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Abstract

Star formation drives secular galaxy evolution by linking stars and gas in

galaxies. This link forms part of the “baryonic cycle,” where stars form from

interstellar gas, and a portion of that gas is returned to the interstellar medium

upon the star’s death. Understanding the baryonic cycle and its role in galaxy

evolution requires piecing together how the neutral interstellar medium con-

trols where and when star formation occurs. However, our understanding re-

mains limited because the neutral interstellar medium is affected by processes

ranging from the kiloparsec scales of galaxies to the sub-parsec scales where

individual stellar systems form. To advance our knowledge of the baryonic

cycle and galaxy evolution, observations of the neutral interstellar medium

must bridge large to small scales.

In my thesis, I present new observations of the Local Group galaxies that

connect large to small scales in the neutral interstellar medium in exquisite de-

tail. The Local Group galaxies provide an external view to trace galaxy-scale

processes but are close enough for current telescopes to resolve < 100 pc scales

where key components of the baryonic cycle occur. I present the first part of

an on-going Local Group survey of atomic hydrogen taken with the Very Large

Array. These observations provide high-spatial and -spectral resolution maps

of M31 and M33 produced from my new techniques for handling massive inter-

ferometric data sets. I use these new observations to demonstrate the complex

kinematics of the atomic interstellar medium and the large bias implicit in
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using approximate line shape measurements. My work demonstrates that de-

tailed spectral modeling is critically needed to guide our interpretation of the

atomic interstellar medium. Applying detailed spectral modeling, I show that

21-cm HI emission is best modeled as a set of optically-thin Gaussians. I

further show that previous results reporting opaque HI on 100 pc scales are

strongly rejected by the new observations.

I then compare tracers of the atomic and molecular interstellar medium and

find strong correlations between their kinematics. The molecular interstellar

medium is the direct fuel for star formation, and this correlation indicates a

continued role for the atomic interstellar medium throughout the star forma-

tion process. However, these correlations are apparent when only the atomic

gas spectrally associated with the molecular gas is considered. Previous stud-

ies that use all of the atomic gas along the line-of-sight are unlikely to find this

association. These results further suggest the need for careful spectral mod-

eling to study processes that link the atomic and molecular media, including

how molecular gas is formed from the atomic gas.

Finally, I demonstrate the difficulties in recovering the source of large-

scale turbulence in nearby galaxies, which is a key but poorly constrained

component in modern star formation theories. I show that features in the

spatial power spectrum, previously interpreted as large-scale galaxy properties,

are not physical and instead result from the instrument response function.

Because of this, the source of turbulent driving remains ambiguous.

By combining high-spectral resolution observations of the atomic interstel-

lar medium with detailed modeling, my work opens new avenues for exploring

the neutral interstellar medium in nearby galaxies.
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This thesis is original work by Eric William Koch, conducted under the super-

vision of Erik W. Rosolowsky.

Chapter 3 of this thesis is published in Koch, E.W et al. (2018). “Kinemat-

ics of the atomic ISM in M33 on 80 pc scales,” MNRAS, 479, 2505–2533. E.W.
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Chapter 5 of this thesis is published in Koch, E.W et al. (2019). “Rela-

tionship between the line width of the atomic and molecular ISM in M33,”

MNRAS, 485, 2324–2342. I used the VLA M33 HI observations from Chapter

3 (Koch et al., 2018c) and CO(2-1) observations taken by the IRAM 30-m

telescope that are published in Gratier et al. (2010) and Druard et al. (2014).
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I performed the analysis and led writing the manuscript with input from all

authors.
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National Science Foundation operated under cooperative agreement by Asso-

ciated Universities, Inc.
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Chapter 1

Introduction

Galaxies recycle. Throughout cosmic time, this recycling—called the baryonic

cycle—links generations of stars through the gas they are born from and the

enriched material from nuclear burning they expel back into interstellar space

upon their death. The baryonic cycle is responsible for many of the properties

we observe today in nearby galaxies.

Galaxies are a discrete collection of three components: dark matter, stars,

and the interstellar medium (ISM; gas, dust, and high energy particles). The

galaxy mass is dominated by the dark matter halo, which set the gravita-

tional potential that physically defines the extent of galaxies. The latter two

components are the baryons we directly observe.

Galaxies come in many shapes and sizes, with differing amounts of stellar

and ISM masses. Understanding how this diverse population formed requires

piecing together its evolution throughout cosmic time. This evolution is driven

by several processes: mergers between galaxies; feedback from active galactic

nuclei (AGN); accretion from the circumgalactic (CGM) and intergalactic me-

dia (IGM); and finally, star formation. Galaxy accretion and star formation

are two components related through the on-going baryonic cycle, which ulti-

mately controls the stars and the ISM in all galaxies. In the absence of galaxy

mergers and AGN, the baryonic cycle drives galaxy evolution.

While we know its importance and the broad details of how it operates,

there remain many unknowns about how the baryonic cycle produces ob-

1



served galaxy populations. We know that nearby star-forming galaxies will

deplete their current ISM mass in ∼ 2 Gyr (Leroy et al., 2013), far shorter

than the current 13.6 Gyr age of the universe. Furthermore, star formation

rates (SFRs) earlier in the universe were much higher, with a peak measured

at redshift z ∼ 2 (Madau & Dickinson, 2014). Because of this, gas must con-

tinuously accreted onto galaxies for star formation to continue to the present

day. Galaxies with little or no current star formation, elliptical and lenticu-

lar galaxies, are evidence of star formation “quenching” when gas accretion

has been disrupted or stopped (Kennicutt & Evans, 2012). This diversity

among galaxy populations, and the processes that cause them, requires piec-

ing together the baryonic cycle from gas accretion to the formation of stars.

However, it remains difficult to make these connections, since accretion onto

the galaxy occurs on ∼ kpc scales1 (Putman et al., 2012), yet the formation

of single stellar systems occurs on ∼ 0.1 pc scales (André et al., 2014). This

large range of spatial scales naturally produces a large range in the associated

time scales, where the ∼ 2 Gyr depletion time requires slow but consistent ac-

cretion rates on large scales, while the free-fall time for gravitational collapse

of individual stellar systems is ∼ 100 kyr. Simultaneously accounting for these

ranges is the primary issue in connecting star formation to galaxy evolution

through the baryonic cycle.

My thesis is motivated by the missing pieces in the baryonic cycle which

require bridging large to small scales in the ISM. In particular, I explore re-

lations between the atomic and molecular ISM in the Local Group galaxies,

which provide an external view to trace large galactic scales (∼ kpc) but are

close enough to resolve small scales (∼ 10s pc) approaching scales resolved

within the Milky Way. Because of their proximity, the Local Group galaxies

are an ideal laboratory to answer key questions about the baryonic cycle.

In this chapter, I introduce the galactic ecosystem and the baryonic cycle

in greater detail (§1.1). I then motivate how a gap in our understanding of

1“pc” refers to the astronomical distance unit, parsec. For reference, 1 parsec=3.3 light
years.
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the ISM and star formation has developed from a physical scale gap missed in

most observations (§1.2), where small-scales are easily accessible in the Milky

Way and galactic-scales are accessible from nearby galaxies. Given the current

instrumentation available, the Local Group galaxies are the ideal targets to fill

this gap in our knowledge. The remainder of §1.2 introduces the background

for the three questions I explore in this thesis:

1. How do models of the 21-cm HI line shape affect our interpretation of

the neutral ISM? (§1.2.1; Chapters 3 & 4)

2. Are atomic (HI) and molecular (H2) ISM kinematics coupled on 80 pc

scales? (§1.2.2; Chapter 5)

3. Is the source of large-scale turbulent driving imprinted on the ISM den-

sity structure? (§1.2.3; Chapter 6)

1.1 The galactic ecosystem & baryonic cycle

The interdependent processes that control the baryonic cycle and the secular

evolution of galaxies produce a “galactic ecosystem.” The internal ecosystem is

driven by the baryonic cycle, linking the stellar and ISM baryonic components

in a galaxy. Due to this link, the baryonic cycle takes place within the discs of

galaxies, typically near their mid-plane (∼ ±100 pc), since most of the neutral

ISM mass is located there (Ferrière, 2001).

We know the major stages in how the baryonic cycle operates. These can

be summarized in two steps: stars form from interstellar gas, and a portion

of that gas is returned back into the ISM upon the star’s death. The cycle is

completed when the gas from stellar death cools and mixes back into the cold

ISM where star formation takes place. Figure 1.1 shows an overview of these

steps in the baryonic cycle. However, there is a broad range in both physical

and time scales involved with these steps. Furthermore, different steps of

the baryonic cycle influence each other, creating feedback loops, and external

mechanisms operating at galaxy scales (or beyond) influence this cycle, too.
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Figure 1.1: Schematic of the baryonic cycle. Open symbols indicate processes
of the cycle that occur within the galactic disc, and closed symbols are pro-
cesses that add or remove baryons from the cycle.

In the remainder of this section, I split the cycle shown in Figure 1.1 into

three parts: converting the ISM to stars (§1.1.1), star formation’s effect on its

environment and the death of massive stars (§1.1.2), and external mechanisms

that feed and remove the ISM from galactic discs (§1.1.3).

1.1.1 Converting gas to stars: the role of star formation

The baryonic cycle is linked through the different ISM properties within a

galaxy (Figure 1.1). These properties vary dramatically in the ISM, with

temperature and density varying by > 7 order-of-magnitude due to different

processes affecting the environment. To classify these different ISM conditions,

the ISM is classified into “phases,” which are defined by the phase of hydrogen

in those conditions since hydrogen dominates by mass and number in the ISM

(Ferrière, 2001). The notation used is HII for ionized hydrogen, HI for neutral

hydrogen, and H2 for molecular hydrogen2. Though other atoms affect ISM

2This gives two H “twos,” requiring some context to understand if ionized (HII) or
molecular hydrogen (H2) is being discussed.
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properties, hydrogen plays a key role throughout.

The hottest and most diffuse ISM phases are the ionized media, often clas-

sified as a hot interstellar medium (HIM) and a warm ionized medium (WIM).

The HIM is the hottest (∼ 106 K) and most diffuse (0.003 cm−3) ISM compo-

nent produced by supernovae shocks. About 20% of the ISM volume is filled

by the HIM in the Milky Way (Ferrière, 2001). The WIM is results primarily

from massive O and B stars, which produce strong UV radiation with energies

exceeding the 13.6 eV needed to ionize hydrogen. This UV radiation pro-

duces HII regions surrounding these massive stars, which have temperatures

of ∼ 8000 K from the balance between photoelectric heating and recombina-

tion (Draine, 2011). There is also a diffuse and widespread WIM component

filling ∼ 10% of the ISM volume (Kulkarni & Heiles, 1987). This diffuse WIM

requires approximately the ionizing energy output from most O and B stars

in a galaxy in addition to the energy to HII regions. Because of this, it re-

mains unclear whether a second ionizing source is required to produce the

WIM (Ferrière, 2001). About 90% of the ionized gas mass is within the WIM

(Haffner et al., 2009).

Below temperatures of / 104 K, protons and electrons rapidly combine to

form atomic hydrogen3 (HI). This is the atomic ISM, which has two distinct

phases: a warm neutral medium (WNM; n ∼ 1 cm−3; T ∼ 6000 K) and a

cold neutral medium (CNM; n ∼ 100 cm−3; T ∼ 100 K). These states re-

sult from the stable pressure equilibrium solutions when heating and cooling

processes balance (Field et al., 1969; Wolfire et al., 1995; Wolfire et al., 2003).

Some fraction of the atomic gas is perturbed into an intermediate and unsta-

ble state due to external processes, such as turbulence (Bialy et al., 2017).

In our solar neighbourhood, HI is the dominant ISM phase (Ferrière, 2001),

though this drastically changes in different locations in the Milky Way and

other nearby galaxies as the galactic environment changes (e.g., metallicity,

interstellar radiation field, mid-plane disc pressure; Kennicutt & Evans, 2012).

One further state change of hydrogen is the conversion from atomic (HI)

3Without a strong nearby ionizing source, as is the case in HII regions.
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to molecular (H2) hydrogen. In small regions within a galaxy (< 10 pc), the

ISM density can exceed ∼ 102 cm−3, allowing H2 to rapidly form. Since the

CNM reaches similar densities, it is likely the precursor material where the

molecular ISM is formed from. In the Milky Way and other nearby galaxies,

these collections of H2 are often discrete and are surrounded by an envelope of

HI. Due to their discrete nature, these collections are referred to as molecular

clouds, or when their mass is ' 104 M�, giant molecular clouds (GMCs).

This transition to form molecular clouds from the CNM is a long standing

problem. Some mechanism must act to gather the material together, increas-

ing the density and, as a result, allow the HI to cool and form H2. Many

mechanisms have been proposed over the last 50 years, including: converging

flows, agglomeration (or collisions) of smaller clouds, gravitational instability

in galactic discs, and magnetic instabilities (see review by Dobbs et al., 2014).

Several mechanisms have been explored in numerical simulations (e.g., Shetty

& Ostriker, 2006; Dobbs, 2008), though there remains few observational con-

straints beyond studies of individual regions (e.g., Dawson et al., 2011). The

mechanism of molecular cloud formation and the timescale it operates on is a

key unknown in the baryonic cycle.

The H2 in molecular clouds is the coldest and densest phase of the ISM,

with T ∼ 10 K and n > 103 cm−3. The combination of low temperature and

high density is an important property to form stars since, eventually, gravity

must cause the collapse to convert cold gas into a star. Low temperatures

are necessary such that thermal motions are small and do not support against

gravity on the ∼ 0.1 pc scales where individual stellar systems form. There

is strong observational evidence that star formation only occurs in molecular

clouds in the nearby universe (Leroy et al., 2008) (though see Krumholz, 2013).

Figure 1.2 shows the nearby galaxy NGC 5055 in two ISM tracers and two

star formation tracers. The HI is detected almost ubiquitously throughout

the galaxy. The H2 (as traced by carbon monoxide; CO), on the otherhand, is

centralized into the centre of the galaxy. Both star formation tracers, showing

star formation still embedded within molecular clouds at earlier times and
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exposed at later times, are distributed far more closely to the H2 than HI.

This is similarly observed in nearby molecular clouds, where all stellar systems

are found to form in the densest concentrations within the molecular clouds

(André et al., 2014).

While gravitational collapse must occur to form stars, the star formation

rate from observations is much lower than would be implied from gravitational

collapse alone (e.g., Kennicutt, 1989). Observations find that the depletion

time to convert all current molecular gas in a galaxy into stars is ∼ 2 Gyr, far

longer than the ∼few Myr free-fall time for a molecular clouds (Leroy et al.,

2013) Star formation is therefore inefficient.

Much of the star formation research in the past several decades has sought

some additional mechanism to explain this inefficiency through different mech-

anisms that support against gravity. Which mechanism is responsible has

evolved from magnetic fields to turbulence and stellar feedback over the last

few decades (Kennicutt & Evans, 2012). These changes in the dominant pro-

cesses in star formation result from improved observations and increasingly

realistic numerical simulations. However, each of these mechanisms—gravity,

magnetic fields, turbulence, and stellar feedback—is likely to be important for

star formation, though likely at different scales or stages. Furthermore, each

of these mechanisms may be mutually influenced by the others, making it dif-

ficult to draw general conclusions about their importance at different times.

Because of this mutual influence between ISM processes, an encompassing star

formation theory remains elusive.

Whatever the processes involved in star formation are, it remains an obvious

bottleneck in the baryonic cycle. Starting from densities of 100 cm−3 in the

cold neutral medium, gravity must eventually cause large collections of gas

to collapse into stars, where the core densities reach ' 1026 cm−3 (for a 1

M� main-sequence star; Carroll & Ostlie, 2007). This is a dramatic change

that occurs through star formation, as the density increases by ∼ 24 orders of

magnitude. Another way of viewing this extreme change is the initial volume

that the matter for an 1 M� star would fill. This change in density is equivalent
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to an initial volume of ∼ 0.5 pc3 that must decrease by a factor of 1022 into

the volume of the Sun4. The formation of each star represents this extreme

change5.

Two key results from the aftermath of star formation provide important

constraints for any successful star formation theory. The first is that molecu-

lar clouds only live for /10s of Myr. By comparing the locations of molecular

clouds with young stellar clusters, or tracers of recent star formation, the

physical separations strongly suggest that stellar feedback rapidly disperses

molecular clouds soon after star formation starts (e.g., Kawamura et al., 2009;

Chevance et al., 2020b). This is critical for understanding the inefficiency

of star formation. A short cloud lifetime strongly constrains the entire pro-

cess of from forming a molecular cloud to creating stars to a time scale of

∼ 10 gravitational free-fall times. Cloud formation mechanisms must be able

to produce a star-forming environment in some fraction of this time, roughly

constrained to be ∼few Myr from observations (Kawamura et al., 2009). This

suggests there should be strong kinematic evidence of the mechanism required

to gather atomic gas into the > 104 M� GMCs in nearby galaxies.

The second result is that the initial mass function (IMF) of stars is remark-

ably constant (Offner et al., 2014), despite the properties of molecular clouds

(e.g., Colombo et al., 2014) and stellar clusters (e.g., Adamo et al., 2015) vary-

ing with galactic environment (Jeffreson & Kruijssen, 2018). Most stars are

thought to form in loose clusters that relax and disperse within a few galactic

orbital times (Lada & Lada, 2003), producing the “field” stars in galaxies (e.g.,

the Sun). Denser stellar clusters, however, remain bound for much longer peri-

ods of time; the most extreme, though ancient, examples of these are globular

clusters. For star formation theories, the challenge remains to determine how

the properties of the ISM vary in different galactic environments, yet form

4The ISM is highly structured (André et al., 2014), however, so it is more realistic that
portions of the material would have densities a few orders of magnitude larger. Even so, a
vast change in density is still needed.

5The first stars (population III) in the universe are thought to be much more massive,
and larger, than star formed at later times (population I; Krumholz, 2017). The density
change is, nevertheless, extremely large.
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Figure 1.2: The nearby galaxy NGC 5055 shown in HI (Walter et al., 2008),
CO(2-1) (Leroy et al., 2009), Spitzer MIPS 24 µm (Kennicutt et al., 2003),
and Hα (Regan et al., 2001). This galaxy is a clear example of the strong
correlation between star formation tracers and molecular gas (traced by CO),
and lack of correlation with HI, which is detected more ubiquitously across
the galaxy (Kennicutt & Evans, 2012).
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stars in roughly the same mass distribution.

1.1.2 Stellar death, feedback and enrichment

Once stars form and reach the main sequence, most remain in an equilibrium

state until the accessible fuel (H) is exhausted. Given the extreme temperature

sensitivity of nucleosynthesis, the rate that massive stars burn their fuel is

significantly faster than low-mass stars. Because of this, M > 8 M� stars

have short lifetimes of < 30 Myr6. This means that, when present, massive

stars live most of their lives near the molecular cloud they formed from. The

significant energy output from these stars influences their natal environments,

perhaps enough to disperse the entire molecular cloud. This is the primary

role of stellar feedback in star formation theories: providing a mechanism that

rapidly destroys and unbinds the molecular clouds to stop star formation,

thereby making it inefficient (Krumholz, 2014).

For the most massive stars that undergo a supernova (SN; M ' 8 M�), this

energy may be directly deposited into the nearby dense ISM (Walch et al.,

2015). The average momentum per unit mass deposited by a supernovae

explosion (SNe) is ∼ 3 × 103 km s−1, which, in addition to destroying the

natal molecular clouds, is expected to drive turbulence in galaxies (Mac Low

& Klessen, 2004b; Tamburro et al., 2009).

Lower mass stars also affect their environment, for example, through pro-

tostellar outflows (Krumholz et al., 2014). These feedback sources are not

explosive mechanisms like for massive stars, but still impact their natal envi-

ronments with a cumulative energy output capable of driving turbulence on

sub-cloud scales or unbinding the whole molecular cloud (e.g., Arce et al.,

2010). However, the lifetimes of low-mass stars greatly exceed a molecular

cloud lifetime, and so the stellar deaths of low-mass stars do not influence

their natal molecular clouds.

Stars of all masses eventually return some portion of their mass back into

6Using the relation τMS = 10 (M/M�)
−3

Gyr (Carroll & Ostlie, 2007).
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the ISM7. This ejected material is enriched through nucleosynthesis, decreas-

ing the fraction of hydrogen and increasing various heavier elements. The

fraction of non-hydrogen and helium atoms is referred to as “metallicity.”

This enriched material eventually cools and mixes back into the ISM, causing

the next generation of stars to differ in chemical composition from previous

generations.

Though hydrogen remains the dominant ISM component in mass and num-

ber, the observed abundances of elements such as C, O, Mg, Si, and Fe com-

prise an additional and crucial ISM component: dust grains. Dust grains

consist of lattice like structures of the above elements, including large carbon-

based molecules, like polycyclic aromatic hydrocarbons (i.e., flat multi-ring

C molecules; Draine & Lee, 1984). These dust grains have two important

roles in the neutral ISM: (1) They catalyze the formation of H2 far faster

than gas phase reactions, and as such, are expected to have produced essen-

tially all H2 in the nearby universe. (2) Dust absorbs UV and optical light

(e.g., extinction), where the grains thermally radiate into the IR, and provide

an important shielding source for H2 and other molecules found in molecular

clouds (Ferrière, 2001).

1.1.3 Galaxies are not closed systems: inflow and out-
flow in galaxies

While there are complexities to the baryonic cycle presented in the above

two sections, most of those processes occur within the galactic disc. How-

ever, galaxies are not closed systems. Mass can both be added and lost

through different processes, with the galactic halo and surrounding circum-

galactic medium providing an interface onto the galaxy (Putman et al., 2012).

In turn, these components interact with the wider intergalactic medium (IGM).

Further environmental interactions occur through galaxy mergers and the in-

fluence of galaxy clusters, as briefly mentioned at the beginning of this chapter.

7Though for red dwarfs, whose main-sequence lifetime exceeds the Hubble time, their
mass can essentially treated as “lost.” This is most of the mass that goes into stars.
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Star-forming galaxies in the nearby universe will deplete their molecular

ISM in ∼ 2 Gyr at the current levels of star formation (Leroy et al., 2013).

Because of this, on-going star formation in galaxies require the ISM to be

replenished from the surrounding CGM. There are several pieces of observa-

tional evidence for galaxy accretion, including high velocity clouds (Dickey

& Lockman, 1990) and other off-rotation atomic and ionized gas components

found towards nearby galaxies (Fraternali et al., 2004). To feed the inner

galactic discs, where star formation is typically concentrated, ISM replenish-

ment requires a radial mass transport (Krumholz et al., 2018), which has been

measured in a small number of face-on spiral galaxies (Schmidt et al., 2016).

Measuring the accretion rate onto and within galaxies remains difficult, and

as such, observational constraints are only available for a few nearby galaxies.

Acting against galaxy accretion are galaxy winds and outflows, driven by a

stellar feedback and/or AGN, where material is driven off of the disc and into

the halo or beyond. Particularly for AGN, this effect is well-known based on

observations of radio jets, and the strong correlation between black-hole mass

and stellar velocity dispersion in galactic bulges suggests this feedback plays

an important role in galaxy evolution (e.g., Veilleux et al., 2005).

Additionally, recent observations from nearby starbursts resolve multi-phase

ISM structure in galactic winds (Bolatto et al., 2013b; Leroy et al., 2015),

where the intense feedback from either source is sufficient to remove bulk ISM

components in close proximity (Krieger et al., 2019).

Combined with the ISM and star formation within the galactic disc, this

inflow and outflow increase the difficulty in understanding galaxy evolution

through the baryonic cycle. Primarily, this difficulty results from considering

the galaxy as an open system and introducing larger than galaxy scales into

the cycle.
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1.2 Bridging the neutral ISM from extragalac-

tic to Galactic scales with Local Group

galaxies

One issue that is broadly faced in ISM and star formation studies is the di-

chotomy of physical scales that are observed in detail. Due to a natural bias

of using telescope time to observe what is “bright, ” our understanding of the

ISM is guided by observations in the Milky Way, which provide extraordinary

detail at small physical scales (� 1 pc), and of external galaxies, which test

a broad range of ISM environments both between and within galaxies. From

these two regimes, there remains a gap in the physical scales typically observed

between 10s to ∼ 100 pc. In the Milky Way, it is difficult to provide large-scale

context due to our place within the disc and the ambiguity in kinematically

determined distances. Extragalactic observations provide the large-scale con-

text to link with the galactic environment, but often fail to probe these smaller

scales due to the limitations in telescope resolution or unrealistic amount of

observing time to reach the required sensitivity.

Though purely observational, this gap in spatial scales has propagated to

a gap in ISM and star formation theories. Following Krumholz (2014), ISM

and star formation theory can be categorized as bottom-up (motivated by

Milky Way observations) or top-down (motivated by extragalactic observa-

tions). Neither class of model can be extrapolated to produce consistent re-

sults, though a few relations do successfully connect the two regimes (e.g.,

gas surface density and the SFR per free-fall times; Krumholz, 2014). These

agreements suggest that recent models are on the right path to build a self-

consistent framework, but their disagreements suggest they still miss some

ingredients.

An obvious solution to this dichotomy is to fill the gap in physical scales

probed by observations. This is where the Local Group galaxies play a key role.

As the nearest external galaxies, the Local Group galaxies provide the benefits

of both Milky Way and extragalactic observations in the range of spatial scales
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that can be explored. The key drawback is the small sample size: there are

two other major galaxies in the Local Group (M31 and M33), along with ≈ 6

gas-rich and massive star-forming dwarf galaxies8 (LMC, SMC, NGC 6822,

IC10, IC1613 & WLM). Each galaxy is either a different galaxy type, or has

slightly different properties and environment, providing a reasonable span over

galaxy types despite the small sample size (Karachentsev et al., 2004). In this

thesis, I focus on the Large Magellanic Cloud (LMC), Small Magellanic Cloud

(SMC), Messier 31 (M31) and Messier 33 (M33; Table 1.1).

The closest gas-rich dwarfs, the LMC and SMC, provide the best match

in physical scales to the Milky Way, and neutral ISM observations bridging

the spatial gap have been available for ∼ 20 years (Stanimirovic et al., 1999a;

Kim et al., 2003). Recent ALMA observations have pushed down to ∼ 0.1 pc

resolution in several molecular lines (e.g., Indebetouw et al., 2013), that can be

directly compared to surveys of nearby (< 500 pc) molecular clouds in the solar

neighbourhood. While both galaxies provide excellent probes matched directly

to Milky Way observations, their galactic environments are quite different,

both in their galaxy structure and their low-metallicity environment.

About an order-of-magnitude farther in distance are the two other major

galaxies in the Local Group: M31 and M33. M31 is the other major galaxy

in the Local Group, with a similar mass to the Milky Way. Because of our

external perspective, M31 provides an interesting analog to compare with the

Milky Way’s galactic structure, star formation, and ISM properties. One clear

difference from the Milky Way, however, is the ring-like structure which may

be due to a past major disturbance (Williams et al., 2015), possibly with the

dwarf galaxies M32 and NGC 205 (Gordon et al., 2006), though it remains

unclear whether this interaction is the sole source of the rings (Lewis et al.,

2015).

M33 is a late-type dwarf spiral, with a total mass ∼ 40% of M31, and

provides a interesting comparison to the more massive spiral M31. Despite

8This number depends on the distance used to define the Local Group. I have used
D < 1 Mpc here.
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having a much smaller stellar mass (Table 1.1), M33 currently forms stars at

a higher rate than M31 and has a similar total H2 mass. There is further a

large metallicity gradient in M33 (Rosolowsky & Simon, 2008; Bresolin, 2011),

such that the outer disc has a metallicity < 0.5 Z�, a factor of 2 lower than

the Milky Way. This change in metallicity makes M33 ideal for testing how

ISM properties vary with galactic environment (e.g., Bialy & Sternberg, 2019).

M33 is a “flocculent” structure with spiral arm fragments rather than the well-

defined grand spiral structure. However, M33 has a moderate inclination which

provides our closest top-down view of a spiral galaxy.
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M31 M33 LMC SMC

Type (dV91) SA(s)b SA(s)cd SB(s)m SB(s)m pec

Distance (kpc) 744 (V10) 840 (F01) 50 (K14) 62 (G14)

Diameter (D25, kpc; dV91) 39.2 17.8 9.9 5.8

Systemic velocity (km s−1) −306 (C10) −179 (K18) 293 (vdM02) 148 (DT19)

Inclination (◦) 78 (C10) 55 (K18) 35 (vdM02) 51 (DT19)

Rotation velocity (km s−1) 240 (C10) 110 (K18) 65 (vdM02) 55 (DT19)

Mtotal (M�) 1.3× 1012 (C10) 5.0× 1011 (C14) 8.7× 109 (vdM02) 2.4× 109 (DT19)

Mstellar (M�) 1.3× 1011 (C10) 4.8× 109 (C14) 2.7× 109 (vdM02) 4.8× 108 (DT19)

MHI (M�) 5.8× 109 (Ch. 2) 1.8× 109 (K18) 5.0× 108 (K03) 4.7× 108 (DT19)

MH2 (M�) 3.6× 108 (N06) 3.1× 108 (D14) 6.3× 107 (J16) 2.0× 107 (J16)

MH2/MHI 0.06 0.17 0.12 0.04

SFR (M� yr−1) 0.3 (R16) 0.45 (V09) 0.20 (S99) 0.033 (S99)

B09 (Braun et al., 2009) � C10 (Corbelli et al., 2010) � C14 (Corbelli et al., 2014) � D14 (Druard et al., 2014) �
DT19 (Di Teodoro et al., 2019) � F01 (Freedman et al., 2001) � G14 (Graczyk et al., 2014) � J16 (Jameson et al., 2016) �

K03 (Kim et al., 2003) � K14 (Klein et al., 2014) � K18 (Koch et al., 2018c) � N06 (Nieten et al., 2006) �
R16 (Rahmani et al., 2016) � S99 (Stanimirovic et al., 1999a) � dV91 (de Vaucouleurs et al., 1991) �

vdM02 (van der Marel et al., 2002) � V09 (Verley et al., 2009) � V10 (Vilardell et al., 2010)

Table 1.1: Local Group galaxy properties. Total galaxy masses include the dark matter halo.
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The current limitation for tracing the atomic and molecular ISM in nearby

galaxies is the resolution of cm-interferometers. With massive resolution and

sensitivity gains for mm-inteferometers in the previous decade (ALMA, SMA,

NOEMA9), observations down to ∼ 1 pc scales are accessible for targets within

D ∼ 1 Mpc (e.g., Tokuda et al., 2020).

On the other hand, world-class cm-interferometers, like the Very Large Ar-

ray (VLA), are limited to ∼ 6′′ angular scales for imaging with high fidelity

(Chapter 2). At D = 1 Mpc, this means that ∼ 25 pc scales can be traced

with the 21-cm HI line, roughly matching the size of giant molecular clouds

(e.g., Dobbs et al., 2014). This limitation makes the Local Group galaxies the

only targets where both neutral ISM phases can be traced to GMC scales. As

such, these are the key targets for bridging the scale gap in ISM studies, until

the next generation cm-interferometers10 provide the order-of-magnitude gains

the the mm-regime has recently experienced.

In the remainder of this section, I provide a more detailed background of

the specific unknowns that lead into the key questions I explore in this thesis.

Each of these questions addresses explores the neutral ISM properties within

the observational gap between large and small scales. These questions fall

broadly into three categories: (1) observational interpretations of the 21-cm

line, (2) the relationship between the atomic and molecular ISM, and (3) the

source of large-scale turbulent driving.

1.2.1 Modeling and interpretation of the HI line shape
in nearby galaxies

Perhaps more than any other single spectral-line, the atomic medium traced

through the 21-cm HI line traces, or is affected by, most of the baryonic cycle.

The 21-cm HI line traces several processes directly, including the thermody-

namics of the atomic ISM (Field et al., 1969; Wolfire et al., 2003; Heiles &

Troland, 2003), molecular cloud formation and the outer envelope of molecu-

9Atacama Large Millimeter/submillimeter Array (ALMA); SubMillimeter Array (SMA);
NOrthern Extended Millimeter Array (NOEMA).

10i.e., the Square Kilometer Array (SKA) and next-generation Very Large Array (ngVLA).
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lar clouds (Fukui et al., 2009; Dobbs et al., 2014), the large-scale turbulence

in galaxies (Elmegreen et al., 2001), the galactic ISM structure (i.e., disc scale

height and length; Dickey & Lockman, 1990), the inflow of cool gas from the

CGM (Fraternali et al., 2002a), and the galactic rotation curve used to infer

the dark matter halo (e.g., Corbelli et al., 2010; Corbelli et al., 2014). Indi-

rectly, 21-cm HI is affected by stellar or AGN feedback (e.g., galactic winds;

Tenorio-Tagle & Bodenheimer, 1988), which can drive outflows, turbulence

and alter the HI structure by producing “bubbles” or holes in the atomic gas.

These processes affect different components of the baryonic cycle (Figure 1.1).

Due to these different processes, spectral modelling of 21-cm HI spectral

lines remains a challenge. From thermal and turbulent motion, the HI line

shapes are expected to be close to Gaussian, however, multiple features along

a line-of-sight from multiple emitting sources or due to turbulent effects (e.g.,

Lazarian & Pogosyan, 2000) complicate the spectrum. Similarly, opacity ef-

fects will alter the shape of HI features. These spectral properties are intri-

cately related to the different physical processes affecting the atomic ISM, and

due to the limited information from spectral line observations, it can be diffi-

cult to disentangle the line profiles and recover the physical properties of the

atomic ISM. In this section, I review spectral modeling of the 21-cm line in

nearby galaxies to highlight how different models produce large discrepancies

in the inferred properties of the atomic ISM.

The 21-cm(1420 MHz) HI spectral line results from a hyperfine transition

in atomic hydrogren’s ground state. The interaction of the magnetic moments

of the proton and electron produces two different states with a higher energy

with parallel spins and a lower energy with anti-parallel spins. To reach the

higher energy level, HI is collisionally excited mostly by other HI atoms.

The strength of a radiative transition is measured with the emission coef-

ficient, or Einstein-A coefficient. Between two magnetic dipoles, the emission

coefficient is:

Amn =
64π4

3~c3
ν3
mn |µB| , (1.1)
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where µB = 9.27401×10−21 erg/Gauss is the magnitude of the Bohr magnetron

(Stahler & Palla, 2005). Plugging in the 1420 MHz frequency, we find that

the 21-cm HI line has a tiny emission coefficient of A ≈ 2.85 × 10−15 s−1.

Expressed instead as τ1/2 = A−1, the half-life for radiative transitions if 107 yr

for HI to emit. Because of this long time scale, most HI will collisionally

de-excite and radiative de-excitation will be rare. What makes the 21-cm HI

bright enough to observe is the massive number of HI atoms.

The level populations of 21-cm in the upper and lower hyperfine states are

defined in terms of the spin temperature Tspin such that:

nu

nl

=
gu

gl

exp

(
− hν
kTs

)
, (1.2)

where u is the upper parallel spin state and l is the lower anti-parallel state.

The upper state is a triplet (gu = 3) and the lower is singlet (gl = 1), resulting

in a 3:1 ratio. Across the range of HI spin temperatures (∼ 10–8000 K), we

expect this 3:1 ratio to hold, since hν/k = 0.0682 K is far smaller than the

CNM (∼ 100 K) and CMB temperatures (∼ 2.8 K).

Assuming local thermodynamic equilibrium (LTE), the line absorption co-

efficient (κν) can then be written as

κν =
3c2

32π

A10nHh

ν10kTs

φ(ν) (1.3)

where φ(ν) is the spectral line profile normalized to unity. The spectral line

profile is set by the the dominant source of internal motion within the emit-

ting volume. For typical properties in the atomic ISM, thermal motion11 will

dominate producing a Gaussian line shape:

φ(ν) =
1√
2πσ

exp

(
−(ν − ν0)2

2σ2

)
, (1.4)

where σ is the line width and ν0 is the line centre. Note that φ(ν) can be equiv-

alently expressed as the Doppler-shifted velocity v. Using the radio definition,

v = c(ν0 − ν)/ν0 with c as the speed of light.

11Turbulence as a broadening source will be mentioned below.
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The optical depth is defined as the integral of the line absorption coefficient

along the line-of-sight depth s:

τ(ν)(s) =

∫ s

s0

κν(s)ds. (1.5)

If we assume that HI is isothermal along the line-of-sight (Ts is constant), the

integrand does not depend on the path length s, and the optical depth is

τ(ν) =
3c2

32π

A10h

ν10kTs

NH
1√
2πσ

exp

(
−(ν − ν0)2

2σ2

)
, (1.6)

where NH = nH(s− s0) is the column density integrated over the path length.

Since the path length is not often constrained in 21-cm HI observations, the

column density is the primary measure of interest. Equation 1.6 shows a key

relation between optical depth and spin temperature: τν ∝ T−1
s .

Formally, the specific intensity (Iν) is measured in observations. However, it

is convenient to instead express specific intensity as a brightness temperature

using the Rayleigh-Jeans approximation:

Tb =
c2

2kν2
Iν . (1.7)

This approximation is valid at centimetre wavelengths.

In terms of brightness temperature, the radiative transfer equation can then

be written as

Tb(ν) = Ts

[
1− e−τ(ν)

]
+ Tce

−τ(ν), (1.8)

where Tc background temperature. Against a bright background source Tc �
Ts, an absorption line will be described by:

Tb(ν) = Tce
−τ(ν). (1.9)

The strength of the absorption line depends directly on the optical depth, τ .

Since τ ∝ 1/Ts, HI absorption preferentially traces cold gas with low Ts. I

note that Tc can be any background source, including a local background of

bright high Ts, where foreground cold gas with low Ts will self-absorb12.

12However, this requires Ts to vary along the line-of-sight, altering the radiative transfer
equation (e.g., Dickey et al., 2003; Heiles & Troland, 2003).

20



In the absence of a background source, the HI emission line is described by:

Tb(ν) = Ts [1− exp(−τ (ν))] . (1.10)

In the optically-thin limit, 1 − exp(−τ (ν)) ≈ τ(ν), and since τν ∝ T−1
s (see

above), the brightness temperature is independent of Ts. From Equation 1.6,

the optically-thin HI emission will be (1) described by a single Gaussian line

shape, and (2) Tb ∝ NH. The latter is an extremely important result since

the total HI column density NH can be measured by integrating over the HI

spectrum. Taking this one further step, the column density can be converted

to the HI mass with the distance to the source (D; Mpc) and telescope beam

size (θ; ′):

M = 0.34D2θ2

∫
Tbdv, (1.11)

where mass is in M�, Tb in K and the spectral axis in velocity v with units of

km s−1 (Rohlfs & Wilson, 2004).

When the emission is opaque (τ > 1), the line shape is altered from a

Gaussian in Equation 1.10 (Rohlfs et al., 1972; Braun et al., 2009). Effectively,

the observed line shape will have Gaussian-shaped line wings and a flattened

top over the spectral range where τ > 1. In this case, Equation 1.10 can

constrain both NH and Ts.

Where does the difficulty in modeling the HI spectral line come from? First,

Ts likely changes along a line-of-sight when intersecting different atomic ISM

phases, and it may not be possible to distinguish these changes from the ob-

served spectral line shape alone. Second, other processes, such as turbulence,

will alter the line shape, whose influence may further be degenerate with the

thermal atomic ISM properties. Distinguishing these processes is the primary

goal behind most HI spectral line modeling.

The atomic ISM phases affect the HI line shape due to the difference in

opacity of the WNM and CNM. This difference follows from the classical in-

terpretation of the two-phase atomic ISM (Field et al., 1969; Wolfire et al.,

2003), where the WNM and CNM have a temperature and density that vary

by ∼ 2 orders of magnitude while in pressure equilibrium. In reality, the
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atomic ISM phases are more complex as some fraction of the atomic ISM is

continuously perturbed into an intermediate unstable regime (the UNM) by

turbulence (Heiles & Troland, 2003; Bialy et al., 2017; Murray et al., 2018).

Due to its low density, the WNM is optically thin and fills a much large volume

relative to the CNM (Ferrière, 2001). Colder and denser atomic HI, comprising

the CNM and cool UNM, fills a smaller volume more similar to the molecular

ISM (Ferrière, 2001). On molecular clouds scales (∼ 20 pc), the structure

ofHI emission resolves into a combination of the atomic HI phases that can be

distinguished by the narrow and wide line widths, based on the thermal line

width, of individual components in the spectrum (e.g., Haud, 2000). However,

velocity blending along the line-of-sight and turbulent broadening limits the

completeness of separating the phases with this method.

The cold and denser HI is more likely to be optically-thick, affecting how

this component is distinguished in observations. This opaque HI contributes

to the HI emission like the optically-thin HI, but it can be cleanly separated

by measuring it in absorption against a bright background source. Figure 1.3

shows a simplified schematic of HI emission and absorption, similar to what

was observed in the Milky Way (Bihr et al., 2015). At coarser spatial resolution

(> 100 pc), typical of nearby galaxy observations, the HI is often assumed to

be optically-thin since the cold and/or opaque HI likely has a small beam filling

factor13. These variations in the HI line opacity make it difficult to distinguish

between the different atomic ISM phases in observations. However, measuring

the fraction of gas in these phases is critical as it constrains fundamental

properties, including the total atomic ISM mass.

Our ability to distinguish the opaque CNM and thin WNM further de-

pends on geometry of the target along our line-of-sight. In the Milky Way,

our position within the Galactic disc makes HI detectable towards most lines-

of-sight (see review by Dickey & Lockman, 1990). Because of this, there are

many bright background continuum sources where opaque HI can be measured

13The beam filling factor is the ratio of the true source size to the resolution in the
observations.
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Figure 1.3: A simplified schematic of 21-cm HI emission and absorption
against a bright background continuum source. Values shown are qualitative
only. Similar lines-of-sight are traced, where (2) intersects a background source
and (1) does not, and their resulting spectra are shown in the bottom panels.
The top picture shows three emitting “clouds” moving away from the observer
at slightly different velocities. Towards line-of-sight (1), all three clouds com-
bine to produce the emission spectrum. Due to their similar velocities, and
the much larger line width of the “WNM” cloud, the components are highly
blended in emission, making it difficult to separate and model the emission
from each cloud. However, the two small “CNM” clouds have a higher optical
depth that is preferentially traced in absorption, as shown in the bottom right
spectrum. Milky Way observations often find cases similar to this example
(though typically far more complex), and the combination of emission and ab-
sorption is used to determine the atomic ISM phases (e.g., Dickey et al., 2003;
Heiles & Troland, 2003). This technique is also used in nearby galaxies, though
their smaller angular size on the sky provides far fewer lines-of-sight that in-
tersect a bright background source. Observations of HI emission in nearby
galaxies further suffer from coarser physical resolution. This often results in
the assumption that the HI emission is primarily from the WNM, since it fills
a larger volume in the ISM, and therefore tends to fill the telescope beam
(Ferrière, 2001).
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(Heiles & Troland, 2003; Murray et al., 2018; Wang et al., 2020a). Further-

more, there are many lines-of-sight where foreground opaque HI self-absorbs

against a bright WNM background, referred to as HI self-absorption (HISA;

Gibson et al., 2000; Gibson et al., 2005; Kavars et al., 2005; Soler et al., 2019;

Wang et al., 2020b). In both cases, opaque CNM that produces clear absorp-

tion lines are the easiest to detect.

External galaxies have a much smaller footprint on the sky where absorption

can be clearly distinguished, and so estimates of the CNM fraction is more dif-

ficult to constrain. The best constraints from absorption come from the Local

Group galaxies as their larger angular size intersects more bright background

continuum sources (Braun & Walterbos, 1992; Dickey & Brinks, 1993; Dickey

et al., 1994, 2000; Jameson et al., 2019). Self-absorption features are not ob-

vious from current observations, though there are hints of its influence (Liu

et al., 2019). If cold opaque HI is beam-filling14, however, the HI emission line

shape may be observed as a “flat-top,” where the HI becomes optically-thick

over a range of velocities (Rohlfs et al., 1972; Braun et al., 2009; Braun, 2012).

This offers the potential to map opaque HI and recover the total atomic ISM

mass in nearby galaxies if such features are observed.

Affecting the recovery of all thermal properties is line broadening due to

turbulence. On small scales, turbulence can have a drastic effect on the HI

line shape, producing distinct spectral features in HI spectra that arise from

the same emitting volume (Lazarian & Pogosyan, 2000). On larger scales,

these features are averaged over and tend to produce a near-Gaussian shape

that is broadened with respect to the thermal line width. These larger line

widths are most noticeable in cold gas (atomic and molecular), where the

thermal line widths are small (/ 0.8 km s−1 at < 100 K), and the turbulence

is super-sonic (e.g., Solomon et al., 1987). This results in a strong degeneracy

between the thermal and turbulent properties of the medium, though these

sources may be distinguished by comparing line widths near strong turbulent

driving sources or changes in the average galactic environment (e.g., Tamburro

14The sources is at least minimally-resolved at the resolution of the observations.
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et al., 2009).

One expected source of turbulent driving is stellar feedback from massive

star formation, especially supernovae (Mac Low & Klessen, 2004b). This feed-

back produces distinct HI “holes” that, combined with the feedback source’s

energy and the energy required to produce the whole, can be used to estimate

the turbulent energy injection into the ISM (Heiles, 1979; Bagetakos et al.,

2011) and the efficiency predicted by ISM models (McKee & Ostriker, 1977;

Ostriker et al., 2010).

While the latter sources affecting line shape mostly account for the bright HI

emission in galaxies, the HI line also traces fainter structure related to inflow

onto and outflow from the galaxy disc. With sufficient resolution, inflow and

outflow structures are resolved into high-velocity clouds (HVCs), named for

their discovery near the Milky Way at velocities significantly different than

what would be predicted from galactic rotation (Dickey & Lockman, 1990).

Recent observations show a population of clouds around most Local Group

galaxies (e.g., Thilker et al., 2004; Lockman et al., 2012; Keenan et al., 2016),

including clouds that appear to have been ejected from the SMC (McClure-

Griffiths et al., 2018).

Without sufficient resolution, a low level of HI is often detected in nearby

galaxies (Fraternali et al., 2002a), which includes a combination of unresolved

HVCs (Stanimirović et al., 2006), outflows driven by stellar or AGN feedback

(Barnabè et al., 2006; Sancisi et al., 2008), and the interface with a galaxy’s

gaseous halo and CGM (Putman et al., 2009; Heald et al., 2011; Putman et al.,

2012). These components together create low-level “wings” in an HI spectrum

with equivalent Gaussian widths far larger than the bright HI emission from

the galactic disc.

In extragalactic HI observations, these different effects are mixed together

to produce the HI spectrum. Spectra from lower resolution observations (∼
100s pc) average over many different effects but provide a useful measure of

the average HI kinematics in galaxies. To be able to separate different effects

at work, however, HI observations below typical disc scale heights (∼ 100 pc;
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Figure 1.4: Example HI spectra in M33 (see Chapter 2). The left shows an
individual spectrum while the right shows the stacked spectrum. The indi-
vidual spectrum has bright component with a blue-shifted shoulder and faint
emission on either side. The stacked spectrum shows the “universal” stack
shape (Petric & Rupen, 2007) with a narrow peak and wide line wings which
results from the stacking process (Koch et al., 2018c, Chapter 3).

Ferrière, 2001) are required.

Given the limitations of HI observations in nearby galaxies, different ap-

proaches have been used to interpret the HI line shape. While most of these

methods are valid models to describe the observations, their interpretation of

the atomic ISM properties varies widely.

The simplest HI kinematic measurement uses the second moment of an HI

spectrum to estimate the line width. If the spectrum is a single Gaussian, the

line width from the second moment is the Gaussian rms line width. Tamburro

et al. (2009) explore this measurement in several nearby galaxies and find typi-

cal HI line widths 8–12 km s−1. Assuming the volume-filling WNM dominates

the HI emission, these line widths exceed the expected thermal line width of

6 km s−1 for 6000 K gas, thereby requiring additional turbulent broadening

from turbulence. Tamburro et al. (2009) compare the turbulent energy dissi-

pation rate from the measured line widths and find that energy released by

supernovae are sufficient to produce the observations. In the outer regions

of galaxies, where the supernovae rate is low, they suggest that turbulence

could be maintained by the magneto-rotational instability (MRI; Mac Low &

Klessen, 2004a). The second moment is appropriate when limited sensitivity
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makes the line shape uncertain, though, it likely overestimates the line width

(Mogotsi et al., 2016; Koch et al., 2018c), suggesting other methods should be

used where the data allow.

To overcome limitation in sensitivity, many studies increase the signal-to-

noise ratio (S/N) by spectral stacking, where a large number of spectra are

aligned to a commonly-defined line centre. Once aligned, these spectra add

coherently to boost the sensitivity. Several HI extragalactic studies use this

method, and often find a similar stacked profile shape combining a central

near-Gaussian peak with line wings enhanced relative to a Gaussian (Young &

Lo, 1996; Braun, 1997; Petric & Rupen, 2007; Ianjamasimanana et al., 2012;

Stilp et al., 2013a). Petric & Rupen (2007) suggest that this “universal” shape

demonstrates similar HI properties in different galaxies, though Koch et al.

(2018c, Chapter 3) show that this shape is due to the stacking method itself.

The interpretation of this universal HI stacked line shape has produced two

significantly different interpretations depending on how the profile is mod-

elled. The first model uses two Gaussians to fit the stacked spectrum. This

combination of Gaussians tends to produce a bright and narrow component

with widths of 3–6 km s−1, and a wide and faint component with widths of

9–25 km s−1 (Young & Lo, 1996; Young et al., 2003; Ianjamasimanana et al.,

2012; Stilp et al., 2013a; Utomo et al., 2019a). Braun (1997) similarly in-

terpret stacked profiles as a narrow and wide component, though the wide

component is modelled as a Lorentzian profile. Several of these studies inter-

pret the narrow and wide components with the CNM and WNM, respectively

(Young & Lo, 1996; Young et al., 2003; Ianjamasimanana et al., 2012), where

excess from the thermal line widths is assumed to be from turbulence. Ian-

jamasimanana et al. (2012) use the fraction of each component’s integral to

estimate the CNM-to-WNM ratio in nearby galaxies and find values ranging

from 0.14–0.99.

The CNM and WNM fractions inferred by Ianjamasimanana et al. (2012)

vary drastically between different galaxies. Stilp et al. (2013a) demonstrate

that this is partially due to the covariance between the wide and narrow com-
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ponents and that the area under each component is sensitive to small changes

in the profiles, making interpretations of these components to the CNM and

WNM uncertain. Instead, Stilp et al. (2013a) introduce a non-parametric

line width and line wing definitions that does not rely on an explicit CN-

M/WNM interpretation and does not contain correlated parameters Using

these non-parametric measures, they find equivalent Gaussian widths range

from 6–10 km s−1. From this and measures of the line wing strength, they

estimate the turbulent kinetic energy as the primary component producing

the stacked line profiles. Similar to Tamburro et al. (2009), they find that tur-

bulence in the inner regions of galaxies can be driven by supernovae, though

they find weak correlations between radial profiles of the star formation rate

versus the line width and wing statistics.

Finally, HI spectra are also directly fit, matching many Milky Way studies.

Unlike the Milky Way studies, however, most extragalactic HI models are

limited to a single Gaussian model (Boulanger & Viallefond, 1992; Combes

& Becquaert, 1997; Mogotsi et al., 2016) or two-Gaussian model (Young &

Lo, 1996; de Blok & Walter, 2006; Warren et al., 2012). These two-Gaussian

models often find a narrow components imposed on top of a wide component.

Some studies also use a Gauss-Hermite polynomial fit, which can model skewed

profiles (Young et al., 2003; Warren et al., 2012; Stilp et al., 2013a). However,

Young et al. (2003) note that it is unclear how to map from this model to the

physical gas conditions and the aforementioned studies only use this method

to improve estimates of the line centre.

Compared to the two-Gaussian CNM/WNM interpretation (Ianjamasimanana

et al., 2012), far fewer fits to individual spectra require the two-Gaussian model

(Young & Lo, 1996; Warren et al., 2012), apart from galaxies with a high incli-

nation where lines-of-sight intersect ∼ 2 bright components through the disc

(de Blok & Walter, 2006). Because of this, Warren et al. (2012) conclude

that cold HI, as seen from emission, is not significant in the low-mass galaxies

included in their sample.

For Local Group galaxies, the spectral resolution and sensitivity of HI ob-

28



servations is sufficient to recover more spectral complexity at high (< 100 pc)

resolution, where many spectra cannot clearly be modelled by just one or two

Gaussians, and the spectral shapes become more similar to Milky Way HI

observations15. From this complexity, Braun et al. (2009) suggest that some

HI spectra in M31 have a distinct flattened-top, which they posit results from

opaque cold HI. Braun (2012) extend this identification to the LMC and M33.

If this is the case, it provides a powerful method for measuring the HI opac-

ity since it relies only on HI emission, not absorption (e.g., Dickey et al.,

2003). Braun et al. (2009) show that this flat-top shape can be reproduced

by a simple model where a single gas component, broadened by non-thermal

(e.g., turbulent) motion, is optically-thick over some column density (Equation

1.10; see also Rohlfs et al., 1972). From this modelling, they infer that the

optically-thin approximation underestimates the atomic gas mass by ∼ 35%

across M31, M33, and the LMC. However, Rohlfs et al. (1972) note that there

is ambiguity between a flat-top opaque model and spectra where two Gaussian

components are blended together.

These diverging interpretations produce large differences in inferred physical

properties of the atomic ISM in nearby galaxies. Because of this, it is difficult

to connect with the Milky Way HI properties observed on small scales and test

predictions of how the atomic ISM varies with galactic environment (Bialy &

Sternberg, 2019).

Chapters 3 & 4 explore the HI line shape in detail using our new HI VLA

observations of M31 and M33. In particular, I show that the high spectral

resolution of these new data unveil spectral complexity previously only seen

in the Milky Way and Magellanic Clouds, and that the kinematic methods

used in most extragalactic HI studies provide a coarse, and sometimes biased,

measurement that does not capture this complexity.

15Though we do not expect these to be entirely similar, even on matched scales, due to
the different observed geometries (i.e., within verse external to the galaxy).
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1.2.2 From HI to H2: kinematics of the neutral ISM in
molecular cloud evolution

Molecular clouds are the birthplace of stars in the nearby universe (e.g., Bigiel

et al., 2008, 2010; Schruba et al., 2011). Observations over the last decade

have firmly established the strong relationship between recent star formation

and molecular gas (the Kennicutt-Schmidt “Law”; Schmidt, 1959; Kennicutt,

1998) and the weak correlation with atomic gas (Bigiel et al., 2008; Kennicutt

& Evans, 2012). These properties of molecular clouds are well-studied in the

Milky Way (e.g., Larson, 1981; Solomon et al., 1987; Colombo et al., 2019)

and nearby galaxies (e.g., Wilson & Scoville, 1990; Rosolowsky et al., 2003;

Nieten et al., 2006; Leroy et al., 2009; Gratier et al., 2010; Corbelli et al.,

2017), however, the role of HI in molecular cloud evolution remains poorly

explored in observations (Dobbs et al., 2014).

In most of these studies, H2 is traced by the low rotational transitions

of carbon monoxide (CO). The key difference is that H2, as a homonuclear

diatomic molecule, has no permanent dipole moment, and the T ∼ 10 K

in molecular clouds is insufficient to excite the allowed vibrational transitions

(Draine, 2011). CO, however, has a permanent dipole moment with low-energy

rotational transitions which are easily excited in molecular cloud conditions.

Combined with the relatively high abundance of C and O, this makes CO the

most abundant molecule behind H2 in molecular clouds16 and bright enough to

be observed throughout the universe. Physically, the bright CO lines provide

the key cooling channel in molecular clouds and balance heating from cosmic

rays (e.g., Ferrière, 2001; Krumholz, 2014).

Molecular clouds have three stages in their evolution: (1) formation and

no star formation, (2) early star formation still embedded within the cloud,

and (3) on-going and exposed star formation, whose feedback destroys the

cloud (Chevance et al., 2020a). These stages must occur over within a cloud

lifetime (∼ 10–50 Myr; Kawamura et al., 2009; Corbelli & Schneider, 1997;

16The second most abundant atom is He, which is a noble gas and therefore is not very
reactive nor directly observable.
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Kruijssen et al., 2019; Chevance et al., 2020b), implying that cloud formation

and the onset of star formation is rapid. Additionally, molecular clouds may

continuously grow by accreting from the surrounding HI throughout their lives

and influence the star formation efficiency, until feedback is sufficiently strong

to destroy the cloud (Lee et al., 2016).

Through the molecular cloud evolution stages, HI is either an active or pas-

sive component to the processes within the cloud. First, H2 must form from

HI, most likely from the CNM whose properties are closest to the molecular

medium. Where H2 forms is set by the local volume density, where UV shield-

ing allows for efficient H2 formation (Krumholz et al., 2009; Krumholz, 2013;

Sternberg et al., 2014; Bialy et al., 2017), and the mid-plane disc pressure set by

the galactic environment (Blitz & Rosolowsky, 2006; Ostriker et al., 2010), but

the mechanism that gathers the CNM to increase the density remains unclear

from observations (Dobbs et al., 2014). Once the cloud has formed, an HI

envelope should persist around the cloud following predictions of shielding-

based H2 formation models (Krumholz et al., 2009; Sternberg et al., 2014),

which affects the cloud’s gravitational boundedness (Elmegreen & Elmegreen,

1987). After the onset of star formation, stellar feedback has a profound ef-

fect on the HI envelope while the cloud is destroyed due to its lower density

than the H2. This expectation follows from various numerical simulations that

show stellar feedback strongly affecting lower density material in clouds (Dale

et al., 2014; Seifried et al., 2018), where over-pressured regions from heated

gas preferentially leak via low column density paths (Dale, 2017).

While the lack of correlation between HI and star formation surface density

is well-studied (Bigiel et al., 2008), the joint kinematics of HI and CO (tracing

H2) remains poorly explored, yet has the potential to solve key unknowns

about the role of HI in molecular clouds from formation to destruction. In the

Milky Way, several works note a clear layered appearance of molecular clouds

(traced by CO) surrounded by bright HI (Grabelsky et al., 1987; Elmegreen

& Elmegreen, 1987). Due to complexities in the HI line shape (§1.2.1), this

relationship is primarily based on visual inspection. More recent studies find
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HI self-absorption towards molecular clouds with similar kinematic properties

between HI and H2 (Li & Goldsmith, 2003; Goldsmith & Li, 2005). These

studies hint of similar kinematics between the HI and CO on sub-cloud scales

(e.g., line width; Krčo et al., 2008; Krčo & Goldsmith, 2010; Wang et al.,

2020b), with variations that may relate to the formation or destruction of the

cloud (Soler et al., 2019).

Kinematic comparisons in extragalactic studies are limited compared to

Milky Way studies due to the coarse resolution in 21-cm observations beyond

the Local Group. On > 100 pc scales, where individual molecular clouds are

unresolved, there is a strong correlation between the HI and CO velocities at

peak intensity (Schruba et al., 2011), suggesting both tracers follow a similar

rotation curve in galaxies. By fitting individual HI and CO spectra with single

Gaussians in nearby galaxies, Mogotsi et al. (2016) find that CO line widths

(σCO = 7.3±1.7 km s−1) are roughly 60% of HI line widths (σHI = 11.7±2.3 km

s−1) at matched resolution from ∼ 200–700 pc.

Extragalactic studies of HI and CO in individual spectra on smaller scales

are otherwise limited to Local Group galaxies. In M33, Imara et al. (2011)

compare the HI and CO centroid velocity gradients across 45 molecular clouds

on ∼ 20 pc scales. They do not find a strong correlation in the gradients across

these clouds, though the HI spectra have line structure that may not be cap-

tured from the centroid velocity (e.g., their Figures 4 & 5; also see Gratier

et al., 2010). In the LMC, Wong et al. (2009) and Fukui et al. (2009) find

that the correlation of velocities at peak intensity in HI and CO continues to

hold on 40 pc scales, and they further find a suggestive correlation between

the HI and CO line widths. They find that CO line widths are just 30% of

the HI line widths, far smaller than the ratio from Mogotsi et al. (2016). A

second clear result from these LMC studies is the weak relationships between

CO detection with peak HI temperature and HI column density. Given the HI

line complexity and its high detection fraction relative to CO, these weak rela-

tionships suggest that a significant amount of HI emission arises from atomic

gas unassociated with the molecular gas. To distinguish HI emission from the
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Figure 1.5: HI (Chapter 2) and CO (tracing H2; Druard et al., 2014) toward
one line-of-sight in M33. The CO emission has a single component, with a
velocity at peak intensity similar to the HI. The HI has an additional blue-
shifted shoulder, in addition to faint emission. These spectra demonstrate the
need to separate HI that is associated with H2 to distinguish the role of HI in
molecular clouds.

molecular cloud versus the surrounding environment, molecular clouds should

be moderately-resolved.

Due to the low beam filling factor of CO at > 100 pc resolution, CO de-

tections in dwarf galaxies and the outer regions spiral galaxies often rely on

spectral stacking (Combes & Becquaert, 1997; Schruba et al., 2011; Caldu-

Primo et al., 2013; Caldú-Primo & Schruba, 2016a), following the technique

described in §1.2.1. These studies find that HI and CO stacked line widths

are consistent, unlike the smaller CO line widths from individual spectral fit-

ting above. While some line broadening is expected from the stacking method

(Chapter 3; Koch et al., 2018c), the consistent widths are unlikely to be result

from systematics alone. Instead, Combes & Becquaert (1997) suggest that

the increased sensitivity from stacking allows diffuse CO to be detected. This

diffuse CO traces a similar kinematic component to the HI, thereby tracing a

similar volume and disc scale height17 larger than that of the bright CO that

17However, CO from low-mass molecular clouds are likely to contribute some fraction of
the missing CO flux (Rosolowsky et al., 2003).
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arises from GMCs. This offers an explanation for the different CO line widths

measured in studies that use the same data but apply stacking (Caldu-Primo

et al., 2013) versus fitting individual spectra (Mogotsi et al., 2016).

Diffuse CO has been measured or inferred in different ways, and due to

its faintness, there remains many unanswered questions about its properties.

Garcia-Burillo et al. (1992) detect CO ∼ 1 kpc from the plane of the disk in

the edge-on galaxy NGC 891, providing direct evidence for a “molecular halo.”

Indirectly, Pety et al. (2013) find that ∼ 50% of the CO flux in M51 based on

single-dish data is filtered out in interferometric data, suggesting the missing

flux arises from large-scales. Caldú-Primo et al. (2015) and Caldú-Primo &

Schruba (2016a) identify a wide CO velocity component from line stacking is

only recovered in single-dish observations on scales > 500 pc. Similarly, Dame

& Thaddeus (1994) find excess CO line wings in Milky Way observations and

Roman-Duval et al. (2016) detect diffuse CO extended off the Galactic plane,

which could account for ∼ 25% of the total CO emission.

The presence of diffuse CO complicates the separation of HI and CO asso-

ciated with molecular clouds. Though faint, if the diffuse CO broadly traces

HI, it is necessary to marginally resolve molecular clouds to cleanly separate

the cloud kinematics in HI and CO from the diffuse background.

These previous studies highlight suggestive correlations linking the HI and

CO kinematics and that diffuse HI and CO emission is a source of confusion

when measuring molecular cloud kinematics. Accounting for this confusion

from diffuse HI and CO emission should provide observational constraints on

key unknowns about cloud formation and destruction to test recent predictions

(e.g., Jeffreson & Kruijssen, 2018).

Chapter 5 explores the relations between HI and CO kinematics in M33 on

80 pc scales. In this work, I account for line stacking systematics to demon-

strate that M33 lacks the diffuse molecular gas suggested in more massive

spirals. Further, I show a strong correlation between HI and CO line widths

that is only apparent when accounting for HI not associated with CO emission.
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1.2.3 Observational signatures of turbulent driving on
galactic scales

Turbulence plays a key role in modern star formation theories (McKee & Os-

triker, 2007) and is an integral part of ISM dynamics (Elmegreen & Scalo,

2004). Properties of interstellar turbulence18 are measured using statistical

techniques such as the power spectrum. In particular, the energy power spec-

trum E(k) can be compared to different turbulence prescriptions (e.g., Kol-

mogorov, 1941)

Figure 1.6 shows an idealized example of E(k). On large scales, some source

injects energy into the medium driving turbulent motion. Below this scale, the

energy power spectrum has a self-similar structure where (in this case) energy

is conserved but is transferred to successively smaller scales in turbulent eddies.

This is the inertial range, and the transfer of energy to smaller scales gives

a power-law shape to E(k). On small scales turbulence is dampened where

viscosity becomes important. The energy is lost from the turbulent motion,

and E(k) drops steeply.

There are three parameters of interest in E(k): (i) the driving scale of

turbulence, (ii) the dissipation scale, and (iii) the index of the power law

in the inertial range. The power spectrum index is varies with the type of

turbulence for incompressible (e.g., Kolmogorov, 1941) and compressible gas

(e.g., Burgers, 1948; Fleck, 1996; Galtier & Banerjee, 2011; Federrath, 2013).

Recovering E(k) in observations is difficult since, for kinetic energy, E(k)

depends on the density (ρ(k)) and velocity (v(k)) fields of the medium: E(k) ∝
ρ(k)v(k)2. Spectral lines, like the 21-cm HI line, provide constraints on the

3D turbulent velocity and density fluctuations using HI spectral-line cubes

with the projected sky dimensions and the line-of-sight velocity (Lazarian &

Pogosyan, 2000, 2006). However, tracers of column density alone also constrain

the 3D density turbulent field (Elmegreen & Scalo, 2004). Though this removes

the velocity information, the column density to volume density connection

18The power spectrum is used more widely for turbulence studies, including for terrestrial
sources.
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enables a wider range of tracers that can be used to measure ISM turbulence.

In particular, dust emission and extinction is extremely useful for this purpose

as observations combine high-sensitivity with a large dynamic range, allowing

faint emission to be distinguished below the typical sensitivity of spectral-line

observations.

In the remainder of the section, I refer to the column density power spectrum

as the “power spectrum.” Though not fully descriptive, this use is fairly

ubituitous in the literature. Due to its connection to the underlying turbulent

density field, the column density power spectrum is closely related to E(k),

though is not constraining without velocity information.

While the power spectrum index is measured in many studies (Elmegreen &

Scalo, 2004), the source of turbulent driving remains unclear. Because of the

central role of turbulence in star formation, however, the source of turbulence

has important consequences for the onset of star formation in nearby galaxies

(e.g., McKee & Ostriker, 2007; Krumholz, 2014). Turbulent driving is typi-

cally assumed to be dominated by a driving mechanism operating on scales

near or larger than the disc scale height, for which there are two likely candi-

dates: gravitational instability and stellar feedback (mostly SNe; Krumholz &

Burkhart, 2016). Further, the decay timescale of turbulence is short (∼ 10 Myr

on molecular cloud scales; Mac Low & Klessen, 2004b), suggesting that this

mechanism must act near-continuously and may therefore be detectable in

observations. However, power spectra from ISM observations have power-law

distributions over a range of scales (e.g., Miesch & Bally, 1994; Stutzki et al.,

1998) with no obvious turn-over at large scales. A turn-over on large scales

(Figure 1.6) in the power spectrum would distinguish the dominant driving

scale and constrain the mechanism responsible. This measurement, however,

remains elusive.

A second property predicted from theoretical descriptions of turbulence is

the relation between the number of free spatial dimensions in a system and

its turbulent power-spectrum index. For example, a system that transitions

from three- to two-dimensions is expected to cause a power-spectrum “break,”
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Figure 1.6: Schematic of a turbulent energy cascade using the energy power
spectrum E(k). This schematic highlights the expected transition where mo-
tions become primarily three-dimensional below the galaxy disc scale height,
altering the power law index of E(k). Above the disc scale height, motions are
primarily confined to two dimensions in the galaxy plane, producing a power
spectrum index that is shallower by −1.

where the index changes by −1 (e.g., Lazarian & Pogosyan, 2000; Elmegreen &

Scalo, 2004). This is potentially important for turbulence statistics of nearby

galaxy observations that resolve below the ∼ 100 pc disc scale height (Ferrière,

2001), as the scale of the break would measure the disc scale height, with two-

dimensional motion on larger scales and three-dimensional motion on smaller

scales. Figure 1.6 shows a schematic of this prediction for a turbulent energy

power spectrum. For face-on galaxies, the scale height is difficult to constrain

in observations. Whether the break is measured, and if the turbulent proper-

ties are consistent with a change in the number of dimensions across the break,

can further constrain potential driving mechanisms for turbulence.

Recent numerical simulations from molecular cloud to galaxy scales find

that signatures of turbulent driving should be measurable in observations. On

molecular cloud scales, Boyden et al. (2016) demonstrate that several common

turbulence statistics are sensitive to stellar winds in synthetic observations.
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Galaxy-scale simulations also find changes in turbulence statistics with stellar

feedback, particularly in recent simulations which resolve down to ∼ 10 pc

scales (Grisdale et al., 2017; Garrison-Kimmel et al., 2019). Several simulations

show a break in the power spectrum, as predicted for a change in the number

of free spatial dimensions. However, different levels of stellar feedback change

the scale of the break (Bournaud et al., 2010; Pilkington et al., 2011; Combes

et al., 2012; Grisdale et al., 2017), as does strong spiral arm structure (Renaud

et al., 2013).

Milky Way studies of turbulence in the neutral ISM demonstrate a wide

range of properties. Within molecular clouds (< 20 pc), power spectra are

well-characterized by power law relations and do not provide strong constraints

on turbulent driving. For example, in the Perseus molecular clouds, stellar

feedback from within the cloud is likely able to drive turbulence at the observed

level (Padoan et al., 2009; Arce et al., 2011; Pingel et al., 2018) despite the

lack of a characteristic break scale in the power spectrum. However, other

turbulence statistics, such as the probability distribution function of column

density, do show properties expected for turbulent driving on sub-cloud scales

(Bialy et al., 2017).

Several HI studies in the Milky Way, both towards molecular clouds (e.g.,

Pingel et al., 2018) and in more diffuse regions (e.g., Martin et al., 2015; Bla-

grave et al., 2017), do not find a clear driving scale from the power spectrum.

The key difficulty in distinguishing a driving scale from Milky Way HI is the

line-of-sight confusion, with thermodynamic and radiative effects altering HI

in the Galactic plane and distance ambiguities in the high-latitude HI emis-

sion. Both of these effects may act to “hide” a driving scale by averaging

over different spatial scales. Alternatively, turbulent driving may occur on

larger scales, making this measurement easier with an external view of nearby

galaxies.

Most studies of turbulence in nearby galaxies find either a power spectrum

that follow a single power law (e.g., Stanimirovic et al., 2000; Dutta et al.,

2013; Zhang et al., 2012) or a broken power law (e.g., Elmegreen et al., 2001;
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Dutta et al., 2009a; Combes et al., 2012). In the latter category, the break

is interpreted as tracing the disc scale height, as explained above, however

the change in the power law index across the break is often much larger than

1 expected solely from the change in spatial dimensions. Further, there is

little consensus in the recovered power spectrum indices, even when comparing

results from a common tracer (e.g., Dutta et al., 2013). While this range may

result from a differences in the ISM environments across different galaxies, how

the power spectrum is calculated also changes across these studies, and the

power spectrum properties are known to vary with the technique used (e.g.,

Dutta & Bharadwaj, 2013).

The strongest turbulence constraints of an external galaxy are studies of

the SMC due to its proximity to the Milky Way. For example, the 21-cm

HI observations from Stanimirovic et al. (1999a) have a physical resolution

of ∼ 15–20 pc, well below the disc scale height. Stanimirovic et al. (1999a,

2000) find similar HI and dust power spectra in the SMC, with no strong evi-

dence for a power spectrum break. Further work by Stanimirović & Lazarian

(2001) use the same 21-cm HI observations with the velocity channel analysis

(VCA) technique from Lazarian & Pogosyan (2000) to separate the velocity

and density power spectra. They find shallower power spectrum indices than

would be expected for a highly super-sonic shock-dominated ISM. Burkhart

et al. (2010) explore turbulence in the SMC with several turbulence statistics,

including the bispectrum—a three-point statistics that, unlike the power spec-

trum, retains phase information19. They find breaks in the bispectrum phase

structure at ∼ 160 pc scales, possibly corresponding to the scale of feedback-

driven shells in the SMC (e.g., Stanimirovic et al., 1999a). Finally, Chepurnov

et al. (2015) use the velocity coordinate spectrum (VCS; Lazarian & Pogosyan,

2006), which uses spatially-averaged power spectrum to map changes in the

spectral structure, to constrain the driving scale of turbulence in the SMC.

They find a driving scale around ∼ 2 kpc, essentially the size of the SMC, and

suggest that this may reflect driving from interactions with the LMC and the

19See Koch et al. (2019a) for an overview of these turbulence statistics.
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Milky Way halo. If this is the case, the dominant turbulent driving scale may

indeed change significantly depending on the galaxy environment.

One restriction of many turbulence studies in nearby galaxies is how galactic

structure not dominated by turbulence, such as spiral arms, affects turbulence

statistics. For example, in Chapter 5 (Koch et al., 2019b), I show that the CO

spatial power spectrum in M33 has an excess of power on ∼ 2 kpc scales (about

the disc scale length Druard et al., 2014) due to the clustering of molecular

clouds in the inner disc. Other affects, such as feedback-driven shells, clearly

alter the power spectrum in numerical simulations and the scale of the power

spectrum break (Grisdale et al., 2017). These variations strongly suggest that

informative studies of large-scale turbulent driving may require tracing how

turbulence varies across galaxies, where observations permit.

Similar to the studies listed above, the SMC is a prime target to study

spatial variations in turbulence. Nestingen-Palm et al. (2017) split the SMC

into an inner and outer region based on the star formation rate density. They

find no difference in the turbulent properties measured by the spatial power

spectrum and VCA of HI within these regions. Given the hints of a ∼ 160 pc

scale from Burkhart et al. (2010), these regions may simply be too large and

average over any spatial variations on the scale of feedback-driven shells, or

HI holes.

Szotkowski et al. (2019) explore this effect in greater detail by introducing

a “rolling” structure function20 method, which measures an equivalent power

spectrum within a ∼ kpc sliding window across the galaxy. They similarly

find no difference in the HI structure function of the SMC over different re-

gions, which they suggest could be due to the large depth along the line-of-sight

through the SMC (e.g., Di Teodoro et al., 2019). However, Szotkowski et al.

(2019) do find significant variations across the LMC. In particular, they find

a characteristic break scale near regions with strong stellar feedback (e.g., 30

Doradus), along with variations in the power spectrum index. Observations of

20The structure function is the real-space equivalent to the power spectrum for the range
of power spectrum indices relevant in the ISM (e.g., Simonetti et al., 1984).
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most Local Group galaxies have sufficient resolution to perform similar anal-

yses.

Spatially-resolved measurements of how turbulence varies across galaxies are

a key constraint on how and where turbulence is driven. In particular, combin-

ing turbulence statistics across tracers of different ISM densities measures how

different phases of the ISM are affected by driving mechanisms such as stellar

feedback (e.g., do HI, dust, and CO all show a characteristic break, like those

found by Szotkowski et al., 2019, ?). These measurements bridge between

studies of the large-scale turbulent energy injection rate with assumed mech-

anisms (Chapter 3; Tamburro et al., 2009; Stilp et al., 2013a; Utomo et al.,

2019a) to test recent star formation theories (Krumholz & Burkhart, 2016;

Krumholz et al., 2018). Further, it informs assumptions made about efficient

molecular cloud destruction, which plays an important role in observational

estimates of molecular cloud lifetimes (Kawamura et al., 2009; Corbelli et al.,

2017; Kruijssen et al., 2019; Chevance et al., 2020b).

Chapter 6 explores the question of turbulent driving across the Local Group

galaxies using observations of dust, HI, and CO. I show that power spectrum

breaks in M31, M33, LMC, and SMC are nearly all due to the influence of

the telescope’s point-spread-function (PSF), though the extremely bright 30

Doradus, a giant HII region, in the LMC produces a break in 24 µm emission.

I also show that the power spectrum index of the dust surface density varies

across the LMC and SMC, though we do not find power spectrum breaks like

those in the HI from Szotkowski et al. (2019).

1.3 Outline & questions explored in this thesis

The remainder of the thesis is arranged into one technical chapter that in-

troduces a new Local Group 21-cm HI survey from the Karl G. Jansky Very

Large Array (Chapter 2), followed by four science chapters (Chapters 3–6).

These chapters present my work exploring three questions about the neutral

ISM which link galactic to molecular cloud scales:
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1. How do models of the 21-cm HI line shape affect our interpretation of

the neutral ISM? (Chapters 3 & 4)

2. Are atomic (HI) and molecular (H2) ISM kinematics coupled on 80 pc

scales? (Chapter 5)

3. Is the source of large-scale turbulent driving imprinted on the ISM den-

sity structure? (Chapter 6)

Finally, Chapter 7 concludes with a summary of my findings and future

work enabled by our new 21-cm HI observations.
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Chapter 2

A Modern 21-cm HI Survey of
the Local Group

My work in this thesis relies on new HI observations taken with the Karl G.

Jansky Very Large Array (VLA) in New Mexico. In this chapter, I briefly

describe radio interferometry (§2.1) and present an overview of historical 21-

cm HI observations in M31 and M33 (§2.2) to demonstrate the remarkable

improvements in instrumentation in the past 7 decades. I then summarize the

M31 and M33 VLA observations included in the campaign that I use for this

thesis (§2.3). Within this section, I describe observational setup, the reduction

and calibration used, and the technique I developed for handling the imaging

of massive inteferometric data. Imaging large interferometric data sets remains

a challenge for current software and techniques, yet is vital for handling the

data from the next generation of radio interferometers.

2.1 A basic overview of radio interferometry

Radio interferometers are collections of antennas that work together to produce

high-resolution images at radio and mm-wavelengths1 The antennas observe

the same region of the sky, and by precisely knowing the distance between

each antenna, software can be used to measure the light delay time for each

1This technique can, in principle, be used at other wavelengths. However, it relies on
knowing the distance between antennas to a fraction of the wavelength observed (∼ λ/20 for
wavelength λ). This becomes very difficult at, for example, optical wavelengths (∼ 700 nm)
but has been achieved. One example is the Very Large Telescope Interferometer.
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antenna. By correcting for the delay time, the observed light can be interfered

coherently.

Measuring the coherent interference is the key to the aperture synthesis

technique that all modern interferometers use. Each pair of antennas samples

the interference pattern produced by the observed sky, or equivalently one

measurement of the Fourier transform of the observed sky. This is referred to

as the uv-plane, where u and v are the spatial frequency axes in the Fourier

plane. Formally, each measurement is described as:

V (u, v) =

∫ ∫
T (l,m) exp (−2πi(ul + vm)) dldm, (2.1)

where l and m are the spatial angles on the sky and T (l,m) is the image on the

sky (Thompson et al., 2017). By combining samples from all pairs of antennas

in the array and over time, frequency, and polarization, V (u, v) can be used

to reconstruct the image T (l,m).

Because these samples come from pairs of antennas, the image recovered

from the interferometer has a resolution equivalent to the longest separation

between the baselines. This is the “synthesis” in aperture synthesis: creating

an effective image as if a single-dish the diameter of the whole array had been

used. This technique is immensely powerful because it removes the extreme

engineering issues with constructing radio dishes � 100 m in diameter. For

comparison, the Green Bank and Effelsburg telescopes are the largest steerable

telescopes in the world and have diameters of ∼ 100 m. At the 21-cm HI

line, this corresponds to a resolution of ∼ 9′. The observations presented

in this Chapter recover a resolution of 16′′, 34 times finer than the single-

dish resolution. The science in this thesis would not be possible without an

interferometer.

The recovery of images from the interferometer requires two steps. First,

the inverse Fourier transform of V (u, v) is used to construct the sky image

T (l,m):

T (l,m) =

∫ ∫
V (u, v) exp (2πi(ul + vm)) dudv. (2.2)

Practically, this is done by gridding V (u, v) so the Fast Fourier transform
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can be used2 However, the resulting image combines two effects: the actual

sky image, and the interferometer’s response to a point-source (s(l,m); point-

spread function; PSF). Thus the image reconstruction is a corrupted view of

the sky, typically called the “dirty map,” described as:

TD(l,m) = T (l,m) ∗ s(l,m), (2.3)

where ∗ denotes convolution (Thompson et al., 2017). The PSF s(l,m) de-

pends on the distribution of s(l,m) and the array configuration of the intefer-

ometer. For example, the VLA is arranged into a “Y”-shape, and its Fourier

transform has a distinct 6-armed star pattern. Bright emission in the dirty

map is noticeably affected by this star pattern, and without removing the effect

of s(l,m), faint emission cannot be distingiuished from instrumental effects.

The dirty map TD(l,m) introduces the second step of removing the effect of

s(l,m) to recover the true sky image T (l,m). This procedure is formally an in-

verse problem, which arises in various scientific fields3. In radio interferometry,

this is referred to as deconvolution.

There are various deconvolution methods, however, most radio interferom-

etry studies use variants of the CLEAN4 algorithm (Högbom, 1974). The

original CLEAN algorithm assumes an image can be modelled as a set of

point sources. The emission in TD(l,m) is iteratively removed starting from

the pixel with the brightest feature in the map. The subtracted emission is

g × s(l0,m0), where l0,m0 is the brightest pixel and g is a small gain factor

(typically ∼ 0.05). This emission is then added to a model image, M(l,m),

at l0,m0 without the PSF. This process is continued until, ideally, only noise

remains in the original image, often defined by when the brightest pixel is

TD(l0,m0) ∼ 2σrms. To produce T (l,m), or the best approximation of the

sky given the data, the model M(l,m) is convolved with the idealized tele-

scope (usually a two-dimensional Gaussian) and the remaining noise residuals

2A direct Fourier transform does not require gridding but is prohibitively slow.
3For example, Tikhonov regularization which forms of the basis of the ridge regression

in linear regression (Tikhonov et al., 1995).
4Note that CLEAN is not an acronym. This is the historic use of the algorithm name.
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in TD(l,m) are added.

One limitation of radio interferometry is that the interferometer is only

sensitive to scales between the minimum and maximum baselines. For the

minimum baseline (bmin), this corresponds to the largest angular scale of ∼
λ/bmin that the inteferometer measures. The sky on larger scales is filtered

out. Single-dish observations have a low resolution at cm-wavelengths, but

will measure the total flux from the sky. To account for missing flux from the

interferometer, interferometric and single-dish observations can be combined

through the “feathering” process.

Feathering combines two data-sets, typically at low and high angular reso-

lution, by adding the Fourier transforms of the images weighted by their PSFs

(Stanimirovic, 1999). Using the uv-plane notation, the observed single-dish

image is

ISD
obs(l,m) = I(l,m) ∗ sSD(l,m), (2.4)

where ISD
obs(l,m) is the observed sky image of the true sky convolved with

the (∼Gaussian) single-dish PSF sSD(l,m). The Fourier transforms of the

interferometric (Vint(u, v)) and single-dish images (VSD(u, v)) are combined:

Vcomb(u, v) =
[
1− SSD(u, v)

]
Vint(u, v) + fcalSSD(u, v)VSD(u, v), (2.5)

where SSD(u, v) is the Fourier transform of sSD(l,m) normalized to unity and

fcal is a calibration correction factor (see §2.3.4; Stanimirovic, 2002). The

inverse Fourier transform produces a combined image Icomb(l,m) with the high

angular resolution from an interferometer and total flux recovery of single-dish

image.

Radio interferometry is complex and this section is a minimal overview of the

procedures required to produce inteferometric images. See Thompson et al.

(2017) for a detailed explanation of all aspects of radio interferometry. See

Stanimirovic (2002) for an overview of combining interferometer and single-

dish observations (also see Koda et al., 2019).
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2.2 Historical ISM observations in the Local

Group

As the nearest galaxies, the Local Group galaxies are historically well-studied

at nearly every accessible wavelength across the electromagnetic spectrum.

This includes many observations of the 21-cm HI line over the last 63 years.

Tables 2.1 & 2.2 show basics properties of 21-cm HI observations in M31

and M33, respectively. These observations are a mix of different telescopes

(including single-dish and interferometers).

Two major advances are evident from the evolution of these 21-cm HI ob-

servations. The first is the evolution of spectrometers for high resolution ob-

servations of spectral lines. Early observations of both galaxies had spectral

resolutions of� 10 km s−1, useful for (a) detection-only studies (van de Hulst

et al., 1957; Volders, 1959) or (b) the earliest rotation curve measurements,

particularly for M31 (Roberts & Whitehurst, 1975). Since little was known

about the HI distribution in other galaxies at this time, these studies identified

how ubiquitous HI is across nearby spiral galaxies.

The second advance evident from Tables 2.1 & 2.2 is the introduction of

long-baseline (> 1 km) interferometers over the past ∼ 3 decades. The devel-

opment of the VLA, Westerbork Synthesis Radio Telescope (WSRT), and, in

the southern hemispheres, the Australian Telescope Compact Array (ATCA),

allowed for sub-arcminute resolution with high surface brighness sensitivity5.

This improvement in resolution continues to be a major advance for high-

resolution HI studies, as is clear from this thesis.

The new observations I present in this thesis are the next step forward in

HI observations of the Local Group. Compared to previous observations, our

new observations combine high angular and spectral resolution with compa-

rable sensitivity to previous observations over the 2000–2010 decade. The key

difference with our HI observations is the < 1 km s−1 spectral resolution,

5I note that the VLA, in its most extended A-configuration, can resolve ∼ 1′′ scales at the
21-cm HI line. However, due to the sparse uv-sampling, the surface brightness sensitivity
is poor and therefore is not well-suited for mapping extended emission.

47



making our observations one of the first extragalactic HI data sets capable of

resolving thermal line widths in the CNM (§1.2.1).

At this time, we are now reaching the limitations of cm-interferometers for

tracing HI emission. The observations I describe in the following sections are

large time investments from the VLA, and in §7.2, I mention our continuation

of this survey. If fully observed, the complete survey will use ∼ 2200 hr of

observing time (∼ 400 hr have already been observed). To reach a higher an-

gular resolution, observations of HI require an expanded interferometer with

(1) long (> 25 km s−1) baselines, and (2) an increased number of antennas (the

VLA typically observes with 27 antennas). The first provides the high angular

resolution and the second provides high-fidelity imaging for extended emission

combined with a higher sensitivity from a larger collecting area. These im-

provements are planned for new/expanded cm-interferometers (e.g., the SKA

and ngVLA) that will come online in roughly the next 10 years.

2.3 An L-band Local Group VLA survey

As part of a larger and on-going Local Group VLA survey, I used L-band

observations of M31 and M33 taken in the VLA’s B, C, and D configurations6.

Table 2.3 which projects these observations were taken with.

The angular size of both M31 and M33 (see Table 1.1) exceed the VLA’s

primary beam of ∼ 32′ at 1.4 GHz. Because of this, these projects observed

multiple pointings of each galaxy, which will later be mosaiced together to cre-

ate larger maps (§2.3.3). M31 is observed with 49 pointings in D-configuration

to create a full galaxy map out to ∼ 30 kpc in galactocentric radius7. The

B- and C-configuration observations of M31 are of a smaller 7-pointing region

focused on the northern half of M31, a region covered extensively by other

larger observational projects at different wavelengths (e.g., the Panchromatic

6The D-configuration is the most compact configuration, with maximum baselines of
1 km. The C- and B-configurations are more extended, with maximum baselines of 3.4 and
11.1 km, respectively.

7Two additional pointings were used to map the dwarf galaxies NGC 185 and NGC 205,
which are satellites of M31. These data are not presented in this thesis.
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Reference Instrument Res. Channel Noise

Width

(′′) (km s−1) (K)

van de Hulst et al. (1957) Dwingeloo 25-m 2160 33 0.2

Burke et al. (1963) Green Bank 90-m 600 2.1 –

Argyle (1965) DRAO 25-m 2160 35 0.1

Roberts (1966) Green Bank 90-m 600 21 –

Gottesman et al. (1966) Jodrell Bank 250-ft 1080 × 840 42 1.0

Brundage & Kraus (1966) Ohio State 80/24-m 2280 × 600 21 –

Davies & Gottesman (1970) Jodrell Bank 250-ft 1080 × 840 8.4 –

Whitehurst & Roberts (1972) Green Bank 140-ft 1260 5.5 –

Guibert (1973) Nancay 1440 × 240 12.7 0.16

Emerson (1974) Cambridge Half Mile 132 × 90 39 1.5

Roberts & Whitehurst (1975) Green Bank 90-m 600 6.6 –

Newton & Emerson (1977) Cambridge Half Mile 330 × 216 16 0.3

Cram et al. (1980) Effelsburg 100-m 528 5.5 0.1

Unwin (1980a,b) Cambridge Half Mile 72 × 48 16 3.6

Bajaja & Shane (1982) WSRT 36× 24 27 1.4

Brinks & Shane (1984) WSRT & Effelsburg 36 × 24 8.2 0.6

Braun (1990) VLA 11× 9 5 9

Thilker et al. (2004) GBT 100-m 546 1.3 0.1

Carignan et al. (2006) Effelsburg 553 0.64 –

Braun et al. (2009) WSRT & GBT 18× 15 2.3 2.7

Chemin et al. (2009) DRAO-ST 90× 60 5.3 ∼ 1

This Work VLA & Effelsburg 56× 56 0.42 0.7

This Work VLA & Effelsburg 18× 16 0.42 2.8

Table 2.1: 21-cm observations of M31. Where available, the noise values
correspond to the per-channel rms noise.
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Reference Instrument Res. Channel Noise

Width

(′′) (km s−1) (K)

Volders (1959) Dwingeloo 25-m 2040 33 0.2

Dieter (1962) Harvard 18-m 3180 17 0.2

Burke et al. (1963) Green Bank 90-m 600 2.1 –

Meng & Kraus (1966) Ohio State 80/24-m 2280 × 600 100 –

de Jager & Davies (1971) Jodrell Bank 75-m 1080 × 840 8.4 –

Gordon (1971) Green Bank 90-m 684 × 600 21 –

Wright et al. (1972) Cambridge 2 12-m 180 × 90 39 3.2

Huchtmeier (1972) Nancay 4 200-m 1440 × 240 12.7 0.1

Rogstad et al. (1976) Owens Valley 2 27.4-m 120 10 0.5

Huchtmeier (1978) Effelsburg 720 6.5 –

Reakes & Newton (1978) Cambridge Half Mile 900 × 420 16 0.1

Newton (1980) Cambridge Half Mile 93 × 47 16 –

Deul & van der Hulst (1987) WRST & Effelsberg 24 × 12 8.2 1.2

Corbelli & Schneider (1997) Arecibo 270 4.1 5.5�

Putman et al. (2009) Arecibo 204 5.2 0.3

Gratier et al. (2010)? VLA 6 1.3 24

Lockman et al. (2012) GBT 100-m 546 2.9∗ 0.2

Kam et al. (2017) DRAO-ST 114 × 58 2.6 1.1

Koch et al. (2018c) VLA 19× 18 0.2 2.7
� Sensitivity presented in terms of integrated intensity (K km s−1).
∗ Though the data was taken with 0.17 km s−1 channels, as used here.

? Also presented in Thilker et al. (2002).

Table 2.2: 21-cm observations of M33.
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Figure 2.1: HI integrated intensity maps of M31 (left) and M33 (right) on
∼ 60–80 pc scales. This M31 mosaic has 7-pointings covering much of M31’s
northern half. The M33 mosaic is a 13-pointing mosaic which covers M33’s
star-forming disc.

Hubble Andromeda Treasury; Dalcanton et al., 2012). Figures 2.1 & 2.2 shows

the final integrated intensity maps of these mosaics in HI, which are described

in the remainder of this chapter.

Our M33 observations used a 13-pointing mosaic to cover the entirety of

M33 out to ∼ 12 kpc in galactocentric radius. Due to an error in transcribing

the pointing centres, the M33 observations actually use 14-pointings. The

incorrect pointing centre is within a central region of the galaxy, leading to

a moderately higher sensitivity in one part of the mosaic. The variations in

the sensitivity are accounted for in the standard imaging process. Figure 2.1

shows the HI integrated intensity map for these observations.

One of the VLA’s greatest strengths is the flexibility of its correlator, al-

lowing for multiple windows in frequency to be simultaneously observed at

different frequency resolution. Our M33 observations include coverage of the
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Figure 2.2: HI integrated map covering most of M31 with the VLA’s compact
D-configuration. The 57′′ resolution corresponds to a physical resolution of
200 pc. The dashed contour shows the edges of the mosaic which includes 49
pointings.
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entire 1–2 GHz L-band polarized continuum, the HI line, four hydroxyl (OH)

lines8, and six hydrogen radio recombination lines (RRLs)9. The M31 obser-

vations are similar, though no hydrogen RRLs are included in the spectral

setup.

This additional spectral coverage enables a variety of science cases apart

from our primary HI-drive goals. While the OH M31 observations have not

been explored, I have, used the other spectral line observations of M33 in two

places:

• No hydrogen RRL emission is detected from our M33 observations, but

an upper limit is provided in Koch et al. (2018c, Chapter 3). The

non-detection is consistent with more sensitive single-dish observations

(Araya et al., 2004).

• I discovered the first OH maser in the 1665 MHz transition in M33

(Koch et al., 2018a). These masers arise from the regions surrounding

late-type stars and young stellar objects. This detection is consistent

with the brightest known OH-1665 masers in the Milky Way and two

Hα sources are within the position we find, limited by the 10′′ resolution

of our observations.

The polarized continuum emission has not yet been explored.

The M31 and M33 HI spectral setups are different in their respective obser-

vations. All M31 HI observations were observed with a resolution of 1.95 kHz,

8The 4 OH lines at 1612, 1665, 1667, and 1720 MHz are probes of thermal and stimulated
emission in the ISM. Thermal emission is faint, but stimulated emission is extremely bright.
This stimulated emission is referred to as a maser, and OH masers are known to be associated
with regions surrounding late-type stars, young stellar objects, and supernova remnants
(Gray, 2012).

9RRLs are electronic transitions in atoms or molecules, similar to common optical tran-
sitions like the n = 3 → 2 656 nm Hα transition in the Balmer series of hydrogen. RRLs,
however, are the electronic transitions at high n (∼ 100), where the separation between en-
ergy levels is small and so transitions of ∆n = 1 produce spectral-lines at radio wavelengths.
RRLs are faint but do not suffer from dust extinction like lines in the UV or optical do.
Because of this, RRLs are excellent tracers of recombination from HII regions, and therefore
measure the ionizing photon output from young massive stars (Murray & Rahman, 2010;
Murphy et al., 2018).
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Galaxy Config Time on source (hr) Program ID PI

M31 D 39 14A-235 Leroy

M31 C 25 15A-175 Leroy

M31 B 18 15A-175 Leroy

M33 C 39 14B-088 Rosolowsky

Table 2.3: Local Group VLA projects used in this thesis.

corresponding to a velocity resolution of 0.42 km s−1 using the radio Doppler

formula:

v = c

(
f0 − f
f0

)
, (2.6)

where v is the velocity, c is the speed-of-light, f0 is the rest frequency of

the spectral line, and f is the measured frequency10. The M33 observations

instead have a finer resolution of 977 Hz, approximately half that of the M31

observations. This corresponds to a velocity resolution of 0.21 km s−1. The

difference is minimal, and when direct comparisons are made for the velocity

information between M31 and M33 (see Chapter 4), we down-sample the M33

HI observations to the 0.42 km s−1 resolution.

These observations are the first part of a larger Local Group VLA survey

that includes additional observations of M31, M33, and the Local Group dwarf

galaxies NGC 6822, IC10, IC1613, and Wolf-Lundmark-Melotte (WLM). Our

on-going survey will provide uniform mapping of HI, OH, and the 1–2 GHz

continuum.

2.3.1 Single-dish observations

As described in §2.1, radio interferometers filter out emission on scales larger

than what the smallest antenna baseline is in the interferometer. For both

C- and D-configurations of the VLA, the shortest baselines is bmin = 35 m,

10The radio doppler formula is an approximations valid only for velocities close to 0 km
s−1 (within ±1000 km s−1) and is primarily used for Milky Way studies. However, the
Local Group galaxies have low systemic velocities and so this approximation is valid given
our spectral resolution.
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though some of our observations have bmin = 45 m. Since the antennas are

25-m in diameter, the shortest baselines cannot be shortened below 35 m or

the antennas may block each other. Because of this, our VLA observations

are not sensitive to scales larger than

θ ∼ λ/bmin ∼ 16, 20′, (2.7)

with λ = 21 cm and bmin = 45 or 35 m. Large single-dish telescopes, including

the 100-m GBT and Effelsburg telescopes resolve, scales of ∼ 9′. Because

the angular scales overlap between the VLA and single-dish observations, HI

observations from the GBT and Effelsburg can be combined with the VLA

data to ensure the full HI flux is recovered. I describe this combination in

detail in §2.3.4.

Chapter 3 includes a description of the reprocessed HI GBT observations

from Lockman et al. (2012). I briefly describe the key properties here. These

data do not optimally overlap in the centre of M33 as these observations were

taken to detect faint HI emission surrounding M33 and the HI bridge towards

M31. Because of this, we used a Gaussian-Bessel kernel which moderately

lowers the effective angular to 9.′8, or ∼ 2.3 kpc physical resolution for M33.

We gridded the data from the calibrated scans directly to match the spectral

channels of our VLA HI data cube. The highest rms noise level in these data

is 120 mK.

For M31, I used the publicly-available Effelsburg HI data from the Effelsburg-

Bonn HI Survey (EBHIS; Winkel et al., 2016). EBHIS is a whole northern

sky HI survey with spectral coverage that includes the Local Group galaxies.

I used the region containing M31 and regridded the data to match our VLA

mosaics.

The EBHIS data originally have a spectral resolution of 0.47 km s−1, slightly

coarser than the VLA data. However, with an effective resolution of 10.′8, the

HI spectral lines are signficantly smoother from averaging over large regions

in M31. Because of this, moderately up-sampling the EBHIS data to 0.42 km

s−1 did not alter the overall line shape. The regridded data have an rms noise
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level of 70 mK.

Both single-dish data sets have a sensitivity below our VLA observations.

Because of this, combining the single-dish and VLA observations (§2.3.4) will

not appreciable add increase the noise in the final HI images.

2.3.2 VLA data reduction

I calibrated the data sets using the VLA reduction pipeline implemented in the

Common Astronomy Software Applications (CASA)11 package. Because the

reduction of the data took place at different times, I used different versions

of the pipeline. For the M33 spectral line data, I calibrated the data with

a modified version of the VLA scripted pipeline (version 1.3.0)12 running on

CASA 4.2.2. For the M31 spectral-line data, I used the VLA pipeline pack-

aged with CASA 5.4.1. The basic steps in both reduction pipelines are the

same, with improvements made in more recent versions to improve calibration

solutions and automatic flagging of radio frequency interference (RFI) from

terrestrial sources. RFI drastically impacts the 1–2 GHz continuum, however,

the 1.42 GHz HI and 1.665 and 1.667 GHz OH lines are within or near to

protected frequency bands. Poorly performing antennas or other systematics

affect the HI and OH data more than RFI.

Both versions of the pipeline were modified to better handle spectral-line

observations. The modification steps are:

• I split the spectral windows used for continuum versus spectral-lines

before running the reduction. The continuum data is not used to find

calibration solutions and can therefore be separated.

• I disabled Hanning smoothing for the reduction. Hanning smoothing

convolves the spectral channels with a [0.25, 0.5, 0.25] kernel, which avoids

spectral ringing due to the Gibbs phenomenon. The ringing is severe

11casa.nrao.edu/casadocs
12available in 2015/2016; https ://science .nrao .edu/facilities/vla/data- processing/

pipeline/scripted-pipeline
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when bright RFI is observed. However, this introduces a strong corre-

lation between adjacent channels that is not ideal for our high spectral

resolution imaging of HI. And since HI falls within a protected band,

we do not expect to encounter strong RFI.

• Calibration sources are used to (1) set the absolute flux to convert the

observations to physical units, (2) correct for systematic imperfections,

and (3) atmospheric corrections. These corrections require the calibra-

tion source to have a known flux, structure (ideally, a point source), and

spectral shape. The spectral shape is the key to correct for the imperfect

sensitivity of the telescope’s electronics at different frequencies, i.e. the

bandpass. To do this, the calibration sources are assumed to have no

spectral line features and their emission is modelled as a power-law in

frequency. However, our HI spectral coverage overlaps with Milky Way

velocities and some calibration sources have HI absorption features. To

correct for this, I flagged frequencies affected by HI absorption from the

Milky Way in the calibrator sources. To recover the frequencies affected

by this range in the observations, the bandpass is interpolated over the

missing range.

• The standard pipeline includes automated RFI flagging that identifies

bright narrow spectral features. Since the HI and OH may be detected

near the spectral resolution of the data, I disabled running the automated

flagging on all science targets. It was, however, kept for the calibration

targets used to derive calibration tables for the science targets.

• The standard pipeline includes a re-weighting routine (statwt) that

downweights integrations with a large variance. This re-weighting min-

imizes the effect of remaining RFI or certain systematics when imaging

the data. However, a spectral-line may also increase the variance and

therefore be downweighted. To avoid this, I excluded the frequency range

of M31 and M33 from the weighting routine.
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To achieve an optimal calibration solution, I iteratively ran the pipeline

procedure. After each run, I reviewed the diagnostic plots made by the pipeline

(the “weblog”) and a custom set of figures made per scan in the observations

to rapidly identify regions with poor data. From this, I investigated data that

required additional flagging, identified the source of the issue, and added a

custom flagging command that is applied to the data when the pipeline is

re-run. Because most of the spectral lines fall in or near a protected band, the

majority of the additional flagging was due to poorly performing antennas or

likely systematics from the telescope. The number of pipeline runs for each

observation track ranged from 1–5 with an average of 2 runs.

From the calibrated data, I applied two final steps before imaging the data:

1. I combined all observations together. Individual observation “tracks”

are typically ∼ 4 hr long for the VLA. To achieve high sensitivity, that

data are combined together for imaging.

2. I subtracted continuum emission from the spectral-line band. The con-

tinuum emission is typically from extremely bright background sources

(mostly AGN, though some radio jets are detected in narrow spectral

channels, as well) and bright HII regions within the galaxy.

I note that the continuum subtraction step is optional, and including the

continuum emission can be used for HI absorption studies . Our observations

enable HI absorption studies, similar to the recent SMC study by Jameson

et al. (2019). The HI absorption is not studied in this thesis but will be

explored in future work.

2.3.3 Techniques for imaging massive interferometric
data

The upcoming generation of radio and mm-interferometers will produce petabytes

of data, firmly converting radio astronomy into a “big data” field. One of the

primary bottlenecks is the computing power required to convert the uv -data

into producing science-ready images. The ∼ 100 hr of VLA data described
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here, and the additional ∼ 300 hr already observed in our survey, are an ex-

ample of this deluge of data that needs a new imaging approach to create

science-ready products in less than a thesis timescale. For reference, the raw

data from the VLA has a total footprint of ∼ 2.5 TB, which is reduced to

∼ 500 GB for only the HI after calibration and removal of flagged (unusable)

data. Our final imaging products are around 30 GB in size.

The imaging products are position-position-velocity cubes, which I will refer

to as “data cubes” throughout this section. These are collections of spectral

channels in the data arranged into a three-dimensional data product. Each

spectral channel is the emission from the galaxy at that frequency, correspond-

ing to some Doppler-shifted velocity of the atomic gas.

Standard imaging software, like CASA, can handle the input ∼ TB data

sizes but struggles to produce the ∼ 30 GB imaging products as it needs

to be kept in memory. Furthermore, the imaging process using the CLEAN

algorithm is fairly inefficient as the number of iterations to deconvolve the

signal in a ∼ 30 GB data cube for our targets is ∼ 3× 107.

The process I describe here was used to image the three HI data cubes—one

for M33 and two for M31 (see Figures 2.1 & 2.2 )—highlighted in this thesis

(Table 2.4). The M33 cube is imaged from the C-configuration observations

(see Table 2.3). For the M31 imaging, I used the D-configuration observations

to produce the lower-resolution 57′′ cube covering the whole of M31. The

smaller 7-point mosaic observed in B- and C-configurations was combined

with the matching pointings in D-configuration. All three configurations were

imaged together, with a uv-taper applied, to produce the 18′′ M31 cube. The

uv-taper was introduced to produce an equivalent C-configuration resolution

cube to match the M33 observations. The sensitivity is boosted by using

multiple configurations of the VLA as there is a large overlap in baseline

lengths in configurations B, C, and D.

These data were imaged at different times: the M33 data in 2017 and the

M31 in 2019. Because of this, CASA versions 4.4 and 5.4.1 were used to image

the respective data cubes.
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To handle the large computational time needed for imaging the HI data,

we imaged and deconvolved each spectral channel separately (additionally de-

scribed in Chapter 3; Koch et al., 2018c). This approach minimizes the size of

the uv-data and the time required for input/output operations. Furthermore,

each channel can be imaged independently and can therefore be parallelized

by deploying the imaging on a cluster. I split the HI uv-data into individual

channels at the target spectral resolution, either 0.21 or 0.42 km s−1 for the

M33 and M31 data, respectively.

I produced the final deconvolved images for each spectral channel in two

stages. First, I imaged the data and deconvolved using the multi-scale CLEAN

algorithm. For imaging, I used natural weighting13 for all HI imaging to max-

imize point source sensitivity and recovery of extended emission. The multi-

scale CLEAN algorithm extends the original CLEAN algorithm by subtract-

ing components of extended emission instead of only a point-source (Cornwell,

2008). To capture the uv-range sampled by the observations, I used the scales

of [0, 18, 36, 72, 180, 360, 720, 1440]′′ for deconvolution14. The deconvolution

was considered complete once it reached the 2σ noise level in a channel, where

σ was estimated from signal-free spectral channels15. Figure 2.3 shows an

example of the imaging process for one spectral channel in M31.

Due to the complex extended emission, I found that a signal mask was nec-

essary to restrict the deconvolution. Without a signal mask, the deconvolution

often became unstable, leading to a diverging model solution. This was par-

ticularly important for M31 because its high inclination angle produces bright

elongated emission in individual spectral channels, and due to the missing

short-spacing from the VLA, the dirty map has large negative “bowls” in the

dirty image. The multi-scale CLEAN algorithm is not well-suited for elon-

gated structure as the model components at large scales are produced by an

13Natural weighting uses the inverse variance 1/σ2
rms when gridding the uv-data.

14I tested difference choices of scales, distributed over a similar range, and found that
they did not affect the final images.

15I note that the M33 cube, as is described in Chapter 3, some channels did not converge
to 2σ and instead reached 2.0–2.5σ. Because of this, we reported the upper limit. This issue
was not encountered using the newer CASA 5.4.1 for the M31 imaging.
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Figure 2.3: An example of one HI spectral channel from the M31 D-
configuration mosaic using the two stage imaging process. The two columns
show the restored images (left) and residual images (right) for each stage. The
residual colourbar shows ±3σ the rms noise. After the first stage, which uses
the tclean auto-masking procedure, the residual image still has small regions
where significant emission remains above the 3σ level. Furthermore, there are
low-level residuals across other parts of the map that appear “patchier” than
simply white-noise correlated over the beam size. The second stage accounts
for this by deconvolving all emission above 2σ to produce the stage 2 restored
and residual images. The patchy residuals are no longer evident after the sec-
ond round of deconvolution without a signal mask applied. I note that the
bright elongated emission remains an issue for the multi-scale CLEAN algo-
rithm that deconvolves isotropic components. Thus the stage 2 residual is left
with low-level anisotropic noise residuals near the brightest emission in the
restored image.
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isotropic two-dimensional Gaussian.

I produced signal masks for deconvolution in two ways. For the M31 D-

configuration mosaic, I used the auto-masking routine built into the tclean

routine in CASA (Kepley et al., 2020). This auto-masking routine identifies

peaks in the dirty image and includes regions containing those peaks out to

a lower level emission set by a signal-to-noise ratio or sidelobe level from the

PSF. This mask is expanded during the deconvolution process with updates

when minor cycles complete and the residual maps are recomputed from the

uv-data (Thompson et al., 2017). As the bright sources are deconvolved and

removed, the sidelobe threshold decreases. Due to the bright HI emission in

M31, I found that the auto-masking was improved by triggering rapid minor

cycles in the deconvolution.

For the other two data sets, I created signal masks from lower resolution HI

data cubes. For M33, I made a signal mask based on emission brighter than

3σ in the GBT data cube. This created a broad signal mask that successfully

included all detected emission in the VLA observations. This worked well

for M33 because it has a lower disc inclination and the blue- and red-shifted

extents of its emission are not nearly as elongated as M31’s emission.

For the 18′′ BCD M31 imaging, I created a signal mask from the D-configuration

M31 map, following the signal identification algorithm described in Chapter 3.

Because the resolution between the images is only different by a factor of ∼ 3,

the D-configuration map provides excellent prior information for emission at

higher resolutions in M31.

This first imaging step effectively accounts for the vast majority of the

emission in each spectral channel. However, noticeable low-lying emission

or mild artefacts remains in the residual and restored images (Figure 2.3).

Because of this, I added a second deconvolution step where the signal mask

was removed and the entire image was deconvolved to the 2σ level. Because

most of the bright emission is deconvolved in the first step, the stability issues

were not an issue without the mask. The final image for each spectral channel

is used following this second step.
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A recent study by Ianjamasimanana et al. (2017) recommend cleaning down

to the 1.5σ level to fully recover the HI line shapes. I found that the CASA

cleaning algorithm struggles to get to this noise level and drastically increases

the computing time relative to a stopping threshold at 2σ without a noticeable

change in the recovered image properties. For some test channels, the deconvo-

lution converged to an apparent “noise floor” before reaching 1.5σ. However, I

used a different software package than Ianjamasimanana et al. (2017), suggest-

ing there may be small variations resulting from different implementations of

the CLEAN algorithm. If the resulting residual images are indistinguishable

from noise, it is unlikely that the HI line shapes are strongly biased from the

remaining residuals.

After all spectral channels had been imaged, I concatenated the channels

together to create a final HI data cube. As mentioned above, each of our 3

data cubes is ∼ 30 GB in size.

I used the Compute Canada Cedar cluster for the M31 imaging and the now

defunded Westgrid Jasper cluster for the M33 imaging. Each spectral channel

was imaged in parallel using 8 cores and at least 16 GB of memory. Stage 1

and 2 imaging each required 12 hr for the M31 D-configuration and 30 hr for

the higher resolution M33 and M31 data, on average, respectively. The ability

to deploy many imaging jobs drastically sped up the imaging versus imaging

the cube together. While CASA does have the ability to automatically split

spectral chunks of the data, the input/output operations continued to be a

bottleneck from tests on the Cedar cluster.

2.3.4 Combining single-dish and interferometric obser-
vations

To account for missing flux in the VLA observations, I combined our VLA HI

data cubes with the single-dish HI observations presented in §2.3.4. To com-

bine the data, I used the feathering technique implemented in the uvcombine

python package,16 which I have made large contributions to. The details of

16https://github.com/radio-astro-tools/uvcombine
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this process are described in §3.8.1.1. I used the same procedure for all of the

HI cubes and so only outline the steps here.

Before the feathering step, the VLA and single-dish data sets were spatially-

registered using the image-registration package17. All offsets were within

the resolution of the single-dish observations.

Feathering is strongly dependent on the weighting functions used for the

inteferometric and single-dish images, respectively (Equation 2.5). However,

the weighting functions depend on both the beam size and the assumption of

equivalent absolute flux calibration between the two images. If either of these

quantities are incorrect for the images, the combined image will not be added

correctly and may bias derived properties.

Following Stanimirovic (1999), I used two tests to ensure the correct single-

dish beam size was used for the weighting function and that the absolute flux

scale matched in the VLA and single-dish data. Both of these tests require

matching the scales where both images are sensitive to. If there are no sys-

tematic issues, the flux properties on those scales should be equivalent. For

the M33 data, the overlapping scales from from 9.′8 to 16′ (set by the GBT

resolution and the VLA shortest baselines, respectively). For the M31 data,

the overlapping scales are from 10.′8 to 16′. Ideally, there should be a factor of

at least 1.7 in the spatial overlapping scales (Kurono et al., 2009). The M33

scale overlap satisfies this criterion, though the M31 scale overlap is just below

this factor due to the moderately larger beam size in the EBHIS data.

For each spectral channel, I calculated the Fourier transform of both images

and considered each pixel that falls within the overlap region. This provided ∼
200 pixels per spectral channel. Each of the tests considers the interferometer-

to-single-dish intensity ratio, defined as :

fcal = Iinter/ISD. (2.8)

The ratio fcal = 1 corresponds to an ideal overlap between two noise-less

images at different resolutions.

17image-registration.readthedocs.io
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The first test ensures the correct single-dish weighting is applied. To do

this, I used the approximate relation between scale factor and uv-distance k

from Stanimirovic (1999):

fcal =

[
1 +

∆θ(2θ0 + ∆θ)

4ln2
k2

]
, (2.9)

where θ0 is the true FWHM single-dish beam size and ∆θ is the deviation from

the true beam size and assumed to be small. When the incorrect θ0 is used,

there will be a bias with uv-distance between fcal and k2. The true beam size

recover a slope of 0 in this relation. This test was used to ensure the 9.′8 GBT

resolution for the M33 data is correct. The EBHIS data showed no bias at the

10.′8 beam size reported by Winkel et al. (2016).

The second test measures the flux factor between the two images. If the

flux ratio is not 1, the absolute calibration between the data sets differs. Since

single-dish observations are more difficult to flux calibrate compared to inte-

ferometers, this correction factor is typically applied to the single-dish image.

The issue in determining the scale factor from the fcal is the presence of

noise in Iinter and ISD. In §3.8.1.1, I compared different methods of calculating

the scale factor and found that the distribution of log10 fcal values typically

follows a Cauchy (or Lorentzian) distribution. I then adopted the centre of

the fitted distribution as the scaling factor.

For the M33 observations, I calculated a scaling factor of 1.02± 0.06. Since

this values is consistent with 1, no scaling factor is applied for feathering.

For the M31 observations, I used these overlap tests with our D-configuration

mosaic since it includes most of the galaxy and therefore has more overlapping

area with the EBHIS image. Using the Cauchy distribution fit, I calculated

a scale factor of 1.10 ± 0.01 and applied this scaling to the EBHIS data. Be-

cause the scale factor is > 1, this effectively increases the total flux in the

combined data. However, a similar and independent test by Blagrave et al.

(2017) also found a similar scaling factor of 1.10±0.01 when combining EBHIS

and interferometric data from the Dominion Radio Astrophysical Observatory

Synthesis Telescope. There is no flux calibration discrepancy between the dif-
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ferent M31 VLA configuration observations, so the 1.1 scale factor is applied

to the 18′′ M31 cube, as well.

These feathering tests I developed are publicly available in the uvcombine

package. Since the relative flux scale is set by the single-dish data alone, these

tests are crucial to ensure correct flux recovery and relative weighting between

data sets. This is particularly important when combining data products from

different observatories or archival products initially intended for another pur-

pose. For example, Chapter 3 describes subtle effects in the GALFA data from

the Arecibo Observatory of M33 (Putman et al., 2009; Peek et al., 2011) which

produced a large-scale “ripple” in the feathered data.

The combined HI data cubes are the products used throughout this thesis.

Table 2.4 summarizes the properties of the HI data cubes. Figures 2.1 & 2.2

show the integrated intensity maps from the final combined data cubes.

Target VLA Angular Physical Channel Per-Channel 5σ HI

Config. Res. Res. Width Sensitivity Column

Density

(′′) (pc) (km s−1) (K) (cm−2)

M31 D 57× 56 200 0.4 0.7 2.6× 1018

M31 B, C, D 18× 16 65 0.4 2.8 9.8× 1018

M33 C 19× 18 80 0.2 2.8 5.1× 1018

Table 2.4: Summary of the HI VLA data cube properties used in this thesis.
The HI column densities assume optically-thin emission (§1.2.1).

2.4 Summary

In this Chapter, I presented the new HI VLA observations that enabled the

following research in this thesis. The M33 HI data is used in all of the science

chapters (Chapter 3–6). The M31 18′′ HI data is used in Chapter 4. And the

M31 57′′ HI data is used in Chapter 6.
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Chapter 3

Kinematics of the Atomic ISM
in M33 on 80 pc scales

Koch, E.W et al. (2018). “Kinematics of the atomic ISM in M33 on 80 pc

scales,” MNRAS, 479, 2505–2533.

Abstract

We present new L-band (1–2 GHz) observations of the nearby spiral galaxy

M33 with 80 pc resolution obtained with the Karl G. Jansky Very Large Array.

The HI observations, combined with HI measurements from the Green Bank

Telescope, improve the spectral resolution and sensitivity (2.8 K rms noise in

a 0.2 km s−1 channel) compared to previous observations. We find individual

profiles are usually non-Gaussian, harbouring line wings, multiple components,

and asymmetries. Given this spectral complexity, we quantify the motions in

the atomic ISM through moment analysis of the spectra and fits to aligned,

stacked profiles. The measured value of the HI line width depends strongly

on the method used, with the velocity stacked profiles aligned to the peak

velocity giving the minimum value of σ = 7 km s−1 and all other methods

giving higher values (σ ∼ 10 km s−1). All measurements of the line width

show a shallow radial trend, with σ decreasing by ∼ 2 km s−1 from Rgal = 0

to Rgal = 8 kpc. We consider a number of energy sources that might maintain

the line width against turbulent dissipation, but no single source is adequate.
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We find excess emission relative to a Gaussian in the stacked profile line wings,

ranging from 9% to 26% depending on how the spectra are aligned. By splitting

the line wings into symmetric and asymmetric components, we find that the

lagging rotational disk accounts for one-third of the line wing flux. We also

find emission far from the rotation-axis of the galaxy in multiple discrete HI

clouds, including a filament with a projected length of ∼ 8 kpc.

3.1 Introduction

HI 21-cm emission is an ideal tracer of kinematics in the atomic interstellar

medium (ISM) because of its ubiquitous distribution that extends beyond the

optical extent of galactic disks. On large-scales, HI emission can be used

to study disk kinematics and rotation, while small-scale variations trace the

kinematic and turbulent nature of the ISM.

Modeling the kinematics of the atomic ISM remains a significant challenge.

The HI detected within the Milky Way exhibits kinematic features related to

the evolution of clouds on small scales. Our limited perspective within the

Galaxy makes it difficult to place these small-scale motions in the context of

large-scale motions and the galactic potential. However, since the kinematics

on both scales are linked, a consistent understanding of ISM kinematics re-

quires sampling scales from molecular clouds to the entire disk (Dobbs et al.,

2014). The external view of nearby galaxies can overcome these limitations

in Galactic observations. However, these observations often lack spatial reso-

lution and high sensitivity, yielding studies of 21-cm emission that blend the

small-scale motions seen in Milky Way studies.

This trade-off of resolution and scale between Galactic and extragalactic

observations is also important for discerning the multiple thermal states in the

atomic medium. While superseded by later work, the Field et al. (1969) model

predicts the presence of a warm neutral medium (WNM, n ∼ 1 cm−3, T ∼ 1000

K) and cool neutral medium (CNM, n ∼ 10 cm−3, T ∼ 100 K) over a range

of pressure. Subsequent studies of the atomic medium qualitatively support
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the two-phase picture (Wolfire et al., 1995; Wolfire et al., 2003). However, in

observational studies, it remains difficult to separate these two gas phases. The

optically-thin WNM is typically measured in HI emission, while the optically-

thick CNM can only be unambiguously separated through absorption studies.

Decomposing HI spectra into thermal components has best been studied

in the Milky Way through absorption towards bright extragalactic sources

(Heiles & Troland, 2003; Murray et al., 2015), or by tracing HI self-absorption

(Gibson et al., 2005). These studies find that the atomic ISM is found in both

the WNM and CNM states, though a non-negligible fraction of components

are in an unstable intermediate state (Heiles & Troland, 2003; Murray et al.,

2015). Extragalactic absorption studies toward ∼ 50 lines-of-sight in Local

Group galaxies suggest that the fraction of the atomic medium in the CNM

varies between local systems (Dickey et al., 1990, 1994, 2000).

Most extragalactic studies focus on interpreting the HI emission line pro-

files at the telescope resolution (typically 200–1000 pc), though different mod-

elling approaches are used. Fitting individual spectra with a Gaussian is the

most straight-forward approach (Boulanger & Viallefond, 1992; Mogotsi et al.,

2016), however non-Gaussian line features or multiple components require a

more sophisticated model, such as a two-Gaussian model (Young & Lo, 1996;

Warren et al., 2012). A simpler approach is to only estimate the line width of

a spectrum using the second-moment (Tamburro et al., 2009), though this ap-

proach has been found to overestimate the line width in many cases (Mogotsi

et al., 2016).

To study kinematics in in faint regions, several studies stack velocity-aligned

spectra to increase the signal-to-noise (S/N) in the data. Nearly all studies

that utilize this method find a common line shape of a central Gaussian peak

with enhanced line wings (Young & Lo, 1996; Braun, 1997; Petric & Rupen,

2007; Ianjamasimanana et al., 2012; Stilp et al., 2013a). To characterize this

shape, the stacked spectra are either fit with a two-Gaussian model (Young

& Lo, 1996; Ianjamasimanana et al., 2012) or as a Gaussian peak with a non-

parametric measure of the enhanced line wings (Stilp et al., 2013a; Stilp et al.,
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2013b). The HI line widths from a single Gaussian range from 6–10 km s−1,

while the two-Gaussian models have a narrow component width of 3 to 6 km

s−1, and 9 to 25 km s−1 in the wider component.

The results of stacked profile studies, and the models chosen to explain

the profile shape, have led to diverging physical interpretations of the atomic

medium. Studies using a two-Gaussian model argue that the narrow and

broad components are naturally explained by the CNM and WNM, respec-

tively (Young & Lo, 1996; Ianjamasimanana et al., 2012). On the other hand,

Stilp et al. (2013a) argues that the central Gaussian peak represents emission

from a turbulent mixture of CNM and WNM, and the enhanced line wings

result from stellar feedback. Alternatively, Braun (1997) proposes that the

brightest emission arises from a “high-brightness network” (HBN) of narrow

filamentary structure across the disk. The HBN then arises from a dense and

optically thick CNM component, where the central peak becomes flattened in

individual spectra due to the higher optical depth (Braun et al., 2009; Braun,

2012).

The use of different methods and their disparate interpretations makes it

difficult to create a clear connection with Milky Way studies. Yet, with suffi-

cient sensitivity and resolution, extragalactic HI observations should recover

the small-scale complexity observed in the Milky Way. New observations of

nearby galaxies can provide this connection between galactic and extragalac-

tic approaches. Observations of the Local Group provide the best means for

determining this connection as they allow for scales of indiviudal molecular

clouds to be resolved, similar to studies within the Milky Way and Magellanic

Clouds (e.g., Wong et al., 2009; Fukui et al., 2009). In particular, M33 is an

ideal target due to its proximity (840 kpc, Freedman et al., 2001), moder-

ate disk inclination (55◦), and relatively small angular size. To that end, we

have conducted new observations of M33 with the NSF’s Karl G. Jansky Very

Large Array (VLA) that focus on high sensitivity coupled with a high spectral

resolution.

Recent work on M33 has focused on deep, lower resolution HI observations
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seeking the origins of HI halo gas and high-velocity clouds in the M31 group

(Lockman et al., 2012; Keenan et al., 2016), or the structure of the dark matter

halo (Corbelli et al., 2014; Kam et al., 2017). There has been comparatively

less attention on the nature of the atomic gas in M33’s star-forming disk. The

first complete HI map with the resolution to discern small-scale structure was

presented by Deul & van der Hulst (1987), which unveiled the filamentary

structure of M33’s HI morphology. More recently, Gratier et al. (2010) use

archival HI VLA observations from Thilker et al. (2002) to compare the HI

properties around giant molecular clouds (GMCs). Druard et al. (2014) further

perform a stacking analysis of the HI and CO to study the relationship of

atomic and molecular gas. Imara et al. (2011) use an independent reduction

of these same data to examine the HI environments around 45 GMCs in M33.

In this paper, we present new L-Band (1–2 GHz) observations from the VLA

of M33 with a focus on high velocity-resolution observations of the 21-cm HI

line. Taken in the VLA’s C-configuration, the beam size at the HI line is 18−
20′′or a physical size of ∼ 80 pc. The VLA’s correlator allows for simultaneous

observations of the 21-cm HI line, four OH transitions, several hydrogen radio

recombination lines (RRLs), and the polarized radio continuum. Here we

focus on the HI observations to analyze the HI profile shapes on 80 pc scales

and to determine the structure and kinematics of the HI disk. We detect no

RRL emission (§3.3.1) and find a single OH maser (Koch et al., 2018a). The

polarized radio continuum will be presented in a future paper.

In §3.2 we present the VLA observations and the Green Bank Telescope

(GBT) HI data used to provide short-spacing information (Lockman et al.,

2012). Aspects of the HI imaging, signal masking, and upper limits on the

hydrogen radio recombination line (RRL) emission are given in §3.3. We ex-

plore the atomic gas properties of M33 in §3.4 and extra-planar HI structures

in §3.5. In §3.6, we critically evaluate the meaning of 21-cm HI line profiles

generated in extragalactic observations. §3.8.1 provides a detailed description

of the imaging and short-spacing combination.

71



3.2 Observations

3.2.1 VLA

Using the VLA in C-configuration, we observed a 13-point mosaic covering

the disk of M33 out to a radius of 12 kpc (Project 14B-088). The data were

taken in 12 tracks, split equally before and after transit, for a total of 52 hours.

We used a hexagonal grid of pointings at the HI frequency to ensure uniform

sensitivity across the mosaic. To remedy a pointing error that omitted one

of the mosaic centres, our final observation used a single ∼ 5 hour pointing

on that location, yielding nearly equal integration times and noise properties

across the mosaic. Due to its close proximity to M33, we use 3C48 as the

flux, delay, and gain calibrator. 3C138 is observed as the polarization leakage

calibrator for the continuum data.

Using the full capabilities of the VLA correlator, our spectral setup covers

the entire 1–2 GHz L-band polarized continuum, the HI line, four OH lines,

and six hydrogen radio recombination lines (RRLs), enabling a variety of sci-

ence cases to be explored. The setup of the line spectral windows (SPWs) are

shown in Table 3.1. The HI spectral window has a high spectral resolution

of 977 Hz, corresponding to a velocity of 206 m s−1. This high-spectral reso-

lution is required to detect HI self-absorption (HISA), based on prior Milky

Way observations (e.g., Gibson et al., 2005).

3.2.2 GBT

We reprocessed the high spectral resolution HI data presented in Lockman

et al. (2012, project AGBT09A 17) to provide the short and zero spacing

information on HI emission. The angular resolution of the GBT in the 21-cm

line is 9.′1 and the spectral resolution is 0.16 km s−1. Spectra were calibrated

and corrected for stray radiation as described in Boothroyd et al. (2011), and a

first-order polynomial was fit to emission-free regions of the spectra to remove

any residual instrumental baselines.

The data were originally collected as four separate maps with minimal spa-
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Table 3.1: The VLA SPW setup for spectral lines used in the observations.

Line Rest Freq. (GHz) Channel Width (km/s) Channels

HI 1.42 0.206 8192

OH(1612) 1.612 1.45 512

OH(1665) 1.665 1.41 512

OH(1667) 1.667 1.40 512

OH(1720) 1.720 1.36 512

H(172)α 1.28 1.26 512

H(166)α 1.42 1.58 512

H(164)α 1.48 1.83 512

H(158)α 1.65 1.64 512

H(153)α 1.82 1.42 512

H(152)α 1.85 1.29 512

tial overlap, so we gridded the data into a cube using a Gaussian kernel, rather

than the preferred Gaussian-Bessel kernel. This choice eliminates edge effects

in the data at the centre of the galaxy, but lowers the effective angular res-

olution to 9.′8 (see §3.8.1.2), which is a linear resolution of ∼ 2.3 kpc at the

distance of M33. We used the gbtpipe package1 to build the data cube, which

performs spectral preprocessing to eliminate bad scans and a kernel based grid-

ding approach developed for on-the-fly data (Mangum et al., 2007). The noise

in the final cube varies with position ranging from 50 mK to 120 mK in a 0.16

km s−1 channel giving a median column density error of 3.1 × 1017 cm−2 for

a 20 km s−1 FWHM line. The shortest baselines in our VLA data provide

information on scales of 16.′5, providing sufficient overlap in uv-space with the

GBT beam to calculate comparison statistics (§3.8.1.1).

1v0.1.2, https://github.com/low-sky/gbtpipe
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3.3 Imaging & calibration

We calibrated the data using a modified version of the VLA pipeline (ver-

sion 1.3.0) with CASA 4.2.2 2. Following observatory recommendations, we

used a modified version of the pipeline to better handle line spectral windows

(SPWs), namely not using Hanning smoothing or automated RFI flagging on

the line SPWs to maintain the spectral resolution and avoid flagging of narrow

emission features (e.g., OH maser emission). Using 3C48 as the sole calibrator

(excluding polarization) gives a high S/N for all calibration scans, and the

automated calibration solutions found by the pipeline are excellent. After the

initial pipeline run, we manually flagged the data before running the pipeline

once more. Most of the line SPWs required little manual flagging beyond the

pipeline solutions, though one RRL SPW could not be recovered due to RFI.

Here we present upper limits for RRL emission and detail the imaging and

masking approaches adopted for the HI data. A single OH(1665) maser is de-

tected and is presented separately (Koch et al., 2018a). We find no detections

in the 1612, 1667, or 1720 MHz OH lines.

3.3.1 Radio recombination lines

We detect no RRL emission from the six observed transitions. One RRL

SPW, the H(172)α line, was dominated by RFI and was unrecoverable. Prior

to imaging, we subtracted a constant continuum background level using the

CASA uvcontsub task by fitting the velocity ranges found to be emission-

free in the HI imaging (§3.3.2). RRL emission is expected to be very faint and

based on a prior RRL detection towards NGC 604 (Araya et al., 2004, see

below), we do not expect to detect any signal in a single line. To lower the

noise level, we average the individual line cubes together3. To use this process,

we generated data cubes for each line at a common spectral resolution (∼ 10

km s−1) and corrected these by the primary beam pattern of the mosaic. Each

2https://science.nrao.edu/facilities/vla/data-processing/pipeline/scripted-pipeline
3https ://casaguides .nrao .edu/ index .php?title=Stacking Multiple Spectral Lines at

Same Position
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line was then convolved to a common spatial resolution, set by the lowest

resolution line, H(166)α. Because the mosaic pointings were set based on

the primary beam size at the HI frequency, the primary beam pattern and

sensitivity differs between the RRLs. However, based on the the peak Hα flux

from the giant HII region NGC 604, we place limits where the RRL intensity

is expected to be brightest. Because of the pointing issue mentioned in §3.2.1,

the region around NGC 604 also has the best primary beam coverage for all

RRLs observed. Using these regions, we set a 3σ upper limit on the RRL

intensity at 3.0 mJy within a 60′′ region that encompasses the optical extent

of the HII region. This upper limit in agreement with observations by Araya

et al. (2004) with Arecibo in C-band, where they detected the H110α line in

NGC 604 with a peak line flux of 1.36± 0.19 mJy in a 58′′ beam.

3.3.2 H i imaging

We subtract a constant continuum component from the HI data using the

CASA task uvcontsub. The continuum level is fit based on identified emission-

free channels in both the VLA and GBT data. The VLA data are inspected

in the uv-plane to determine emission-free channels. We then use the GBT

data to determine the velocities affected by Milky Way HI emission. The large

bandwidth covered by the HI line gives an ample number of HI-free lines, and

the fitted background level is well-constrained.

Examining the extent of Milky Way HI emission in the GBT data is imper-

ative for the red-shifted HI emission at the southern-most tip of M33, as they

become spatially coincident near vLSRK ∼ −71 km s−1. This is indicated by

the shaded region in Figure 3.1. This overlap region is clearly shown in the HI

Arecibo data from Putman et al. (2009, see their Figure 3). Based on this, we

begin imaging the VLA data at a velocity of −73.0 km s−1 to best avoid Milky

Way emission. We estimate that excluding this spectral region removes ∼ 50

Jy km s−1 of flux from M33, assuming that the missing emission is similar to

the blue-shifted side. This flux corresponds to 0.5% of the total emission from

M33.
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The resulting data cube is large with 1178 velocity channels, each of which

has a grid size of 25602 pixels. This presents significant computational barriers

for imaging; our imaging process is described in §3.8.1. Prior to imaging, we

determine optimal CLEAN settings by running numerous combinations on a

single channel, identifying the imaging parameters that yield the lowest peak

residual without the algorithm diverging. Only natural weighting is tested as

we prioritize maximizing sensitivity to extended structure. A CLEAN mask is

defined for each channel based on the 3σ limit in the GBT data, which covers

nearly all of the emission in the VLA data. Some channels with emission near

the mask edge used an expanded mask to ensure all emission was included.

We use the multi-scale CLEAN algorithm (Cornwell, 2008) for deconvolu-

tion with six scales, ranging from a point response to a quarter the largest

recoverable scale (∼ 970′′). Changing the range and the specific scales did not

have a significant effect on the resulting image. Based on our single channel

tests, we deconvolve each channel until reaching 3.8 mJy beam−1 (7.1 K). This

limit is 2.5σ times the noise level in the final cube.

We then use the GBT data to provide short-spacing information for the

deconvolved VLA cube by feathering the VLA and GBT data cubes together

with the uvcombine package4. A detailed explanation of the combination is

provided in §3.8.1.1. The resulting cube fully recovers the total emission in

the GBT data.

The final VLA HI cubes, with and without short-spacing data, have a 1σ

sensitivity of 2.8 K per 0.2 km s−1 channel and a beam size of 19′′ × 17′′.

This corresponds to a hydrogen column density of 1.0 × 1018 cm−2, assuming

optically thin emission. The mosaic is cut-off at a primary beam coverage of

0.5 to avoid noise-dominated regions near the edge.

3.3.3 Signal masking

We define a multi-step process for creating a reliable signal mask enabled

by the high spectral resolution of our data. This masking is critical for our

4https://github.com/radio-astro-tools/uvcombine
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analysis to ensure that moment-based estimations are not influenced by noise.

When using the VLA-only data, the masking also removes the influence of

negative bowls in the data from missing short-spacing information.

Assuming a typical Gaussian line width of σ = 6 km s−1 for the broad HI

emission across the disk (see §3.4.4), each spectral feature will have a FWHM

that spans about 70 channels. For the purpose of characterizing emission fea-

tures alone (not HISA), we can substantially smooth in the spectral dimension

to highlight low surface brightness features.

To determine the mask, we first spectrally smooth the data using a median

filter with a width of 31 channels (∼ 6 km s−1). The noise in each smoothed

spectrum is found using the median absolute deviation (MAD), iteratively

rejecting points beyond 2σMAD until convergence. We then search for valid

spectral components by requiring that each component has a maximum inten-

sity above 5σMAD and has 30 consecutive channels above 2σMAD. To ensure low

surface-brightness line wings are included, the edges of the valid components

are extended until the intensity reaches 1σMAD. This procedure is performed

on all spectra within the cube.

Next, we consider the spatial connectivity. To remove spurious spectral

components found in the first step, we use the morphological opening and

closing operators with a top-hat kernel equivalent to the FWHM of the beam

(Shih, 2009). The opening operator will erode the mask edges, removing all

features smaller than the beam kernel. The closing operator then dilates the

remaining components in the mask to restore their original area. The com-

bination of these two masking steps yields a robust signal mask [M(x, y, v)],

consistent in both the spectral and spatial dimensions.

This procedure is essential for high spectral-resolution data. Throughout

the map, we find many lines-of-sight with either multiple, resolved components,

or significantly skewed profiles. Not recovering the line wings in the masking

procedure may hide these asymmetries at low-surface brightness. This also

ensures negative bowls in the VLA-only cube are rejected from the signal

mask and will not bias measurements of the asymmetry of a spectrum.
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Figure 3.1: Total emission profiles of the VLA-only and the combined
VLA+GBT data before and after masking. The curve for the unmasked com-
bined data set is indistinguishable from an umasked GBT-only spectrum. The
thick dashed vertical line indicates the systemic velocity of M33 at −179.2 km
s−1. The flux density in the masked VLA map is well recovered by the VLA
data in the northern half of M33, but the southern half lacks a significant
portion of the emission without short-spacing information.

In Figure 3.1, we compare the total GBT emission measured within the

VLA mosaic to the emission retained after applying the masking procedure.

For the VLA-only data, 60% of the total HI emission is contained within the

mask. The combined VLA+GBT data contains 87% of the total emission

in the mask. The missing flux density in the masked version arises from

low surface-brightness features that do not satisfy the masking criteria. We

discuss these low surface-brightness features in §3.5. The ratio of flux density

retained in the mask is roughly constant across all channels for the combined

VLA+GBT data, indicating that only low surface brightness HI is excluded

by the masking procedure.

3.4 Properties of the atomic medium

In this section, we examine the properties of the HI emission derived from the

new data in the context of previous HI studies (Corbelli et al., 2014; Druard
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et al., 2014; Kam et al., 2017).

We calculate an atomic mass of 9 ± 2 × 108 M� for the VLA data and

1.3 ± 0.3 × 109 M� for the combined data, including a factor of 1.4 for He

and heavier elements. When including regions outside of the VLA mosaic, the

GBT data give a total atomic mass of 1.8±0.2×109 M�, consistent with other

independent HI mass measurements (e.g., Putman et al., 2009).

Figure 3.2 shows the column density map of the VLA data, highlighting

M33’s flocculent structure. The inner region of the disk (Rgal < 2 kpc; see

Figure 3.3 for context) is dominated by small-scale HI shells and lacks large

(∼ kpc) scale structures. The “mid-disk” (Rgal = 2–4 kpc) is dominated by

spiral arms prominent in the optical (e.g., Figure 2 in Corbelli et al., 2014).

The HI shows similar spiral arm structure in the Northern half, while the

Southern arm is dominated by one of the brightest HI clumps in the galaxy

(Rosolowsky et al., 2007). The HI in the outer disk (Rgal > 4 kpc) is nearly

ubiquitous, with bright spiral-arm segments throughout. The outer edge of

our signal-masked HI map is near the radius where the warp in M33’s disk

becomes significant (Corbelli et al., 2014).

Figure 3.3 shows four spectra extracted from different positions in the HI

data cube. Each of the spectra shows a non-Gaussian profile with either mul-

tiple velocity components, extended line wings, or both. To describe these

features, we use moment-based descriptions of the line profiles and velocity-

aligned spectral stacking. Given the lines are clearly non-Gaussian, direct

Gaussian fits to the lines do not produce a complete description of the emis-

sion.

We note that all uses of the line width in this paper are defined as the

Gaussian standard deviation, not the full-width-half-max (FWHM).

3.4.1 Rotation curve and disc parameters

Using the masked cube from §3.3.3, we calculate the velocity at the peak

intensity, shown in the left panel of Figure 3.4, to derive a rotation model.

We define this velocity at peak intensity as vpeak ≡ argmaxv I(v), which is
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Figure 3.2: HI column density map of the VLA+GBT mosaic, assuming
optically thin emission. The map is masked using the technique described in
§3.3.3, and shown using an arcsinh stretch. The mosaic recovers emission well
out to a galactic radius of 10 kpc.
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Figure 3.3: Example HI spectra compared between the archival VLA (gray)
and the new VLA+GBT HI data (black). The spectra are centred at the
velocity of peak intensity, calculated by smoothing with a 2 km s−1 Gaussian
kernel. The location of the spectra are indicated by the arrows on the column
density map in the left panel. The new data highlight the complex line shapes
near the peaks and demonstrate that signal seen in the extended line wings is
real. The red-dashed box on the left panel shows the position where a high-
velocity cloud is found (§3.5.3) at a velocity of -30 km s−1 from the galaxy’s
rotation. The cyan contours on the map indicate galactocentric radii of 2, 4,
6 and 8 kpc, respectively, in the plane of the galaxy.
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commonly referred to as the ‘peak velocity’. To find vpeak, we smooth the

data with a 1 km s−1 (∼ 5 channel) Gaussian kernel to minimize noise before

identifying the velocity of the peak. In §3.8.2, we discuss the difference in using

vpeak versus the centroid (first moment) velocity, vcent, in deriving the rotation

curve. Briefly, vcent becomes biased by asymmetric line wings (§3.4.3); whereas

vpeak is not biased by the line shape and should provide a more accurate

representation of the rotation velocity.

We fit the velocity surface using diskfit (Spekkens & Sellwood, 2007; Sell-

wood & Spekkens, 2015) with a circular velocity model. diskfit derives a

global rotation model by simultaneously fitting the whole velocity surface over

a given set of radial bins. This provides better constraints than minimizing a

set of individual rings, but requires that the disk be characterized by a com-

mon set of disk parameters (e.g., position angle, inclination). The rotation

curve is shown in Figure 3.5, and the fit parameters and statistics are given

in Table 3.2. The rotation velocities in each bin are given in Table 3.6. The

parameter uncertainties are calculated from 200 bootstrap iterations in disk-

fit (Sellwood & Sánchez, 2010). The χ2 calculation in diskfit includes an

ISM line width parameter for the expected model dispersion, which we set to

8 km s−1 (see §3.4.2). However, since this is a constant factor applied to every

position in the fit, it will not affect the resulting disk parameters (Kuzio de

Naray et al., 2012). Our rotation model does not include a warp component

since a warp only becomes prominent at galactocentric radii beyond ∼ 8 kpc

(Corbelli et al., 2014) and we do not fit for a bar component. We use radial

bins with a constant width of 100 pc in the plane of the galaxy, just larger

than the VLA beam size, out to a galactocentric radius of 7.5 kpc. Because

the radial bins are larger than the beam, we do not include a correction for

beam smearing. Beyond this radius, the uncertainty in the derived moments

increases substantially as the integrated intensity decreases. The fitted posi-

tion of the galactic centre is 7′′ from the 2MASS position (Skrutskie et al.,

2006), within the 1σ parameter uncertainties.

Figure 3.5 shows the circular rotation velocities, vrot, from our rotation
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Figure 3.4: Left: HI vpeak surface used for fitting the rotation curve. The
masked regions from the signal mask (§3.3.3) are shown in white. Centre:
Residual velocities from subtracting the diskfit rotation model from the peak
velocity surface. Right: The line width map derived from the second moment.

Table 3.2: Galactic disk parameters and fit statistics from diskfit for the
VLA+GBT peak velocity surface. Errors are the 1σ intervals based on the
diskfit bootstrapping. The n, vmax, and Rmax parameters are the fit param-
eters to the Brandt (1960) model (Equation 3.1).

Points used 39970

Degrees of Freedom (DOF) for error 39663

χ2/DOF 1.44

Iterations 4

Centre R.A. 23.4607± 0.0042◦

Centre Dec. 30.6583± 0.0032◦

Position Angle 201.12± 0.47◦

Inclination 55.08± 1.56◦

vsys (LSRK) −179.18± 0.76 km s−1

n 0.56± 0.04

vmax 110.0± 1.5 km s−1

rmax 12.0± 1.3 kpc
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Figure 3.5: Rotation curve fit by diskfit from the VLA+GBT vpeak surface
(blue solid). The rotation curves from Corbelli et al. (2014, green-dashed)
and Kam et al. (2017, red-dotted) are also shown. Our model is consistent
with the Kam et al. (2017) model, but has a lower velocity than the Corbelli
et al. (2014) curve in the inner 6 kpc.

model, along with the recent HI models from Corbelli et al. (2014) and Kam

et al. (2017). There is excellent agreement with the Kam et al. (2017) results,

though our model has rotation velocities below the Corbelli et al. (2014) rota-

tion curve up to 6 kpc. The difference may be due to how Corbelli et al. (2014)

apply finite disk corrections (see their Appendix B), but since both the data

and modelling approaches differ for the three rotation curves, it is difficult to

be sure of the cause.

The residual velocity surface from the difference between vpeak and vrot is

shown in Figure 3.4. The residual velocity surface shows only small-scale vari-

ations, suggesting that additional velocity components in the rotation model

are not needed. However, the outer edges of the mosaic show what is likely

the beginning of the warp. Large deviations (∼ 20 km s−1) both above and

below the model values are evident along the edges, similar to the deviations

found by Kam et al. (2017).

To remove bin-by-bin variations in the fitted rotation curve we follow the

prescription used by Meidt et al. (2008) by fitting a Brandt (1960) rotation

84



curve:

vrot(r) =
vmax(r/rmax)

[1/3 + 2/3(r/rmax)n]3/2n
. (3.1)

The fit parameters for the Brandt model are given in Table 3.2. Using the

analytical approximation, we create a smooth version of the rotation surface

for use as a model. This smooth rotation model surface is used for creating

rotation-subtracted versions of the HI cube.

3.4.2 Surface density profiles

Using the galactic disk parameters in Table 3.2, we create a radial profile of

the HI surface density, corrected for the disk inclination, in 100 pc radial bins

out to 10 kpc. Assuming optically thin emission, we use a mass conversion

factor of 0.019 M� pc−2 (K km s−1)−1 to find the HI surface density, which is

the standard HI column density conversion factor with a factor of 1.4 for the

mass of heavier elements. Figure 3.6 shows the radial surface density profile

of the combined VLA and GBT data. The profiles presented here use smaller

bin widths than those in Druard et al. (2014), Corbelli et al. (2014) and Kam

et al. (2017), but are consistent with all of these previous works.

The profile has an average value consistent with a surface density of ∼ 8

M� pc−2 out to 7 kpc, where the surface density begins to taper off. The

radius where the tapering begins is comparable to where the stellar surface

density equals the gas surface density, based on Figure 10 in Corbelli et al.

(2014). Within this radius, the average stellar surface density exceeds the gas

component.

When averaged over galactocentric radii of < 7 kpc, the atomic gas surface

density is nearly constant, consistent with the surface density profile from Kam

et al. (2017). However, averaging over smaller radii highlights the deviations

driven by the large-scale disk structure. When averaging with the VLA-only

data, the average value is ∼ 6 M� pc−2 for the inner 7 kpc, roughly consistent

with the fraction of emission recovered without the GBT data.

The profile shows two significant peaks located around 2 and 4.5 kpc; these
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Figure 3.6: The combined GBT and VLA atomic gas surface density profile
(black) split into the northern (red dot-dashed) and southern (blue dashed)
halves in 100 pc bins and corrected for the disk inclination. The surface
density has an average value of 8 M� pc−2 in the inner 7 kpc, with substantial
variation from galactic structure. The error bars are shown for the northern
and southern halves; the errors for the entire disk (not shown) are

√
2 smaller.

These uncertainties are the standard deviations in each radial bin, corrected
by the number of beams (i.e., the independent samples) within the annulus
(e.g., Druard et al., 2014). The shaded region indicates the inner 0.5 kpc
where beam smearing and a small number of samples in each bin gives large
uncertainties.
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occur at radii that enclose the prominent spiral arm structure. Within ∼ 2

kpc, the disk lacks spiral structure and is dominated by wind-driven shells

(Rosolowsky et al., 2007), making it difficult to connect these large-scale aver-

ages to the morphology of the emission. The outer disk also lacks significant

coherent large-scale structure, with the emission dominated by multiple spiral

arm fragments.

To further examine these variations in the surface density profile, we create

radial profiles split into the northern and southern halves. The aforementioned

peaks are far more prominent in the northern half than the southern. This is

even more dramatic for the dip at 3 kpc, which is entirely driven by variations

in the northern half. These differences are driven by the asymmetric main

spiral arms: the northern arm, in HI emission, is more prominent and distinct

than the southern arm.

The surface densities between the two halves are approximately equal be-

tween a radius of 1.5 to 2 kpc and beyond 5.5 kpc. The region from 1.5 to

2 kpc contains the beginning of the main spiral arms. The HI arms begin at

∼ 1.8 kpc, are offset by nearly 180◦, and are nearly symmetrical, despite trac-

ing different extents at larger radii. The other matching region at 5.5 kpc is

beyond the extent of the main spiral arms where the disk becomes dominated

by flocculent structure. These matching regions over all angles suggest that

this middle region of the disk is dominated by an arm driving mechanism and

distinct from the inner and outer regions in the disk. However, the spatial

scale of these variations may be different due to the large area averaged over

at larger radii.

The outer region of the disk shows less variation between the halves com-

pared to the inner and middle disk. While this region contains variations in

the surface density due to the spiral arm fragments, the area averaged over is

also larger and will tend to smooth out variations more than the regions at

smaller radii.
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3.4.3 Exploring spectral complexities

With the high spectral resolution in our data, there are a sufficient number

of channels to use higher-order spectral moments for describing line profile

shapes. Figure 3.3 demonstrates that simple spectral models (one or two

Gaussians) are inappropriate to represent the data at this resolution. We

quantify these features by calculating maps of the skewness and kurtosis of

the velocity profiles. These higher-order moments require a larger number of

channels than the line width (second moment) to reduce uncertainties, which

has limited their use in previous extragalactic HI studies with coarser resolu-

tion. Instead, previous studies have relied on adding equivalent parameters to

Gauss-Hermite polynomials (e.g., Young et al., 2003; Oh et al., 2011). How-

ever, this analytic form is limited in how well it can explain extended line

wings, making the moments-based description better suited for our data.

The skewness is calculated from the third moment of each spectrum, nor-

malized by the line width cubed:

S(x, y) =

∑
v∈M(x,y,v)[v −M1(x, y)]3I(x, y, v) δv

M0σ3
v

, (3.2)

where M0 is the integrated line intensity (zeroth moment), and M1 is the

line centroid (first moment). The line width here is defined from the second

moment: σ2
v = M2(x, y). A positive skewness indicates a spectrum with a

red-shifted tail, while a spectrum with negative skewness has a blue-shifted

tail.

Kurtosis is similarly calculated from the fourth moment. We report the

kurtosis excess by subtracting the value of 3 expected for a normal distribution:

K(x, y) =

∑
v∈M(x,y,v)[v −M1(x, y)]4I(x, y, v) δv

M0σ4
v

− 3. (3.3)

A spectrum with a positive kurtosis will have strong tails and have a peak

sharper than a Gaussian.

The skewness maps are shown in Figure 3.7 for the VLA-only and com-

bined data. The addition of the total power component from the GBT data

88



1h36m 35m 34m 33m 32m

31°00'

30°40'

20'

00'

RA (J2000)

D
EC

 (J
20

00
)

1h36m 35m 34m 33m 32m
RA (J2000)

3

2

1

0

1

2

3

Sk
ew

ne
ss

Figure 3.7: The skewness maps of the VLA (left) and combined data (right).
Positive skewness indicates a red-shifted tail, while a negative value is a line
profile with a blue-shifted tail. The low surface-brightness component, primar-
ily added to the line wings, from the GBT data drives the large-scale skewness
properties.

has a significant effect on the skewness. The VLA-only map shows small-scale

structure across much of the disk, indicating variations of the spectral shape

down to the resolution of the data. This map also shows some larger-scale

variations, particularly for the outer disk in the northern half. With the inclu-

sion of the GBT data, these large-scale variations become far more prominent.

The skewness structure is split into a postively-skewed northern half and a

negatively-skewed southern half. This separation is highlighted in Figure 3.8,

where the radial profiles of skewness are shown for the northern and southern

halves. The spectral shapes are skewed to the red-shifted side in the northern

half and to the blue-shifted side in the southern half. This is consistent with

the position-velocity slices in §3.5 that show a lagging rotational HI component

across the disk.

The kurtosis maps are less interesting due to the influence of the line wings,

and this drives a strong correlation to the peak temperature map. Figure

3.9 shows the close resemblance between the peak temperature and kurtosis

maps for the combined data. The excess line wings bias the kurtosis, mak-
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Figure 3.8: Radial profiles of the skewness (top) and kurtosis (bottom) of
the VLA+GBT data averaged over the entire disk (black), and the northern
(blue) and southern (red) halves. The shaded region indicates the inner 0.5
kpc where beam smearing and a small number of samples in each bin gives
large uncertainties. The skewness profile demonstrates the differing skewness
properties between the halves of the galaxy. The excess kurtosis indicates
that the average HI spectrum has heavier tails relative to a Gaussian, though
the bias in the second moment requires caveats for interpreting the kurtosis
(§3.4.3.1).
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Figure 3.9: The peak HI temperature (left) and the kurtosis (right) maps
of the combined data. A positive kurtosis indicates a shape with strong tails
and more peaked relative to a Gaussian. There is a strong correlation between
the two maps that results from the influence of the line wings on the kurtosis
(§3.4.3.1).

ing it a measure of the spectral shape relative to the line wings rather than

the bright HI component. A higher peak temperature then leads to a larger

positive kurtosis. We discuss this relation further in §3.4.3.1. Since kurtosis

is velocity-weighted by the fourth power, the assumption that line shapes are

well-described by single-peaked near-Gaussian breaks down and it provides

less-useful empirical relations compared to the skewness.

The skewness profiles in Figure 3.8 are nearly mirror images of each other

in the northern and southern halves. By averaging over the entire disk, this

distinction between the halves is lost, and the average values are near to a

skewness of zero over most radii. This hides interesting variations seen sep-

arately in the halves, particularly near 3 kpc, where the average skewness in

both halves is close to zero. In the surface density profiles (Figure 3.6), this

radius corresponds to a dip in surface density, though it is more prominent in

the northern half. This region contains a large portion of the northern spiral

arm, including some of the more active star-forming regions (e.g., NGC 604).

Apart from this, it is unclear why only this region has a skewness close to zero
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and equal between the halves.

Though this asymmetry dominates both skewness maps, there are “limbs”

in the outer disk that do not follow the same trend. The western side of the

northern half in Figure 3.7 has a predominantly blue-shifted component along

most of the map edge, while the eastern side of the southern half is mostly red-

shifted. These features are nearly symmetric and are roughly pointed towards

the position angle of the warped disk’s semi-major axis (∼ 165◦; Corbelli et al.,

2014; Kam et al., 2017). The skewness “limbs” may indicate where the warped

disk becomes more prominent than the main disk. Indeed, the northern limb

has larger line widths relative to the surrounding structure in Figure 3.4. These

enhanced line widths are also consistent with the line width map from Kam

et al. (2017), which includes the structure at larger radii. Note that this does

not contradict the lack of a warped disk component in the rotation model

(§3.8.3) since the peak velocities will not be sensitive to extended tails.

The kurtosis profiles in Figure 3.8 do not show variation between the halves

and are consistent within the uncertainties with the whole disk average at

most radii. The positive kurtosis values indicate that the typical HI spectrum

in the inner 6 kpc has strong tails that do not vary significantly in shape. The

negative kurtosis beyond 7 kpc occurs where the brightest HI emission tapers

off in the surface density profile (Figure 3.6). A negative kurtosis value in

these regions indicates a lack of narrow and bright HI components.

We note that the profile values in the inner ∼ 0.5 kpc are more uncertain

due to the low number of spectra in these bins and may be the cause of the

negative skewness slope out to 1 kpc. If the spectra were preferentially red-

shifted at the centre, the PV-slices in §3.5.1 would show this asymmetry.

3.4.3.1 Correlations with skewness and kurtosis

In Table 3.3, we show the Spearman correlation coefficients calculated by com-

paring either the kurtosis or skewness with other HI properties. Most lines-

of-sight have HI detected along them, giving a population of ∼ 1.2 million
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Table 3.3: Correlation between skewness and kurtosis with other HI proper-
ties. The uncertainties on each correlation are ±0.002, using bootstrap resam-
pling of one-third of the data to recompute the correlation 1000 times. We
also perform a permutation test with 1000 iterations. All correlations have a
p-value of < 0.001. The mask width is the number of pixels in the spectral
dimension contained within the signal mask.

Skewness Kurtosis

Mask Width 0.019 0.408

Zeroth Moment 0.065 0.682

Peak Temperature 0.088 0.800

Centroid −0.463 −0.155

Peak Velocity −0.516 −0.162

Line Width −0.033 −0.050

spectra to compare properties5. Since the distribution of these parameter val-

ues need not be Gaussian, we perform a bootstrap to calculate the uncertainty

of the correlation and the p-value. In each bootstrap iteration, we randomly

choose 30% of the sample and re-calculate the correlations; the standard de-

viation of the resulting distribution from all iterations gives the uncertainty.

The p-value calculation uses a randomly shuffled version of one of the parame-

ters to calculate the correlation with the other parameter. Both steps are run

for 1000 iterations, and all correlation values are found to be significant with

small uncertainties.

Skewness is strongly correlated with vcent and vpeak for the combined VLA

and GBT data. This is well-explained by the north-south asymmetry in skew-

ness evident in Figures 3.7 and 3.8.

The kurtosis shows strong correlation with the peak temperature, zeroth

moment, and the spectral width of the signal mask. We test whether these

correlations are driven only by the shape of the signal mask by recalculating

the correlations using points with similar mask widths (e.g., the correlation

5We do not correct for small-scale correlations over the beam size since the map extent
is significantly larger. This will not affect correlations on large-scales.
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between kurtosis and peak temperature only for points with a mask width of

300 to 320 pixels). We find that the correlations with peak temperature and

the zeroth moment persist when controlling for the mask width, indicating the

correlations are not solely dependent on the signal mask.

The correlations with kurtosis are instead the result of the line width bias

due to extended line wings. As discussed in §3.8.5, the presence of line wings

in the profile leads to an overestimate of the line width. This results from

having a larger number of channels associated with the line wings than the

bright component (e.g., spectrum d in Figure 3.3), and the kurtosis suffers

from the same issue. The measured kurtosis is then with respect to the shape

of the line wings, rather than the shape of the bright component. The positive

kurtosis reflects the strong line wings present in most spectra relative to a

Gaussian shape. Since peak temperature and zeroth moment are measures of

how “peaked” that bright component is, they are positively correlated with

the kurtosis. This highlights where the naive moments approach to examining

complex line shapes breaks down and that the results should be treated with

caution.

Neither skewness nor kurtosis shows a strong correlation with the line width.

This is encouraging since both depend on the line width, with increasing power,

and a strong correlation may imply the variations in skewness and kurtosis are

only driven by changes in the line width. Our findings above also show that

correlations with kurtosis are not driven by the mask shape. These results

show that our measurement of significant non-zero values in the higher or-

der moments is robust and that single-Gaussian descriptions of the HI line

becomes inadequate at 80 pc resolution. However, since moment-based de-

scriptions are subject to biases in the centroid, we further explore HI line

profile shapes using stacked profiles below.

3.4.4 Stacking spectra

Stacking spectra is a common procedure to enhance the signal-to-noise in

regions of faint emission. By aligning spectra to a common central velocity,
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combining the spectra will coherently add emission components, while the

noise will add incoherently. This technique has often been used for studying

typical HI line properties in nearby galaxies.

We create stacked profiles using three different definitions of the line centre:

the rotational velocity (vrot; §3.4.1), the centroid velocity (vcent), and the peak

velocity (vpeak). From the resulting stacked profiles, we can assess how the

reference velocity affects the stacked profile shape. A cursory test with Gauss-

Hermite polynomials, as used in several previous works (e.g., Petric & Rupen,

2007; Ianjamasimanana et al., 2012; Stilp et al., 2013a), gave poor results due

to spectra with multiple bright HI components and those with extended line

wings. The typical S/N in the data used in these studies prohibited directly

estimating vpeak, which is well-defined in our higher S/N data (see also Braun,

1997).

The different definitions of the line centre will highlight different ISM prop-

erties. Previous studies have typically stacked spectra based on vpeak, which

will minimize the stacked profile width and recover the typical spectrum prop-

erties at the resolution of the data (Caldú-Primo & Schruba, 2016b). This

is ideal for attempting to recover the thermal and turbulent properties of the

medium. Stacking with vrot yields stacked profiles with widths sensitive to

large-scale turbulence and non-circular motions. For example, variations from

the circular rotation velocity are clear from the residual velocity map in Figure

3.4. Using vcent as the common velocity gives, for an optically-thin tracer, the

mass-weighted velocity average. As discussed in §3.4.3, this can make vcent

biased if the line profiles are asymmetrical. This bias in vcent makes a physical

interpretation less clear. Nonetheless, we explore these three stacking methods

since they are commonly used in spectral-line studies.

We shift the spectra using Fourier transforms before co-adding them to

create stacked profiles. Fourier shifting allows shifting by fractions of the

channel width without interpolating, minimizing artificial broadening due to

a finite-sampled grid. We then add the aligned spectra to create the stacked

profile. The uncertainty in each channel of the stacked profile is the sum-
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in-quadrature of the uncertainty from each PPV-pixel. Since the noise is

approximately constant in our data, this reduces to the noise of one PPV-

pixel multiplied by the square root of the number of beam elements in the

stacked region. We include all of the spectra in the stacked profiles where

vcent and vpeak can be calculated after applying the signal mask (i.e., the signal

mask contains at least one component along the line-of-sight). This excludes

only the small masked regions in Figure 3.4.

To model the stacked spectra, we adopt the half-width-half-max (HWHM)

scaling method from Stilp et al. (2013a). We favour this approach rather than

other models due to the large variation in the shapes of the stacked profiles

we find using different definitions of the line centre. In particular, we found

that the two-Gaussian model used in other works (e.g., Young & Lo, 1996;

Ianjamasimanana et al., 2012) cannot account for how peaked the vpeak stacked

profiles are and the ratios between the two components are highly-sensitive to

covariances between parameters. We provide a more thorough comparison in

§3.8.4.

The HWHM method assumes that the stacked profile within the FWHM

of the peak intensity can be modeled as a Gaussian line profile. Since these

stacked profiles are created over large areas, the S/N is extremely high and the

FWHM is a reliable measure of the width. Additional properties describing

the stacked profile shape are defined based on the residual between the stacked

profile and the assumed Gaussian profile for the peak. We use the definitions

for four of these parameters from Stilp et al. (2013a). The effective Gaussian

width, σHWHM, is estimated by scaling to a Gaussian shape within the FWHM

of the stacked profile. This assumed Gaussian shape is centred at the velocity

of the maximum intensity, vcentre. The line wings are defined as the excess

relative to this Gaussian peak beyond the FWHM points. The fraction of

excess flux is given as fwing:

fwings =

∑
|v|>HWHM

[S(v)−G(v)]∑
v

S(v)
, (3.4)

96



where S(v) is the stacked profile, G(v) is the Gaussian model within the

FWHM and HWHM = FWHM/2. The sum in the denominator is over the

entire profile. The line wing excess can be used to define an effective width of

the wings equivalent to the second moment:

σ2
wing =

∑
|v|>HWHM

[S(v)−G(v)] v2

∑
|v|>HWHM

[S(v)−G(v)]
. (3.5)

Note that the definition of the second moment relies on a Gaussian line profile.

Since the residual S(v) − G(v) is not Gaussian, this may not have a clear

connection to a Gaussian line width. We include it here to compare with the

values presented in Stilp et al. (2013a).

We define two additional parameters to describe the profile shapes. While

higher-order moments present one avenue for characterizing deviations from a

Gaussian shape, we favour developing empirical measures that do not weight

the statistic by deviations from the line centroid. These metrics provide a

more uniform description of the line profile over its entire extent. First, we

define the asymmetry of a profile as the difference between the total flux at

velocities smaller than the reference velocity and the total flux at velocities

greater than the reference velocity. The difference is then normalized by the

total flux over all velocities:

a =

∑
v>vcentre

S(v)− ∑
v<vcentre

S(v)∑
S(v)

. (3.6)

The sum in the denominator is over the whole profile. Stilp et al. (2013a) define

a different asymmetry parameter that, while similar, returns an absolute value.

We choose this alternate definition since it retains information on the side of

the profile containing more flux, which is determined by the asymmetry in the

line wings. In this manner, a is analogous to the skewness, without weighting

by the velocity offset and line width.

The final parameter, κ, provides the fractional difference between the central

97



peak and the Gaussian model within the FWHM, similar to fwings:

κ =

∑
|v|<FWHM

[S(v)−G(v)]∑
|v|<FWHM

G(v)
. (3.7)

This is another parameterization for the kurtosis: a negative value indicates

the profile is more peaked than the Gaussian, while a positive value is flatter.

We note, however, that the kurtosis used in §3.4.3 will primarily be sensitive

to the line wing structure, whereas κ describes the shape of the peak since it is

only measured within the HWHM relative to a Gaussian of equivalent width.

Figure 3.10 shows the stacked spectra over the entire disk with different

reference velocities, and Table 3.4 gives the fitted model parameters. The

parameter uncertainties are calculated in one of two ways. For σ and vcentre,

we assume that the uncertainty is set by the channel size; thus the uncertainty

is half the channel width (∼ 0.1 km s−1). For the rest of the parameters, we

perform 100 bootstrap iterations where 1) the data are re-sampled by adding

Gaussian noise within the flux uncertainty for each channel, and 2) allowing

the estimated peak velocity and Gaussian width to vary by their uncertainties.

This propagates the uncertainty in the flux and the assumed Gaussian peak

to the other parameters. Due to the high S/N in the stacked profiles, most of

the uncertainty comes from the latter source.

Figure 3.10 shows how the use of different reference velocities significantly

changes the stacked profile shapes. Stacking based on vrot and vcent gives the

widest profiles and both have similar shapes. The shapes of their peaks are

close to Gaussian (κ ∼ 0; Table 3.4) and the widths are ∼ 10 km s−1 in

both. The widths of these profiles are dominated by the residual velocity in

the vrot model (Figure 3.4) and the bias in vcent due to extended line wings

evident in the skewness maps (Figure 3.7). Stacking using vcent or vpeak gives

profiles with non-zero a parameters (Equation 3.6). This may be highlighting

an asymmetry in the low surface-brightness component of the line wings not

evident in the position-velocity (PV) slices in §3.5.

The stacked profile from using vpeak is clearly non-Gaussian in its central
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Figure 3.10: Stacked spectra over the entire disk using vrot (blue solid),
vcent (green dashed), and vpeak (red dot-dashed) as the definitions of the line
centre. The peak intensities are set to unity to emphasize the line shapes and
the velocity axis is centred at the systemic velocity. Stacking based on vrot

and vcent give similar profiles with near Gaussian peaks within the FWHM.
However, using vpeak as the reference velocity yields a sharper peak shape and
more prominent line wings relative to a Gaussian.
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Table 3.4: HWHM fit values to the stacked profiles over the entire disk. These
profiles are shown in Figure 3.10. The uncertainties are propagated based on
the uncertainty in each channel of the profiles, and assuming an uncertainty of
half the spectral resolution (∼ 0.1 km s−1) for the peak velocity and FWHM
line width. Note that σwing may not be treated as an equivalent Gaussian
width due to the non-Gaussian shape of the residuals; see Equation 3.5.

Method of Stacking Spectra

Rotation Vel. Centroid Vel. Peak Vel.

(vrot) (vcent) (vpeak)

σHWHM (km s−1) 10.3± 0.1 9.7± 0.1 6.6± 0.1

vcentre (km s−1) −0.5± 0.1 −0.5± 0.1 0.0± 0.1

fwing 0.11± 0.01 0.09± 0.01 0.26± 0.01

σwing (km s−1) 28.9+0.5
−0.4 26.3+1.5

−0.4 23.4+0.3
−0.2

a −0.009+0.011
−0.010 0.027+0.004

−0.003 0.021+0.005
−0.014

κ −0.013+0.004
−0.004 −0.011+0.004

−0.004 −0.059+0.005
−0.004
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Figure 3.11: Stacked profiles of the VLA (top) and VLA+GBT data (bot-
tom) when centered using vpeak. The dashed green lines are the FWHM line
widths and the shaded gray regions show the difference between the equivalent
Gaussian profile and the data. The GBT data mostly adds emission to the
line wings and does not affect the shape within the FWHM.
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shape (κ = −0.059). The profile is both narrower and more peaked relative

to the other profiles and is similar to the shape found in other studies (e.g.,

Petric & Rupen, 2007). The narrow and peaked profile contains a larger

fraction of flux in the line wings relative to a Gaussian (fwings = 0.26). The

difference in this stacked profile compared to those from vcent and vrot is the

source of broadening in the width, which we discuss further in §3.6.3. If the

broadening source has a Gaussian distribution of velocities around the peak,

like the the residuals from vrot, the central-limit theorem gives that the shape

will be close to Gaussian within the FWHM. When using vpeak, the dominant

source of broadening is the uncertainty on vpeak (∼ 0.1 km s−1), which is small

compared to typical HI line widths.

The width and shape of the vpeak profile is relatively unchanged without

the total power component. In Figure 3.11, we show the vpeak stacked profiles

with and without the GBT data. Including the GBT data affects the line

wings, which are far more prominent in the combined VLA+GBT data set.

These differences highlight that most of the line wing emission is driven by

a low surface brightness, extended component. This combination of a steep

peak within the FWHM and heavy tails makes these shapes difficult to model.

They are clearly non-Gaussian, but neither of these profiles has tails strong

enough to be well-modeled by a Lorentzian.

The assumed Gaussian shape for sharply peaked profiles violates some of

the assumptions for the HWHM model. The fractional difference in the peak

shape, defined with κ, indicates that the assumed Gaussian shape overesti-

mates the emission in the peak by 6% for the vpeak stacked profile. Though the

two-Gaussian model also cannot account for the peak shape (§3.8.4), this high-

lights the difficulty in defining a simple model for the stacked profile shapes.

We discuss the factors that lead to this difficulty in §3.6.3.

3.4.4.1 Radial variations in stacked profiles

We next examine how the stacked profile parameters vary with galactocentric

radius, focussing on the vpeak stacked profiles. We create stacked profiles in
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galactocentric rings with 100 pc widths, as used for the surface density profiles

(§3.4.2). Given the opposing line wing directions found in the skewness map

(§3.4.3), we also examine stacked profiles over the northern and southern halves

separately.

Figure 3.12 shows the three profile parameters describing asymmetries (a)

and shape (κ and fwings) for the vpeak stacked profiles; we explore the line width

variations in §3.4.5. The asymmetry parameter a shows a clear difference

between the two halves, matching the variations identified in the skewness

analysis (§3.4.3). The southern half of the galaxy has an excess of emission at

negative velocities while the northern half has an excess at positive velocities.

This is qualitatively the same as is shown in the skewness radial profile in

Figure 3.8, though we find less variation with radius in a. The decreased

radial variation in a results from the σ3 weighting in the skewness, which

makes it sensitive to small line width variations, and from the difference in the

order of operations, since stacked profiles are already an averaged quantity.

The shape within the FWHM of the stacked profiles, parameterized with

κ, is largely consistent between the two halves. However, κ varies by ∼ 33%

with radius in the inner 6 kpc. There are two dips at 2.5 and 3.5 kpc where κ

increases, indicating a larger discrepancy from a Gaussian. There are similar

features in the kurtosis profile in Figure 3.8, however, those variations suggest

that the typical spectrum becomes closer to a Gaussian profile. This apparent

discrepancy may result from an increase in the fraction of multi-component

spectra in these regions. These radii contain portions of the optical spiral

arms, particularly the region around NGC 604 in the northern arm and the

bright clump in the southern arm (see spectrum c in Figure 3.3). The kurtosis

is driven by the shape with respect to the line wings (§3.4.3.1) and multiple

components will give a smaller excess kurtosis since the bright component is

effectively wider. We see the opposite effect in κ because the spectra are added

coherently and multiple components will tend to enhance the line wings.

The fraction of flux in the line wings is on average fwings ∼ 0.22 in the

inner 6 kpc, but there are substantial (∼ 50%) variations. There are peaks at
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radii of 2.5 and 3.5 kpc, consistent with variations in κ being driven more by

lines-of-sight having multiple spectral components. However, peaks in fwings

result from an increase in one half of the galaxy, whereas the variations in κ

are consistent between both halves. The variations in fwings cannot then be

entirely driven by an increase in multi-component spectra. Another process,

possibly outflows from star formation in the spiral arms, may lead to the

increase in the line wing fraction.

None of the parameters show a monotonic trend with galactocentric radius

in the inner 6 kpc, suggesting that the variations are due to local processes

(i.e., outflows, local galactic structure).

A trend is clear, however, in all of the parameters beyond 6 kpc. The line

profiles, over both halves, become more asymmetric (a < 0), have sharper and

narrower peaks (κ and σ decrease) and have increased line wing fractions. A

similar trend is seen for the kurtosis profile (Figure 3.8), though the kurtosis

decreases for the reasons discussed above. At ∼ 6.5 kpc, the surface density

profile strongly decreases to the edge of the map (Figure 3.6). We attribute

these trends to the lack of a bright HI component when averaged on large-

scales. The change in asymmetry is due to the beginning of M33’s warped

disk, which starts to dominate the velocity surface at ∼ 7 kpc, consistent with

increases in the line width at the edge of the map (Figure 3.4). The variations

we find beginning at 6 kpc suggests the warped disk has a significant effect on

the spectral shapes before it dominates the large-scale kinematics.

3.4.4.2 Asymmetry between the northern and southern halves

The skewness maps in Figure 3.7 indicate a large-scale asymmetry in profile

shapes between the northern and southern halves of the galaxy. By comparing

the line wing excess in each half of the galaxy, we can estimate what fraction

of fwings is symmetric and asymmetric in velocity.

The vpeak stacked profiles in each half and over the entire disk are compared

in Figure 3.13. The peaks of all three profiles are essentially identical in shape

and width, but the line wings differ in each half. We can re-write the line wing
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Figure 3.12: Top: Asymmetry, a, of vpeak stacked profiles in 100 pc radial
bins. The parameter values are shown for stacked profiles over the whole
disk (black), and the northern (blue dashed) and southern (red dot-dashed)
halves. Middle: The peak shape κ. Bottom: The line wing fraction fwings.
The shaded region in both plots highlights the inner 0.5 kpc, where the lack
of data points make the estimates more uncertain. The uncertainties in this
region are underestimated since they do not account for the additional velocity
uncertainty that results from spatial smearing where the rotation curve is
steep (Stilp et al., 2013a). The top two panels are qualitatively similar to the
skewness and kurtosis profiles from Figure 3.8: the asymmetry varies between
the halves of the galaxy, but the peak shape is consistent between both.
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fraction (Equation 3.4) as:

fwing =

∑
|v|>HWHM

[SN(v) + SS(v)−G(v)]∑
v

SN(v) + SS(v)
, (3.8)

where SN(v) and SS(v) are the stacked profiles of the northern and southern

halves, respectively. The asymmetric line wing component is the total excess

on opposite sides of the peak, located at v = 0 km s−1 in this case. Based

on the total profiles, the southern half will have an excess towards negative

velocities, while the northern half will have an excess at positive velocities,

both pointing toward the systemic velocity. Thus we define the asymmetric

line wing component as:

fasymm =

∑
v<−HWHM

[SS(v)− SN(v)] +
∑

v>HWHM

[SN(v)− SS(v)]∑
v

SN(v) + SS(v)
. (3.9)

Note that the asymmetric component is not dependent on the assumed Gaus-

sian peak G(v), though the limits on the sums are set by the HWHM. The

symmetric line wing component is the difference between the total and asym-

metric components:

fsymm = fwing − fasymm. (3.10)

Because the asymmetric component is not defined as the absolute value of the

difference, it is possible to have a negative value if the line wings excesses are

opposite of the definition assumed based on Figure 3.13.

Table 3.5 shows the asymmetric and symmetric components of the total

profiles from Figure 3.13. Relative to the total line wing fraction, we find

that the ∼ 70% arises from a symmetric component while 30% stems from

an asymmetric one. In both halves, the asymmetric component points toward

the systemic velocity of M33 (since fasymm > 0) and could trace a rotationally-

lagging disk component. We discuss this further in §3.5.

Figure 3.14 shows the symmetric and asymmetric line wing fractions calcu-

lated from profiles in 100 pc radial bins. The asymmetric component is largely
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Figure 3.13: The vpeak stacked profiles over the whole galaxy (solid black), the
Northern half (blue dashed), and the Southern half (red dot-dashed). The line
wings asymmetry between the halves are highlighted with the shaded regions,
where the colours correspond to the velocity the profiles are skewed towards.

Table 3.5: The line wing fractions from the peak velocity stacked profiles split
into the Northern and Southern halves. The total line wing fraction is the
same as given in Table 3.4.

Line Wing Fraction

fwing 0.26± 0.01

fsymm 0.18± 0.01

fasymm 0.08± 0.01
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Figure 3.14: The total (blue solid), symmetric (green dashed), and asymmet-
ric (red dot-dashed) line wing fractions determined from Equations 3.8 – 3.10
for vpeak stacked profiles in 100 pc radial bins. The inner 0.5 kpc is shown in
gray, where the small area and beam smearing cause deviations in the pro-
file properties. The asymmetric component accounts for ∼ 30% of the line
wing fraction and is roughly constant throughout the disk. The variations in
the total line wing fraction are mostly driven by variation in the symmetric
component.

constant throughout the entire disk. The symmetric line wing component con-

tains most of the variations previously seen in Figure 3.12 for the total line

wing fraction. In particular, the increase in fwings beyond 6 kpc is entirely due

to the symmetric component.

3.4.4.3 Stacking profile with peak HI temperature

We also explore the properties of stacked profiles binned by their peak HI

temperature. We created 20 stacked profiles in bins with a width of 5% of the

peak HI temperature distribution. This provides an equal number of spectra

(48900) in each stacked profile. As in the previous section, we consider the

profiles stacked with respect to vrot, vcent and vpeak.

Figure 3.15 shows the line widths for each stacking method in 5-percentile

bins. Similar to radially-binning the data (§3.4.5), we find an offset between

the widths when using different definitions of the line centre, with the peak
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Figure 3.15: The HI line width of profiles stacked based on their peak HI tem-
perature. Each stacked profile covers a range of 5% in the peak temperature
distribution — the symbols in the plot indicate the middle of each bin.

velocity stacking providing the smallest widths. Each stacking method has a

line width that decreases with increasing peak temperature, though the change

in the widths of the vpeak stacked profiles is only ∼ 1 km s−1.

Despite the small changes we find in the vpeak stacked profiles over the range

in peak temperature, the shape parameters change substantially. The line

wing fraction fwing monotonically decreases with increasing peak temperature,

ranging from 0.17–0.32. The shape within the FWHM of the profile, described

by κ, also increases with the peak temperature, with values ranging from −0.15

to −0.02. Note that this is the opposite behaviour from the radially-binned

profile parameters (Figure 3.12). The combination of the trends in these two

parameters and the near-constant line width demonstrates a shift in the profile

shape that is near-Gaussian at higher peak temperatures and significantly non-

Gaussian to low peak temperatures.

The profile shapes at low peak temperatures (< 20 K) show two distinct

components: a narrow sharply-peaked component on top of a broad near-

Gaussian component. Since, by area, most of the lines-of-sight with peak

temperatures of < 20 K are located at Rgal > 7 kpc, where the average surface
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density begins decreasing (Figure 3.6), we interpret the increased importance

of the broad component as arising from an increase in the proportion of emis-

sion from M33’s warped disk component. This is consistent with our analysis

of the skewness maps (§3.4.3), where the reversal in the sign of the skewness

near the edges of the map in Figure 3.7 are roughly aligned with the position

angle of the warped disk component (Corbelli et al., 2014; Kam et al., 2017).

The increase in fwings from the radially-binned stacked profiles in Figure 3.12 is

also consistent with most spectra with low peak temperature (< 20 K) arising

at Rgal > 7 kpc.

We also find no clear evidence for HI spectra with flattened peaks in the

highest peak temperature bins as would result from optically thick HI emission

(Braun et al., 2009; Braun, 2012). If the stacked spectra had flattened tops, κ

should decrease with increasing peak temperature, opposite of the consistent

increase we find.

3.4.5 Comparing estimates of line width

Figure 3.16 shows the line width as a function of galactocentric radius as

derived from the azimuthally-averaged second-moment line width map (Figure

3.4) and the stacked spectra aligned with vrot, vcent and vpeak. The enhanced

line widths in the inner 0.5 kpc result from the small areas averaged over and

from beam smearing where the rotation curve is steep.

Stacking by vpeak gives the narrowest profiles, consistent with the whole-disk

stacked spectra in Figure 3.10. The typical width is ∼ 7 km s−1 in the inner

6 kpc with a shallow gradient; beyond 6 kpc, the line widths decrease to ∼ 6

km s−1. Our line widths are consistent with the stacked profile widths found

by Druard et al. (2014) using the archival HI VLA observations presented in

Gratier et al. (2010).

The vrot and vcent stacked profiles also have similar widths (∼ 10 km s−1)

to the whole-disk stacked profiles. The widths are consistent with each other

throughout most of the disk, suggesting that the line wing bias in vcent in

the northern and southern halves of the disk are similar to the dispersion of
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Figure 3.16: HI line width profiles in 100 pc bins for the azimuthally-averaged
line width map (solid line; Figure 3.4) and the stacked profiles from vrot (green
diamonds), vcent (red circles), and vpeak (purple triangles). The shaded gray
region highlights the inner 0.5 kpc where the lack of samples and beam smear-
ing cause large uncertainties in the line widths. The different methods give
a large range in the HI line width. However, none of the methods shows a
strong radial decrease.
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velocity residuals from the vrot model. At radii from 2 to 4 kpc, where the

spiral arms dominate the galactic structure, the vrot stacked profiles have larger

widths than the vcent stacked profiles. This indicates enhanced motion in the

spiral arms due to multi-component spectra or coherent flows across the spiral

arms, which are not included in the rotation model. Apart from the spiral arm

region, there is no trend between vrot or vcent stacked line widths with radius.

We find that the azimuthally-averaged line widths from the second moment

have a typical value of ∼ 12 km s−1 and are larger than all of the stacked

profile widths. Since stacking based on vrot yields the typical dispersion to

non-circular motion and the vcent is biased by asymmetric line wings, it is

worrying that the second moment estimates are substantially larger. Previous

studies have shown that the second moment can overestimate the line width

relative to stacked profiles (Ianjamasimanana et al., 2012) and Gaussian fits

to individual spectra (Mogotsi et al., 2016), particularly in the inner disks of

nearby galaxies. The discrepancy we find shows that, when extended line wings

are detected throughout the disk, the second moment line widths overestimate

the line width. In §3.8.5, we find that the second moment line widths increase

by 50% between the VLA and VLA+GBT data sets.

3.5 Extra-planar velocity components

Many nearby galaxies have velocity components offset from galactic rotation,

either in the form of discrete HI clouds or extended line wings related to

the main disk structure (Sancisi et al., 2008). Both features relate to neutral

gas accretion onto the main disks and may play an important role in galaxy

evolution. We explore the preferential directions of line wings, as shown in

the skewness maps (Figure 3.7), in §3.5.1, and discrete HI sources offset in

velocity from the main disk in §3.5.2.
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Figure 3.17: A position-velocity slice spatially-averaged over a 200′′region
centred along the major axis. The x-axis is the offset angle measured from
the rotation centre of the disk (Table 3.2). The gray-scale, indicated by the
colorbar, is in K, while the contours are at 1, 2, and 3 K, respectively. The
green triangles are the velocities from the rotation model (§3.8.3). The hori-
zontal dot-dashed line is at the systemic velocity, and the vertical dot-dashed
line indicates the centre of M33. The region near the centre shows signifi-
cant emission off the galactic rotation curve. The lowest contour highlights
two features near the systemic velocity that are independent with emission
from the main disk down to the noise level. Across the slice, the contours
show faint emission that is preferentially skewed towards the systemic velocity
(Table 3.2).

3.5.1 Anomalous velocity component

Figure 3.17 shows a position-velocity (PV) slice along the major axis of the

disk from the North to South. Similar to Kam et al. (2017), we find several

features either unassociated with the M33’s main disk or lagging relative to

the rotation velocity. The bright emission from the main disk, shown in gray-

scale, is well-matched to the rotation model (green triangles). The contours

highlight the extent of the low-surface brightness features. In particular, the

1 K contour, shown in blue, shows the asymmetry in the line wings directed

towards the systemic velocity, consistent with what we find from individual

spectra (§3.4.3). The extents of the blue contours in Figure 3.17 suggests

that the line wing structure is similar on large-scales within the disk, implying

that the line wings do not entirely arise from localized outflows from stellar

feedback.

The blue contours in Figure 3.17 highlight asymmetrical features that point

towards the systemic velocity. This indicates a rotationally-lagging disk com-
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ponent that is consistent with gas on high-latitude orbits in a thick disk.

The extensive excesses near the centre of the disk may be related to the halo

structure. Kam et al. (2017) find extensive “beard”-like structures — velocity

elongations in the PV-slice — in this region, which are more evident at lower

surface brightnesses.

The excess intensity at lagging velocities extends across the disk, as is also

indicated by the skewness of the line wings (Figure 3.7). Similar large-scale

skewed profiles are found by Ianjamasimanana et al. (2012) for a sample of

nearby galaxies in the THINGS survey (see their Figure 17). Their measure

of skewness for individual profiles comes from Gauss-Hermite fitting, where

higher-order skewness and kurtosis terms can be included directly in the fit.

They find a clear bias in the skewness between the approaching and receding

halves for a number of galaxies in their sample.

Similar to the asymmetrical “limbs” of opposing skewness along the edge of

the map in Figure 3.7, Ianjamasimanana et al. (2012) find several other systems

with similar features towards the outer regions of galactic disks. In §3.4.3, we

suggest that these limbs are roughly aligned with the position angle of M33’s

warped disk component (e.g., Corbelli et al., 2014) and such features may

arise from similar warped or lagging components in other nearby galaxies. For

example, the direction of the asymmetrical regions found by Ianjamasimanana

et al. (2012) in NGC 2403 is consistent with the position angle of its lagging

rotational disk (Fraternali et al., 2001, 2002a).

Lagging disk components have been found in a number of nearby galaxies,

including NGC 2403 (Fraternali et al., 2002a), NGC 4559 (Barbieri et al., 2005;

Vargas et al., 2017), NGC 891 (Barnabè et al., 2006), and NGC 925 (Sancisi

et al., 2008; Heald et al., 2011). As mentioned above, NGC 2403 provides an

interesting comparison to M33 because of its flocculent structure. Fraternali

et al. (2002a) suggest the lagging component has an origin internal to NGC

2403, rather than being primordial, due to the coherent structure and connec-

tion to the main disk. NGC 2403 also appears to have been undisturbed by

dynamical interactions (e.g., Williams et al., 2013). Fraternali et al. (2002a)
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suggests that the lagging component results from a galactic fountain mecha-

nism, whereby hot ionized gas ejected into the halo from the fountain cools

into atomic clouds that accumulate and fall back to the disk. Observations of

ionized gas tracers confirm the presence of the lagging component (Fraternali

et al., 2002b, 2004), consistent with the galactic fountain model. For a sample

of nearby galaxies, Sancisi et al. (2008) also find that the extra-planar gas

likely results from a galactic fountain, with a small component accreted from

the intergalactic medium. Barnabè et al. (2006) find that the lagging compo-

nent in NGC 891 is well-modeled by a baroclinic pressure model dependent

on both the density and temperature of the medium. The model treats the

medium as a mixture of a hot homogeneous component surrounding discrete

cold HI clouds. From this, they reproduce the observed velocity gradient of

the lagging component in NGC 891.

A lagging disk component from the galactic fountain mechanism may be

related to cold HI “low-velocity clouds” (LVCs), which have been observed in

the Milky Way. Stanimirović et al. (2006) find a population of small (∼ few

pc) LVCs with velocities of < 30 km s−1 relative to the Milky Way rotation

velocity (see also Lockman et al., 2002; Stil et al., 2006). Adopting their typical

column densities of clouds (> 2× 1019 cm−2), we compare this to the average

column density of material at v ∼ 30 km s−1 off M33 projected rotation speed

(< 2 × 1018 cm18). If the off velocity gas were organized into such clouds, it

would have a reasonable filling factor of f < 0.1 and be broadly distributed

across the disk. Our observations of this gas are consistent with an unresolved

population of small clouds at high altitudes above the disk. The material could

be raining back down as per a galactic fountain model, or the material could

be directly accreting from the hot medium.

Only 1/3 of the line wing emission (∼ 8% of the total atomic gas mass)

is found in the asymmetric wing components, which would be identified as

the “lagging” gas. The remaining 2/3 of the line wing emission in the sym-

metric component may require other explanations, especially since the wings

are significantly wider than the thermal width of the warm neutral gas. One
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possible explanation is neutral gas accretion from the halo. Recently, Zheng

et al. (2017a,b) favour a model where M ∼ 108 M� of ionized gas in M33’s

halo is accreting onto the disk at ∼ 100 km s−1. They suggest that these

features result from the infall of material produced by a galactic fountain or

past interactions between M33 and M31. A key observation in this analysis is

the split between the symmetric and asymmetric components of the line wings

(§3.4.4.2). Our symmetric line wings are consistent with this accretion flow.

3.5.2 Discrete HI clouds

Substantial HI structure has been found within a few degrees of M33 (Grossi

et al., 2008; Putman et al., 2009; Keenan et al., 2016), including discrete fea-

tures in an HI bridge that stretches towards M31 (Lockman et al., 2012).

These structures are thought to comprise a population of high-velocity clouds

(HVCs) or halo gas surrounding M33, similar to the HVC population in the

Milky Way (Sancisi et al., 2008). Studies of these structures require excellent

surface-brightness sensitivity and have mostly been limited to single-dish sur-

veys at low resolution. Kam et al. (2017) provides the first resolved study of

these features nearest to the main disk, including elongated velocity structures

connected to M33’s disk and discrete HI clouds offset in velocity. The data

used by Kam et al. (2017) has a resolution of 120′′, much better than previous

deep HI studies.

We search for similar discrete HI structures within the spatial limits of

our map. Though most of the HI emission in the aforementioned surveys is

outside this area, we find significant extra-planar structure within our data.

Figure 3.18 shows the extra-planar emission with integrated intensity maps

in the northern and southern halves after subtracting the circular rotation

model from the data cube. While most of the previously known HI clouds

from single-dish studies fall outside of the area mapped our survey area, we

find two structures that are consistent with the catalogue from Keenan et al.

(2016).

We find a total atomic mass of 1.3±0.5×107 M� in the velocity-integrated
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Figure 3.18: Integrated intensity maps of components displaced in velocity
from M33’s main disk in the southern half (left) and the northern half (right).
The maps are integrated over the rotation-subtracted data cube; a velocity of
v = 0 km s−1 is set at the systemice velocity of M33. The emission from the
main disk is nearly all confined to velocities of −60 to +50 km s−1 (see §3.4.4).
The left shows the emission structure blue-shifted from M33 (southern half),
while the right shows the red-shifted components (northern half).

regions shown in Figure 3.18, which accounts for about 20% of the total HVC

and disk-halo mass in M33 (Lockman, 2017), and ∼ 1% of the atomic mass

of the main and lagging disks. This mass is a factor of ∼ 3 less than the

estimated HVC mass in the Milky Way (Putman et al., 2012).

The left panel of Figure 3.18 shows the extent of the blue-shifted components

and the right panel shows the red-shifted components. The atomic mass over

these regions is 5 ± 2 × 106 M� and 8 ± 3 × 106 M� for the blue- and red-

shifted components, respectively. In both cases, the extra-planar HI emission

has significant small-scale structure, with features that were unresolved in

previous studies of extra-planar gas in M33 (Westmeier et al., 2005; Grossi

et al., 2008; Putman et al., 2009; Keenan et al., 2016). At 80 pc resolution, the

structures are filamentary with ‘blob’-like concentrations. This is particularly

prominent for the blue-shifted components, which appear highly elongated.

The red-shifted integrated intensity shows four structures, one of which is

partially cut-off by the edge of the map. The structure nearest to the centre of

M33 is a portion of the lagging rotation component highlighted in Figure 3.17,

shown by the deviation in the green contour at an offset of −0.05◦. The last two

structures near the top of the disk (1h34m00s +31◦05′) have been catalogued
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by Grossi et al. (2008) as AA1 and Keenan et al. (2016) as AGESM33-1. These

structures appear blended at the resolutions of both studies, but are shown

here to have multiple faint filamentary structures surrounding the brighter

centre. Keenan et al. (2016) report a mass of 1.18 × 106 M� for the blended

structure, about 1/8 of the total mass we find over this velocity range.

A second structure identified as a HVC by Keenan et al. (2016), AGESM33-

22, is within the spatial extent of our data but is too faint to be detected in

our data at 80 pc resolution. The HVC, located at a velocity of −338± 15 km

s−1, has a column density of 7.2× 1017 cm−2 at a resolution of 3.5′, well below

the sensitivity of our full resolution data.

The structure of the blue-shifted component is dominated by a single fila-

mentary feature that stretches across most of the disk. Thus its mass is that

of the blue-shifted region: 5 ± 2 × 106 M�. The portion nearest to M33’s

centre is comprised of two connected filamentary structures, forming a loop,

that then extends further south. This feature has not been discussed in pre-

vious studies, though it is noted in Figure 7 of Sancisi et al. (2008) using the

Thilker et al. (2002) archival VLA data. It can also be seen in Figure 3 of

Putman et al. (2009) in their Arecibo data at velocities of −159 to −123 km

s−1. The Arecibo data indicate that the two components of the filament are

indeed connected. The filament then has a projected length of ∼ 8 kpc. Sim-

ilarly, the velocity of the northern tip of the filamentary structure approaches

the velocity of the lagging rotational component and the extended structure

between 0–0.2◦ in Figure 3.17. Filamentary HI structures with similar lengths

have been found in NGC 2403 and NGC 891 (Sancisi et al., 2008). Fraternali

et al. (2001, 2002a) find a mass of 1 × 107 M� for the filament in NGC 2403,

about twice the total mass we find in the blue-shifted off-axis emission in M33.

Structures like this HI filament in M33 are strong evidence for accretion onto

the main disk (Sancisi et al., 2008).
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3.5.3 An HI cloud impacting the main disc?

An interesting HI cloud near the northeast edge of the map overlaps in velocity

with the main disk, possibly indicating an interaction between an infalling

cloud and the disk. We show the spatial structure of this cloud in the top

panel of Figure 3.19. The morphology of the cloud is similar to the larger-scale

clouds in §3.5.2, with a central blob-like structure with connecting filamentary

structure. The prominent filamentary feature in the figure reaches toward the

northern edge of the map and overlaps in velocity with the main blob. The

blob is about 600 pc in diameter.

The bottom panel of Figure 3.19 shows the average spectrum over the cloud,

where the velocity axis is defined with respect to the circular rotation velocity

at v = 0. There are clearly two spectral components and possibly a third faint

component around 60 km s−1. We model the two bright components with

Gaussians. The widths of the fitted components are 15.2± 0.5 km s−1 for the

HI cloud and 9.5± 0.2 km s−1 for the disk.

Putman et al. (2009) show that this cloud overlaps in velocity with a portion

of M33’s warped disk, labeled as the “northern warp” in their Figure 3, outside

of our survey area. What we detect as a separate HI cloud may be part of a

larger structure related to the warped disk.

Treating the HI cloud as a discrete structure, we use the cloud’s spectral

component from Figure 3.19 with the total emission over the cloud to derive a

mass of 6.5±0.5×106 M�. This is similar to the total mass found in the blue-

and red-shifted HI clouds in §3.5.2. With this cloud included, the total mass

of off-rotation components becomes ∼ 2 × 107 M� and there are likely other

fainter off-rotation HI clouds blended with the lagging rotational disk that

will also increase this total mass. A full search of these features will require a

more thorough spectral decomposition of the data.
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Figure 3.19: Top: An integrated intensity map highlighting the structure of
the HI cloud. The red dashed box in Figure 3.3 shows this position relative to
the rest of the galaxy. The velocity range is chosen to minimize emission from
the main disk. Bottom: The average spectrum within the red-dashed circle
in the top panel. The velocity axis is defined with respect to the vrot model
from §3.4.1. We fit two Gaussian components to the spectrum, shown as the
green-dashed and red dot-dashed components.
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3.6 Discussion

Measuring the kinematic properties of the atomic ISM is vital for evaluating

and comparing to theoretical models. We compare two common techniques

for estimating kinematic properties in extragalactic observations: the second

moment of the line shape and spectral-stacking. Our results demonstrate that

these common techniques are inherently limited and can yield vastly different

results. For example, the method used to estimate the line width can yield

values that differ by a factor of two (§3.4.5). In this discussion, we compare

our results to those found in nearby galaxies and present a simple Gaussian

Mixture Model for describing stacked profile shapes. This model recovers the

qualitative profile shape found in previous studies, which we use to compare

with previous model interpretations of stacked HI profiles.

3.6.1 Previous work and interpretations

Previous work on extragalactic HI spectra focuses on the HI line width, mea-

sured using the second moment (Tamburro et al., 2009), fitting Gaussian mod-

els to individual spectra (Petric & Rupen, 2007; Warren et al., 2012; Mogotsi

et al., 2016), or stacking spectra over large spatial regions (Young & Lo, 1996;

Braun, 1997; Ianjamasimanana et al., 2012; Stilp et al., 2013a). The first

method is attractive since second moments are simple to compute, though it

assumes the profile is close to a Gaussian. Tamburro et al. (2009) use line

widths from the second moment for the THINGS survey and find typical val-

ues of 10±2 km s−1 across the sample. Since these line widths are larger than

the thermal line width expected for the WNM (∼ 8 km s−1), the profiles are

interpreted as being broadened due to turbulent motions.

Modeling individual spectra by fitting Gaussian components has the advan-

tage of measuring variations down to the resolution of the data, and being

able to account for multiple components. Young et al. (2003) and Warren

et al. (2012) find that most HI spectra can be modelled by up to two Gaus-

sian components. Both studies find a range of line widths in both components,
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suggesting emission components arise from both CNM and WNM phases. The

narrow components have widths of < 6 km s−1 and are attributed to the CNM,

with the line width broadened substantially from the thermal width by turbu-

lence. However, Warren et al. (2012) do not find a clear connection between

the location of narrow components and star-forming regions. Using a similar

data set as Tamburro et al. (2009), Mogotsi et al. (2016) fit a single Gaussian

model to all HI spectra where CO is detected. They find line widths of 10±2

km s−1, consistent with estimates from the second moment.

Alternatively, non-Gaussian line profiles have been modeled using Gauss-

Hermite polynomials, which can account for variations in the skewness and

kurtosis. While this method often provides a good analytical description,

the connections between the model parameters and the underlying physical

properties of the medium are unclear (Young et al., 2003). Young & Lo (1996),

Young et al. (2003), Ianjamasimanana et al. (2012) and Stilp et al. (2013a) use

this model to estimate the velocity at the peak intensity in their data, which

are then shifted to a common centre and stacked.

The HI stacking method has the advantage of vastly increasing the S/N in

the data, allowing low surface brightness emission to be studied at the expense

of removing spatial variations. Nearly all studies find the same basic stacked

profile shape: a near-Gaussian peak with enhanced line wings. This shape is

not well-described by physically-motivated profile shapes. The enhanced line

wings lead to poor single Gaussian fits, yet they are not prominent enough to

match a Lorentzian profile. This has led to different modeling approaches with

differing interpretations of the results. Young & Lo (1996) model the stacked

profiles as a wide and narrow Gaussian component. These two components

have widths of 9 km s−1 and 3 km s−1, respectively. Since these are similar,

though slightly larger, than the expected thermal line widths for WNM and

CNM phases, they attribute the model as separating out the two different

phases, with some broadening from turbulence. A larger sample of 34 galaxies

from the THINGS survey was analyzed by Ianjamasimanana et al. (2012)

using the same two-Gaussian model; the sample overlaps with the independent
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analyses by Tamburro et al. (2009) and Mogotsi et al. (2016). They find similar

results to Young & Lo (1996), with narrow components arising from the CNM

with Gaussian widths of 3.4 to 8.6 km s−1, and wide WNM components with

widths from 10.1 to 24.3 km s−1. These ranges imply that both the CNM and

WNM must be highly turbulent since the line widths are much larger than the

expected thermal line widths of these phases. We note that, for comparison

with our results, the data from the THINGS survey has a coarser spectral

resolution compared to our data, with channel sizes from 1.3 to 5.2 km s−1.

Petric & Rupen (2007) propose an alternate interpretation of the enhanced

line wings in stacked profiles. They argue that the flux ratio of the narrow

component, if exclusively tracing the CNM, to the wide component should

steeply decline with galactocentric radius, matching the observed star forma-

tion activity. Instead, they find that the ratio stays roughly constant to large

radii. They attribute the central component to a mixture of atomic gas, with

enhanced line wings that describe bulk motions, possibly from stellar feedback

or infalling halo gas. Stilp et al. (2013a) test this interpretation by modelling

the stacked profiles as a single Gaussian peak with line wings measured by

their fractional increase relative to the Gaussian. For a sample of 24 dwarf

galaxies, they find line widths ranging from ∼ 6− 10 km s−1 and fwings ∼ 0.05

to 0.2.

An alternative model to the previous studies is introduced by Braun et al.

(2009) and Braun (2012) where spectra with flattened tops are attributed to

a cool HI layer sandwiched between two warmer layers (Braun, 1997). It

is difficult to make comparisons to this model without accounting for multi-

component spectra when calculating the line width. We defer further discus-

sion of this model to future work.

Most methods have also been used to study radial trends in the HI prop-

erties. Tamburro et al. (2009) examine radial variations in the HI line width,

finding that the line width tends to decrease rapidly in Rgal to R25
6, similar to

the radial decline in the star formation rate surface density. The slope beyond

6Defined as the semi-major axis of the 25 mag arcsec−2 isophote in B-band.
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this radius in some galaxies flattens significantly. Stilp et al. (2013b) and Ian-

jamasimanana et al. (2015) examine radial trends by creating stacked profiles

in radial bins. They find the same qualitative result despite using different

models: the line width tends to decrease with radius. This trend is found in

most nearby galaxies, though with three exceptions: NGC 2403, NGC 2976,

and NGC 628 (Ianjamasimanana et al., 2015; Mogotsi et al., 2016). These

systems have a shallow radial decrease in the line width throughout the disk.

The first two galaxies are flocculent spirals similar to M33. NGC 628 is classi-

fied as a grand spiral galaxy, though its mass and star formation rate is within

a factor of 2 compared to M33 (Walter et al., 2008).

These studies cover the HI properties of most nearby galaxies, spanning

a range of galaxy properties and types. Young & Lo (1996), Young et al.

(2003), and Stilp et al. (2013a) restrict their sample to dwarf galaxies, where

the low-metallicity properties and lack of large-scale galactic structure may

lead to differences in the ISM properties compared to the canonical view of

the ISM. Tamburro et al. (2009), Ianjamasimanana et al. (2012), and Mogotsi

et al. (2016) include a mix of galaxy types in their sample. Ianjamasimanana

et al. (2012) find no difference in the HI line widths of stacked profiles between

dwarf and spiral galaxies. Furthermore, Caldu-Primo et al. (2013) analyze the

radial line width trends in the HI and CO for a similar set of nearby galaxies

and find no common radial variation. These results are consistent with all

stacked profiles in these studies having the same qualitative shape (Petric &

Rupen, 2007), suggesting that the physical mechanism governing typical line

profiles is similar regardless of galaxy type.

Druard et al. (2014) present an analysis of HI stacked profiles in M33, using

the archival VLA HI data presented in Gratier et al. (2010). In this work, they

emphasize comparisons of the HI to stacked profiles of CO(2-1). In 1 kpc radial

bins, they find an average HI stacked profile width of ∼ 6.5 km s−1 by fitting

a single Gaussian to the stacked profiles. The line width decreases slowly with

radius — a decrease of just ∼ 2 km s−1 between the bins at Rgal = 0–1 kpc

and the 7–8 kpc bin — similar to the three galaxies noted above.
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3.6.2 Key results in M33

Our results are broadly consistent with previous studies. In particular, we

find a line width of 6.7 ± 0.2 km s−1 from the vpeak stacked profile, consis-

tent with the M33 study from Druard et al. (2014). The line widths of the

stacked profiles over radial bins, ranging largely between 5.5 and 7.5 km s−1,

are also consistent with Druard et al. (2014). This is encouraging since: (1)

the stacked profiles of the archival HI data should have a similarly high S/N

as our data, with the only major difference being the lower spectral resolution

of the archival data (1.2 km s−1), and (2) a different methodology is used in

parameterizing the line shapes. The stacked profiles between the two studies

also have a consistent shape, with a kurtosis excess in the central peak and

prominent line wings. The kurtosis excess is similar to that found by Braun

(1997) and more extreme than other recent studies (e.g., Ianjamasimanana

et al., 2012; Stilp et al., 2013a).

The line widths from the vpeak stacked profiles are near the lower limit of the

range of line widths found by Ianjamasimanana et al. (2012) and Stilp et al.

(2013a) for nearby galaxies (see §3.8.4). However, since these profiles have

non-Gaussian shapes, we note that the equivalent Gaussian width should be

treated as an upper limit on the line width. While the HWHM-scaling method

from Stilp et al. (2013a) is appealing because it does not require fitting an

analytical model, it still has limitations on how well the profile shape can be

described. We discuss the source of these difficulties in §3.6.3.

There are some discrepancies between the range of values we find for the

other HWHM model parameters compared to the set of dwarf galaxies in Stilp

et al. (2013a) and Stilp et al. (2013b):

1. We find consistently larger fwing values, ranging from 0.25 to 0.35 in

radial bins, than the 0.1 to 0.25 range in the Stilp et al. (2013b) sample

(Figure 3.12). This range is, however, consistent if we only consider the

symmetric line wing fraction (Figure 3.14). Thus the symmetric line

wing component, possibly arising from inflowing or outflowing material
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(§3.5), is similar with those measured in nearby dwarfs and the difference

is due to the presence of a lagging rotational disk in M33.

2. Stilp et al. (2013b) find a large range of asymmetries when stacking

spectra in radial bins7. We only find large asymmetries in M33 when

stacking over radial bins in the northern or southern half, respectively

(Figure 3.12). The shape within the HWHM of the stacked profiles in

Stilp et al. (2013b) appear close to symmetrical (see their Figure 4), and

most of the asymmetry occurs in the line wings.

The estimated line widths from the second moment have an average of

∼ 12 km s−1, consistent with the upper limit of the range found by Tamburro

et al. (2009). These widths are 50% larger than largest widths of the stacked

profiles (Figure 3.16). In §3.8.5, we demonstrate that the second moment is

sensitive to the line shape, and can drastically alter the second moment line

width when extended line wings are present. Thus, we discourage the use of

the second moment for estimating line widths. Similar differences between

other line width methods and the second moment are noted in several studies

(Ianjamasimanana et al., 2012; Stilp et al., 2013a; Mogotsi et al., 2016).

3.6.3 Mixture models for stacked profiles

As we explain in §3.6.1, the shape of stacked profiles has led to different mod-

elling approaches and different interpretations of their meanings. To illus-

trate why stacked profiles have shapes that are difficult to model using simple

analytic forms, we invoke a Gaussian mixture model as a framework for un-

derstanding the line wings and widths. We consider the case where a stacked

profile S(v) is an average over an ensemble of Gaussian line profiles with purely

thermal line widths:

7Note that the asymmetry parameter in their study returns the fraction of asymmetry,
bounded between 0 and 1:

afull =
∑

v

√
[S(v)−S(−v)]2∑

S(v)
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S(v) =
∑
i

wi exp

[
−(v − vi)2

2σ2
T,i

]
(3.11)

where wi is the weight of each spectrum, vi is the central velocity and σT is

the thermal line width for temperature T , i.e., σT =
√
kT/µmH. The weights

are normalized such that
∑

iwi = 1. We can describe the shape of the stacked

profile S(v) based on the moments of the distribution. We use the derivation

from Wang & TaafMixturefe (2015) to describe the first four moments. The

centroid (first moment) of the stacked profile is v0 =
∑

iwivi, which depends

only on the distribution of the line centre vi. The variance (second moment)

of the stacked spectrum is then

σ2 =
∑
i

wi(σ
2
T,i + v2

i )− v2
0 (3.12)

and the skewness (third moment) and kurtosis (fourth moment) are respec-

tively

skew =
1

σ3

∑
i

wi(vi − v0)
[
3σ2

T,i + (vi − v0)2
]

(3.13)

kurt =
1

σ4

∑
i

wi
[
3σ4

T,i + 6(vi − v0)2σ2
T,i + (vi − v0)4

]
− 3. (3.14)

The critical result of these moments is that the stacked profile will depend

on the distributions of the line centre and width of the individual spectra

that were averaged over. For example, the shape of the stacked profile could

be reproduced by adopting a reference probability density function for wi =

f(T, vi) encoding the amount of material found at a given temperature and

velocity offset from the reference velocity.

We investigate how the common features in stacked profiles found in dif-

ferent studies can be attributed to the dependence on the distributions of the

line centre and width of individual spectra that comprise the stacked profile.

1. Velocity offsets contribute to the line width. — Equation 3.12 has an

equal dependence on the line width of the spectra and the distribution of

their central velocities. The differences between the vrot, vcent, and vpeak
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stacked profile widths is due to this dependence (Figure 3.16). Stacking

based on vpeak minimizes the variation of the central velocity to within

the uncertainty of vpeak (0.1 km s−1). It represents the optimal recovery

of the mixture of the line widths. The vcent and vrot stacked profiles are

instead dominated by the distribution of the central velocities, not the

distribution of the line widths. The purpose of the different approaches

is discussed further in §3.6.6.

2. Skewness depends on the distribution of line centres. — From Equation

3.13, an asymmetric stacked profile can only occur if the distribution of

line centres is also asymmetric since the sign of the skewness is deter-

mined by the (vi − v0) term. Stacked profiles using vrot or vcent are both

close to symmetric about v = 0, but vcent can be biased by the asym-

metric line wings. To get asymmetric stacked profiles from the former

two line centres, an additional component (i.e., the lagging disk) must

be present in the line profiles.

3. Stacked profiles of the atomic medium almost always have a line wing

excess. — The kurtosis from Equation 3.14 has a strong dependence

on the distribution of line centres and the line widths. Since the terms

all have even powers, non-Gaussian features in either distribution will

always increase the kurtosis, causing the mixture model to have an excess

in the tails. For the atomic medium, the distribution of temperatures,

which only affect σT,i will be non-Gaussian since it will contain a mixture

of CNM and WNM temperatures, with some fraction in the unstable

intermediate regime. Thus, without requiring a separate physical process

to produce line wings, stacked profiles of the atomic medium will always

have an excess in the line wings. The only case where the kurtosis will

decrease is if the majority of the spectra have multiple line components.

This case is not explicitly handled in this toy model, but would tend to

broaden the profile and flatten the peak, resulting in a kurtosis deficit.

Without requiring additional physical processes, this mixture model can
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qualitatively reproduce properties of observed stacked profiles based only on a

set of Gaussian components. This accounts for the near universal stacked line

shape noted in Petric & Rupen (2007) and Stilp et al. (2013a) when stacking

based on the peak velocity.

By adopting simple distributions for the line centres and widths, we test

whether the mixture model of thermal-Gaussian components can produce sim-

ulated stacked profiles with the quantitative properties of observed stacked

profiles. We find that reasonable distributions of HI temperatures creates

narrower stacked profiles with smaller line wing fractions than the observed

stacked profiles. We simulate a stacked profile from the mixture model by

sampling 104 spectra from a uniform temperature distribution ranging from

102–104 K. We also sample the central velocities from a Gaussian distribution

with width σ = 1 km s−1 to compare with the vpeak stacking in our data. The

resulting stacked profile is similar in shape to the vpeak stacked profiles, with

a sharp peak and enhanced line wings. Using the same model used for the

stacked profiles, the mixture model profile has a width of σ = 4.8 km s−1,

κ = −0.03 and fwings = 0.09. When using a wider central velocity distribution

to compare with the vrot stacked profiles, we find that the mixture model also

has a narrower width and smaller fwings.

We create another simulated stacked profile, but alter the temperature dis-

tribution to range from 103–104 K. This increases the width of the profile to

σ = 5.2 km s−1, but makes the shape closer to a Gaussian than the observed

profiles, with κ = −0.01 and fwings = 0.06. This suggests that a cold atomic

component in the stacked profiles is responsible for the high kurtosis excess in

observed stacked profiles.

The mixture model demonstrates that the qualitative stacked profile shape

can be reproduced from a mixture of Gaussian components and a range of

plausible thermal temperatures. This highlights the difficulty in using sim-

ple analytical models for describing stacked profiles. We find that observed

stacked profiles are wider and have more prominent line wings than the simpli-

fied mixture model presented here (Figure 3.3). These differences must arise
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from a combination of the CNM/intermediate/WNM fractions, the lagging

rotational disk, multi-component spectra, and turbulence. We conclude that

stacked profiles reflect this full set of physical effects in M33, rather than be-

ing solely the distribution of CNM/WNM temperatures. In particular, there

must be significant contributions from a multi-modal distribution of line cen-

tres (e.g., from multiple components) to explain the profiles. Because our data

can resolve multiple velocity components both spatially and spectrally, we will

revisit this analysis in future work through the multi-component fitting to our

data, mirroring the approaches used in Galactic studies (e.g., Lindner et al.,

2015; Henshaw et al., 2016).

3.6.4 Interpreting line wings

The various models used for HI stacked profiles are driven by different interpre-

tations of the line wings. The two-Gaussian models used by Ianjamasimanana

et al. (2012) argues that the line wings trace a turbulent WNM component,

while Stilp et al. (2013a) assign the wings as the product of feedback. Our

findings suggest that line widths result from a mixture of different physical

processes, making it difficult to uniquely identify the source of the line wing

excess without a detailed knowledge of the processes that can broaden the line

profiles. The mixture model presented in §3.6.3 shows that the excess line

wings naturally result from combining a set of Gaussian components. Since

both turbulent and thermal motion produce Gaussian profiles, the effect of

each component cannot be determined from the line wing fraction without

additional information.

Both in individual spectra and stacked profiles (over the approaching or

receding halves of the galaxy), we find that line wings are not symmetric and

are consistently skewed towards the systemic velocity (Figure 3.8). Using the

vpeak stacked profiles in the northern and southern halves, we find that about

1/3 of the line wing fraction results from this asymmetric component (Figure

3.14). Based on our comparison of off-rotation and extra-planar structure in

§3.5, we identify this component as arising from the lagging rotational disk.

130



Figure 3.14 shows that the lagging rotational component has roughly an equal

contribution to the line wing fraction throughout the disk.

The symmetric component of the line wing fraction, however, shows sub-

stantial variation with galactocentric radius, though there is no consistent

trend. Instead, the variations appear to result from local processes within the

disk. For example, there is an increase in the mid-disk (Rgal = 2–4 kpc) where

the spiral arms dominate, possibly driven by enhanced recent star formation

in the region and bulk non-circular motions driven by the arm mechanism.

The radial trend is inconsistent with the symmetric line wing component

being driven solely by stellar feedback. Line wings resulting from stellar feed-

back should correlate well with tracers of the star formation rate, which drops

exponentially with radius in M33 (Heyer et al., 2004; Boquien et al., 2015),

as does the H2 surface density (Druard et al., 2014). Stilp et al. (2013a) find

a correlation between the SFR and line wing fraction for stacked profiles over

the full galaxy of their sample of dwarf galaxies. However, the correlation is

tenuous when the stacking is performed in radial bins (Stilp et al., 2013b).

Many of the galaxies in their sample show relatively constant fwings, or oth-

erwise peak far from the centre of the disk, as we find in M33. The lack of a

radial trend may also be inconsistent with the turbulent WNM interpretation,

since turbulent motion is expected to decrease with radius. We discuss this in

context with the line width of the stacked profiles in §3.6.5.

The increase in fwings beyond 6 kpc, driven entirely by the symmetric com-

ponent, emphasizes that multiple processes must contribute to the line wings.

The increase in this region is consistent with the behaviour in skewness and

kurtosis analyses in §3.4.3, and we attribute the variations in §3.4.4.1 to M33’s

warped disk component. Corbelli et al. (2014) and Kam et al. (2017) both find

evidence for the kinematic effects of the warp at similar radii.

3.6.5 A shallow radial gradient in the line width

As mentioned in §3.6.1, the central regions of many nearby galaxies have a

steep radial gradient in the velocity dispersion, with notable exceptions in-
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cluding the flocculent spirals NGC 2403 and NGC 2976. From Figure 3.16,

we find that all of the line width measurements have a shallow radial trend.

The line widths from the vpeak stacked profiles decrease by just ∼ 1.5 km s−1

between a radius of 2 and 8 kpc. This variation is consistent with the radial

decrease found in M33 by Druard et al. (2014) using 1 kpc bins.

The measured line widths from the vpeak stacked profiles are narrower than

the expected thermal line width of ∼ 8 km s−1 for the WNM (for a temper-

ature of ∼ 8500 K; Wolfire et al., 1995). And as found using the Gaussian

Mixture model, the excess kurtosis universally found in stacked profiles re-

quires a contribution of narrow Gaussian components with equivalent thermal

widths of T < 1000 K. The line widths of the stacked profiles should then be

some combination of varying thermal line widths, ranging from CNM to WNM

temperatures, with turbulent broadening, which plausibly varies as well.

The line width traces the distribution of thermal and kinetic energy in the

atomic medium. Cooling and dissipative mechanisms will remove this kinetic

energy, so maintaining these line widths will require energy injection. Previous

work has used the energy balance in the ISM of other galaxies to determine

sources for the energy injection (e.g. Tamburro et al., 2009; Stilp et al., 2013b).

All 11 galaxies examined in Tamburro et al. (2009) have a steep line width

gradient, which tend to flatten towards the outer disk. They find that feedback

via supernova is not sufficient to maintain the observed line widths in the outer

regions, but magneto-rotation instabilities (MRI) plausibly could.

In particular, M33 has an increasing (not flat) rotation curve (Figure 3.5),

which contrasts with models used in the previous work. Similarly the star

formation rate declines exponentially with radius (Heyer et al., 2004; Corbelli

et al., 2014), providing insight into the rate of energy injection by core collapse

supernova. We estimate the volumetric energy dissipation rate by assuming

motions are turbulent with an outer scale set by the disk scale height of the

atomic ISM in the galaxy (H, taken to be 100 pc; Tamburro et al., 2009) and
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dissipate on crossing times (τc = Hσ−1) for the system:

u̇diss =
3

2

Σσ2

Hτc
=

3

2

Σσ3

H2
, (3.15)

where Σ is the surface density of the atomic ISM. The rate of MRI energy

injection has been estimated as

u̇MRI = 0.6
B2

8π
R
dΩ

dR
(3.16)

following Mac Low & Klessen (2004a). Here B is the characteristic magnetic

field strength, taken to be a constant B = 8 µG with radius based on modeling

of the non-thermal radio continuum by Tabatabaei et al. (2008). We use our

rotation curve model to evaluate orbital frequency Ω at galactocentric radius

R. We take the energy injection from core-collapse supernova from Mac Low

& Klessen (2004a):

u̇SN = εSNESNfSN
Σ̇?

〈m〉H . (3.17)

Here εSN ∼ 0.1 is the efficiency with which supernovae inject energy into the

ISM, ESN = 1051 erg is the energy of a supernova, Σ̇? is the star formation

rate surface density, 〈m〉 = 102 M� is the average mass of stars that forms per

core collapse supernova (Tamburro et al., 2009) and H is the scale height of

star formation, taken to be 100 pc again. We use the star formation rate maps

from Boquien et al. (2015), specifically the combined maps from the Galex

FUV and Spitzer/MIPS 24 µm data. We generate a radially averaged star

formation rate profile as the median of data in annular bins with width of 50

pc.

In Figure 3.20, we plot the radial profiles of the turbulent energy dissipation

adopting a range of line widths from 6 to 12 km s−1 and a constant surface

density of 8 M� pc−2, which describe our data well. Neither injection mech-

anism can explain the line widths in isolation. Because of the rising rotation

curve and comparatively low shear, MRI driving rates are significantly below

the dissipation rate estimates, but the MRI mechanism shows a flat profile

consistent with the observed shallow trends in line width and surface density.
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Figure 3.20: Radial profiles of energy injection for core-collapse supernova
(SN; solid red line) and magnetorotational instability (MRI; dashed blue line)
and estimates of the turbulent dissipation rates in the atomic ISM. Neither
mechanism, by itself, matches the range and constant profile of the observed
dissipation rates.
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The star formation rates falls off exponentially and cannot explain the flat

profile of the line widths and surface density but it does broadly agree with

the range of required energy injection rates. Appealing to Type Ia supernovae

as an additional source of turbulent motion will not change the profile sub-

stantially since the old stellar disk in M33 also declines exponentially with a

scale length of 1.4 kpc (Regan & Vogel, 1994).

This model adopts a constant atomic gas scale height throughout the ob-

served region, but the scale height likely increases with galactocentric radius.

While the radial variation of the scale height of gas in M33 has not been

measured, other disk galaxies show that the atomic gas scale height increases

linearly by a factor of two over the optical radius of the galaxy, R25 (e.g., Yim

et al., 2014). For M33, R25 = 9 kpc (de Vaucouleurs et al., 1991), implying that

u̇diss would decrease by a factor of < 4 over the plotted region. The supernova

driving would also show a steeper decline, dropping by an additional factor

of two. However, the thickness of the star-forming disk is relatively constant

(Yim et al., 2014) so the scale height used in u̇SN may remain constant with ra-

dius. Even with this assumption, a flaring HI disk does not clearly match the

factor of 102 decline in supernova driving in this simple model. Using higher

resolution HI data, it will become possible to map spatial variations in the

scale height through changes in the turbulent properties of the gas (Padoan

et al., 2001) and investigate these effects in more detail.

Without a more detailed study, we thus arrive at a similar conclusion as Stilp

et al. (2013b), who examine a number of energy sources for driving turbulence

in their sample of dwarf galaxies and find that a single source cannot maintain

the observed line widths.

3.6.6 Interpretation of different stacking models

The properties of stacked profiles depend on how the spectra are aligned. The

appropriate choice of which definition of the line centre to use — the rotation

velocity (vrot), centroid velocity (vcent), or velocity at peak intensity (vpeak) —

depends on the goal of the analysis.
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Stacking based on vrot maximizes contributions from non-circular motions

in the disk. In M33, the width of the velocity residuals is significant when

compared to the typical WNM thermal width. The line width of this stacked

profile will measures the average kinetic energy in the ISM in the galactic

potential.

The properties of the atomic ISM components at the spatial resolution of

the data are best recovered by stacking based on vpeak since this minimizes

the variance in the line centre distribution for the bright components. Line

wings are also the most significant in this method but trace distributions of

temperature in the ISM as well as multiple velocity components along the line

of sight (§3.6.3). Assuming the statistical uncertainty on vpeak is small, the

resulting stacked profile will recover the average line shape at the resolution

of the data. We explicitly test this in a forthcoming paper (Koch et al., in

prep) and our preliminary results show that individual HI components have a

median line width of ∼ 6 km s−1 based on a Gaussian fit, which matches the

6–7 km s−1 found for the vpeak stacked profiles (Table 3.4). However, in our

upcoming work, we find that individual components have widths ranging from

4–10 km s−1. While the vpeak profiles appear to recover the typical spectrum’s

properties, it necessarily removes spatial variations in the widths.

The line width of the vcent stacked profile can be interpreted as tracing

the kinematics of the internal motions of the neutral medium, since, for an

optically thin tracer, the centroid is the mass-weighted average velocity. The

dispersion around this velocity represents the energy of the gas-to-gas relative

motions, as opposed to the gas-to-galactic potential motions traced by the

rotation-stacked profile. Because vcent is biased by the line shape, however,

caution must be used if the line shapes have a preferential skewness as this will

artificially broaden the velocity distribution. Creating a map of the skewness

(Figure 3.7) or checking the asymmetry of stacked spectra over limited regions

of the galaxy (Figure 3.12) can be used to diagnose how substantial the bias

will be.

Thus, the line width in each of the stacked profile types result in a dif-
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ferent but physically meaningful measure of typical atomic ISM properties.

Differences in the interpretations of these line widths present in the literature

is partly attributable to real variations, but also arise from the method used

for modeling. Most of the literature aims to characterize components of the

ISM, however we caution that these interpretations are necessarily uncertain,

even with good velocity and spatial resolution. We demonstrate this uncer-

tainty in the source of stacked profile properties with the Gaussian Mixture

Model in §3.6.3. Reasonable distributions of ISM properties — for example

the temperature — can produce the qualitative properties of observed stacked

profiles. However, a realistic mixture model must also include distributions for

other physical processes, such as turbulent broadening, outflows from stellar

feedback, bulk non-circular motion and lagging rotational motion, amongst

others.

For the M33 data, the best recourse is to perform a multi-component Gaus-

sian decomposition on a per line-of-sight basis. Such methods can realistically

only work for good-quality observations of nearby galaxies. These detailed

analyses are able to separate the effects of different processes by retaining spa-

tial relationships. We recommend that studies seeking to separate physical

processes either model individual spectra (e.g., Warren et al., 2012) or av-

erage spectra over the size scale of the targetted processes. For more distant

targets where the scale of most processes will be unresolved, or for poor S/N

data, stacking methods are still useful. Though the stacked profile will com-

bine many physical processes together, it can be used as a powerful measure of

similarity between different galaxies. For example, the consistent line widths

found by Ianjamasimanana et al. (2012) between dwarf and spiral galaxies

suggests that some atomic ISM properties are unchanged by galaxy type.

3.7 Summary

We present new L-band observations of M33 taken by the VLA in C-configuration.

The new data set yields a spatial resolution of ∼ 18′′, tracing ∼ 80 pc scales,
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and significantly improves the sensitivity and spectral resolution compared to

previous observations with an rms brightness temperature of 2.8 K in a 0.2

km s−1 channel.

1. The new HI VLA data recover 72% of the total HI emission in M33

compared to estimates from single-dish data within the VLA survey re-

gion. After combining the VLA data with GBT observations, the total

emission matches the emission from the GBT data alone. This gives a

total atomic mass of 1.3 ± 0.2 × 109 M�. The combined data cube is

fully-sampled down to 80 pc scales.

2. We fit a circular rotation model to constrain the kinematic parameters

on 100 pc scales. The rotation curve is well represented by a Brandt

(1960) model with vmax = 110.0 ± 1.5 km s−1 at rmax = 12.0 ± 1.3 kpc.

In general, we find good agreement with previously published rotation

curves for the inner 8 kpc of the disk.

3. For galactocentric radii R < 7 kpc, the azimuthally averaged atomic gas

profile has a nearly-constant average surface density of ΣHI = 8 M� pc−2,

though the observations highlight local variations of 25% with radius.

These variations are seen in both limbs (north and south) of the galaxy.

4. The HI line profiles are consistently non-Gaussian. We parameterize

this by calculating higher-order moments — skewness and kurtosis —

for the line profiles. We find that HI profiles are asymmetrically skewed

towards the systemic velocity, resulting in the northern and southern

halves having oppositely-signed skewness. By examining PV-slices, we

find evidence for a lagging rotational component in M33, consistent with

Kam et al. (2017). We find a typical excess in kurtosis of ∼ 0.2, indicat-

ing that the typical spectrum has an excess in the line wings relative to

a Gaussian.

5. We stack spectra over the entire galaxy, and in 100 pc radial bins. By

modeling the profiles as Gaussian peaks with enhanced line wings, we
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find that stacking based on the velocity at the peak intensity (vpeak) of

spectra gives the smallest widths of ∼ 7 km s−1. This is consistent with

arising from a combination of cool and warm atomic gas with some tur-

bulent broadening. Stacking based on the centroid (vcent) and rotation

(vrot) velocities give large linewidths of ∼ 10 km s−1, which provides an

estimate of internal motions in the atomic medium. However, the cen-

troid is biased by the asymmetric line wings, which will tend to broaden

the stacked profile. Line width estimates from the second moment are

larger than all of the stacked profile widths and are sensitive to extended

line wings.

6. All estimates of the line width show a shallow decrease with radius,

dropping ∼ 2 km s−1 over the inner 8 kpc, though with significant

(20%) fluctuations. This is atypical for most nearby galaxies, which

have steeper slopes at small galactocentric radii. We find that simple

estimates of the volumetric energy dissipation rates from core-collapse

supernova and magneto-rotational instability cannot explain the radial

trend in the line width. The rising rotation curve and low shear in M33

leads to MRI energy injection rates that are significantly lower than the

estimated range from the observed line widths. More careful measure-

ments of the scale height of atomic gas in M33 are needed to make these

conclusions robust.

7. The fraction of excess emission in the stacked profile line widths ranges

from 9% to 26% depending on the choice of line centre. There is no clear

radial trend in the inner 6 kpc, but local variations of 50% are significant.

We split the line wing fraction into asymmetric and symmetric parts

based on the stacked profiles in the northern and southern halves. We

find the asymmetric part, from the lagging disk, accounts for 1/3 of

the line wing excess and is nearly constant with radius. The radial

variations in the line wings are almost entirely driven by the symmetric

part. Beyond 6 kpc, the symmetric part steadily increases, which we
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attribute to the start of M33’s warped disk.

8. We present a Gaussian Mixture Model to explain stacked profile shapes.

Using only a set of Gaussian components with thermal line widths, we

can qualitatively reproduce the stacked profile shape found in many pre-

vious studies. In particular, the highly peaked centre of the profile can

only be reproduced by including line widths expected for the CNM.

However, the model line widths are smaller than the observed range, sug-

gesting that a combination of the CNM/intermediate/WNM fractions,

turbulence, a lagging rotational disk, and multi-component spectra act

to broaden the observed stacked profiles. This large possible combina-

tion of physical processes cannot be extracted from the stacked profile

without additional information.

9. We identify discrete high-velocity gas structures on the blue- and red-

shifted sides of the disk. These structures have a total mass of 1.3±0.5×
107 M� in this high-latitude component, about 1% of the total atomic

mass in the system. Some of these structures were previously identified

with single-dish studies. Here, we can resolve these structures and their

extent across the main disk. All high-velocity structures appear as a

clump surrounded by fainter filamentary structure. We find two features

of particular interest: a long filament in the southern half of the disk with

a project length of 8 kpc, and a cloud 600 pc in diameter overlapping

in velocity with the main disk, indicating a possible interaction point.

These structures highlight the complexities of M33’s halo, and possibly

a connection with the warped disk component.

10. We find no detections of RRL emission, based on stacking six RRL lines.

We set a 3σ upper limit of 3.0 mJy in a 60′′ region towards NGC 604.

In conclusion, the high spectral resolution observations of M33 show the

galaxy harbours a kinematically rich atomic medium. With complete spatial

sampling down to 80 pc scales, our analysis shows that several common analysis
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paths used in extragalactic observations have limitations in describing these

spectra. We highlight that overcoming these limitations requires decomposing

the spectra into their individual components to gain a full understanding of

the atomic ISM kinematics. This provides new opportunities for exploring the

data using tools from the Milky Way community.

Scripts to reproduce the reduction, imaging, and analysis are available at

https://github.com/e-koch/VLA Lband.
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3.8 Appendix

3.8.1 Imaging approach

At a spectral resolution of 0.2 km s−1 and a spatial grid size of 25602 pix-

els needed to cover the entire mosaic, imaging and deconvolution requires

significant computational time and power. The size of the resulting cube is

1178× 2560× 2560 pixels, giving a size of ∼ 29 GB. Rather than imaging the
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cube as a whole, we split the data into individual velocity channels, image and

deconvolve each channel separately, then recombine the imaged channels into

a final data cube. When working on a cluster, this approach allows channels

to be simultaneously imaged, providing a significant speed-up in the time re-

quired to image the entire cube. Furthermore, since the size of the channel

measurement set (MS) is much smaller than the original MS, slow I/O op-

erations are relatively minimized. Using CASA 4.4, we found that imaging

a single channel from the complete MS was ∼ 5× slower than when imaging

from a split channel MS.

This approach to imaging large data-cubes has a significant bottleneck dur-

ing the splitting stage: the time required to split all 1178 channels from the

complete MS was nearly two weeks on the Jasper cluster8, which uses a lustre-

based file system. In hindsight, we note that this is not an optimized choice

of operation; a binary-split algorithm that progressively splits an MS would

likely achieve a significant speed-up in the operation, particularly since this

can be naturally parallelized. Furthermore, the storage requirements are more

than double the size of the original MS. The new CASA task tclean allows

for the measurement set to be opened in a read-only mode, largely mitigating

the need to split off individual channels. This approach will be used in the

future.

3.8.1.1 Image combination

We explore the effects of combining the VLA data with Arecibo (Putman et al.,

2009) and Green Bank Telescope (GBT; Lockman et al., 2012) observations to

provide short-spacing information. Both are well suited to be combined with

our VLA data as they have similar spectral resolution and at least a factor

of two spatial overlap in the uv-plane. We note that older GBT data were

combined with the archival VLA observations presented in Braun (2012), but

these data have a spectral resolution of 1.42 km s−1 and are not well-suited

for combination with the 0.2 km s−1 resolution VLA data presented here.

8https://www.westgrid.ca/resources services
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The Arecibo data from Putman et al. (2009) has a spatial resolution of

3.′4 and a spectral resolution 0.4 km s−1. This provides a significant spatial

overlap with the VLA data, but also requires up-sampling in the spectral do-

main, thereby increasing the channel-to-channel correlation. We first spatially-

register the data using the cross-correlation method in image registration9

and find that no correction is needed. We use the feather simple10 task from

the uvcombine package to combine the data. This method of combining the

data assumes the single-dish beam is well-approximated by an isotropic Gaus-

sian kernel. However, the Arecibo data contains significant side-lobe structure,

which leads to enhanced negative bowling in the feathered image on scales of

∼ 1 ′. Further, the power-spectrum of the Arecibo data, clipped to match the

region covered by the VLA mosaic, shows a drop in power on the scale of the

entire image, indicating a large-scale ripple. This ripple is far less significant in

the larger region around M33 used by Putman et al. (2009). For these reasons,

we did not pursue further image combination with the Arecibo data.

The GBT data from Lockman et al. (2012) has a nominal spatial resolution

of 9.′1 and a spectral resolution 0.16 km s−1. Unlike the Arecibo data, no spec-

tral up-sampling is required to match the VLA data. These data were taken in

four 2◦×2◦ regions centred on M33; aspects of the GBT gridding are presented

in §3.2.2. The effective resolution of the data is 9.8′ (see below), which gives

sufficient uv-overlap for combining with the VLA data. The GBT beam has

minimal side-lobe structure after calibration and the combined images with

the VLA data does not show the enhanced bowling we encountered with the

Arecibo data. Before feathering, we test if the data are spatially-registered

and find that the GBT data require a 3′′ shift in declination. Visually, this

shift appears to provide a better combination with the data compared to when

no shift is applied. However, we note that 3′′ is within the pointing error for

the GBT data.

9http://image-registration.readthedocs.io
10This matches CASA’s feather implementation.
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3.8.1.2 Combination tests

Following Chapter 3 of Stanimirovic (1999), we run two tests on the uv-

amplitudes where the spatial coverage of the VLA and GBT data overlap to

1) ensure a bias is not added from using an incorrect single-dish beam model,

and 2) derive a relative calibration factor to obtain a consistent flux-density

scale. We define the uv overlap region as all points between the 9.′8 beam size

of the GBT data and 16.5′– for the shortest baseline of 44 m in the VLA data.

This gives ∼ 200 overlap points per channel at the grid size of the VLA data

(3′′ × 3′′). To get the GBT amplitudes used below, we deconvolve its Fourier

transform by dividing by the Fourier transform of the GBT beam. The GBT

amplitudes in the overlap region are then multiplied by the ratio between the

beam areas to account for the difference in resolution (Stanimirovic, 1999).

In §3.2.1 of Stanimirovic (1999), an approximate relation between the scale

factor and the uv-distance k is given:

fcal =

[
1 +

∆θ(2θ0 + ∆θ)

4ln2
k2

]
, (3.18)

where θ0 is the true FWHM single-dish beam size and ∆θ is the deviation

from the true beam size and assumed to be small. This predicts a linear

relation between fcal and k2 when an incorrect beam size is assumed. The

correct beam size should have a slope of zero. We perform this fit for each

velocity channel in the data using a robust Theil-Sen estimator to find the

slope. A robust fitting method is required since the combined effects of the

noise and different emission structure in the channels will naturally produce

significant outliers. The Theil-Sen method computes the slope from the median

of all slopes between each pair of data points, as is defined in the scipy

implementation11. The slopes for each channel are shown in Figure 3.21 using

a GBT beam size of 9.′8. This beam size maximizes the number of channels

with slopes consistent with zero. The variations in the slope with different

channels – notably the first 100 and last 200 channels – are driven by the

11https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.theilslopes.html#
scipy.stats.theilslopes
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Figure 3.21: Derived slopes of the uv-distance versus the ratio between the
VLA and GBT amplitudes in the overlap region. A slope consistent with zero
suggests the beam model is correct; an incorrect beam model will incorrectly
bias the amplitudes, giving a non-zero slope.

lack of emission structure and correspondingly have larger uncertainties. The

channels dominated by signal in the uv-overlap range are from 200 to 800,

and since this region has slopes largely consistent with zero, we adopt a GBT

beam size of 9.′8 for feathering.

With the correct GBT beam size established, we now address the scaling

factor between the VLA and GBT amplitudes. We follow a similar procedure

to the one described in §3.2 in Stanimirovic (1999). The emission structure in

both the VLA and GBT smoothly tapers near the map edges and no additional

edge tapering is required. We first fit a line between the GBT and VLA

amplitudes, similar to the method used by immerge in miriad. The issue

with the linear fitting approach is consistently dealing with outliers. We adopt

the Theil-Sen method rather than the L1-minimization used in immerge since

the former tends to be insensitive to outliers in both the x and y directions,

while the latter is only robust against outliers in the y direction (Wilcox,

2010). We fit a relation to the amplitudes in groups of five velocity channels

to increase the number of points. Despite the robust nature of the Theil-Sen
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fit, we did not find consistent results across the channel groups. The issue is

the severity of the outliers and their fraction relative to the entire data set: if

there are too many extreme outliers, the Theil-Sen fit still has some sensitivity

to the outliers. Increasing the number of channels simultaneously fit did not

show improvement, and fitting the entire set of amplitudes is prohibitive for

the Theil-Sen method since it computes the slope for every pair of data points.

Using a distribution-based method, we are able to provide more reliable con-

straints on the scaling factor. Motivated by §3.2 in Stanimirovic (1999), we

first examine the distributions of the GBT amplitudes, the VLA amplitudes,

and their ratio across all channels. The GBT and VLA amplitudes reasonably

follow a log-normal distribution12. Since the ratio of two normal random vari-

ables follows a Cauchy (or Lorentzian) distribution, the log of the amplitude

ratios can be fit to this form. The scaling factor is then the location of the dis-

tribution’s peak. Figure 3.22 shows the distribution of the amplitudes across

all channels (blue) and the best-fit Cauchy distribution (green). This approach

has the significant advantage that outliers are included in the expected model

(the distribution tails) and do not require special treatment. The Cauchy dis-

tribution is also preferable to the Rayleigh distribution used in Stanimirovic

(1999), which gives more weight to the outliers in the right-tail. Adopting a

maximum-likelihood approach, we find a scaling factor of 1.02 ± 0.06 using

the ratios from all channels. As this is consistent with 1, we do not apply a

scaling factor to the GBT data before feathering. We also perform the fitting

on groups of five channels and find scaling factors consistent with one between

channels 200 to 800, where most of the emission is contained.

3.8.2 Choice of velocity surface for the rotational model

Galactic rotation curves, with a few exceptions, are typically derived from

velocity surfaces. A key question explored in several publications — notably

de Blok et al. (2008) — is: which velocity surface optimally traces galactic

12Note that this does not imply a log-normal distribution for the true signal. The log-
normal shape results from the mixing between signal, noise, and other telescope effects.
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Figure 3.22: The log of the VLA-to-GBT amplitude ratios in the uv-overlap
region across all channels. The histogram of the ratios is normalized to one and
the green line is the best-fit Cauchy distribution. The peak of the distribution
is at 1.02± 0.06, consistent with a scale factor of one.

rotation? Commonly used methods include the centroid (vcent), the velocity

at the peak intensity (vpeak), and Gauss-Hermite fitting. We create velocity

surfaces of the former two methods for the VLA-only and combined HI cubes

and fit a rotation curve using diskfit with the same parameter settings. We

did not fit a rotation model for the Gauss-Hermite velocity surface for two

reasons. First, using the VLA-only cube, the difference between the Gauss-

Hermite centre and vpeak was much smaller than the difference to the vcent

surface and will yield similar results. The second reason is that the Gauss-

Hermite fitting did not perform well with the enhanced line wings for the

combined data.

We find that the rotation models using the VLA-only vpeak and vcent falls

within the uncertainty of the combined VLA & GBT vcent surface, whose

rotation curve is presented in §3.4.1. However, the vcent surface from the

combined data has a shallower rotation curve. The reason for this discrepancy,

and the agreement of the other rotation models, is due to the bias from the

line wings. Without the component from the GBT, the VLA-only vcent is not
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as biased by line wings and largely matches the vpeak.

3.8.3 Rotation velocities

We provide a table of the calculated rotational velocities from diskfit pre-

sented in §3.4.1.

Table 3.6: Circular rotation velocities derived by diskfit (§3.4.1). The rota-
tion model is fit to the peak velocity (vpeak) surface of the VLA+GBT data.

Radius (′′) Circ. Velocity (km s−1)

3 1.58± 6.24

9 11.88± 5.26

15 22.71± 5.25

21 30.53± 5.12

27 29.95± 4.47

33 34.20± 4.03

39 36.76± 3.99

45 44.61± 3.79

51 47.80± 3.49

57 51.67± 3.08

63 52.73± 2.96

69 53.24± 3.06

75 55.30± 3.22

81 57.58± 3.30

87 58.70± 3.42

93 59.47± 3.50

99 60.30± 3.59

105 64.32± 3.78

111 67.66± 3.75

117 69.07± 4.03
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123 72.05± 4.49

129 75.89± 4.82

135 74.09± 4.91

141 73.44± 3.29

147 77.06± 2.76

153 77.06± 2.80

159 77.82± 2.60

165 79.01± 2.48

171 80.96± 2.59

177 80.34± 2.50

183 80.35± 2.65

189 82.90± 2.66

195 86.23± 2.66

201 86.92± 2.59

207 86.13± 2.63

213 87.43± 2.57

219 87.89± 2.63

225 87.82± 2.35

231 91.08± 2.44

237 90.37± 2.25

243 88.22± 2.09

249 90.67± 2.36

255 92.32± 2.48

261 93.31± 2.26

267 94.15± 2.15

273 93.40± 2.37

279 94.02± 2.44

285 94.91± 2.50
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291 95.57± 2.48

297 95.15± 2.22

303 93.19± 2.46

309 94.52± 2.63

315 95.00± 2.77

321 95.72± 2.90

327 96.89± 2.81

333 98.58± 2.73

339 98.09± 2.61

345 99.87± 2.53

351 99.10± 2.41

357 99.01± 2.40

363 97.58± 2.21

369 98.60± 2.26

375 99.61± 2.22

381 99.61± 2.49

387 102.02± 2.40

393 101.84± 2.52

399 102.76± 2.38

405 102.66± 2.62

411 102.57± 2.68

417 104.08± 2.58

423 103.24± 2.39

429 103.17± 2.42

435 103.33± 2.50

441 103.41± 2.64

447 103.91± 2.56

453 102.91± 2.63
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459 105.50± 2.47

465 104.05± 2.47

471 106.03± 2.47

477 104.89± 2.57

483 106.68± 2.48

489 105.53± 2.36

495 105.80± 2.33

501 104.03± 2.23

507 105.58± 2.23

513 105.69± 2.26

519 106.32± 2.17

525 105.97± 2.32

531 105.58± 2.20

537 106.18± 2.26

543 106.08± 2.28

549 106.24± 2.36

555 106.39± 2.37

561 106.47± 2.43

567 107.19± 2.44

573 105.88± 2.58

579 106.58± 2.52

585 106.09± 2.56

591 106.30± 2.35

597 107.23± 2.61

603 104.01± 2.82

609 104.50± 2.59
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Figure 3.23: Two Gaussian fits to the vpeak stacked profiles shown in Figure
3.11. The left panel is a stack of the VLA-only data and the right uses the
combined data. The model residuals are shown in the bottom panels.

3.8.4 Modeling super-profiles

We demonstrate an alternative modeling approach for the super-profiles: fit-

ting two stacked Gaussian profiles. Figure 3.23 shows the vpeak stacked profiles

presented in §3.4.4 with a fitted two-Gaussian model and the model residuals.

The model parameters are given below. Note that we do not list uncertainties

due to the large covariance between parameters, which we discuss below.

These two stacked spectra drove our decision to use the HWHM scaling

from Stilp et al. (2013a), since the central peak is non-Gaussian and the re-

sulting two-Gaussian fit does not provide a better description for the data. Of

particular concern is that the model components cannot account for the cen-

tral peak. The sum of the amplitudes in both fits is ∼ 0.95. The narrow and

wide amplitudes are 0.51 and 0.55 for the narrow component, and 0.45 and 0.4

for the wide component, for the VLA and combined profiles, respectively. The

difference in the components is about the same as the missing peak intensity,

making comparisons of their ratios uncertain.

We find widths of 4.1 and 10.5 km s−1 for the VLA-only profile, and widths

of 4.7 and 14.4 km s−1 for the combined profile. The HWHM widths of 5.9 and

6.6 km s−1 for these two profiles are ∼ 50% larger than the narrow component.

This is consistent with comparing the common galaxies examined with these

two methods in Stilp et al. (2013a) and Ianjamasimanana et al. (2012).
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Since Gaussian components do not form an orthogonal set, there are large

covariances between the parameters. Stilp et al. (2013a) explore this issue

in depth and demonstrate that it is this covariance that leads to the overall

good fits presented in Ianjamasimanana et al. (2012). Stilp et al. (2013a) show

that the individual components from the two-Gaussian fit do not account for

the overall profile shape. They demonstrate this by scaling all profiles to a

common width, based on the different models, and find that the shapes from

the broad and narrow components have significantly more scatter compared

to the HWHM estimate.

While the two-Gaussian fits provide an adequate representation of the pro-

files, there are model-dependencies that impact the connection to the under-

lying physical parameters, to the extent that the super-profiles can give. Thus

we use the HWHM modeling throughout this work.

3.8.5 Issues with the second moment for estimating the
line width in Local Group galaxies

In Figure 3.24, we show that there is a stark difference between the averaged

second moment line widths with and without the total power component added

– the values increase by ∼ 30%. This highlights the impact of extended line

wings when using the second moment to estimate the line width, making it

difficult to directly connect with the underlying physical conditions. The large

discrepancy seen here is a product of two factors. The first is the limit of

small angular scales in the VLA data for a relatively nearby system. Figure

3.1 shows that the combined VLA and GBT data recover significantly more

of the large-scale disk structure in the southern half than the VLA data only.

This issue is less important for more distant systems (e.g., Walter et al., 2008).

The second factor is the extensive extra-planar component in the warped disk

of M33. As we suggest from the skewness maps (§3.4.3), the warped disk

component influences the line shape near the edges of our map, increasing

the line widths estimated from the second moment. The extent of this factor

depends on the galaxy’s environment. However, these average line widths
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Figure 3.24: The azimuthally-averaged line width estimated from the second
moment in 100 pc bins. The combined VLA+GBT data (green dot dashed) are
30% larger than the VLA-only values (blue solid). From the stacking analysis
(Figure 3.11, however, we find that adding the GBT component tends to only
affect the shape of the line wings. The large increase from the inclusion of the
GBT data highlights that estimates from the second moment are very sensitive
to the line wing structure.

are consistent with the range found in other HI studies of nearby galaxies

(Tamburro et al., 2009; Mogotsi et al., 2016), showing that this effect is not

strong enough to make M33 an outlier, or that line widths from the second

moment in other galaxies are similarly affected.
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Chapter 4

A Dearth of Tophats in M31 &
M33: H i Spectra Strongly
Prefer Multigaussian over
Opaque Model Fits

To be submitted to the Monthly Notices of the Royal Astronomical Society

as Eric W. Koch et al. 2020, ”A dearth of tophats in M31 & M33: HI

spectra strongly prefer multigaussian over opaque model fits.” This work is

in collaboration with J. Chastenet, I. Chiang, A.K. Leroy, E.W. Rosolowsky,

K.M. Sandstrom, and D. Utomo.

Abstract

We model 21-cm HI emission spectra from recent VLA observations of

M31 and M33 on 100 pc scales and find that the spectra strongly prefer a

multi-Gaussian fit over a single opaque model fit (i.e., a top hat shape). This

strong preference means that the observations do not support the existence

of ∼ 100 pc cold HI clouds, which has been suggested in previous work at

locations of bright HI in nearby galaxies. Our results are partially driven

by the improved spectral resolution (0.42 km s−1) over archival observations

(> 1.2 km s−1). Many HI spectra have multiple distinct peaks in our ob-

servations, which may be blended at coarser resolution. To verify our model
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selection test, we apply the same fitting to a sample of synthetic spectra drawn

from the opaque model with observational noise added and confirm that the

opaque model is correctly preferred on average. Previous studies compute

a mass correction factor of ∼ 30% from inferring the dark HI mass from the

opaque model compared to the HI mass from the optically-thin assumption (∝
HI integrated intensity). We show that the mass correction factor is strongly

dependent on the definition of goodness-of-fit. We compute mass correction

factors from 1%, using the 1% of spectra where the opaque model is favoured

over the multi-Gaussian model, to 118% using the criterion from previous stud-

ies. Because of this large uncertainty, we suggest that the opaque HI mass is

best constrained by HI absorption studies.

4.1 Introduction

Due to the ubiquity of the atomic interstellar medium (ISM) throughout the

Milky Way and nearby galaxies, the 21-cm is an excellent tracer of many phys-

ical processes, in addition to probing the thermal and kinematic structure of

the atomic ISM. These different processes produce confounding and degener-

ate effects in spectral line observations, and it can be difficult to disentangle

the line profiles and recover the physical properties of the atomic ISM. This

makes the modeling and interpretation of 21-cm HI spectral lines challenging.

The different states of the atomic ISM can be a particular challenge to ac-

count for in observed spectra. The classical interpretation of the atomic ISM

is that it is found in two stable states in pressure equilibrium (Field et al.,

1969; Wolfire et al., 2003): the warm neutral medium (WNM) and the cold

neutral medium (CNM), whose temperature and density differ by factors of

∼ 100. These thermodynamic differences result in distinct differences in their

observed properties, namely that the WNM at low densities is optically-thin

while the CNM at higher densities can become optically thick. In observations,

the optically thick CNM is preferentially detected in HI absorption, while HI

emission profiles are some combination of CNM and WNM. Additionally, ob-
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servations find the presence of atomic gas in an intermediate unstable regime

(unstable neutral medium; UNM) pushed out of the stable regimes by a per-

turbing source, such as turbulence (Heiles & Troland, 2003; Murray et al.,

2018). These external sources broaden the observed spectral profiles, yielding

line widths in excess of what is expected from thermal motion alone.

One key property measured in most extragalactic HI studies is the atomic

ISM mass. Most studies measure the mass by assuming optically-thin HI

emission, which allows the HI integrated intensity to be converted to column

density. The optically-thin assumption is generally assumed to be valid be-

cause the HI in the warm neutral medium (WNM) has a larger volume filling

factor relative to the cold neutral medium (CNM; Ferrière, 2001). Since most

extragalactic HI studies resolve > 100 pc, the assumption follows from most of

the emission coming from the volume-filling component. However, it is difficult

to assess the validity of the optically-thin assumption from HI emission alone

without constraints on the fraction of CNM/UNM, and thereby the opaque

HI mass. This means that optically-thin HI mass measurements are likely

underestimated in nearby galaxies.

Milky Way observations provide the strongest constraints on opaque HI

from extensive HI absorption studies and provides a rough guide to the phase

structure in nearby galaxies (though phase structure is expected to vary with

galactic environment Wolfire et al., 1995; Bialy & Sternberg, 2019). Our lo-

cation in the Galactic disc makes it favourable to measure opaque HI in ab-

sorption towards (i) background continuum sources (Heiles & Troland, 2003;

Murray et al., 2018; Wang et al., 2020a) and (ii) lines-of-sight where cold gas

(CNM/WNM) self-absorbs against a bright WNM background (Gibson et al.,

2000; Gibson et al., 2005; Kavars et al., 2005; Soler et al., 2019; Wang et al.,

2020b). The former strongly constrains the opacity and spin temperature,

while the latter maps the spatial extent of nearby cold atomic gas (Gibson

et al., 2005) or its association with molecular clouds (Li & Goldsmith, 2003;

Goldsmith & Li, 2005; Krčo & Goldsmith, 2010). In locations without a bright

background to self-absorb, cold HI is observed as narrow emission spectra (e.g.,
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Haud, 2000) but becomes confused near the Galactic plane where the line-of-

sight depth is large. Relative to the optically-thin HI mass, studies comparing

HI emission and absorption find that opaque HI requires a mass correction

from ∼ 10% (Lee et al., 2015) to 140% (Bihr et al., 2015), depending strongly

on the line-of-sight.

Direct constraints on the opaque HI mass in nearby galaxies is more difficult

since their much small angular sizes intersect fewer bright background sources

to measure HI in absorption against, and the top-down view means there

there are fewer lines-of-sight with WNM emission located behind cooler HI to

produce strong self-absorption. Because of their proximity, the Local Group

galaxies intersect the largest number of background sources and thus have the

strongest observational constraints on opaque HI from absorption studies By

comparing HI absorption spectra to nearby emission spectra (Dickey et al.,

2003), the fraction of atomic gas in the CNM is inferred to range from ∼ 15%

(M33; Dickey & Brinks, 1993) to ∼ 40% (M31 & LMC; Braun & Walterbos,

1992; Dickey et al., 1994, 2000). The CNM fraction in the SMC is ∼ 20%,

near the lower end of this range (Dickey et al., 2000; Jameson et al., 2019).

However, the issue in extending these estimates remains the sparse spatial

sampling of bright background sources. This makes extrapolating to a total

opaque HI mass highly uncertain.

On the other hand, HI emission studies are extremely valuable since they

provide the highest linear resolution continuous maps of HI in extragalactic

systems (Stanimirovic et al., 1999b; Kim et al., 2003; Braun et al., 2009; Koch

et al., 2018c). Because of this high linear resolution, HI emission maps of the

Local Group galaxies show significant spectral complexity on < 100 pc scales.

In this way, they more closely resemble the complex HI emission spectra in

the Milky Way more than the limited spectral shapes that can be recovered

from other nearby galaxies (e.g., Walter et al., 2008).

Noting the complexity in Local Group HI spectra, Braun et al. (2009)

propose a solution for distinguishing between cold and warm atomic gas from

HI emission alone They note that some HI spectra in M31 have a distinct
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flattened-top, which can be reproduced by a simple model where a single gas

component, broadened by non-thermal (e.g., turbulent) motion, is optically-

thick above some column density (see also Rohlfs et al., 1972). If this is the

case, it provides a powerful method for measuring the HI opacity since it relies

only on HI emission, not absorption. Braun (2012) extend this identification

to the M33 and LMC.

The key result from Braun et al. (2009) and Braun (2012) is that the

optically-thin approximation underestimates the atomic gas mass by ∼ 35% in

M31, M33, and the LMC. This has vast implications for the atomic ISM mass

measured using the optically-thin assumption, particularly for nearby galaxies

beyond the Local Group where the linear resolution is 100s pc and the HI

spectral line shape is poorly constrained. However, comparisons with other

tracers suggest that the HI mass correction factors from Braun et al. (2009)

are overestimated. Sandstrom et al. (2013) find that this level of opaque HI

requires a large change in the dust-to-gas ratio (DGR) between atomic- and

molecular-dominated regions, or otherwise require the CO-to-H2 factor (αCO)

to increase. While the latter is expected to vary (Bolatto et al., 2013a), a

strong effect due from opaque HI suggests its location should correlate with

molecular clouds, as the source of bright CO emission. However, many of the

opaque HI regions from Braun et al. (2009) and Braun (2012) are not corre-

lated with CO emission. In contrast, the largest HISA structures in the Milky

Way are strongly correlated with CO emission and molecular gas (Gibson

et al., 2005).

Few other HI studies find flat-top spectra consistent with the opaque HI

model, particularly in the Milky Way. Those that do note the difficulty in

distinguishing a flat-top from two blended Gaussians (Rohlfs et al., 1972),

where the latter may be favoured over a region where some spectra do show

two clear peaks while others are too blended to distinguish between (Peek

et al., 2011). Further, HI studies toward nearby molecular clouds with ∼ pc

scale resolution do not find flat-top spectra distributed on molecular cloud

scales (Lee et al., 2015). This is an important difference since the Braun et al.
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(2009) model requires a high filling factor of cold atomic gas on ∼ 100 pc

scales (their resolution) to for the model to be valid. Similarly, flat-top HI

emission spectra are not prominent on ∼ 3 pc scales in the Small Magellanic

Cloud (SMC) near bright continuum source where HI absorption is detected

(Jameson et al., 2019).

One source for these discrepancies in the HI line shape may be the limited

spectral resolution of the HI observations used in Braun et al. (2009) and

Braun (2012), which range from 1.4–2.3 km s−1. Assuming a resolved Gaus-

sian component requires sampling with channels ∼ 2× the line width (Koch

et al., 2018b), the minimum thermal temperatures for a resolved component

with these channel widths is 1300–3600 K, far larger than the the CNM tem-

peratures and requiring a large non-thermal component to broaden the line

width. Thus an HI spectrum with a flat-top may result from two or more

overlapping Gaussian components where separate peaks become less distinct

due to the coarse spectral resolution.

To investigate this issue, we use new HI observations of M31 and M33 with

0.42 km s−1 spectral resolution taken with the Karl G. Jansky Very Large

Array (VLA). These observations in this work resolve linear resolution scales

of 60–300 pc (accounting for galaxy inclination). Specifically, we compare the

opaque “flat-top” model introduced by Braun et al. (2009) and Braun (2012) to

a multi-Gaussian model. Our initial work with these high-sensitivity observa-

tions demonstrate complex HI spectra in M33 (Koch et al., 2018c), suggesting

that additional features are observed with 0.42 km s−1 resolution that may

not be evident in previous observations. With this spectral resolution, these

observations are capable of resolving line widths to a lower limit of 120 K cold

gas.

We introduce the observations in §4.2 and the model fitting and comparison

definition in §4.3. In §4.4, we use the model comparison and present our main

result: most HI spectra in M31 and M33 are best-modelled with a multi-

Gaussian model. From this result, we discuss in §4.5 the lack of a large-

scale opaque HI from emission spectra alone, and how this compares with
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previous work in the Milky Way and nearby galaxies. Finally, we summarize

our conclusions in §4.6.

Throughout this work, we adopt distances of 744 kpc for M31 (Vilardell

et al., 2010) and 840 kpc for M33 (Freedman et al., 2001).

4.2 Observations

The observations in this work are described in Chapter 2. Specifically, we

use the 19′′ M33 map (VLA C-configuration; also see Koch et al., 2018c) and

the new 18′′ M31 map (VLA B and C-configuration with a uv-taper), which

covers most of the northern half. Both data sets include short-spacing from

the Effelsberg-Bonn HI Survey (EBHIS, M31; Winkel et al., 2016) and the

GBT (M33; Lockman et al., 2012). Figure 4.1 shows the integrated intensity

maps of both galaxies at the resolution used here. The remainder of this

sections describes additional data handling required for this work. Table 4.1

summarizes the observational properties and provides a comparison to previous

high-resolution 21-cm HI data (see also Thilker et al., 2002; Gratier et al.,

2010).

For the M31 map, the bright background radio source B0044+419 falls

within the field-of-view and strong HI absorption features from M31 are mea-

sured (Braun & Walterbos, 1992). We mask the region around B0044+419

by defining a region 1.5× the beam area to avoid fitting strong absorption

features, for which the methods in §4.3 are not suited to model.

To match the M31 spectral resolution, we spectrally downsample the 19′′

M33 HI cube from the original 0.21 km s−1 from Koch et al. (2018c).

The per-channel rms noise is 2.8 and 2.0 K in the M31 and M33 data,

respectively. Since strong emission continues to the edges of the observed area,

particularly for M31 (Figure 4.1), the noise varies with the effective primary

beam for the mosaic. We weight the noise levels used for the spectral fitting

in §4.3 by the primary beam, which increases the noise levels by ∼ 5× in the

most extreme cases affecting only a small number of spectra.
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Finally, we note that we do not match the angular resolutions of the data

set. This is primarily due to M31’s large inclination (78◦ Corbelli et al., 2010),

and so the linear resolution is ∼ 60–300 pc along the major and minor axes,

respectively (similarly noted by Caldú-Primo & Schruba, 2016b). This dif-

ference in the linear resolution is less extreme in M33, which has a smaller

inclination angle of 55◦ (Koch et al., 2018c). The linear resolution for M33 is

then 80–130 pc. Accounting for variations in the linear resolution, these ranges

overlap between the two galaxies, though their angular resolutions differ by

∼ 1′′.

To test this assumption, we use the fitting methods from §4.3 on small

regions of M31 and M33 at matched angular resolution. The fitted properties

are consistent between the matched and original resolutions.
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Target Resolution Linear Resolution Channel Noise 5σrms Optically-thin Observatory

Major × Minor axis Width column density

(′′) (pc) (km s−1) (σrms; K) (cm−2)

Braun et al. (2009) M31 30 100× 500 2.3 1.0 2.0× 1019 WSRT

This Work M31 18 60× 300 0.4 2.8 9.8× 1018 VLA

Braun (2012) M33 30 130× 205 1.4 2.1 2.6× 1019 VLA

This Work M33 19 80× 130 0.4 2.0 7.0× 1018 VLA

Table 4.1: Summary of 21-cm HI observations from our work and those from Braun et al. (2009) and Braun (2012, see their
Table 1). The M33 VLA observations used in Braun (2012) are presented in Gratier et al. (2010) (see also Thilker et al.,
2002). The linear resolution range accounts for the galaxy inclination.
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4.3 Modelling HI spectra

We test two models to describe the HI line shape: an optically-thick HI model

for one broad component, and a multi-Gaussian model. In this section, we

introduce these models, the fitting procedures, and the model selection used

to compare between them.

4.3.1 Opaque HI Model

In the absence of a background continuum source, the general line profile for

isothermal HI broadened by turbulence is

Tb(v) = Ts [1− exp [−τ(v)]] , (4.1)

where v is the velocity1, Tb is the observed brightness temperature, Ts is the

HI spin temperature, and τ(v) is the optical depth profile. Following Braun

et al. (2009), the optical depth profile can be expressed in terms of the HI

column density (NHI; cm−2), Ts (K), and line width (σ; km s−1):

τ(v) =
5.49× 10−19NHI√

2πTsσ
exp

[
−(v − vp)2

2σ2

]
, (4.2)

where vp is the velocity at the peak in optical depth. The line width can be

expressed in terms of a thermal and non-thermal component, σ =
√
σ2

T + σ2
NT,

where the non-thermal component is presumed to be dominated by turbulence.

Similar to Braun et al. (2009), we assume the kinetic and spin temperatures

are equal (Tk =Ts) in the absence of additional constraints. In the limit of

high Ts, high σ, or low NHI, we recover the optically-thin limit of a Gaussian

line shape since exp [−τ ] ≈ 1− τ for small τ .

Equation 4.1 includes an implicit assumption for a high filling factor of

cold gas within the telescope beam. If the filling fraction is lower, we ex-

pect an observed spectrum will converge to the optically-thin case where the

WNM emission dominated the spectrum shape, as is often assumed for nearby

galaxies with coarse spatial resolution. If an observed 21-cm HI spectrum is

1Or equivalent spectral quantity.
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Figure 4.1: HI integrated intensity maps of M31 and M33. Our new VLA
HI map of M31 covers most of the Northern half of M31. The M33 VLA HI
map is presented and described in detail in Koch et al. (2018c).
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Figure 4.2: Example HI spectra in M31 (left) and M33 (right). The spectral
channel width in all spectra is 0.42 km s−1, and the 3σ rms noise levels are
shown in gray to emphasize that the spectral complexity is real. In both
galaxies, we find distinct spectral features that consistently deviate from a
single Gaussian profile. Most of these example spectra have multiple peaks,
though notably, the spectra in the bottom row show the general “flat-top” that
may result from opqaue HI. By consistently modeling the HI spectra with the
multi-Gaussian and opaque models, we quantitatively distinguish between the
appropriate model for the array of spectral shapes.
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significantly flattened, as Equation 4.1 implies, the opaque HI region must

be similar in scale to the resolution. In our observations and those in Braun

(2012), this would imply cold atomic “clouds” on ∼ 100 pc scales.

Braun et al. (2009) and Braun (2012) fit with τ defined in Eq. 4.2 to HI

spectra in M31, M33, and the LMC. An isothermal approximation is assumed

to describe the bright HI along a line-of-sight, which follows from the low

filling fraction of cold HI clouds from Braun (1997). Braun et al. (2009) use

a grid search approach to find the best-fit model, chosen based on minimizing

the reduced χ2. To limit the range of possible models in the grid, the centre

of the line was fixed to within ±5 km s−1 of the velocity centroid. With their

observations, this allows the centroid velocity in the fit to vary by ∼ 2 channels.

To fit the HI spectra here, we make three changes to the approach from

Braun et al. (2009) to measure and reduce parameter covariance from Equa-

tions 4.1 & 4.2.

1. We fit the model using using a Levenberg-Marquardt algorithm, as im-

plemented in the scipy python package (Virtanen et al., 2020), instead

of the grid search method from Braun et al. (2009). This approach en-

ables us to estimate the parameter uncertainty and covariance in the fits.

Parameter covariances become important as the model approaches the

optically-thin limit, where σ, NHI, and Ts will be strongly covariate due

to the lack of constraints on Ts.

2. To minimize the parameter covariance in the model, we do not split

the line width into a thermal and non-thermal component. This change

is important when the profile approaches the optically-thin limit and

Ts is unconstrained, which leads to the thermal contribution only being

limited by the upper limit of Ts = 8000 K for HI. When Ts is constrained,

the non-thermal line width can be recovered by subtracting the thermal

component in quadrature.

3. We further decrease the parameter covariance in the model by simplifying
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the optical-depth profile from Equation 4.2 to

τ(v) =

(
Tp

Ts

)
exp

(
−(v − vp)2

2σ2

)
, (4.3)

where Tp is the peak temperature and τp = Tp/Ts is the peak optical

depth at vp. In terms of the column density, Tp = 5.49×10−19NHI/
√

2πσ.

For opaque HI, the observed peak temperature will converge to Ts, while

the optically-thin emission will converge to Tp. Using this change of vari-

ables removes the added covariance between Ts and σ from the thermal

and non-thermal line width components, and introduces a parameter Tp

with a similar range to Ts, unlike NHI which varies over several orders of

magnitude. The optically-thin regime is then primarily set by the peak

optical depth, τp = Ts/Tp.

We keep similar constraints on the velocity of the line centre. Due to

the finer spectral resolution of our data, a limit of ±5 km s−1 translates to

±12 channels.

4.3.2 Multi-gaussian model

A second model for the observed HI spectrum shapes is simply a sum of

Gaussian components, equivalent to the optically-thin limit of Equation 4.1:

Tb(v) =
N∑
i

Tb,i(v) =
N∑
i

Tp,i exp

[
−(v − v0,i)

2

2σ2
i

]
, (4.4)

where each component is defined in terms of its peak temperature (Tp,i), central

velocity (v0,i), and line width (σi).

Rohlfs et al. (1972) first point out that the Milky Way HI spectra with flat

tops could also be explained by ∼ 2 Gaussian components blended together.

The difficulty in distinguishing between an optically-thick component and mul-

tiple Gaussian components lies in the flexibility of a multi-Gaussian model: two

or more Gaussians can be arranged to explain many spectral shapes and do

not form an orthogonal basis set. In this section, we describe our approach
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for determining an appropriate number of Gaussian components to avoid over-

fitting, while accounting for spatial continuity to distinguish between one or

more overlapping Gaussians.

Several recent studies present algorithmic approaches to (semi-)automated

spectral-line fitting fitting (e.g., Haud, 2000; Lindner et al., 2015; Henshaw

et al., 2016; Marchal et al., 2019; Keown et al., 2019; Sokolov et al., 2020).

The method we use here combines elements from some of these studies to

optimize the fitting for our particular data sets, though we highlight that we

do not explicitly include spatial information in the fitting (§4.3.2.3). From

our early testing trying different methods, we note that most spectral-line

fitting algorithms will likely require at least small changes to be optimized for

a particular data set or science goal. However, the publicly available code from

these projects enables specific optimization with relative ease.

Our multi-Gaussian fitting method has three stages: (1) identifying the

number of components and initial parameter guesses (Lindner et al., 2015);

(2) an initial non-least squares optimization and internal model selection test;

and (3) a nearest neighbour model selection test and final fit. Each stage is

described in the preceding sections.

4.3.2.1 Number of components and parameter estimates

The biggest issue in fitting a multi-Gaussian model is choosing the appropriate

number of components to fit the spectrum. As mentioned above, part of this

difficulty is the correlation between different components. To overcome this

issue, the number of components and initial estimates for the components can

be recovered by using information from the spectrum shape.

Here, we use the “derivative spectroscopy” used in Gausspy following the

definition given in Lindner et al. (2015), which we briefly describe below.

Estimates of the derivative from the finite-difference between channels are

strongly susceptible to noise. To overcome this, a smoothing method can

be used to include the information over many channels at each point in the

spectrum. Common approaches for this smoothing include Gaussian or median
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smoothing (Riener et al., 2020) or total-variation regularization (Lindner et al.,

2015). From this smoothing, derivatives provide information to locate and

estimate components. A peak in a spectrum corresponds to a (i) negative

second derivative, (ii) a zero crossing in the third derivative, and (iii) a positive

fourth derivative (Lindner et al., 2015).

Previous works using Gausspy identify Gaussian components in two-steps,

first by identifying narrow components with a small smoothing length, fol-

lowed by identifying wide components with a large smoothing length. Previous

papers using this method identified optimal smoothing lengths using gradient

descent from a training set of spectra (Lindner et al., 2015; Murray et al., 2018;

Riener et al., 2020). In our data, we assess the performance of a two-stage

identification by-eye on a small set of spectra while varying both the narrow

and wide smoothing lengths. Our data contain extremely wide (σ > 30 km

s−1) features, particularly in M31 where the line-of-sight depth through the

disc is large, and we find that the two-stage approach used in previous works

does not consistently identify spectral features across this large range in line

widths.

To account for the wide range in spectral shapes in our data, we modify the

identification procedure in Gausspy to consider a range of smoothing lengths.

From smallest to largest smoothing scale, we identify and estimate that compo-

nent parameters using the Gausspy procedure given above. For progressively

larger smoothing scales, wider components are added from the remaining resid-

ual. This procedure is the same as previous works using Gausspy, just with

additional smoothing lengths included.

4.3.2.2 Initial fit and internal model selection

The parameter estimates from the first step are crucial for the multi-component

Gaussian fit to converge to a reasonable solution. The hope is that the initial

parameter estimates start the minimization algorithm close enough to the

global minimum that it will converge quickly and not fall into a local minima

that can result from the correlations between Gaussian components. However,
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the approximations in step one to get parameter estimates are not always

robust and can lead to (i) fits converging to vastly different parameters from

the starting point, or (ii) incorrect number of components or their placement.

To account for this, we first fit the spectrum using the estimates from stage

one, and then perform an internal model selection to ensure the resulting fit

is valid. Similar to Gausspy (Lindner et al., 2015), we fit spectra using the

Levenberg-Marquardt method implemented in the python package lmfit2.

The model selection used here, and in the following sections, relies on the

Bayesian information criterion (BIC) fit statistic (Schwarz, 1978). The BIC

is defined as a likelihood plus penalization term, where the latter increases in

value with the number of free parameters to avoid overfitting:

BIC = ln(m) k − 2 ln(L̂), (4.5)

where m is the number of data points (velocity channels), k is the number of

free parameters, and L̂ is the likelihood function. We assume the data uncer-

tainties (σn) are independent and normal, and so the log-likelihood function

has the standard form of:

ln(L̂) = − 1

2σ2
rms

m∑
j=1

[yj − Tb(vj)]
2 + C(σrms), (4.6)

where m is the number of velocity channels, and yj is the brightness temper-

ature at velocity vj in the spectrum. The C(σrms) term is a constant term

that only depends on the noise, which is a constant for all model comparisons.

The preferred model minimizes the BIC. We choose the BIC since it penalizes

additional free parameters more strongly than other common statistics (e.g.,

Akaike information criterion).

There are two steps to the internal model selection:

1. The integral of each component must exceed the 5σ rms noise for a

resolved Gaussian line, which removes spurious narrow features due to

noise. Following Koch et al. (2018b), we define a resolved line as having

2lmfit wraps and extends the optimization algorithm from the scipy library (Newville
et al., 2020).
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> 5 channels (5 × 0.42 = 2.1 km s−1) across the full-width-half-max

(FWHM). For M31 and M33, this restriction requires an integrated in-

tensity of
√
π/(4 ln 2)(2.1 km s−1)(5σrms) = 31 and 19 K km s−1 respec-

tively. Components below these limits are removed and the spectrum is

refit with fewer components.

2. We then iteratively remove components from the fit until the ∆BICNi,Nf
=

BICNi
− BICNf

< 10 where Nf and Ni are the number of components

before and after removing one component (hence, Ni > Nf ). Compo-

nents are removed in lowest to highest integrated intensity. Following

Kass & Raftery (1995), we consider ∆BICNi,Nf
> 10 to indicate a strong

preference for a more complex model with the initial Ni number of com-

ponents. We highlight that this comparison process continues, if needed,

to the Nf = 0 model, i.e., no signal in the fitted spectrum.

The updated multi-Gaussian fit uses the minimum model that passes both

selection tests.

4.3.2.3 Nearest neighbour model selection and final fit

We introduce one additional step to produce the models used later in this

paper. Because we fit each spectrum independently of its neighbours, the fits

do not account for the correlation of nearby pixels and models of neighbouring

pixels may differ. These small-scale differences are particularly an issue when

different numbers of Gaussian components are found, and when strongly over-

lapping components converge to different solutions due to the large covariance

in their parameters.

We account for these differences by comparing each spectrum to the proper-

ties of its nearest neighbours. We check and attempt to correct for differences

by:

1. We refit the spectrum using the model with the lowest BIC from the

nearest 8 pixels. We replace the spectrum’s fit if it reduces ∆BICk,l > 10,

172



indicating a strong preference for the neighbouring model at pixel k over

the original model at pixel l (Kass & Raftery, 1995).

2. We also refit and compare the spectrum’s fit when its neighbours have

a different number of Gaussian components. In this case, we refit the

spectrum using the models with the lowest and highest number of compo-

nents. We then re-impose the selection criteria from §4.3.2.2 and replace

the solution until ∆BICNi,Nf
< 10. Where applicable, both steps are

applied.

We apply these checks in a forward and reverse direction, looping through

the spatial positions of valid fits along rows of Right Ascensions, followed by

column in Declination.

We find that this procedure strongly encourages coherent spatial solutions

with a consistent number of components in the model. This procedure is par-

ticularly important for spectra with weak signal relative to the noise, where the

initial component guesses from §4.3.2.1 are more susceptible to noise. Though

we do not make use of this product here (§4.3.3), the models after this neigh-

bour comparison produce far more complete and coherent model of the Milky

Way HI foreground in the M31 field. Similar neighbour comparisons are used

in other multi-component Gaussian modeling (Haud, 2000; Riener et al., 2020).

Finally, we note that these nearest neighbour comparisons are not ideal

for creating spatially-coherent models. Correctly accounting for these differ-

ences requires the model to explicitly include its nearest neighbours and be

fit simultaneously (Marchal et al., 2019). This simultaneous spatio-spectral

modelling is critical when modelling blended components. However, the large

data cubes we use here would require significant computational time to model

in this manner. We will explore more coherent fitting methods in future work.

The multi-Gaussian models following the neighbour comparisons are the

final models we use in our model comparisons (§4.4).
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4.3.3 Excluding foreground and off-rotation components

M33 and, primarily, M31 overlap spectral with Milky Way 21-cm HI emission.

Further, our data sensitivity is sufficient to detect some off-rotation emission

components (e.g., high velocity clouds; Koch et al., 2018c). These sources

are contaminants for the model comparison we propose here since only the

multi-Gaussian model can account for these additional features.

We remove Milky Way foreground and off-rotation 21-cm HI in two ways.

First, we assume the multi-Gaussian model correctly accounts for all detected

components, regardless of their source. We then remove components from the

multi-Gaussian model which deviate from the centroid velocity by a velocity

range ∆v. Due to the different galaxy inclinations, we choose different ∆v for

the galaxies; ∆v = 50 km s−1 for M33 (lower inclination) and ∆v = 80 km s−1

for M31 (higher inclination). We find that these choices appropriately remove

off-rotation features in M33 (Koch et al., 2018c) and remove the majority of

Milky Way foreground in M31.

Second, we impose an additional masking to M31 where the red-shifted tip

clearly blends with the Milky Way foreground and is not distinguished by the

first step. We use the interactively-selected M31 mask described in Section

4.2 to remove components whose velocity centre is outside of the mask. Our

results in §4.4 do not show a systematic trend near the red-shifted tip of M31’s

emission suggesting this separation criterion effectively excludes foreground

HI. The spatial footprint of our M33 observations do not include spectra that

are strongly blended with Milky Way HI, and so this second step is not applied

to the M33 fits.

This separation is imposed on all results in §4.4. From this separation, we re-

compute the BIC statistic for the multi-Gaussian fits without the foreground/off-

rotation components included in the model. These recomputed BIC values are

used in all of our results (§4.4).

We do not, however, recompute the BIC values for the opaque HI fits. In

the vast majority of the fits, the BIC statistic did not vary significantly. The
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lack of change is due to the original fits not accounting for off-rotation features,

since the opaque model is limited to a single component. Because the revised

multi-Gaussian models similarly do not include these features, the BIC values

are similarly biased.

In the following section, we describe the BIC difference (∆BIC) as the

comparison between the models. The removal of foreground/off-rotation com-

ponents in the multi-Gaussian model effectively equates the bias in the BIC

with the opaque HI model, making the ∆BIC a fair comparison for the opaque

HI model.

4.4 Which model is preferred for HI spectra?

In this section, we describe the model selection test we use to compare fits

between the multi-Gaussian and opaque models, synthetic tests of the model

selection test, and the results of the test.

4.4.1 Model comparison using BIC

We use the difference in BIC (∆BIC) to compare the multi-Gaussian and

opaque HI models. Specifically, we define the BIC difference as the multi-

Gaussian BIC subtracted from the opaque BIC:

∆BIC = BICGauss − BICOpaque. (4.7)

Since a minimum BIC is optimal (Equation 4.5), ∆BIC > 0 indicates a pref-

erence for the opaque model and ∆BIC < 0 shows a preference for the multi-

Gaussian model. Following §4.3.3, the BIC for the multi-Gaussian models

excludes foreground and off-rotation components.

Similar to selecting the number of components for the multi-Gaussian model

(§4.3.2), we choose the BIC statistic for comparing the models since it penalizes

additional free parameters more strongly than other similar statistics (e.g., the

Akaike Information Criteria; AIC). Because each Gaussian component adds an

additional 3 free parameters, the BIC is more likely to prefer a simpler model
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than the AIC, though the statistics will likely prefer a similar model in many

cases.

Following Kass & Raftery (1995), we consider |∆BIC| > 10 to be strong

evidence for a model preference, with smaller values indicating a weak prefer-

ence that may be spurious. Many of the comparisons exceed |∆BIC| > 10 and

so our results are not affected by the chosen threshold.

4.4.2 Producing a synthetic fit sample

The model comparison we outline in the previous section is a relative com-

parison between two specific models. To ensure our model selection test is

sensitive to the differences between the two models, we produce a population

of 20,000 synthetic spectra using the opaque model (Equation 4.1) with ran-

domly drawn parameters within the parameter range used for the opaque HI

observational fits.

For each random draw of parameters, we evaluate the model and fit the

synthetic spectrum in the following steps:

1. We produce the true model with Equation 4.1, parameterizing the optical

depth with Equation 4.3, evaluated over a spectral axis from −200–200 km

s−1 with 0.1 km s−1 channels. All synthetic spectra are centered at 0 km

s−1 since the line centre does not affect the model comparison.

2. We then downsample the model by averaging over 0.42 km s−1 to match

the observations, which produces an idealized observed spectrum (Koch

et al., 2018b).

3. We add Gaussian noise to the downsampled model with σrms = 2.8 K,

matching the noise in the M31 HI map. This produces the equivalent

observed spectrum to be fit.

4. Both models are fit to the synthetic observed spectrum using the same

parameters and limits used for the observational fits.
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The BIC fit statistic and fitted parameters are kept to compare with the

distribution of observational properties. Because the models are drawn from

the opaque model, From our synthetic fit distribution, we correctly recover a

preference for ∆BIC > 0, with a larger BIC scatter where the opaque model

approaches the optically-thin limit. This result validates that our model selec-

tion test has sufficient power to distinguish between the multi-Gaussian and

opaque models for the observed HI spectra.

4.4.3 A strong preference for multi-gaussian models

Using the comparison framework from §4.4.1, we examine ∆BIC for the popu-

lation of HI spectra in M31 and M33. Our comparisons in this section demon-

strate a strong preference for a multi-Gaussian model.

We first visually examine the fits for a few spectra, chosen specifically to

show a range in the inferred peak optical depth from the opaque model. Fig-

ure 4.3 shows four example spectra with fits to both models (chosen from a

subset of the spectra in Figure 4.2). Each panel in the figure shows the key

fit results, including the number of Gaussians (NGauss), inferred peak optical

depth (τp), and the BIC values are shown for each fit. Following visual inspec-

tion, spectra (a–c) clearly demonstrate multiple peaks and strongly prefer the

multi-Gaussian model based on the smaller BIC value (∆BIC < 0).

The final spectrum (d) has a single bright “pedestal,” unlike the other

example spectra, and its flat-top is qualitatively the expectation for the opaque

HI model (Braun et al., 2009). We find, however, that the multi-Gaussian

model has a much smaller BIC value and is therefore preferred.

To test this apparent preference for the multi-Gaussian model, we create

∆BIC maps of both galaxies. Figure 4.4 shows ∆BIC in M31 and M33 where

valid fits are found (§4.3). The colour is centered such that ∆BIC = 0 is

shown in gray. Throughout the maps, we find a strong preference for the

multi-Gaussian model (∆BIC < 0). Most locations where the opaque model is

preferred (∆BIC > 0) correspond to regions with fainter HI intensity (Figure

4.1). This is in contrast with previous works (Braun et al., 2009; Braun, 2012)
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Figure 4.3: Four HI spectra shown in Figure 4.2 with their multi-Gaussian
(left) and opaque (right) model fits. The fit residuals are shown in the panel
below each spectrum and fit, with the 3σ rms noise shown in gray. The
number of Gaussians and the peak opacity (τp) are shown for each model,
respectively, as well as the BIC statistic for each fit. In all the examples, the
BIC statistic in minimized for the multi-Gaussian model and is therefore the
preferred model. Spectra (a), (c), and (d) are all examples where the opaque
model predicts a large opacity (τp > 1), despite the large residual from the fit.
This includes spectrum (d), which visually has a near “flat-top.” Despite the
larger number of free parameters (9 vs. 4), however, the multi-Gaussian model
is still preferred. We assess the validity of this visual inspection by comparing
the BIC statistics for the entire population of fitted spectra.
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Figure 4.4: ∆ BIC values comparing the optically-thick and multi-Gaussian
models. Negative values (blue) indicate where ∆BIC < 0, indicating a pref-
erence for the multi-Gaussian model, and positive values (red) show where
∆BIC > 0 and the optically-thick model is preferred. The black contours
show lines of ∆BIC = 0. Multi-Gaussian models are preferred in nearly every
spectra that has bright HI emission (i.e., negative BIC is closely tracing the
integrated intensity; Figure 4.1).

where opaque HI regions are highlighted where HI intensity is large (e.g.,

Braun, 1997).

We see a general trend towards ∆BIC = 0 near the edge of HI detections

in both maps, where the noise increases (e.g., in M31) and the HI emission

is fainter. At lower signal-to-noise, the multi-Gaussian model tends to have a

single component, and therefore is similar to the opaque model in the optically-

thin limit. In these regions, there is a small tendency for ∆BIC < 0 since a

single Gaussian component has three free parameters and the optically-thin

limit of the opaque model includes a fourth unconstrained parameter, Ts, and

so the former model is preferred.

To quantify the preference for the multi-Gaussian model, we compare ∆BIC
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to the apparent “dark” HI intensity inferred by the opaque HI model. The

dark HI intensity, Idark, is the integrated difference between the optically-thin

and opaque for the model fit by Equation 4.1:

Idark =

∫ [
Tpexp

(
−(v − v0)2

2σ2
i

)
− Ts (1− exp [−τ(v)])

]
dv, (4.8)

where τ(v) is given in Equation 4.3. We use Idark as it integrates over the

three parameters that determine the deviation of the opaque spectrum from a

Gaussian shape: Tp, Ts, and σ. As we note in §4.3.1, these parameters tend to

be highly correlated, so using a metric that integrates over all three measures

their combined affect on the line shape. Further, Idark converges to 0 as as Ts

increases and the model approaches the optically-thin limit.

We stress that using Idark as a physical quantity depends on the opaque

model fitting a spectrum well. As we already suggest, the opaque model is

often not strongly preferred compared to the multi-Gaussian model. Because

of this, we adopt Idark as a useful metric to compare with, rather than a

physical quantity.

Figure 4.5 shows the ∆BIC statistic distributions for M31, M33, and the

synthetic fits plotted against Idark. The top row shows the distribution of all

fitted spectra. Consistent with the maps in Figure 4.4, most spectra in M31

and M33 show a strong preference for the multi-Gaussian model. When Idark

approaches zero, the distribution of ∆BIC values broadens. This broadening

shows where the opaque model approaches the optically-thin solution, where

some spectra are better modelled with multiple components (e.g., (b) in Figure

4.3) or where the signal-to-noise is low and both models approach a similar

fit, as we see at the edges of the maps in Figure 4.4. The fraction of the

distribution that prefers one model versus the other is shown in Table 4.2,

split into the categories defined in §4.4.1.

Our control sample for these comparisons is the synthetic fits from §4.4.2.

Using the same fitting methods, the synthetic distribution shows a stark dif-

ference from the observational fits, with the majority of spectra preferring the

opaque model (∆BIC > 0). This is the expected result since the synthetic
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spectra are drawn from the opaque model (Equation 4.1). Correctly recov-

ering the preference for the opaque model provides an important test for fits

by demonstrating that, with the observational noise and spectral resolution,

our fitting methods are sensitive to the difference between an opaque and

multi-Gaussian model.

We next examine whether the preference for a multi-Gaussian model persists

if we consider only the spectra where the opaque model recovers τp > 1 (i.e., all

locations of inferred optically-thick HI emission). This comparison is shown in

the bottom row of Figure 4.5. Because only a sub-set of the ∆BIC are shown,

the percentiles defining the contours in the plots are changed, leading to some

difference in the observed distributions.

We find the same general trends when considering only the apparently

opaque spectra. If the observed HI spectra include a population of well-

fit opaque model spectra, we expect to see the distribution shift towards

∆BIC > 0, particularly where Idark is largest (i.e, the most opaque emis-

sion inferred from the model). We do find this trend for the synthetic fit

distribution, however, it is not apparent for large Idark in M31 and M33. We

compute the percent of spectra for different model preferences (Table 4.2),

which quantitatively shows the behaviour apparent in Figure 4.5.

Finally, we include one further test that explicitly accounts for the single-

component limitation of the opaque model (Equation 4.1). Spectrum (d) in

Figure 4.3 demonstrates the limits of the opaque model well. The multi-

Gaussian model correctly includes a wide component that accounts for faint

“tails” in the emission. The opaque model cannot account such features and

is therefore more likely to have a larger BIC, even if the model has fewer

parameters.

To address this limitation, we recalculate the BIC statistic for both models

limited to the channels where τ(v) > 0.5 (i.e., where we expect the opaque

model to identify a flattened top corresponding to opaque emission). This

limit is chosen based on our synthetic fits where the opaque model measurably

deviates from a Gaussian line shape given the noise level and spectral resolu-
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Figure 4.5: ∆ BIC of the optically-thick BIC subtracted from the multi-
Gaussian model plotted against the apparent dark HI integrated intensity
from the optically-thick model (Equation 4.8; i.e., optically-thin equivalent
line subtracted by the optical depth-corrected profile). ∆ BIC < 0 indicates
a preference for the multi-Gaussian model, while ∆ BIC > 0 are fits with
the optically-thick model preferred. The panels show the plots for M31 (left),
synthetic fits generated from Equation 4.1 (centre), and M33 (right). The top
row show the results for all spectra, and the second row are fits where the peak
optical depth from the optically-thick model fit is τp > 1. Each panel shows
the 1–4σrms levels within the contours, and the data points show fit results out-
side of the 4σrms contour. The dashed vertical line indicates where ∆BIC = 0,
and the horizontal dotted line is the 5σrms sensitivity in integrated intensity
for a single 0.42 km s−1 spectral channel. The observed fit results strongly
prefer a multi-Gaussian model (∆BIC < 0), while the synthetic sample cor-
rectly prefers the optically-thick model used to generate the synthetic spectra
(∆BIC > 0). These differences become more apparent when only optically-
thick model fits are shown in the second row, demonstrating the opposite trend
expected for fits to the optically-thick model. Despite having many more free
parameters, the multi-Gaussian model is consistently preferred.
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tion in our observations. For the multi-Gaussian model, we consider only the

components where > 75% of their intensity is within range with τ(v) > 0.5.

Figure 4.6 shows the resulting distribution of ∆BIC limited to τ(v) > 0.5.

As expected, the synthetic fit distribution shows a preference for the opaque

model (∆BIC > 0), though a large fraction of the ∆BIC fits fall into the

category of −10 < ∆BIC < 10 where the preference is not clear (Table 4.2).

This is due to limiting the number of velocity channels where we calculate the

BIC. Thus this trend is expected as the ∆BIC becomes a noisier metric.

Despite ∆BIC being a noisier measure in this test, we still find a strong pref-

erence for multi-Gaussian models in both M31 and M33. This result demon-

strates that the preference for multi-Gaussian models does not result from the

limitation of a single opaque component in Equation 4.1.

This continued result of ∆BIC < −10 for observed spectra strongly suggests

that most HI spectra in M31 and M33 are best modelled with a set of Gaussian

components.
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Figure 4.6: ∆ BIC plotted against the apparent dark HI integrated inten-
sity from the opaque model, similar to Figure 4.5. Here, we show only the
fit statistics calculated where τ(v) > 0.5 from Equation 4.3. This comparison
controls for the single-component limitations of the opaque model, which can-
not account for multiple peaks in a spectrum. By computing the BIC statistics
only where τ(v) > 0.5, this comparison solely compares the models where the
“flat-top” is measurable in the spectra. However, these results are similar to
the ∆BIC over the whole spectra (Figure 4.5). The synthetic fits, drawn from
Equation 4.1 with observational noise added, confirm that our observations
are sensitive to opaque and the fitting procedures correctly find ∆BIC > 0 on
average. The observed spectra in M31 (left) and M33 (right), however, have
∆BIC < 0, indicating a continued strong preference for the multi-Gaussian
model.
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Multi-Gaussian preferred No strong preference Opaque preferred

% with ∆BIC < −10 % with −10 < ∆BIC < 10 % with ∆BIC > 10

M31 All (Figure 4.5; top) 82.0 17.5 0.5

τp > 1 (Figure 4.5; bottom) 88.7 10.5 0.8

τ(v) > 0.5 (Figure 4.6) 83.7 15.4 0.9

M33 All (Figure 4.5; top) 80.2 19.6 0.2

τp > 1 (Figure 4.5; bottom) 83.2 16.0 0.7

τ(v) > 0.5 (Figure 4.6) 74.4 25.0 0.6

Synth. All (Figure 4.5; top) 1.1 49.9 49.0

τp > 1 (Figure 4.5; bottom) 1.4 35.0 63.6

τ(v) > 0.5 (Figure 4.6) 0.6 78.5 20.9

Table 4.2: Percent of spectra for different ranges in ∆BIC in the M31, M33, and synthetic fit distributions. We define
three ranges: (i) a strong preference for the multi-Gaussian model (∆BIC < −10); (ii) spectral model without a strong
preference for either model (−10 < ∆BIC < 10); and (iii) a strong preference for the opaque model (∆BIC > 10). We
compute the percentage in the ranges for the three tests including all fits and only those with τp > 1 (Figure 4.5), and the
BIC computed only where τ(v) > 0.5 (Figure 4.6). Our synthetic fit distribution correctly shows a preference for the opaque
model, from which the spectra are drawn from. However, the vast majority of observational fits in M31 and M33 prefer the
multi-Gaussian model for all three comparisons.
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4.5 Discussion

Our results suggest a vastly different picture than the dominant opaque HI

from Braun et al. (2009). Here, we discuss reasons for this discrepancy, com-

pare the opaque mass correction factors that we determine, and discuss the

limitations of our multi-Gaussian modeling.

4.5.1 Discrepancies with previous interpretations

Our results are clearly discrepant from those in Braun et al. (2009) and Braun

(2012). These discrepancies result from (i) improved spectral resolution and a

higher sensitivity on smaller linear scales and (ii) differences in the modelling

methodology.

Table 4.1 summarizes the key differences in our observations versus those

from Braun et al. (2009) and Braun (2012). Our observations have a similar

sensitivity at moderately higher spatial resolution. However, we expect that

the key difference is the finer spectral resolution. As we point out in §4.1, nar-

row resolved line shapes require ∼ 2 channels per line width (σ; Equation 4.4

Koch et al., 2018b), and the range of channel widths from Braun (2012) cor-

respond to thermal temperatures of 1300–3600 K. The 0.42 km s−1 resolution

from our data is capable of resolving line widths corresponding to 120 K. Thus,

the differences in the observations provide some reason for the additional spec-

tral complexity we find relative to Braun et al. (2009). In §4.6.1, we describe

an extension of our current work to identify the narrow HI components from

the multi-Gaussian modelling.

A second difference in the data sets is the correlation between adjacent

spectral channels. While we do not explicitly test the M31 Westerbork data

from Braun et al. (2009), their Figures 9, 10, and 14 highlight spectra with clear

strong channel-to-channel correlations, suggesting that the effective spectral

resolution may be lower than the channel width. This will effectively smooth

over narrow spectral features, similar to a moving average filter, and given

the spectral shapes we identify (Figure 4.3), is likely to encourage flattened

186



top profiles in some spectra. We note that highly correlated channels are not

apparent in the M33 and LMC data sets in Braun (2012).

The second reason for the discrepancy in our results is from the differences

in methodology used for fitting. Braun et al. (2009) do not explicitly model

multiple components, and additional residuals after fitting Equation 4.1 are

assumed to be optically-thin emission. Further, the model selection criteria

they use to distinguish between multiple components is a flat-top is more

coarse than our comparison. They define spectra with a reduced chi-square

values of χ2
r < 25, based on visual inspection, to be a valid opaque HI fit.

However, given there are faint features not modelled in their fits (their Figures

14), it is not clear whether this threshold is sufficient to distinguish between

multiple components and faint emission not included in the fit. Braun (2012)

reject 4% of their fits in M31 and < 1% in M33 based on this threshold.

From our fits, we find no opaque models would be excluded using the

χ2
r < 25 criterion. This difference is likely due to systematics in the different

observations as χ2
r is sensitive to changes in the noise, which is underestimated

for highly correlated spectral channels.

This discrepancy further demonstrates the issues with absolute fit statistics

when compared between different data sets. It is more robust to use relative

fit statistics when comparing models fit to the same data.

4.5.2 Correction factor for optically-thick HI column
density

The key outcome from previous studies using the opaque model is the ability

to account for “dark” HI over a large spatial area, overcoming limitations of

other methods that require HI absorption against background sources. With a

constraint on the opacity, the cold opaque atomic gas content can be estimated,

yielding a mass correction factor for the atomic ISM relative to the optically-

thin mass. In Braun et al. (2009) and Braun (2012), they infer that opaque

HI accounts for an additional ∼ 35% of atomic ISM mass in M31 and M33.

We calculate the dark HI intensity from Equation 4.8 and convert to the
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atomic mass using the factor 0.0196 M� pc−2/ (K km s−1) multiplied by the

spatial area in each map. Note that this conversion factor includes a 1.36

factor for the He and metals fractions.

Considering only the spectra where the opaque model is preferred (∆BIC >

0), we find that the correction factor for opaque HI mass is just ∼ 1%. How-

ever, we expect this small correction factor since most spectra strongly prefer

the multi-Gaussian model (∼ 99%), particularly where HI is bright and with

the largest optically-thin column density (Figures 4.1 & 4.4) and HI would

be more likely to be opaque (e.g., Braun, 1997). Table 4.3 shows the mass

correction factors for different selections and the fraction of the fit spectra

included.

We stress that our finding of a 1% correction factor does not imply that

Idark ∼ 0 in either M31 and M33. Rather, it demonstrates that the dark HI

intensity from Equation 4.1 does not provide a good description of HI spectra

on ∼ 100 pc scales. This follows from our general conclusion that most HI

spectra are composed of multiple components, rather than a single cold opaque

gas component on these scales.

We further present the mass correction factors for different selection criteria

to provide a comparison to the ∼ 35% factor from Braun et al. (2009) and

Braun (2012). As shown in Table 4.3, we demonstrate that the choice of model

selection or “goodness-of-fit,” drastically affects dark HI mass estimates. First,

we calculate the mass correction factors from our modelling with no selection

criteria, only spectra where the opaque model is preferred (∆BIC > 0) in our

fits, and where the peak opacity from the opaque model fit is τp < 8. The

latter demonstrates how extreme, though allowed, fits to the opaque model are

highly sensitive to what is considered a “good” fit. We note that the χ2
r < 25

criterion from Braun et al. (2009) is equivalent to no selection criteria for our

fits since none of our fits have χ2
r ≥ 25.

With no selection criteria, we recover a correction factor of ∼ 35% for M33,

consistent with Braun (2012). In M31, however, we find that many spectra are

best fit only by drastically increasing the optical depth above τ > 8, and the
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inferred dark HI becomes very large, in some cases exceeding the optically-thin

mass. Because of this, we find a mass correction factor of > 100% relative to

the optically-thin integrated intensity estimate. Strictly speaking, such large

τ values are acceptable in the model, and Milky Way studies towards extreme

star forming regions, like W43, do infer lines-of-sight with a 240% increase in

mass compared to the optically-thin mass from the integrated intensity (Bihr

et al., 2015). However, such large correction factors seem to be rare in the

Milky Way (Wang et al., 2020a).

Figure 4.7 demonstrates that uncertainty on large τp fit values is the source

of the large mass correction factor in M31. The increase in uncertainty for

large τp is likely from cases like spectrum (a) in Figure 4.3, where the opaque

model fits a wide-envelope that poorly matches the spectrum shape. This

uncertainty at large τp has a large effect on the inferred dark HI mass. We

also note that the fit criterion of χ2
r < 25 does not discriminate these cases

for our fits (§4.5.1), and further, that this solution falls within the allowed

parameters we and Braun et al. (2009) use. The continuous distribution in τp,

however, suggests there is not a simple cut-off, making estimates of the dark

HI mass sensitive to definitions of goodness-of-fit and the parameter space

selection.

To show the sensitivity to the parameter space limits, we consider remov-

ing fits where the opaque model infers large optical depths (τp > 5), and

approximately where the relative uncertainty increases in Figure 4.7. Table

4.3 shows that the correction factors are drastically lower, with 12+46
−5 % in

M31 and 19+78
−7 % in M33. Though the correction factors are lower, they are

still highly uncertain, as the combined uncertainty on Tp and Ts produce a

non-linear effect on the dark HI mass.

These results demonstrate the large uncertainty on the dark HI mass from

the opaque model (Equation 4.1), first from the lack of preferred models com-

pared to the multi-Gaussian model, and second from the large inherent un-

certainty on the peak optical depth from the opaque model fits. The latter is

highly sensitive to the “goodness-of-fit” threshold and limits on the parameter
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τp > 5, particularly in M31. Large uncertainties at for large τp produce large
uncertainties in the inferred dark HI mass.

space allowed in the fits. We conclude that dark HI mass estimates from the

opaque model should be treated as highly uncertain at best.

4.5.3 Limitations of multi-component Gaussian models

Multi-Gaussian models are inherently uncertain when components overlap be-

cause gaussians do not form an orthogonal and independent basis set. This

means that the properties of individual components from the multi-Gaussian

fit models (Figure 4.3) should be treated carefully for physical interpretations

(Rohlfs et al., 1972; Haud, 2000). Our fitting approach uses spatial similarities

to improve spectral fitting, which encourages spatial coherence, but remains

uncertain where blended components are correlated. We note, however, that

this will not affect the overall fit, which is the key for the model comparison

we present.

Our multi-Gaussian model also does not identify HISA features, distin-

guished from the opaque HI model as a clear absorption “dip” like those from

Milky Way HI spectra (Gibson et al., 2005). While self-absorption may be

detected towards some lines-of-sight, we do not expect our observations to

be sensitive to strong HISA features due to the > 60 pc linear resolution.
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Sample M31 M33

Selection

Opt.-Thin Atomic Mass? (M�) – 1.6× 109 1.0× 109

Dark Atomic Mass? (M�) All 2.0+2.0
−0.7 × 109 3.7+8.5

−1.2 × 108

% of Spectra 100% 100%

% Mass Difference 118+119
−40 % 37+83

−12%

Dark Atomic Mass? (M�) τp < 5 2.0+7.9
−0.9 × 108 2.0+8.0

−0.7 × 108

% of Spectra 85.7% 99.2%

% Mass Difference 12+46
−5 % 19+78

−7 %

Dark Atomic Mass? (M�) ∆BIC > 0 2.1+1.5
−1.0 × 107 8.8+4.1

−2.9 × 106

% of Spectra 1.6% 0.8%

% Mass Difference 1.3+0.9
−0.6% 0.9+0.4

−0.3%
? Including 1.36 factor for He and metals.

Table 4.3: Dark atomic ISM mass in M31 and M33 estimated with no selection
criteria, only spectra with peak optical depths of τp < 5 based on the opaque
model, and spectra where the opaque model is preferred (∆BIC > 0; Equation
4.1). We note that all of our fits satisfy the χ2

r < 25 criterion from Braun
et al. (2009), and therefore their selection criterion is equivalent to using all
of the opaque HI fits. The table also shows the percent of spectra after the
selection criterion is applied, and the percent mass difference compared to the
optically-thin mass. The optically-thin atomic ISM mass is calculated from
the integrated intensity maps excluding pixels without valid spectral fits. We
find large differences in the mass correction factors that depend strongly on
the sample selection, and similarly the goodness-of-fit. This strong dependence
on sample selection suggests that the dark HI mass from the opaque model
(Equation 4.1) is highly uncertain.
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Koch et al. (2019b) find the velocity at peak HI and CO temperature are

typically consistent within the 2.6 km s−1 CO velocity channel size. Strong

self-absorption would require additional scatter in this relation, or cold HI

line widths narrower than CO, which is not observed in the Milky Way (Wang

et al., 2020b). Furthermore, Liu et al. (2019) use CO components to derive

HI self-absorption in the LMC and find relatively small corrections on 15 pc

scales.

4.6 Summary

Using sensitive 21-cm HI observations at high spectral resolution in M31 and

M33, we compare two common spectral models: a multi-Gaussian model and

a single-component, opaque-HI model (e.g., Braun et al., 2009). With the

improved spectral resolution of our data, we demonstrate a strong preference

for the multi-Gaussian model for > 80% of the spectra. From this model

preference, we show that monolithic cold HI clouds are not supported by

the data and that the inferred optical depth from an opaque model fit to

HI emission alone is subject to significant systematic uncertainty. Our main

conclusions from this work are are:

1. Improvements in the spectral resolution of extragalactic 21-cm HI show a

wealth of spectra structure. The observations we present extend detailed

HI studies that are otherwise largely constrained to within the Milky

Way and Magellanic Clouds.

2. We identify a strong preference for a multi-Gaussian model across both

M31 and M33 by comparing the difference of the Bayesian Information

Criteria (BIC) between the two models. This preference persists when

considering only opaque models with a large inferred optical depth (τp >

1), and when the BIC is computed only over velocities where the opaque

model measures τ(v) > 0.5.

3. We compare these results to a synthetic set of 20,000 spectra drawn
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from the opaque model (Equation 4.1), with randomly drawn parame-

ters within the observed fit parameter space, which we sample at 0.42 km

s−1 spectral channels and add Gaussian noise equivalent to the observa-

tions. By applying the same fitting procedures as the observed spectra,

we demonstrate that our model selection criteria correctly prefers the

opaque model over a multi-Gaussian model. This test ensures that our

observational comparisons are sensitive enough to distinguish between

the two models.

4. Considering only the observed spectra where the opaque model is pre-

ferred, we determine that opaque HI, determined solely according to this

model, contributes just ∼ 1% of HI mass that is missed compared to the

mass assuming the optically-thin assumption, far smaller than the 30%

correction inferred from studies which consider only the opaque model

on 100 pc scales (Braun et al., 2009; Braun, 2012).

Our results indicate that estimates of the opaque HI mass from the opaque

emission model are not reliable on 100 pc scales. The large difference in the

inferred dark atomic HI mass highlights the crucial role of model assumptions

on interpretations of the atomic ISM. From these results, we suggest that HI

opacity is best constrained by comparing HI absorption to background sources

with nearby emission (e.g., Dickey et al., 2003), or through HI self-absorption

(e.g., Gibson et al., 2005; Wang et al., 2020b).

4.6.1 Continuing work

This chapter describes recent and still unpublished work. For publication, we

anticipate expanding the current work in two ways.

First, §4.4 will present more information on the Gaussian components from

the multi-Gaussian model. This is important as a key portion of the paper

is ultimately how much CNM is in the observed galaxies. We do not expect

to directly estimate this fraction, but constraints are plausible based on the

fraction of narrow HI components.
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The primary difficulties in calculating these constraints are (i) blended

Gaussian components, and (ii) the completeness of the multi-Gaussian fit-

ting method. From §4.5.3, blended components are uncertain without explicit

spatial coherence in the fitting (Marchal et al., 2019). To address this, we will

split the population of components into blended and distinct sets, where the

latter produces a distinct shape in the second derivative of the multi-Gaussian

model.

The completeness threshold is likely driven by the minimum area constraint

for components (§4.3.2.3), which favours bright narrow and faint wide com-

ponents at the two extremes. This introduces a completeness threshold that

varies with the peak temperature and line width, and may be further altered

when components are blended. We are measuring the completeness fraction

using false source injection of, at first, distinct narrow components on the

observed set of HI spectra.

The second expansion of this work will incorporate an estimate of the cov-

ering fraction of cool narrow HI components (relative to the observed galaxy

area) to compare with Braun (1997) in §4.5. This latter work provides an

assumption of a low CNM covering fraction, which Braun et al. (2009) uses as

motivation for a single opaque HI component along most lines-of-sight. This

comparison requires usable constraints on the population of cool HI compo-

nents from the first point above.
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Chapter 5

Relationship between the Line
Width of the Atomic and
Molecular ISM in M33

Koch, E.W et al. (2019). “Relationship between the line width of the atomic

and molecular ISM in M33,” MNRAS, 485, 2324–2342.

Abstract

We investigate how the spectral properties of atomic (HI) and molecular

(H2) gas, traced by CO(2-1), are related in M33 on 80 pc scales. We find the

HI and CO(2-1) velocity at peak intensity to be highly correlated, consistent

with previous studies. By stacking spectra aligned to the velocity of HI peak

intensity, we find that the CO line width (σHWHM = 4.6± 0.9 km s−1; σHWHM

is the effective Gaussian width) is consistently smaller than the HI line width

(σHWHM = 6.6± 0.1 km s−1), with a ratio of ∼0.7, in agreement with Druard

et al. (2014). The ratio of the line widths remains less than unity when the

data are smoothed to a coarser spatial resolution. In other nearby galaxies, this

line width ratio is close to unity which has been used as evidence for a thick,

diffuse molecular disk that is distinct from the thin molecular disk dominated

by molecular clouds. The smaller line width ratio found here suggests that M33

has a marginal thick molecular disk. From modelling individual lines-of-sight,
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we recover a strong correlation between HI and CO line widths when only the

HI located closest to the CO component is considered. The median line width

ratio of the line-of-sight line widths is 0.56± 0.01. There is substantial scatter

in the HI–CO(2-1) line width relation, larger than the uncertainties, that

results from regional variations on < 500 pc scales, and there is no significant

trend in the line widths, or their ratios, with galactocentric radius. These

regional line width variations may be a useful probe of changes in the local

cloud environment or the evolutionary state of molecular clouds.

5.1 Introduction

Across large samples of nearby galaxies, several studies show a tight correlation

between the surface density of molecular (H2) gas and star formation rate

(SFR) surface density (Kennicutt, 1998; Leroy et al., 2008; Bigiel et al., 2008;

Kennicutt et al., 2011), and a lack of correlation with the atomic (HI) gas

surface density (Bigiel et al., 2008; Schruba et al., 2011). This result shows

that star formation is primarily coupled to the molecular gas, rather than the

total (HI + H2) gas component.

A critical, potentially rate-limiting, step in the star formation process is

then the formation of molecular gas. Several mechanisms have been pro-

posed that lead to conditions where molecular gas can readily form (Dobbs

et al., 2014). These mechanisms for forming the molecular interstellar medium

(ISM) are predicted to act over scales ranging from individual molecular clouds

to galactic scales. Recent star formation models have sought to predict the

atomic-to-molecular gas fraction from the local environment properties (Blitz

& Rosolowsky, 2006; Krumholz et al., 2009; Ostriker et al., 2010; Krumholz,

2013; Sternberg et al., 2014; Bialy et al., 2017) and recover observed properties

to within a factor of a few (Bolatto et al., 2011; Jameson et al., 2016; Schruba

et al., 2018).

To observe signatures of the molecular ISM, we require observations that

resolve giant molecular cloud (GMC) scales (< 100 pc) in both the atomic
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and molecular gas. Only within the Local Group can current 21-cm telescopes

resolve GMC scales, making studies of M33, M31, and the Magellanic Cloud

critical for understanding how the molecular ISM forms. In this paper, we use

HI and CO(2-1) observations of M33 with a resolution of 80 pc to study the

spectral properties of the atomic and molecular ISM.

Previous high-resolution studies of HI and CO, used as a tracer of H2, in

the Local Group have identified spectral-line properties that are correlated

between these tracers. Wong et al. (2009) and Fukui et al. (2009) compared

the HI to CO properties in the Large Magellanic Cloud (LMC) on 40 pc

scales. They found that HI and CO spectral properties are correlated, with

a close relationship between the velocities at peak intensity and a suggestive

correlation between the HI and CO line widths. However, they also found that

the HI temperature and column density are poor predictors for the detection

of CO, suggesting that a significant amount of HI emission arises from atomic

gas not associated with the molecular gas.

On larger scales (> 100 pc) where individual clouds are unresolved, several

studies have found evidence of a large-scale molecular component, possibly

unassociated with CO emission from GMCs on small scales. Garcia-Burillo

et al. (1992) found CO emission ∼ 1 kpc from the plane of the disk in the edge-

on galaxy NGC 891, providing direct evidence for a “molecular halo.” More

recently, Pety et al. (2013) find evidence for a diffuse molecular disk based on

interferometric data (∼ 50 pc resolution) recovering only ∼ 50% of the flux

from single-dish data. They suggest that the remaining emission is filtered

out by the interferometer and must be from larger scales. Using a similar

comparison between interferometric and single-dish data, Caldú-Primo et al.

(2015) and Caldú-Primo & Schruba (2016a) identify a wide velocity component

in the CO that is only recovered in single-dish data on scales > 500 pc.

There is also growing evidence for a significant diffuse molecular component

in the Milky Way. Dame & Thaddeus (1994) find excess CO emission in the

line wings that may be similar to the wide velocity components in nearby

galaxies (Caldú-Primo et al., 2015; Caldú-Primo & Schruba, 2016a). Roman-
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Duval et al. (2016) find 25% of the Milky Way molecular gas mass is in diffuse

12CO emission that is extended perpendicular to the Galactic plane beyond

the 12CO emission where denser gas is detected.

Spectral analyses have found connections between the HI with the bright

dense and faint diffuse CO components. The different CO components are

highlighted through different analyses, with individual lines-of-sight primarily

tracing the bright CO emission, while analyses that study an ensemble of

spectra through stacking recover the faint CO emission. Comparing these

analyses shows that the properties of the bright and faint CO emission differ.

Fukui et al. (2009) find CO line widths in the LMC on 40 pc scales that

are ∼ 30% of the HI line widths along the same lines-of-sight. Similar ratios

between the CO and HI are found by Wilson et al. (2011) for 12 nearby galaxies

on scales from ∼ 200–1200 pc, though the HI line widths are estimated at

a different resolution from the CO. On similar scales (∼ 200–700 pc), with

matched resolution between the HI and CO, Mogotsi et al. (2016) found that

the CO line widths (σCO = 7.3 ± 1.7 km s−1) are consistently narrower than

the HI (σHI = 11.7±2.3 km s−1) for a number of nearby galaxies. The average

ratio of ∼ 0.6 between the line widths is much larger than the ratio from Fukui

et al. (2009) on smaller scales (∼ 0.3).

Stacking analyses consistently have broader CO line widths than those from

individual spectra. Combes & Becquaert (1997) found comparable HI and CO

line widths in two nearby face-on galaxies (i < 12◦). They suggested that the

HI and CO emission trace a common, well-mixed kinematic component that

differs only in the phase of the gas. Using the same data as Mogotsi et al.

(2016), Caldu-Primo et al. (2013) also found similar line widths between the

HI and CO (σCO = 12.0 ± 3.9 km s−1 and σHI = 11.9 ± 3.1 km s−1) for

a number of nearby galaxies. Caldu-Primo et al. (2013) concluded that the

wide CO component arises from a faint, large-scale molecular component that

is too faint to be detected in individual lines-of-sight. However, a stacked

spectrum is broadened due to scatter in the line centre (Koch et al., 2018c),

particularly when HI velocities are used to align the CO spectra (Schruba
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et al., 2011; Caldu-Primo et al., 2013). Characterizing methodological sources

of line broadening is critical for understanding the spectral properties of the

diffuse molecular component.

In M33, there are differing results regarding a diffuse molecular component.

Wilson & Scoville (1990) inferred the presence of diffuse molecular gas from

interferometric data recovering ∼ 40% of the flux from single-dish observa-

tions. Wilson & Walker (1994) supported this conclusion by demonstrating

that the high 12CO to 13CO line ratio does not result from different filling

factors between the two lines. Later, Combes et al. (2012) found a non-zero

spatial power-spectrum index on kpc scales and suggested that it arises from

a large-scale CO component.

Rosolowsky et al. (2003) and Rosolowsky et al. (2007) also found additional

CO emission that did not arise from GMCs, similar to Wilson & Scoville

(1990). However, Rosolowsky et al. (2003) localized 90% of the diffuse emission

to within 100 pc of a GMC and suggested that this diffuse emission is from

a population of small, unresolved molecular clouds that are too faint for their

interferometric observations to detect.

These previous results in M33 and other nearby galaxies suggest that de-

tailed studies of molecular clouds and their local environments may need to

account for the presence of diffuse CO emission or bright HI emission along

the line-of-sight that is unrelated to the molecular cloud. In this paper, we

characterize the relationship between the spectral properties of HI and CO

in M33 on 80 pc scales by stacking spectra and modelling individual lines-of-

sight. We then critically compare these two different analyses, constraining

how methodological line broadening and unrelated HI or CO emission affects

the properties of stacked spectra. M33 is an ideal system for this comparison

as we can connect studies of HI and CO performed on larger scales (> 100 pc)

to those on small scales (< 50 pc).

M33’s flocculent morphology also lies between the nearby galaxies in pre-

vious studies, with a sample of more massive spiral galaxies in the lower-

resolution studies and the irregular morphology of the LMC observed at higher-
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resolution. The HI in M33 is an ideal tracer of the flocculent spiral structure.

The bright HI is aligned in filaments, similar to the “high-brightness network”

identified in other galaxies (Braun, 1997).

We compare the atomic and molecular ISM using HI observations obtained

with the Karl G. Jansky Very Large Array (VLA) by Koch et al. (2018c) and

the CO(2-1) data from the IRAM 30-m by Druard et al. (2014), as described

in §5.2. The HI data have a beam size of 20′′, corresponding to physical scales

of ∼80 pc at the distance of M33 (840 kpc; Freedman et al., 2001). Our study

builds on work by Fukui et al. (2009) and Druard et al. (2014) by utilizing

improved 21-cm HI observations and new techniques for identifying spectral

relationships. We focus on comparing M33’s HI and CO distributions along

the same lines-of-sight, where we explore the difference in velocity where the

HI and CO intensity peaks (§5.3.1), how the line widths of stacked line profiles

compare to those measured at lower resolutions (§5.3.2), and the distribution

of HI and CO line widths from fitting individual spectra (§5.3.3). We then

compare the properties from these two analyses and discern where sources of

discrepancy arise (§5.3.4). Our results show that M33 does not have a signif-

icant diffuse molecular disk. We discuss this result and compare to previous

findings in §5.4.

5.2 Observations

5.2.1 HI VLA & GBT

We utilize the HI observations presented in Koch et al. (2018c) and provide a

short summary of the observations here. Figure 5.1 shows the HI integrated

intensity map. The observations were taken with the VLA using a 13-point

mosaic to cover the inner 12 kpc of M33. The data were imaged with CASA 4.4

using natural weighing and deconvolved until the peak residual reached 3.8

mJy beam−1 (7.1 K) per channel, which is about 2.5 times the noise level in

the data. The resulting data cube has a beam size of 20′′ × 18′′, a spectral

resolution of 0.2 km s−1, and a 1-σ noise level of 2.8 K per channel. This
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spectral resolution is a factor of ∼ 13 finer than the CO(2-1) data (§5.2.2),

leading to significantly less uncertainty in the velocity at peak intensity in the

HI compared to the CO(2-1).

We combine the VLA data with GBT observations by Lockman et al. (2012)

to include short-spacing information1. We feather the data sets together using

the uvcombine package2, which implements the same feathering procedure

as CASA. Thus the HI data used in this work provide a full account of the

HI emission down to ∼80 pc scales.

5.2.2 CO(2-1) IRAM 30-m

We use the CO(2-1) data from the IRAM-30m telescope presented by Druard

et al. (2014). Figure 5.1 shows the region covered by these observations, along

with the zeroth moment contours. A full description of the data and reduction

process can be found in their §2; a brief summary is provided here. Portions

of the map were previously presented by Gardan et al. (2007), Gratier et al.

(2010), and Gratier et al. (2012). The data have an angular resolution of 12′′,

corresponding to a physical resolution of ∼48 pc, and a spectral resolution

of 2.6 km s−1. Because IRAM 30-m is a single dish telescope, the data are

sensitive to all spatial scales above the beam size and does not require the

feathering step used with the HI (§5.2.1).

The CO(2-1) cube is a combination of many observations that leads to

spatial variations in the noise. The rms noise level differs by a factor of a few

in the inner ∼ 7 kpc of M33’s disk (see Figure 6 in Druard et al., 2014). We

adopt the same beam efficiency of 0.56/0.92 = 0.61 from Druard et al. (2014)

for converting to the main beam temperature. The average noise per channel

is 33.3 mK in units of the main beam temperature. Since we focus only on the

line shape properties, we do not require a conversion factor to the H2 column

density in this paper.

The spectral channels are moderately correlated due to the spectral re-

1Described in Chapter 3
2https://github.com/radio-astro-tools/uvcombine

201

https://github.com/radio-astro-tools/uvcombine


1h36m 35m 34m 33m

31◦00’

30◦45’

30’

15’

00’

RA (J2000)

D
E

C
(J

20
00

)

1 kpc

0.0

0.5

1.0

1.5

2.0

H
I

C
ol

u
m

n
D

en
si

ty
(c

m
−

2
)

×1021

Figure 5.1: HI and CO(2-1) (contours) column density maps at a resolution
of ∼ 80 pc (20′′). The HI column density assumes optically thin emission
and is corrected for inclination (Koch et al., 2018c). The CO(2-1) contour
levels (from blue to yellow) indicate surface densities of 900, 1400, 1900, and
2400 K km s−1. The light-blue line indicates the extent of the CO(2-1) data,
and the dashed yellow line shows the Rgal = 7 kpc galactocentric radius.
Qualitatively, the CO(2-1) emission tends to be located with bright HI.
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sponse function of the instrument. Along with broadening due to finite channel

widths, the spectral response function correlates nearby channels and broadens

the spectra. This broadening can be accounted for by modelling the known

spectral response function and accounting for the channel width (Koch et al.,

2018b). Adopting the correlation coefficient of r = 0.26 determined by Sun

et al. (2018) for these data, and using the empirical relation from Leroy et al.

(2016), we approximate the spectral response function as a three-element

Hanning-like kernel with a shape of [k, 1 − 2k, k], where k = 0.11 is the

channel coupling. The use of the spectral response function in spectral fitting

is described further in §5.3.3.1.

Throughout this paper, we use a spatially-matched version of these CO(2-

1) data convolved to have the same beam size as the HI data . The data are

spatially-convolved and reprojected to match the HI data, which lowers the

average noise per channel to 16.0 mK. The spectral dimension is not changed.

We create a signal mask for the data by searching for connected regions in

the data with a minimum intensity of 2-σ that contain a peak of at least 4-σ.

Each region in the mask must be continuous across three channels and have a

spatial size larger than the full-width-half-maximum of the beam.

5.3 HI-CO spectral association

We examine the relation between HI and CO(2-1) spectra using three com-

parisons: (i) the distribution of peak velocity offsets; (ii) the width and line

wing excess, and shape parameters of stacked profiles; and (iii) the line widths

of both tracers from a limited Gaussian decomposition of the HI associated

with CO(2-1) emission. Unless otherwise specified, the line width refers to

the Gaussian standard deviation (σ) and not the full-width-half-maximum

(FWHM = 2
√

2 ln 2σ).
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5.3.1 Peak velocity relation

We first determine the spectral relation between the HI and CO(2-1) by com-

paring the velocity of the peak temperatures along the same lines-of-sight. We

refer to this velocity as the “peak velocity.” Figure 5.2 compares the absolute

peak velocity difference between HI and CO(2-1) versus the peak CO temper-

ature. Most lines-of-sight have peak velocities consistent between the HI and

CO(2-1). The standard deviation of the velocity difference, after removing

severe outliers with differences of > 10 km s−1, is 2.7 km s−1. This is similar

to the 2.6 km s−1 channel width of the CO(2-1) data, suggesting that the peak

velocities are typically consistent within the resolution of the CO(2-1) data.

Since the peak velocities are defined at the centre of the velocity channel at

peak intensity, recovering a scatter in the peak velocity difference of ∼ ±1

channel is reasonable. The much narrower HI channel width (0.21 km s−1)

accounts for significantly less scatter than the CO(2-1) channel width.

Previous HI-CO studies find a similar correlation between the peak veloci-

ties of these tracers and have used the HI to infer the peak velocity of CO(2-1)

with the goal of detecting faint CO (Schruba et al., 2011; Caldu-Primo et al.,

2013). The brightest CO(2-1) peak intensities tend to have smaller velocity

differences between the HI and CO, also consistent with the relation found on

40 pc scales in the LMC by Wong et al. (2009).

The distribution in Figure 5.2 has several outliers with velocity differences

of > 10 km s−1, far larger than what would be expected from a Gaussian

distribution with a width of 2.7 km s−1. These outliers account for 3% of

the lines of sight and result from locations where the HI spectrum has mul-

tiple components and the CO(2-1) peak is not associated with the brightest

HI peak (Gratier et al., 2010). In these cases, the CO(2-1) peaks are well-

correlated with the peak of the fainter HI component (§5.3.3). This result is

important when stacking spectra (§5.3.2) aligned with respect to the peak HI

temperature. When the CO(2-1) peak is not associated with the brightest HI

peak, the CO(2-1) stacked profile will be broadened and could potentially be

204



0 5 10 15 20 25

|Vpeak,CO − Vpeak,HI| (km/s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
p

e
a
k
,C

O
(K

)

Figure 5.2: Distribution of the peak CO(2-1) brightness (with S/N > 3)
versus the absolute difference in the HI and CO(2-1) peak velocities. The
shaded region and contours indicate the regions containing the 1, 2, and 3-σ
limits of the distribution of points. Individual points show outliers beyond
3σ. The dashed horizontal line is the 3σ rms noise cut-off in the CO(2-1)
data imposed to avoid spurious outliers in the velocity difference. The dotted
vertical line is the CO channel width of 2.6 km s−1. The CO velocities are
preferentially located at or near the HI velocities. However, there remains a
number of high S/N outliers with a large velocity difference. These outliers
occur when the CO emission is associated with a different HI component than
the brightest HI peak.

asymmetric if the CO peaks are preferentially blue- or red-shifted from the HI

component. We explore these effects in §5.3.4.

We conclude that the HI peak velocity can nearly always be used to infer

the CO(2-1) peak velocity.

5.3.2 Stacking analysis

By stacking a large number of spectra aligned to a common velocity, we can

examine a high signal-to-noise (S/N) average spectrum of each tracer. Since

the signal will add coherently, while the noise will add incoherently, the stacked

profiles are ideal for identifying faint emission that is otherwise not detectable

in individual lines-of-sight (Schruba et al., 2011). These high S/N spectra can

205



be used to compare the line profile properties of the HI and CO(2-1).

We examine stacked profiles of HI and CO(2-1) aligned with respect to the

HI peak velocity since the HI is detected towards nearly every line-of-sight,

the HI peak velocity describes the peak CO(2-1) velocity well (§5.3.1), and

the velocity resolution of the HI data is much higher than the CO(2-1) data.

We align the spectra by shifting them; we Fourier transform the data, apply

a phase shift, and transform back. This procedure preserves the signal shape

and noise properties when shifting by a fraction of the channel size3. The

channel size is a particular issue for the CO(2-1) data, since the channels have

a width of 2.6 km s−1 and the signal in some spectra only spans ∼5 channels.

Figure 5.3 shows the stacked profiles, where spectra within a radius of 7 kpc

are included. The HI stacked profile has a kurtosis excess relative to a Gaus-

sian, with enhanced tails and a steep peak. These properties of HI stacked

profiles are extensively discussed in Koch et al. (2018c). The CO(2-1) stacked

profile has a qualitatively similar shape but is narrower than the HI profile

and has a smaller line wing excess.

As in Koch et al. (2018c), we model the profiles based on the half-width-

half-maximum (HWHM = FWHM/2) approach from Stilp et al. (2013a). The

model and parameter definitions are fully described in Koch et al. (2018c);

we provide a brief overview here. The HWHM model assumes that the cen-

tral peak of the profiles can be described by a Gaussian profile whose FWHM

matches the profile’s FWHM, which is well-constrained in the limit of high

S/N. This model sets the Gaussian standard deviation (σHWHM = HWHM/
√

2 ln 2)

and central velocity (vpeak) of this Gaussian, which we refer to as G(v).

The following parameters describe how the observed profile, S(v), compares

to the Gaussian model.

The line wing excess expresses the fractional excess relative to the Gaussian

3Implemented in spectral-cube (https://spectral-cube.readthedocs.io)
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Figure 5.3: The HI (orange solid) and CO(2-1) (green dashed) stacked profiles
shifted with respect to the HI peak velocity. The thick faint lines show the
Gaussian model for each tracer. The HI stacked profile is wider and has a
larger line wing excess than the CO(2-1) stacked profile.

outside of the FWHM:

fwings =

∑
|v|>HWHM

[S(v)−G(v)]∑
v

S(v)
. (5.1)

This excess in the line wings can also be used to find the “width” of the wings

using a form equivalent to the second moment of a Gaussian:

σ2
wings =

∑
|v|>HWHM

[S(v)−G(v)] v2

∑
|v|>HWHM

[S(v)−G(v)]
. (5.2)

Since the line wing excess will not be close to Gaussian in shape, σwings does

not have a clear connection to a Gaussian width.

The asymmetry of a stacked profile is defined as the difference in total flux

at velocities greater than and less than vpeak, normalized by the total flux:

a =

∑
v>vpeak

S(v)− ∑
v<vpeak

S(v)∑
S(v)

. (5.3)

This makes a analogous to the skewness of the profile.
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The shape of the peak is described by κ, defined as the fractional difference

between the central peak and the Gaussian model within the FWHM:

κ =

∑
|v|<HWHM

[S(v)−G(v)]∑
|v|<HWHM

G(v)
. (5.4)

This describes the kurtosis of the profile peak, where κ > 0 is a profile more

peaked than a Gaussian and κ < 0 is flatter than a Gaussian. We note that

the kurtosis typically describes the line wing structure, however since these

regions are excluded in our definition, κ describes the shape of the peak.

Since we adopt a semi-parametric model for the stacked profiles, deriving

parameter uncertainties also requires a non-parametric approach. We use a

bootstrap approach presented in Koch et al. (2018c) to account for the two

significant sources of uncertainty:

1. Uncertainty from the data – These uncertainties come directly from the

noise in the data. In each channel, the uncertainty is σRMS/
√
Nspec,

where Nspec is the number of spectra included in the stacked spectrum.

We account for this uncertainty by resampling the values in the stacked

spectrum by drawing from a normal distribution centered on the original

value with a standard deviation equal to the noise. We then calculate

the parameters from the resampled stacked spectrum at each iteration

in the bootstrap.

2. Uncertainty due to finite channel width – The finite channel width intro-

duces uncertainty in the location of the peak velocity when not explic-

itly modelled for with an analytic model (Koch et al., 2018b). Since the

HWHM model is a semi-parametric model that does not account for fi-

nite channel width, we need to adopt an uncertainty for the peak velocity

and the inferred line width. We use the HWHM model on very high S/N

stacked spectra and assume that the true peak velocity is known to be

within the channel of peak intensity. To create an equivalent Gaussian
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standard deviation4 for the uncertainty, we scale the rectangular area in

the peak channel to the fraction of the area under a Gaussian within

±1–σ, which gives σvpeak
= 0.34∆v5. The HWHM model estimates the

width σHWHM based on vpeak and thus we adopt the same uncertainty for

both parameters. To estimate the uncertainties on the other parameters

in the HWHM model, we sample new values of vpeak and σHWHM from

normal distributions with standard deviations of 0.34∆v in each boot-

strap iteration. These two parameters set the Gaussian shape used to

derived the parameters in Equations 5.1–5.4.

Based on the bootstrap sampling used in these two steps, we estimate the

uncertainties on the remaining HWHM model parameters. Since the stacked

profiles have high S/N, the parameter uncertainties are dominated by the

uncertainty in vpeak and σHWHM, and since the CO(2-1) channel size is much

larger than the HI (2.6 versus 0.2 km s−1), the CO(2-1) uncertainties are much

larger.

Table 5.1 provides the parameter values and uncertainties from the HWHM

model for the stacked profiles in Figure 5.3. The CO(2-1) line width is 4.6±0.9

km s−1, which is 70% of the HI width of 6.6± 0.1 km s−1.

Using the same CO(2-1) data at the original 12′′ resolution, Druard et al.

(2014) create CO(2-1) stacked profiles and fit a single Gaussian component

to the profile. They find a line width of σ = 5.3 ± 0.2 km s−1, which is

0.7 km s−1 larger than our measurement using the HWHM method. This

discrepancy results from the different modelling approaches used; fitting our

CO(2-1) stacked profile with a single Gaussian component gives a line width

of 5.4 ± 0.9 km s−1, consistent with Druard et al. (2014), because the fit is

influenced by the line wings.

The profiles are consistent with the same vpeak, as is expected based on the

strong agreement between the peak velocities (§5.3.1). The scatter in the peak

4In Koch et al. (2018c), we used ∆v as the uncertainty. Since the HI channels are much
narrower than σHWHM, this change has little effect on the HI uncertainties.

5A (2σvpeak
) = A (0.68∆v), where A is the value in the stacked spectrum and 0.68 is the

fraction of the area when integrating a Gaussian from −1σ to +1σ.
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velocity difference will primarily broaden the spectrum, rather than create an

offset in vpeak. We test the importance of this source of broadening in §5.3.4,

but note that the non-Gaussian shape of the stacked profiles makes correcting

for this broadening non-trivial. Because of this, we do not apply a correction

factor to σHWHM to account for the spectral response function and channel

width since the stacked profiles have a non-Gaussian shape.

The HI profile is more non-Gaussian in shape than the CO(2-1). The

HI profile has a larger line wing excess and a non-Gaussian peak (κ < 0),

consistent with the stacked profiles in Koch et al. (2018c).

The large uncertainties on the CO(2-1) shape parameters make most not

significant at the 1-σ level, or are consistent within 1-σ of the HI shape pa-

rameters. Within the uncertainty, the CO(2-1) stacked profiles are symmet-

ric about the peak (a = 0) and have a Gaussian-shaped profile within the

HWHM (κ = 0). The only significant CO(2-1) shape parameter is the line

wing excess fwings, which is non-zero at the 2-σ level and consistent with the

HI fwings within 1-σ. However, there are additional systematics that may

contribute to the CO(2-1) fwings, including broadening from the distribution

of the peak HI and CO velocities (§5.3.1) and the IRAM 30-m error beam

pickup (Druard et al., 2014). We discuss the former contribution in more

detail in §5.3.4. Druard et al. (2014) estimate that the error-beam pickup

contributes 2.5× 106 M�, or 1.1× 104 K km s−1, using their conversion factor

XCO = 4 × 1020 cm−2/(K km s−1) and a brightness temperature ratio of 0.8

between the J = 2-1 and J = 1-0 CO transitions. The error beam flux may

then contribute up to 45% of the 2.4 × 104 K km s−1 line wing excess. We

further assess whether the error beam flux contributes to the line wings in

§5.3.2.1.

Assuming that the error beam does contribute 45% of the CO line wing ex-

cess, M33 appears to exhibit weaker line wings compared to those measured in

M31 by Caldú-Primo & Schruba (2016a). They characterized the CO stacked

profiles with a Gaussian model and found that single-dish CO observations

in M31 are best fit by two Gaussian components. Their wide Gaussian com-
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Table 5.1: HWHM model parameters for the HI and CO(2-1) stacked profiles
for Rgal < 7 kpc at different spatial resolutions. The uncertainties are propa-
gated assuming an uncertainty of half the channel width and the uncertainty
of each point in the spectrum is the standard deviation of values within that
channel scaled by the square-root of the number of beams.

HI CO(2-1)

80 pc (20′′) resolution

σHWHM (km s−1) 6.6± 0.1 4.6± 0.9

vpeak (km s−1) 0.0± 0.1 −0.2± 0.9

fwings 0.25+0.01
−0.01 0.21+0.12

−0.10

σwings (km s−1) 24.0+0.3
−0.4 18+5

−3

a 0.021+0.014
−0.005 −0.05+0.09

−0.14

κ −0.059+0.004
−0.003 0.02+0.06

−0.09

160 pc (38′′) resolution

σHWHM (km s−1) 8.0± 0.1 5.9± 0.9

vpeak (km s−1) −0.1± 0.1 −0.4± 0.9

fwings 0.19+0.01
−0.01 0.14+0.10

−0.09

σwings (km s−1) 29.3+0.3
−0.4 20+8

−4

a 0.012+0.007
−0.012 −0.07+0.20

−0.10

κ −0.022+0.004
−0.003 0.00+0.05

−0.06

380 pc (95′′) resolution

σHWHM (km s−1) 8.9± 0.1 7.2± 0.9

vpeak (km s−1) 0.0± 0.1 −0.2± 0.9

fwings 0.19+0.01
−0.01 0.15+0.09

−0.07

σwings (km s−1) 32.1+0.3
−0.4 22+4

−3

a 0.033+0.010
−0.015 −0.07+0.20

−0.10

κ −0.035+0.004
−0.035 −0.01+0.05

−0.05
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ponent would be related to the line wing excess, i.e., a large fwings, in our

formalism6. For the sake of comparison with Caldú-Primo & Schruba (2016a),

we fit a two-Gaussian component to the CO(2-1) stacked profile and find line

widths of 3.8 ± 0.9 km s−1 and 10.9 ± 0.9 km s−1 for the narrow and wide

Gaussian components, respectively. The narrow line width is similar to the

3.2±0.2 km s−1 found by Caldú-Primo & Schruba (2016a), however their wide

component is much narrower, with a width of 6.1± 0.6 km s−1.

5.3.2.1 Radial stacked profiles

We explore trends with galactocentric radius by creating stacked profiles within

radial bins of 500 pc widths out to a maximal radius of 7 kpc, matching the

coverage of the CO(2-1) map. We use a position angle of 201.1◦ and inclination

angle of 55.1◦ for M33’s orientation, based on the HI kinematics from Koch

et al. (2018c). The radial stacking uses the same procedure for the HI profiles

as in Koch et al. (2018c), but with 500 pc radial bins instead of 100 pc due

to the smaller filling fraction of CO(2-1) detections relative to the HI. The

stacked profiles are modeled with the same HWHM model described above.

Figure 5.4 shows the line widths (σHWHM) of the stacked profiles over the

galactocentric radial bins (values provided in Table 5.4). We quantify the

relation between galactocentric radius and the line widths by fitting a straight

line. We exclude the innermost bins (< 1 kpc) where beam smearing has

a small contribution (§5.6.1). To account for the line width uncertainties,

we resample the line widths in each bin from a Gaussian distribution with

a standard deviation set by the uncertainty (Table 5.4) in 1000 iterations.

We then estimate the slope and its uncertainty using the 15th, 50th, and 85th

percentiles from the distribution of 1000 fits. We find that the HI line widths

decrease with galactocentric radius (−0.14 ± 0.01 km s−1 kpc−1), consistent

with the stacking analysis in 100 pc bins by Koch et al. (2018c). The decrease

in the CO line widths with radius is insignificant at the 1-σ level (−0.16 ±
6A relation between fwings and the wide Gaussian component would be a function of the

amplitudes and widths of both Gaussian components, and the σHWHM used here.
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0.16 km s−1 kpc−1). We note, however, that cloud decomposition studies of the

CO(2-1) find a shallow line width decrease with galactocentric radius (Gratier

et al., 2012; Braine et al., 2018).

Many nearby galaxies have a similar shallow radial decline in the HI and CO

line widths, outside of the galaxy centres (Caldu-Primo et al., 2013; Mogotsi

et al., 2016). Enhanced line widths are observed in galactic centres that result

from a significant increase in the molecular gas surface density or the presence

of a bar (e.g., Sun et al., 2018), or due to beam smearing where the gradient

of the rotation velocity is significant on the scale of the beam. M33 is a lower

mass spiral galaxy and lacks a strong bar, making it likely that the moderate

line width increase within Rgal < 0.5 kpc is due to beam smearing (§5.6.1).

A clear difference between our results and those by other studies is that the

ratio between the CO and HI line width is ∼0.7, differing from the ratio of ∼
1.0 typically measured in other systems on 0.2-0.7 kpc (Combes & Becquaert,

1997; Caldu-Primo et al., 2013). Since the observation of comparable CO and

HI line widths is used as an indicator of a thick molecular gas disk, we discuss

this topic in detail in §5.4.

Most of the shape parameters from the HWHM model do not show signifi-

cant trends with galactocentric radius for the CO(2-1) spectra and are insignif-

icant at the 1-σ level. The line wing excess (fwings) is significant for radial bins

within Rgal < 5 kpc. At larger radii, the line wings become less prominent,

though the CO detection fraction also sharply decreases at these radii and sys-

tematic effects—for example, from baseline fitting—strongly affect the stacked

profile shapes beyond the HWHM. This leads to the negative line wing excess

at 6 < Rgal < 6.5 kpc and the large excess in the 6.5 < Rgal < 7 kpc bin. The

stacked profiles in Figure 12 of Druard et al. (2014) also clearly suffer from

these effects.

In the previous section, we estimated that error beam pick-up can account

for up to 45% of fwings in the stacked profiles for Rgal < 7 kpc. Due to galactic

rotation, the error-beam pick up will be asymmetric between the halves of the

galaxy. To test for this asymmetry, we also stack spectra in galactocentric
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Figure 5.4: Stacked profile line widths (σHWHM; top) and the fractional line
wing excess (fwings; bottom) measured in 500 pc radial bins. The widths are
based on the HWHM approach from Stilp et al. (2013a), and the errors are
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show a shallow radial decline and have a consistent line width ratio of ∼0.7.
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radial bins separated into the northern and southern halves. Though with

significant uncertainties, the asymmetry of the northern half stacked profiles is

consistently more negative than the southern half stacked profiles, which have

asymmetries that are either positive or near zero. This discrepancy between

the halves shows that error beam pick-up accounts for some of the line wing

excess.

The other model parameters are consistent between the northern and south-

ern halves of M33.

5.3.2.2 Stacked profiles at coarser resolution

We further investigate how stacked profile properties change with spatial res-

olution by repeating our analysis on data smoothed to a resolution of 160 pc

(38′′) and 380 pc (95′′). This allows for a more direct comparison to studies of

stacked profiles on larger physical scales (Caldu-Primo et al., 2013). At each

resolution, we recompute the HI peak velocities and create stacked HI and

CO profiles at that resolution. Table 5.1 gives the HWHM model parameters

for these lower-resolution stacked profiles.

The line widths of both HI and CO(2-1) increase at coarser spatial resolu-

tion. Based on stacking over the entire galaxy within Rgal = 7 kpc, we find

σHI = 8.0± 0.1 km s−1 and σCO = 5.9± 0.9 km s−1 at a resolution of 160 pc,

and σHI = 8.9 ± 0.1 km s−1 and σCO = 7.2 ± 0.9 km s−1 at a resolution of

380 pc. The CO(2-1) line widths have a larger relative increase than the HI

ones, which results in increased ratios of σCO/σHI = 0.70±0.18, 0.74±0.15 and

0.81±0.12 at scales of 80, 160 and 380 pc data, respectively. However, the large

uncertainties on the line width ratios makes this increase insignificant at the

1-σ level. Using CO observations with higher spectral resolution will decrease

these uncertainties and can determine whether this trend is significant.

There are two sources of line broadening that affect σHWHM as the resolu-

tion becomes coarser: (i) the dispersion between the HI and CO(2-1) peak

velocities, and (ii) beam smearing. Line broadening from the former source is

due to aligning the CO(2-1) spectra by the HI peak velocity. At a resolution
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of 80 pc, we estimate the standard deviation of the peak velocity difference

to be 2.7 km s−1, as described in §5.3.1. Using the same procedure at the

coarser resolutions, we find 1-σ standard deviations of 3.1 and 3.3 km s−1 at

a resolution of 160 and 380 pc, respectively. The increase in the peak velocity

difference moderately increases with resolution, but cannot account for the

increase in the line widths at coarser resolution.

To address increased line broadening from beam smearing at coarser res-

olution, we repeat the line stacking in 500 pc radial bins at each resolution.

Figure 5.5 shows the stacked line widths (σHWHM) at the three spatial reso-

lutions. As the resolution becomes coarser, there is a steeper radial gradient

in the line widths of both HI and CO, particularly for Rgal < 1 kpc. This

radial trend qualitatively matches our estimate of beam smearing from §5.6.1.

We determine how much of the line width increase with resolution is due to

beam smearing with the area-weighted line broadening estimates calculated in

§5.6.1. For resolutions of 80 and 160 pc, the broadening from beam smearing

is similar, with estimates of 2.0+2.1
−1.8 km s−1 and 1.5+1.7

−0.8 km s−1, respectively.

The similar levels of beam smearing at 80 and 160 pc imply that the increase

in the line width with resolution is not due to beam smearing.

At a resolution of 380 pc, beam smearing contributes significantly to the

stacked line widths. The area-weighted line broadening from beam smearing is

2.8+1.0
−1.0 km s−1. Treating the stacked profiles as Gaussian within the HWHM,

we assume the line broadening can be subtracted in quadrature from the line

width. Applying this correction gives line widths of 8.4 ± 0.9 km s−1 for

HI and 6.6 ± 3.6 km s−1 for CO(2-1). The CO(2-1) line width does not

constrain whether the increased line widths are from beam smearing due to

the uncertainty from the channel width. However, the 0.9 km s−1 increase in

the HI line width between the 160 and 380 pc data is much larger than the

uncertainty and can entirely be explained by beam smearing.

On scales of 380 pc and larger, beam smearing becomes the dominant con-

tribution to the line width. With increasing scale, the stacked HI and CO

profiles will approach a common width since the stacking is performed with
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Figure 5.5: Stacked profile line widths (σHWHM) measured in 500 pc radial
bins at three different spatial resolutions for HI (top) and CO(2-1) (bottom).
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respect to the HI and will be set by the rotation curve. On smaller scales,

systematics in the stacking procedure and beam smearing cannot account for

the measured increase in the line widths.

We find that the CO line widths remain smaller than the HI on scales up

to 380 pc, which is within the range where the stacking study by Caldu-Primo

et al. (2013) find equivalent CO and HI line widths. We discuss this difference

in the ratio of the line widths in M33 to other nearby galaxies in §5.4.

5.3.3 HI-CO line of sight comparison

Stacked profiles provide a high S/N spectrum whose properties trace the av-

erage of the ensemble of stacked spectra. However, stacking removes informa-

tion about the spatial variation of individual spectra and distributions of their

properties. By fitting individual lines-of-sight, the distributions of line shape

parameters that lead to the shape of the stacked spectrum can be recovered.

Describing the HI line profiles with an analytic model is difficult. As we

demonstrate in Koch et al. (2018c), the typical HI line profile in M33 is non-

Gaussian due to multiple Gaussian components and asymmetric line wings.

The weak relations between the CO and HI integrated intensities found by

Wong et al. (2009) in the LMC suggest that much of the HI emission may be

unrelated to the CO. With this in mind, and since the CO spectra can typically

be modelled with a single Gaussian at this resolution and sensitivity, we use the

location of CO emission as a guide to decompose the HI spectra and model the

component most likely related to the CO. This is an approximate method; a

proper treatment of modeling individual HI spectra requires a robust Gaussian

decomposition (Lindner et al., 2015; Henshaw et al., 2016), which is beyond

the scope of this paper.

5.3.3.1 Fitting individual spectra

We relate the HI and CO by using a limited decomposition of the HI based

on the spatial and spectral location of CO(2-1) emission. Towards lines-of-

sight with CO detections, we determine the parameters of the single Gaussian
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component that is most closely related to the CO emission.

There are 19,796 spectra where CO(2-1) emission is detected above 3-σ in

three consecutive channels and is within Rgal < 7 kpc. We model these spectra

with the following steps:

1. We fit a single Gaussian to the CO(2-1) spectrum, accounting for broad-

ening due to the channel width and the spectral response function using

forward-modelling, which is described in §5.6.2. Forward-modelling ac-

counts for line broadening due to the channel width and the spectral

response function of the CO(2-1) data (§5.2.2).

2. The peak velocity of the CO(2-1) fit defines the centre of a search window

to find the nearest HI peak. The window is set to a width of three times

the FWHM of the CO(2-1) fitted width.

3. Since narrow extragalactic HI spectra have widths > 2 km s−1 (Warren

et al., 2012), we first smooth the HI spectrum with a 2 km s−1 box-car

kernel. Within the search window, we identify the closest HI peak to

the CO(2-1) peak velocity7.

4. Using the peak temperature of the identified HI peak, we search for the

HWHM points around the peak to define the HI fit region.

5. We fit a Gaussian to the un-smoothed HI spectrum within the HWHM

points of the identified peak.

This approach assumes that HI spectra are comprised of a small number

of Gaussian components with well-defined peaks. Since these restrictions are

severely limiting, we define a number of checks to remove spectra that do not

satisfy the criteria. A line-of-sight is included in the sample if it meets the

following criteria:

7We did not find evidence for flattened HI spectra in Koch et al. (2018c) on 80 pc scales
due to self-absorption so we do not search for absorption features aligned with the CO.
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1. The HI peak is within the CO(2-1) search window, defined above. Based

on visual inspection, HI spectra that contain velocity-blended Gaussian

components near the CO(2-1) peak will not satisfy this criterion, and

our naive treatment will fail to identify a single HI component.

2. The CO line width is larger than one channel width (2.6 km s−1).

3. Ten faint (THI,peak < 15 K) HI spectra have a fitted peak associated with

noise. The resulting HI fitted profiles have narrow widths (σ < 3 km

s−1) and are removed from the sample.

4. The fitted HI peak velocity falls within the HWHM region or its Gaus-

sian width is smaller than 12 km s−1. This step removes HI spectra

with velocity-blended Gaussian components that significantly widen the

Gaussian width and are not treated correctly with this method. We set

the width threshold based on visual inspection.

5. The CO(2-1) line width is less than 8 km s−1. A small fraction of CO(2-

1) spectra have multiple velocity components, and their fits to a single

Gaussian all yield widths larger than 8 km s−1.

These restrictions yield a clean sample of 15,153 spectra that we analyze

here, 76% of the eligible spectra. Table 5.2 gives the properties of the line

width distributions. The uncertainties from each fit are from the covariance

matrix of the least-squares fit. We further validate the use of single Gaussian

fits in §5.6.3 and show examples of the fitting procedure.

5.3.3.2 Relations between fitted parameters

We now examine the distributions of fitted HI and CO line parameters to

identify which parameters are related.

The fitted peak velocities are strongly correlated (Kendall-Tau correlation

coefficient of 0.97), consistent with the peak velocity over the LOS shown in

Figure 5.2. The agreement is improved, however, since the outliers (> 10 km

s−1) in Figure 5.2 are removed by only fitting the closest HI component rather
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Table 5.2: Mean line widths from the line-of-sight spectral fitting at different
resolutions. The uncertainties correspond to the 15th and 85th percentiles,
respectively.

Resolution (pc) σ (km s−1) Fitted σCO/σHI

HI CO(2-1)

80 (20′′) 7.4+1.7
−1.3 4.3+1.5

−1.0 0.56± 0.01

160 (38′′) 8.4+1.8
−1.2 5.0+1.4

−1.1 0.57± 0.01

380 (95′′) 11.0+2.7
−2.0 7.3+2.4

−1.6 0.63± 0.01

than the brightest one. Comparing the fitted peak velocities, the largest veloc-

ity difference between the HI and CO is 9.5 km s−1. The standard deviation

between the fitted peak velocities is 2.0 km s−1, narrower than the 2.7 km

s−1 standard deviation from the line-of-sight peak velocity distribution from

§5.3.1.

We also find that the peak HI temperatures where CO(2-1) is detected in-

crease from Rgal < 2 kpc to Rgal > 2 kpc. The brightest peak HI temperatures

(> 80 K) are primarily found in the spiral arms, or spiral arm fragments, at

Rgal > 2 kpc. The lack of spiral structure in the inner 2 kpc may lead to the

lack of peak temperatures over ∼80 K. These results imply that the HI and

CO peak temperatures are not strongly correlated, consistent with the small

correlation coefficient of 0.1 we find using the Kendall-Tau test. The weak

correlation in peak temperatures is consistent with Wong et al. (2009), who

find that HI peak temperature is poorly correlated to CO detections in the

LMC.

The peak CO temperature has a negative correlation with CO line width,

as would be expected for a Gaussian profile with a fixed integrated intensity.

However, other studies using these CO(2-1) data do not recover this negative

correlation. Gratier et al. (2012) find a positive, though weak, correlation
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between the peak CO temperature and the line width from a cloud decom-

position analysis. A similar correlation is found by Sun et al. (2018), who

estimate the line widths with the equivalent Gaussian width determined from

the peak temperature and integrated intensity of a spectrum (Heyer et al.,

2001; Leroy et al., 2016). The discrepancy between our results and these other

works is due to requiring three consecutive channels 3-σ above the rms noise.

This biases our LOS sample, leading to incomplete distributions in the peak

temperature and integrated intensity.

Figure 5.6 shows that there is a clear relation between σCO and σHI. Though

there is significant dispersion in the relation, there is an increasing trend be-

tween the line widths of CO(2-1) and HI. We find median line widths of 4.3

and 7.4 km s−1 for CO and HI, respectively, on 80 pc scales. The CO line

width distribution is near-Gaussian with a skew to large line widths, with 15th

and 85th percentiles of 3.3 and 5.8 km s−1. The HI distribution is more skewed

to larger line widths compared to the CO distribution, and has 15th and 85th

percentile values of 6.2 and 9.2 km s−1. The variations in σHI and σCO are

larger than the typical uncertainties of 0.2 and 0.6 km s−1, respectively.

We highlight the importance of restricting where the HI is fit to in §5.6.3.1,

where we show that fitting the whole HI spectrum leads to significant scatter

in the HI line widths that severely affects the relationships between the line

widths we find here.

Caldú-Primo & Schruba (2016a) perform a similar restricted analysis of

single Gaussian fitting to CO spectra of M31 at a deprojected resolution of

80 pc×380 pc. From their combined interferometric and single-dish data, they

find typical CO line widths of 4.3± 1.3 km s−1, consistent with the range we

find.

We characterize the relationship between line widths by fitting for the line

width ratio using a Bayesian error-in-variables approach (see Section 8 of Hogg

et al., 2010). The goal of this approach is to fully reproduce the data in the

model by incorporating (i) the line width uncertainties into the model and

(ii) a parameter for additional scatter perpendicular to the line in excess of
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the uncertainties8. We find that σCO = (0.56 ± 0.01) σHI, which is shown in

Figure 5.6 as the the green dashed line. The scatter parameter in the model is

fit to be 0.52± 0.02 km s−1, demonstrating that the scatter in the line width

distributions exceeds the uncertainties. This additional scatter represents real

variations in the line width distributions.

We next examine whether changes in the line width with galactocentric

radius can lead to additional scatter in the line width distributions. Similar to

the stacking analysis, we fit the line width relation within 500 pc galactocentric

bins out to a radius of 7 kpc and find no variations in the average widths of

the component with galactocentric radius, consistent with the shallow radial

decrease from the stacked profile analysis (§5.3.2). By examining these possible

sources of scatter in the line width distributions, we find that none of the

sources can fully account for the scatter and that there must be additional

variations not accounted for by the relationships of the fitted parameters. We

discuss the source of the scatter further in §5.3.3.4.

5.3.3.3 The line width ratio at coarser spatial resolution

Similar to the stacked profile analysis (§5.3.2.2), we repeat the line-of-sight

analysis when the data are smoothed to 160 and 380 pc. The same fitting

procedure is applied, with similar rejection criteria for poor fits. However, we

found that the line widths of valid fits to the data when smoothed to 380 pc

can exceed the imposed cut-off values of 12 and 8 km s−1 for HI and CO(2-1)

due to additional beam smearing on these scales (§5.6.1). Based on visual

inspection, we increase these cut-off values to 17 km s−1 and 12 km s−1.

Table 5.2 shows the line width distributions at these scales. As we found

with the stacked profile widths, the line widths increase at coarser resolution.

The line width remains strongly correlated on these scales.

We fit for the line width ratios of the low-resolution samples and find values

of 0.57 ± 0.01 and 0.63 ± 0.01 for the 160 and 380 pc resolutions, respec-

tively. The fitted ratios indicate that the line width ratio is relatively constant

8This parameter tends to 0 when no additional scatter is required to model the data.
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Figure 5.6: Gaussian line widths of individual HI and CO(2-1) profiles. The
one-dimensional histograms show the distributions of σHI (top left) and σCO

(bottom right) with vertical dashed lines indicating the 15th, 50th and 85th

percentiles, respectively. The joint distribution is shown in the bottom left
panel. Contours show the area containing data within the 1- to 4-σ limits
of the distribution and black points show outliers beyond 4-σ, as described
in Figure 5.2. The orange solid line is the line of equality. The horizontal
dotted line indicates the CO(2-1) channel width of 2.6 km s−1; no samples
are included below this width. The green dashed line shows the fitted ratio of
0.56±0.01. We note that our definition of a ‘clean’ component sample restricts
HI line widths to be less than 12 km s−1, and CO line widths must be less
than 8 km s−1. Typical uncertainties are 0.6 and 0.2 km s−1 for the CO and
HI, respectively. A clear relation exists between the HI and CO line widths
with intrinsic scatter.
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with increasing spatial resolution when analyzed on a line-of-sight basis. We

compare these line width ratios to those from the stacking analysis in §5.3.4.

The line width ratios we find are moderately smaller than the line-of-sight

analysis by Mogotsi et al. (2016) for a sample of nearby galaxies. Fitting single

Gaussians to HI and CO(2-1) spectra, they find a mean ratio of 0.7± 0.2 on

spatial scales ranging from 200–700 pc. In contrast, the line width ratio we find

is significantly steeper than extragalactic studies at higher physical resolution.

In the LMC, Fukui et al. (2009) fit Gaussian profiles to both tracers where the

CO peaks in a GMC and find a much shallower slope of 0.23 at a resolution

of 40 pc.

5.3.3.4 Regional variations in the HI-CO line widths

To further investigate the observed correlation between HI and CO(2-1) line

widths and the source of the scatter in this relationship, we highlight the

positions of the line widths from three regions in Figure 5.7. These regions

each have peak CO temperatures above the 75th percentile, and so the observed

scatter is not driven by the correlation between peak CO temperature and line

width. By examining many regions on ∼ 100 pc scales, including the three

examples shown, we find that the line widths remain correlated on these scales,

but the slope and offset of the line widths varies substantially. These regional

variations are the source of the additional scatter required when fitting the

HI-CO line width relation (§5.3.3.2).

By averaging over these local variations—over the full sample, in radial bins,

and at different spatial resolutions—we consistently recover similar line width

ratios. The lack of radial variation indicates that 500 pc radial bins provide a

large enough sample to reproduce the scatter measured over the whole disk. If

these regional variations arise from individual GMCs, the HI-CO line widths

may indicate changes in the local environment or the evolutionary state of the

cloud. If the latter is true, the lack of a radial trend is consistent with the

radial distribution of cloud evolution types from Corbelli et al. (2017), which

are well-mixed in the inner 6 kpc (see also Gratier et al., 2012).
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Figure 5.7: Top: The region around the Northern arm is shown, where
the grayscale is the HI column density and contours are the CO(2-1) column
densities with same levels shown in Figure 5.1. The coloured boxes indicate the
line widths highlighted below. Bottom: The HI-CO(2-1) line width relation
from Figure 5.6 with line widths highlighted according to their region. The
typical uncertainty of the fitted line widths is 0.2 km s−1 for HI and 0.6 km
s−1 for CO. The HI and CO line widths remain correlated within individual
regions, but their position in the line width plane varies with displacements
larger than their uncertainties. This suggests the line width relation is sensitive
to environmental properties or the evolutionary state of GMCs.
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5.3.4 Spectral properties from stacking versus individ-
ual lines-of-sight

Previous studies of HI and CO have found differing results between line stack-

ing and fitting individual spectra. While there are some discrepancies in the

spectral properties we find, our results from these two methods are more simi-

lar than the results from other studies. In this section, we explore the sources

of discrepancy between the stacking and line-of-sight fit results and argue that

most of the sources are systematic, due to the data or the analysis method.

The stacking analysis and line-of-sight fitting each have relative advantages

and disadvantages. Stacked profiles provide an overall census of HI and CO(2-

1) without conditioning on the spatial location of the emission. However, vari-

ations in the centre and width of individual spectra—along with asymmetries

and multiple components—will lead to larger line wings than a Gaussian pro-

file of equivalent width. This result is shown using a mixture model in Koch

et al. (2018c).

The line-of-sight (LOS) analysis retains spatial information, providing dis-

tributions of spectral properties that can be connected to different regions.

However, the simplistic decomposition of the HI of this analysis requires the

detection of CO along the line-of-sight, and so only provides an estimate of HI

properties where CO is detected. If HI where CO is detected differs from the

global population of HI, the properties we find may not describe the typical

HI line properties.

We determine the source of discrepancies in our stacking and fitting results

by creating stacked profiles from the fitted LOS sample and their Gaussian

models. There are five stacking tests we perform that are designed to control

for variations in σHWHM or fwings. Table 5.3 gives the values for these parame-

ters for each of the tests. We described the purpose of each stacking test and

their derived line profile properties below:

1. Stacked fitted model components aligned with the fitted CO mean velocity

– The fitted Gaussian components, not the actual spectra, are stacked.
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This removes all emission far from the line centre and will minimize

fwings in the stacked profiles. Indeed, fwings for HI and CO(2-1) are both

significantly smaller than for the stacked profiles in §5.3.2 (Table 5.1).

Stacking based on the fitted CO mean velocity will minimize the CO

σHWHM, while increasing the HI σHWHM due to the scatter between the

HI and CO mean velocities. The CO σHWHM is narrower than all of the

other stacked profiles, including those from §5.3.2, and is consistent with

the mean CO LOS fitted width of 4.3+1.5
−1.0 km s−1 (Table 5.2).

2. Stacked fitted model components aligned with the fitted HI mean velocity –

This stacking test is identical to (i), except the fitted HI mean velocities

are used to align the spectra. Aligning the spectra with the HI mean

velocity will decrease the HI σHWHM and increase the CO(2-1) σHWHM,

consistent with the measured properties.

3. Stacked spectra in the LOS sample aligned with the fitted HI mean velocity

– The spectra in the LOS sample, rather than the model components

used in (i) and (ii), are stacked aligned with the fitted HI mean velocities.

The CO spectra in the sample are required to be well-modelled by a single

Gaussian component, but there is a modest increase in fwings to 0.07.,

larger than in tests (i) and (ii) The HI spectra, however, have significant

line structure that is not modelled for, leading to a vast increase in fwings

to 0.19. The line widths of the HI and CO stacked profiles are the same

within uncertainty.

4. Stacked spectra in the LOS sample aligned with the HI peak velocity –

The spectra used in (iii) are now aligned with the HI peak velocities

from §5.3.1. These stacked profiles are equivalent to the precedure used

in §5.3.2 using only a sub-set of the spectra. This subset contains some

of the outlier points in Figure 5.2, however σHWHM and fwings do not

significantly change from (iii). The outliers in the peak HI and CO

velocity difference distribution do not contribute significantly to σHWHM

or fwings.
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5. Stacked spectra in the entire LOS sample, including rejected fits, aligned

with the HI peak velocity – Finally, we create stacked profiles for the

entire LOS sample considered in §5.3.3, including the LOS with rejected

fits. This test is equivalent to (iv) with a larger sample. Relative to

(iv), the HI σHWHM and fwings both moderately increase, as expected

when including LOS potentially with multiple bright spectral compo-

nents. The CO stacked spectrum σHWHM marginally increases compared

to (iv), however, fwings increases by 33% to fwings = 0.12. This increase

is driven in part by the CO spectra with multiple components.

From these tests, we can identify the source of the LOS and stacking dis-

crepancies.

5.3.4.1 Smaller CO line-of-sight fitted line widths than from stack-
ing

The larger CO stacked line widths are due to the scatter between the HI

and CO peak velocity (Figure 5.2). This is demonstrated by comparing tests

(i) and (ii), where the former is consistent with the median CO line width

from the LOS fitting. The larger CO line width from stacking will lead to an

overestimate of the HI-CO line width ratio.

5.3.4.2 Larger HI line-of-sight fitted line widths compared with
stacking

The stacked HI line width towards LOS with CO detections (Table 5.3) is

consistently larger than the HI stacked line width from all LOS (Table 5.1).

There are two possible causes for this discrepancy. First, the HI where CO

is detected has larger line widths than the average from all HI spectra. This

source requires a physical difference in the atomic gas properties where molecu-

lar clouds are located, possibly related to the HI cloud envelope (Fukui et al.,

2009). Alternatively, the HI components fitted here may be broadened by

overlapping velocity components since our analysis does not account for this.

However, from visually examining the fits to the LOS sample, most HI spectra
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Table 5.3: Stacked line width (σHWHM) and line wing excess (fwings) from the
spectra used in the line-of-sight analysis (§5.3.3.1). The line widths do not
strongly vary when changing the line centre definition or when the Gaussian
model components are stacked rather than the actual spectrum. However,
fwings is sensitive to whether the full spectra or the models are used. The CO
fwings is also more sensitive to the how the stacking is performed than the HI.

HI CO(2-1)

(i) Fitted model components aligned to CO Model v0

σHWHM (km s−1) 7.6± 0.1 4.2± 0.9

fwings 0.03+0.01
−0.01 0.05+0.17

−0.13

(ii) Fitted model components aligned to HI Model v0

σHWHM (km s−1) 7.4± 0.1 4.6± 0.9

fwings 0.03+0.01
−0.01 0.03+0.16

−0.12

(iii) LOS spectra aligned to HI Model v0

σHWHM (km s−1) 7.4± 0.1 4.8± 0.9

fwings 0.19+0.01
−0.01 0.07+0.10

−0.12

(iv) LOS Spectra aligned to HI vpeak

σHWHM (km s−1) 7.3± 0.1 4.7± 0.9

fwings 0.20+0.01
−0.01 0.08+0.15

−0.12

(v) All LOS spectra aligned to HI vpeak

σHWHM (km s−1) 7.6± 0.1 4.8± 0.9

fwings 0.22+0.01
−0.01 0.12+0.14

−0.11
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would need to have highly overlapping components for the average HI LOS

line width to be broadened, and this does not seem likely for most spectra

(§5.6.3.2). In order to definitely determine which of these sources leads to the

larger HI line widths, we require decomposing the HI spectra without condi-

tioning on the location of the CO emission. However, this analysis is beyond

the scope of this paper. We favour larger HI line widths in molecular cloud

envelopes as the source of this discrepancy.

5.3.4.3 Sources of the line wing excess

These five tests provide restrictions on the source of the line wing excess in

both tracers. In the HI, fwings is only changed when the model components ((i)

and (ii)) are stacked rather than the full HI spectra ((iii)–(v)). This result is

consistent with the line structure and wings evident in individual HI spectra,

as explored in Koch et al. (2018c). The scatter in the fitted velocities (HI or

CO) can account for fwings ∼ 0.03 in the stacked HI profiles.

For the CO stacked profiles, there are variations in fwings from multiple

sources. There are small contributions to fwings from the scatter in the HI fitted

mean velocities (Test (ii); fwings = 0.03) and the scatter between the HI and

CO peak velocities or fitted mean velocities (Tests (iii) & (iv); fwings = 0.01).

Multi-component CO spectra account for fwings . 0.04–0.05 from comparing

Tests (iii) and (iv) to Test (v). This estimate is an upper limit since we

do not control for contributions from real line wings versus multiple spectral

components. Finally, comparing Tests (iii) and (iv) to Test (ii), excess line

wings can directly account for fwings = 0.04–0.05.

The different sources of line wing excess in the CO stacked profiles implies

that there is marginal evidence for CO line wings. As described above, stacking

systematics and multi-component spectra can account for fwings . 0.08–0.09,

roughly half of the line wing excess of fwings = 0.21 from the stacked profile

towards all LOS (Table 5.1). The discrepancy between the total fwings for

the CO stacked profiles and the systematics is then 0.13, though the large

fwings uncertainties can account for the remaining line wing excess. Including
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the error beam contribution of up to 45% of the line wing excess (§5.3.2), we

find that ∼ 80% of the CO line wing excess can be accounted for without

requiring the presence of real CO line wings. However, due to the estimated

uncertainties, we cannot rule out their presence.

5.4 A marginal thick molecular disc in M33

Studies of CO in the Milky Way and nearby galaxies find evidence of two

molecular components: a thin disk dominated by GMCs, and a thicker diffuse

molecular disk. Our results, however, suggest that M33 has a marginal thick

molecular component, unlike those found in other more massive galaxies, based

on (i) finding smaller CO line widths relative to the HI and (ii) the marginal

detection of excess CO line wings. In this section, we compare our results to

previous studies and address previous works arguing for a diffuse component

on large-scales in M33.

Evidence for a diffuse molecular component has been demonstrated with

extended emission in edge-on galaxies (e.g., NGC 891; Garcia-Burillo et al.,

1992), separating 12CO emission associated with denser gas in the Milky Way

(Roman-Duval et al., 2016), comparing the flux recovered in interferometric

data to the total emission in single-dish observations (Pety et al., 2013; Caldú-

Primo et al., 2015; Caldú-Primo & Schruba, 2016a), and large CO line widths

in nearby galaxies (Combes & Becquaert, 1997; Caldu-Primo et al., 2013;

Caldú-Primo et al., 2015).

In M33, a diffuse molecular component has been suggested based on the

CO flux recovered in GMCs (Wilson & Scoville, 1990), comparing the 13CO to

12CO spectral properties (Wilson & Walker, 1994), and a non-zero CO power-

spectrum index on kpc scales (Combes et al., 2012). Rosolowsky et al. (2007)

find that 90% of the diffuse CO emission is located < 100 pc to a GMC, and

suggest the emission is due to a population of unresolved, low-mass molecular

clouds (see also Rosolowsky et al., 2003).

Our stacking analysis, and the stacking analysis in Druard et al. (2014),
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Figure 5.8: Line width ratio from stacked profiles (blue solid diamonds)
and the average from the line-of-sight fits (orange dot-dashed squares) versus
galactic radius at 80 pc (20′′) resolution. The 1-σ uncertainties on the stacked
widths are dominated by the CO(2-1) channel width. The errors on the line-
of-sight fits are the standard deviation in the radial bin divided by the square
root of the number of independent components. The horizontal dashed line is
the fitted ratio 0.56 shown in Figure 5.6. Both methods have line width ratios
smaller than unity, unlike other (more massive) nearby galaxies (Caldu-Primo
et al., 2013), suggesting M33 lacks a significant thick molecular disk.

shows that the CO line widths are consistently smaller than the HI, unlike

the line widths from most nearby galaxies on ∼ 500 pc scales (Combes &

Becquaert, 1997; Caldu-Primo et al., 2013). Figure 5.8 summarizes our results

by showing the CO-to-HI line width ratios of the stacked line widths and the

radially-binned averages from the line-of-sight analysis at 80 pc resolution. The

ratios from the stacked profiles are consistently 10% larger than the average

of the line-of-sight fits due to using the HI peak velocities to align the CO

spectra (§5.3.4). The line width ratio increases but remains less than unity

when the data are smoothed to resolutions of 160 and 380 pc (§5.3.2.2), scales

comparable to some of the data in Caldu-Primo et al. (2013).

Stacking analyses of CO by Caldú-Primo et al. (2015) and Caldú-Primo

& Schruba (2016a) find a wide Gaussian component to CO stacked profiles

that arises only in single-dish observations. The high-resolution (80× 350 pc)
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CO observations of M31 from Caldú-Primo & Schruba (2016a) constrain this

wide component to scales of ∼ 500 pc and larger. Coupled with the large CO

line widths, these results suggest the wide Gaussian component is due to a

thick molecular disk. In our analysis, the wide Gaussian component would

contribute to the line wing excess (fwings)
9. In M33, we find a qualitatively

similar line wing excess to Caldú-Primo & Schruba, however, up to ∼ 80%

of the excess is due to stacking systematics and error beam pick-up from the

IRAM 30-m telescope (§5.3.4.3; Druard et al., 2014). The remaining fraction

of the CO line wing excess is small, and would correspond to a much smaller

contribution from a wide Gaussian component compared to those found by

Caldú-Primo et al. (2015) and Caldú-Primo & Schruba (2016a).

These results strongly suggest M33 has a marginal thick molecular disk and

is instead more consistent with the findings from Rosolowsky et al. (2007)

where diffuse CO emission is clustered near GMCs and may be due to unre-

solved low-mass clouds (flux recovery with spatial scale with these CO data

is explored in Sun et al., 2018). There remains ambiguity about the diffuse

molecular component in M33 from other analyses, and whether M33 is the only

nearby galaxy with a marginal thick molecular disk. We address these issues

in the following sections. First, we demonstrate that the large-scale CO(2-1)

power-spectrum identified in Combes et al. (2012) can be explained by the

exponential disk scale of the CO emission rather than a thick molecular disk.

We then note the similarity of the line width ratios found by Caldu-Primo

et al. (2013) for NGC 2403 and our results.

5.4.1 Comparison to a thick molecular disk implied by
power-spectra

Previous work by Combes et al. (2012) found that the power-spectra of HI and

CO integrated intensity maps of M33 have shallow indices extending to kpc

scales, with distinct breaks near ∼ 120 pc where the indices becomes steeper.

9We stress that the flux in a wide Gaussian component will not equal fwings. However,
an increase in the amplitude or width of the wide Gaussian component will be positively
correlated with fwings.
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The non-zero slope on kpc scales suggests there is significant large-scale diffuse

emission in M33 from both HI and CO, in contrast with our findings for CO

from the line widths.

To explain the non-zero index on large scales, we compare the large-scale

distribution of emission in M33 for CO and HI. Bright CO emission is broadly

confined to individual regions on scales comparable to the beam size (Fig-

ure 5.1) and has a radial trend in the average surface density that is well-

modelled by an exponential disk with a scale length of ∼ 2 kpc (Gratier et al.,

2010; Druard et al., 2014). This radial trend implies that the detection frac-

tion per unit area of CO also depends on radius, providing additional power

in the power-spectrum on ∼ kpc scales. On the other hand, HI emission

is widespread throughout the disk and the surface density is approximately

constant within the inner 7 kpc (Koch et al., 2018c). The difference in the

large-scale radial trends of HI and CO will affect the large-scale (∼ kpc) parts

of the power-spectrum.

We demonstrate how the exponential CO disk affects the power-spectrum

by calculating the two-point correlation function of the GMC positions from

Corbelli et al. (2017). By treating the CO emission as a set of point sources at

the GMC centres, any large-scale correlations must result from spatial cluster-

ing, rather than extended CO emission. Figure 5.9 shows that the two-point

correlation function of the cloud positions has a non-zero correlation up to

scales of ∼ 2 kpc, similar to the exponential CO disk scale. This non-zero

correlation on these scales will correspond to a non-zero CO power spectrum

slope, thus demonstrating that the large-scale power-spectrum does not imply

the presence of a thick molecular disk.

This result may also explain the large change in the CO power-spectrum

index across the ∼ 120 pc break point found by Combes et al. (2012). Distinct

breaks in the power-spectra, and other turbulent metrics, are useful probes of

the disk scale height (Elmegreen et al., 2001; Padoan et al., 2001). The power-

spectrum index is predicted to change by +1 on scales larger than the disk

scale height since large-scale turbulent motions are confined to two dimensions
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Figure 5.9: Two-point correlation function of the GMC positions from Cor-
belli et al. (2017) measured in 150 pc bins. The uncertainties are estimated
from 2000 bootstrap iterations. Most of the correlation occurs on < 150 pc
scales, but the structure of CO emission due to the disk gives non-zero corre-
lations up to ∼ 2 kpc scales.

in the disk (Lazarian & Pogosyan, 2000). Combes et al. (2012) find the CO

power-spectrum index changes by +2.2 across the break, significantly larger

than the expected change of +1. For the HI, the index change of +0.8 across

the break is much closer to the expected change.

The similarity Combes et al. (2012) find between the CO and HI break

points in the power-spectra also differs from the disk scale heights implied

by the line widths we find. For ratios σCO/σHI < 1, the disk scale height of

CO should be smaller than the HI; we can approximate the ratio of the disk

scale heights from the line width ratio. For Rgal < 7 kpc, the stellar surface

density is larger than the total gas surface density in M33 (Corbelli et al.,

2014). Measurements of the stellar velocity dispersion find ∼ 20 km s−1 in the

inner disk (Kormendy & McClure, 1993; Gebhardt et al., 2001; Corbelli, 2003),

suggesting the stellar disk scale height is larger than the HI and CO disk scale

heights. If this result holds true for Rgal < 7 kpc, the ratio of the CO and HI

disk scale heights is the ratio of the line widths: HCO/HHI ≈ σCO/σHI (Combes

& Becquaert, 1997), for line widths measured at the disk scale height. Based
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on our analysis at 80 and 160 pc, the line width ratio is ∼ 0.6, suggesting that

the CO scale height should be ∼ 60% of the HI scale height10.

The discrepancy with the scale heights we measure and the similar scale of

the break points from Combes et al. (2012) may be a limitation of the data

resolution used in their analysis. They use HI and CO data at 12′′ (∼ 50 pc)

resolution (Gratier et al., 2010) and the constraints on the scale of the break

are limited by the beam size, as shown in their Appendix B. Higher resolution

observations (∼ 20 pc) should determine whether there is a difference in the

disk scale heights traced by HI and CO.

5.4.2 Similarities with the flocculent spiral NGC 2403

From the sample of nearby galaxies studied in Caldu-Primo et al. (2013), there

are two galaxies that are also dominated by the atomic component throughout

most of the disk: NGC 925 and NGC 2403 (see also Schruba et al., 2011). As

these are the closest analogs to M33 in their sample, we compare the stacked

profile analyses from Caldu-Primo et al. (2013) to our results.

The NGC 925 line width ratios are consistent with unity, however, the

signal-to-noise in the CO map limit the analysis to a few radial bins at the

galaxy centre. The signal-to-noise of the NGC 2403 data is higher, allowing

the analysis to be extended to larger radii (70% of the optical radius) providing

a number of radial bins for comparison. NGC 2403 is also the closest galaxy

in their sample and the physical scale of the beam is ∼200 pc, a factor of

about two coarser than the resolution of our M33 data. Interestingly, the

line width ratios, outside of the galactic centre (∼0.1R25), are consistently

smaller than unity, with an average of ∼0.8. The increased line widths in

the inner disk are likely affected by beam smearing. With the same data,

the line-of-sight analysis by Mogotsi et al. (2016) find a smaller line width

ratio of ∼0.7. Both of these line width ratios are comparable to our results in

10The line width ratio from the LOS analysis may be too small, due to the large HI
line widths (§5.3.4.2), while the ratio from the stacking analysis is too large due to the
CO stacked line width being larger than the LOS analysis (§5.3.4.1). A ratio of ∼ 0.6 is
in-between the ratios from the two methods.
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M33 on 160 pc (38′′) scales. Our results are then consistent with the ratios for

NGC 2403 from Caldu-Primo et al. (2013) and Mogotsi et al. (2016), suggesting

that galaxies with atomic-dominated neutral gas components have at most a

moderate contribution from a diffuse molecular disk.

5.5 Summary

We explore the spectral relationship of the atomic and molecular medium in

M33 on 80 pc scales by comparing new VLA HI observations (Koch et al.,

2018c) with IRAM 30-m CO(2-1) data (Gratier et al., 2010; Druard et al.,

2014). We perform three analyses—the difference in the velocity at peak HI

and CO(2-1) brightness, spectral stacking, and fits to individual spectra—to

explore how the atomic and molecular ISM are related. Each of these analyses

demonstrates that the spectral properties between the HI and CO are strongly

correlated on 80 pc scales. We also show that relationship between the HI and

CO line widths, on 80 pc scales, from individual spectral fits depend critically

on identifying the HI most likely associated with CO emission, rather than all

HI emission along the line-of-sight.

1. The velocities of the HI and CO peak temperatures are closely related.

The standard deviation in the differences of these velocities is 2.7 km

s−1, slightly larger than the CO channel widths (2.6 km s−1; Figure 5.2).

Significant outliers in the velocity difference (> 10 km s−1) occur where

the HI spectrum has multiple components and the CO peak is not as-

sociated with the brightest HI peak. These outliers are removed when

modelling only the HI component associated with CO (§5.3.3).

2. By stacking HI and CO spectra aligned to the velocity of the peak HI

brightness, we find that the width of the CO stacked profile (4.6 ± 0.9

km s−1) is smaller than the HI stacked profile (6.6±0.1 km s−1) on 80 pc

scales, unlike similar analyses of other (more massive) nearby galaxies

that measure comparable line widths on 500 pc scales (e.g., Caldu-Primo
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et al., 2013). The widths of the stacked profiles slowly decrease with

galactocentric radius.

3. By repeating the stacking analysis at lower spatial resolutions of 160 pc

(38′′) and 380 pc (95′′), we find that the CO(2-1)-to-HI line width ratio

remains constant within uncertainty. We estimate how beam smearing

contributes at each resolution and find that resolutions of 80 and 160 pc

have a similar contribution to the line width from beam smearing. Beam

smearing contributes more at a resolution of 380 pc and can explain the

increased line widths relative to those at 160 pc. However, the CO line

width remains smaller than the HI on all scales.

4. We perform a spectral decomposition of HI spectra limited to where

CO is detected. The CO spectra are fit by a single Gaussian, while the

Gaussian fit to the HI is limited to the closest peak in the HI spectrum.

We carefully inspect and impose restrictions to remove spectra where this

fitting approach is not valid. The average HI and CO line widths of the

restricted sample are 7.4+1.7
−1.3 and 4.3+1.5

−1.0 km s−1, where the uncertainties

are the 15th and 85th percentiles of the distributions, respectively.

5. The average CO line width from the line-of-sight fits are smaller than

those from the stacking analysis. This difference results from aligning the

CO spectra to the HI peak velocity, while there is scatter between the

HI and CO velocity at peak intensity (Figure 5.2). Recovering larger CO

stacked line widths relative to those from individual spectra is a general

result that will result whenever CO is aligned with respect to another

tracer, such as HI. The amount of line broadening is set by the scatter

between the line centres of the two tracers. Thus, line stacking based on

a different tracer will bias the line widths to larger values, but is ideal

for recovering faint emission (Schruba et al., 2011).

6. The average HI line width from the line-of-sight fits (7.4±1.5 km s−1) is

larger than the stacked profile width (6.6± 0.1 km s−1). The larger line
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widths are due to either multiple highly-blended Gaussian components

that are not modelled correctly in our analysis, or that the HI associ-

ated with CO emission tends to have larger line widths. We favour the

latter explanation since our line-of-sight analysis has strong restrictions

to remove multi-component spectra (§5.6.3); however, we do not fully

decompose the HI spectra and cannot rule out the former explanation.

7. The line-of-sight fits highlight a strong correlation between HI and CO

line widths (Figure 5.6). We fit for the line width ratio, accounting for

errors in both measurements, and find σCO = (0.56 ± 0.01) σHI, smaller

than the ratios from the stacked profiles due to the smaller average CO

line width and larger average HI line width. There is no trend between

the line width ratio and galactocentric radius (Figure 5.8). When re-

peated at a lower spatial resolution, we find that the HI and CO line

widths are increased by the same factor, leading to the same line width

ratio, within uncertainties.

8. The scatter in the relation between the HI and CO line widths is larger

than the statistical errors and results from regional variations (Fig-

ure 5.7). The line widths of HI and CO remain correlated when measured

in individual regions, but exhibit systematic offsets with respect to the

median HI and CO line widths. These regional variations affect both

the HI and CO line widths and suggest that the local environment plays

an important role in setting the line widths.

9. We perform stacking tests with the fitted LOS components to constrain

sources of the line wing excess. We find that the error beam pick-up

from the IRAM 30-m telescope (Druard et al., 2014) and systematics of

the stacking procedure can account for ∼ 80% of the line wing excess in

the CO(2-1) (§5.3.4.3). Combined with a CO-to-HI line width ratio less

than unity, this result implies that M33 has at most a marginal thick

molecular disk. We point out that previous analyses of NGC 2403 give
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similar results to ours (Caldu-Primo et al., 2013; Mogotsi et al., 2016),

suggesting that galaxies where the atomic component dominates the cool

ISM may lack a significant thick molecular disk.

Scripts to reproduce the analysis are available at https://github.com/

Astroua/m33-hi-co-lwidths11.
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5.6 Appendix

5.6.1 Line broadening from beam smearing

Spectral line widths can be broadened wherever there is a large gradient in the

rotation velocity on scales of the beam size. This line broadening, commonly

referred to as beam smearing, tends to have the largest effect near the centres of

galaxies, where the rotation curve is steep, and can lead to significant increases

in the line width of stacked profiles (e.g., Stilp et al., 2013a; Ianjamasimanana

et al., 2015; Caldú-Primo et al., 2015).

We require constraints on beam smearing when comparing line widths mea-

sured at different spatial resolutions in our data to distinguish whether broad-

ened line profiles are the result of physical processes. We estimate the maxi-

mum broadening from beam smearing by using a rolling tophat filter on the

peak HI velocity map to calculate the standard deviation over one beam. This

operation measures the beam-to-beam variation in the peak velocity field. We

note that these variations may not be entirely due to beam smearing and could

arise from local variations in velocity, such as those measured for molecular

cloud and envelope rotation in the HI (Imara et al., 2011). Therefore, our

estimates are an upper limit on line broadening due to beam smearing. This

is a similar measurement to the approach used by Caldú-Primo & Schruba

(2016a), where they measure the width of the velocity distribution on local

scales along the major and minor axes of M31.

We compute the standard deviation in the peak HI velocity surface at the

original (80 pc/20′′) and degraded resolutions (160 pc/38′′ and 380 pc/95′′)

used in Sections 5.3.2 & 5.3.3. Since large-scale variations in the peak HI

velocity describe the circular rotation curve, we calculate the average values of

the standard deviation surfaces in 0.5 kpc galactocentric radial bins. If beam

smearing significantly broadens the line, we expect the profile of average values

to follow the derivative of the circular rotation curve, which is steepest within

the inner 2 kpc of M33 (Koch et al., 2018c). Figure 5.10 shows the average of

the standard deviation surfaces at the three different beam sizes used for the
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analysis. The average radial profiles for beam widths of 80 and 160 pc do not

have strong radial trends and show that beam smearing contributes at most

∼ 2 km s−1 to the line width. We calculate the area-weighted average of the

radial profiles in Figure 5.10 and find values of 2.0+2.1
−1.8 km s−1 and 1.5+1.7

−0.8 km

s−1 for beam sizes of 80 and 160 pc, respectively. The uncertainties quoted

here are the 15th and 85th percentiles of the radial profiles with the same area-

weighted averaging applied. Since the CO(2-1) channel width is 2.6 km s−1,

the line width broadening of CO(2-1) from beam smearing is similar to the

correction factor for the channel width.

Using the average line-of-sight CO line width of 4.3 km s−1 at a resolution

of 80 pc (Table 5.2), the correction due to beam smearing gives a ∼ 10% in

the line width.

The average standard deviation profile measured at a beam size of 380 pc

(95′′) shows a strong radial trend within the inner 4 kpc, as expected from beam

smearing. The broadening from beam smearing is particularly strong within

Rgal < 2 kpc, where the maximum average standard deviation is ∼ 8.2 km s−1.

The area-weighted average, as applied to the higher resolution measurements,

is 2.8+1.0
−1.0 km s−1. Subtracting this mean value in quadrature from the 380 pc

stacked line widths (Table 5.1) gives corrected line widths of 8.4± 0.9 km s−1

for HI and 6.7± 3.6 km s−1 for CO(2-1). The CO(2-1) is not constraining due

to the uncertainty from the channel width, however the HI line width range

demonstrates that the 0.9 km s−1 increase in the line width between the 160

and 380 pc data can entirely be explained by beam smearing.

5.6.2 Forward-modelling the spectral response function

We forward-model the individual LOS fits to the CO data in §5.3.3 with an

approximation for the spectral response function. Here, we briefly describe

the fitting process.

We approximate the spectral response function in the CO(2-1) IRAM-30m

data based on the nearest neighbour channel correlation found by Sun et al.

(2018, r = 0.26 for scales > 70 pc, adjusted to a distance of 840 kpc used here).
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Figure 5.10: Average standard deviations from the peak HI velocity map
measured over one beam. Three average curves are shown measured within
0.5 kpc bins at the original beam size (80 pc/20′′; blue circles), and at twice
(160 pc/38′′; green diamonds) and five times (380 pc/95′′; orange triangles)
the original beam size. Error bars correspond to the standard deviation within
each bin, uncorrected for the number of independent samples to demonstrate
where the distributions are consistent with 0 km s−1. The thick, horizontal
lines correspond to the HI (pink dashed; 0.2 km s−1) and CO(2-1) (cyan dot-
ted; 2.6 km s−1) channel widths. The average values represent the maximum
line broadening that could result from beam smearing. Line widths at reso-
lutions of 80 and 160 pc are uniformly broadened by ∼ 2 km s−1, while the
broadening at a resolution of 380 pc is ∼ 3 km s−1 and increases to 8 km s−1

in the inner kpc.
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Using the empirically-derived relation from Leroy et al. (2016), this correlation

corresponds to a channel-coupling factor of k = 0.11 for a three-element Hann-

like kernel ([k, 1− 2k, k]), which we adopt as the spectral response function.

We forward-model the spectral response in two steps:

1. The Gaussian model is sampled at the spectral channels of the observed

spectra. This sampling is equivalent to taking the weighted average of

the Gaussian over the spectral channel width (∆v):

G(v) =
A

(∆v)2

[
erf

(
µ− (v −∆v/2)√

2σ

)
− erf

(
µ− (v + ∆v/2)√

2σ

)]
,

(5.5)

for a Gaussian centered at velocity µ with an amplitude of A and width

of σ that is averaged over channels centered at v. The channel averaging

is equivalent to convolving the Gaussian with a top-hat kernel with a

width of ∆v.

2. The Gaussian sampled over the spectral channels is convolved with the

Hann-like kernel described above. This step accounts for the measured

channel correlations in the observations.

The sampled and convolved spectrum is then compared to the observed

spectrum and the sum of the squared distances is the quantity minimized in

the fit. Using this approach removes biases in the fitted line width parameters

(Koch et al., 2018b). This approach is similar to the forward-modelling in

Rosolowsky et al. (2008).

We note that the non-linear least-squares fit used in this paper assumes that

the data uncertainties are independent, which is not true due to the spectral-

response of the data. To test whether the parameter uncertainties from the

covariance matrix of the fit are underestimated due to being correlated, we

repeat the fitting procedure on 1000 simulated spectra sampled with channel

widths of ∆v = σ. White-noise is added to the spectra then convolved with

the Hann-like kernel to give a peak S/N of 5. We find that ∼ 72% of the

fitted parameters are within the 1–σ uncertainty interval12. This is similar to

12An example of this test is available at https://doi.org/10.5281/zenodo.1491796
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Figure 5.11: The CO (left) and HI (right) integrated intensities from the
spectra within the FWHM window used for the fit (y-axis) compared with the
integral over the fitted Gaussian models (x-axis). The blue-dashed line is the
line of equality. There is little deviation from the line of equality, indicating
that the Gaussian models describe the data within the FWHM fitting windows
well.

the expected 68.2% expected for a two-tailed p-test, demonstrating that the

parameter uncertainties are not underestimated despite the correlated errors.

5.6.3 Validating the gaussian decomposition

We demonstrate our limited Gaussian decomposition method (§5.3.3) and per-

form two validation checks on the sample used in the analysis.

The first check compares the surface densities from the integral over the

fitted Gaussian model to the integrated intensity of the data located within

the model’s FWHM, scaled by 1/erf(
√

2) to account for emission outside of

the mask. Figure 5.11 shows excellent agreement between the two methods

for the HI and CO fits. This implies that the peaks are well-described by a

Gaussian and validates the choice of model.

The second validation check is a comparison of the integral over the fit-

ted Gaussian model with respect to the integrated intensities over the whole

profile. Figure 5.12 shows these quantities for the CO and HI. For the CO

integrated intensities, there is no significant variation between the two quan-

tities. This is expected, since we require that the CO profiles be well-fit by a

Gaussian in order to be in the sample. The discrepancy between these quanti-
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Figure 5.12: The CO (left) and HI (right) integrated intensities from the
integral over the fitted Gaussian models (y-axis) compared to the integrated
intensity over the whole spectra (x-axis). The blue-dashed line is the line of
equality. There remains good agreement for the CO spectra, however the HI
integrated intensity from the Gaussian fit is consistently smaller the from the
entire spectra due to the additional HI line structure.

ties for the HI is larger. Again, this is expected, since the masking used in the

HI fitting is introduced to remove spectral features unlikely to be associated

with the CO component.

With these two checks, we are confident that the clean sampled used for

the analysis describes only single-peaked CO profiles and HI profiles with a

well-defined peak associated with the CO emission.

5.6.3.1 Effect of HI masking on fitting

We investigate how the FWHM mask affects the fitted HI line width by repeat-

ing the fitting without the mask. This procedure has been used in other studies

relating HI and CO line profiles from individual spectra (Fukui et al., 2009;

Mogotsi et al., 2016). For HI profiles with multiple components or prominent

line wings, we expect that the fitted profiles without masking will be much

wider. Figure 5.13 shows that most HI profiles are indeed wider without the

masking, with the median width increasing from 7.4 to 8.3 km s−1. This result

highlights the need to carefully disinguish bright HI emission from extended

line wings to avoid biasing the HI line widths and reinforces the use of the

upper-limit of 12 km s−1 in σHI set here to minimize contamination in our
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Figure 5.13: HI line widths fit with and without a FWHM mask around the
peak. The contours represent the 2- to 4-σ limits of the population, and points
outside the contours are outliers beyond 4-σ. The blue-dashed line indicates
equality between the line widths.

sample.

5.6.3.2 Examples of fitted spectra

In Figures 5.14 and 5.15, we demonstrate fitted HI and CO spectra and how

our criteria for the analysis sample removes clear issues. Figure 5.14 is an

example of a valid fit to both HI and CO, while Figure 5.15 demonstrates a

poor fit that is excluded from the analysis.

5.6.4 Stacked profile widths

Table 5.4 shows the stacked line widths (σHWHM) in radial bins. These line

widths are plotted in the top panel of Figure 5.4 and described in §5.3.2.1.
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Figure 5.14: Example of the HI and CO Gaussian fitting showing well-fit
single components that are included in our clean sample. The top panel shows
the fitted HI and CO profiles. The middle panel shows the CO spectrum with
the fit overlaid. The bottom panel shows the same for the HI data, and also
includes a fit to the HI data if no masking is applied when fitting (thick-dashed
line; §5.6.3.1). The HI fit the brightest peak is significantly improved when
masking is used.
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Figure 5.15: Same as Figure 5.14. This example shows failed fits in both
tracers due to multiple-components and is rejected from the clean sample.
There appears to be two Gaussians in both spectra and fitting a multi-Gaussian
model should distinguish between the two. Extending this analysis to multi-
component spectra will be the focus of future work.

250



Table 5.4: HWHM line widths (σHWHM) for the HI and CO(2-1) stacked
profiles in 500 pc radial bins at 80 pc resolution. The uncertainties are propa-
gated assuming an uncertainty of half the channel width and the uncertainty
of each point in the spectrum is the standard deviation of values within that
channel scaled by the square-root of the number of beams.

Rgal (kpc) σHI (km s−1) σCO (km s−1)

0.0–0.5 8.0± 0.1 5.0± 0.9

0.5–1.0 7.3± 0.1 4.6± 1.0

1.0–1.5 6.9± 0.1 4.5± 1.0

1.5–2.0 7.3± 0.1 4.8± 0.9

2.0–2.5 7.4± 0.1 4.8± 0.9

2.5–3.0 7.4± 0.1 4.7± 0.9

3.0–3.5 6.8± 0.1 4.7± 0.9

3.5–4.0 7.2± 0.1 4.8± 1.0

4.0–4.5 6.7± 0.1 4.4± 1.0

4.5–5.0 6.9± 0.1 4.6± 1.0

5.0–5.5 6.9± 0.1 4.1± 1.0

5.5–6.0 6.9± 0.1 3.9± 0.9

6.0–6.5 6.6± 0.1 4.3± 1.0

6.5–7.0 6.1± 0.1 3.8± 1.1
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Chapter 6

Spatial Power Spectra of Dust
across the Local Group: No
Constraint on Disc Scale Height

Koch, E.W et al. (2020). “Spatial power spectra of dust across the Local

Group: No constraint on disc scale height,” MNRAS, 492, 2663–2682.

Preface

This chapter, published as Koch et al. (2020), focusses on modelling one-

dimensional power spectra, which are shown in Figures 6.2–6.5 & 6.8 (also

see Appendix A). For clarity, I note that these power spectra are plotted with

the corresponding physical scale x on the x-axis defined as x = 1/ν, where ν

is the spatial frequency. This convention differs from how traditional power

spectra are shown, with the x-axis in spatial frequency or wavenumber, but is

useful for this work where our 4 targets vary in distance. This convention is

used elsewhere in the literature where power spectra of observational data are

presented (e.g., Combes et al., 2012).

Abstract

We analyze the 1D spatial power spectra of dust surface density and mid

to far-infrared emission at 24–500 µm in the LMC, SMC, M31, and M33. By
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forward-modelling the point-spread-function (PSF) on the power spectrum,

we find that nearly all power spectra have a single power-law and point source

component. A broken power-law model is only favoured for the LMC 24 µm

MIPS power spectrum and is due to intense dust heating in 30 Doradus. We

also test for local power spectrum variations by splitting the LMC and SMC

maps into 820 pc boxes. We find significant variations in the power-law index

with no strong evidence for breaks. The lack of a ubiquitous break suggests

that the spatial power spectrum does not constrain the disc scale height. This

contradicts claims of a break where the turbulent motion changes from 3D

to 2D. The power spectrum indices in the LMC, SMC, and M31 are similar

(2.0–2.5). M33 has a flatter power spectrum (1.3), similar to more distant

spiral galaxies with a centrally-concentrated H2 distribution. We compare the

power spectra of HI, CO, and dust in M31 and M33, and find that HI power

spectra are consistently flatter than CO power spectra. These results cast

doubt on the idea that the spatial power spectrum traces large scale turbulent

motion in nearby galaxies. Instead, we find that the spatial power spectrum

is influenced by (1) the PSF on scales below ∼ 3 times the FWHM, (2) bright

compact regions (30 Doradus), and (3) the global morphology of the tracer

(an exponential CO disc).

6.1 Introduction

Turbulence is an integral part of the dynamics in the interstellar medium

(ISM). Within the inertial range of turbulence, the self-similar structure of

the density and velocity fields produce a power-law distribution, which can be

measured using statistical techniques like the power spectrum (Elmegreen &

Scalo, 2004). Together, the density and velocity fields constrain the energy

power spectrum E(k). This can directly be compared to turbulence models

for incompressible (Kolmogorov, 1941) and compressible gas (Burgers, 1948;

Fleck, 1996; Galtier & Banerjee, 2011; Federrath, 2013). ISM observations

provide usable constraints on 3D turbulent velocity and density fluctuations
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from the 2D line-of-sight velocity and column density maps (Federrath et al.,

2010). This connection offers a method for constraining the turbulent energy

power spectrum from observational data.

Of particular interest for the star formation process and galaxy evolution

is distinguishing what mechanism drives turbulence throughout a galaxy. Be-

cause turbulence decays quickly (∼ 10 Myr), the ubiquity of observed turbulent

properties implies the need for a near-continuous source of turbulent energy

injection (Mac Low & Klessen, 2004b). Observational constraints on the tur-

bulent driving scale may provide a clean measurement to distinguish between

different sources of energy injection. This connection can be difficult to make

with Milky Way observations as line-of-sight confusion makes it difficult to

distinguish scales at and above the disc scale height (> 100 pc). As a result,

high dynamic range extragalactic observations may offer the best way to trace

the scale of energy injection.

The spatial power spectrum of a turbulent cascade offers a potential solution

to constrain the disc scale height and driving scale in face-on galaxies. The

index of the energy power spectrum changes with both the type of turbulence

and the number of spatial dimensions. For the latter, the index is expected to

steepen by +1 as the turbulent motions transition from being confined from

three- to two-dimensions (e.g., Lazarian & Pogosyan, 2000). Extragalactic

observations that resolve scales below the disc scale height are ideal for testing

whether this “break” in the power spectrum indeed occurs, using the column

density or the line-of-sight velocity fields. From this break scale, the disc

scale height can be measured, constraining quantities like the turbulent energy

injection on galactic scales (e.g., Tamburro et al., 2009; Koch et al., 2018c;

Utomo et al., 2019a), and the mid-plane pressure (Blitz & Rosolowsky, 2006)

that are used in star formation models based on vertical dynamical equilibrium

(Ostriker et al., 2010).

Several studies, primarily using column density or intensity maps, investi-

gate the spatial power spectrum in nearby galaxies. Some studies find power

spectra well-described by both a single power-law (e.g., Stanimirovic et al.,
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2000; Dutta et al., 2013; Zhang et al., 2012). Others find a broken power-law

(e.g., Elmegreen et al., 2001; Dutta et al., 2009a; Combes et al., 2012), where

the break has been interpreted as the disc scale height. These and other stud-

ies also find a large range in the power law index. This is true even when

comparing results use a single traced like the 21-cm HI line (e.g., Dutta et al.,

2013).

This range in extragalactic power spectrum properties makes it difficult to

draw general conclusions about the nearby galaxy population. One reason for

the confusion may be that extragalactic power spectrum analyses use hetero-

geneous data and techniques. In general, extragalactic studes have also not

corrected for steepening on small scales due to the PSF response (excepting

Muller et al., 2004), though this effect is commonly account for in Galactic

power spectrum analyses (Miville-Deschênes et al., 2003; Martin et al., 2015;

Blagrave et al., 2017). This issue was also noted by Grisdale et al. (2017) who

found that the break points in HI power spectra in a few nearby galaxies are

consistently limited by the PSF scale.

A further issue to consider with extragalactic power spectra is how galactic

structure not dominated by turbulence (i.e., spiral arms) affects the power

spectrum shape. These large-scale distributions are known to contribute ad-

ditional power on large-scales. Grisdale et al. (2017) show that changes in the

mass distribution steepens the column density power spectrum from galaxy-

scale simulations. Koch et al. (2019b) show how the clustering of GMC loca-

tions in M33’s inner disc contributes to an excess in the power spectrum up

to scales near the disc scale length (∼ 2 kpc; Druard et al., 2014).

Accurate measurements of the power spectrum are particularly important

now because recent advances in galaxy-scale numerical simulation resolve sim-

ilar scales to current observations of Local Group galaxies (e.g., Grisdale et al.,

2017; Dobbs et al., 2018; Garrison-Kimmel et al., 2019). Comparing the power

spectra between these observations and simulations can provide a powerful di-

agnostic for how large-scale galactic structure affects the power spectrum shape

(e.g., Grisdale et al., 2017). For example, several simulations show a power
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spectrum break that is altered by stellar feedback (Bournaud et al., 2010;

Pilkington et al., 2011; Combes et al., 2012; Grisdale et al., 2017), though the

prominence of spiral arms also appears to play a role (Renaud et al., 2013).

In this paper, we present a uniform analysis of 1D dust emission power

spectra in four Local Group galaxies, the Large and Small Magellanic Clouds,

M31, and M33. We use archival Spitzer and Herschel data, as well as dust

surface density maps from Utomo et al. (2019b). We compare power spectrum

properties across different galactic environments while resolving scale similar to

or below the disc scale height (∼ 100 pc; Kalberla & Kerp, 2009). Our analysis

models the point-spread function (PSF) on the power spectrum shape and

demonstrates that a single power-law combined with unresolved point sources

can reproduce most of the observed power spectra. We present the maps used

in §6.2 and the power spectrum model in §6.3. We discuss the implications of

our modelling in §6.4, including comparisons between IR bands and galaxies,

and how the dust power spectrum relates to power spectra of HI, tracing

the atomic ISM, and CO, tracing the molecular ISM. Our uniform power

spectrum analysis of multiple phases in multiple galaxies offers a benchmark

for simulations of Local Group-like galaxies.

Throughout this paper, we define P (k) as the 1D power spectrum produced

from an intensity or surface density maps and the power spectrum index β as

∝ k−β such that β > 0.

6.2 Observations

We focus our study on the Magellanic Clouds, M31, and M33. These are

the closest targets uniformly observed across the mid- to far-infrared by both

Spitzer (Werner et al., 2004) and Herschel (Pilbratt et al., 2010). Due to their

large angular size and proximity (< 1 Mpc), these targets maximize the spatial

range that can be studied in their power spectra. The Spitzer and Herschel

maps of the Magellanic Clouds have resolve ∼ 10 pc scale, well below the

expected scale height of both the atomic and molecular gas discs.
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We use existing Spitzer MIPS (24, 70, & 160 µm Rieke et al., 2004), and

Herschel PACS (100 & 160 µm Poglitsch et al., 2010) and SPIRE (250, 350,

& 500 µm Griffin et al., 2010) data products from several projects: LMC

Spitzer MIPS (SAGE; Meixner et al., 2006), Herschel PACS & SPIRE (HER-

ITAGE; Meixner et al., 2013); SMC Spitzer MIPS (SAGE-SMC & S3MC;

Gordon et al., 2006, 2011; Bolatto et al., 2007), Herschel PACS & SPIRE

(HERITAGE; Meixner et al., 2013); M31 Spitzer MIPS (Barmby et al., 2006),

Herschel PACS & SPIRE (Groves et al., 2012; Draine et al., 2014); M33 Spitzer

MIPS (Hinz et al., 2004; Tabatabaei et al., 2007), Herschel PACS & SPIRE

(HerM33es; Kramer et al., 2010).

Altogether, we create 1D power spectra from maps in eight infrared bands

in our analysis. We include both the MIPS and PACS 160 µm maps to check

for consistency between different instrumental effects and noise levels. As a

check, we did rerun our analysis on background-subtracted maps and found

that the background remove had little effect on the power spectrum properties.

This lack of change in the power spectrum is expected since the background

tends to be both low intensity and smooth on large-scales.

A key component in our analysis is the effect of the instrumental PSF

response on the power spectrum shape. We use the PSF and convolution

kernels from Aniano et al. (2011) to model for PSF effects. We also convolve

each map to the “moderate” Gaussian size provided in Table 6 of Aniano et al.

(2011), again using their publicly available convolution kernels.

We also analyze the dust surface density maps from Utomo et al. (2019b),

which were derived applying a uniform analysis to the Herschel data for each

of our targets. A modified blackbody model is fit to the spectral energy dis-

tribution (SED) from 100-500 µm following the methodology of Chiang et al.

(2018) and Gordon et al. (2014). The dust maps are provided at a common

set of physical resolutions; here, we use the highest resolution for each galaxy:

13 pc for the LMC and SMC, and 167 pc for M31 and M33.

Figure 6.1 shows the dust surface density maps from Utomo et al. (2019b)

for each galaxy. The region displayed in the figure shows the area used for the
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Figure 6.1: Dust surface density maps of the LMC, SMC, M31, and M33
from Utomo et al. (2019b). The bars in the lower left corners show the 1 kpc
scale shown for each galaxy. The region shown for each galaxy is used for all
images in the power spectrum analysis (§6.3).

analysis of all maps in all bands. Thus, the power spectra can be compared

directly.

Throughout this paper, we adopt distances of 62.1 kpc for the SMC (Graczyk

et al., 2014), 50.2 kpc to the LMC (Klein et al., 2014), 744 kpc to M31 (Vi-

lardell et al., 2010), and 840 kpc to M33 (Freedman et al., 2001). These are

the same distances used by Utomo et al. (2019b) to create the dust maps at

common physical resolutions that we use here.

6.3 Power spectrum analysis

We characterize and compare the spatial structure in the LMC, SMC, M31,

and M33 with the 1D spatial power spectrum from intensity or dust surface

density maps, a commonly-used technique for describing ISM structure from
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∼AU to kpc scales (e.g., Elmegreen & Scalo, 2004). We present the power

spectrum calculation in §6.3.1, the power-law model and fitted results in §6.3.2,

and the model selection criteria in §6.3.3. Except for the MIPS 24 µm results

for the LMC, all of the power spectra the we measure are well-fit by a single

power-law plus point source component. In §6.3.5, we demonstrate that 30

Doradus is responsible for a power spectrum break in the LMC MIPS 24 µm.

Finally, §6.3.6 presents local dust surface density power spectra from 820 ×
820 pc2 square regions in the LMC and SMC. This analyses allows us to explore

variations in the power spectrum index. These local power spectra are also

well-fit by a single power-law model.

6.3.1 Calculating power spectra

We use TurbuStat (Koch et al., 2019a)1 to compute the 1D spatial power spec-

trum. TurbuStat implements a common version of many turbulence statis-

tics described in the literature, including the spatial power spectrum. While

TurbuStat can model the full 2D power spectra of images, we focus this study

on modelling 1D power spectra azimuthally-averaged in Fourier space. The

1D power spectrum, P (k), is most commonly used in extra-galactic studies.

When large values are at the edge of the map, the Gibbs phenomenon causes

ringing in the Fourier transform, which manifests as a strong cross-shape in

the 2D power spectrum. Since the ringing will affect the 1D power spectrum

shape, we apply a Tukey function to smoothly taper the edges of the map prior

to computing the power spectrum. The maps that require this added step are

described in §6.3.2 and §6.6.1.

6.3.2 Modelling the power spectra

We consider two models to describe the 1D power spectrum shape: (1) a single

power-law and (2) a broken power-law. In both cases, we allow an optional

point source component. Both models account for extended emission with the

1Version 1.0; turbustat.readthedocs.io
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power-law components and the response of bright, individual point sources on

small scales with a constant component.

The single power-law model for a 1D power spectrum P (k) is:

Psingle(k) = Pext(k) + Ppt(k) = Ak−β +B. (6.1)

This model has three free parameters to fit: the power-law amplitude A, the

index β, and the point-source contribution B.

The broken power-law model accounts for a change in the power-law index

at some scale. This model has been used in previous extragalactic studies

(Block et al., 2010; Combes et al., 2012). We adopt a broken power-law model

following the form implemented in Astropy Collaboration et al. (2013):

Pbroken(k) = A

(
k

kb

)−β {
1

2

[
1 +

(
k

kb

)1/∆
]}(β−β2)∆

+B. (6.2)

This model adds three additional parameters relative to Equation 6.1, two

of which are left as free parameters when fitting. The parameters β and β2

describe the power-law index below and above the break kb, respectively. This

form of a broken power-law smoothly varies between the power-law compo-

nents, with the “smoothness” set by the ∆ parameter. We fix ∆ = 0.1 based

on visually comparing model solutions. Given that the fitting is done in fre-

quency pixel units and the bin size of 1 is used for all power spectra, we expect

this to be an appropriate choice for our analysis. This smooth version of a

broken power-law offers a more realistic description of the data, rather than a

model with a sharp break at kb

Equations 6.1 and 6.2 are physically-motivated, idealized models that do

not account for any real observational effects. In the simplest interpretation,

the power-law component results direction from turbulent density fluctuation

while the point source component reflect, e.g., young stellar objects and em-

bedded star forming regions (Seale et al., 2009).

Instrumental systematics affect the observed shape of the power spectrum,

causing it to deviate from the idealized models above. Fortunately, most
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of these effects can be account for by forward modelling. In this analysis,

we forward model the point spread function (PSF) response for each map.

Multiplying by the PSF response (PPSF(k)), the models from Equations 6.1 &

6.2 become:

Pobs(k) = PPSF(k) · Pmodel(k). (6.3)

Since the PSF response has a fixed form, it does not introduce additional free

parameters in the model. For a Gaussian response, PPSF(k) ∝ exp (−4π2σ2
beamk

2),

where σbeam = FWHM/
√

8log2 is the Gaussian rms of the beam. Similar

models that include the PSF response have been used in several studies (e.g.,

Miville-Deschênes et al., 2002; Muller et al., 2004; Martin et al., 2015; Blagrave

et al., 2017).

We fit the power spectra of the maps at two resolutions: (1) the native

resolution, and (2) convolved to a Gaussian beam using the “moderate” kernels

listed in Table 6 of Aniano et al. (2011). At the native resolution, we account

for the non-Gaussian PSF shape by regridding the PSF map from Aniano

et al. (2011) to have the same pixel size as the observed map and using its 1D

power spectrum as PPSF(k) in Equation 6.3. For the convolved maps, we use

the analytic form for a Gaussian PSF.

We found that fits to the the power spectra of the dust surface density maps

were improved by including an uncorrelated white noise term C:

Pobs(k) = PPSF(k) · Pmodel(k) + C. (6.4)

This additional C term is due to fitting the dust SED to individual pixels. The

inherent uncertainty of the SED fit adds some noise to the dust surface density

map. Since the fits are performed for each pixel, this additional noise is not

affected by the PSF and is reasonably approximated as white (uncorrelated)

noise.

Since the amplitudes A, B and C in the model vary over several orders of

magnitude, we fit the log10 of these parameters to make it easier to sample

large variations. Due to the potentially wide range in parameters from map
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to map, we adopt uninformative uniform priors on the parameters:

log10 A ∼ U (−20, 20) (6.5)

log10 B ∼ U (−20, 20) (6.6)

log10 C ∼ U (−20, 20) for Eq. 6.4 (6.7)

β ∼ U (0, 10) (6.8)

β2 ∼ β +N (0, 10) for Eq. 6.2 (6.9)

kb ∼ U (kmin, kmax) for Eq. 6.2 (6.10)

The chosen parameter ranges are significantly wider than the expected values

and none of the fitted parameters converged to the edge of a parameter range.

We also note that adopting wide Gaussian priors on the parameters did not

affect the fits.

When fitting Equation 6.2, we treat the second power-law component, on

scales below kb, as a perturbation on the large-scale index β. This allows

for β ∼ β2, thereby converging to Equation 6.1 when a break is not strongly

preferred in the fit. The break point kb is sampled uniformly over the whole

range of spatial frequencies k. The importance of kb diminishes at large kb

where forward-modelling the PSF response dominates the power spectrum

shape. In these cases, β2 and kb could be well-constrained but the fit will be

indistinguishable from Equation 6.1.

We fit the 1D power spectra and assume that the standard deviation of

the azimuthal average is a reasonable uncertainty. Since most of these maps

have a high signal to noise ratio, particularly on large scales, the variations

in radial bins will be larger than the inherent uncertainty. Thus, we treat the

1D power spectrum values (P1D) as independent samples drawn from a normal

distribution with a width inferred from the standard deviation in azimuthal

bins. We draw these samples in log10 space to avoid sampling negative values

for the power spectrum:

log10P
?
1D ∼ N

(
log10P1D, σlog10P1D

)
. (6.11)
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The model is fit to the sampled values P ?
1D, ensuring the data uncertainty is

reflected in the parameter posterior distributions.

When fitting maps from the photometric bands to Equation 6.3, we only

consider scales above 3× the Gaussian standard deviation of the beam to

avoid regions where pixelization or convolution residuals dominate the power

spectrum shape (see §A). We also limit the fit to scales less than k < kmax/3,

where kmax is the inverse of half the map shape. This removes large deviations

in the largest bin that arise from the need to account for the total intensity in

the image. These large scale bins are estimated from just a few samples in the

2D power spectrum and thus have a large uncertainty (see Figure 6.2). The

dust surface density maps from Utomo et al. (2019b) have pixel sizes 2.5 times

smaller than the beam which avoids small scales dominated by convolution

residuals. Therefore, we include the smallest scales of the column density

power spectra in the fit to the surface density.

We use the pymc3 package (Salvatier et al., 2016) to fit the models, us-

ing Sequential Monte Carlo to sample the parameter space (Del Moral et al.,

2006), as we found it rapidly converged for this problem. Sequential Monte

Carlo runs a set of parallel Markov chains through a series of stages. At each

stage, the sampling progresses from the prior to posterior distribution by tem-

pering, controlled by a tempering parameter2 β?. At each stage, β? is increased

according to the samples in the previous step, starting at 0 for the prior dis-

tribution and ending at 1 for the posterior distribution. For our fits, we found

a good balance between computational cost and convergence using 100 chains

that sample over 6000 iterations for each step. For comparison, we fit several

power spectra using the Levenberg-Marquardt algorithm, which provides sim-

ilar parameter values but severely underestimates parameter uncertainties and

covariance. Using Markov Chain Monte Carlo (MCMC) and accounting for the

data uncertainty (Equation 6.11) provides realistic parameter uncertainties.

2Typically β is used for the tempering parameter, but we adopt β? to avoid confusion
with the power spectrum index β.
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6.3.3 Model selection

We fit each of the power spectra to the single (Equation 6.1) and broken

power-law (Equation 6.2) models while forward-modelling the PSF response.

To compare the models, we compute the Widely-applicable Information Cri-

terion (WAIC; Watanabe, 2010), as implemented in pymc3, to determine the

preferred model. WAIC estimates the out-of-sample prediction accuracy from

a Bayesian model based on the log-likelihood from the MCMC parameter sam-

ples, with a correction for the number of variables to account for overfitting.

We note that the model comparisons calculated using leave-one-out (LOO)

cross-validation are consistent with those from WAIC for our fits (Vehtari

et al., 2017).

We choose the preferred models by comparing the WAIC and its uncertainty

between the two models. The preferred model should minimize the WAIC.

However, we find that the WAIC is similar for many of the fits. In this case,

we choose the simpler single power-law model (Equation 6.1) given the lack

of clear evidence for a broken power-law. In many of these cases, the break

point approaches the PSF FWHM and the broken power-law has a diminishing

influence on the fit quality.

6.3.4 Fit results

For all of the fits but one (§6.3.5), we find that the power spectra are well-fit by

a single power-law and point source model (Equation 6.1) with no significant

requirement for a broken power-law. In our measurements, the PSF response

can account for any observed steepening of the power spectra on smaller scales.

Figure 6.2 shows the power spectra and fits for the dust surface density

maps from Utomo et al. (2019b). The PSF response, shown separately for

each galaxy, has a noticeable effect on the shape of the power spectrum on

scales ∼ 3–4 times the FWHM. By incorporating the PSF response into our

model, the fits shown in Figure 6.2 account for the apparent break point on

those scales. Table 6.1 provides the fitted parameters using Equation 6.4.
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These results show that the power spectra are all well-fit by a single power-

law, plus a point source term for maps with ∼ 10 pc resolution (i.e., the LMC

and SMC) and do not require a physical break point in the model.
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Figure 6.2: 1D power spectra of the dust surface density (left column) and
the fitted models (right column; Table 6.1) for the LMC, SMC, M31, and M33
shown on a common physical scale. The orange dashed-dotted line shows the
power spectrum of the PSF response, scaled to an order of magnitude below
the amplitude from the fit. The vertical thick gray dotted line is the FWHM
of the PSF response. The standard deviation on the power spectrum is shown
in the shaded gray region in the left panel. The dashed orange line in the
right column panels is the best fit model, and the underlying gray lines are the
model fits from 10 random draws of the MCMC. The power spectra are well-fit
by a single power-law and point-source component, while the PSF response is
solely responsible for the break point on small scales.
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Table 6.1: Fit parameters for the 1D dust surface density power spectra to Equation 6.4. Uncertainties are the 1-σ interval
estimated from the MCMC samples. Missing entries in log10B are unconstrained in the fit and not used.

Galaxy Resolution (′′) Phys. Resolution (pc) log10 A β log10 B log10 C

LMC 53.4 13 1.67± 0.08 2.18± 0.05 2.82± 0.32 0.79± 0.08

SMC 43.2 13 −0.16± 0.25 2.47± 0.15 2.52± 0.04 2.93± 0.18

M31 46.3 167 0.02± 0.13 2.46± 0.14 – 0.33± 0.06

M33 41.0 167 1.32± 0.15 1.11± 0.14 – 0.13± 0.03
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Figure 6.3 shows the power spectra and fits for the MIPS 24 µm maps at

their original resolution. The MIPS 24 µm PSF has noticeable non-Gaussian

features that result in a “step” in the PSF response3. Each of the galaxy

maps show this step feature in their power spectra, indicating these breaks are

solely from the PSF. All of the power spectrum fits are best described by a

single power-law model, except for the LMC MIPS 24 µm shown in the top

panel of Figure 6.3, which we explore in further detail in §6.3.5. Repeating this

analysis with the MIPS 24 µm convolved to a Gaussian PSF, we find consistent

power-law indices, demonstrating that the fits are not strongly dependent on

the PSF model. Table 6.2 provides the complete fit parameters for all bands

and resolutions, with the WAIC used for model selection.

3For M33, the step in the PSF is on ∼ 80 pc scales.
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Figure 6.3: 1D power spectra of MIPS 24 µm maps (left column) and the
fitted models (right column; Table 6.2), similar to Figure 6.2. A similar figure
for each band is included as supplemental information. The MIPS 24 µm PSF
is highly non-Gaussian, as is clear from the extra “step” in the response on
small scales. Similar to the dust surface density, the power spectra are well
fit without a break point. The only exception across all of the bands is the
LMC MIPS 24 µm power spectrum in the top panel. A broken power-law
model (Eq. 6.2) is marginally preferred with a break point at 190 pc, shown
in the labeled gray vertical line. We show in §6.3.5 that 30 Doradus causes
this deviation.
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Table 6.2: Fit parameters for the individual band power spectra to Equations
6.1 & 6.2 with forward-modelling the PSF response (Equation 6.3. Uncertain-
ties are the 1-σ interval estimated from the MCMC samples. Missing entries
in log10B are unconstrained in the fit and not used, while missing entries in
other parameters (β2 and kb) are cases where the broken power-law model is
not preferred. The model preference is indicated by the bold-faced WAIC
value and chosen based on a 1σ difference for the broken power-law, or ≤ 1σ
for the single power-law. The latter is chosen based on the lack of evidence
for a more complex model. Fits labelled with F do not include the PSF shape
in the model (see §6.6.1), and those labelled with � use an apodizing kernel to
minimize ringing in the FFT from large values at the image edges.

Band FWHM FWHM log10 A β log10 B β2 xb = k−1b BP SP

WAIC WAIC

(′′) (pc) (pc) (×103) (×103)

LMC

MIPS 24 6.5 2 13.65± 0.09 1.13± 0.03 – 1.79± 0.07 190± 25 241.0± 0.4 241.5± 0.4

11.0 3 14.28± 0.07 0.50± 0.09 – 1.77± 0.18 439± 46 152.9± 0.3 153.2± 0.3

MIPS 70 18.7 5 10.14± 0.04 1.70± 0.02 10.96± 1.40 – – 102.2± 0.2 102.2± 0.2

30.0 7 10.22± 0.03 1.67± 0.02 – – – 67.1± 0.2 67.1± 0.2

PACS 100 7.1 2 11.17± 0.04 1.73± 0.02 13.13± 0.02 – – 289.6± 0.3 289.7± 0.3

9.0 2 11.24± 0.04 1.70± 0.02 13.02± 0.02 – – 233.7± 0.3 233.7± 0.3

MIPS 160 38.8 9 7.84± 0.07 2.13± 0.04 9.05± 0.71 – – 40.7± 0.2 40.8± 0.02

64.0 16 8.07± 0.05 2.00± 0.04 – – – 26.3± 0.1 26.3± 0.1
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PACS 160 11.2 3 10.07± 0.04 1.88± 0.02 11.61± 0.04 – – 166.3± 0.3 166.3± 0.3

14.0 3 10.14± 0.05 1.84± 0.03 11.45± 0.08 – – 137.5± 0.3 137.5± 0.3

SPIRE 250 18.2 4 8.59± 0.06 1.89± 0.04 – – – 89.7± 0.2 89.7± 0.2

21.0 5 8.64± 0.04 1.87± 0.03 – – – 79.2± 0.2 79.2± 0.02

SPIRE 350 25 6 7.31± 0.03 1.95± 0.02 – – – 56.5± 0.2 56.5± 0.2

28.0 7 7.33± 0.03 1.95± 0.03 – – – 51.3± 0.2 51.3± 0.2

SPIRE 500 36.4 9 6.16± 0.03 1.99± 0.03 – – – 33.9± 0.2 33.9± 0.2

41.0 10 6.18± 0.04 1.97± 0.03 – – – 30.7± 0.2 30.7± 0.2

SMC

MIPS 24 6.5 2 8.91± 0.02 0.78± 0.01 – – – 116.2± 0.2 116.2± 0.2

11.0 3 9.09± 0.03 0.67± 0.02 – – – 72.7± 0.2 72.7± 0.2

MIPS 70F 18.7 6 7.17± 0.33 1.98± 0.14 10.56± 0.38 – – 144.5± 0.4 144.5± 0.4

30.0 9 7.51± 0.37 1.83± 0.17 10.67± 0.23 – – 145.9± 0.4 145.9± 0.4

PACS 100 7.1 2 8.47± 0.16 1.93± 0.07 11.78± 0.01 – – 131.1± 0.2 131.1± 0.2

9.0 3 8.68± 0.16 1.85± 0.07 11.74± 0.01 – – 105.5± 0.2 105.5± 0.2

MIPS 160� 38.8 12 5.76± 0.14 2.33± 0.10 7.51± 0.08 – – 16.4± 0.1 16.4± 0.1

64.0 19 6.03± 0.23 2.15± 0.15 – – – 10.7± 0.1 10.7± 0.1

PACS 160F,� 11.2 3 7.40± 0.06 2.16± 0.04 – – – 37.4± 0.1 37.4± 0.1

14.0 4 7.74± 0.05 2.04± 0.03 – – – 38.0± 0.1 38.0± 0.1

SPIRE 250 18.2 5 6.24± 0.11 2.17± 0.07 8.19± 0.04 – – 37.2± 0.2 37.2± 0.2

21.0 6 6.27± 0.13 2.15± 0.08 8.17± 0.06 – – 32.9± 0.2 32.9± 0.2
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SPIRE 350 25 8 5.05± 0.12 2.28± 0.08 6.88± 0.05 – – 23.1± 0.1 23.1± 0.1

28.0 8 5.11± 0.11 2.24± 0.07 6.87± 0.06 – – 20.9± 0.1 20.9± 0.1

SPIRE 500 36.4 11 3.88± 0.15 2.39± 0.09 5.93± 0.06 – – 13.6± 0.1 13.6± 0.1

41.0 12 3.98± 0.15 2.32± 0.10 5.90± 0.07 – – 12.3± 0.1 12.3± 0.1

M31

MIPS 24 6.5 23 5.55± 0.34 1.39± 0.18 7.82± 0.68 – – 50.9± 0.1 50.9± 0.1

11.0 40 5.08± 0.35 1.59± 0.16 7.90± 0.50 – – 31.7± 0.1 31.7± 0.1

MIPS 70 18.7 67 4.74± 0.42 2.11± 0.20 7.52± 0.08 – – 16.5± 0.1 16.5± 0.1

30.0 108 4.59± 0.44 2.16± 0.22 7.53± 0.13 – – 10.9± 0.1 11.0± 0.1

PACS 100F 7.1 26 8.34± 0.13 1.91± 0.07 – – – 19.9± 0.1 19.9± 0.1

9.0 32 8.77± 0.14 1.77± 0.07 – – – 20.2± 0.1 20.2± 0.1

MIPS 160� 38.8 140 5.79± 0.23 1.87± 0.19 – – – 8.05± 0.08 8.05± 0.08

64.0 231 5.76± 0.16 1.89± 0.16 – – – 5.21± 0.08 5.21± 0.08

PACS 160� 11.2 40 7.95± 0.18 2.20± 0.08 11.57± 0.04 – – 43.3± 0.1 43.3± 0.1

14.0 50 8.18± 0.21 2.11± 0.09 11.44± 0.07 – – 35.5± 0.1 35.5± 0.1

SPIRE 250� 18.2 66 6.10± 0.07 2.16± 0.07 – – – 18.4± 0.1 18.4± 0.1

21.0 76 6.10± 0.08 2.16± 0.07 – – – 16.4± 0.1 16.4± 0.1

SPIRE 350� 25 90 5.01± 0.07 2.21± 0.08 – – – 11.5± 0.1 11.5± 0.1

28.0 101 5.03± 0.08 2.21± 0.08 – – – 10.5± 0.1 10.5± 0.1

SPIRE 500� 36.4 131 4.04± 0.11 2.18± 0.11 – – – 6.8± 0.1 6.8± 0.1

41.0 148 4.07± 0.12 2.17± 0.12 – – – 6.2± 0.1 6.2± 0.1
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M33

MIPS 24 6.5 26 9.25± 0.09 0.46± 0.05 – – – 25.7± 0.1 25.7± 0.1

11.0 45 9.26± 0.09 0.46± 0.05 – – – 15.9± 0.1 15.9± 0.1

MIPS 70 18.7 76 8.21± 0.08 0.99± 0.06 – – – 8.38± 0.06 8.38± 0.06

30.0 122 8.30± 0.11 0.94± 0.08 – – – 5.51± 0.05 5.51± 0.05

PACS 100 7.1 29 9.24± 0.25 1.30± 0.13 – – – 26.7± 0.1 26.7± 0.1

9.0 37 9.47± 0.10 1.20± 0.06 – – – 21.7± 0.1 21.7± 0.1

MIPS 160 38.8 158 6.18± 0.11 1.50± 0.11 – – – 3.19± 0.05 3.19± 0.05

64.0 261 6.43± 0.28 1.30± 0.21 – – – 2.06± 0.03 2.06± 0.03

PACS 160 11.2 46 8.61± 0.09 1.31± 0.07 – – – 15.6± 0.1 15.6± 0.1

14.0 57 8.52± 0.09 1.37± 0.06 – – – 12.9± 0.1 12.9± 0.1

SPIRE 250 18.2 74 6.68± 0.07 1.51± 0.06 – – – 7.83± 0.07 7.83± 0.07

21.0 86 6.73± 0.08 1.47± 0.07 – – – 6.94± 0.07 6.94± 0.07

SPIRE 350 25 102 5.54± 0.07 1.42± 0.07 – – – 4.75± 0.06 4.75± 0.06

28.0 114 5.60± 0.08 1.38± 0.07 – – – 4.32± 0.07 4.32± 0.07

SPIRE 500 36.4 148 4.66± 0.09 1.17± 0.08 – – – 2.72± 0.05 2.72± 0.05

41.0 167 4.72± 0.10 1.15± 0.08 – – – 2.46± 0.05 2.46± 0.05
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In a few cases, we found that the power spectra did not follow the PSF

response on small scales. In each case, other systematic effects not included

in the model dominate the power spectrum shape. These cases are indicated

by a � in Table 6.2 and a longer explanation is provided in §6.6.1. In most

cases, we found that cross-hatching of telescope scans near bright emission

enhances the power on scales near to or smaller than the FWHM of the PSF.

It is difficult to account for this effect in our model, so we instead fit a model

without the PSF response (Equation 6.1) and limit the scales fit to several

times the PSF FWHM.

6.3.5 A break due to 30 Doradus in the LMC MIPS
24 µm power spectrum

We find that all power spectra in our sample are well-fit by a single power-

law plus point source model with the exception of the LMC MIPS 24 µm

map. For the LMC at 24 µm, Figure 6.4 shows a distinct bump in the power

spectrum on scales of > 80 pc, making the broken power-law model (Equation

6.2) preferred based on the WAIC of each fit. This feature is also noted by

Block et al. (2010). However, the break scale from broken power-law model

is not well-constrained. We derive somewhat different values when we fit the

data at their original resolution and when we fit the map after smoothing to a

Gaussian kernel (Table 6.2). In this section, we identify 30 Doradus (30 Dor)

as the source for this break.

A significant fraction (∼ 30%) of the LMC’s emission at 24 µm is solely

from this giant HII region. We investigate the effect that a prominent single

source has on the power spectrum by calculating the power spectrum in 3 kpc

boxes with and without 30 Dor, where the edges of both boxes have the same

apodizing kernel applied to suppress Gibbs ringing. Figure 6.4 shows the

distinct difference in these power spectra. The box containing 30 Dor has a

power spectrum that closely matches the LMC’s power spectrum and contains

a similar bump at the same scales. In contrast, the box without 30 Dor follows

a power-law to the scale of the box.

274



100101102103

Scale (pc)

10−10

10−7

10−4

10−1

N
or

m
al

iz
ed

P
ow

er

MIPS 24

LMC

With 30 Dor

Without 30 Dor

PSF

Figure 6.4: 1D power spectra of the MIPS 24 µm image for the LMC convolved
to an 11′′ (3 pc) Gaussian beam, and equal area regions (4×3.6 kpc2 area) that
include and exclude 30 Doradus. The power spectra are normalized by their
maximum and offset by 102 to show the relative shapes. For the entire LMC
and the region including 30 Doradus, there is a deviation and break point from
a single power-law at ∼ 80 pc. In the region without 30 Doradus, however, the
power spectrum is well-described by a single power-law. In this case, the flux
from 30 Doradus relative to the entire LMC is sufficient to produce a break in
the power spectrum.
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Figure 6.4 shows the power spectrum from two 3 kpc boxes, one with and

one without 30 Dor. The region with 30 Dor clearly shows a similar deviation

from a single power-law matching the power spectrum of the whole galaxy. The

region without 30 Dor does not show this deviation is an noticably shallower,

similar to the MIPS 24 µm power spectra of the other galaxies (Table 6.2).

We fit a single power-law to the power spectrum without 30 Dor and find an

index of 1.29± 0.02, steeper than the large-scale index of 1.13± 0.03 from the

power spectrum of the entire image.

We initially fit a broken power-law (Eq. 6.2) to the power spectrum with

30 Dor, however, the break point from the fit converges to the beam size.

Restricting the fit to larger scales did not lead to an improved fit. We therefore

only fit a single power-law model to the power spectrum from this region. The

single power-law fit gives an index of 1.76± 0.02, which is consistent with the

index below the break point from the power spectrum of the entire galaxy.

Since this fit agrees with the entire image power spectrum, the broken power-

law fit likely did not converge due to the lack of data points at the largest

scales within the 3 kpc region. This is similar to the change in the break point

between the original and convolved LMC MIPS 24 µm power spectra. The

break point is very sensitive to the data.

This example demonstrates how the power spectrum shape can be signifi-

cantly altered by a small number of regions with large intensity relative to the

whole image. Willett et al. (2005) find a similar result in the power spectrum

of NGC 2366 in Hα, where a giant HII region causes an additional power

spectrum “bump.” Images with power spectrum breaks should be tested for

whether the break is due to a limited number of bright discrete features.

6.3.6 Power spectrum variations within local 820 pc re-
gions

We test whether the power spectrum varies across the LMC and SMC by

computing the dust column density power spectra in local (∼ 820 pc) regions.

We choose 820 pc to balance between measuring local variations and retaining
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sufficient information to constrain the power spectrum. The high physical

resolution (∼ 10 pc) allows for a large spatial range to be studied in the local

power spectra. Due to the lower physical resolution in M31 and M33, we

cannot access such a large spatial range in those galaxies.

Previous power spectrum studies of the Magellanic Clouds find spatial vari-

ations in the power-law index (Muller et al., 2004), potentially tracing varia-

tions in the turbulence. Furthermore, Padoan et al. (2001) identify a spatially

varying scale height across the LMC studying the HI emission from 180 pc

regions using the Spectral Correlation Function.

We test for a varying break point by splitting the LMC and SMC dust

surface density maps into ∼ 820 pc overlapping squares and fit the power

spectra in each region with Equation 6.4. These square regions tend to have

bright emission at their edges, so we apply a Tukey apodizing kernel to remove

ringing in the FFT, as explained in §6.3.1. We focus only on the Magellanic

Clouds for this analysis since the resolution of 13 pc is an order of magnitude

below the ∼few 100 pc disc scale height of atomic gas in dwarf galaxies (Walter

& Brinks, 1999).

There are large signal-to-noise (S/N) variations among the regions. The vast

majority of regions have sufficient signal to measure the power law component,

though a few regions in the SMC are clearly dominated by noise. When

fitting the local power spectra, we found that the S/N variation leads to strong

correlations between the B and C parameters from Equation 6.4. Since this

analysis is primarily concerned with variation in the power law properties

(index and break point), we limit the fits in this section to scales of 4 ×
FWHM ≈ 52 pc and only fit the power law (i.e., we fix B = 10−20, the lower

limit on the prior). This spatial limit on the fit still captures the “break” due

to the PSF response and so is adequate for this analysis.

We further attempted to model the local power spectra with a broken power-

law model (Eq. 6.2) to test for the presence of strong breaks. However, we

do not find any cases where the broken power-law model is strongly preferred.

This is in part due to the smaller spatial range, where there is a lack of data
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Figure 6.5: Dust surface density power spectra of the entire LMC and SMC
maps (black lines) and thirty randomly-selected power spectra (gray lines)
from ∼ 820 pc local regions. The dashed line is the PSF scaled to compare
with the power spectra shape. Local power spectra steepen at small scales
according to the PSF response and do not show a distinct break point on
small scales. There is substantial spatial variation in the local power spectrum
index, which is shown in Figure 6.6.

points on > 400 pc to constrain a break. We focus the remainder of this

analysis on variations in the power spectrum index.

Figure 6.5 shows LMC and SMC power spectra from the whole map and

from randomly-selected 820 pc boxes. In all cases, we find that the PSF

accounts for the power spectrum shape on small scales and that a break point

is not required in the model. The lack of a break point on local scales rule out

a varying disc scale height as an explanation for finding no break point in the

whole galaxy power spectra.

The local power spectra in Figure 6.5 show variation on scales unaffected

by the PSF response, implying that the fitted amplitude and power law index

vary with position in both galaxies. While the amplitude is set by the total

emission in the box, variations in the index imply changes in the emission

morphology. Figure 6.6 shows the power spectrum index (β) overlaid on the

dust surface density maps. The power spectrum indices vary from 1.31± 0.23

to 2.88±0.22 and 0.82±0.38 to 2.50±0.22 in the LMC and SMC, respectively,

after removing all regions near the edges of the column density maps where the

noise increases. The range in local power spectrum indices is drastically larger

than the uncertainty on the global power spectrum index for both galaxies

278



LMC SMC

1.4

1.6

1.8

2.0

2.2

2.4

2.6

In
d

ex
(β

)

Figure 6.6: The LMC and SMC dust surface density maps overlaid with
the power spectrum index measured in 820 pc regions. There is a 400 pc
overlap between regions so the points shown in the figure are correlated with
their neighbours. We restrict the analysis to high S/N regions, which removes
regions at the edge of the LMC and a significant portion of the SMC. In
both galaxies, there is significant variation in the power spectrum index (see
uncertainty map in Figure 6.10) from the index over the whole galaxy (2.18±
0.05 and 2.47± 0.15 for the LMC and SMC, respectively).

(2.18±0.05 and 2.47±0.15; Table 6.1). This then implies that the local power

spectrum variations are real and not due to noise fluctuations.

In the higher surface density regions to the north and west, the SMC power

spectrum varies in index by ±1. The steepest power spectra have indices of

2.5 and are offset from the highest surface density regions, suggesting steeper

power spectra are sensitive to the gradients in surface density. In these regions,

there is an excess of emission on larger scales and a deficit of small scales—due

to the offset from the peak in the emission—leading to a steep power spectrum.

A similar result is found by Burkhart et al. (2010), who find extremes in the

skewness and kurtosis of the local HI surface density distribution near large

gradients. The LMC index map shows a similar trend, with steep power

spectra offset from 30 Dor and south along the Molecular Ridge along the

eastern edge of the LMC.

Spatial variations in the HI power spectrum or structure function, the real-

space analog, have been noted in the Magellanic Bridge (Muller et al., 2004)

279



and the SMC (Nestingen-Palm et al., 2017). In the latter work, Nestingen-

Palm et al. (2017) split the SMC into regions based on the star formation

rate. They find no change in the index with star formation rate, which is

somewhat different than the variations correlated with IR brighntess that we

observe. In addition to using a different tracer (they use HI, we use dust), the

regions they use are significantly larger than the 820 pc boxes than from this

analysis. In particular, the bright north and west regions are included in the

same high SFR region, which is the area we find moderate variations in the

power spectrum index.

More recently, Szotkowski et al. (2019) use the “rolling power spectrum” to

explore changes in the HI power spectrum with spatial position in the SMC

and LMC. They find evidence of power spectrum breaks only in the LMC,

where the power spectra flatten above the break. Since we do not find this

behaviour over the same regions using the dust column or IR bands, this

suggests that the HI may be better coupled to stellar feedback than the total

gas column traced by the dust. While Szotkowski et al. (2019) do not forward

model the PSF response, the power spectra are cut-off at the beam scale. This

implies that breaks on scales much larger than the beam (3×FWHM ∼ 90 pc)

are robust against the PSF shape.

6.4 Discussion

We show that the IR and dust surface density power spectra for the LMC,

SMC, M31 and M33 are well-modeled by a single power-law with point-source

term, when the PSF response is accounted for. A broken power-law model is

only preferred for the LMC MIPS 24 µm image and results from 30 Doradus

(§6.4).

Here we discuss trends in the power spectrum properties across bands and

galaxies and compare with previous studies, some of which have found evidence

for breaks in the power spectrum. We also compare the dust, CO and HI

power spectra in M31 and M33. We find discrepancies in the fitted index of

280



these three tracers. This strongly suggests that a comprehensive spatial power

spectrum analysis requires a multi-tracer approach.

6.4.1 Comparisons with literature power spectra

This paper uses a large suite of archival observations, many of which have been

previously analyzed using the spatial power spectrum. Here, we present an

overview of spatial power spectra in the four galaxies analyzed here, including

tracers not explored in this work. Where appropriate, we compare our results

to these previous works, highlighting discrepancies in fit values that occur due

to different fitting procedures. Accounting for differences in methodology, our

power spectrum fits agree with previous analyses using similar data sets. We

then compare how the power spectra from the IR and dust surface density

compares to literature values at other bands. We note here that our definition

of the power-law index (∝ k−β) is defined so measured indices should have

β > 0. Where appropriate, we alter the sign of literature values to follow this

convention.

6.4.1.1 LMC

Block et al. (2010) use the LMC MIPS maps (Meixner et al., 2006) fit to a

two-component power law model, where the component on large scales should

have a similar index to our fits. On large scales, they find indices of 0.78±0.19,

1.83±0.36, and 2.15±0.48 at 24, 70, and 160 µm, respectively. The latter two

agree with our fitted indices, while the 24 µm is flatter due to the influence of

30 Dor (§6.4).

The power spectrum of HI in the LMC is presented in Elmegreen et al.

(2001) and Elmegreen et al. (2003a), where they find that the large-scale index

is around 5/3 on larger-scales (> 100 pc), as would be expected for Kolmogorov

turbulence.
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6.4.1.2 SMC

In the SMC, Stanimirovic et al. (2000) present power spectra from 60, and

100 µm IRAS bands. When fit to a single power law model, the 60 and

100 µm power spectra have indices of 2.4 ± 0.2 and 3.2 ± 0.3, respectively.

Small scales that appear to be affected by the PSF response are included in

the fit, leading to steeper power spectra than if only the large scales were fit;

the 100 µm with its larger PSF is more affected by the decrease in power on

small scales. Consistent with this difference in the power spectrum models,

we find much shallower power spectra of 1.98 ± 0.14 and 1.93 ± 0.07 in the

MIPS 70 and 100 µm bands, respectively. Accounting for uncertainty, the

IRAS 60 µm index from Stanimirovic et al. (2000) is consistent with our fit to

the MIPS 70 µm.

In HI, Stanimirovic et al. (1999a) find a power spectrum index of 3.04±0.02

(see also Stanimirovic et al., 2000; Nestingen-Palm et al., 2017), steeper than

the power spectra we find for the dust surface density (2.47 ± 0.15).

6.4.1.3 M33

Combes et al. (2012) present power spectra from a large number of tracers for

M33, including the MIPS, PACS, and SPIRE bands. Like the LMC analysis by

Block et al. (2010), they fit a two-component power law model to the power

spectra; we compare the large-scale indices with ours. A second difference

between our analyses is the fits from Combes et al. (2012) include the two

smallest spatial frequency bins, which we do not include in our fits as the

values in these bins are significantly larger than what would be inferred from

the power law model. The indices we find tend to be shallower than those

found reported by Combes et al. (2012), consistent with excluding the smallest

frequency bins. The discrepancies are the largest for the MIPS bands, where

our fitted indices are ∼ 0.5 smaller. The discrepancy is smaller and roughly

within the index uncertainty for the PACS and SPIRE maps.

Combes et al. (2012) include power spectra of the molecular and atomic
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neutral ISM traced through HI and CO(2-1), respectively (Gratier et al., 2010;

Druard et al., 2014). On large-scales (unaffected by the PSF shape), they find

indices of 2.4 for the HI and 1.5 for CO(2-1). The latter does not flatten on

large-scales. Koch et al. (2019b) shows that an excess of power on large scales

is due to the clustering of GMCs in the inner few kpc. We also explore these

tracers in M33 in §6.4.4 and compare the recovered indices there.

Combes et al. (2012) also include additional tracers that we do not explore,

including Hα, and GALEX NUV and FUV. They find indices of 1.2 for the

NUV and FUV bands, similar to what we find in the IR bands. The Hα index

they find is 0.77, similar to the MIPS 24 µm power spectrum and consistent

with an independent study by Elmegreen et al. (2003b). These similarities are

expected since these are tracers of star formation that inherits some of the

galactic ISM structure.

Finally, Elmegreen et al. (2003b) present power spectra of M33 in the B,

V, and R bands. These optical bands are dominated by the stellar component

and are not expected to match the ISM-dominated maps that we explore here.

By calculating a power spectrum from 1D azimuthal strips, they find indices

of 0.66± 0.66. The large uncertainty is due to contamination from foreground

stars.

6.4.1.4 M31

There is little previous work on spatial power spectra in M31, likely due to its

high inclination. We discuss the similarity of M31’s power spectra to those of

the Magellanic Clouds in §6.4.3.

6.4.2 Variations in the power spectrum index across
bands

Large-scale variations in the shape of the dust spectral energy density, e.g.,

due to temperature variations, could alter the shape of the power spectrum

measured at IR different bands. Figure 6.7 summarizes our fitted power spec-

trum indices from Tables 6.1 & 6.2 for each galaxy. The MIPS 24 µm index
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is consistently shallower than those at longer wavelengths by 0.5–1.2. As we

have shown in §6.3.5, bright emission regions at 24 µm, like 30 Doradus in the

LMC, can alter the power spectrum shape over a large range of scales. Bright

concentrated sources could result in the shallow power spectra we find in all

four galaxies. The 24 µm power spectra have a similar index to studies using

Hα in nearby galaxies, consistent with bright emission in both tracers arising

from compact star-forming regions (Elmegreen et al., 2003b; Combes et al.,

2012).

At longer wavelengths, there is less variation in the index. In the LMC

and SMC, there is a mild trend of steeper power spectra at longer wavelength.

The power spectrum index in M31 is relatively constant across the longer

wavelength bands, while M33’s power spectrum in the three SPIRE bands

becomes shallower. With these differences, and the limitations of a small

sample size, we find no consistent trend in the power spectrum index from

70–500 µm.

6.4.3 Variation in the power spectrum index between
galaxies

The LMC, SMC, and M31 differ significantly in their large-scale morphology

(Figure 6.1), yet they have a similar power spectrum index. Figure 6.7 shows

that the LMC, SMC, and M31 have similar power spectra ranging from 2–2.5,

excluding the MIPS 24 µm band. In all cases, the power spectra are shallower

than the 8/3 predicted for 2D Kolmogorov turbulence (e.g., Elmegreen & Scalo,

2004).

The small range in power spectrum indices of the LMC, SMC, and M31

could suggest the dust emission shares a similar morphology when resolving

< 167 pc scales, though this similarity is not apparent from the maps in Figure

6.1. For the LMC and SMC, where < 13 pc scales are resolved, bright features

in the dust surface density maps correspond to GMCs, and, particularly for the

LMC, there are large voids from supershells (Kim et al., 1999). The 167 pc

resolution of the M31 dust surface density map is not sufficient to resolve
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Figure 6.7: 1D power spectrum index with 1σ uncertainty error-bars for each
band and the dust surface density map across all four galaxies (see Tables 6.1
& 6.2). We show the indices for the original images and the images convolved
to a Gaussian, using the kernels described in Aniano et al. (2011), to highlight
the agreement between the two results, which is expected if the powers-spectra
are well-fit without a break point. The LMC MIPS 24 µm has both indices
from the broken power-law fit shown, where squares indicate the index on
small scales (above the break) and diamonds indicates the index on large-
scales (below the break). The MIPS 24µm indices are consistently flatter
than the other bands, while all other have slopes of ∼ 2, in broad agreement
with literature values. M33 has a consistently flatter power spectrum relative
to the other galaxies.
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individual GMCs, and the bright regions in the map primarily highlight M31’s

ring structure at Rgal ∼ 10 kpc. This discrepancy in the spatial morphology at

different scales demonstrates that different spatial morphologies can produce

similar power spectra.

M33 has a consistently flatter power spectrum compared to the other three

galaxies, excluding the MIPS 24 µm band, with indices ranging from 1–1.5.

This difference in the power spectrum index results from M33’s flocculent spi-

ral morphology with a central enhancement of molecular gas, which differs

from the distributed molecular gas morphology in the LMC and SMC, and

the predominant molecular rings in M31. M33’s molecular gas, and thus the

highest dust surface density, is centrally concentrated into the inner few kpc;

Druard et al. (2014) show that the azimuthally-averaged molecular gas surface

density, from CO(2-1), is well-fit by an exponential disc with a scale length of

2.1 kpc. This is in contrast with the HI distribution, which has a roughly con-

stant average surface density of ∼ 8 M� pc−2 in the inner 8 kpc (Druard et al.,

2014; Koch et al., 2018c). Approximating the disc as a uniform exponential

disc, the power spectrum should have a break near the disc scale length4 and

a flat power spectrum on larger scales. While this is a plausible explanation

for the CO(2-1) power spectrum from Combes et al. (2012) (see Koch et al.,

2019b), this simple model does not explain the lack of a power spectrum break

near the disc scale length nor the shallow power spectrum measured for the

dust surface density and IR bands. This implies that the more diffuse and

predominantly atomic gas plays an important role in setting the large scale

power spectrum shape. We compare the HI properties to the dust in M33 in

§6.4.4.

To test this hypothesis of shallow power spectra from a centralized H2 distri-

bution, we require other nearby face-on galaxies where similar physical scales

to the M33 observations can be resolved, of which there are few. We choose to

compare with the face-on spiral galaxy IC 342, which has a distance of 3.4 kpc

(Tully et al., 2013). Using the Herschel bands (Kennicutt et al., 2011), the

4The inclination would broaden the power spectrum break.
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PACS 160 µm resolution resolves 11.2′′ ≈ 180 pc scales, similar to the phys-

ical resolution of the SPIRE 500 µm and dust surface density maps of M31

and M33 used here5.

We perform the same analysis on IC 342 that is described in §6.3. We find

that IC 342 has a flat power spectrum similar to M33, with typical indices

around 1 (see Table 6.4), deviating from the index from the LMC, SMC, and

M31. The similarity between M33 and IC 342 suggests that galaxies with

a centrally concentrated H2-distribution tend to have flatter power spectra,

consistent with our expectation above for an exponential (molecular) disc plus

a constant (mostly atomic) component. Grisdale et al. (2017) find a similar

result in their analysis of power spectra from galaxy-scale simulations and HI

data from THINGS (Walter et al., 2008). They demonstrate this dependence

on the gas mass distribution by including an extended uniform gas component

with different surface densities and find that this added component steepens

the power spectrum on large scales. The connection with 2D turbulence on

large scales is then tenuous for these galaxies.

Though the methodology and resolution of the data differ, in general the

power spectrum indices that we find agree with previous work on other galax-

ies. Indices from power spectra measured in various optical bands range from

0.6 to 1.8 (Elmegreen et al., 2003b; Willett et al., 2005; Elmegreen et al.,

2006), while those from 3.6–8.0 µm range from 0.8–2.8 (Block et al., 2009).

The most studied tracer, and with the widest range in indices, is the 21-cm

HI line. Previous studies find indices that range from 0.3 (Dutta et al., 2013)

to 4.3 (Zhang et al., 2012), though most indices range from 1.5–3.0 (Begum

et al., 2006; Dutta et al., 2008, 2009a,b; Zhang et al., 2012; Dutta et al., 2013;

Dutta & Bharadwaj, 2013). Low-inclination spiral galaxies tend to have flat-

ter power spectra in previous studies (Dutta & Bharadwaj, 2013), broadly

consistent with our findings for M33 and IC 342.

Spatial power spectra within the Milky Way tend to be steeper than in

5There are discrepancies in the expected PSF shape for the IC 342 PACS 100 µm map
and so we exclude it for this comparison.
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extragalactic systems, though they around found in a similar range. The power

spectra we find here are consistently shallower than power spectra from Milky

Way studies. Galactic HI power spectra typically have indices from 2.5–4

(Deshpande et al., 2000; Dickey et al., 2001; Miville-Deschênes et al., 2003;

Pingel et al., 2013; Martin et al., 2015; Blagrave et al., 2017; Pingel et al.,

2018), with extreme values of 2.2 (Green, 1993) to 4.9 (Kalberla et al., 2017).

Values from dust include 2.7 from extinction over the Perseus molecular cloud

(Pingel et al., 2018), 2.9 from diffuse galactic light in optical bands (Miville-

Deschênes et al., 2016), and 2.7 from Herschel SPIRE maps of the Polaris flare

(Miville-Deschênes et al., 2010). The latter example is ∼ 0.5 steeper than the

indices we find for SPIRE maps of the LMC, SMC, and M31 (Table 6.2). We

note that Milky Way studies using the spatial power spectrum do not find

strong evidence for power spectrum breaks.

Even if multiple spatial distributions yield the same power spectrum index,

our results still a key benchmark for simulations that aim to reproduce Lo-

cal Group-like galaxies. Several recent works aim to simulate galaxies with

properties closely matching the LMC, SMC, M31, M33, or the Milky Way

(Combes et al., 2012; Wetzel et al., 2016; Grisdale et al., 2017; Dobbs et al.,

2018; Garrison-Kimmel et al., 2019) with many producing “synthetic” observa-

tions to compare with properties found in the actual observations (e.g., Dobbs

et al., 2019), a key step for directly comparing simulations and observations

(Haworth et al., 2018). For any simulation the produces dust maps or syn-

thetic IR observations, matching our measured power spectrum represents an

important check.

6.4.4 Comparisons with HI and CO power spectra

The dust surface density closely traces the total neutral gas surface density,

related only through the dust-to-gas ratio. In contrast, 21-cm HI or CO

emission traces only a particular phase of the neutral ISM. This makes the dust

surface density a potentially useful tool to compare how the power spectrum

changes in the atomic and molecular ISM phases.
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We found in the previous section (§6.4.3) that the large-scale galactic dis-

tribution affects the power spectrum shape. In this section, we compare the

dust power spectrum with those from HI and CO, which cleanly separate the

atomic and molecular components of the neutral ISM, to measure how the

power spectrum changes in the different neutral ISM components.

Due to the different conditions in each neutral ISM phase, the turbulent

properties in the HI and H2 may differ. Romeo et al. (2010) demonstrate how

the transsonic or subsonic conditions in warm HI alter the stability condi-

tions relative to the supersonic turbulence from H2 in molecular clouds. In

particular, if warm HI traces a transsonic or subsonic density field, density

fluctuations from the mean will be small. This means that the 1D power

spectrum from the HI surface density should be flatter than the H2 (traced by

CO). These differences in the turbulent properties of the atomic and molecular

ISM have important consequences for setting the local stability of the galactic

disc (Hoffmann & Romeo, 2012; Romeo & Agertz, 2014).

Furthermore, dust may be a passive tracer in ISM turbulence, meaning

that it may not actively contribute to the turbulence and may have different

properties from the gas (e.g., Goldman, 2000). Dust may further be subject

to additional drag instabilities (Hopkins, 2014; Hopkins & Squire, 2018). The

comparisons between the dust, HI and CO we show here may results from any

of these sources. We focus our analysis on looking for consistent differences

between the power spectra of these different tracers.

Previous work on the SMC and LMC shows that the HI is steeper than

the dust power spectra we find here. In the SMC, the HI power spectrum is

well-described by a single power-law (over the entire galaxy) with an index of

3.04 ± 0.02, and between 5/3 and 8/3 (Elmegreen et al., 2001), respectively.

Combes et al. (2012) similarly find a steeper HI power spectrum (2.4 ± 0.2)

relative to the IR bands and CO in M33.

To further this comparison, we calculate the HI and CO integrated intensity

power spectra of M33 and M316. We use the Karl G. Jansky Very Large Array

6We assume optically-thin HI emission, but see Braun (2012).
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(VLA) M33 HI map from Koch et al. (2018c) and IRAM 30-m CO(2-1) map

from Druard et al. (2014), both of which are convolved to the 167 pc (46.3′′)

resolution of the dust surface density map. For M31, we use a new VLA

HI map (Koch et al. in prep) with 58′′ resolution and the CO(1-0) map from

Nieten et al. (2006). The M31 HI map has a lower resolution than the dust and

CO maps, so we convolve these maps to match the HI. This gives a resolution

of 201 pc (58′′).

We fit the HI and CO power spectra to Equation 6.3. Table 6.3 presents

the fit parameters for the HI, CO, and dust power spectra. The power spectra

are all well fit by a single power-law model (Eq. 6.1). Figure 6.8 shows the

consistent differences between the HI, dust, and CO power spectra, where HI

is the steepest and CO is the shallowest. Our fits to the M33 HI and CO are

flatter than those found by Combes et al. (2012), though they use a resolution

of 48 pc for both and do not account for the PSF shape; fitting the HI power

spectrum at its native 80 pc resolution gives an index of 2.30±0.13, consistent

with Combes et al. (2012). Combes et al. (2012) also include the smallest

frequency bins from the power spectrum, which strongly deviate above the

power-law relation. We exclude these data in our analysis.

A steeper HI power spectrum relative to the dust implies a lack of power on

small scales in the HI. In terms of the molecular and atomic column density,

there are four sources for this discrepancy: (1) the H2 distribution differs from

the HI on galactic scales, (2) saturated HI on small scales, (3) optically-thick

HI dominates on small scales, and (4) radial changes in the dust-to-gas ratio

due to radial metallicity gradient. The first three will remove structure on

small-scales, smoothing the spatial distribution of HI relative to the total gas

distribution traced by dust. The first two sources arise from the conversion of

HI to H2 (e.g., Bigiel et al., 2008; Krumholz, 2013; Sternberg et al., 2014). In

M33, the H2 distribution is centrally-concentrated in the galaxy and primarily

from GMC scale emission (Rosolowsky et al., 2003). Koch et al. (2019b) show

that the distribution of GMCs in M33 can provide an excess in power on scales

up to ∼ 2 kpc, and can therefore affect the CO and dust power spectra shape
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Figure 6.8: 1D power spectra from CO, dust and HI in M31 (201 pc;58′′)
and M33 (167 pc; 41′′) convolved to a common beam size and normalized to
the power on 500 pc scales. The power spectrum of the beam is shown with
the orange dotted curve. All of the power spectra are well fit by a single
power law attenuated by the beam. Indices are given in Table 6.3. In both
galaxies, the CO power spectrum is the flattest and the HI is the steepest,
with the dust somewhere in between. In M33, the centralized H2 emission
significantly affects the dust power spectrum shape by comparison to the CO
power spectrum. This comparison shows that the power spectrum shape is
affected by the large-scale structure of the emission on all measurable scales,
making connections to 2D turbulence tenuous.
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on similar scales. The final fourth point will tend to flatten the dust power

spectrum on large scales, as the dust abundance decreases with metallicity.

The H2 distribution in M31 is dominated by the ring-structures and does

not show a strong concentration in the inner disc. However, with bright CO

still clustered into a large-galactic structure (i.e., the rings), the morphology

may still provide excess power on the scale of the rings, affecting the large-scale

power spectrum.

We test the influence of the H2 distribution on the dust surface density

power spectrum by combining the HI and CO maps to get the neutral gas

surface density power spectrum. We assume constant Milky-Way αCO factor

of 4.8 M� pc−2 and 6.7 M� pc−2 for the 1-0 and 2-1 lines, respectively, and

optically-thin HI to convert the integrated intensities to the molecular and

atomic surface densities. All of the neutral gas surface density power spectra

are well fit by a single power-law (Eq. 6.1) with indices between the HI and

CO (Table 6.3). We expect this result from the relative differences in the

power spectra shown in Figure 6.8.

The power-law indices from the neutral gas power spectra are similar to the

dust index, though the index is highly sensitive to the choice of αCO, as shown

in Table 6.3. For example, doubling αCO changes the index by 0.23 and 0.30

in M31 and M33, respectively. We note that this is an overly-simplified treat-

ment of αCO that only demonstrates the power spectrum’s sensitivity to these

variations. The variations in the dust-to-gas ratio, tied primarily to metallicity

(e.g., Bolatto et al., 2013a), will show a similar sensitivity to changes in αCO.

Both quantities also vary within galaxies (e.g., Sandstrom et al., 2013), and

a more sophisticated handling for these variations may explain the moderate

discrepancies in the dust and gas power spectra. Though the turbulent prop-

erties may change in the atomic and molecular ISM (Romeo et al., 2010) and

dust may have different dynamics than the gas (Hopkins, 2014), these varia-

tions in the netural gas power spectrum index suggest that conversion factors

alone can explain the difference between dust and the gas phases.

In all cases, we do not correct for optically-thick HI when computing the
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Table 6.3: Power spectrum indices of HI, CO, dust, and total neutral gas
surface density in M31 and M33, with different assumed values of αCO. In all
cases, the power spectra are well-fit by a single power-law (Figure 6.8). The
M31 maps are convolved to the 197 pc (57.5′′) beam from the HI data (Koch
et al. in prep.) and the M33 maps are convolved to the 167 pc (41′′) beam of
the dust surface density map. Despite differences in the M31 and M33 indices,
there is a consistent trend for steeper atomic gas power spectra and flatter
molecular gas power spectra, with the dust power spectra somewhere in the
middle. The neutral gas surface density maps have power spectra similar to
the dust, but are sensitive to the choice of αCO. Differences between power
spectra of different tracers emphasises how the large-scale structure affects
the power spectrum shape on all measurable scales. a CO(1-0) (Nieten et al.,
2006). b CO(2-1) (Gardan et al., 2007; Gratier et al., 2010; Druard et al.,
2014).

M31 M33

201 pc scales 167 pc scales

IHI 2.66± 0.12 2.18± 0.10

ICO 1.59± 0.08a 0.91± 0.14b

Σdust 2.44± 0.15 1.11± 0.14

ΣHI + αCOICO 2.34± 0.11 1.66± 0.12

αCO10 = 4.8 M� pc−2/K km s−1 αCO21 = 6.7 M� pc−2/K km s−1

ΣHI + αCOICO 2.11± 0.10 1.36± 0.07

αCO10 = 9.6 M� pc−2/K km s−1 αCO21 = 13.4 M� pc−2/K km s−1
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HI surface density as, for M33, Koch et al. (2018c) do not find evidence for

flattened HI velocity spectra indicative of bright optically-thick HI emission

(Braun, 1997; Braun et al., 2009), though Braun (2012) argue there is a 30%

correction factor to the atomic gas mass in M31 and M33. If optically-thick

HI emission contributes to the lack of power in the HI power spectrum at

small scales, we expect it to arise from spatial regions < 167 pc in size. We

note, however, that Nestingen-Palm et al. (2017) find no change in the SMC

HI power spectrum when correcting for optically-thick HI (Stanimirovic et al.,

1999a), and Pingel et al. (2018) also find no change in the index for HI of the

Perseus molecular cloud.

These results demonstrate that the power spectrum of the dust, and IR

bands dominated by dust emission, is strongly influenced by the location of

H2, in this case traced by CO, leading to a significantly different slope rela-

tive to only the atomic component traced by the HI. These differences in the

power spectra of the atomic and molecular power spectra, and between dif-

ferent galaxies, strongly suggests that the properties of the large-scale power

spectrum are dominated by the galactic distribution of the tracer. This makes

comparisons to 2D turbulent properties on > kpc scales tenuous without ac-

counting for these differences.

6.4.5 Power spectrum breaks are not ubiquitous

A key result from previous studies using the spatial power spectrum of dust

and gas in nearby galaxies is a break in the power spectrum on scales similar

to the expected disc scale height, which is otherwise difficult to constrain from

observations of low or moderately inclined galaxies. Here we find that previous

claims of a power spectrum break for M33 (Combes et al., 2012) and the LMC

(Block et al., 2010) can be entirely accounted for by the shape of the PSF.

The only exception we find is the 24 µm LMC map, where 30 Doradus is

sufficiently bright to cause an excess on ∼ 200 pc scales (§6.4). In §6.3.6, we

find that splitting the map does not make a power spectrum break evident,

which may occur if the disc scale height changes substantially over the maps,
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thereby smearing out a single clear break-point. With the lack of a power

spectrum break, the spatial power spectrum does not constrain the disc scale

height.

Most studies that explore the power spectrum break find that it is located

on scales a few times the PSF FWHM (Elmegreen et al., 2001; Dutta et al.,

2009a; Block et al., 2010; Combes et al., 2012). Based on our results, this

suggests that the scale of the break could be influenced by the PSF shape of

the observation. A similar suggestion is made by Grisdale et al. (2017) based

on HI power spectra of 6 galaxies from THINGS (Walter et al., 2008). There

are some exceptions where breaks are found on scales many times the PSF

FWHM, however, these tend to be measured at either 24 µm (Block et al.,

2010) or the Hα line (Willett et al., 2005; Combes et al., 2012) where a small

number of giant HII regions provide a significant fraction of the total flux of

the galaxy.

Szotkowski et al. (2019) have recently found power spectrum breaks in the

HI in the LMC when measured over local scales. Several areas in their analysis

show a break on scales significantly larger than the beam size (30 pc), with

variations around near regions with strong stellar feedback (e.g., giant HII

regions). This is in apparent disagreement with the lack of break points we

find in the local LMC dust surface density power spectra (§6.3.6), yet we

show in §6.4.4 that dust and HI power spectra are different when measured

over the entirety of M31 and M33. These differences could indicate that the

HI, which saturates above some surface density (e.g., Krumholz, 2013), better

traces the influence of stellar feedback on the surrounding atomic ISM. There is

significant precedent for feedback affecting galaxy-scale spatial power spectra

from numerical studies (Bournaud et al., 2010; Pilkington et al., 2011; Combes

et al., 2012; Grisdale et al., 2017), including those that do not find a power

spectrum break (Renaud et al., 2013).

These results point to multiple factors that influence the power spectrum

shape and the presence of a break, rather than a ubiquitous break related to

the disc scale height. These factors include the large-scale distribution of gas
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in the galaxy, especially the presence of high column density, H2-dominated

regions (§6.4.3), and the gas tracer used (§6.4.4). The relative influence of each

factor can be explored using local power spectra (§6.3.6) of multiple tracers.

We plan to explore this in future work.

We also note that power spectrum breaks are not commonly found on

smaller scales within nearby Milky Way molecular clouds (< 20 pc). Power

spectrum studies of the Perseus molecular cloud include scales where stellar

feedback provides sufficient energy to drive turbulence (Padoan et al., 2009;

Arce et al., 2011) but do not find a power spectrum break, despite results

from alternative methods, like the probability distribution function (PDF),

that suggest small scale driving should be dominant (Bialy et al., 2017).

The multiple factors influencing the power spectrum shape do not rule out a

break at the disc scale height, tracing the transition from 3D to 2D turbulence.

It may be possible to account for each of these factors with a more sophisticated

model to search the uniform presence of a break. However, the current quality

of data does not support the need for a more complex model.

Finally, we note that this analysis is limited to information from the pro-

jected density field of these galaxies. When using a spectral-line, the line-

of-sight velocity offers additional information useful for this type of analysis.

Velocity information be incorporated into the power spectrum or structure

function by using the line-of-sight velocity centroid (e.g., Bertram et al., 2015)

or different on power spectra of the whole spectral-line data cube, such as

the Velocity Channel Analysis or Velocity Coordinate Spectrum (e.g., Sta-

nimirović & Lazarian, 2001; Lazarian & Pogosyan, 2006; Chepurnov et al.,

2015). Alternatively, empirically-based methods like the Spectral Correlation

Function (SCF; Rosolowsky et al., 1999) provide a complementary measure of

structure with spatial scale. Padoan et al. (2001) found deviations in the SCF

relation applied to HI data of the LMC and attributed the deviations to the

LMC disc scale height. In future work, we will utilize velocity information in

our analysis of HI of M33 (Koch et al., 2018c) and M31 (Koch et al. in prep.).
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6.5 Summary

We present a unified analysis of the 1D power spectra of mid- to far-IR emission

and the dust surface density in the LMC, SMC, M31, and M33. A key result of

our work is that previous claims of a power spectrum break can be explained

by the instrumental PSF response and are not a measurement of the disc

scale height. This result has important consequences for simulations of Local

Group-like galaxies, which have also found break points in power spectra (e.g.,

Bournaud et al., 2010; Combes et al., 2012; Grisdale et al., 2017).

1. We model the PSF response on the 1D spatial power spectra and find

that the power spectra of all the galaxies is well-modeled by a single

power-law plus point source components. We demonstrate that previous

studies that find a break point in the power spectra is entirely due to the

PSF response. We also note that, comparing to both Galactic and extra-

galactic power spectrum studies, there are few cases a power spectrum

break from intensity maps is unambiguously found over all spatial scales

across several wavebands.

2. M31, the LMC, and SMC have similar power spectra indices ranging from

2 to 2.5. The indices in these three galaxies are broadly consistent in the

dust surface density and individual infrared bands despite the difference

in their morphology. This similarity demonstrates that different spatial

morphologies can produce similar power spectra, showing the need to

carefully consider multiple sources that can alter the power spectrum

shape.

3. Compared to the other three galaxies, M33 has a significantly flatter

power spectrum with an index of ∼ 1.3. We calculate the power spec-

trum of IC 342, a nearby face-on spiral, in the Herschel bands and find

a similarly flat power-law index. This similarity suggests that spiral

galaxies with a central H2 concentration tend to have flatter power spec-

tra, which can be explained by the shape of an exponential (molecular)
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disc with a flat (mostly atomic) component, rather than large-scale 2D

turbulence.

4. We compare the dust, HI, and CO power spectra of M31 and M33 at

a common scale. The HI and CO power spectra are well-fit by a single

power-law. We find a consistent trend in the indices, with HI being the

steepest and CO being the shallowest. This is consistent with HI having

more structure on large scales and CO having more structure on small

scales. We create total neutral gas surface density maps by combining

the HI and CO, and find their power spectrum index is intermediate

between the HI and CO, and is similar to the dust. The neutral gas

power spectrum is sensitive to αCO, leading to variations that can account

for the difference in the power spectra index of the dust. The dust

and gas are further related by the dust-to-gas ratio, which is known

to vary on large scales (Sandstrom et al., 2013). This result provides

further evidence that the power spectrum is sensitive to the large-scale

distribution of a tracer, making it difficult to connect to 2D turbulence

without accounting for this effect.

5. We compute the dust surface density power spectra over local (∼ 820 pc)

regions within the LMC and SMC and find they are also well-fit without

a power spectrum break. This result rules out local variations in the disc

scale height as an explanation for the lack of a break measured from the

whole galaxy’s power spectrum. The difference between the dust and

HI power spectra that we find, and the recent identification of local HI

breaks in the LMC by Szotkowski et al. (2019) shows that the HI may

better trace feedback relative to the total neutral gas column traced by

the dust.

6. The local power spectra in the LMC and SMC show substantial variation

across the galaxies. We find that steeper power spectra occur near large

intensity gradients, similar to what Burkhart et al. (2010) find using the

skewness and kurtosis of the HI column density in the SMC.
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7. Simulations of Local Group-like galaxies reflect some of the results we

find here. Grisdale et al. (2017) find that the column density power spec-

trum on ∼few kpc scales is sensitive to the mass distribution in galaxies

but is insensitive to other effects like stellar feedback. They also find

that, when comparing to HI intensity power spectra of nearby galaxies,

the small-scale power spectra are dominated by the PSF shape. These

results demonstrate the need to produce synthetic observations when

comparing power spectra of simulations and observations (Haworth et al.,

2018). Our results provide a benchmark for comparing observations and

simulations of Local Group-like galaxies.

Our results demonstrate that power spectra are sensitive to systematic ef-

fects that significantly effect how they are modeled and interpreted. Where

applicable, we recommend forward-modelling the instrument PSF when fitting

a model to power spectra.

Previous work has focused on the source of the power spectrum break, using

it as a measure of the disc scale height to constrain galactic structure. With

these results, we show that an alternative explanation is required to understand

the ubiquity of galactic power spectra on scales well below the disc scale height.

Further work requires investigating whether a break is measurable from the

velocity field from spectral lines (e.g., Padoan et al., 2001).

Scripts to reproduce the analysis are available at

github.com/e-koch/DustyPowerSpectra7.
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6.6 Appendix

6.6.1 Additional systematics affecting fits

Some of the fits to the power spectra presented in Table 6.2 required an altered

model or additional step applied to the data to find a valid fit. These cases

are shown in Table 6.1 with an additional symbol. We provide further details

of these special cases here.

• SMC MIPS 70 µm – There is cross-hatching in the map on scales below

the PSF’s FWHM. Thus, the power spectrum does not follow the PSF

on small scales. We do not use the PSF in the model and restrict the

fitting to scales above 25 pc.

• SMC MIPS 160 µm – There are large, noisy values at the edge of these
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images that cause ringing in the FFT. We apply a Tukey apodizing kernel

to taper these values in the power spectrum.

• SMC PACS 160 µm – We do not use the PSF for the fit for the same

reason as the MIPS 70 µm. The fitting is restricted to scales larger than

10 pc. We also apply a Tukey apodizing kernel to this map, similar to

the MIPS 160 µm map.

• M31 PACS 100 µm – We do not use the PSF in the fit as the small-scales

in the power spectrum are dominated by the scan pattern. We restrict

the fitting to scales larger than 150 pc.

• M31 MIPS 160 µm, PACS 160 µm, SPIRE 250, 350, 500 µm – We apply

a Tukey apodizing kernel to taper large values at the map edge, avoiding

ringing in the FFT.

We also test whether bright foreground point sources affect the power spec-

trum shape or contribute to the additional systematics described above. Using

the MIPS point-source subtracted maps from the SAGE (Meixner et al., 2006)

and SAGE-SMC (Gordon et al., 2006, 2011) data releases, we find no difference

in the power spectrum index. We do not expect point source contamination

to affect our results.

6.6.2 Deprojection does not change the large-scale power
spectrum

Some previous works presenting extragalactic spatial power spectra have de-

projected the image into the galaxy frame prior to computing the power spec-

trum (Block et al., 2010; Combes et al., 2012). We show an example of de-

projection using the SPIRE 500 µm maps of M31 and M33 to demonstrate

that deprojection does not significantly affect the large-scales of the power

spectrum. We use these maps for this example because the SPIRE 500 µm

map have well-behaved PSFs with near-uniform noise, which allows for the

deprojected PSF to be well-described by an elliptical Gaussian.
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We use ths position angle and inclination for M31 (i = 77.7;PA=38) and

M33 (i = 55.1;PA=201) from Corbelli et al. (2010) and Koch et al. (2018c),

respectively. We deproject each map in three steps: (1) the galaxy centre

is shifted to the central image pixel, (2) the image is rotated to have the

semi-major axis aligned along the y-axis of the image, and (3) the image is

warped along the minor axis to match the major axis. Each of these steps

are applied with interpolation methods in the scipy.ndimage package8. For

a Gaussian PSF, step (3) can be applied to the PSF to approximate the PSF

in the deprojected frame; thus the deprojected images have a larger effective

beam shape set by the inclination.

Figure 6.9 shows the original and deprojected power spectra for M31 and

M33. In both cases, the shape of the power spectrum on large scales (small

frequencies) is not affected. The fitted indices to the deprojected power spectra

are 2.17±0.12 and 1.08±0.08 for M31 and M33, respectively; these indices are

consistent with the original power spectra indices of 2.17±0.12 and 1.15±0.08

(Table 6.2).

The power spectrum index after deprojection is consistent with Grisdale

et al. (2017), who compare power spectra of simulated galaxy discs at i =

0andi=40 and find that only scales of order the disc diameter are affected by

inclination. Block et al. (2010) also note no significant difference in indices

from deprojecting the MIPS maps of the LMC.

Finally, we note the difficulty in simultaneously modelling for instrumenta-

tion effects and the projection effects from the observed frame of the galaxy.

Deprojection of a non-axisymmetric PSF is complicated by the rotation step.

Fully modelling for both of these effects would require forward-modelling the

2D power spectrum through a deprojection step, followed by applying the

PSF. The computational requirements to model the 2D power spectrum for

large images would be prohibitive in practice.

8docs.scipy.org/doc/scipy/reference/ndimage.html
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Figure 6.9: Comparison of the M31 and M33 SPIRE 500 µm power spectra
with and without deprojecting the maps. The translucent orange lines show
the best fit to Equation 6.3 and the vertical lines are the FWHM of the original
image. The warping step for deprojection effectively adds a “white noise” due
to the interpolation that is evident on scales below the FWHM. This is more
evident for M31 due to its large inclination. We limit the fit to scales larger
than 3 × FWHM to avoid these regions. For M31, the deprojected power
spectrum index is 2.20 ± 0.19, consistent with the original power spectrum
index of 2.17 ± 0.12. Similarly, the M33 deprojected power spectrum index
1.08±0.08 is consistent with the original index of 1.15±0.08. Thus, we expect
that deprojection will not significantly alter the fitted indices in this paper.

6.6.3 Local LMC and SMC power spectrum uncertainty

Figure 6.10 shows the power spectrum index uncertainties for the values shown

in Figure 6.6. The uncertainties are small relative to the change in the indices,

indicating that spatial variation in Figure 6.6 represent real variations in the

power spectrum shape.

6.6.4 Dust power spectra of IC342

In §6.4.3, we perform a similar analysis to §6.3 on the Herschel maps of IC342

to compare with M33’s power spectra. Despite being 4× the distance of M33,

IC342 is one of the nearest face-on spiral galaxies. Critically for this compar-

ison, the molecular gas fraction increases towards the inner disc, similar to

M33 and other spiral galaxies but unlike the LMC, SMC, and M31.

Similar to the Local Group galaxies, we calculate the power spectrum cen-

tered on IC342 and exclude regions far from the galaxy. This step is more
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Figure 6.10: The power spectrum index uncertainties in 820 pc regions over-
laid on the LMC and SMC dust surface density. The power spectrum indices
are shown in Figure 6.6.

critical for IC 342 than the other galaxies because of its low Galactic latitude;

Galactic emission in the Herschel bands is substantial over most of the maps.

We do not find substantial contamination from Galactic emission over the

regions used for the power spectrum, which would be indicated by emission

near the edges of the region causing the Gibbs phenomenon in the 2D power

spectrum.

Table 6.4 provides fit results to Equation 6.3 for the Herschel bands, exclud-

ing the PACS 100 µm map due to variations from the expected PSF shape

that appear to be systematics (§6.6.1). In §6.4.3, we compare these results

with the other galaxies.
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Table 6.4: Fit parameters to Equation 6.3 for the Herschel bands of IC
342. Uncertainties are the 1-σ interval estimated from the MCMC samples.
None of the fits constrain the unresolved point-source term B. We exclude the
PACS 100 µm map as the small scale structure does not follow the expected
shape of the PSF (see §6.6.1). IC 342 has a flat power spectrum similar to
M33, suggesting that a flatter power spectrum is associated with typical spirals
where the molecular gas fraction increases in the inner disc, unlike the LMC,
SMC, and M31.

Band Resolution (′′) Phys. Resolution (pc) log10 A β

PACS 160 11.2 181 2.49± 0.04 0.99± 0.05

SPIRE 250 18.2 295 8.03± 0.07 1.04± 0.06

SPIRE 350 25 405 6.61± 0.10 0.98± 0.10

SPIRE 500 36.4 589 5.30± 0.16 0.89± 0.17
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Chapter 7

Conclusions & Future Work

7.1 Summary of Results

In this thesis, I explore three topics on the neutral ISM that bridge between

extragalactic and Galactic scales. Connecting these scales is crucial for un-

derstanding the baryonic cycle and secular galaxy evolution through the star

formation process. Furthermore, measuring the ISM properties across these

missing scales will bridge the discrepant “bottom-up” and “top-down” views

of star formation and the ISM (Krumholz, 2014).

To explore both large and small physical scales in the neutral ISM, I use

new HI VLA observations of the Local Group galaxies M31 and M33. As the

nearest major star-forming disc galaxies to the Milky Way, M31 and M33 are

the ideal targets to combine an external galaxy view with the proximity for

current instrumentation to resolve down to ∼ 10s pc scales. These observations

are the first part of a larger and on-going L-band Local Group VLA Legacy

survey.

By combining these new VLA HI data with existing observations of CO

(tracing H2) and infrared thermal dust emission, I address three questions

linking the neutral ISM properties in M31, M33, and the Magellanic Clouds:

How do models of the 21-cm HI line shape affect our interpretation

of the neutral ISM? Approximate methods used to measure the HI spec-

tral properties (e.g., line width) bias measurements by up to ∼ 50%, affecting
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derived physical properties. Further, spectral models based on physical as-

sumptions about the atomic ISM (e.g., CNM/WNM phases) must be tested

whether they accurately describe the observations. Without this testing, basic

measurements like the atomic ISM mass are affected by 30–120% from instrin-

sic model assumptions. Accurate spectral modeling is the key to progress

studies of the atomic ISM.

In Chapter 3, I introduce our M33 HI VLA observations at 80 pc scales

and techniques for imaging massive inteferometric spectral-line observations

(Chapter 2). With a 0.21 km s−1 spectral resolution, these observations can

resolve components from the CNM (> 100 K thermal line widths). I find

that nearly all HI spectra in M33 are not well-described by a single Gaussian

component. Most spectra show multiple Gaussian components and/or the

presence of extended line wings. My co-authors and I explore this complexity

using common measurement methods found in the HI extragalactic literature

and conclude that:

1. Asymmetric HI line wings trace a rotationally-lagging thick HI

disc in M33. We find that HI line wings are asymmetrically skewed

towards the systemic velocity, indicating that the line wings trace a

rotationally-lagging HI disc, previously detected at > 1′ scales (Kam

et al., 2017). The rotational lag results from a large disc scale height

of the emitting gas and likely traces a combination of outflows due to

stellar feedback and cold HI accretion onto M33.

2. Extragalactic HI line widths measured with approximation meth-

ods are biased and tend to be overestimated. We compare typical

methods of measuring the HI line width in extragalactic HI observations

and find they produce ∼ 50% discrepancies in the measured line widths

(7 km s−1 versus 12 km s−1). This discrepancy arises from two sources.

First, the line width from the second moment of a spectrum is strongly

biased by multiple Gaussian components and asymmetric line wings. We

find an average line width of ∼ 12 km s−1, much larger than the WNM
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thermal line width of ∼ 6 km s−1 (for 6000 K gas). Second, HI line

widths from spectral stacking are affected by the choice of line centre.

Assuming a circular rotation model or the centroid velocity as the line

centre produces σHI ∼ 10 km s−1 line widths, while stacking based on

the velocity at peak intensity give an average line width of σHI ∼ 7 km

s−1. Similarly, the fraction of emission in the stacked spectrum line wings

varies from 9% to 27%, demonstrating that previous work identifying the

line wings as a galaxy’s turbulent WNM emission is unlikely to measure

the true WNM fraction.

3. Supernovae can drive observed levels of turbulence but is not

strongly constrained due to uncertainty in the coupling of SN

energy into the ISM. We compare the range of line widths we measure

(7–12 km s−1) to the energy injection rates of SN and MRI. Despite

the factor of ∼ 2 in line widths, the SN energy injection reasonably

matches with an assumed efficiency of 10%, while MRI is unlikely to be

a dominant source of turbulent motion anywhere in M33. Our result is

consistent with previous work (Tamburro et al., 2009) but suggests that

stronger constraints on the energy coupling efficiency into the ISM are

needed for more detailed comparisons (Mac Low & Klessen, 2004b).

4. Cold HI produces the sharp peak in stacked spectra, but the

universal stacked spectrum shape is due to stacking itself, not

common properties in the HI between nearby galaxies. Sev-

eral HI spectral stacking studies find a “universal” shape which some

studies suggests reflects common HI properties in neaby galaxies (Petric

& Rupen, 2007). Using a Gaussian Mixture Model, we show that the

universal shape results from the stacking technique itself, and is there-

fore not strongly related to the actual HI properties. From the mixture

model, however, we demonstrate that the narrow peak of the stacked

HI spectra in M33 can only be produced from HI emission with line

widths < 5 km s−1 located at the velocity at peak intensity. Our HI ob-
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servations are therefore detecting cold HI emission enabled by the fine

spectral resolution.

5. Spectral stacking aligned to the velocity at peak intensity pro-

vides a rough measure of individual HI spectral components.

Stacking based on the velocity at peak intensity minimizes the stacked

spectrum width compared to using the centroid or circular rotation ve-

locities. However, the stacking method removes the ability to distinguish

variations in individual HI component properties. Where bright emis-

sion is detected in individual spectra, it is preferable to fit individual

spectra to better recover information about individual HI components.

Finally, our observations detect and resolve a population of HVCs, including

an 8 kpc HI “filament” in the southern half of M33 and a ∼ 600 pc HI cloud in

the northern half which overlaps with the main disc in velocity. These HVCs

and related HI structures have a combined mass of 1.3± 0.5× 107 M�, about

1% of the total atomic ISM mass in M33. We suggest that these HI features

map interactions between M33 and the warped HI disc on larger scales (below

our detection threshold and outside of the area mapped with the VLA; Putman

et al., 2009). These structures provide a detailed look into how HI from the

CGM and galactic halo is accreted onto galactic discs.

Chapter 4 builds on this work by directly fitting spectral models to the

HI spectra from the M33 observations in Chapter 3 and additional HI VLA

observations that map the northern half of M31. Specifically, we compare

two spectral models: a multi-Gaussian model and a single opaque component

model. The latter is explored in archival VLA observations of M31, M33, and

the LMC in Braun et al. (2009) and Braun (2012). They suggest the presence

of HI spectra with flat-tops in all three galaxies, which they interpret as opaque

HI emission. A strong flattened top from opaque emission follows from basic

radiative transfer, however, to observe such features would require the opaque

emission to have a large beam filling factor on the 100 pc scales used in Braun

et al. (2009) and Braun (2012). From this model, they suggest that the HI
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mass assuming optically-thin emission underestimates the total atomic ISM

mass by ∼ 35% without accounting for opaque HI.

From visual inspection of our new HI observations, many spectra clearly

show multiple Gaussian components. To distinguish which model best repre-

sents the HI spectra, I fit the opaque model from Braun et al. (2009) and a

multi-Gaussian model from an automated multicomponent fitter adapted from

Lindner et al. (2015) and Riener et al. (2020). I then quantitatively determine

the preferred model using a model selection test based on the Bayesian In-

formation Criterion (BIC), which strongly penalizes for additional free model

parameters. From the model selection test, I find that:

6. 99% of the HI spectra show a preference for the multi-Gaussian

model fit (∼ 80% with a strong preference). The preference be-

comes stronger with lines-of-sight with large HI integrated intensity, op-

posite of the expectation for opaque HI at high column densities (Braun,

1997).

7. Spectra where the opaque model is preferred account for an

additional 1% in opaque, dark HI mass. I compare the inferred

opaque HI mass to the optically-thin cases to estimate the correction

factor relative to the optically-thin HI masses. I find that the correction

factor depends strongly on the sample selection criteria for where the

opaque model is considered to be a good fit. Using the BIC model

comparison for the 1% spectra where the opaque model is preferred,

the mass correction factor is just 1%. This does not imply that lack of

opaque cold HI in M31 and M33. Instead, it suggests that the opaque

model assumptions of beam-filling cold HI on 100 pc is not supported

by our observations.

8. The opaque HI mass using the Braun et al. (2009) model is

uncertain due to a strong dependence on the goodness-of-fit

and choice of allowed parameter space. To directly compare with

the Braun (2012) mass correction factors, I adopt their valid fit criteria,
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a reduced χ2 < 25, and find that this excludes no opaque HI model

fits, even when there are large residuals in the opaque model fit. Over

the entire sample, disregarding the BIC model selection, the opaque

HI mass correction factor is 118+119
−40 % and 37+83

−12% for M31 and M33,

respectively (1σ uncertainties given). This estimate is equivalent to the

Braun (2012) mass correction factor for M33, but much larger for M31.

However, the uncertainties are large due to the non-linear response in

the opaque model. I find that the larger mass correction factor for M31

is from a set of fits with extremely large inferred peak optical depths

(τpeak > 5), which fall within the allowed parameter space also from

Braun et al. (2009) and Braun (2012), but are much larger than what

is found in HI absorption studies (e.g., Murray et al., 2018). The large

τpeak fits are due to lines-of-sight in M31 that trace a longer path along

the inclined disc, and so have distinct peaks in the spectrum over a wide

velocity range. Together, these results suggest that the inferred dark HI

mass is primarily sensitive to the chosen parameter space and is poorly

constrained due to the large uncertainties.

I ensure the BIC model selection test is sensitive to differences between

the two models by drawing a sample of 20, 000 synthetic spectra from the

opaque model, adding a noise level to match the observations and sampling

at the same spectral resolution. Using the same fitting procedure for both

models, I confirm the BIC model selection test correctly prefers the opaque

model, demonstrating that the model comparisons of the observed spectra has

sufficient power to distinguish between the models.

Together, these works demonstrate (i) the potential of Local Group HI

observations to trace complex HI kinematics, and (ii) the need for accurate

HI line modeling to guide our interpretation of the atomic ISM. The multi-

Gaussian HI decomposition in Chapter 4 enables a more detailed look into HI

kinematics on molecular clouds scales. I expand on this point further in §7.2.

Our new HI maps of the Local Group show that extragalactic HI studies
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have progressed beyond the approximate methods used in archival observations

(e.g., second moment, line stacking). Previously, uncertainties on the line

width and spectral shape were limited by the data uncertainty. The vast

differences I find in HI line widths and spectral modeling suggests that these

approximate methods no longer adequately describe the data and that the

uncertainties on the spectral shape are now dominated by systematics (bias) of

these methods. To advance HI studies in the Local Group, more sophisticated

modeling, including multi-Gaussian decomposition, is required.

Are atomic (HI) and molecular (H2) ISM kinematics coupled on 80 pc

scales? Yes, there is strong evidence for coupled atomic and molecular ISM

kinematics on ∼ 80 pc scales in M33. However, higher resolution observations

are required to minimally-resolve the GMCs and provide links to molecular

cloud evolution.

In Chapter 5, I compare the spectral properties of HI and CO(2-1) in M331

using two methods: (i) spectral stacking, typically applied to data with coarse

resolution; and (ii) individual spectral modeling, typically used at higher phys-

ical resolution. These analyses measure the relationship of atomic and molecu-

lar clouds averaged over galactic scales (stacking) and across individual molec-

ular clouds (spectral modeling). My co-authors and I find three key results:

9. The velocity at peak intensity is strongly correlated between

HI and CO, with a difference that is typically consistent within the

coarse 2.6 km s−1 spectral resolution of the CO data. Large outliers

result from HI spectra with multiple distinct components where the CO

peaks centered on a fainter HI component.

10. M33 has a minimal thick molecular disc compared to more mas-

sive nearby spiral galaxies. Following Chapter 3, we stack the HI

and CO aligned to the velocity at peak HI intensity. We find that the

1I make use the IRAM 30-m M33 map, a large project mapping the inner 7 kpc of M33
(Gardan et al., 2007; Gratier et al., 2010; Druard et al., 2014).
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CO stacked line width is consistently 70% of the HI stacked line width,

unlike other nearby galaxies that find equivalent stacked line widths. We

further show that CO line wings in the stacked spectrum are consistent

with (i) error beam pick-up from the IRAM 30-m telescope (which is not

corrected for in Druard et al., 2014), and (ii) systematics from the stack-

ing technique. Previous work on other nearby galaxies use the equivalent

line widths and line wings to infer the presence of diffuse CO emission.

M33 lacks this significant thick molecular disc based on our findings.

11. HI and CO line widths are strongly correlated in individual

spectra at 80 pc scales. However, this correlation is apparent when

only the HI peak most closely associated with CO is modeled. Similar to

Chapters 3 & 4, our observations demonstrate the need for more complex

spectral modeling of HI and for a small number of CO spectra that also

show multiple components along a single line-of-sight. Our results follow

those of Fukui et al. (2009) in the LMC, where they also find a correlation

between HI and CO line widths and suggest that most HI along a line-

of-sight is not associated with CO (Wong et al., 2009). The spectral

modeling from Chapter 4 will enable further comparisons of HI and CO

spectral properties.

For comparisons between spectral lines from two different tracers we rec-

ommend that: (i) Stacking is best used to with low S/N data to achieve a

detection. Due to the significant systematics we find, more information can

be recovered from the emission detected in individual spectra. (ii) Spectral-

line observations that do not resolve the spectral line shape should fit models

while forward-modelling the the spectral channel sampling and, if required, the

spectral response function of the telescopes (also see Sun et al., 2018). Many

strong CO detections in the IRAM 30-m data are measured in ∼ 3 channels

where the coarse spectral channel sampling will underestimate the peak tem-

perature and overestimate the line width. Forward modeling accounts for this

bias (Koch et al., 2018b).
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The correlation we find in the HI and CO line widths warrants further

examination at higher resolutions (∼ 25 pc). At the 80 pc we investigate,

GMCs are distinct peaks in emission but remain unresolved. However, we find

intrinsic scatter in the HI-CO line width relation that results from variations

between GMCs. By comparing line widths at a higher spatial resolution,

this relationship can be tested to determine whether the scatter arises from

evolutionary variations in the cloud lifecycle, or from local spatial variations

across clouds. I discuss this further in §7.2.

Is the source of large-scale turbulent driving imprinted on the ISM

density structure? Using the spatial power spectrum, current observations

do not provide a clear answer.

In Chapter 6, I model the spatial power spectrum of dust surface density,

mid- to far-IR emission in the LMC, SMC, M31, and M33 from Utomo et al.

(2019a). Additionally, I model the HI and CO spatial power spectra in M31

and M33. I compute the spatial power spectrum using the TurbuStat python

package (Koch et al., 2019a) and forward model the power spectra with the

PSF response function. The spatial power spectrum is a common technique to

estimate the turbulent power spectrum. In this analysis, the density turbulent

power spectrum is the quantity of interest. My co-authors and I find the

following:

12. Power spectrum breaks in nearly all of our spatial power spec-

tra are due to the instrument PSF response and are not phys-

ical. Several previous observational studies find a break in the spatial

power spectrum and interpret this as tracing the disc scale height in

nearby galaxies, which results from the turbulent power spectrum in-

dex changing by +1 as motions transition from two-dimensions on large

scales to three-dimensions on small scales below the scale height. By

forward modeling with the PSF, our results demonstrate this is not sup-

ported by the data for these four galaxies and, more generally, call this

interpretation into question.
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13. Bright compact sources can produce power spectrum breaks.

We find a real power spectrum break at 24 µm wavelengths in the LMC,

which we demonstrate is from the giant HII region, 30 Doradus. The

break corresponds to the scale of 30 Doradus in the image and demon-

strates that a real break in the power spectrum may not trace the disc

scale height.

14. The large-scale emission distribution in galaxies alters the power

spectrum index, making it difficult to distinguish whether the

index is related to 2D turbulence on large scales. We find a con-

sistent trend from steep to shallow indices from HI, dust surface density,

and CO power spectra, respectively. This trend is consistent with HI

having more power on large scales and CO having more structure on

small scales (i.e., GMCs). Since the dust surface density traces both

ISM components, the dust power spectrum index falls between these

two extremes. We further find, in Chapter 5, that the concentration of

GMCs (traced by CO) in the central region of M33 produces additional

power on 2 kpc, matching the CO disc scale length (Druard et al., 2014).

These variations on large scales demonstrates that spatial power spectra

are sensitive to the large scale distribution of a particular tracer and is

not uniquely defined by large-scale turbulence.

15. Spatial power spectra computed over ∼ 820 pc regions show real

variations that may trace localized variations in turbulence, as is

expect, for example, near regions with recent strong stellar feedback. We

compute local power spectra of the dust surface density in the LMC and

SMC, which have a physical resolution of ∼ 13 pc, well below the disc

scale height. We find that (i) steeper power spectrum indices surround

regions of bright emission and (ii) no strong evidence for localized power

spectrum breaks. The former result is due to a large intensity gradient

across the local region, similar to measure of skewness and kurtosis of

the HI intensity distribution (Burkhart et al., 2010). The latter rules
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out a spatially-varying disc scale height as the reason for no breaks in the

galactic power spectra. Furthermore the lack of power spectrum breaks

disagrees with a similar HI study of the LMC and SMC by Szotkowski

et al. (2019), who find breaks near massive star-forming regions (e.g.,

30 Doradus) Since the dust surface density measures both atomic and

molecular ISM, we suggest that breaks in the HI power spectrum may

better trace the impact of stellar feedback.

Our findings demonstrate how additional non-turbulent sources affect the

spatial power spectrum. We suggest that measurements of large-scale 2D

turbulence from the spatial power spectrum must correctly account for other

sources that alter the power spectrum index. However, the power spectra we

model can be fully explained with a simple power-law model. Other methods

may be required to distinguish the large-scale source of turbulence.

We suggest that local measures of turbulence statistics offer a useful path

forward to constrain the source of turbulence. Spatial variations in turbulent

statistics can be compared with signatures of different driving mechanisms, for

example, tracers of the star formation rate as a proxy for energy injection of

stellar feedback from massive stars.

7.2 On-going & Future Work

The VLA L-band Local Group Legacy Survey My work is the first

component of a complete high-resolution survey of the 21-cm HI, OH, and 1–

2 GHz polarized continuum in M31, M33, NGC 6822, IC10, IC1613, and WLM.

These observations will enable comprehensive study of atomic gas physics, tur-

bulence, supernova remnants and HII regions across the Local Group. Com-

bined with existing large large surveys at other wavelengths, these observations

will provide the most comprehensive resolved studies of the baryonic cycle to

date.

In addition to the observations I present in this thesis, our collaboration has

aleady taken an additional 300 hr observations of these galaxies. In particular,
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our additional M33 observations provide a 20 pc HI map of M33, and 8 pc

resolution towards two regions within M33. The 20 pc HI observations have

sufficient sensitivity to resolve the HI complexities highlighted in Chapters 3

& 4 on 80 pc scales.

When fully observed, the complete survey will include an additional 1800 hr

of observations from the VLA and will form an unparalleled legacy product

available for the community.

Cloud formation and HI envelopes from detailed HI kinematics The

atomic ISM is expected to play a role throughout the molecular cloud lifecycle,

from forming H2 (Dobbs et al., 2014), to shielding in an envelope around

molecular clouds (Krumholz et al., 2009), and tracing stellar feedback as clouds

are destroyed (Kruijssen et al., 2019).

In Chapter 5, I show that there is indeed a relation between the HI and CO

(tracing H2) kinematics. However, the 80 pc resolution of the HI observations

preclude testing for variations between and within molecular clouds. To over-

come this, our 20 pc HI map of M33 will be combined with a new CO(2-1)

mosaic recently observed with ALMA. This new ALMA map resolves 20 pc

(∼ 6′′) scales in the CO(2-1) line with a spectral resolution of 0.4 km s−1, far

exceeding the IRAM 30-m observations with 2.6 km s−1 spectral channels. My

preliminary analysis of these observations suggests that the strong correlation

between HI and CO persists on 20 pc scales.

With these new HI and CO observations of M33, my on-going work uses

the multi-Gaussian modeling from Chapter 4 to explore:

1. Common resolved kinematics between HI and CO in early non-star form-

ing molecular clouds to observationally constrain cloud formation mech-

anisms.

2. Typical HI line widths within and surrounding molecular clouds to de-

termine (i) if the atomic HI envelope is gravitationally-bound, and (ii)

if cool HI (σ < 6 km s−1) is preferentially detected towards molecular
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clouds.

3. How the total cloud mass, combining HI and CO, compares with the CO-

only derived cloud mass (e.g., Elmegreen & Elmegreen, 1987) to deter-

mine (i) whether the total cloud mass varies with environment (Colombo

et al., 2014), and (ii) the fraction of CO-dark H2 in individual molecular

clouds (Wolfire et al., 2010).

This future and on-going work builds on Chapter 5 to provide more detailed

comparisons relating the atomic and molecular ISM.

Resolving stellar feedback coupling to the ISM Stellar feedback pro-

duces obvious effects on the ISM, most notably HI bubbles or shells surround

giant HII and supernova remnants (Tenorio-Tagle & Bodenheimer, 1988).

What remains unclear is how efficient feedback couples with the ISM. Large-

scale averaging suggests that supernova can drive observed levels of turbulence

if ∼ 10% of the energy transferred to the ISM (Tamburro et al., 2009; Stilp

et al., 2013b; Koch et al., 2018c; Utomo et al., 2019b). If this is indeed the

case, resolved HI observations should show enhanced turbulent properties near

recent sources of stellar feedback.

Our HI observations can explicitly test whether enhanced HI turbulence is

observed by combining the HI multi-Gaussian models from Chapter 4 with

the supernova remnants and HII regions detected in our L-band continuum

data, and the locations of all O and B stars from HST photometry (e.g.,

from the PHAT project; Dalcanton et al., 2012) and young stellar clusters

(Johnson et al., 2015). This measurement will test recent simulation (Seifried

et al., 2018) and theory (Krumholz & Burkhart, 2016) results that challenge

supernovae as the large-scale driver of turbulence.

7.3 Final Thoughts

Over the next few years, observations from the VLA L-band Local Group

Legacy Survey will have a transformative effect on atomic gas physics and
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stellar feedback. My work is a first demonstration of how high spectral reso-

lution HI observations will alter many of our views of the extragalactic ISM.

Building on my work and our collaboration’s on-going efforts, there are two

clear impacts for how this survey will affect our understanding of the ISM.

The first is accessibility. Koch et al. (2018c, Chapter 3) provides the first

publicly available M33 HI data cube (along with derived products), despite

decades of Local Group HI observations and large time investments from vari-

ous observatories (Chapter 2). The full suite of observations I use in this thesis

will form an initial data release for the VLA L-band Local Group Legacy Sur-

vey.

The availability of Local Group observations is crucial for combining Galac-

tic and nearby galaxy surveys, where major surveys are already released to

the community (for example, Walter et al., 2008; Hunter et al., 2012; Winkel

et al., 2016, and many others). The accessibility of these observations in a

science-ready format is enormous for fully exploring the data and is a major

reason why some surveys have guided our interpretation of the ISM.

The second impact is defining our view of the neutral ISM leading into the

era of the next generation of cm-interferometers, namely the Square Kilometre

Array (SKA) and next-generation VLA (ngVLA). The restriction on studying

HI on molecular cloud scales (< 20 pc) beyond the Local Group is the lack

of a cm-interferometer that combines long baselines (> 11 km) with high sur-

face brightness sensitivity for imaging extended emission. This is the primary

reason why the Local Group galaxies are such valuable targets for the topics

I explore in this thesis, as we can currently only resolve ∼ 20 pc scales in HI

within D < 1 Mpc.

The SKA and ngVLA will dramatically overcome this limitation. In par-

ticular, these telescopes will enable the detailed HI kinematic studies that I

present in this thesis to ∼ 100 nearby galaxies, matching the ∼ 1′′ imaging

that ALMA achieves at mm-wavelengths. Expanding the sample size for high-

resolution HI studies is essential for robust tests of how density increases in the

neutral ISM (i.e., cloud formation, H2 formation) leading to star formation.

319



These constraints play an important role for refining the ISM models used in

cosmological simulations, and for comparisons of the ISM and star formation

properties measured at high redshift. My work in this thesis, and continuing

with the large Local Group survey, will provide the analysis and modeling

techniques for observations with the next generation of cm-inteferometers.

Despite already being one of the best-studied tracers, the 21-cm HI spec-

tral line continues to answer fundamental questions on ISM physics and the

baryonic cycle.
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Miville-Deschênes M. A., Joncas G., Falgarone E., Boulanger F., 2003, A&A,

411, 109
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Appendix A: Supplemental
power spectrum figures

This appendix includes the complete set of power spectrum fits from Chapter

6. For each band, the fits to the power spectra are shown with the data at

its original PSF and convolved to a moderately-sized Gaussian, as defined by

Aniano et al. (2011). The fitted parameter values are given in Table 6.2.
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Figure A.1: 1D power spectra of MIPS 24 µm maps convolved to a Gaussian
PSF (left column) and the fitted models (right column; Table 6.2).
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Figure A.2: 1D power spectra of MIPS 70 µm maps with the original PSF
(left column) and the fitted models (right column; Table 6.2).
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Figure A.3: 1D power spectra of MIPS 70 µm maps convolved to a Gaussian
PSF (left column) and the fitted models (right column; Table 6.2).
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Figure A.4: 1D power spectra of MIPS 160 µm maps with the original PSF
(left column) and the fitted models (right column; Table 6.2).
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Figure A.5: 1D power spectra of MIPS 160 µm maps convolved to a Gaussian
PSF (left column) and the fitted models (right column; Table 6.2).
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Figure A.6: 1D power spectra of PACS 100 µm maps with the original PSF
(left column) and the fitted models (right column; Table 6.2).
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Figure A.7: 1D power spectra of PACS 100 µm maps convolved to a Gaussian
PSF (left column) and the fitted models (right column; Table 6.2).
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Figure A.8: 1D power spectra of PACS 160 µm maps with the original PSF
(left column) and the fitted models (right column; Table 6.2).
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Figure A.9: 1D power spectra of PACS 160 µm maps convolved to a Gaussian
PSF (left column) and the fitted models (right column; Table 6.2).
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Figure A.10: 1D power spectra of SPIRE 250 µm maps with the original PSF
(left column) and the fitted models (right column; Table 6.2).
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Figure A.11: 1D power spectra of SPIRE 250 µm maps convolved to a
Gaussian PSF (left column) and the fitted models (right column; Table 6.2).
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Figure A.12: 1D power spectra of SPIRE 350 µm maps with the original PSF
(left column) and the fitted models (right column; Table 6.2).
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Figure A.13: 1D power spectra of SPIRE 350 µm maps convolved to a
Gaussian PSF (left column) and the fitted models (right column; Table 6.2).
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Figure A.14: 1D power spectra of SPIRE 500 µm maps with the original PSF
(left column) and the fitted models (right column; Table 6.2).
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Figure A.15: 1D power spectra of SPIRE 500 µm maps convolved to a
Gaussian PSF (left column) and the fitted models (right column; Table 6.2).
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