameters and its impact on runtime performance is critical to 

having good search performance.  The objective is to have good separation in the data, where 

unusual subsequences are discretized into rare SAX words, without a large overhead in creation 

and interaction with unnecessarily large SAX data structures.  This is demonstrated in Figure 24 

where we see an illustration of the time to create and access the data structures (labeled as SAX 

Time) compared to the time spent in the double loop (labeled as search time) as a function of the 

number of distinct SAX words.   
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Figure 24: Illustration of the time spent in the double loop (labelled as search time) shown as a 

solid blue line, compared to the total time searching and interacting with the SAX data 

structures (labeled as SAX time) shown as a dashed red line as a function of the number of 

distinct SAX words.  The results presented are for the Hot SAX with Word Hierarchy method 

averaged over ten runs for all datasets of 5,000 data points on the top, 10,000 data points in 

the middle and 50,000 data points in the bottom chart.  

In Figure 24 we can see an increasing trend in the time to create and interact with the SAX data 

structures as the number of distinct SAX words increases, which is intuitive.  We can also see very 

poor search performance with a small number of SAX words.  This poor performance is due to 

the unusual or rare subsequences not being differentiated from the normal subsequences.  We 

can also see an increasing trend in search time after a local minimum is reached.  This increase in 

runtime is caused by both rare and not so rare subsequences being mapped to rare SAX words.  

The local minimum also is seen to shift depending on the data size.  For the 3 data lengths, the 

minimums appear to be roughly around 100, 150, and 250 respectively.   
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Figure 25 shows the runtime contribution of pre-processing, SAX Time and Search time 

summarized over three ranges of distinct word counts: small (less than 70 SAX words), medium 

(70 to 650 SAX words) and large (over 650 SAX words).  The same experimental results, from 

Figure 25, is also shown in Figure 26, but stacked to give clear comparison of the overall 

performance. 

 

Figure 25: Pre-processing, SAX Time and Search Time for small, medium and large number of 

SAX words.  The results presented are for the Hot SAX with Word Hierarchy method averaged 

over ten runs for all datasets and subsequence lengths and data size of 50,000 data points.   

 

Figure 26: Runtime performance of Hot Sax with Word Hierarchy showing the contribution of 

preprocessing time in blue, time to interact with the SAX data structures in orange, and the 

time spent in the double loop in green for different ranges of distinct number of SAX words. 

The three discoveries from this work are that: optimal performance occurs when there is a good 

balance between data separation and overhead costs, and that as the dataset grows we can 

tolerate more overhead to achieve a good separation of the data.  This balance between data-

separation and overhead costs lead to the intuition of the self-tuning method with the target 

number of sax words equal to the square root of the data length, which maps well to the local 

minimums seen in Figure 24.  Finally, with an appropriate discretization (producing between 70 
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and 650 distinct words) the search time accounts for approximately 50% of the overall runtime.  

This does not leave a large margin to improve on. 

3.5.3 Discord Discovery Performance 

Each of the following algorithms were evaluated in terms of Runtime performance: 

 Random Search 

Random search method implementing nearest neighbour tracking in an array and inner 

loop skipping. 

 Outer Loop Re-Ordering 

Our new method that begins with random inner and outer loops, and then re-orders the 

outer loop after 40 outer loops.  This method implements nearest neighbour tracking in 

an array and inner loop skipping. 

 Neighbour Pruning 

Our second random search method that implements neighbour pruning based on pre-

calculated distance between neighbours.  This method implements nearest neighbour 

tracking in an array and inner loop skipping. 

 Hot SAX 

Implementation of Hot Sax with SAX outer loop ordering and searching the same word 

first in the inner loop, then all subsequences randomly.  This method implements 

nearest neighbour tracking in an array and inner loop skipping. 

 SAX Word Hierarchy 

SAX outer loop ordering and inner loop ordering considers SAX words in increasing order 

of distance between the words. This method implements nearest neighbour tracking in 

an array and inner loop skipping. 

 SAX Self Tune 

Our new self-tuning implementation of Hot SAX based on a target number of SAX 
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Words.  This method implements nearest neighbour tracking in an array and inner loop 

skipping. 

For performance evaluation each method was run on each dataset of lengths 5,000, 10,000, 

50,000 and 100,000 and subsequence lengths of 128, 256 and 512.  Each of the SAX based 

methods, except for the self-tuning method, were run with input parameters of  

{[w 4, a 3], [w 4, a 4], [w 4, a 5], [w 8, a 3], [w 8, a 4], [w 8, a 5]}. 

where w is the word length and a is the alphabet size.  Word lengths of 16 and alphabet sizes of 6 

were excluded from analysis due to the extremely poor performance on some datasets.  
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Figure 27: Comparison of discord discovery methods in terms of average distance calls on the 

Random Walk and ECG datasets of length 5,000 and 50,000 data points and subsequent lengths 

of 128 and 256.  The average values over ten repeats of each experiment are shown.  The Hot 

SAX and SAX Word Hierarchy methods are also averaged over the range of input parameters, 

as indicated above 
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Figure 27 compares the methods in terms of average calls to the distance function over ten runs 

for two of the datasets (more results are shown in Figure 42 of Appendix A).  The Hot SAX and 

SAX Word Hierarchy methods are also averaged over the input parameters indicated above to 

represent ‘expected’ performance since a user would not know the best parameters and would 

have to choose a set of parameters ‘randomly’. 

For the non-SAX based methods, there is comparable performance between the simple random 

search and the outer loop re-ordering methods; however, the approach that uses neighbour 

pruning is able to significantly reduce the number of calls to the distance function and can 

outperform the SAX based methods in the literature for approximately 50% of the experiments 

performed.  See Figure 42 in Appendix A.   

In terms of calls to the distance function, we see that ordering the inner loop using the distance 

between SAX words improves performance.  We can also see significant performance 

improvement in using the self-tuning approach over other all other approaches, when 

considering average performance over a range of reasonable input parameters used in the other 

SAX based methods.  
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Figure 28: Runtime performance comparison between the different discord search methods on 

the Random Walk and ECG datasets of length 5,000 and 50,000 data points and subsequent 

lengths of 128 and 512.  Data summarizes average runtime performance for 10 repeats on each 

of the datasets.  The Hot SAX and Sax Word Hierarchy methods were also averaged for each set 

of input parameters.   

Figure 28 summarizes performance by average runtime in milliseconds for two of the datasets 

(other datasets show similar results, see Figure 43 in Appendix A).  Here we see that in terms of 

average runtime performance, the Sax Self Tune method outperforms the other methods in most 

cases.  Interestingly, some of the Random methods, Random Neighbor Pruning in particular, 
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perform very well in comparison to the Sax based methods.  This is due to the limited overhead 

and consistent performance.   

Other works have reported only on the best set of input parameters.  Figure 29 and Figure 30 

illustrates the danger in this approach where it is not uncommon to see twice as many distance 

calls for the worst set of parameters for the Hot SAX and Sax Word Hierarchy methods.  The 

random methods and Sax Self Tune method perform much more consistently between best and 

worst performers.  This is more pronounced when looking at runtime performance; particularly 

for the Sax Word Hierarchy method which can have over 5 times worse performance for the 

worst set of parameters when compared to the best (additional results can be found in Figure 44 

and Figure 45 of Appendix A). 

 

Figure 29: Comparison of methods showing maximum, average and minimum number of calls 

to the distance function for the Random Walk and ECG datasets of 10,000 data points and a 

subsequence length of 256. 
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Figure 30: Comparison of methods showing maximum, average and minimum runtime for the 

discord discovery methods for the Random Walk and ECG datasets of 10,000 data points and a 

subsequence length of 256. 

3.6 Conclusion 

In this section, we have examined the problem of finding the top time series discord.  This 

analysis included a discussion on the problem, expectations, effect of datasets and optimizations.  

We have provided analysis of these optimizations in terms of both runtime performance and 

number of calls to the distance function. 

Several new approaches have been presented that have competitive performance, such as the 

random search method with neighbour pruning and the self-tuning SAX method.  One key 

advantage of both of these methods is that they do not rely on tuning parameters, which have 

been shown to have a significant impact on runtime performance.  Additionally, both of these 

methods have competitive performance across all datasets and subsequence lengths tested. 
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4 Variable Length Discords 

4.1 Introduction 

In this section we will present a framework for discovering variable length discords.  The core of 

this method is similar to Heuristic Discord Discovery, with two key differences.  First, our method 

will use a random loop ordering heuristic.  Second, a new dissimilarity measure will be 

introduced which allows for the length of the discord to adjust to the discord itself, rather than 

specifying the length of the discord in advance.  This will be accomplished by searching a range of 

possible discord lengths and reporting the discord as well as the length of the discord.  This 

framework simplifies the task of finding discords as the only input parameters are the minimum 

and maximum length range of discords to discover, rather than specifying a specific length. 

4.2 Dissimilarity Measure 

The objective of a variable length search approach to discord discovery is to lessen the challenge 

of selecting the discord length in advance.  Bu et al. [1] also identifies this challenge and suggest 

running their algorithm for multiple discord lengths multiple times. They recognize that much of 

the computational work for calculating Euclidian distance and their loop heuristics can be re-used 

between runs and suggest storing this information at the cost of additional memory.  They do 

not, however, suggest a strategy for selecting the discord after the multiple runs, and there is no 

evidence in their evaluation that they tested this approach. Furthermore, they do not provide 

any empirical results to show that such an approach can actually improve runtime and that the 

gain in distance computations is not outweighed by the infrastructure overhead.  

The method presented here will take a different approach and is based on a dissimilarity function 

which allows us to determine both the discord position and the discord length.  For any two 

subsequences    and    we would like to measure their maximum dissimilarity within a given 

range of lengths.  We could calculate the Euclidean distance for each length within the range; 

however since this distance function is monotonically increasing with the increasing length of the 
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subsequences it will always favour the longest length within the range of the minimum and 

maximum lengths.  In order to address this issue, we normalize each of these distances by the 

length at which they are computed to obtain the weighted distance.   

We can formally define the dissimilarity between two subsequences    and    as: 

             (     )                       (
√∑ (           )

  
   

 
) Equation 4 

The corresponding length of dissimilarity can be defined as: 

                (     )                          (
√∑ (           )

  
   

 
)    Equation 5 

This is illustrated in Figure 31 were we can see two sequences which diverge in the first half, and 

then become more similar in the second half.  The dissimilarity between them grows as long as 

they continue to diverge to a maximum dissimilarity at length 13, at which point the series values 

are approaching each other and the dissimilarity begins to decrease. 

 

Figure 31: Illustration of the dissimilarity measure is seen on the on the bottom for the two 

random subsequences on the top plot.  As long as the two sequences diverge, the dissimilarity 

grows.  At Length 13, for these sequences, the dissimilarity is at a maximum and after this 

point the sequences come together. 

In order to optimize runtime performance of this calculation, we can take advantage of the fact 

that as n increases from the minimum length to the maximum length all of the previous squared 
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differences are valid.  The pseudo code for this method can be seen in Figure 32.  For a pair of 

subsequences, the sum of the squared distance is calculated for each pair of points starting at 

the beginning of the series.  After the difference between each successive pair of points is added 

to the sum, the weighted distance is calculated and if it is greater than the current maximum 

distance the new maximum distance and length is recorded.  The maximum dissimilarity and the 

length at which it occurs are reported at the end of the function.    

 

Figure 32: Pseudo code for computing the dissimilarity between two subsequences. 

When incorporated into our discord search framework, this dissimilarity measure will allow 

determination of both the position and length of the discord, within the range specified.   

4.3 Discovery of Variable Length Discords  

With the dissimilarity measure presented above, we can now examine the framework for 

discovering variable length discords, as seen in Figure 33.  This variable length method accepts 

the set of subsequences extracted using the sliding window technique for the maximum length of 

discord to discover.  Then a list of best-so-far distances and corresponding lengths is created for 

each subsequence and initialized to infinity for distance and zero for the length.  This list of best-

so-far distances stores only the closest neighbour distance and length, and effectively supports 

loop abandonment as demonstrated in section 3.  A discord candidate is initialized to position of 

NaN, length of 0 and distance of 0.  Then in the outer loop each subsequence is considered in 

random order.  In line 10, we can check the best-so-far distance for the current subsequence and 

compare it to the current discord candidate distance.  If the best-so-far distance is less than the 

1. Function [Dissimilarity, Length] = Dissimilarity(s1, s2, minLen, maxLen) 

2. double maxDistance = 0, distance = 0, sum = 0; 

3. int length = 0; 

4. FOREACH i = 1 to maxLength  

5.  sum += (s1[i] – s2[i]) 

6.  distance = sum/(i+1)  

7.  IF(i >= minLength and distance > maxDistance)  

8.   maxDistance = distance 

9.   length = i 

10.  END 

11. END 

12. RETURN [maxDistance, length] 

13. END 
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candidate distance, we can skip the entire inner loop.   Lines 18 to 25 ensure that the current 

best-so-far distances are maintained for each subsequence.  

In the inner loop, we then compare the current subsequence, from the outer loop, to all non-

overlapping subsequences in random order.  Note that we must check for overlap at the 

minimum length in line 13, then in line 15 we must adjust the maximum length for those 

subsequences that do not overlap at the minimum length but do overlap as the length increases 

to the maximum length.  Following the distance calculations, we can record the best-so-far 

distances and length for both the inner and outer loops subsequence, if required.  Then, if the 

best-so-far distance for the outer loop index is less than the current discord candidate distance 

we can abandon the inner loop as the subsequence cannot be the discord.  Line 30 to 34 updates 

the current discord candidate if best-so-far distance for the outer index is larger than the current 

candidate distance.   
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Figure 33: Variable length discord algorithm. 

It is important to note that the variable length discord method presented here could make use of 

any of the previous ordering heuristics, instead of random search.  The random approach, 

however, was chosen here due to its simplicity in design and consistent runtime performance, as 

already seen.    

4.4 Evaluation of Variable Length Discords 

We have already discussed the benefit of variable length discords in easing the selection of the 

true discord length upfront, allowing the user to select a range in which to search for the discord.  

// S = Set of all distinct subsequences of length n in time series T  

// |S| = |T| -n + 1 

1. Function [Distance, Location, Length]  

= VariableLengthDiscord(S, minLength, maxLength) 

2. DiscordPosition = NaN  

3. BestSoFarDistance = 0 

4. DiscordLength = 0 

5. // array of initialized to max value for distance and 0 for length  

6. NNDist[] = InitArray(|S|, MaxValue, 0) 

7. OuterSearchOrder[] = GenerateRandomOrdering(|S|) 

8. InnerSearchOrder [] = GenerateRandomOrdering(|S|) 

9. FOREACH i IN OuterSearchOrder 

10.  IF NNDist[i].Distance < BestSoFarDistance 

11.   NEXT i // i cannot be discord skip inner loop 

12.  FOREACH j IN InnerSearchOrder  // inner loop 

13.   IF |i-j| > minLength   // do not overlap 

14.    // Adjust max length to ensure no overlap 

15.    adjustedMaxLen = minimum(|i-j|, maxLength) 

16.    [distance, length]  

= Distance(Si, Sj, minLength, adjustedMaxLen) 

17.    // Store distances and lengths if needed 

18.    IF distance < NNDist[i].Distance 

19.     NNDist[i].Distance = distance 

20.     NNDist[i].Length = length 

21.    END 

22.    IF distance < NNDist[j].Distance 

23.     NNDist[j].Distance = distance 

24.     NNDist[j].Length = length 

25.    END 

26.    IF NNDist[i].Distance < BestSoFarDistance 

27.     Break inner loop 

28.    END 

29.   END 

30.  END 

31.  IF NNDist[i].Distance > BestSoFarDistance 

32.   BestSoFarDistance = NNDist[i].Distance 

33.   DiscordPosition = i 

34.   DiscordLength = NNDist[i].Length 

35.  END 

36. RETURN [BestSoFarDistance, DiscordPosition, DiscordLength] 

37. END 
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Now we will consider the effectiveness of this method and the efficiency of finding the variable 

length discords. 

Figure 34, shows result of the variable length discord discovery method on the shuttle dataset.  

For this test, the range used for the discord discovery was 75 to 300, with the top discord of 

length 103 being discovered at position 2254, and the second discord of length 86 starting at 

position 2064.   

 

Figure 34: Illustration of the top 2 variable length discord discovered on shuttle dataset 

The alternative to this approach, as speculated by Bu et al. [1], is to run the discord discovery 

method multiple times for the range of distances.  Since this was not included in the evaluation 

of the SAX paper [1], we will evaluate the runtime performance of our method to running our 

fixed length discord for multiple subsequence lengths.  This experiment was run 10 times on the 

random walk dataset with lengths of 2k, 4k, 8k, 16k and 32k points.  For the variable length 

discord method, we used 75-300 as the range of discord to be found.  For comparison, we used 

the random method tested above and selected discord lengths of 75, 150 and 300.  These lengths 

were used as to match with the minimum length and maximum length in the variable length 

method, as well as an intermediate length. 

As can be seen in Figure 35, the variable length discord method’s performance is comparable to 

that of running the fixed length discord method a mere three times; however, the variable length 

method considers the complete range of distanced between the minimum and maximum 

distances.   
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Figure 35: Comparison of Variable Length Discord algorithm to a fixed length algorithm.  The 

variable length method was run on a range of 75 to 300 and the fixed length methods were run 

for subsequence lengths of 75, 150 and 300. 

The variable length discord method was effective at finding the discords and length.  However, it 

often appeared to favour short discords, which may have been valid for the datasets used in 

testing.  Also, it was found that the discords found by the variable length method would overlap 

the discords found by the fixed length method used for comparable lengths.  So, while this 

method appeared to be effective, its usefulness is questionable as the fixed length discord 

method seems to return the same regions of discords faster.   

4.5 Conclusion  

In this section we have examined a new approach to discovery of variable length discords.  This 

method was seen to be effective and efficient compared to running a comparable fixed length 

discord method two to three times, with the variable length method considering all distances in 

the range.  However, the utility of this method was found to be questionable, as the fixed length 

method and variable length method would both return overlapping discords.  This limits the 

benefits provided by the variable length method, considering the increase in runtime, if one is 

only interested in the ‘approximate’ position of the discord, which typically would be subjected 

to further analysis that may find the correct alignment of the discord around the position found.  

This also highlights that discord discovery is not particularly sensitive to the length of discord. 
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5 Top-K Discords 

5.1 Introduction 

Within any process that generates time series data, the process is not limited to generating only 

one unusual subsequence.  Therefore, it is reasonable that one may want to find the top-K 

discords.  Ideally, we would like to find all unusual subsequences in the data, as outliers in the 

dataset.  In this section, we will examine the problem of discovering the top K discords.  We will 

also examine two methods where all unusual subsequences are returned, without specifying K. 

5.2 Methods 

One prior approach discussed in the literature will be examined alongside several competing 

methods that we have developed.  While no adequate runtime evaluation has been presented in 

the literature, we will provide evaluation of all these methods. 

5.2.1 Re-run Algorithm  

The first approach we will discuss is simple and intuitive, and entails re-running the discord 

discovery algorithm from 1 to k times, as has been presented by Bu et al. [1].  There are two keys 

to this approach, first is to exclude any subsequence that overlap with a previously discovered 

discord; and second is to make use of the computational effort in preceding loops.  While Bu et 

al. [1] discussed these ideas, they provided no further evaluation.   

Several key aspects are important to make note of in the pseudo code in Figure 36.  First, while 

this code implements a random search heuristics, any ordering heuristics could be incorporated 

into this framework. Second, line 2 initializes the array of nearest neighbour distances.  These 

nearest neighbour distances are relevant for each subsequent loop, while determining the i
th

 + 1 

discord and is thus initialized before the while loop.  The use of distance computations from prior 

loops is effective at reducing the work in subsequent loops.  Finally, on line 12, in addition to 
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checking if the subsequences overlap, we must check if the subsequence overlaps with any 

discord already found.  This is to ensure that each discord is a distinct anomaly in the data. 

 

Figure 36: Pseudo code for finding top-K discords by re-running the algorithm. 

One observation made during the analysis of the runtime performance is that the time to find the 

i
th

 discord tends to decrease, or remain approximately constant, with finding each subsequent i
th

 

+1 discord until the point where we are finding discords that are not so unusual.  At this point we 

see an increase in runtime and distance calls, as it is harder to differentiate the next discord from 

the rest of the subsequences.  This phenomenon is illustrated in Figure 37 and is a particular 

problem for large values of K.   

// S = Set of all distinct subsequences of length n in time series T  

// |S| = |T| -n + 1 

1. Function [DiscordsFound] = FindTopKDiscords(S, K) 

2. NNDist[] = InitArray(|S|, MaxValue)   

3. DiscordsFound[] = EmtpyArray() 

4. WHILE DiscordsFound.Count < K 

5.  DiscordPosition = NaN;  BestSoFarDistance = 0 

6.  OuterSearchOrder[] = GenerateRandomOrdering(|S|) 

7.  InnerSearchOrder[] = GenerateRandomOrdering(|S|) 

8.  FOREACH i IN OuterSearchOrder   // outer loop 

9.   IF NNDist[i] < BestSoFarDistance 

10.    NEXT i // i skip inner loop 

11.   FOREACH j IN InnserSearchOrder // inner loop 

12.    IF |i-j| > n & !Overlaps(DiscordsFound,i,j)  

// non overlapping 

13.     d = Distance(Si, Sj) // compute distance 

14.     // Store distance 

15.     NNDist[i] = MIN(NNDist[i], d) 

16.     NNDist[j] = MIN(NNDist[j], d) 

17.     IF NNDist[i] < BestSoFarDistance 

18.      BREAK inner loop // abandon loop 

19.     END 

20.    END 

21.   END     // end inner loop 

22.   IF NNDist[i] > BestSoFarDistance 

23.    BestSoFarDistance = NNDist[i] 

24.    DiscordPosition = i 

25.   END 

26.  END      // end outer loop 

27. DiscordsFound.Add(BestSoFarDistance, DiscordPosition) 

28. END // end while loop 

29.  RETURN DiscordsFound 

30. END 
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Figure 37: Time spent to find each of the top 4 discord with the cumulative time along with the 

distance to the discord.  Each data point represents the average of 10 runs for a file length of 

10,000 data points and subsequence length of 256.   

In Figure 37 we see a large increase in time to find the 3rd and 2nd discords for the ECG and ERP 

datasets respectively, and do not see this trend for the Random Walk or Tickwise datasets.  This 

may indicate that the discords found when there is a large increase in runtime are not so 

different from the rest of the data.  Looking at the results from the ECG dataset, we see a large 

increase in runtime to find the 3
rd

 discord and then little change in the discord distances for the 

3
rd

 and 4
th

 discords.  The same trend is present for the ERP dataset, with the 2
nd

 discord seeing 

the spike in runtime.  This seems to support the notion that these discords may not be so 

dissimilar.  This trend is not seen for the top 4 discords in the random walk or tickwise datasets, 

where there continues to be decreasing runtimes and discord distances for each subsequent 

discord.   

These observations are motivation for the self-terminating and statistical approach that we have 

developed and will present later in this section. 
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5.2.2 Prune on Kth Item 

In this section, we will present an alternate method that we have developed.  This method will 

keep a listing of the K best-so-far discords and then prune on the k
th

 item in the ordered list of 

discord candidates.  This eliminates the need to re-run the double nested loop, but involves some 

additional complexity. 

While this method sounds straight forward, the complexity lies in the management of the top K 

discord candidates.  As will be demonstrated, it is not enough to simply maintain K candidates; 

we must maintain a list of all possible discord candidates, which will be significantly longer than 

K.  This lengthened list of candidates is needed since we cannot guarantee that a subsequence 

previously considered to be a discord will not become a valid discord again.  This condition is 

illustrated in Figure 38.  Suppose we are looking for the top 2 discords and we first discover 

discord A with a distance of 10 to its nearest neighbour.  Then we find discord B, which overlaps 

A, and has a greater nearest neighbour distance of 15.  Under this condition B will replace A as a 

candidate.  Later in the search, we may find discord C, which replaces B in the same way that B 

replaced A.  At this point, candidate A should once again be a valid, non-overlapping discord 

candidate.  Without maintaining the subsequence A as a candidate, we would not produce the 

correct result.  

 

Figure 38: Illustration of the challenge in maintaining listing of K discord candidates. 
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In this method, we maintain a sorted list of all discord candidates ordered by nearest-neighbour-

distance (largest first). Then to obtain the k
th

 best-so-far discord distance needed for pruning, we 

must search the list of candidates for the k
th

 non-overlapping candidate in this list.  This listing of 

discord candidates can be pruned on the K
th

+1 non-overlapping item. 

This strategy produces a correct result and only iterates the double nested loop one time.  

However, maintenance of list of discord candidates requires considerable effort and has a 

negative impact on runtime performance.  For the experiments performed for time series length 

of 10,000 data points, the length of the list of discord candidates ranged from 10 to over 600, 

with an average of around 160.   

As compared to the previous method, where the double nested loop is ran K times, this method 

does not offer any improvement in the number of distance calls or runtime performance.   

5.2.3 Re-Run With Sorting 

Our second method is similar to the first approach discussed, of re-running the algorithm K times, 

with one key change.  For the first loop, this method uses a random inner and outer loop 

ordering (same as the first method) and then a new outer loop ordering is generated after finding 

each successive discord, 2 to K. 

During the first loop to find the top discord, many, but not all of the pairwise distances are 

computed and the nearest neighbour distance for each subsequence stored.  This first outer loop 

only guarantees that all pairwise distances are computed for the top discord and that a distance 

is found for each of the other subsequences that is less than the distance for the top discord.  

Many of these distances, which have effectively been used to abandon on, are significantly 

smaller than the discord distance.  

After finding the i
th 

discord, a new outer loop ordering is generated by sorting the current nearest 

neighbour distances in descending order.  The intuition behind this is that the nearest neighbour 

distance array is an approximation to the true nearest neighbour distance for each subsequence.  
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By generating a new outer loop ordering, we will examine subsequences that have a higher 

chance of having a large nearest neighbour distance early in the search to find the next discord, 

while leaving all subsequences with a close neighbour to the end. 

5.2.4 Self-Termination 

Ideally, we do not want to specify the K in any top-K discord search and would like the algorithm 

to return all outliers and nothing else.  Having the user specify a value for K has one of two 

potential problems.  First, if a value of K is too small valid discords will not be returned.  Second, 

specifying a value of K that is too large will have a significant and negative effect on runtime 

performance. 

The idea behind this method is to use the currently computed nearest-neighbour distances to 

determine when to stop searching for additional discords.  The method’s implementation is very 

similar to the first method presented, of re-running the double loop, with one key difference.  

Rather than stopping the discord search after the K
th

 discord is found, a stopping criteria is 

defined that determines when the algorithm has found all the discords.   

Following each run, and having found the i
th

 discord, the mean and standard deviation of the 

nearest-neighbour distances is computed.  As noted, these nearest neighbour distances are 

approaching the true nearest neighbour distances and can be used to represent the population 

of all nearest neighbour distances.  Then we can stop our discord search when the nearest 

neighbour distance of the last discord found is less than      where   and   are the mean and 

standard deviation of the nearest neighbour distances for each subsequence, and   is an input 

parameter that specifies how many standard deviations from the mean we would like the 

threshold for a discord to be. 

Intuitively this makes sense.  At first the estimated mean and estimated standard deviation are 

larger than the true mean and standard deviation, since it is based on the current nearest 

neighbour distances, so the method is conservative.  With each iteration this estimation 
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improves and the value approaches the true mean and standard deviation and we can feel more 

confident about quitting the search once the stopping criteria is meet. 

This method replaces the input parameter k with the new threshold x.  This threshold may be 

easier to select than k, but still needs to be specified and can impact the number of discords 

returned.   

Experimentation did give good results and was successful at returning a range of discords; 

however, it is important to note the following.  First, when the threshold x was too high, greater 

than 1.5 or 2, no discords were returned for some datasets, however the top discord would still 

be returned.  Second, with regards to performance, the final loop was often slow to compute 

since the discord being found was not too dissimilar from the rest of the subsequences.  Third, on 

some datasets, a large number of discords were returned.  And finally, the number of discords 

returned in each successive run did vary.  This is due to the variability in the stopping criteria; 

since it is based on it is based on a randomly chosen subset of distance computations. 

5.2.5 Statistical Approach 

The final idea tested for finding the top k discords was a statistical approach.  For this method, a 

subset of the subsequences was sampled at a fixed interval and the true nearest neighbour was 

found for each subsequence.  The mean and standard deviation were computed for the sample 

set’s nearest neighbour distances and used as an estimation of the true mean and standard 

deviation for the entire set of nearest neighbour distances.  This information was used to set an 

abandoning distance. 

The subsequences chosen for the sampling were chosen on a fixed interval of     , where   is 

the subsequence length.  This fixed length sampling was chosen to get a nearest neighbour 

distance calculated that overlaps with each of the subsequences. 

After the sampling and estimation, the method proceeded with the double nested loop, but 

instead of abandoning on the best-so-far distance (as in all previous methods), this method 
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abandons on the value of μ + x σ, where μ and σ are the mean and standard deviation of the 

nearest neighbour distances calculated from the sample set, and   is an input parameter.  Then 

all subsequence that are not abandoned in the inner loop at the threshold μ + x σ are added to 

the list of discords. 

Some of the notes from the self-terminating method apply to this method as well.  First, when 

the threshold of x is too large no discords are returned.  Second, the number of discords returned 

can vary between repeats of the same run.  Also, when many discords are returned, the runtime 

is slow. 

5.3 Performance evaluation 

The performance of these 5 methods is presented in terms of both distance calls and runtime.  

Figure 39 shows the results in terms of distance calls.  In the left column of this chart, we see the 

number of discords returned.  For the first three fixed-K methods (re-run, prune on K, and re-run 

with sort) K was specified at 4, and remaining two variable-k methods would return a variable 

number of discords.  For the fixed-K methods, we can see that the re-sorting method is 

consistently best in terms of distance calls.  The variable-k methods performance degrades 

significantly as the number of discords returned increased.  The Statistical approach would 

consistently return a large number of discords and would require a significantly larger number of 

distance calls to complete. 
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Figure 39: Comparison of Top-K discord methods in terms of distance calls.  These figures are 

the average of ten runs for a subsequence length of 256 and file length of 10,000 data points. 

 

Figure 40: Comparison of Top-K discord methods in terms of runtime.  These figures are the 

average of ten runs for a subsequence length of 256 and file length of 10,000 data points. 

Figure 40 displays the performance results in terms of runtime.  Here we see the same trend, the 

re-run with sort method is best for the fixed-K methods.  For the variable-k methods, we see that 
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the self-terminating approach performs much better, but consistently returns fewer discords 

then the statistical approach. 

Comparing the re-run with sort to the self-terminating method, we see that the self-terminating 

method’s performance is comparable, and only significantly slower as the number of discords 

returned increases significantly over the fixed K.   

Given the large number of discords returned by the variable-k methods, it is important to see the 

distances that these discords are found at.  This will help in understanding the quality of the 

discords returned.   

 

Figure 41: Nearest neighbour distances of top discords returned by variable-k methods. 

Figure 41 displays the distances that the top discords are returned at for both of the variable-k 

methods.  The self-terminating method in the top graph appears to terminate at a more 

appropriate K for the ERP and ECG datasets, when the improvement in discord distances shows 

little change, while the statistical method continues to return discords for these two datasets.  

The Random Walk and Tickwise datasets have a large number of discords returned in both cases.   
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The self-terminating approach appears to be more effective at returning an appropriate number 

of discords as representative of the outliers in the dataset.  This method is comparable to the 

performance of the re-run with sort method for a comparable number of discords returned and 

is a good choice where the user does not want to specify a specific value for K. 

5.4 Conclusion 

In this section, we have seen five different approaches to finding the top-k discords; one of which 

has been discussed before in the literature and 4 novel ideas we have developed.  The 

performance of these methods was compared and the re-run with sort method is best in terms 

of overall performance, however the self-terminating method is competitive and will return all 

discords in the dataset. 

 



76 

6 Conclusion 

6.1 Summary of Work 

In this work we have examined the problem of finding time series discords.  This work focused on 

three different areas of discord discovery: Top Discord, Variable Length Discords, and Top-K 

Discords.  In all of these works, we have strived to reduce the number or ease the selection of 

input parameters required by the end user. 

First, the top-discord work examined optimizations as already presented in the literature and 

some new methods that we have developed.  It also included an analysis of the problem, 

expectation, and the effect of different datasets.  In this area our self-tuning approach proved to 

be competitive in terms of both calls to the distance function and runtime, without the need to 

choose tuning parameters.  Also, the specific optimization to maintain an array of nearest 

neighbour distances, rather than a matrix of all pairwise distances, greatly extended the 

scalability of the method to larger datasets. 

In the second section, we have developed a new approach for finding variable length discords, 

rather than discords of fixed, use specified length.  This method simultaneously searches a range 

of discord lengths, where the user specifies the range (the thought being that selecting the range 

is easier that specifying a specific discord length).  This method has been shown to be effective 

and the increase in runtime comparable to running the fixed length discord method 2-3 times of 

varying lengths.  However, the discords returned in the variable length approach would 

consistently overlap with locations found by the fixed length methods, which limits the benefits 

provided by this method, where approximate discord position is sufficient. 

Finally, we have examined five different approaches to finding the top-k discords, one of which 

has been discussed in the literature.  One novel idea we have developed is a self-terminating 

approach which returns all unusual subsequences in the dataset as determined by the stopping 
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criteria.  This reduces the need for the user to try and guess how many anomalies are in the 

dataset.   

6.2 Future Work 

One weakness of the work presented here is the original definition of time series discord.  This 

weakness in the definition can be explained using the ECG data as an example.  If a patient has a 

particular cardiac problem characterised by an anomalous heartbeat, this irregular heartbeat will 

show up as a discord in the data, provided that only one anomaly is recorded.  If the ECG dataset 

contains two of the same anomalous patters, they will be nearest neighbours to each other and 

will have small nearest neighbour distances.  This could lead to the condition where the true 

discords in the data are not returned.  One idea to consider would be to alter the definition of 

discord to allow several close matches, and define a discord as the subsequence with the largest 

distance to its k
th

 nearest neighbour.   
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Appendix A: Additional Experimental Results from Chapter 3 

Figure 42 contains the complete set of results, in terms of calls to the distance function, for the 

top discord work presented in section 3.5.3.  The data represents the average of ten runs for 

each dataset and file length (as seen in the rows), and each subsequence length (in the columns).  

Each method is displayed in a different colour.   

 

Figure 42: Complete set of results by distance calls for 4 datasets, different data lengths, and 

subsequence lengths for each of the 6 methods compared.  
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Figure 43 contains the complete set of results, in terms of runtime performance, for the top 

discord work presented in section 3.5.3.  The data represents the average of ten runs for each 

dataset and file length (as seen in the rows), and each subsequence length (in the columns).  

Each method is displayed in a different colour.  As discussed in the text, our self-tuning SAX 

approach is the top performer in the majority of cases.  

 

Figure 43: Complete set of runtime results for 4 datasets, different data lengths, and 

subsequence lengths for each of the 6 methods compared.  
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Figure 44 and Figure 45 display the range of performance for each of the methods in terms of 

calls to the distance function (first figure) and CPU time (second figure) for four datasets and 

each of the methods.  These results are an extension of the results presented in section 3.5.3.  As 

discussed in the text, we can see a large range in performance for the Hot SAX and Sax Word 

Hierarchy methods caused by the different tuning parameters.  The random search methods and 

the SAX Self Tuning method that we have developed have more consistent performance.  These 

figures illustrate the danger of reporting only the best set of tuning parameters. 

 

Figure 44: Range of performance in terms of calls to the distance function for each method and 

across four datasets.  Results are for a data length of 10,000 data points and subsequence 

length of 256.  The average of ten runs is displayed. 
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Figure 45: Range of performance in terms of CPU time for each method and across four 

datasets.  Results are for a data length of 10,000 data points and subsequence length of 256.  

The average of ten runs is displayed. 


