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Abstract

The uplift behaviour of a shallow pipeline embedded in an elasto-
plastic medium is examined. An analytical solution for a beam on elasto-
plastic foundation is developed and a characteristic non-dimensional load
displacement and stress-displacement relationships are presented. An
approximate 3-D solution is proposed that accounts for embedment and
breakaway condition behind the pipeline making use of the load
displacement curves developed for rigid anchors by Rowe and Davis
(1982). A comparison of these results with those obtained by 3-D finite
element analysis indicates that the simplified solution of a beam on elasto-
plastic foundation is a practical alternative for analyzing the uplift
behaviour of shallow pipelines. The approximate solution is also used to
compare the behaviour of laterally loaded pile where no separation or
separation is permitted as the load is monotonically increased. The results
are presented in the form of non-dimensional charts that permit hand
calculations and rapid verification of structural design of the pipeline and

piles.

Key words: uplift behaviour of pipelines, elasto-plastic foundation,

laterally loaded pile, breakaway.



Introduction

Over the past decade several proposals have been put forward for the
construction of a gas pipeline from the arctic to the southern populated
areas (ASCE, 1978). These pipelines must be buried because of regulatory
control. One method that has been suggested is to transport gas at below
freezing temperatures and thus avoid the thawing of permafrost soils.
However, this would lead to freezing of unfrozen soils in zones of shallow
and discontinuous permafrost. It is to be expected that a frozen annulus
will develop in a frost susceptible soil around the gas pipeline leading to
significant water migration to the freezing front and the formation of ice
lenses. Consequently, frost heave will be induced, thus forcing the pipeline
to move upwards. The pipeline can undergo substantial straining leading
to wrinkling buckles specially when the pipeline traverses a transition zone
between two soils with different frost susceptibilities or between an
unfrozen and already frozen soil. Ever since the chilled gas pipeline
concept was proposed, the effect of frost heave on pipelines was identified

as an important issue that should be addressed.

However, it is appropriate to note that similar interactions are present
in a variety of situations such as that of a laterally loaded pile embedded in
a stiff soil or permafrost, a pipeline subjected to fault movement, a
pipeline subjected to landslide movement, etc. The significant differences
between that of a pipeline and pile would be the imposed loads (prescribed
displacements versus imposed loads) and the near surface effects would

have to be accounted for with the shallow burial of the pipeline.



In order to understand the effects the soil-pipeline interaction and
specially in the context of a frozen surrounding medium a number of
aspects need to be considered. These include (i) the mechanics of frost
susceptibility and frost heave which essentially is the nature of the loading
process (ii) the modelling of mechanical properties of frozen ground (iii)
the mechanical modelling response of the pipeline (iv) and the mechanical
behaviour of the medium-pipeline response. Though each of these aspects
has been well studied individually, there is a lack of proper understanding

of the interaction between frozen soil and pipelines.

Frost susceptibility and frost heave have become reasonably well
understood and have been studied (Penner and Ueda (1978), Nixon et al.
(1981), Konrad and Morgenstern (1983, 1984)). These aspects will not be
discussed further here. Certainly, though the prediction of frost heave is
not an easy task it can be estimated reasonably with currently available

experience and knowledge.

The mechanical behaviour of frozen soil has been studied by Sayles
(1973), Sayles and Haines (1974), Sego and Morgenstern (1983) and
others. It is now widely accepted that ice-rich frozen soil behaves like a
creeping material. The most likely circumstances of a pipeline subjected to
frost heave will be associated with primary and secondary creep phases of
straining. The classical studies of Glen (1955) indicate that the flow law of
ice-rich soils is that of the Norton type. The Norton creep relationship,

rewritten in the generalized form as proposed by Ladanyi (1972) is:



where € is the axial strain rate, ¢ is the axial stress, €, and ¢, are proof
strain rates and proof stress, B and n are creeping constants. Typically, n
is about 3 (Morgenstern et al. 1980) for ice at low stresses and icy silts
(McRoberts et al. 1978). In search for a dependence of n and B on
temperature, Morgenstern et al. (1980) found from analyses of available
creep data that ice behaves more as a linearly viscous material at
temperatures close to 0° C. The constant B is found to be temperature and
material dependent. Sego and Morgenstern (1983, 1985) have studied the
behaviour of laboratory prepared polycrystalline ice and have indeed
confirmed the applicability of the Norton-type power law. In the past,
considerable attention has also been paid to the behaviour of
polycrystalline ice primarily for glaciology studies as well as laboratory
studies related to geotechnical problems. It provides a good material to
work with since control can be exercised over its characteristics in the
laboratory. Sego and Morgenstern (1985) studied the indentation problem
using polycrystalline ice both experimentally and numerically using finite

elements and they were able to simulate comparable behaviour.

We have seen above that the analysis of the interaction of frost heave
with a pipeline is a complex problem in which many processes need to be
examined for a proper understanding of the complete system. In the
present work, we propose to decouple the frost heave process in the frost
susceptible soil from the pipeline in the non-frost susceptible soil. This

implies that we should apply an attenuated frost heave rate at the transition



zone of the two types of media rather than the free field frost heave rate
(that which is usually measured in the laboratory). Presently, we assume

that it can be readily approximated.

Previous attempts at solving this problem and specially that related to
pipelines have been made by Nixon et al. (1983) and Selvadurai (1988).
Nixon et al. (1983) simplified the problem to that of plane strain
conditions and applied the free field frost heave over a predetermined
section of the frost susceptible soil and studied its attenuation specifically
at the interface of the frost and non-frost susceptible soils. However, the
pipeline was considered as a passive component of the whole system and
hence its interaction effects were not studied. Using the thermo-elastic
analogy, Selvadurai (1988) analyzed the elastic behaviour of an embedded
pipeline at shallow depth. As indicated previously, frozen soil hardly
behaves as an elastic material and hence the application of this analysis is

limited.

The motivation for studying the behaviour of a pipeline (beam) on
elasto-plastic foundation is that for ice, n is found to be within the range
of 3 to 4 and this is sufficiently large so as to be analogous to a rigid-
plastic material (" — ). Of course, when n = 1 in a Norton type
relationship, then the material behaves as a linearly viscous material. It is
this former aspect that is of interest because it permits us to establish
bounds on the true behaviour. In this paper we present the solution for a
beam on elasto-plastic foundation and an approximate 3-D solution is also

proposed. These results are then compared with 3-D finite element



analyses and they indeed confirm the validity of the simplified 3-D

solution.

Since the development of the solution is of a general nature in that it
can be readily adapted to the analysis of a pipeline or a pile, we shall refer
to either structure as a beam and the surrounding media as the foundation.
Yamada (1988) reported an analysis along the same lines where the beam

was of finite length and applied to the problem of bonded-joint cracking.

Beam embedded in an elasto-plastic foundation

For the present analysis we assume that the beam is buried in a
homogeneous and isotropic elasto-plastic medium and when subjected to
uplift the beam deforms anti-symmetrically. We recognize that in fact for
shallow pipelines this may not be totally valid. The elasto-plastic
behaviour of the medium is represented by a bi-linear force-displacement
relation as shown in Figure 2. If the elastic subgrade modulus is
represented by k, , then the foundation stiffness, k,, is given by k, =bk_,
where b is the beam width (pile or pipeline diameter). Typically, the
maximum force/unit length, F,, resistance available for sand (Trautmann
et al. 1985) and for clay corresponding to the undrained state can be

expressed respectively by:

[2a] F, = ybzN

[2b] F, =N bs, =N bc =N bo



where z is the depth of embedment and N, is the dimensionless factor that
depends on material properties of the sand, v is the weight media density,
s, is the undrained strength (= c the cohesion for a purely cohesive
material that follows Mohr-Coulomb failure criterion) and N_ is a factor
analogous to the bearing capacity factor which will be discussed in detail

later. In the case of an elasto-plastic medium the undrained shear strength
could be replaced by the yield strength, G,. Also, the limiting elastic

displacement, U, is expressed as F, /k. .

A consequence of the anti-symmetry mentioned earlier is that the
transition point O (Figure 1) is a point of inflexion implying a stress
boundary condition of zero moment. If on the other hand, we choose to
look at the problem as that of a pile subjected to lateral load P, then the
equivalent problem of a pipeline subjected to frost heave would be given
by a prescribed displacement of w_ = PB/2k. .where B = W where
E and I are beam elastic modulus and moment of inertia respectively, B is
the so called characteristic length. We also note that the resulting problem
is statically indeterminate. We shall formulate the problem in terms of the
load, P, but the corresponding prescribed end displacement solution can be
obtained as indicated above. A sequence of events as a result of the
interaction between the beam and the surrounding foundation take place as

the load is monotonically increased and these can be described as follows:

- On initial application of the end load, P (load level P), the

embedded beam as well as the soil behave elastically.



- As the load is increased to a load level P,, ultimate passive
resistance will be developed in part of the surrounding soil media
but the pipe will remain elastic. Referring to Figure 1, we define an
axis x-x that distinguishes two regions: region A where the medium
is in an elasto-plastic state and region B where the medium is still
elastic. The position of the axis x-x will shift from initial position
(s-s) where it is initially coincident with the edge where the load or
prescribed displacement is applied. The shift from the far edge to

the axis x-x is denoted by X at any particular loading stage.

- as the load is further increased to, say, load level P,, the distance X

increases until a plastic hinge begins to develop in the beam or
wrinkles develop in the beam depending on the structural

characteristics of the beam.

Our object here is to trace this load resistance behaviour for the first two

events.

Stage 0<SP<P and w<U,

As noted earlier, for a load 0 <P <P, and as long as the displacement
w does not exceed the elastic displacement limit of the soil, w< U, the
solution for a beam on elastic foundation is perfectly valid and the
corresponding differential equation, boundary conditions and solution
(Hetenyi, 1968) are:

10
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d*w
4

3] El— +k w=0

dx
and at x = 0, we have M =EIw” =0 and V = EIw” =P The displacement
is given by:

_2PB

[4] W= e ™ cosPx

5

for 0 <x< oo,

Stage P, <P<P, and w2 U,

As soon as the beam displaces sufficiently so as to exceed the elastic

displacement limit, U,, then a maximum force resistance will be acting on

that portion of the beam while the rest of beam-foundation is still elastic.

The equilibrium equations for the two regions described earlier are:

4
[5] region A: —X<x<0 EId Wa__F
dx4 z
d* :
[6] region B: 0<x<eo EI d:if’ +kw, =0

where X has been defined earlier.The corresponding solution for the
differential equations are:
Ex* Cx’ Cx’

[7] R + +—2—+C,x+C
Ve TR e T TG
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[8] wy =e™[C, cosPx + C, sinfx]

where C,, i = 1, 2,...6 are constants. In the above equations we have seven

unknowns: six C, constants and X. The necessary boundary conditions are:

[9a] at x=-X for moment: ~M=EIw”"=0
and shear: -S=Elw” =P

for displacement and slope compatibility, and moment and shear

equilibrium at x = 0, we have

[9b] displacement: W, =W,

” o __ ’”
for slope w, =wj
for moment: wy o =wy

. e o _ s
for shear: w,” =w]

The last boundary condition is obtained from the fact that at x =0 the rate

of variation of shear is equal to the maximum force/unit length. i.e.

4 4
d V\:A =EId w

4B ==F
dx dx

A

[9c] El

The seven boundary conditions given in equations [9] permits the

evaluation of the seven unknown constants. They are:

C, =(P-xF,)/El
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C, =x(P - XF, /2)/EI
[10] C, =B(-2xp’P+X’B’F, - F, ) /k.
C, =C,
C, =F,/k,
C,=-C,/2p?
and XB =2PB/F, -1

We note from the last equation of set [10] that the region A increases (i.e.

X increases) as P increases and that X is zero until at least:
[11] P>F /2B and P, =F /2B

The displacement at the point of application of the load can be evaluated as
a function of the applied load to determine what is commonly termed as
the characteristic curve. Interestingly enough, the expression so obtained

can be conveniently expressed in non-dimensional form. i.e

=(1 2P 8P
W=N|—-4+——+—
[12] v C( c 3 )

where W =wk_/bc and P =PB/bc. In the design of a pipeline or a pile,
we would normally be interested in the maximum bending moment or
stress. The maximum bending moment in the beam depends on the load
level as well on which side of the transition axis (x-x) does the maximum
curvature develops. Three specific load levels are identified and expressed

in non-dimensional form:



Mp

[13a] —-I;—ze'ﬁ" sinfx where Px=mn/4 and P<P
—BRRT —
[13b] I\;I)B__;ez_ch [sinBi-%[Z—:E—:lJcosBi}
._(N.-P)
where taan::———-——_ﬁ-———— and P>2P,
MB 3P 2N
——— 4- __C
[13¢] P 2N, P
5 P = = .=
Where szl_tﬁ-_ andPeSPS?. e

Equations [13a and 13b] correspond to the case when the maximum
bending moment occurs to the right of the x-x axis and [13c] corresponds
to the case when the maximum bending moment occurs to the left of the
axis x-x. Nonetheless, the point (X) of maximum moment increases as the

load is monotonically increased.

An approximate 3-D solution for a buried beam

Rowe and Davis (1982) examined the undrained behaviour for vertical
uplift as well as horizontal movement of a rigid thin anchor in a saturated
clay. Their study was limited to 2-D plane strain conditions and they
considered the influences of anchor embedment, layer depth, overburden
pressure and breakaway condition or separation as well as other aspects on
load displacement behaviour. The numerical solutions were obtained using

finite element techniques and assuming that the soil was purely cohesive

14



and behaved according to the Mohr-Coulomb criterion. Additional
assumptions made in their study can be referred to in the cited reference.
In the case of a cohesive soil and for the specific case of undrained loading
response, the cohesion is equal to the undrained shear strength.
Consequently, for the analysis of the uplift behaviour of the pipeline and
the laterally loaded pile the maximum resistance, F,, can be expressed as
indicated in [2b]. In the present analysis we propose to use findings of
Rowe and Davis (1982) related to vertical uplift of anchors to study the
uplift behaviour of pipelines while that of horizontal movement of anchors
to study lateral pile behaviour. Essentially we make use of the load
displacement curves (commonly referred to as characteristic curves) for
vertical uplift of anchors (Figures 2 and 3) and horizontal movement of
anchors where fully bonding or immediate breakaway is allowed for
between the anchor and soil. The specific solutions were obtained for an
anchor lying on the surface, i.e. h/b = 0 and for an anchor deeply buried.
i.e h/b = oo. These provide lower and upper bounds solutions for the uplift

capacity as expressed in [2b]. For a vertical anchor and embedment ratio

of h/b = 0 we have the Prandtl solution and N_ is 5.14. The corresponding
N, value for /b = o is 11.42. Rowe and Davis (1982) found in their
analyses that it was particularly difficult to define failure and they
proposed a definition that failure is considered to be reached when the
displacement is a selected multiple of that which would have been reached
had the conditions remained entirely plastic. In fact, they showed through
their analysis that for h/b > 3, the value of N, (= 11.42) is essentially
constant for a vertical anchor and its variation from 5.14 for h/b = 0 is
practically linear till h/b = 3. Consequently, as an approximation we

propose to use equivalent bi-linear representations of the vertical and

15



horizontal load-displacement curves for anchors for the soil in the solution
for a beam embedded in an elasto-plastic media to obtain an approximate
3-D characteristic curve for the uplift capacity of a buried beam and
lateral pile load-displacement characteristic. As we shall see, this also
permits us to obtain an economical solution for the beam embedded in
media where separation is permitted to take place between the beam and

the surrounding soil.

The characteristic curves for uplift resistance of a buried beam
obtained making use of the above indicated load displacement curves are
shown in Figures 4 and 5. Similarly, Figures 8 and 9 show the laterally
loaded behaviour when no separation or separation is allowed. The effect
of separation may be of considerable importance for the lateral behaviour
of a pile, while it is believed that the pipeline-frozen soil interface could
sustain adhesion and thus limit if not avoid separation. The range of non-
dimensional loads and displacements specified in Figures 4 and 5 do not
violate Euler-Bernoulli relation which implies that the formulation

presented is valid only for small-displacements.
Finite Element Analysis

The following points should be kept in mind in order to compare the
finite element solutions with the proposed approximate solutions using
load displacement characteristics for anchors developed by Rowe and
Davis (1982):

16



- finite element solutions for anchors as developed by Rowe and Davis
(1982) represent a plane strain condition. Meanwhile, the embedded
beam (pipeline or pile) in surrounding media (frozen soil or soil) is

between a plane stress and plane strain condition.

- while the load displacements curves for vertical anchors given by
Rowe and Davis (1982) can be directly used for the study of uplift
resistance of the pipelines, the corresponding use for the
understanding the behaviour of laterally loaded pile is not so
obvious. For the latter case, the uppermost part of the pile can be
envisaged as an anchor that steadily grows in depth (Figure 8) as the

load is increased.
- A relation between elastic modulus of the continuum and the so

called foundation subgrade modulus used for the simplified problem

as proposed by Vesic (1961) is given by:

12 4
[14] K = 0.6513s /Esb
1-v; EIl

lift resi ri ipelin

In order to validate the approximate 3-D solution for a beam embedded
at finite depth, a finite element model for the embedded pipe was solved.
A common problem in three dimensional finite elements is that the
number of degrees of freedom (i.e. number of equations to be solved)

increases dramatically with discretization. This is of special significance

17



when non-linear analysis is being carried out. As a consequence, we found
that the discretization pattern was largely governed by the number of shell
elements used along the circumference for representing the tube. We also
wanted to ensure that the curvature of the tube was adequately
represented. Hence, a choice was made to use the 4-noded thin shell
element as formulated by Bathe and Dvorkin (1986) and available in
Adina (1987). In order to avoid element locking, a 2 x 2 Gauss integration
rule in the r-s plane was used. The surrounding medium was represented
by 8-node brick finite elements and its material properties were described
by the von Mises failure criterion. The finite element discretization of 12
x 5 x 5 in the X, y, z directions is shown in Figure 7. In fact, only one half
of the problem needs to be solved if we take advantage of the symmetry.
This same problem was also solved using an 8-noded thin shell element
and the corresponding 20-node brick element but with a coarser

discretization and essentially the same results were obtained.

The finite element solution for displacement and maximum moment
obtained for embedment ratio of h/b=1.55 are shown in Figures 4 and 5.
An embedment ratio of 1.55 was chosen based on the premise that for
regulatory approval a minimum cover about 1 m is required and we
envisaged a gas pipeline diameter of say, 1066 mm. We observe that the
finite element solution falls within the bounds established by the

approximate analytical solutions. Subsequently, the approximate solution

was obtained as indicated above using a depth factor, Nc, of 6.35. It
should be emphasized that this value of N, was obtained by trial and error
procedure and without applying any rigorous analysis such as a least

square analysis. We note that though the load-displacement matches quite

18



well, the bending moment-displacement match is closer to that of h/b = oo
case. We should keep in mind that the stress predictions using the
displacement finite element technique are known to be poor and this would
be especially expected in light of the coarse discretization used for the
pipeline. It can be appreciated that a variety of approximate solutions can
be easily obtained by varying this depth factor that corresponds to the
specific h/b ratio.

Laterally loaded pile with and without separation

Pollalis (1982) examined the behaviour of a laterally loaded pile
allowing for separation to take place as the lateral load was increased
monotonically. The soil medium was considered to be elasto-plastic but
both elastic shear modulus and the undrained shear strength increased
linearly with depth since such a situation is usually encountered in
normally consolidated clays. The laterally loaded pile was simulated using
cubic beam finite elements for the pile and solved using 3-D brick finite
elements for the surrounding media. The separation was accounted for by
using springs elements and details can be found in the fore-mentioned
reference. The constitutive model as proposed by Kavvadas (1982) for
non-linear behaviour of surrounding soil was used. However, before
proceeding to compare the finite element solutions with the approximate
solutions it is important to bear in mind that the solutions obtained by
Pollalis (1982) consider shear strength increasing linearly with depth
while the above proposed solution for a beam embedded in an elasto-
plastic medium as well as the solutions for anchors obtained by Rowe and

Davis (1982) are only pertinent for homogeneous media. Also, we should
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keep in mind that the solutions for an embedded anchor are those
corresponding to that of a plane strain situation. Here, we attempt to
obtain (at least qualitatively) a solution for a complex 3-D situation using
simplified 2-D solutions and no suggestion is made that the analysis is
rigorous but nonetheless, it does provide insight in the mechanisms

involved in the behaviour of a laterally loaded pile.

The solutions as indicated by Pollalis (1982) are expressed in terms of
different non-dimensional load-displacement parameters that we have
selected in the above solution. Hence, the 3-D finite element solution given
by Pollalis (1982) was transformed to conform to our non-dimensional
parameters. It is also important to note that since Pollalis (1982) has used
a linearly varying elastic modulus with depth for the surrounding soil
media and consequently, when separation is not allowed for, an immediate
non-linear response is obtained. Hence, data from Pollalis (1982) was

adjusted to include the initial elastic behaviour.

Figure 7 shows the 3-D normalized finite element solutions as indicated
above. It indeed shows that our normalization is more consistent than that
proposed by Pollalis (1982). His parameter, & = EI/G,b*, is brought
naturally into our normalization and the response obtained is within a very
narrow band. It is also evident that the response obtained by Pollalis
(1982) was within a narrow range of parameters and hence to compare his
results with our approximate solution an extrapolation procedure was
used. In order to account for the linear variation of soil properties with
depth and obtain a fair comparison between the approximate analyses and

the 3-D finite element method we amplified the 3-D finite element
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response by 1.5 ( this factor is based on equivalence of the strain energy
for the two systems). Figure 8 shows the 3-D finite element solution as
compared with the upper and lower bounds obtained using approximate
analysis. The approximate solution can be seen to steadily increase from
the h/b = O case to reach a steady state solution where h/b is in the range 1
to 3. In spite of the limitations cited above, it can be observed that the
approximate analysis remarkably traces the the trend of the more accurate

finite element solution.

The separation between the back of pile and the soil can be accounted
for in an approximate manner if we use the corresponding limiting
solutions for horizontal anchors as given by Rowe and Davis (1982).
Though the limiting resistance depends on the particular collapse criteria
used, the upper and lower resistances can be estimated to be in the range
2c¢ and 4c. Figure 9 shows the comparison of the characteristic load-
displacement curves obtained using the approximate solution and the 3-D
finite element solution. We note that the trend of the load-resistance curve
is similar to that of the lower bound (h/b=1) case and perhaps this
observation provides a rational understanding of this commonly used
criterion for ignoring the resistance offered by the soil media in this

region.
Conclusions
A simple analytical formulation for a beam on an elastic-plastic

foundation is presented. The 2-D plane stress load-displacement solutions

developed by Rowe and Davis (1982) have been incorporated with the
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analytical formulation to obtain an approximate 3-D solution. This
approximate solution was compared with the 3-D finite element solution
for a shell pipe embedded in an elasto-plastic media. We have
demonstrated that the bounds established by the approximate solutions are

quite adequate. The approximate solution can be fine tuned to the finite

element solution using the bearing capacity factor, N,. We found that a
value of N, = 6.35 matches the displacements well but the match of the
stresses is not all that satisfactory. The approximate solution was also used
to predict the effective lateral pile head stiffness and similar trends are

predicted.
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Appendix II. Notation

The following symbols are used in this paper:

b = beam width, pipeline or pile diameter
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creep proportionality constant
cohesion

constants

beam elastic modulus

soil elastic modulus

media resistance per unit length
embedment depth

beam moment of inertia
foundation subgrade modulus
bending moment
non-dimensional load parameter

creep exponent in Norton relation

bearing capacity type factor

non-dimensional parameter for evaluating soil resistance
undrained shear strength

shear

displacement in the z-direction

non-dimensional displacement parameter

longitudinal coordinate axis

region in plastic state

point of maximum bending moment

axis normal to x-axis

non-dimensional parameter defined by Pollalis (1982) (=
El/G,b*)
proof strain rate

soil weight density
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soil Poisson's ratio
proof stress
stress at tip of pile (used by Pollalis,1982)

yield stress of surrounding media
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Figure 4. Non-dimensional load-displacement curve for a beam on
elasto-plastic foundation - analytical vs 3D finite elements.
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Figure 5. Non-dimensional maximum moment-displacement curve

for a beam on elasto-plastic foundation - analytical vs
3D finite elements.
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Figure 6. Finite element model for embeded pipeline



End load, PB/Bc
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Figure 7. Non-dimensional load-displacement curve for a laterally
ded pile with and without separation - 3D finite elements
(data from Pollalis, 1982).
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Figure 8. Non-dimensional load-displacement curve for a laterally

loaded pile without separation - analytical vs 3D finite elements.
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Figure 9. Non-dimensional load-displacement curve for a laterally

loaded pile with separation - analytical vs 3D finite elements.



