INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600






NOTE TO USERS

The original manuscript received by UMI contains pages with
indistinct print. Pages were microfilmed as received.

This reproduction is the best copy available






University of Alberta

Analysis of Power Dissipations
in CMOS Circuit Designs

By

Nelson Lawrence Rodnunsky

A thesis submitted to the Faculty of Graduate Studies and Research in

partial fulfillment of the requirements for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta
Fall 1998



vl

Your fle Votre référence

Our filg Notre reférence

L’auteur a accordé une licence non
exclusive permettant a la

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et )
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-

exclusive licence allowing the

National Library of Canada to

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimeés
ou autrement reproduits sans son
autorisation.

0-612-34409-6

Canadi



University of Alberta

Faculty of Graduate Studies and Research

The Undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled Analysis of Power Dissipations
in CMOS Circuit Designs submitted by Nelson Lawrence Rodnunsky in partial

fulfillment of the requirements for the degree of Master of Science.

............

...............

Pinfold

......

Dr. 1.




Abstract

Much of the recent work in VLSI is the estimation of power dissipation by a
circuit design. This research introduces a new analysis software called power. It was
designed to determine and analyze dynamic power dissipations of CMOS circuits prior to
fabrication. The short circuit power contribution of a design was also examined. Pattern
dependent analysis was used to simulate the effects of the powers dissipated by the
circuit. The results are stored in a Matlab compatible format. Source code for a Matlab
program is appended to the data file, enabling an interactive, graphical environment for

viewing the results.

The results are consistent with that of theoretical expectations and comparisons
with other simulation software and analysis techniques available. The program can be
used in applications such as fault detection and as an inexpensive analysis tool for
university, providing insight into power dissipation considerations when designing

circuits for fabrication.



This thesis is dedicated to my parents, Isabel and Harold Rodnunsky, for
without whom [ would not be here. Their love, dedication, and moral support
during the last 29 years will always be remembered.

I also dedicate this to my three best friends: Andrea Hayes, Tania Nichiporik,
and Dr. Howard Bennett. Their friendship has been extraordinary and [ thank
them for being apart of my life.



Acknowledgements

I would like to take this opportunity to thank my supervisor and mentor Dr.
Nelson Durdle, whose help and support have been fantastic during the last 3 years.
Honorable mention goes to Dr. Martin Margala, who played a major role in my
completing this degree. I would also like to thank my examining committee, Dr. Sun
(Electrical Engineering) and Dr. Pinfold (Physics), for their acceptance of this thesis.

Many people were involved in my university life during the past six years,
particularly the last three while completing my masters program. Here is a special thank
you to the University of Alberta Department of Electrical and Computer Engineering:
professors, technical support staff and office staff; especially the following people....

* Dr. Haswell, for your help as my undergraduate advisor and employer during my
sessional teaching experiences.

* Dr. Lawson and Dr. Fedosejevs, past and current graduate-student advisors
respectively, for your help getting me through this program with very few pains.

= Dr. Routledge, for providing me the opportunity to be a sessional instructor the past
two years, and for being a friend.

= Dr. Filanovsky, for your encouragement and assistance.

= Michelle Lock, what can I say? Your help and friendship will always be
remembered, in particular your advice to: “Just go with it!”. I will not forget you.

* The Office Staff: Shirley, Leena, Carla, Maureen, and Nona, for all of your help and
for putting up with my pestering.

= Kees, the guru of all Sys-Admins, thanks for lending an ear, being a friend and for
putting up with all the trivial UNIX questions for the last 6 years; and

= Don Presakarchuk, for being the best lab technical assistant and friend.

There are some special people, associates and others that I must also thank.....

=  Angela and Craig, for being great teaching assistants in the EE570 lab.

* The Hockey Pool Group: Jonathan, Martin, Derek, Wes, and Roger. Thanks for
making procrastination a little more interesting, and leaving my wallet full of dust.

* The Research Office Group: Jonathan, Edmond, Jai, and Kevin. Your support,
friendship, and help with the simplest of programming questions was the best.

= My many relatives and friends (outside the umiversity walls) for their support and
encouragement, and finally,

» To anyone who I failed to mention, you have not been forgotten only temporarily
misplaced. @~ 000 Thanks for the memories ................



Table of Contents

1.0 INTRODUCTION

1.1 OBJECTIVES

1.2 JUSTIFICATION / MOTIVATION
1.3 OVERVIEW

2.0 BACKGROUND

E o W N = =

2.1 POWER DISSIPATION

2.1.1 Static Power

Co U,

2.1.2 Dynamic Power

2.1.3 Short-circuit Power

2.1.4 Total Power Dissipation

2.2 EXISTING POWER ANALYSIS SOFTWARE
221 Description of Existing Software

222 Thesis Software Program vs. Existing Software.

2.3 CAD SorTwARE COMPONENTS
2.4 Cmrcurr UNDER TEST (CUT)

3.0 MODELS AND ANALYSIS TECHNIQUES

3.1 MATHEMATICAL ANALYSIS METHODS AND MODELS

3.1.1 Pattern Dependency Vs Probabilistic Analysis Methods
3.1.2 Mathematical Models

3.1.2.1 Capacitance Models

3.1.2.2 Node Voltage Models

3.1.2.3 Power Dissipation Models

32 CIRCUIT ANALYSIS TECHNIQUES AND DISCUSSION

4.0 SUBROUTINE DESCRIPTION AND SOFTWARE APPLICATION

4.1 “POWER” MAIN PROGRAM ROUTINE

42 LEVEL-ONE SUBROUTINES AND FUNCTIONS

4.2.1 “read_models” Subroutine

4.2.2 “read_netlist” Subroutine

4.2.3 “cap_calcs” Subroutine

4.2.4 “combine_subccts” Subrout}ne

4.2.5 “free_mem"” Subroutine

4.2.6 “time_node_voltage” Subroutine

43 LEVEL-TWO SUBROUTINES AND FUNCTIONS

4.3.1 “file_check” Function

4.3.2 “read_model_data” Subroutine

4.3.3 “lower_case” Subroutine



4.3.4 “inter_cap_sort” Subroutine

4.3.5 “para_cap_calc” Subroutine -46
4.3.6 “combine_cap” Subroutine 47
4.3.7 “combine_mos” Subroutine 48
4.3.8 “combine_que” Subroutine 48
4.3.9 “combine_res"” Subroutine 48
4.3.10 “cap_sort” Subroutine 49
4.3.11 “res_sort” Subroutine 49
4.3.12  “rename_refs” Subroutine 50
4.3.13  “node_cap” Subroutine 50
4.3.14 “analyze” Subroutine 51
4.3.15 “power_diss” Subroutine 52

44  LEVEL-THREE SUBROUTINES AND FUNCTIONS 33
4.4.1 “strtonum” Function 53
4.4.2 “convert” Subroutine 53
4.4.3 “vj_entry” Function 54
4.4.4 “calculations” Subroutine 54
4.4.5 “data_file_transfer” Subroutine 55

4.5  “DRAIN_SOURCE” LEVEL-FOUR FUNCTION 55
4.6  MATLAB PROGRAM DATA FILE: 56
5.0 RESULTS 61
5.1  TesTt CIRCUITS 61
5.2  SAMPLE APPLICATION SESSION 61
5.3  DATARESULTS 69
5.3.1 Total Power Results 69
5.3.2 Dynamic Power Results 72

5.4  PrROGRAM EFFICIENCY 74
6.0 CONCLUSIONS, FINDINGS AND RECOMMENDATIONS 76
6.1  CONCLUSIONS 76
6.2  LIMITATIONS 77
6.3  FUTURE REVISIONS 78
BIBLIOGRAPHY 80
APPENDIX A.l PMOS MODEL LIBRARY FILE 82
APPENDIX A.2 NMOS LIBRARY FILE 84
APPENDIX A.3 NPN LIBRARY FILE 86
APPENDIX B.l TYPEDEFS.H HEADER FILE INFORMATION 87
APPENDIX B.2 COMBINE.H HEADER FILE INFORMATION 92



APPENDIX C.1 PROGRAM BLOCK FLOW DIA! M

94

APPENDIX C.2 LEVEL — ONE PROGRAM FLOWCHARTS

APPENDIX C.3 LEVEL - TWO PROGRAM FLOWCHARTS-

APPENDIX C.4 LEVEL - THREE AND FOUR PROGRAM FLOWCHARTS
APPENDIX C.5 MATLAB PROGRAM SOURCE CODE

APPENDIX D.1 T-CELL XNOR NETLIST FILE

APPENDIX D.2 T-CELL XNOR SCHEMATIC DIAGRAM

APPENDIX D.3 K-CELL COMPRESSOR NETLIST FILE

APPENDIX E.l UNIX MANUAL (MAN) PAGE

100
112
I15
120
122
123
126



List of Tables

TABLE 4.1: SAMPLE INPUT VOLTAGES FROM NETLIST FILE

TABLE 4.2: SAMPLE VOLTAGE ARRAYS FROM THE TIME_NODE_VOLTAGE SUBROUTINE

TABLE B.1: NETLIST LINKED LIST DATA STRUCTURES.

TABLE B.2: MODEL LINKED LIST DATA STRUCTURES.
TABLE B.3: FINAL CIRCUIT LINKED LIST DATA STRUCTURES.




List of Figures

FIGURE 2.1: EXAMPLE OF A SIMPLE CMOS INVERTER. 5
FIGURE 2.2: EXAMPLE OF A CMOS INVERTER SHOWING LEAKAGE CURRENTS. 6
FIGURE 2.3: (A) TRANSFER FUNCTION AND (B) NOISE MARGIN CHART OF A CMOS INVERTER. -~—————9
FIGURE 2.4: CMOS INVERTER (A) WITH A LOGIC 1 TO O STEP, AND (B) WITH A LOGICO TO | STEP.-———10
FIGURE 2.5: MODEL FOR SHORT-CIRCUIT CURRENT AND INPUT SWITCHING WAVEFORM. 13
FIGURE 2.6: PROCEDURAL BLOCK DIAGRAM OF POWERMILL SOFTWARE PROGRAM. 18
FIGURE 2.7: PROCEDURAL BLOCK DIAGRAM OF THESIS SOFTWARE PROGRAM. 18
FIGURE 2.8: (A) A sSIMPLE CMOS NAND GATE, AND (B) A DOUBLE-PASS CMOS NAND GATE. 21
FIGURE 2.9: A 4—2 COMPRESSOR CIRCUIT. 22
FIGURE 3.1: (A) STANDARD CMOS CONFIGURATION, AND (B) NON-STANDARD CMOS CONFIGURATION.
27
FIGURE 3.2: BLOCK DIAGRAM OF OVERALL ANALYSIS LOOP. 32
FIGURE 3.3: BLOCK DIAGRAM OF INTERNAL NODE ANALYSIS FROM “TIME_NODE_VOLTAGE" SUBROUTINE.
34
FIGURE 4.1: BLOCK DIAGRAM OF MAIN PROGRAM “POWER”’ ROUTINE. 36
FIGURE 4.2: LEVEL-ONE PROGRAM SUBROUTINES. 37
FIGURE 4.3: BLOCK DIAGRAM OF “READ_MODELS"” SUBROUTINE. 37
FIGURE 4.4: BLOCK DIAGRAM OF “READ_NETLIST" SUBROUTINE. 39
FIGURE 4.5: BLOCK DIAGRAM OF “CAP_CALCS"” SUBROUTINE. 40
FIGURE 4.6: BLOCK DIAGRAM OF “COMBINE_SUBCCTS”’ SUBROUTINE. 41
FIGURE 4.7: BLOCK DIAGRAM OF “FREE_MEM’’ SUBROUTINE. 41
FIGURE 4.8: BLOCK DIAGRAM OF “TIME_NODE_VOLTAGE” SUBROUTINE. 42
FIGURE 4.9: BLOCK DIAGRAM OF “READ_MODEL_DATA™ SUBROUTINE. 45
FIGURE 4.10: BLOCK DIAGRAM OF “LOWER_CASE" SUBROUTINE.- 45
FIGURE 4.11: BLOCK DIAGRAM OF “PARA_CAP_CALC” SUBROUTINE. 46
FIGURE 4.12: BLOCK DIAGRAMS OF (A) “COMBINE_CAP” (B) “COMBINE_MOS” (C) “COMBINE_QUE” (D)
“COMBINE_RES” SUBROUTINES. 49
FIGURE 4.13: BLOCK DIAGRAM OF “POWER_DISS” SUBROUTINE. 52
FIGURE 4.14: BLOCK DIAGRAM OF “CALCULATIONS" SUBROUTINE. 54
FIGURE 4.15: BLOCK DIAGRAM OF THE MATLAB SOURCE CODE OPERATION. 56
FIGURE 4.16: FONT sizé MENU GUL 57
FIGURE 4.17: MENU OF NODES TO PLOT GUI. 57
FIGURE 4.18: (A) START NODE MENU GUI. (B) END NODE MENU GUIL. 58
FIGURE 4.19: ExiT MENU GUL 58
FIGURE 4.20: PLoT TYPE MENU GUL 59
FIGURE 5.1: VOLTAGE TRANSITIONS FOR EACH NODE AND TIME TRANSITION. 62
FIGURE 5.2: PARASITIC ENERGY CONSUMED AT EACH NODE FOR EACH TIME TRANSITION. ---—-—————-—63
FIGURE 5.3: INTERCONNECT ENERGY CONSUMED AT EACH NODE FOR EACH TIME TRANSITION. ————————-64
FIGURE 5.4: AVERAGE ENERGY CONSUMED AT EACH NODE DUE TO THE PARASITIC CAPACITANCES. 65

FIGURE 5.5: AVERAGE ENERGY CONSUMED AT EACH NODE DUE TO THE INTERCONNECT CAPACITANCES. --65

FIGURE 5.6: AVERAGE DYNAMIC POWER (PARASITIC CONTRIBUTION) CONSUMED AT EACH NODE.-—-———66
FIGURE 5.7: AVERAGE DYNAMIC POWER (INTERCONNECT CONTRIBUTION) CONSUMED AT EACH NODE.-—67
FIGURE 5.8: TOTAL AVERAGE DYNAMIC POWER CONSUMED AT EACH NODE. 68

FIGURE 5.9: NORMALIZED POWER DISSIPATION CURVES FOR STANDARD T-CELL AND K-CELL GATES WITH:
(A) 5V SUPPLY VOLTAGE AND (B) 3.3V SUPPLY VOLTAGE. 70




FIGURE 5.10: NORMALIZED POWER DISSIPATION CURVES USING 3.3V AND 5V SUPPLY VOLTAGES FOR: (A)
K-CELL ADDER CIRCUIT, (B) K-CELL COMPRESSOR CIRCUIT, (C) T-CELL ADDER CIRCUIT, AND (D) T-

CELL COMPRESSOR CIRCUIT. 71
FIGURE 5.11: CONTRIBUTION OF DYNAMIC POWER TO TOTAL POWER DISSIPATION BASED ON THE POWER

PROGRAM FOR THE TEST GATES AND CIRCUITS. 73
FIGURE 5.12: TIME/EFFICIENCY COMPARISON FOR AN XNOR CHAIN CIRCUIT OF VARIOUS LENGTHS ——75
FIGURE B.1: CCT (SUB-CIRCUIT DATA) LINKED LIST STRUCTURE. 87
FIGURE B.2: CAP (CAPACITOR DATA) LINKED LIST STRUCTURE. 88
FIGURE B.3: MOS (MOSFET DATA) LINKED LIST STRUCTURE. 88
FIGURE B.4: QUE (TRANSISTOR DATA) LINKED LIST STRUCTURE. 88
FIGURE B.5: RES (RESISTOR DATA) LINKED LIST STRUCTURE- 88
FIGURE B.6: SUB (SUB-CIRCUIT REFERENCE DATA) LINKED LIST STRUCTURE. 89
FIGURE B.7: VOL (VOLTAGE DATA) LINKED LIST STRUCTURE- 89
FIGURE B.8: MODEIL (MODEL LIBRARY) LINKED LIST STRUCTURE. 90
FIGURE B.9: LONG (LONG PARAMETERS) DATA STRUCTURE. 90
FIGURE B.10: SHORT (SHORT PARAMETERS) DATA STRUCTURE. 90
FIGURE B.11: TEMP (TEMPERATURE PARAMETERS) DATA STRUCTURE. 90
FIGURE B.12: DIODE (DIODE PARAMETERS) DATA STRUCTURE. 91
FIGURE B.13: JUNCT (JUNCTION PARAMETERS) DATA STRUCTURE. 91
FIGURE B.14: NOISE (NOISE PARAMETERS) DATA STRUCTURE. 91
FIGURE B.15: NODES (NODE DATA) LINKED LIST STRUCTURE. 92
FIGURE B.16: CLIST (CAPACITOR DATA) LINKED LIST STRUCTURE. 93
FIGURE B.17: MLIST (MOSFET DATA) LINKED LIST STRUCTURE. 93
FIGURE B.18: QLIST (TRANSISTOR DATA) LINKED LIST STRUCTURE. 93
FIGURE B.19: RLIST (RESISTOR DATA) LINKED LIST STRUCTURE. 93
FIGURE C.1: POWER PROGRAM MAIN BLOCK DIAGRAM. 94
FIGURE C.2: FLOWCHART FOR POWER MAIN PROGRAM ROUTINE. 95
FIGURE C.3: FLOWCHART FOR “READ_MODELS” SUBROUTINE. 96
FIGURE C.4: FLOWCHART FOR “READ_NETLIST" SUBROUTINE. 97
FIGURE C.5: FLOWCHART FOR *“CAP_CALCS” SUBROUTINE. 97
FIGURE C.6: FLOWCHART FOR “COMBINE_SUBCCTS’' SUBROUTINE. 98
FIGURE C.7: FLOWCHART FOR “FREE_MEM’’ SUBROUTINE. 98
FIGURE C.8: FLOWCHART FOR ‘““TIME_NODE_VOLTAGE” SUBROUTINE. 99
FIGURE C.9: FLOWCHART FOR “FILE_CHECK"" FUNCTION. 100
FIGURE C. 10: FLOWCHART FOR “LOWER_CASE” SUBROUTINE. 100
FIGURE C. 11: FLOWCHART FOR “READ_MODEL_DATA" SUBROUTINE. 101
FIGURE C. 12: FLOWCHART FOR “PARA_CAP_CALC"” SUBROUTINE. 101
FIGURE C.13: FLOWCHART FOR “INTER_CAP_SORT” SUBROUTINE. 102
FIGURE C.14: FLOWCHART FOR “CAP_SORT’’ SUBROUTINE. 103
FIGURE C.15: FLOWCHART FOR “RES_SORT’’ SUBROUTINE. 104
FIGURE C.16: FLOWCHART FOR “NODE_CAP’’ SUBROUTINE. 105
FIGURE C. 17: FLOWCHART FOR “COMBINE_CAP"’ SUBROUTINE. 106
FIGURE C. 18: FLOWCHART FOR “COMBINE_MOS"~ SUBROUTINE. 107
FIGURE C.19: FLOWCHART FOR “COMBINE_QUE” SUBROUTINE. 108
FIGURE C.20: FLOWCHART FOR “COMBINE_RES” SUBROUTINE. 109
FIGURE C.21: FLOWCHART FOR “RENAME_REFS” SUBROUTINE. 109

FIGURE C.22: FLOWCHART FOR “ANALYZE” SUBROUTINE.

FIGURE C.23: FLOWCHART FOR “POWER_DISS" SUBROUTINE-

110
111



FIGURE C.24: FLOWCHART FOR “CONVERT” SUBROUTINE.

FIGURE C.25: FLOWCHART FOR “STRTONUM'® FUNCTION.

FIGURE C.26: FLOWCHART FOR “VJ_ENTRY" FUNCTION.

FIGURE C.27: FLOWCHART FOR “CALCULATIONS” SUBROUTINE.
FIGURE C.28: FLOWCHART FOR “DATA_FILE_TRANSFER” SUBROUTINE.

FIGURE C.29: FLOWCHART FOR “DRAIN_SOURCE" FUNCTION.

FIGURE D.1: T-CELL XINOR SCHEMATIC DIAGRAM.

112
112
113
113
114
114



List of Symbols

B: The gain factor for transistors.

€o: Electric permittivity of free space (vacuum) = 8.854x10"* F/cm
E€si: Electric permittivity of silicon dioxide = 3.9-€,
¢n: Bulk potential

Y: Substrate bias effect

AD: Drain Area of a MOSFET

AS: Source Area of a MOSFET

k: Boltzmann’s constant = 1.38x10°> J/K

MJ: Bulk p-n grading coefficient

n: emission coefficient

Ni: Carrier concentration

Na: Carrier density

PB: Built-in bulk p-n potential

PD: Drain Perimeter of a MOSFET

P4: Dynamic Power Dissipation

PS: Source Perimeter of a MOSFET

Ps: Static Power Dissipation

Ps.: Short Circuit Power Dissipation

q: Electronic charge = 1.602x10™"° C

T: Temperature in Kelvin

tox: Oxide thickness

Vm: Input High Voltage

Vi: Input Low Voltage

Vj: Applied reverse bias voltage

Von: Output High Voltage

VoL: Output Low Voltage

V. or Vr: The threshold voltage of a MOS transistor.



List of Abbreviations

BiCMOS: Bipolar Complementary Metal Oxide Semiconductor
BJT: Bipolar Junction Transistor

CAD: Computer Aided Design

CMOS: Complementary Metal Oxide Semiconductor
CUT: Circuit Under Test

DUT: Device Under Test

GUI: Graphical User Interface

LSI: Large Scale Integration

MSI: Medium Scale Integration

NMOS: N-Channel Metal Oxide Semiconductor
PMOS: P-Channel Metal Oxide Semiconductor

SSI: Small Scale Integration

TTL: Transistor - Transistor Logic

VLSI: Very Large Scale Integration



List of Nomenclature

Average Power: The average of the powers during various intervals in time.

Average Time: An average of the various times under specific operating conditions.
Duty Cycle: A ratio of the time the output pulse is high, to the total period of the pulse.
Dynamic Power Dissipation: The switching power dissipated by a CMOS circuit.

Fall Time: The time required for a transition from a logic high to a logic low. The time
is specified as the period between the 90% and 10% voltage levels.

Interconnect Capacitance: The effective capacitance between the various process
layers and devices of a circuit design. The layers can include metal, substrate,
polysilicon, and diffusion.

Leakage Current: The current lost in the parasitic diodes of a CMOS circuit.

Parasitic Capacitance: The capacitance intrinsic to a transistor. [t includes the gate-
drain, gate-source, gate-substrate, drain-substrate, source-substrate, and occasionally
drain-source capacitances.

Pattern Dependent Evaluation: An analysis method to examine each node of a circuit,
at all time intervals, for a specific set of input test patterns.

Power Dissipation: The total power dissipated or consumed by a CMOS circuit. It
generally consists of three parts: Static and Dynamic, Short Circuit.

Rise Time: The time required for a transition from a logic low to a logic high. The time
is specified as the period between the 10% and 90% voltage levels.

Short Circuit Current: The current as a result of a short circuit between the supply
voltage and ground.

Short Circuit Power Dissipation: The power dissipated as a result of the short circuit
current during switching.

Static Power Dissipation: The power dissipated by a CMOS circuit when the circuit is
in steady state.

Time Delay (Propagation Delay Time): The time between the specified reference points
on the input and output voltage waveforms with the output changing from one defined
level to the other defined level.

Total Power: The total power dissipated or consumed over a specified period of time.

Test Vectors: A series of voltages to each input of a circuit under test, with expected,
or predictable output results.



1.0 Introduction

Very Large Scale Integration (VLSI) circuit design methods and procedures have
changed significantly during the past three decades. The sophistication and reliability of
computer aided design tools, simulation tools, and process technology have improved

significantly enhancing the design of digital low power circuits.

Power dissipation is a major concern in low power VLSI applications, with
transistor densities and clock frequencies increasing, and die sizes decreasing.
Performance degradation, elevations in operating temperature and decreased reliability

are the results of increased power dissipation in integrated circuits.

A thirst for decreased electronic product sizes by industry and consumers was the
main reason for the improvements and changes in design procedures as mentioned

above. Examples include the digital and cellular telephones and laptop computers.

Consider the history of the telephone. The rotary telephone existed until the
early 1980’s. Then a technological boom in the electronics industry brought on
significant changes to the development of the cellular and digital telephone, and the
demise of the rotary phone. The evolution of cellular and digital phones improved as
design and simulation tools improved. The use of complimentary metal oxide
semiconductors (CMOS) and bipolar-CMOS (BiCMOS) transistors also had a dramatic
affect on the size and operation of these telephones. This created a challenge for

designers: to develop integrated circuits, which consume minimal power.

1.1 Objectives

Much of the recent research in VLSI is the estimation of the power dissipation by
a device. The primary objective of the research described in this thesis is to explore the
requirements needed to develop a low cost educational analysis tool. The power
software program evaluates and analyzes the power dissipation concerns of CMOS

circuit designs prior to device fabrication.



A subsequent goal of the research is to determine the validity of computer
simulations when compared to other methods of analysis using sample test circuits.

1.2 Justification / Motivation

Researchers use a probabilistic measure of circuit switching activities as the
preferred methods of power analysis. This approach uses probabilities to describe all
possible logic signals, giving the desired pattern independence during simulations. The
problem faced using this method is finding the transition probabilities due to the large
scale of most designs.

A thorough literature search at the beginning of this project revealed that little
software was available to simulate power dissipation. This has changed over the past six
to eight months. Companies such as EPIC Design, Sente, and Mentor Graphics have
written commercial estimation and measurement software for power dissipation analysis.
These tools use probabilistic analysis methods that are ideal for large-scale designs and

for corporations that can afford their prices.

The most simplistic and overlooked method for power dissipation analysis and
simulation is pattern dependent evaluation. This method is the main focus of this
research. The switching activity of each node is calculated based on user supplied input
test vectors. This method is, generally, overlooked because of the dependency of the
inputs, however it should not be dismissed as a viable alternative for research purposes

and Small Scale to Large Scale Integration (SSI to LSI) CMOS circuit designs,,

This research considers other uses for power dissipation analysis, specifically for
viewing the dynamic power dissipated by a device for fault detection [27]. It is also ideal
for undergraduate and graduate studies, where students should be exposed to all
considerations in the design of integrated circuits. The power simulation program
discussed in this thesis will enable the student to appreciate the need for this type of
simulation tool, as power dissipation is a major area of concern in integrated circuit

design.



1.3 Overview

The following procedure is used to effectively determine the power dissipation in

an entire circuit or a single node in the circuit.

e Calculation of total node capacitances, including the parasitic and interconnect

capacitances, in the Circuit Under Test (CUT).

e Analysis and calculation of the voltage levels at each node of the CUT. The node
voltages depend on the propagation of the user supplied test vectors, throughout the
e Derivation of a mathematical model to estimate the power dissipation of each node

-

and the total circuit.

e Calculation of individual power dissipation components at each node, for each
voltage and time interval. The power dissipation components include the static,
dynamic and short-circuit power elements. For this preliminary research the dynamic
power is of primary interest. The short-circuit power contribution is of interest when
comparing the results to other methods of analysis. The static power is

inconsequential at this time due to its significantly smaller contribution.
e Calculation of the estimated and average power dissipation for the CUT.
e Format and storage of all final results in a Matlab formatted text file.

e Combine the Matlab data text file with a Matlab program source code file for a
graphical display of the results.

The thesis is divided into three main topic areas. Chapter 2 provides background
information about the subject. Chapters 3 and 4 provide the mathematical equations
necessary to complete the analysis and the methodology and structure of the software.
Chapter 5 demonstrates the software program and compares the results with existing
methods. Chapter 6 concludes the thesis and discusses future work to be considered.



2.0 Background

A review of fundamental principles and concepts is necessary prior to discussing
this research project. The understanding of power consumption or dissipation in
integrated circuits is the first and most important concept to be considered. Simply
stated, the total power dissipated in an IC device is the sum of the total static, dynamic

and short-circuit powers.

Existing simulation software and tools for the analysis of power dissipation is the
next item to be investigated. The method(s) of analysis, mathematical models, the
techniques of displaying results, and cost is reviewed as a means of comparison to the

proposed research project.

The University of Alberta provides numerous Computer Aided Design (CAD)
Software Tools such as Mentor Graphics, Cadence, and Spice. An examination of the
properties and methods of circuit extraction is essential to determine the most suitable

CAD tool for this project.

The test circuit(s) needed for the purpose of analysis is the final item to be
considered. The Circuits Under Test (CUTs) are designed and simulated for research
use. These circuits are vital for testing the proposed software program and comparing

their results with existing software.

2.1 Power Dissipation

The power dissipation of CMOS devices consists of three components and is

governed by the following equation:

P=P+P,+P

sc?

(2.1)

where P; is the static power, P, is the dynamic power and P.. is the short-circuit power.
A simple CMOS inverter, as shown in Figure 2.1, is typically used to define each of the

above power terms.



Figure 2.1: Example of a simple CMOS inverter.

The operation of the inverter is as follows: when the input voltage Vi, is a high logic
level (= Vpp) the PMOS transistor is off and the load capacitor discharges through the
NMOS transistor. When the input voltage is a low logic level (= 0) the NMOS transistor

is off and the capacitor charges to approximately Vpp, since the PMOS transistor is on.

2.1.1 Static Power

Leakage currents through non-active transistors and the current drawn from the
supply, due to the input voltage of the circuit, are the two causes of the static power, P;.

Static power can be described by
F =P, +F,. (2.2)

The term Py, originates from reverse biased leakage currents between diffusion
regions and the substrate. Figure 2.2 shows the parasitic diodes of a CMOS inverter,
which exist between the n-diffusion wells and the substrate, and the p-diffusion wells and

the n-well.



<
L3

,'l 1"! I
|

g oo z

P-substrate

Figure 2.2: Example of a CMOS inverter showing leakage currents.

Since the diodes are reversed biased, only their leakage current contributes to the

static power. The leakage current of the diode is given by
v
I, = I,(e""’ -1) , (2.3)

where I, is the reverse saturation current, g is the electronic charge, L602x107°C, Vis

the diode voltage, n is the emission coefficient of the diode, k is Boltzmann’s constant

138 x 1072 J/K, and T is the temperature in Kelvin.

The power dissipation can be calculated using the following equation:

Py=X L Voo, (2.4)
i=l
where n represents the number of devices. Note that the total current, I, is typically

very small, resulting in small power dissipations.

The term P;; is a result of current leaking through transistors that are normally
off. When gate biasing is low enough, such that the channel is in weak inversion, current

leakage occurs. If the source and drain are too close together then control sharing of the



potential with the gate takes place. If this effect is too strong, a drain voltage
dependency of the subthreshold characteristic results. The drain current in this
subthreshold region is defined as

Vig-V,

W
Im,,,,=w‘f-l-10 s, (2-5)

o

where W4 is the effective channel width, L, is the drain current, W, is the gate width and
S is the subthreshold swing parameter. The terms I, and W, are used to defme Vr and
the term S is the voltage swing of the gate needed to decrease the drain current by one
decade (1, 19]:

!m_
I=I,-(1-e") (2.6)
G

ax

Equation 2.6 describes the relationship between I, and Vps. The terms C; and C,; in
Equation 2.7 are the depletion layer capacitance of the source and drain junctions, and

the oxide capacitance respectively.

The calculation of P.; requires the worst case leakage current as determined by

the worst case threshold voltage

Vi =V, -AV;, 2.8)

where AVt is the change in threshold voltage due to variations and fluctuations in the
fabrication process. The power dissipation is then represented by the following

equation:

P,=1Ip  -Vpp, (2.9)

where Ipsn., is the mean current value for both the PMOS and NMOS transistors in the

inverter.



The total static power dissipation of Equation 2.2 can be rewritten as

F, =(zldi+lw_)'voo- (2.10)

i=l

This equation may vary depending on the device technology. In some cases the P;; term
is ignored if the leakage current tends to be excessively small, 1 to 10 femtoamps for
example. Other cases may ignore the P, term if the drain and source of the devices have
a significantly large separation [5,11,12,13,15,19].

2.1.2 Dynamic Power

The dynamic power dissipation, P, from Equation 2.1, is a result of the charging
and discharging of the total load capacitance, C; in Figure 2.4. The short-circuit power
dissipation P,. from Equation 2.1, also occurs during this charging and discharging of the
load capacitor and is discussed separately in Section 2.1.3.

The transfer characteristic and noise margins of the inverter are shown in Figure
2.3 and are used to aid in the discussion of dynamic power consumption. The non-
shaded area of the transfer curve Figure 2.3(a) and the shaded area of the noise margin
chart Figure 2.3(b) correspond to the window that dynamic power dissipation may exist.

Two transition states result in the occurrence of the power dissipation by the load
capacitance. The first condition is following a change of the input voltage from a level
above Vipymin to below Vpm:. The second case is during, or following, an input voltage

change from below Vi to above Vipmin.



7
Logical High
Output Range Logical High
] Input Range
Undefined
Region
] Logical Low
Logical Low Input Range
Output Range
—

Figure 2.3: (a) Transfer function and (b) Noise Margin Chart of a CMOS inverter.



10

To derive the dynamic power of the output load capacitance, a step input to the
inverter is assumed. Under ideal operating conditions, this assumption ensures that
neither the NMOS or PMOS transistors are on concurrently. The circuits in Figure 2.4

depict changes to the current of the load capacitor C;, following the step input change.

Voo _ Voo
p-device is on — p-device is off
n-device is off 1 n-device is on

i (t) vin(t) =0 0 o Vin(t) = VDD
p v Step Input
— 5 1Y
Step Input T CL

(a) ()

Figure 2.4: CMOS inverter (a) with a logic 1 to O step, and (b) with a logic O to 1 step.
The effective power with a periodic input waveform is defined by
-=[% d 2.11)
=T ozo(t)v,,(t) t, 2.

where the term I/T is the switching frequency and both the current and voltage are
functions of time. For analysis purposes, the switching frequency has a 50% duty cycle.
This assumption generally causes the worst case or largest dynamic power dissipation in

a CMOS circuit.



11

The current i (z) of the inverter load capacitor C, is given by

dv,
(2.12)

i, =C,—*.

The term i, can be positive or negative depending on the current being analyzed, the n-

device current ix(t), or the p-device current i(z).

The fundamental equation of the dynamic power dissipation is given as
Py == [ i) vy det o] i (1) v, de 2.13
« ="l i(t)-v, +T mzp(t)-va , (2.13)

where the first term is negative due to C, discharging to ground, Figure 2.4(b), and the
second term is positive due to C, charging to the supply voltage, Figure 2.4(a).

Substitute i, for the currents in equation 2.13 results in

1 ¢rr2 dv, 1 (7 av,
Pt Bevadf o s i

The cancellation of the dt term causes a change in the limits of integration from a time

base to a voltage base. The new limits of integration become zero and Vpp resulting in

p %(Lv v.dv, —jjw vodvo). (2.15)

Performing the integrations above results in the final formula for the dynamic power
dissipation:

p=SYw o, po(c,Vy)f. (2.16)



2.13 Short-circuit Power

The short-circuit power, P.., occurs at the same time as the dynamic power. This
power is independent of load capacitance and is the direct result of both NMOS and
PMOS transistors being on simultaneously. The shaded region of the inverter transfer
characteristic curve, Figure 2.3(a), and the non-shaded area of the noise margin chart,

Figure 2.3(b), visually show the period of time when this power dissipation occurs.

Symmetry of the inverter input is assumed, simplifying the analysis of the short-
circuit power dissipation. The time variable, ¢, replaces the rise time and fall time since

t, and #; are equal. The short-circuit power is then defined as
I)u' = Immn -VDD . (2'16)

Figure 2.5 [2,3,26] is a simple model used to depict the short-circuit current and is useful

for the explanation of the mean current

1 2 1 t3
I, =2-[?j” 1(t)ds +?L I(t)dr]. @2.17)

Since symmetry is assumed and I(z) is dependent on the size of the transistors, the
following relationships are used: B, = B, = B and Vg = -Vy, = Vg, where B is the

transistor gain factor, and V7 is the device threshold voltage.



Figure 2.5: Model for short-circuit current and Input switching waveform.

The equation for Inean simplifies to become

I, = 2%[[ * I(t)dt]. (2.18)

1

With the NMOS transistor operating in saturation, the term /(z), in Equation 2.19
is defined by

1= L;’.(V.m(z) AR (2.19)

When the input voltage and the times ¢/ and 72 are defined as

t
V,.,.(t)=-V°—”-t t,=L-trf t,=—=1, (2.20)
1 D 2

the integral component Of Imean can be solved and reduced when substituting these
equations and Equation 2.19 into Equation 2.18.



14

The short-circuit power dissipation can be rewritten when Iln.s. is replaced by its
equivalent. Therefore P,. becomes

B! 3
P, =-1—2--%-(VDD -2-v;), (2.20)

where T is the period of the input signal.

It is important to note that this derivation is under no-load conditions and the
short-circuit current depends on f, the input rise time and the fall time. Changes in the
load capacitance also effect the significance of the short-circuit power. Thus, the
dynamic power becomes the dominant contributor in the total power consumption ofa
CMOS device. The short-circuit dissipation will be a fraction (< 20%) of the total
power with equal rise and fall times of the input and output [1,2,3,26].

In general terms, the power dissipation caused by a short-circuit can be stated as

1,4,

PIL' "'ET'(VDD'IMM)' (2’21)

where T is the period of the input signal.

2.14 Total Power Dissipation

The total power dissipation is the sum of the static power, Equation 2.10, the
dynamic power, Equation 2.15, and the short-circuit power, Equation 2.21. Substituting

these equations into Equation 2.1, the total power can be written as

n . 2
P=[(2[di +IDS._. )'VDD:|+[CL TVDD jl+[tf2:*;r ‘(VDD -[mm)]’ (2.22)

i=l

where T is the period of the input switching signal.

In large, complex circuits it is more practical to approximate the total power
dissipation. The dynamic power of Equation 2.16 is generally the dominant cause of
power dissipation in CMOS circuits and can be modified from its original form [26].



15

The new equation for the dynamic power becomes

max rransitions [ max nodes

B, = Y ( Y iAL:] (2.23)
- ir=0 n=l lon

The term C,, which represents the total node capacitance, replaces C, in the original

equation and AV, replaces Vpp as the total change in node voltage. The total period T is

replaced by the time t,.,, since the input signal may not be periodic. Thus the power

dissipated at a node is calculated during each transition of the gate voltage.

2.2 Existing Power Analysis Software

Power dissipation analysis methods have been researched extensively during the
last decade. The availability of commercial power analysis tools has, only recently,
started to increase. These tools enable designers to generate device designs and test
them for effects of power consumption before fabrication. PowerMill, Design Power,
Lsim Power Analyst, PowerCalc, and XPOWER are some power analysis tools available
[20,21,22].

2.2.1 Description of Existing Software

Each software tool performs similar functions, however any may be tailored for
different applications. Some tools have advantages that make them better than the rest
and disadvantages which makes them secondary to the others.

PowerMill, by Epic, can simulate design blocks and complete chips. The
instantaneous, average, RMS, and power rail currents of the design are easily and
accurately analyzed. As well, the use of simplified, table driven device models and
improved analysis models increase the speed of the simulation. The addition of hazard
and glitch contributions, the ability to identify “hot spots”, and the ability to read netlist,
vector and technology files, improve the selling points of this software [23,24].



16

Synopsis’ Design Power, uses simulation based analysis for power estimation. It
is a single, complete integrated environment for analysis in many design stages.
Sequential designs, multiple and gated clock designs, and hierarchical designs are well
suited for this software. Internal cell and leakage power analysis is also supported for
this design software. The ability to link directly to Synopsis for simulation data is yet
another plus [20].

Lsim Power Analyst, by Mentor Graphics, allows for large designs in a flat or
top-down hierarchy. It calculates and analyzes ground bounce, and electro-migration
powers, in addition to total power consumption. Transistor level analysis is an additional

advantage of this program [20].

PowerCalc, by COMPASS Design Automation, computes the average power
dissipated by wiring and device instances. The estimation of the power dissipated by
current glitch transitions is also calculated [21]. Standard cell and libraries are included
to improve the speed and accuracy of the analysis.

Finally, XPOWER, a research designed software, analyzes and graphs dynamic
power consumption. It is used primarily in research applications, for the validation of
asynchronous digital circuit [22]. Section 2.2.2 discusses this software in more detail.

2.2.2 Thesis Software Program vs. Existing Software.

Probabilistic, statistical, or pattern independent analysis of circuit switching
activities, is the preferred analysis method used by researchers and designers. Many of
the previously mentioned software tools use this method of analysis for power
estimation. One of the problems using this analysis method is finding transition
probabilities in large scaled designs.

Pattern-dependant evaluation is the most simplistic and overlooked method of
power dissipation analysis and simulation. The switching activity of each node is



17

calculated based on user supplied input test vectors. It is an ideal approach for SSI,
MSI, and LSI CMOS designs.

XPOWER is the most similar of the existing software programs investigated.
When compared to this thesis research only the dynamic power dissipation analysis is
examined. The software is simplistic and provides a general estimation of the total
consumption of power by a device. The program differs from this research in that
generic libraries are used in conjunction with a Spice only format, and the short-circuit

power contribution is examined.

The power program calculates the total node energy consumed at any given time,
the total power dissipated and the average power dissipated. The program uses Cadence
model libraries, but is capable of using generic cell libraries. The netlist is in Spice
format, as are the majority of analysis tools, however the netlist can be generated from

schematic or device layout design.

PowerMill is the most sophisticated of the other software tools. The block
diagram, in figure 2.6 [24], describes the basic components of PowerMill. Complexity

and price are the drawbacks of using this software in University applications.

The research outlined and described in this thesis provides the necessary power
analysis requirements without the exorbitant cost. It is not as sophisticated as
PowerMill, refer to Figure 2.7, however the analysis is sufficient to obtain initial power

dissipation results.



[ Netlist File | [ Vectors | [ Technology File |
L | _

L 4

\ 2
{ Power Management |

{1 Power Diagnostics |

>

Report Average
and Peak Powers

— b

Current and
Voltage waveforms

o

Power per Block |

—»{ Hot node Detection

—»{ Power per Branch |

—»{ DC Path Analysis

.y

Leakage reports |

»{  Glitch checks

Ny

Stand-by Power |

—»{ Power Histogram |

|
|
|
» Leakage Checks |
_»{  Static Checks |

Figure 2.6: Procedural block diagram of PowerMill software program.

User sapplied Spice

Traasistor Model

Formatted ll‘(etlist File

Library Files
J

o>~ %

Append Matladb

Program Source [

Matlab Formatted
Final Resuits Data File

Code

Ruoa Mattab program
to verify results

Calculate Energy Consumed at each node for

all voltage transitions il’arui(ic Capacitances)

Calcuiate Energy Consamed at each node for all
voltage transitions ( Interconnect Capacitances)

Calculate the Average Energy Coasumed at
each node for the entire sample period

(Parasitic C;gacilzmces)

Calcuiate the Average Energy Consumed at
cach node for the entire sample period

(Intecconnect Capacitances) |

Calculate the Average Dynamic Power
Dissipation at each node for the

entire samElc period |

Calculate the Average Short Circuit and
Average Dynamic Power Dissipatioas for

the eatire sample period

Calculate the Total Average Circuit Power

Dissipation for the gnire sample period

Create Matlab data file |

\'ﬁ

Figure 2.7: Procedural block diagram of thesis software program.

18



23 CAD Software Components

Computer Aided Design (CAD) tools are essential in any digital circuit design.

Software programs such as Spice, Cadence, Mentor graphics, and Magic are all

examples of such tools. Each CAD package has unique and possibly similar traits and

capabilities. For example, Cadence, Mentor Graphics and Spice all have schematic entry

and simulation abilities, in various degrees, whereas Magic does not. Device layout of a

design can be implemented in Magic and Cadence, but not in Spice and Mentor

Graphics. Since Cadence encompasses all necessary capabilities, and it is supported at

the University of Alberta, it was selected as the primary design tool for this research.

A general procedure needed to create a functional circuit, once a design has been

formulated and conceptualized, is as follows:

L.

2.

8.

9.

Schematic entry into a CAD tool.

Verification of CAD design rules.

Simulation of design, ensuring correct circuit operation.
Repeat steps 1—3 for any corrections, then proceed to Step 5.
Device layout of the design. (i.e. transistor level)

Simulation of the design, ensuring correct circuit operation.

Simulation of design to determine layout, power consumption or

timing problems.
Repeat steps 5—7 for any corrections, then proceed to Step 9.

Submit design for fabrication.

In some cases, steps 1—4 are omitted and the design is entered entirely in device layout

format. This is typical for small designs to simplify the amount of work required.



20

Once the design has been entered as in steps 1 and/or 5, simulation of the circuit
is required to ensure correct circuit operation. This is accomplished by supplying
voltages to the inputs of the circuit, also known as providing test vector inputs. Once
verification is complete, a netlist representation of the circuit, voltage supplies included,

can be exported. This is one of the files necessary for the research program.

The remaining files needed for the research program are the library or technology
files. There are files for NMOS, PMOS, and BIJT transistor model technologies, and are
supplied to the University of Alberta by the Canadian Microelectronics Corporation. It
should be noted that the technology files can be used with netlists generated by other,
CAD tools, with some minor modifications. Sample technology library files, used for
this program, are included in Appendix A.

24 Circuit Under Test (CUT)

Test cases are a necessity to help develop and test the functionality of this thesis
software. Digital logic gate designs and fully functional circuits are used as the test cases
to verify the program results. These results are then compared with other methods of

analysis to determine the software accuracy.

The six most common logic gates, including AND, NAND, OR, NOR, XOR, and
XNOR were used in CMOS configurations. General library formats for the various
gates include four to ten NMOS and PMOS transistors. The simplest designs are used

to assist in the various stages of software development.

An important caution: all test circuits must have gate layouts as the highest level
of the hierarchy. This is essential for the software to operate correctly, and allows
various transistor representations of the gates to be accounted and tested for. Figure 2.8
represents two forms of a CMOS NAND gate [25]. A standard NAND gate is shown in
Figure 2.8(a) and a double-pass transistor NAND gate is shown in Figure 2.8(b). If the
two circuits are not represented in gate format, within the netlist, the software will not

recognize their configuration differences.



21

DD

Output Voo
p—0
Input A tﬁ___,\j—‘ utput
——e—Input B [ngut -0—[>0—r_\—

(a) ®)

Figure 2.8: (a) A simple CMOS NAND gate, and (b) A double-pass CMOS NAND gate.

Two additional, fully functional circuits were also exhaustively tested to verify
the correct operation of the software. The first was a single bit adder and the second
was a 4-2 compressor circuit, Figure 2.9 [25]. The netlist for the 4-2 compressor circuit
is provided in Appendix D3.

The adder and compressor were chosen as the primary test circuits since they use
various types of gate configurations. Therefore standard and user-defined gate libraries

can be used to describe the circuit netlist.



<Juip

wag <]}
zlox)
um u ¢ion
Nﬁ N._Oxu Nﬂ !
£1eny <}F——0
pm
1u)
¢ pul cion
rALS 4£ anuAmVQ
rAuANva
ALY
Zpuy
moy <] —ki>q
—e—<ko>a
Zpu

pn

Figure 2.9: A 4—2 Compressor Circuit.



3.0 Models and Analysis Techniques

The issue of pattern dependency vs. probabilistic analysis methods, in conjunction
with the mathematical models available and analysis methods used, must be addressed
prior to discussing the software generated for this thesis.

3.1 Mathematical Analysis Methods and Models

Research into the theory of low power CMOS design revolves around modeling
power consumption. The common approach to this analysis is to estimate the power
consumption via probabilistic methods as opposed to pattern dependent analysis. The
comparisons of these methods and the models used for this research are presented in
further detail.

3.1.1 Pattern Dependency Vs Probabilistic Analysis Methods

Probability or statistical methods compute the fraction of cycles in which an input
signal, or test vector, makes a transition. The transition can be from logic 0 to logic 1,
or visa-versa, [18]. This method is considered to be weakly pattern dependent and is
ideal for large designs and combinational circuit designs. The difficulty with this method
is computing the transition probabilities, especially with feedback circuit elements
(latches, for example).

The dynamic power definition of Equation 2.16 is rewritten as Equation 3.1 to

account for the probability analysis method.

2
=% Cror Vop_

L

P, (3.1)
The term Cror replaces C; in the original equation and represents the total capacitance
driven by the gate outputs in the circuit. The term « represents the switching
probability, or activity ratio, and can be defined as the estimated percent activity of the

node, functioning at the maximum clock frequency, fox = 1/,.



24

In contrast to the weakly pattern dependent method of analysis, this thesis
focuses on strongly pattern dependent estimation of power dissipation. Strong pattern
dependency provides a more detailed description of power dissipation at each node in the
circuit design. It is ideal for small and medium designs where the input patterns are
known. As well it can analyze node power consumed at specific intervals of time, for
certain input test vectors. Conversely, the simplistic method may require an exhaustive
number of test vectors to verify all possible input combinations. This is a moot point

when detailed studies are required for research.

3.1.2 Mathematical Models

This thesis research depends on various mathematical equations required for
circuit analysis. Many of these models are standard in determining parasitic and
interconnect capacitances, node voltages, and the various contributions to power

dissipation. Each of these is discussed in further detail.

3.1.2.1 Capacitance Models

The total gate capacitance C, of a MOSFET is defined as the sum of the intrinsic

and extrinsic gate capacitances and is represented by

C, = Crpiose * Corominse (3.2)
The intrinsic capacitance is defined as
frisic Length-Width-C,,, (3.3)

where the length and width are defined by the technology or by the user. The oxide
capacitance, C,,, is defined by the properties of silicon dioxide, and is represented by

€,°€ .
c,,,=—°—ti"-, (3.4)



where ¢, is the oxide thickness and is supplied by the technology library files, & is the
electrical permittivity of free space (vacuum) with a constant of 8.854 x 10™"* F/cm, and

Esio: 1s the relative permittivity of silicon dioxide with a constant of 3.9.
The extrinsic capacitance is defined as

C

Sexi

___=(width-c,,)+(Width-C,, ) +(2- Length-C,,,), (3.5)

where Cj,, is the gate-bulk overlap capacitance per unit channel length, C,4, is the gate-
drain overlap capacitance per unit channel width, and C;,, is the gate-source overlap

capacitance per unit channel width. The technology library files supply these parameters.

The drain or source capacitance is represented by

C,orC,=C,,,+C (3.6)

Perimeter *

The first parameter, Ca.s, is the area contribution to the total capacitance and the other

parameter, Cr.rimerer iS the perimeter contribution to the total capacitance.

The capacitance from the area contribution is given by

viY™¥
C.. = Area-CJ - —_ , 3.7
area rea-CJ (1+PB) 3.7

where the Area term is defined by AD or AS (source or drain area) from the netlist file.
The term VJ is the magnitude of the applied reverse bias voltage. The remaining terms
are provided by the model library files where, CJ is defined as the zero-bias capacitance
per junction area, PB is defined as the built-in bulk p-n potential, and M/J is the bulk p-n
grading coefficient of the junction bottom.



The perimeter contribution is defined as

-MISW
v ) , 3.8)

Coerimeter = Perimeter-CISW-(l-i- PESW

where the Perimeter term is defined by PD or PS (source or drain perimeter) from the
netlist file. The remaining terms are provided by the model library files where, CJSW is
defined as the zero-bias-junction capacitance per junction periphery, PBSW is defined as
the built-in bulk p-n potential, and MJSW is defined as the bulk p-n grading coefficient of

the junction sidewall.

3.1.2.2 Node Voltage Models

CMOS gates use various configurations of NMOS and PMOS transistors. The
test gates and circuits used in this thesis are connected in a standard configuration as

shown in Figure 3.1(a).

A PMOS transistor passes a strong logic ‘1’ when Vi, < Vi, + Vpp and the source
(drain) node is connected to the supply. In this case, the load capacitor will charge to
the supply voltage Vpp. The same transistor passes a weak logic ‘0° when the source is
connected to ground as shown in Figure 3.1(b). In this case, the capacitor voltage will

discharge to approximately [V |, which is not desirable.

In contrast, a NMOS transistor passes a strong logic ‘0’ when Vi > Vy, and the
source (drain) node is connected to ground. In this case, the load capacitance will
discharge to ground or zero volts. The same transistor will pass a weak logic ‘1’ when

the source is connected to the supply. Thus the capacitor will charge to Vpp - Vi.



Figure 3.1: (a) Standard CMOS Configuration, and (b) Non-Standard CMOS Configuration.

A second consideration is the definition of the threshold voltage, V.. The
resulting V; depends on the configuration of the MOSFETSs as discussed above and how

the substrate is connected. The principal equation for V., is defined as

V, =V, +1- (/20 *Val -2 % )- (3.9)

where V,, is the threshold voltage with Vg = 0. The substrate bias voltage, Vi, is the
difference between the source and the substrate voltages. The term ¢ represents the

bulk potential, which describes the doping of the substrate. Equation 3.10 defines ¢ as

k-T N
¢, =——In| —2 |, 3.1
b q [N] (3.10)

where k is Boltzmann’s constant, T is temperature in Kelvin, g is the electronic charge,
N, is the carrier density, and N; is the carrier concentration. The constant gamma, ¥, is
described as the substrate bias effect and is expressed as

Y=§'x"\42'4‘5,,-’N4, (3.11)

ox

where 1., is the oxide thickness, &, is the dielectric constant of silicon dioxide and & is

the dielectric constant of the silicon substrate.



28

The standard configuration connects the source and substrate of the PMOS
transistor(s) to the most positive potential. The NMOS transistor(s) connect the source
and substrate to ground potential. The substrate bias voltage, V., is approximately zero
for all cases with these characteristics. Thus the second term in Equation 3.9 can be

omitted resulting in the following equation:

V.=V,

t to *

(3.12)

This simplified threshold voltage is used for the remainder of the analysis.

The effects of the threshold voltage on the two configurations are explamed
using the examples in Figure 3.1. The voltage at the load capacitor in Figures 3.1(a) will
be Vpp or ground respectively when a strong logic ‘1’ or logic ‘0’ is passed. Conversely,
when a weak logic ‘1’ or logic ‘0’ is passed the voltage at the load capacitor in Figures
3.1(b) will be Vpp — V,, or V, respectively.

3.1.2.3 Power Dissipation Models

The total power consumption by a circuit is the sum of the static, dynamic, and
short-circuit dissipations as described by Equation 2.1. The calculations used for this
thesis omit the effects of the static dissipations, since they tend to be significantly less
than the dynamic and short-circuit powers [2,3,5,26]. The short-circuit power is
typically less than 20% of the total power dissipated [2,3,5,26], and is considered only
for comparisons with existing software. Therefore, Equation 2.24 is used as a basis for

the remainder of the power dissipation analysis.

The dynamic energy consumption is analyzed before the calculations of the
average power dissipated at each node. The energy is divided into individual elements as
shown in Equation 3.13, which defines the contributions of the dynamic energy at any

given node, for any given transition.

Ed)"l-lot = Edyn_imercomwa + Edyn_panm’tic (3-13)



29

Euyn_imercomec: TEpTESents the energy consumption due to interconnect capacitances and
Edyn_parssitic TEpresents the energy consumption due to MOSFET parasitic capacitances.
Each component is calculated using the same formula,

Epn=Cy-(AVY, (3.14)

where Cy is either the parasitic or interconnect capacitance(s). The AV term is
determined by the change of voltage from the previous time internal to the current
interval, as defined by equation 3.15.

AV =V{Current Time Interval }—V {Last Time Inverval } (3.15)

The method of calculating the energy contribution from the parasitic capacitance

is as follows:
1. Set all initial energy contributions to zero.
2. Determine if the result for AV is for an input or internal node.

3. If the result is for an internal node, the energy consumption determined by
Equation 3.14 is divided by 2, (the transistor consumes ‘2 of the energy
during switching). If the result is for an input node, the consumed energy is
the entire energy calculated by Equation 3.14, (the capacitor consumes all of

the energy).

The method of calculating the energy contribution from the interconnect

capacitances is as follows:
1. Set all initial energy contributions to zero.
2. Find the two nodes for the interconnect capacitance under test.
3. Determine the result for AV on one node of the capacitor, NodeA.
4. If the result is negative, then multiply by negative 1.

5. Determine the result for AV on the other node of the capacitor, NodeB.



6. If the result is negative, then multiply by negative 1.
7. Determine the final AV by subtracting NodeB voltage from NodeA voltage.

8. a) If the result is positive: calculate the energy contribution using Equation
3.14 and add the result to existing energies for NodeB.
b) If the result is negative: Multiply AV by negative one, then calculate the
energy contribution using Equation 3.14 and add the result to existing

energies for NodeA.

The dynamic energy components at each node are totaled for all time intervals.
The average dynamic energy is then calculated by dividing the final dynamic energy
result by the total number of switching transitions, either logic ‘1’ to logic ‘0’ or visa-
versa as shown by Equation 3.16.

E gyn

E, = - — (3.16)
Total Number of Single Transitions

The same approach is applied when determining the average interconnect contribution.

The average power dissipation of a node from the parasitic capacitances is
calculated using Equation 3.17. This average power is dissipated during the entire test
period 7.

< 3.17)

Equation 3.17 is also used to calculate the average power dissipation at a node due to

the contribution of the interconnect capacitance.



31

The sum of the parasitic and interconnect node dissipations during the test period
results in the total dynamic power of a node. Therefore, the total dynamic power
consumed by the circuit is determined by

Y. P..
P = alf nodes . 3.18
@~ " Number of Nodes (3.18)
The short-circuit dissipation is determined by
average time
Py - Cirewss = Vorn Lo, 3.19
Short =€ (switching time) DD~ Peak (319

where Ip.q is the average of the largest peak currents for each node. The switching time

is the period at which the inputs change, and the average time is defined by

i 1, +1,
average time = Bk (3.20)

where ¢, is the average of all input rise times and # is the average of all input fall times.

The total average power dissipation of the circuit is then defined as the sum of
the average dynamic power and the average short-circuit power dissipations during the

entire test pattern period.

3.2 Circuit Analysis Techniques and Discussion

A flagging approach was used to examine each MOSFET drain, gate and source

nodes of the circuit:



32

= A zero flag represents an unchecked node.
* A one flag represents a visited node that has yet to be completely analyzed.

* A mwo flag represents a node that is connected directly to a voltage supply

mput.

* A three flag represents a visited node that results in a non-changing voltage

level.

The analysis begins with a loop counter set for a maximum of three. This is
designed so that all node elements of the circuit will be evaluated and remain at the

steady-state value.

For each pass through the loop all transistors are examined. Figure 3.2 depicts
the overall loop structure. The type of transistor (NMOS or PMOS) and the state of the
gate flag and voltage will determine the remainder of the analysis for the circuit with

respect to the transistor under test.

C Start Analysis Loop )

Yy
Examine All Transistors

Has Loop Counte
Reached its Maximum
Vaiue?

Yes

v

@nd Analysis Looﬂ

Figure 3.2: Block diagram of overall analysis loop.




33

As previously stated, three criteria are required for the evaluation of the
transistor state of operation. The first is the state of the gate flag (see Figure 3.3).
Although four paths exist only the one and two flag states are checked.

The second criterion is that the transistor gate voltage will match one of two
possible ranges. The first voltage range is greater than or equal to zero and less than half
the supply voltage (0<V,<Vpp/2), where Vpp/2 is the typical switching point of the input
to the transistor. The other range is greater than or equal to half of the supply voltage
and less than or equal to the supply (Vpp/2<V,<Vpp).

The third criterion is the model type of the transistor under test. PMOS or
NMOS are the two possibilities in CMOS circuits. The transistor type along with the
voltage level will determine the correct analysis path for the transistor under test (see
Figure 3.3).

Once the path has been established the remainder of the circuit analysis can be
completed with respect to the transistor under test. Included in the chosen path are the

settings of the drain, gate and source flags.

Two of the four possible paths will cause the remainder of the circuit to be
analyzed, with respect to the transistor under test. These are paths A and C. The two
remaining paths will test the transistor only by changing the appropriate drain and source
voltages, and the drain, gate, and source flags depending on the state of the transistor.

If path A or C is chosen, one of the drain or source node voltages will change
and the drain, gate, and source flags will change as necessary. Once these changes have
been completed, a routine is called. The parameters passed to the routine include the
current transistor under test, the current node under test, the current flag value for the
node under test, and the current voltage level of the node under test. This routine is

discussed further in the next section.



Path A

Examine Transistors [—»f gflag =2

Vg < Vdd/2 & model = pmos

Vg >= Vdd/2 & model = nmos

Path B

»1 gflag = 2 -[: Vg < Vdd/2 & model = nmos

Vg >= Vdd/2 & model = pmos

Path C
| gflag = 1

Vg < Vdd/2 & model = pmos

Vg >= Vdd/2 & model = nmos

Path D
»] gflag = 1 —|: Vg < Vdd/2 & model = nmos

T T T T

Vg >= Vdd/2 & model = pmos

Figure 3.3: Block diagram of internal node analysis from “time_node_voltage” subroutine.

The remainder of the circuit under test is examined when the subroutine is called.
The parameters passed are used to compare current settings of transistor node flags and
voitages, and allow for corrections. Under certain circumstances, the voltage of the
current transistor under test and its corresponding node under test will change to reflect

current circuit parameters.



4.0 Subroutine Description and Software Application

The power software program was written in “C” to take advantage of the UNIX
operating system, and existing software that is also written in “C”. Cadence and other
CAD tools operate under a UNIX platform; therefore, this program was no exception.
It was designed to compile and execute on platforms including, SUN-OS, Solaris, and
HP-UX.

The software structure, methods, and procedures for the power analysis program
are discussed in the remainder of this section. Appendix C.1 details a block flow
representation of the program. Some of the modules require the use of one or two

header files. Appendices B.1 and B.2 list these header file descriptions.

4.1 “power” Main Program Routine

power calculates node interconnect and parasitic capacitances and power
dissipations of logic circuits in a design stage. A netlist file from Cadence or another
design tool is required in the working directory in which the program is executed. The
technology files, supplied by the Canadian Microelectronics Corporation, accompany the
netlist file. These include the NMOS, PMOS, and NPN/PNP transistor libraries. The

program is executed by entering the following instruction at the command line:
power [netlist file name] [output file name]

The main program routine “power” has three specific functions as outlined in
Figure 4.1. A flowchart for the program scheme is provided in Appendix C.1.



“power”
Main Program Routine.

T
v v v

Check for valid Check for valid input and Call and execute
command line. outpaut files. program subroutines.

Figure 4.1: Block diagram of main program “power’”’ routine.

The first function is to validate the command line entered by the user. There
should be three arguments with the first being the program name. The second argument
is the input netlist file name followed by the third argument, the output file name. If
there are not exactly three variables, a prompt will be displayed showing the correct
usage of the program. If the correct number of entries exist, the input and the output
files are tested for validity.

The second function of the main routine is to check the integrity of the input and
output file names. If the input file does not exist or does not contain correct data an
error message is displayed. This message states that an invalid or empty netlist file is
present and prompts the user to check the file. If the output file specified by the user
currently exists, an error message is displayed, stating that the output file exists. A
prompt tells the user to delete, rename, or specify a new file name. If any of these
situations occurs, the program will terminate and the user must re-enter the command
line. If the two files are valid, the input file is opened for reading and the output file is
opened for writing.

The third and final operation of the main routine is to call the rest of the program
subroutines (see Figure 4.2). These will be referred to as level-one subroutines. When
all calls have been successfully executed, the input and output files are closed and the

program ends.



Level One
Subroutines.
Call Call Call Cali Call Call
*read_models' *read_netlist” *cap_calcs’ *combine_subects® *free_mem* ‘time_node_voltage"
Subroatine Subroutine Subroutine Subroutine Subroutine Subroutine

Figure 4.2: Level-one program subroutines.

4.2 Level-one Subroutines and Functions

This section discusses all level-one subroutine and function calls from the main

program routine. The level-one subroutine flowcharts are provided in Appendix C.2.

4.2.1 “read_models’’ Subroutine

The “read_models” subroutine has three specific objectives as detailed in Figure
4.3. Three level-two subroutines or functions are required to meet each of the objectives

of this subroutine.

"read_models”
Level One Subroutine.

T
v v v

Check .vahdxty. of model Enter model library data. Conyert mode! name data
library files. . N field to lower case.
wes . Use "read_model_data . .
Use “file_check Use "lower_case

Level Two Function. Level Two Subroutine. Level Two Subroutine.

Figure 4.3: Block diagram of “read_models” subroutine.

The first priority of this subroutine is to check the integrity of the model library
files, NMOSLIB and PMOSLIB. This is accomplished by calling the “file_check™ level-

two function. If either of the library files is non-existent or not in the current working



38

directory, an error message is displayed stating that the model library file is invalid. If
either of the library files exist without any data, an error message will also be displayed
stating the above error message. The program will terminate following the error

message and the user must correct the fault before re-entering the command line.

The second goal is to enter the model data required for analysis calculations,
once the validity of the library files is accepted. This is accomplished by calling the
“read_model_data” level 2 subroutine. The first set of data is entered from the NMOS
library file, followed by the PMOS library data. The transistor data is not entered at this
stage of the program design, but will be considered for later revisions. The data entered

is converted from string format to double format.

The final goal of this sub-program file is to convert the name field from upper
case ASCII to lower case ASCII. This is accomplished by calling the “lower_case”
level-two subroutine. Comparisons with the netlist data in a later part of the program, is
the reason for this conversion. Control is returned to the main program routine, once the

subroutine has successfully completed its tasks.

4.2.2 “read_netlist”’ Subroutine

The primary objective of the “read_netlist” subroutine is detailed in Figure 4.4.
This subroutine reads and sorts the data from the user-supplied circuit netlist file, into
linked lists. The specific information contained in the data file includes: sub-circuits,
capacitances, resistances, MOSFET and BJT transistors, and voltage supplies. Each
type has a linked list and the sub-circuit list is comprised of separate linked lists for the
various components (see Appendix B.1).



39

"read_netlist”
Level One Subroutine.
Read, store and sort data from the
user supplied netlist file.

Use “strtonum” Level Three
Function, if necessary.

Figure 4.4: Block diagram of “read_netlist” subroutine.

Numerous tests are used to determine which list a particular information line
belongs in. The first test checks for an end of file marker. If it is present the
“read_netlist” subroutine ends and the program continues from whence this subroutine

was called. If it is not at the end of file, the tests continue.

The next test determines if the first character of data is a period (.). If it is not,
the data is assumed to be one of the remaining components, and is entered into the
correct list. If the first character is a period, a second test is performed, to check for the
form “.subckrt”. Ifit is not, the line of data is purged and the routine continues.

If the data representation is a valid sub-circuit, the data is entered as above if it a
normal component and is stored in linked lists under the sub-circuit linked list. This
continues until another period is encountered, which defines the end of the sub-circuit.

This process is continued until an end of file is encountered.

In some instances, data conversion from ASCII string format to double numeric
form may be necessary. This is accomplished by the “strtonum” level-three function.
Control returns to the main program, once all of the data is entered.



423 “cap_t ’ Subroutine

The “cap_calcs” subroutine is called from the main program routine. Its primary
purpose, as shown in Figure 4.5, is to call two level-two subroutines, “inter_cap_sort”
and “para_cap_calc”. These subroutines organize and sort the interconnect capacitances

and calculate parasitic capacitances.

"cap_calcs”
Level One Subroutine.

)
v v

Call to "inter_cap_sort” Call to "para_cap_caic”
Level Two Subroatine. Level Two Subroutine.

Figure 4.5: Block diagram of *“‘cap_calcs” subroutine.

Control is returned to the main program upon completion of the second subroutine call.

424 ‘“combine_subccts’’ Subroutine

The “combine_subccets” subroutine is called from the main program routine. Its
purpose, as shown in Figure 4.6, is to call a series of subroutines that create a new series
of linked lists. The new linked list structures store the data of the final circuit
representation. The structures are defined in the combine.h header file, provided in
Appendix B.2



"combine_subccts”
Level Oae Subroutine.

T

41

v

v

v

v

v

Call

“combine_cap”
Level Two
Subroutine.

Call

*combine_que”
Level Two
Subroutine.

Call “cap_sort"
Level Two
Subroutine.

Call "cap_so

Subroutine
(2nd Call)

Level Two

n*

Call "node_cap
Level Two
Sabroutine.

A 4

Yy

y

\ 4

Call
"combine_mos”
Level Two
Subroutine.

Call
“combine_res”
Level Two
Subroutine.

Call "res_sort”
Level Two
Subroutine.

Call
“resame_refs”
Level Two
Subroutine.

Figure 4.6: Block diagram of “combine_subccts” subroutine.

Once the new lists are generated, the data is sorted and re-referenced. The end result of

executing the subroutines, in the order shown, is to create a single circuit netlist with no

sub-circuit references. The next section discusses the purpose and function of these

subroutines.

4.2.5

The “free_mem” subroutine is called from the main program routine.

“free_mem’’ Subroutine

The

primary purpose of this routine, as shown in Figure 4.7, is to clear and free computer

memory that is no longer required.

"free_mem”
Level One Subroutine.

'

Free memory used by
linked list structures no
longer required.

Figure 4.7: Block diagram of “free_mem” subroutine.



42

Seven linked list structures, used to store data from the first segment of the
program, are no longer required for the analysis and calculations in the remainder of the
program. These lists are from the typedefs.h header file, discussed in Appendix B.1.
The lists no longer required inclade: NMOS transistor data, for the NMOS transistor
library; PMOS transistor data, for the PMOS transistor library; sub-circuit data,
including the sub-circuit capacitor, MOSFET, transistor and resistor data; main circuit
capacitor data, main circuit MOSFET data, main circuit transistor data, and main circuit
resistor data.

This subroutine uses “free”, a standard “C” function call, which dynamically un-
allocates the memory previously allocated for the linked lists using a “C” function called
“malloc”. When all of the unnecessary linked lists have been cleared, the program

returns to the main routine.

4.2.6 “time_node_voltage”’ Subroutine

The “time_node_voltage” subroutine is called from the main subroutine. The
purpose of this subroutine, as shown in Figure 4.8, creates, initializes, calculates and
stores time and voltage results in data arrays. The arrays are required for the power
dissipation calculations in the “power_diss” level-two subroutine.

"time_node_voltage”
Level One Subroutine.

T
! v ! y '

Enter and sort all start | | Create data array h:‘:::i;z:l:;d Co?:ll:ecc:;:;utsi:ode Call “power_diss’
and finish times of for inpst voltage arrays for ciceuit Use 'ufaly ze'yL ev.el Level Two
input voltages. supplies. sode voltages. Three Sabroutine. Subroutine.

Figure 4.8: Block diagram of “time_node_voltage™ subroutine.



43

The subroutine can be broken into numerous parts, the first being the creation of
a time array. All of the start and finish times of the input voltage supplies are entered
and then sorted from smallest to largest.

The next section of the subroutine creates a voltage array for all of the input
supplies. This will reflect all of the voltage levels for each time element. An example

follows, showing the original netlist voltage entries.

Supply Start Voltage End Voltage Time delay Pulse Width  Period
v_l1 o0V 50V 0.5 us 1.0 us 20us

V_2 0.0V 50V 1.0 ps 1.0 pus 2.0 us

Table 4.1: Sample Input Voltages from Netlist File

A second chart shows the array resulting from the execution of this subroutine section.

Voltage \ Time | 0.0 us 0.5 us 1.0 us 1.5 us 2.0 us
V_1 ooV 50V 50V ooV 1 1AY
V_2 ooV oov 50V 50V ooVv

Table 4.2: Sample Voltage Arrays from the time_node_voltage Subroutine

The third section creates and initializes the overall circuit node (voltage) array.
This array stores all voltages for each node at various analysis timnes. If a particular node
is an input, then specify the node voltage for its correct time. The node is reset to a
predefined value if it is not an input, as discussed in Section 3.2. In addition, this section
also checks for a transistor node (i.e. drain or source) connected to the supply line or
ground. The transistor node voltage is set accordingly if this case exists.



4

The fourth section is the actual voltage analysis of the circuit under test. This
section will analyze and flag each node accordingly. The “analyze” level-three
subroutine is then called to determine the effects of the transistor node voltages and will
set or reset the flags appropriately. Refer to Section 3.2, which discusses this
functionality and the analysis subroutine in more detail. The short-circuit currents are
also determined at this stage of the analysis.

The final objective of this subroutine is to call the “power_diss” level-two
subroutine. This routine determines all power dissipations based on the node voltages
calculated and entered in the “time_node_voltage” subroutine. The program returns to
the main program, at the successful completion of this routine.

4.3 Level-two Subroutines and Functions

This section discusses all level-two subroutines and functions, which are called

from a level-one subroutine. The subroutine flowcharts are provided in Appendix C.3.

4.3.1 “file_check’’ Function

This function is called from the “read_models” level-one subroutine. If the model
library file does not exist or does not contain valid data, an error message is displayed
stating the file is invalid and the program terminates. If the file is valid, a value of ‘1" is

returned to the calling point, which is used as a comparison value.

4.3.2 ‘“read_model_data’ Subroutine

This subroutine is called from the “read_models” level-one subroutine. All data
is entered into linked lists as discussed in typedefs.h header file (see Appendix B.1). In
some cases the numerical data is represented in string format, thus requiring the third

level function “strtonum” as shown in Figure 4.9.



"read_model_data®
Level Two Subroutine.

Read and store data from the device
model library files.

Use "strtonum” Level Three
Fuaction. if necessary.

Figure 4.9: Block diagram of “read_model_data” subroutine.

“strtonum” converts the ASCII data string into double numerical format. The program
is returned to the level-one subroutine from where it was called, when the entries are

completed.

4.3.3 ‘lower_case’’ Subroutine

The “lower_case” subroutine is called from the “read_models” level-one
subroutine. It sets each of the library model linked lists to the head of the list. The level-
three subroutine “convert” is then called as shown in Figure 4.10, which converts the

model name to lower case ASCII.

"lower_case”
Level Two Subroutine.

Call the “convert”®
Level Three Subroutine

Figure 4.10: Block diagram of “lower_case” subroutine.



46

When the conversion is finished, the linked list pointer increments to its next
value. This continues until each library list is scanned then the program returns to where
it was called.

4.34 ‘“‘inter_cap_sort” Subroutine

(39

The “inter_cap_sort” subroutine is called from the “cap_calcs” level-one

subroutine, and consists of two parts.

The first section scans each sub-circuit. Each interconnect capacitance in a sub-
circuit is compared for recurrent parameters. If a match is found, the two capacitances
are added and a duplicate or deletion flag is set on the latter entry.

The second section reorganizes the capacitance list for each sub-circuit. The list
is scanned for the multiplicity flag, which was set in the first section. If the flag was set,
the entry is removed from the list; otherwise, it is left alone. When all lists are checked
and sorted, the program is returned to the “‘cap_calcs” subroutine.

4.3.5 ““para_cap_calc’’ Subroutine

The “para_cap_calc” subroutine called from the “cap_calcs” level-one subroutine

has three purposes as outlined in Figure 4.11.

“para_cap_calc”
Level Two Subroutine.

T
v v v

Search for sub-circuit traasistor
match with transistor modetl
library.

Call "calculations”
Level Three Subroutine.

Call "vj_entry”
Level Three Function.

Figure 4.11: Block diagram of *‘para_cap_calc™ subroutine.



47

The first objective is to call the “vj_entry” level three function, which prompts the
user to enter a value for the magnitude of the applied reverse bias junction voltage, V.
Once a valid number has been entered, the “vj_entry” function returns the entered value
to the “para_cap_calc” subroutine, and is then passed to the “calculations” level-three

subroutine.

The second purpose is to set the head of the sub-circuit linked list, and scan the
model library file for a match with each transistor. For example, if the transistor being
tested is an NMOS transistor, using 0.8u technology, the NMOS library file is selected

and scanned for a match in technology name types, i.e. mnchOp8.

The call to the “calculations” subroutine is the final aim of the “para_cap_calc”
subroutine. If the transistor type matches the transistor model, then the necessary gate,
drain, and source parasitic capacitances can be calculated, as discussed in Chapter
3.1.2.1. If there is no match, an error has occurred. This error is displayed as an error
message and the program is terminated.

When the program returnes from the “calculations” subroutine to the
“para_cap_calc” subroutine, the next transistor is set and the process repeats. When all
transistors in each of the sub-circuits have been tested and the parasitic capacitances
calculated, the subroutine is ended and the program is passed back to the calling point in

the “cap_calcs” subroutine.

4.3.6 “combine_cap”’ Subroutine

The “combine_cap” subroutine is called from the “combine_subccts” level-one

subroutine. The main purpose of this routine is shown in Figure 4.12(a).

A single complete list of capacitors is generated from each of the sub-circuit lists.
Each capacitor node is renamed, with respect to the sub-circuit node list. This new list
represents a flat netlist structure without sub-circuit data. When the new capacitor list is
completed, the program returns to its calling place in the “combine_subccts” subroutine.



4.3.7 ‘“combine_mos’’ Subroutine

The “combine_mos” subroutine is called from the “combine_subccts” level-one

subroutine. The primary purpose of this routine is shown in Figure 4.12(b).

A single complete list of MOSFETs is generated from the sub-circuit lists. The
drain, gate, source, and substrate nodes of each MOSFET is renamed, with respect to
the sub-circuit node list. This new list, as with the “combine_caps” subroutine,
represents a flat netlist structure without sub-circuit data. When the new MOSFET list

is completed, the program returns to the “combine_subccts” subroutine.

4.3.8 “combine_que’’ Subroutine

The “combine_que” subroutine is called from the “combine_subccts™ level-one

subroutine. The primary purpose of this routine is shown in Figure 4.12(c).

A single complete list of transistors is generated from the sub-circuit lists. The
collector, base, emitter, and substrate nodes of each transistor is renamed, with respect
to the sub-circuit node list. This new list also represents a flat netlist structure without
sub-circuit data. When the new transistor list is completed, the program returns to the

“combine_subccts” subroutine.

4.3.9 ‘“combine_res”’ Subroutine

The “combine_res” subroutine is called from the “combine_subccts” level-one

subroutine. The primary purpose of this routine is shown in Figure 4.12(d).

A single complete list of resistors is generated from the sub-circuit lists. Each
resistor node is renamed, with respect to the sub-circuit node list. This new list, as in the
three previous routines, represents a flat netlist structure without sub-circuit data. When
the new resistor list is completed, the program returns to the ‘“combine_subccts”

subroutine.



19

“combine_cap”
Level Two
Subroutine.

"combine_mos”
Level Two
Subroutine.

"combine_que”
Level Two
Subroutine.

"combine_res”
Level Two
Subroutine.

|

|

|

l

Combine capacitances
into a single circuit

Combine MOSFET
transistors iato a

Combine BJT
transistors into a

Combine resistors
into a single circuit

. . single circuit single circuit . .
linked list. linked list. linked [ist. linked list.
(a) (®) (c) (d)

Figure 4.12: Block diagrams of (a) “‘combine_cap” (b) “‘combine_mos” (c) “‘combine_que”
(d) “combine_res” subroutines.

4.3.10 “cap_sort” Subroutine

The “cap_sort” subroutine is called from the “combine_subccts” level-one
subroutine. This subroutine combines and sorts all interconnect capacitances of a single

capacitor linked list.

Two loops are required to complete this stage of the program. The first scans
the capacitor linked list for multiple instances of capacitors. If a multiple instance
occurs, its value is added to the first instance and a duplicate flag is set. If one of the
capacitor nodes connects to Vpp or ground, its duplicate value is added to the first
instance of the node and a duplicate flag is set. If one node is connected to Vpp, it is

changed to a ground reference; otherwise, it remains unchanged.

The second loop scans the linked list for the capacitors with the duplicate flag
set. If a flag is set, the linked list entry is eliminated. This process continues until the
entire list is examined. The program retumns to the “combine_subccts™ subroutine.

4.3.11 ‘“res_sort” Subroutine

The “res_sort” subroutine is called from the “combine_subccts” level-one

subroutine.



50

This routine is almost identical to the “cap_sort” level-two subroutine with a
couple of differences. The first: instead of the capacitor list, the resistor list is scanned

for multiple instances.

The next difference is with the first loop. Only one test is necessary to determine
multiple entries. A duplicate flag is set only if the nodes of both the first resistor and the
current resistor match. The second loop does not differ from the “cap_sort” routine.
The list is scanned for the setting of the duplicate flag. If the flag is set, the linked list
entry is removed. At the completion of the scan, the program is returned to the

“combine_subccts’ subroutine.

4.3.12 “rename_refs’’ Subroutine

The “rename_refs” subroutine is called from the “combine_subccts” level-one
subroutine. The main purpose of this routine is to scan through each of the newly
created data lists and rename all device reference names. This subroutine prevents

multiple instances of component reference names from occurring.

The sub-circuit data contains instances of all components, reference names, and
values. Multiple components with the same reference will exist if any sub-circuit data is
used multiple times. This subroutine avoids conflicts in reference names and creates a
new naming scheme, referring to the old sub-circuit, for the new circuit netlist. When

this subroutine is completed, the program returns to the “combine_subccts™ subroutine.

4.3.13 ‘“node_cap” Subroutine

The *“node_cap” subroutine is called from the “combine_subccts” level-one
subroutine. Only the MOSFET transistor list is required for analysis of the nodes, since
all of the transistors are directly connected to each other, in pure CMOS circuits. This
subroutine is used to total all tramsistor node capacitances and individual node
capacitances of the final circuit netlist and store the data in a new node-only linked list.

There are four goals of this subroutine.



51

The first loop checks each drain, gate, and source for the node and capacitance
associated to it, so long as the node is not Vpp, or Vss (ground for most digital CMOS
circuits). All of the results are stored in a newly created linked list.

The second loop scans the generated linked list and combines the total MOSFET
capacitance for each node and leaves the result in a single node reference. Like the
“cap_sort” and “res_sort” subroutines, duplicate node entries are flagged and the total

capacitance is stored in the first instance of a node.

The third loop removes the multiple nodes listed and flagged in the second loop.
When this is completed, the list is set to be combined with equivalent interconnect

capacitances from the capacitance list, which is the final loop.

For each final entry of the node linked list, the capacitance list is scanned for a
matching interconnect capacitance. The matching interconnect capacitance must be
connected between the node under test and ground (or Vss). If this condition is met, the
interconnect capacitance is summed with the existing node capacitance. A flag is also set

on the capacitor in the capacitance list.

When the “cap_sort” is called a second time from the “combine_subccts”
subroutine later in the program, the duplicate entry will then be removed. After the

entire node list is scanned, the program returns to the “combine_subccts” subroutine.

4.3.14 “analyze” Subroutine

The “analyze” subroutine is called from the “time_node_voltage” level-one
subroutine. The primary goal of this subroutine is to evaluate the drain, source, and gate

of each MOSFET transistor in the circuit.

When this subroutine is called, a single node of a transistor is under analysis.
Changes in this node may affect the operation of the transistor nodes in the reminder of
the circuit. As the various gate, drain and source nodes of each remaining transistor are

analyzed, the necessary voltages are set. The flag of each affected node is set as to the



52

current state of the MOSFET. This flagging approach was discussed in Section 3.2.
When the analysis of the circuit is completed for the node under test, the program is
returned to the “time_node_voltage” subroutine.

4.3.15 “power_diss” Subroutine

The “power_diss” subroutine is called from the “time_node_voltage™ level-one

subroutine and consists of three parts, as outlined in Figure 4.13.

“power_diss”
Level Two Sabroutine.

T
vy , v v

Calculate node power dissipati Calculate total node
Calculate average rise . nod powe ssipation Call “data_file_transfer®
. resulting from interconnect and power and average .
and fall times. L. . A Leve! Three Sobroutine.
parasitic capacitances power dissipations

Figure 4.13: Block diagram of “power_diss™ subroutine.

The first part of this subroutine can be broken into five sections. The first
calculates the average rise and fall times from all of the supplies listed in the netlist.
These average times are required for the computation of the various power dissipations.
The second section determines the dynamic energy consumption and power dissipation
of each node due to parasitic capacitances. The third section calculates the dynamic
energy consumption and power dissipation of each node due to interconnect
capacitances. The fourth section computes the total dynamic power dissipation of each
node (the sum of the interconnect and parasitic powers) and the total short-circuit power
dissipation. The fifth section calculates the average power dissipation of each node for

the entire test period, by summing the dynamic and short-circuit power contributions.

The second main portion of this subroutine outputs all calculated data to a file.
The data is in Matlab matrix format, including: node labels, time labels, time, node



53

parasitic power, node interconnect power, total node power, average node power, node

voltage, and maximum time and node number.

The final part of this subroutine calls the “data_file_transfer” level-three
subroutine. This appends the Matlab executable code to the output data file. When the
stages are finished, the program returns to the “time_node_voltage” subroutine.

44 Level-three Subroutines and Functions

This section discusses all level-three subroutines and functions, which are called
from level-two subroutines and/or function routines. The flowcharts for level three

subroutines and functions are provided in appendix C.4.

44.1 “strtonum’’ Function

The “strtonum” function is called from two places, the “read_model_data” level-
two subroutine, and the “read_netlist” level-one subroutine. This function removes all
extraneous string data up to and including the equal sign (=). The remaining string,
representing a numerical value, is converted to double format using the “C” preprocessor
function “strtod” and returns the value to its calling place for storage in its appropriate
linked list.

4.4.2 ‘“convert’” Subroutine

This subroutine is called from the “lower_case” level-two subroutine. It changes
each character of the data string scanned in from the “lower_case” subroutine. The
conversion from uppercase to lowercase ASCII is completed using the “C” preprocessor
function “tolower”. At the completion of the conversion, program control is returned to

the location from which this routine was called.



443 ‘“yj_entry” Function

The “vj_entry” function is called from the “para_cap_calc” level-two subroutine.
This function prompts the user to enter a value for V;, which is the magnitude of the
applied reverse bias junction voltage. Once this value has been successfully entered, it is

returned to the “para_cap_calc” subroutine.

“vj_entry” requires the user to enter a voltage magnitude between 0.000V and
the supply, followed by the sign of the magnitude, positive (+) or negative (-). The
subroutine checks the validity of the number entered, which must be correct prior to the
user prompt for the sign of the magnitude. If the number is invalid, i.e. an alphanumeric
is present, the subroutine prompts the user to enter another value and will continue until

a legitimate value is entered.

If the sign is incorrect, the user will be re-prompted to enter the sign until it is
legitimate. Once the number and sign are correct, the program returns the value to its

calling point in the “para_cap_calc™ subroutine.

4.4.4 “calculations” Subroutine

The “calculations” subroutine is called from the Ilevel-two, subroutne
“para_cap_calc”. Its primary purpose is shown in Figure 4.14 and the flowchart is
referenced in Appendix C.4.

"calculations”
Level Three Subroutine.

T
v v v

Cal Call "drain_source” Call "drain_source”

2 'culate Gate Level Four Function Level Four Fuaction,

Capa&:{tanscesfor each calculates drain capacitance calculates source capacitance
OSFET. for each MOSFET. for each MOSFET.

Figure 4.14: Block diagram of “calculations™ subroutine.



55

This subroutine calculates the gate, drain, and source capacitances for each transistor in
a sub-circuit list. The drain and source capacitances use the same formula for their
respective values, thus the level-four “drain_source” function was created to do the
calculations. Once the required parameters are computed and stored, the program

retumns to its calling point in the “para_cap_calc” subroutine.

4.4.5 “data_file_transfer’’ Subroutine

This subroutine is called from the “power_diss” level-two subroutine. Its
primary purpose is to copy a data file into the output file, as specified by the user in the

main “power’”’ program routine.

If the data file to be transferred does not exist in the present working directory,
an error message is displayed and the program is terminated. If the data file is corrupted
or does not contain any data, an error message is displayed and the program is

terminated.

If the data file is valid, the file is opened and the data is transferred to the user-
supplied output file. When all data is exported, the data file is closed and the program

returns to the “power_diss” subroutine.

4.5 “drain_source’ Level-four Function

The “drain_source” is the only level-four function which is called from the
“calculations” level-three subroutine. This function calculates the drain or source
capacitance for a transistor. The formula for these capacitances is the same, therefore
only the specific area and perimeter data, device parameter data and junction voltage

need to be passed, via the function call.

The drain or source capacitance consists of two parts. The first portion is the
area contribution and the second is the perimeter contribution, which are described by
Equations 3.7 and 3.8. The total capacitance is calculated using Equation 3.6. When all



56

calculations have been performed, the resulting total capacitance is passed back to the
“calculations” subroutine.

4.6 Matlab Program Data File

The discussion of the “data_file_transfer” level-three subroutine in Section 4.4.5
makes reference to copying a data file to the output results file. This data file is the
Matlab source code that is the main executable program, when run in the Matlab
simulation program.

The source-code of the Matlab program is provided in Appendix C.5. Figure 4.15
shows the major functional components of the source code.

Matiab Source Code
Program File

y 3
First Third

v

Reset and clear all plots
Prompt user for font size. Second and matrix variables and
exit user program.

\ 4
Prompt user for node ¢
— range, all nodes or
gothing. Prompt user for graph
l type.
Set parameters based on l
the resuit of prompt. Set parameters and plot
the results based on the
user prompt.

Figure 4.15: Block diagram of the Matlab source code operation.

The first Matlab program function prompts the user for the desired font size of the
graphs. The prompt remains until a valid answer between 6 pt. and 12 pt. is entered.



57

Once a font size is entered, any unnecessary variables are cleared from the program

memory. Figure 4.16 below shows the font menu structure during program execution.

Font VSVi'ze

Figure 4.16: Font size menu GUIL

The second function prompts the user to select which node(s) of the circuit are of
interest to plot. There are three choices, as shown in Figure 4.17. They include a range,

all, or none of the nodes.

Figure 4.17: Menu of nodes to plot GUL

If a range of nodes is selected from the menu, the user must enter a start and end node.
Sample menus are shown in Figure 4.18, in which the start menu (a) and end menu (b)

nodes are push-button selectable.



(a)

Figure 4.18: (a) Start node menu GUI, (b) End node menu GUL

When the start and end nodes, or all nodes have been selected, the data matrices from
the power program are copied into new temporary arrays for manipulation. The
program continues to the third function once all of the parameters are set.

If the ‘end’ button of Figure 4.17 was selected, the user is prompted to confirm
the exit of the program. The menu selection is shown in Figure 4.19.

Figure 4.19: Exit menu GUL



59

If ‘no’ is selected, the program resets the second function. If the response is ‘yes’, then
it resets and cleans any existing plots, and all matrix variables used by the Matlab user

program. When the memory is cleared, the user program ends.

The third Matlab program function prompts the user to select a plot to view.
The user can select the plot representations of the data as shown in Figure 4.20. The
plot types include the node voltages, the node power dissipation due to parasitic
capacitances, the node power dissipations due to interconnect capacitances, the total
power dissipated for all time elements, the total average power dissipated by the circuit;

and finally, the user can choose to exit.

[, ok e P T MRS E

IS

i

:
3

Figure 4.20: Plot type menu GUL



60

If ‘exit’ is not selected, the user can choose to display any of the five plots concurrently,
in various figure windows.

When a graph is displayed, the user has the option of rotating the resulting graph
for easier viewing. When the analysis of a graph is completed, the user can close the

figure window without affecting any other windows that may be open.

A complete example of the program operation, including the Matlab results is
described in Chapter 5.



61

5.0 Results

This chapter discusses the model test circuits used to demonstrate a sample
application session, presents results for total power and dynamic power dissipation, and
addresses the program efficiency.

5.1 Test Circuits

Sixteen test circuits were sampled to examine the effectiveness of the power
program. Twelve of these circuits consist of a single two-input logic gate. The logic
gates include the standard AND, NAND, OR, NOR, XOR, and XNOR configurations.
The remaining four circuits are more complex designs including a 1-bit adder and a 4-2
compressor circuit. The netlist files for the XNOR (T-Cell) gate and the 4-2 compressor
(K-Cell) circuit are found in Appendices D1 and D3 respectively.

The netlist of each sample circuit was created using two different cell models.
The K-Cell and T-Cell Cadence models differ in many ways. The K-Cell is smaller and
faster than the T-Cell, the number of transistors is fewer and the width to length ratio is
smaller. K-Cells are meant to operate at a supply voitage of 3.3V and 5.0V and the T-
Cell is designed to operate strictly at 5.0V, as specified by the technology and cell layout.
The changing effects of power consumption are demonstrated using the different circuit

configurations and supply voitages suggested.

5.2 Sample Application Session

The data for this sample session were generated from a two-input T-Cell XNOR
gate, which was chosen since it is the most complex of the standard cells. A schematic

representation of the circuit is shown in Appendix D2.

The first step is to execute the power program by entering the following
command line at the UNIX prompt:

power <netlist> <output.m>



62

After the program has terminated without errors, the output.m file can be executed using
the Matlab program. Figures 5.1 to 5.8 show the dynamic energy and power output
results generated graphically by Matlab for the sample circuit.

Figure 5.1 shows the voltage for all nodes at each transition of time. The z-axis
represents the voltage (Volts); the y-axis denotes each time interval in which a transition
of the input has occurred (seconds); and the x-axis signifies the node label. In this
example, the supply and input voltages are set at five volts. A node voltage between
zero and five volts results from the threshold voltage and the non-standard configuration
of the NMOS or PMOS transistor as discussed in Chapter 3.

Figure 5.1: Voltage transitions for each node and time transition.



63

Figure 5.2 shows the amount of energy consumed by each node due to the effects
of parasitic capacitances. Figure 5.3 shows the contribution of energy consumed by each
node due to the interconnect capacitances in the layout. The z-axis represents the energy
consumed by each node (Joules); the y-axis represents each time interval in which a
transition of the input has occurred (seconds); and the x-axis denotes the node labels.

One factor resulting in a lower energy contribution to the node, is that the
parasitic capacitance is generally much larger than the interconnect capacitance. Another
factor for a lower energy contribution, due to interconnect capacitances, results from
differences between two nodes with different voltage potentials. This potential
difference is not between a node and ground, as is the case with the parasitic

capacitance.

This data are of extreme importance. The amount of energy consumed over a

specific time interval denotes the power dissipated by the node.

Node Parasitic Energy

Figure 5.2: Parasitic energy consumed at each node for each time transition.



~14

-
n
/

...
£

-
£

~
£

&

Node Interconnect Energy
Z

Time Node

Figure 5.3: Interconnect energy consumed at each node for each time transition.

Figures 5.4 and 5.5 present the results of the average energy consumed by each
node of the circuit during the total test period. The energy contribution of each node is
summed and divided by the number of event transitions, as discussed in Chapter 3.

Figure 5.4 shows the energy consumption from the contribution of parasitic
capacitances at the node under examination. Figure 5.5 shows the energy consumed
from the contribution of interconnect capacitances at the various nodes under test. The
z-axis represents the total average energy consumed by each node (Joules); the y-axis
represents the total time interval in which the test vectors occur (seconds); and the x-axis

denotes the node labels.



Y N )

[

Node Average Parasitic Energy

td -

Period

S - - T |
A Y N S B |

Node Average Interconnect Energy

L
1

L

Figure 5.5: Average energy consumed at each node due to the interconnect capacitances.



66

Figures 5.6 and 5.7 represent the average dynamic power dissipated by each node
of the circuit during the total test period. The results are directly proportional to the
energy consumed at each node. The power is calculated by dividing the energy
consumed by the period of test.

Figure 5.6 shows the average dynamic power dissipated at each node due to the
parasitic capacitance contribution. Figure 5.7 presents the average dynamic power
dissipated at each node due to the contribution of interconnect capacitances. The z-axis
signifies the total average dynamic power consumed by each node (Watts); the y-axis
denotes the total time interval in which the test vectors occur (seconds); and the x-axis

represents the node labels.

I

Node Average Parasitic Power

0S8

Period

Figure 5.6: Average dynamic power (parasitic contribution) consumed at each node.



67

847

T N N )

i

Node Average Interconnect Power

1

Period

Figure 5.7: Average dynamic power (interconnect contribution) consumed at each node.

Figure 5.8 shows the total average dynamic power dissipated by each node. The
parasitic and interconnect capacitance contributions cause this dynamic power. It is the
direct result from switching transitions at each node of the circuit, during the total test
period. The z-axis represents the total average dynamic power consumed by each node
(Watts); the y-axis is the total time interval in which the test vectors occur (seconds);

and the x-axis signifies the node labels.



~ a
[

Average Node Dynamic Power
&
/

&
/

i

Period

Figure 5.8: Total average dynamic power consumed at each node.

Additional results are calculated but not graphically represented. First, the total
average dynamic power dissipated is derived from the summation of all node powers, as
shown in Figure 5.8, and divided by the total number of nodes. Second, the short-circuit
contribution to the total power is calculated from Equation 3.19. Finally, the total
average power dissipated by the device is calculated by summing the total average
dynamic power and the total short-circuit power dissipations. These results are

discussed in further detail in the next section.



69

53 Data Results

This section examines and compares the results of the total power dissipations
from various devices, using Analog Artist software and the power program. The power
program results are also reviewed to determine if the short-circuit power contribution

confirms theoretical results.

53.1 Total Power Results

Parallel simulations were conducted using the Analog Artist tool and the power
program, to verify the correct operation of the software. The Analog Artist simulations
describe the effects of the average current of the voltage supply. Thus, the total average
dissipated power is comprised of the short-circuit and dynamic dissipations, as well as
the leakage currents. The power program consists of the short-circuit and dynamic

dissipations only.

The tests were completed using 3.3V and 5V supply voltages respectively. Four
rise and fall times (Ins, 5ns, 10ns and 20ns) were also tested at each voltage level
Figures 5.9 and 5.10 show the normalized resuits between the Analog Artist simulations
and the power program.

The simulations show trends that are consistent with theoretical results [26]. The
total power dissipation increases exponentially at first, then linearly as the rise and fall
times lengthen. The dynamic power is independent to changes in rise and fall times as
discussed in Chapter 3, and thus remains constant. The short-circuit power contribution
depends on the rise and fall times of switching transitions; thus the total power increases

as expected.

The individual gates have similar power dissipation patterns. Therefore, Figure
5.9 shows the results for the average of all single gate circuits. Figure 5.9(a) shows the
normalized power dissipation by the T-Cell and K-Cell gate configurations at input and



70

supply voltages of 5V. Figure 5.9(b) shows the normalized power dissipation by the T-
Cell and K-Cell gate configurations at input and supply voltages of 3.3V.

© o ©
N 00 O e

o
o

Normalized Power Dissipation
[=] [=] [=] [=] [=]
- N Wb e W

[~}

e K-Cell

(SVY

———K-Cell
Average
5V

——tiy—T-Cell
Average
SV

——TCell
Average
5V

Normalized Power Dissipation
o
n

(a)

—

o
o

>4
o0

©
G

e
o

© © o o
- N L &
. )

o

r—

/

2 2 2 a
— v < >
— o~

Rise and Fall Times

(b)

Figure 5.9: Normalized power dissipation curves for standard T-Cell and K-Cell gates with: (a)
5V supply voltage and (b) 3.3V supply voltage.

The Cadence and power program results for a single gate T-Cell and K-Cell

circuit are almost identical, when compared for a supply voltage of 5V. The results are

slightly different for a supply voltage of 3.3V, however the pattern remains constant.

The T-Cell structures were designed to work with a supply voltage of 5V, whereas the

K-Cell gates were designed to work with a supply voltage between 3.3V and 5V. This

difference explains the increase in power dissipations at Ins, for a 3.3V supply,

compared to that of the 5V supply.



o
P

(=]
L

N QY
\"\
T
HiFH

RN

-

02
0 —t
g 2 8
" = S
Rise and Fall Times
(a)
1
09
038 = T-Cell
g vl
(SVXx
-§. 0.7
3 06 ~—p—T-Cell
. Adder
?’ 3.3Vx
g 05 ~—t=—T-Ccll
B Adder
Tos o
power
.g ——T-Cell
o 03 Adder
z 3.3V
0.2 4
0.1 Ty
0 L S
2 & g 2
Rise and Fail Times
©

09 /
08 —f——KCcll
: ST
=07 g\f;
| M
?. 0.6 +—x¢ Comy
14 Cadence
505 1 | ==K -Cell
Compressor
3 04 (5VY: power
g —
s03 Comp
z (33V): power]
02 (//
0.1 ‘
0 + —
2 g 2 2
Rise and Fall Times
(b)
1
09
08 e T-Cel
s K| e
207 5Vx
% 06 / 7[] = T-Cell
X Comp
s N AV
§ Cadence
203 / —a—TCe
Compressor
3 04 (SVX: power
E ./ —@—TCell
5§03 Comp
z (3.3VX power|
02
ot
0 +
2 2 2 2
Rise and Fall Times
)

71

Figure 5.10: Normalized power dissipation curves using 3.3V and 5V supply voltages for: (a)

K-Cell adder circuit, (b) K-Cell compressor circuit, (c) T-Cell adder circuit, and (d) T-Cell

compressor circuit.



T2

Figure 5.10 shows the normalized power results for a 1-bit adder and a 4-2
compressor circuit in T-Cell and K-Cell configurations. The circuits are more complex
than the single gate circuits, resulting in high power dissipations. The normalized results
for the T-Cell and the K-Cell configurations of each circuit are comparable i.e. Figure
5.10(a),(c) and Figure 5.10(b),(d). As well, the overall pattern still follows the

theoretical results that the power dissipation increases as the rise and fall times increase.

There is a more noticeable difference between the Analog Artist and power
results for the complex circuits when compared to the single gate circuits. The
discrepancies between Analog Artist and power can be attributed to a number of factors.
The most important difference is that power uses level one and two Spice
approximations, whereas Cadence uses complete Spice statistical modeling. This is

especially noticeable when calculating the short-circuit and static power dissipations.

Equal rise and fall times of the input and output signals are assumed by the power
program at Ins. The short-circuit power contribution will be less than 20% of the total
power if this assumption is true. Discrepancies between Analog Artist and power can
result if Analog Artist has the output signal rise and fall times shorter than the input rise
and fall times. If this happens, there can be a significant increase in the short-circuit

contribution; i.e., the short-circuit power can increase to the dynamic power [26].

Charge sharing effects of the capacitances is another factor not accounted for in
the power program. Delay factors for decreasing voltage supplies were also neglected.
When supply voltages drop to near threshold voltage levels, the transistor switching time
decreases, independent of the rise and fall times of the input. This may cause faulty
operation of the transistor and thus an increase in the power dissipation. Analog Artist

accounts for this phenomenon, the power program does not.

53.2 Dynamic Power Results

The results presented in Figure 5.11 denote the total dynamic power as a
percentage of the total power dissipated by the device under test. The final results for



73

the standard gates show similar trends for both the K-Cell and T-Cell variations using a
supply voltage of 5V. Thus, an average was taken for all K~-cell gates and T-Cell gates.
A common pattern exists between the standard gates and complex circuits tested using
power. The exponential decay in the total percentage of dynamic power, Figure 5.11, is

consistent with Equation 3.19.

The graph shows the short-circuit contribution to be less than 20% of the total
power dissipation for significantly shorter input rise and fall times [26]. As the rise and

fall times increase, the short-circuit power contribution becomes more pronounced.

100.00%
97.50% ~+— K-CELL Single Gate}
\\? Average
- —8—T-CELL Single Gate
E 95.00% Average
&=
w —36— K-CELL Adder
Circuit Average
92.50%
- —@— T-CELL Adder
- Circuit Average
=
§ 90.00% =3 K-Cell: Compressor
—6— T-Cell: Compressor
87.50%
85.00% + +
luos S5us 10ns 20 ns
Rise and Fall Times

Figure 5.11: Contribution of Dynamic Power to Total Power Dissipation based on the power
program for the test gates and circuits.



74

54 Program Efficiency

The cost incurred by the execution of a computer program, or algorithm is
determined by the time required to compute the result(s) and the amount of storage
space the program needs to effectively arrive at the result(s). The time requirement is
the most important cost for this software application, as the space requirements will
change depending on the user data. The time complexity of an algorithm or entire
program, for example f{n), is said to be of order f{n) and is denoted O(f{n)).

The structure of the power program does not provide a means to effectively
estimate an overall efficiency or order. There is also no comparison available for this
program since the data varies depending on the user supplied netlist file. For these
reasons the efficiency is considered for the node voltage analysis and power dissipation
analysis stages of the program. The worst case scenario is also used when discussing the

time complexity.

The voltage analysis stage tends toward O(m®), where m is the total number of
transistors in the final linked list. Other efficiencies are present; however, they tend to be
linear in nature. Although O(m’) is not a desired algorithm for large values of m, it is a

realistic efficiency for early revisions of this software. This ensures correct program
operation.
The power dissipation analysis stage tends toward O(n) where n is the number of

nodes in the circuit. Other efficiencies are present, and each is linear. Therefore, the

worst case efficiency is O(n) for this stage of the analysis.



90.00
80.00 -
70.00 -
60.00 -
50.00
40.00 -
30.00 -
20.00 -
10.00 -

Execution time in Seconds

0.00 -

Figure 5.12: Time/Efficiency comparison for an XNOR chain circuit of various lengths

The overall analysis of the circuit, including the voltage and power analysis
stages, will be of O(m’) since the number of transistors is generally greater than the

angefiea) Time
em@uuwtjgor Tins

25

50 75 100 125 150 175
Number of Gates in the Circuit

number of nodes in the circuit.

Figure 5.12 shows the real-time results for analysis of a test circuit. The test
circuit consists of a chain of varying numbers of T-Cell XNOR gates. The entire time of
the program from start to finish is defined as the real-time, and the total time required by
the system resources is defined as the user time. The graph is consistent with the

proposed theoretical efficiency described above, with tendencies toward O(m?) for

circuits with a large number of gates.

200

75



76

6.0 Conclusions, Findings and Recommendations

6.1 Conclusions

The primary objective of this research was to initiate and develop power
dissipation analysis software for CMOS circuits. A subsequent goal was to determine
the validity of simulations using the power software when compared to other methods of
simulation analysis.

An educational development version of the software tool was written, compiled
and tested for verification. A user supplied netlist and two model library files were
imported into the software. The essential data was extracted, used for calculating
specific parameters, and then deleted.

The parasitic capacitances were calculated using the netlist file, the model files
and approximations using Spice Level 2 techniques. The results of the parasitic
capacitances and the netlist supplied interconnect capacitances were used to determine

the dynamic energies and powers consumed by the circuit.

The netlist version of the circuit was converted into a single-level hierarchical
structure and was used for the remainder of the circuit analysis. The voltages at each
node were determined for each tranmsition of the input. Calculations of energy
consumption for parasitic and interconnect capacitances were calculated at each node.
The average energy consumption for each node was then determined and used to
calculate the average dynamic power dissipation. The short-circuit power dissipation
contribution was also analyzed and added to the dynamic power dissipation, giving the
total power dissipated by the circuit.

All of the results were placed in a Matlab formatted data file along with source
code for a Matlab program routine. This provided a graphical user interface to view the
energy and power results of the power program.



77

The Cadence and Analog Artist programs were used respectively to design and
perform initial tests on a variety of circuits. Six simple gate circuits and two complex

adders were designed using two distinct standard cell configurations (T-Cell and K-Cell).

The normalized results between the power program and Analog Artist reveal
similar patterns for the test cases. The adder circuits, however, show a slight
discrepancy between the various results. This can be attributed to differing analysis
methods used by power and Analog Artist, transistor sizing which can cause significant
increases in short-circuit power, and voltage supply level requirements for the standard

cell configurations (i.e. 3.3V or 5V).

The total power dissipated from the circuit comprises mostly of the dynamic
power contribution. The results in Chapter 5 show that the dynamic power dissipated is
greater than 80% of the total power. This holds for rise and fall times at input and
output of the transistor, being equal, as is the case for the power program at Ins. Theory
and other research work suggest that the short-circuit contribution will be less than 20%

of the total power. The results from power agree with this theoretical hypothesis [26].

6.2 Limitations

Computer memory could be a critical limitation for the first revisions of the
power program. This problem did not occur in the sample test cases; however, they may
occur in larger LSI and VLSI CMOS netlist structures. With significantly large netlist

and model data files, memory resources of the computer may reach their limits.

Many of the program subroutines require the use of searches or sorts. They are
necessary to import and manipulate the circuit data, calculate capacitances, generate a
final circuit structure, calculate energy and power consumption, and export the results to
a data file. Linear search/sort procedures were the simplest methods for achieving the
results for early program revisions. This comes at a cost of program efficiency, or time
to analyze the data, and the amount of memory required for the data lists and data array

storage.



78

The present working version of the power program limits input test pattern
changes to one transition of a single input until the analysis of the circuit is complete.
This is known as single transition - forward progression analysis. This method of
analysis performs adequately for a small number of inputs to the circuit; however, it may

be inefficient for a large number of inputs.

At this time, only CMOS standard gates are considered for analysis. Bipolar,
BiCMOS and sequential logic (flip-flop) are not supported at this time.

6.3 Future Revisions

There has been a tremendous increase in the availability of commercial power
simulation tools during the past six months. Companies such as Cadence and Mentor
Graphics have seen a niche for this type of software in addition to their existing CAD
products. The power software developed for this research is in its infancy stage, and
requires some major and minor alterations if future work is to continue and the software

is to compete with commercial tools.

The results obtained and presented in Chapter 5 are comparable with simulated
and theoretical results from other methods. However, the real-time measurement testing
of circuits designed and simulated is required. This is necessary for the verification of
the results. Designs need to be fabricated and tested for functionality prior to measuring
the devices in real-time. This is costly and is a major factor if research into the power

program is to continue.

“C” is a stalwart programming language, however object-oriented programming
is becoming the preferred method of generating software. The rewriting of the power
program in “C++” would result in significant portability and efficiency improvements of
this tool. This would be one method to let the software become multi-platformed,

whereas it is now Unix dependant.



79

Revision of the software is required to improve efficiency and memory allocation
constraints. Most of the search algorithms used in the current program are linear.
Therefore, more efficient algorithms need to be considered.

Multiple transition - forward progression analysis should be considered for future
revisions of the software. This should improve efficiency of the circuit analysis, and
would be more convenient for larger circuit designs and designs using sequential

synchronous and asynchronous devices.

At present, only CMOS combinational logic circuits can be analyzed. Future
revisions to the power program will include an improved analysis structure for netlist
files. This will include the addition of bipolar and BiCMOS transistor models. Methods
for the analysis of data storage elements such as sequential logic flip-flops and latches,
will also be addressed.

Changing the programming language from “C” to “C++” will provide a new
method of graphically viewing the data. A Matlab oriented program is appended to the
data file, thus requiring Matlab software application to view the data. Future work
would make a transition to OpenGL programming, and “C++", for the graphical user

interface portion of the program.



80

Bibliography
TEXTBOOKS
[1] A. Bellaovar, M.I. Elmasry, “Low Power Digital VLSI Design: Circuits and Systems.”

(2]

(3]
(4]
(5]

(6]
(71
(8]

[9]
(10}

(11}

[12]

[13]

[14]

Kluwer Academic Publishers, MA 1995.

N.H.E. West, K. Eshraghiam, “Principles of CMOS VLSI Design: A Systems Perspective
2™ Edition,” Addison Wesley, 1994.

J.M. Rabaey, “Digital Integrated Circuits: A Design Perspective,” Prentice Hall, 1996.
D. Foty, “MOSFET Modeling with Spice: Principles and Practice,” Prentice Hall, 1997.

JM. Rabaey, M. Pedram, “Low Power Design Methodologies,” Kluwer Academic
Publishers, 1996.

D. Gilly, O'Reilly & Associates, “*UNIX in a Nutshell,” O’Reilly & Associates Inc., 1992.
R.N. Horspool, “The Berkeley UNIX Environment, 2™ Edition,” Prentice Hall, 1992.

B.W. Kernigham, D.M. Ritchie, “The C Programming Language, 2™ Edition,” Prentice
Hall, 1995.

M.A. Weiss, “Efficient C Programming Language,” Prentice Hall, 1995.

The Math Works Inc., “Matlab Reference and User’s Guide,” The Math Works, 1992.

PAPERS

M. Horowitz, T. Indermaur, R. Gonzalez, “Low-Power Digital Design,” 1994 IEEE
Symposium on Low Power Electronics, pp. 8 — 11.

T. Kuroda, T. Sakvrai, “Overview of Low-Power ULSI Circuits Techniques,” [EICE
Transactions on Electronics, Special Issue of Low-Voltage, Low-Power Integrated Circuits,
Vol. E78-C, No. 4, April 1995, pp. 334-344.

G. Frenkil, “Power Dissipation of CMOS ASICs,” IEEE Proceedings 4" Annual
International ASIC Conference and Exhibit, 1991, pp. T3-1.1 - T3-1.5.

A. Shah, P. Young, “MOS Technology: Trends and Challenges in the ULSI Era,” IEEE
Proceedings 20" International Conference on Microelectronics (MIEL °95), Vol. 1,
September 1995, pp. 3-9.



[15]

[16]

(17}

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

[27]

81

S. Devadas, S. Malik “A Survey of Optimization Techniques Targeting Low Power VLSI
Circuits,” 32 ACM/IEEE Design Automation Conference 1995.

Z. Chen, J. Shott, J. Burr, J.D. Plummer, “CMOS Technology Scaling for Low-Voltage
Low-Power Applications,” 1994 IEEE Symposium on Low-Power Electronics, pp. 56-57.

J.LA. Segura, M. Roca, D. Mateo, A. Rubio, “An Approach to Dynamic Power
Consumption Current Testing CMOS ICs,” IEEE 1995.

F. Najm, * Feedback, Correlation, and Delay Concerns in the Power Estimation of VLSI
Circuits,” 32** ACM/IEEE Design Automation Conference 1995.

G. Burd, “Low-Power CMOS Library Design Methodology,” Masters of Science,
Electrical Engineering and Computer Science Thesis, University of California, Berkeley.

P. Gutwin, “A Web Document: Low Power CMOS,”
www.emba.uvm.edw/~pgutwin/lowpower/lowpower.html.

R. Zimmermann, “A Web Document: “Power Calculator for Compass.” Integrated Systems
Laboratory, 1997, www.stud.ee.ethz.ch/~Zimm/powercalc/powercalc.html.

A. Ashkinazy, D. Edwards. C. Farnsworth, G.Gendel, S. Sikand, “Tools for Validating
Asynchronous Digital Circuits.”

EPIC, “Technical White Paper on Power,” EPIC Design Technology, 1996
EPIC, “Power Mill Product Brief,” EPIC Design Technology, 1996.

M. Margala, A 4-2 Compressor Circuit: Design for Doctoral Research, Ph.D.. Electrical
and Computer Engineering, University of Alberta” Paper status unavailable.

H.J.M. Veendrick, “Short-Circuit Dissipation of Static CMOS Circuitry and its Impact on
the Design of Buffer Circuits,” IEEE Journal of Solid-State Circuits, Vol. SC-19, No. 4,

August 1984.

A. Vinnakota, “Monitoring Power Dissipation for Fault Detection,” Journal of Electronic
Testing: Theory and Application 11, pp. 173-181, Kluwer Academic Publishers, 1997.




Appendix A.1 PMOS Model Library File

The following is a portion of the PMOS library file. The file consists of 0.8jum, 1.2um,
2um, 5um, and 10pm technologies in its entirety.

* Canadian Microeiectronics Corporation

* BiCMOS Design Kit V1.0 for Cadence Analog Artist
* August 23, 1995

-

* 0.8-micron BiCMOS SPECTRE library for MOSFET models

* Dec 6/94, Hsu Ho, CMC

. - ETA and KAPPA were tuned for devices of 4.0um or greater
. channel lengths to effect better modelling for MOS output
* conductance.

* You should have the following options set in order (0 supress the

* printing of the model parameters, to make the nominal temperature

* compatible with SPICE, and to make SPECTRE use the same device models
* as SPICE 2G.6:

-

* .OPTIONS NOMOD TNOM=27 DCAP=1

»

* THE FOLLOWING BiCMOS MODELS ARE AVAILABLE:

L

* P.-CHANNEL MOSFET:

* SEMI-SCALABLE DEVICE NAME: MPCH

* CALLING CARD: M_D G § B MP___ L=X W=X NRD=X NRS=X AD=X AS=X PD=X PS=X

#ifdef TYPICAL
»
* SEMI-SCALABLE PMOS PARAMETER LIBRARY

»

* P.CHANNEL MOSFET GATE LENGTH =0.8 um GATE WIDTH =any
MODEL MPCH_0P8 PMOS

+  XL=0.00 XW=0.00

+ ILMAX=105E-6 //[LMIN=0.6E-6

+ IIWMAX=500E-6 //'WMIN=1.4E-6

+ LEVEL=3 /ACM=2

parameters

JS=5.0E4 //ISW=5.5E-10

CJ=450.0E-6 MJ=0.61

CJSW=220.0E-12 MISW=0.26
+ //ICJGATE=820.0E-12
+ PB=0.921 PBSW=0.921
CGSO=2148E-12 CGBO=568.3E-12
CGDO=214.8E-12

* Long channel model parameters

+ VTO0=-0.902 Uo=154 TOX=17.52E-9

+ NSUB=3.149E16 NFS=760E9 DELTA=0.295
+ THETA=128E-3 WD=100E-9

* Short channel model parameters

+ LD=1.000E9 LDIF=999.0E-9 XJ=308E-9

+ VMAX=2773E3 ETA=79.53E-3 KAPPA=9.56
+ RS=1.200E3 RSH=0.0 HDIF=1.2E-6

+ RD=1.200E3

* Temperature model parameters

+ TLEV=l TCV=973.4E-6 BEX=-1.100

+ TRS=1.000E-9 TRD=1.000E-9

* Diode model

+

+

+

+

* & 4



* Junction Temperature mode! parameters
+ TLEVC=l

+ PTA=139E-3 PTP=4.55E-3

+ CTA=607E9 CTP=160E-15
* Noise model parametess

+ AF=0.95 KF=250.0E-27 /NLEV=2

L

#endifl/ TYPICAL



Appendix A.2 NMOS Library File

The following is a portion of the NMOS library file. The file consists of 0.8um, 1.2um,
2um, Sum, and 10um technologies, in its entirety.

* Canadian Microelectronics Corporation
L

* BiCMOS Design Kit V1.0 for Cadence Analog Artist
* August 23, 1995
*

* 0.8-micron BiCMOS SPECTRE library for MOSFET models
L

* Dec 6/94 Hsau Ho, CMC

. - ETA and KAPPA were tuned for devices of 4.0um or greater

* channei lengths 10 effect better modelling for MOS output

. conductance.

®

* You should have the following options set in order to supress the

* printing of the model parameters, to make the nominal temperature

* compatible with SPICE, and to make SPECTRE use the same device models
* as SPICE 2G.6:

* .OPTIONS NOMOD TNOM=27 DCAP=1

* THE FOLLOWING BiCMOS MODELS ARE AVAILABLE:
.

* N-CHANNEL MOSFET:
* SEMI-SCALABLE DEVICE NAME: MNCH
* CALLING CARD: M_D G S BMN___ L=X W=X NRD=X NRS=X AD=X AS=X PD=X PS=X

L
*

#ifdef TYPICAL
-
* SEMI-SCALABLE NMOS PARAMETER LIBRARY

* N-CHANNEL MOSFET GATE LENGTH =0.8 um GATE WIDTH = any

.MODEL MNCH_0P8 NMOS

+ XL=0.00 XwW=0.00

+ IILMAX=1.0E-6 //LMIN=0.6E-6

+ IIWMAX=500E-6 //WMIN=1 4E-6

+ LEVEL=3 //ACM=2

* Long channel model
VTO=0.8115 UO=47s TOX=1752E9
NSUB=3.618E16 NFS=734.5E9 DELTA=1.0529
THETA=52.45E-3 WD=45.0E-9

Short channel model parameters
LD=72.6TE9 LDIF=9243E-9 XJ=160.4E-9
VMAX=146.5E3 ETA=36.06E-3 KAPPA=l1c-12
RS=1.076E3 RSH=0.0 HDIF=1.2E-6
RD=1.076E3

Temperature model parameters
TLEV=1 TCV=980.8E-6 BEX=-1.650
TRS=-1.000E-9 TRD=-1.000E-9

Diode model parameters

JS=5.0E4 /[ISW=55E-10
CJ=260.0E-6 MI=0.46

+ CISW=280.0E-12 MISW=0.20

+ IICJIGATE=930.0E-12

+ PB=0.925 PBSW=0.925

+ CGSO=288.4E-12 CGBO=5683E-12

+ CGDO=288.4E-12

R R R



¢ Junction Temperature mode! parameters
+ TLEVC=1

+ PTA=290E-3 PTP=8.24E-3

+ CTA=353E9 CTP=3.18E-15
* Noisc model parameters

+ AF=085 KF=15E-24 //NLEV=2

-

#endifl/ TYPICAL



Appendix A.3 NPN Library File

The following is a portion of the NPN library file. The file is extremely large with
various configurations of NPN BiCMOS transistors. Therefore only one example is
shown since the power program does not require use of this file.

* Canadian Microelecuonics Corporation

* BiCMOS Design Kit V1.0 for Cadence Analog Artist
* Angust 23, 1995

*

* 0.8-micron BiCMOS SPECTRE libeary for 5V bipolar models
.

*Release: 1D025
* Dae: January 11, 1994
*

* You shouid have the following options set in order to supress the

* printing of the mode! parameters, o make the nominal temperature

* compatible with SPICE. and to make SPECTRE use the same device models
* as SPICE 2G.6:

* .OPTIONS NOMOD TNOM=27 DCAP=1
*

* The following BiCMOS modeis are available:
L

* VERTICAL NPN:

* DEVICE NAMES: NN51111X NN521 11X NN52112X NN52114X NN53215X NN52122X
. NN52124X NNS32215 NN564230 NN596245 NNS32315 NNS564330
. NN596345 NN594115 NNS1X11X NN52224X NN52225X

. NNS2F1 1X NNS2F24X NN52F25X NN53F215 NNS6F230 NN59F245
. NNS64B30 NN596B45 NN52F12X NNS2F14X NNS21A1X

. NNSCF3C6 NNSC212X

* CALLING CARD: Q_CBESNNS

E ]

[ ]

#ifdef TYPICAL

L d

* BIPOLAR PARAMETER LIBRARY
-8
* 1X NPN WITH SINGLE BASE CONTACT CONTACTED WITH METAL |
.MODEL NNS51111X NPN
IS= 3.10E-18 BF=1.03E+02 NF= 1 .00E+00
VAF=6.00E+01 IKF=5.36E03 ISE=457E-18
NE= 1.50E+00 ISS= 1.00E-17
BR= 1.00E+00 NR=1.00E+00 VAR=5.50E+00
NC=2.00E+00 1SC=0.00E+00 //TKR=0.00E+00
RB=9.66E+02 RBM=9.66E+02 //IRB=0.00E+00
RE= 1.96E+01 RC=6.28E+01
CJE=1.67E-14 VIE=8.00E-01 MIE=2.67E-01
TF=12SE-11 XTF=736E+02 VTF= 131E+00
ITF=938E02 PTF=4.00E+01
CIC=2.02E-14 VIC=7.10EO01 MIC=3.97E-01
XCJC=5.10E-01 TR= 4.00E-09
CIS=3.44E-14 VIS=3.70E01 MIS= 134E-01
XTB= 1.62E+00 EG=1.11E+00 XTI=5.82E+00
KF=4.27E09 AF=207E+00 FC=8.00E-01

IR I 2 R S E N S R

g
:



Appendix B.1 Typedefs.h Header File Information

This file defines the data structures used in the initial stages of the power program.
There are two naming schemes involved with this file. The first defimes the netlist data

linked list structure. The second structure defines the transistor model data linked list.

Structure Definition

struct cct (CCT): This is the structure for the Sub-circuit linked list. References are made
to other structures.

struct cap (CAP): This is the structure for Capacitor information. It is used as a stand alone
structure, or part of the CCT structure as a sub-linked list.

struct mos (MOS): This is the structure for Mosfet information. It is used as a stand alone
structure for a linked list, or part of the CCT structure as a sub-linked list.

struct que (QUE): This is the structure for Transistor information. It is used as a stand
alone structure for a linked list, or part of the CCT structure as a sub-
linked list.

struct res (RES): This is the structure for Resistor information. It is used as a stand alone
structure for a linked list, or part of the CCT structure as a sub-linked list.

struct sub (SUB): This is the structure for the Sub-circuit reference information.

struct vol (VOL): This is the structure for the Voltage reference information.

Table B.1: Netlist linked list data structures.

Figures B.1 to B.7 show the contents and definitions of each netlist linked list styles.

Reference Number | d—»{Capacitor Sub-circuit Linked List |
Name

Start CCT Input Node 1 | - —]
Linked List Labut Node 2 —>{MOSFET Sub-circuit Liaked List |
_—-—.‘
Output Nod
uS:pplyol ¢ -—D{El' Sub-circuit Linked List }
Supply 2
Value '—D{Resis(or Seb-circuit Linked List I
v
” Element #2 JJ
Ead CCT
Linked List

Figure B.1: CCT (sub-circuit data) linked list structure.




Start CAP

Linked List
———pl

Reference Name
Pius Node
Minus Node
Flag
Value

End CAP

H

Element #2

Linked List
———

Figure B.2: CAP (capacitor data) linked list structure.

Start MOS
Linked List
—_—

Reference Name

Drain Node. Gate Node
Source Node.Substrate Node
Model. Length. Width
Area: Drain.Sourc
Perimeter: Drain Source
Capacitance: Gate. Drain, Source
Threshold Voltage

—b{ | Element #2

End MOS

] Linked List

Figure B.3: MOS (MOSFET data) linked list structure.

Start QUE

Linked List
—_"

Reference Name
Collector Node
Base Node
Emitter Node
Substrate Node

End Q

UE

i lm. Linked List

Figure B.4: QUE (transistor data) linked list structure.

Start RES

Linked List
—_——.‘

Reference Name
Plus Node
Minus Node
Value

End RES

Figure B.5: RES (resistor data) linked list structure.



Refereace Name

Start SUB ::s:: :::: ; End SUB
Linked List inked List
inked List | Output Node | Im. Linked Lis
Supply 1
Sapply 2
Name

Figure B.6: SUB (sub-circuit reference data) linked list structure.

Start VOL

Linked List
—_——

Reference Name
Voltage Node
Referencce Node End VOL

Type Linked List
Voltages: Va, Vb N IMI
Times: Delay, Rise, Fall

Pulse width, Period
Start, Ead

Figure B.7: VOL (voltage data) linked list structure.

This is the second structure defines the transistor model data linked list

Structure Definition

struct model (MODEL): This is the structure for the Model reference information.
In this structure, references are made to other structures.

struct long_param (LONG): This is the structure for the long parameters of the
mosfet model.

struct short_param (SHORT): This is the structure for the short parameters of the
mosfet model.

struct temperature_param (TEMP): This is the structure for the temperature parameters of
the mosfet model.

struct diode_param (DIODE): This is the structure for the diode parameters of the
mosfet model.

struct junction_param (JUNCT): This is the structure for the junction parameters of the
mosfet model.

struct noise_param (NOISE): This is the structure for the noise parameters of the
mosfet model.

Table B.2: Model linked list data structures.




90

Figures B.8 to B.14 show the contents and definitions of each model linked list and data

parameter styles.

Start MODEL
Linked List

Reference Number
Type
Model [nitial Device
Parameters: xl. xw,
Imax, [min. wmax,
wmin, ievel. acm

—»{Long Parameters Data Structure |
—D[Sbort Parameters Data Strnclm
-—D{Tempeumre Parameters Data Structure J
+—>{Diode Parameters Data Structure l

~—>{junction Parameters Data Structure |

A

—»{Noise Parameters Data Structure |

v
|| Eemems2

|

3 Ead MODEL
Linked List

Figure B.8: MODEL (model library) linked list structure.

LONG
Data Structure

Long Parameters:
vto, uo. {ox, nsub
afs, delta, theta, wd

Figure B.9: LONG (long parameters) data structure.

SHORT

Data Structure

>

Short Parameters:
Id, 1dif, xj, vmax. eta
kappa, ts, rsh, hdif. rd

Figure B.10: SHORT (short parameters) data structure.

TEMP

Data Structure

Temperature Parameters:
tlev, tev, bex, trs, trd

Figure B.11: TEMP (temperature parameters) data structure.



DIODE Diode Parameters:
Data Structure s, jsw, ¢j, mj, cjsw
mjsw, cjgate, pb, pbsw
cgso, cgbo, cgdo

Figure B.12: DIODE (diode parameters) data structure.

JUNCT
Data Swreture | | Junction Parameters:
tleve, pra, ptp, cta, ctp

Figure B.13: JUNCT (junction parameters) data structure.

NOISE
Data Structure Noise Parameters:
—_—
af, kf, alev

Figure B.14: NOISE (noise parameters) data structure.



Appendix B.2 Combine.h Header File Information

This file defines the data structures used in the final stages of the power program. This

list contains the entire flat, single level hierarchical circuit representation.

Structure Definition

struct nodes This is the structure for the Node information. It is used as a stand alone

(NODES): linked list structure to describe all of the nodes in the CUT.

struct clist (CLIST): This is the structure for Capacitor information. It is used as a stand alone
linked list structure for describing all capacitors in the final circuit netlist.

struct mlist (MLIST): | This is the structure for Mosfet information. It is used as a stand alone
linked list structure for describing all mosfets in the final circuit netlist.

struct tlist (TLIST): This is the structure for Transistor information. It is used as a stand
alone linked list structure for describing all transistors in the final circuit
netlist

struct rlist (RLIST): This is the structure for Resistor information. It is used as a stand alone
linked list structure for describing all resistors in the final circuit netlist.

Table B.3: Final circuit linked list data structures.

Figures B.15 to B.19 show the contents and definitions of each final circuit linked list

data styles.

Start NODES
Linked List

Node Name End NODES
Linked List
Flag —-+—»} | Element #2 - - —>
Voltage
Capacitance

Figure B.15: NODES (node data) linked list structure.




Start CLIST
Linked List

Figure B.16: CLIST (capacitor data) linked list structure.

Reference Name
Plus Node
Minus Node
Flag
Value

-

Ead CLIST

Element #2

Start MLIST

Drain Node, Gate Node

- . Souarce Node, Substrate Node
Linked List ’

o Model, Threshold Voltage
Voltages: Gate, Drain, Source
Flags: Drain, Gate, Source
Capacitance: Gate, Drain, Source

Reference Name

—+—»{ | Element #2

Figure B.17: MLIST (MOSFET data) linked list structure.

Start QLIST
Linked List

Figure B.18: QLIST (transistor data) linked list structure.

Start RLIST
Linked List

Reference Name
Collector Node
Base Node
Emitter Node
Substrate Node

Linked List

End MLIST
Linked List

End QLIST

Element #2

Figure B.19: RLIST (resistor data) linked list structure.

>

Reference Name
Plus Node
Minus Node
Flag
Value

Linked List

End RLIST

Element #2

Linked List



Appendix C.1 Program Block Flow Diagram

file_check

—b{ read_netlist I

calculations ]———bt drain_source J

inter_cap_sort

cap_sort

combine_cap

combiae_mos
combine_que

combine_res

rename_refs

time_tgode_voltage

data_file_transfer

Figure C.1: power program main block diagram.



(  Start “power” Program )

n

Y

Print Error Message:
Input file Exist? N [aput File is Invalid or [~
Does Not Exist

Y

orrect Input
File Data?

Y

Y-PJ

N

Y
Create Output File with given
oame and caable it for Writin

[~ Goto power_A Block

1

~N-»f [nput File Does Not  |—»¥

~Print Error Message: J_

Invalid Command Line

Print Error Message:

Coatain Valid Data

Print Error Message:
Outpat File Exists. Try Y
Different Name

(Tesminate Frogram)

(C  Start power_A Block D)

( End “power” Program

P

Figure C.2: Flowchart for power main program routine.

{"Call “read_models” Subroutine |

v
["Call “read_netlist® Subroutine ]

{Call *caps_calcs® Subroutine |

Call *combine_subccts® ]
Subroutine

[T Call “free_mem” Subroutine |

v
r Call “time_node_voltage” ]

Subroutine

v
C End power_A Block D]




Appendix C.2 Level — One Program Flowcharts

(Start “read_models" Subroutine )
Call “file_check” subrostine for ]
*amosLib” and “pmosLib” files.

both files valid? N Print Error Message |
v

Y (_Terminate Program )

v
| Open “nmosLib” data file |

[Call “read_model_data” Subroutine |

Close “amosLib” file and I
Open *pmoslib” file

[Call “read_model_data” Subroutise |

Close “pmosLib” file and Call |
"lower_case” Subroutine
I

Y
( End “read_models” Subroutine )

Figure C.3: Flowchart for “read_models™ subroutine.



(Start “read_petiist* Subroutine )

N

V-D(Ed “read_aetlist® Subroutine)

Y

A A
Get [irst Character into “CH"

Scan data line

) 4
{Replu: CH. Allocate memory &

fiest word * Subckst*?
Y
v

olo read_in_A
Block

{  Goto read_io_B Block

1

( Suriread_in_A Block )
w v Get Capacator information
and store in linked list
N
W - et MOSFET iaformaticn ¢
and store in linked list
~
W v Get Transistor information 3
and store s linked list

N
W v Ott Resistor information v
and store 13 liaked list
N
w v Get Voltage 1ntormation r
and store in linked list
N
w v Get Sub-circust intormation
and store 10 linked list {
N

A 4

[ Get line and Purge the data__|
1
P

( End read_in_A Block )

Start read_ia_B Block

_.{ﬂet Tirst Char of new line & uotl
in “CH"

W v -»(End read _in_B Block
N

w v et Capacilor information
and store 10 linked list

N
W v.»| Get MOSFET information 5
and store 18 liaked fist
N

w ¢5] Gt Transistor information v
and store in liaked fist

N

@ ¢a] Get Resistor information b
and store in linked list

N

-
[ Get tine and Purge the data |
e

Figure C.4: Flowchart for *‘read_netlist” subroutine.

( “Start "cap_calcs” Subroutine )

[ Call "inter_cap_sort” Subroutine|

{Call "para_cap_calcs” Subroutine]

(" End “cap_calcs” Sobroutine )

Figure C.S: Flowchart for *“‘cap_calcs™ subroutine.



(Start “combine_subccts” Subroutine )

[ Cali “combine_cap® Subroutine |

[ Call “combine_mos® Subroutine |

[ Call “combine_que* Subroutine |

{  Call *combine_res* Subrostine |

¥
{ Cali “cap_sort” Subroutine |

[ Call "res_sort” Subroutine |

Call “cap_sort* Sabroutine |

-

{_Call “rename_refs” Subroutine |

[ Call “node_cap" Subroutine |

¥
(End "combine_subccts” Subroutine )

Figure C.6: Flowchart for “combine_subccts™ subroutine.

(Start “free_mem” Subroutine)
| P

Set temp ptr to next value
Free mem used by this clement [—
Set nmoshead to temp pointer

Set temp ptr to next valae
Free mem used by this clement
Set pmoshead to temp pointer

Set temp ptr to next value
Free mem used by this element [—
Set ccthead to temp pointer

Set temp ptr to next value
Frce mem used by this element [—
Set chead to temp pointer

Set temp ptr to next value
Free mem used by this ciement [—
Set mhead to temp pointer

Set temp ptr to next value
Free mem used by this clement —
Set ghead to temp pointer

Set temp ptr Lo next value
Free mem used by this element +—
Set rhead to temp pointer

v
(End “free_mem” Subroutine)

Figure C.7: Flowchart for “free_mem” subroutine.



5 S arrey "iries
For ol i if s intarveloutant tins of the mpply. the valiags chonges and o
flag is sat. stharwios the velnge remains eachanged
N Qu flag was st if Vs intarvaleficish thus of he upply. the valtags revers
= its eri i

5 e o ey
1f e wmda it 0n inpet capy the wrrey row from shove inte this wrey rww sad st o
flog in e ande st o 20 inpet ¢ 1), sod e snids wyey us = inpm
Oherwiex initiskiss arvay o w 3000 aod 10t flog is e onde Bet au (-1}

e time fwe fou int W rere

[kuudlosmndmil‘niluﬂw-n-nmn‘ut
scounfiogly

apply o goond end 108 thais veltages

| Geme tuns_nade_velings_A Bleck 1

(Chant oms_sede_veioge A Bloct )
Jﬁ

Sesch ondn valtage ey for oo inpec: o fonad check anch MOSFET guts for o

Rases o) MOSFET wadn Mlogs (draim. gute. sed searca) 0o sove
ondn watch: if fosad. mt the guis voltoge sod st gues Mlagel

Y

2
For asch snde. chost cach MOSFET sade idrma. gate & swurce : far o metss.
st the oy voltags wrey wub G flanl velinge
1f the suds iu the draim or soarcs: dutarmmas the doltaV betmons the cocreat
tims sod previns Gume.
f dalaV>4 VpsaiVadD-Vid sad Ms8*(Ves-Vier *
W daRaVct VaViir? and B (V- Vim) *
Same (4 inte coremt

il droineVdi  Sat Vo dfiage3. diege). gfiag=): Call snulyrs Subeousins
shwif cnwremVéd: Ses V& dflagul. oflegel. gflage]: Call saslyas Sebremtion
jaloaid draime®  Sat V< diflage]. dfieg=). gflag=3: Call saniyss Selvwstioe
covif wcasd  Set V& dflage3. fiage]. gfiag=): Call spelyss Solwuntine
etharwioe liag=i

of draimeVéi: VéuV¥id: dflage). sfiag= pfiage3
alonif copwcenVdd: VaoVid: dlage2. sflage). gfiag=}

i dlagnd & dlogt
ot Vo ar V& difagn). finge}. gfing=3: Coll sealyss Subrounas
il dflagel or 3 & dflogel
ut ¥s or V& dilag. sfiag. sfleg: Call sanlyse Subvwutios
ckopif dflog=0 & flagwt or X
Vo or Vé: dlieg. fiag. gfiag Coll amuiyse

alosif dBY 9 & sflogel:

et Vo & fflog=l ar st Vd & Ming=: Coll apalyzn Subvestine
olsaif dflogn) & sfiag=):

oflage). gfisgey :mt Vs if sommmary & Colt snslyss Sebrostins
olonif dflogw] & aged:

dflagal. ¢flage) 30t Vd f sucomury & Call sanlyrs Sobreutne

Figure C.8: Flowchart for “‘time_node_voltage™ subroutine.




Appendix C.3 Level - Two Program Flowcharts

( Start *file_check” Function )

'l Open model file ]

s

¥
v
f Get first char of file |

w N Ianput File is Empty or

Y
v
L Close model file i

(End "file_check® Function )

Print Error Message:
Invalid Model File

Print Error Message:

lavalid l

Figure C.9: Flowchart for “file_check” function.

( Start “lower_case" Subroutine )

nmos” list NULL?

N

v
Call "convert® subroutine to

convert “amos” name from
upper to lower case

v
Call "convert” subroutine to
convert “pmos” name from
upper to lower case

(End "lower_case® Subroutine )

Figure C. 10: Flowchart for “lower_case” subroutine.

100



101

Start “read_model_data® )
Subroutine

Is the nput End “read_model_data® )
File EOF? Subroatine

N

Y
[ Eater data for each model  j&——
T

:

Y

v
[ Call *strionum” subroatine |
|
mode! data
atry finished?

Figure C. 11: Flowchart for “read_model_data” subroutine.

—Y

Start “para_cap_caic” )

Subroutine
[ Call Vj_entry function i
Set head pointer to l
! subcircuit list

Subroutine

N
s - - X ~
. et tr p to tr
llnctemen( head pointer ] I linked list I

N

Y
["transistor nmos? Set NMOS Lib I
| transistor pmos? Set PMOS Lib

>
~ Set model pointer to model
i linked list

r~

model
not at end &
model type <> transistor
pame?

[ Tacrement model pointer |

N

( Terminate Program )

| Display Error Message

v
[T Call “calculations” subroutine |

[ Tnc T P ]

Figure C. 12: Flowchart for “para_cap_calc™ subroutine.



(Sun iater_cap_sort” Subroutise )

I Set poiater to swbcircuit list |
L1

Potater at ead of list?

1
N

i v

' " Goto cap_cales_AA Block |
+

[_Goto cap_cales BB Block |

i Set old capacitance
list as sew list

i Incremest paiater to sext ]
L sabeircnit

Subroutise

(CStart cap_cales_AA Block )
v

Set poiater to Bead Liaked list ( Start cap_calcs_BB Block )
o

Set secosd pointer to second l
v ad cap_calecs_AA
Block

Set paiater to head lisked
list & Set pointer to
compare lisked list

Tompare poister Y d cap_calcs BB
end of list? Block
N

N_T
locremest head &

: compare

{ocrement compare poiater and

remove capacitance reference
from list

%

clement of the bead linked list

X
nodes equal?
flag=0?

Y

A 4
{"Set flag and sum capacitances |

[ increment compare pointer |

Figure C.13: Flowchart for “inter_cap_sort” subroutine.



(Start "cap_sort” Subroutine )

[ Goto cap_sort_A Block |
v (Start cap_sort_B Block)

[ Gote cap_sort_B Block |

(End "cap_sort” Subroutine )

<

ad of 2ad list?

(Start cap_sort_A Block) M

Y —<<En
(End cap_sort_A Block)

N

Remove node & ‘
increment 20d pir [ ud ptr flag set’

N
A 4

R
nodes of two pointers
me & 2nd flag

Y

h 4
Set 2nd pointer to next M
value of st pointer v
et potnter Lo
final cap list

v
(End cap_sort_B Block)

+ & - nodes of two
pointers same & 2nd flag 0?
2" nodes vdd or 02

Y

A 4
- Total values, store in ist ptr.
- set 2ad ptr. flag

2
First pownter °-" sode = 0,

total values, store Istptr, &

set 2nd Eu'. flag ‘
e——

r
—{ lncrement 2a0d ptr. e ke

Figure C.14: Flowchart for “cap_sort” subroutine.

[Tacrement Eu‘ fev ‘

103



(Start res_sort_A Block )

(Start *res_sort® Sabroutine )

[ Goto res_sort_A Block |

¥
[ Gotores_sort_B Block |

(End res_sort_A Block )

N

Res flag 0? N ->{ [acrement Ist Eu. [
Y

A 4
Set 2nd pointer to next
value of Ist pointer |

rer
nodes of two pointers
me & 2od flag 02

Y

¥
(Ead °res_sort* Subroutine )

Y —

(Start res_sort_B Block )

<

nd of 2ad list?

Remove node &
increment 2nd ptr

leY nd ptr flag set?

N
A 4

A 4
Total vaiues, store in Ist pir &
set 2ad ptr. flag

Increment Elr ey ‘

N

"
Set pointer to

—{

Increment 2nd ptr.

e

final res list

v
(End res_sort_B Block )

Figure C.15: Flowchart for “res_sort” subroutine.

104



(Start "node_cap® Sabroutine )

| Goto node_cap_A Block |

¥
| Goto node_cap_B Block |

|_Goto node_cap_C Block |

| Goto node_cap D Block |

(End “node_cap® Subroutine )

End cap_sort_A Block ey

Add to node list,
set cap, reset fla;

set mos pur &
Allocate memo

Add to node list,
set cap, reset flag

Gate node:
dd. Vss. or 02

Add to node list,
set cap, reset flag

Source node:
dd, Vss, or 02

Start cap_sort_C Block

N
—<Ta g g >
# st & 20d ptr
§ Incremen
increment 2nd ptr

¥ »{( End cap_sort_C Block

Start cap_sort_B Block

ree memory &
set st pointer

L 4
et 2od pointer to aext
value of st pointer

Ist & 2nd
names equal &
2ad flag set?

Y

Increment
' 2nd ptr

105

Y »(Ead cap_sort B Block

Eed cap_sort_D Black &Y

C2p pIT & cap -’ node = 0?

Y

fode & cap names equal

Figure C.16: Flowchart for “node_cap” subroutine.

A 4
Total values, store in node &
set cap fla;



106

CStart *combine_cap® Subroutine )
'

2
I Set temp poiaters |

1
W o] COPY data from oid list to
new list & reset flag to 0

Y

L—_' End of subccet list?

[_Free ailocated memory not required | N

(_End “combine _cap® Subroutize )

bect ref = data aame X
data list not done?

!-'{ Incremeant cct Eu’ ]

Y

="End of subcct data hig Y

N
Y

Dispiay error message:
Error has occured

Termigate Program

[~ Goto combine cap_A Block |
1
Y

[ lacrement subcct pte |
|

(Start combine_cap B Block )

First element 1? Y

(Start combine cap_A Block )
I - > copy lst input
Copy subect ref list into temp location Third elemeat 17 '

: d combine_cap b
gd of subcct data list ¥ M A
Block Third element 27 v ¢oPy 20d lnput
data from temp

N
A 4
|_Copy data from oid list to sew list ] T
- 4
ECheck 2IPbasameric of plas Bode l First element o? v o store output data here +—
N

{__Goto combine_cap_B Blcok |
[Check alphl-nnnferric of minus mode ] " » store oode data here  —i]
[N

N

[ Goto combine_cap_B Blcok v
(_Ead combine_cap_B Block )

L Increment pointer |

"1

3

Figure C. 17: Flowchart for “combine_cap” subroutine.



(_Start “combine_mos® Subroutise )

{ Set temp p s ]
|
) S
W Copy data from old list to
) new list & reset flag to 0
Y
[ Free allocated memory aot required | N

(Ead “combine_mos* Subroutine )

beet ref = data aame R
data list not done?

A -{ Iacrement cct Etr l

Y

=—"Ead of subcct data lis| Y

N

Display error message:
Error has occured

Y
|_Goto combiae_mos_A Block |

[ lncrement subect pir |

(_Start combine_cap_B Block )

First element 1? Y
Third element 1? \3 copy lst nput
data from temp

N
Third element 2? \ ;:lp.’ ;::Il:'::
N
L
v store output data here  ——

N

(_Start combine_mos_A Block )

{CCopy subcct ref list iato temp location |
pd of subcct data list) Y ad combae_mas_A 8
Block
¥

A 4
[ Copy data from old list to new list |

-

["Check alpha-sumeric of drain node |

[[__Goto combine_cap B Blcak ]

[ Check aipha-aumenc of gate aode ] v-bL store node data here —
v <

[__Goto combine_cap B Blcok | ye

A 4
(End combine_cap_B Block )

[Check alpha-numeric of source node |

¥
[C_Goto combine_cap_B Blcok |

[ Check aipha-numeric of substrate sode |

v
[_Goto combine_cap_B Blcok |

| Tncrement poiater |

Figure C. 18: Flowchart for “combine_mos’ subroutine.



108

( Start “combine_que” Subroutine )
'3

[ Set temp pointers )

W " Copy data lnlnn old Tist to
gew list & reset flag to 0

\

I,_' ad of subcct list?

| Free allocated memory sot required | |

( End *combioe_que® Subroutine )

beet ref = data name
data list not dose?

Y
<_Ead of subcct data list Y
N

Y
[ Goto combine_que_A Block |

!¢| Increment cct Elr l

Display error message:
Ecror has occured

erminate Program

[ Imcrement subect ptr |

(Suart combine_cap_B Block )

First element 1? Y
- copy Ist 1oput
Third elemest 1? Y data from temp

N
Third element 27 Y ;:r" ":l::: r
N
L
v store output data here —

N

(__Start combine_que A Block )

¥
{_Copy subcct ref list 1nto temp location |
~ ad cumbine_que _
ad of subcct data lis ¥ !
N

Y
[_Copy data from old list to new list |

=

{Check alpha-numeric of collecior aode |

i Goto combine_cap_B Blecok |

¥
| Check alpha-num:nc of base node | v-[ store aode data here | S
| Golo combine_cap_B Blcok | M

v v
[Check alpha-numeric of emitter node] (£ad combine_cap_B Block )

L Goto combine cap B Blcok |

| Check alpha-aumeric of subsirate node |

1 Goto combine_cap_B Bicok |

[ Tacrement pai |

Figure C.19: Flowchart for “combine_que” subroutine.



(Start “combine _res® Subroutine )

L Set temp pointers |
e 1
W Copy data from old list to
gew list & reset flag 10 0
Y
Y Ead of subcct fist? <
[ Feee '"""‘E :‘::;" not | N

(Ead *combine_res* Subroutiae )

Gbcct ref = data name &
data list not done?

Y
. Display error message:
="Ead of subcct data list] .4
~

Termiaate Program

‘-{ ncrement cct Etr [

Y
[ Goto combine_res_A Block |
T

A 4
[ Increment subcct ptr |

( Start combine_cap_B Block )

First element i?
copy st iaput
Third element 1? Y data from remp
copy 2ad aput b
Thu’d element 2? dan {rom temp

First element o?

[ Goto combine_cap_B Blcok | M

¥
{ Check al_phl-num_elﬁﬂmu node | '_,' slore aode data bere  }——
L

Goto combine_cap_B Blcok | N

(" Start combine_res_A Block )
¥

["Copy subcct ref list into temp location |

ad of subcct data list ¥
Block M

[ Copy data from old list to new list |

=]

{Check alpha-aumeric of plus node |

Y -ul store output data here  |———

Y
| [acrement potnter ] (_Ead combine_cap_B Block )

Figure C.20: Flowchart for “combine_res” subroutine.

(Start “rename_refs® Subroutie )
{ set index aumber to 1 }

1
" set cap index ref, increment index ref,
end of cap list? increment cap ptr

Y

_1
.I set mfet index ref. increment (ndex I

Y

1
'I set trans index rel, increment index ref. I
]

Y

1
N,.l set res iadex ref, -increment index ref. I
if

Y

A 4
(End “rename_refs” Subroutine )

Figure C.21: Flowchart for “rename_refs™ subroutine.

109



C Sunt 'lul;u' Subroutise )

ptr2 1o mos list

v-»(End "analyze” Subrouting
¥ >

v-a{ Goto snalyze A Bln:k[

mptr2-drain equals NUT, aot

fiptr2 not NULL
mptr2-gate equals NUT, not
0 or Vdd

va[ Goto nn!n:_B Bloct[

fiptr2 aot NULL3
mptr2-source equals NUT, not
0 or Vdd

¥ -» Goto analvze _C Biock

!
J

Set mptrl-Vg=voltage
Set mptr2-g(lag=|

N

110

Start anaiyze A Bloc!

mptr2-dfiag=0?

ct mptrl-Vdavollage
v 2 if NUTMlag=3" set mptr2-dflag=3
clse set mptr2-dfia

et mptrl-dflagal

I MUT-drain=NUT set MUT-Vd=mptr2-Vd
If MUT-gate=NUT. set MUT-Vg=mptr2.Vd
If MUT-source=N set MUT-Vsampir2-Vd

et mpirl-Vd=vollage
Set mptr2-dflags3

Set mptrl-Vs = voltage
If NUT(lag = 3 set mptr2-sflag = 3
clse set mptr-sflag =1

Sct mptr2-sflag=1

et mptrl-stlag=2
I MUT-drata=sNUT: set MUT-Vd=mptr2-Vs
If MUT-gate=NUT set MUT-Vg=mptr2-Vs

Bptr2-dflag=] 3
Qptr2-Vs<xvoll.

Set mptrl-gitag=l

It MU

If MUT-deaiazNUT set MUT-Vd=mptr2-Vg
If MUT-gate=NUT set MUT-Vg=mp1r2-Vg
-source=NUT set MUT-Vs=mpur.

1f MUT-sourcesN set MUT-Vs=mpte2-Vs

et mpirl-Vs=voltage
Set mptr2-sflagz3

Figure C.22: Flowchart for “analyze” subroutine.



(Stast *power_diss* Subroutine )
v

| Determine average rise and fail times and the shortest period from ail inputs. |
v _

Calculate parasitic energy it each node due to all parasitic capacitances.
Compare time iatervals for each node:

if deltaV=0: energy=0

or if deltaV>0 & node is input: eaergy=C*deltaV 272

or if deltaV>0 & node is not an 1nput: energy=C®deltav ?

'

Calculate intercosnect energy at cach node due to 3ll interconaect capacitances.
For each iaterconnect cap find associated aodes, determine deltaV(+ node) aad
deltaV (- sode) and calculate total deltaV.

If deltaV>=0: energy (- node)=C®deltaV 2+existing energy

oc If deltaV<O: energy (+ node)=C*dettaV Zsexistiog energy

v

Calculate Average parasitic energy and power for each sode during period.
Sum all energies at a acde for total nme and count each traasition.
Average energy=Average coergy/transition count

Average power=Average energy/period

Calculate Average taterconnect energy and power for each node during period.
Sum all energies at a aode for total time and count each transition.

Average eaergy=Average chergy/transition count

Average power=Average eaergy/period

Calculate the average power dissipation of each node by summing the
contributions duer to the parasitic and iater powers.

Determine the short circuit power dissipation component by:
Psc=((rise_time+fali_time)/(2°transition_time))*Vdd*Ipeak
where Ipeak is the average peak current from the analysis section

Determine the total dynamic power dissipation compoaeat by:
dynamic_power = (averige_power_dissipations + dyanmic_power)/totai nodes
Determiae the total average power by summiog the total short circust power and
the total dynamic pewer dissipations

v

| Priat all node aames to output file, formatted as 2 Matlab string ]
v

| Print all ume transiticas to output file, formatted as 3 Matlab string |

{7 Print all time transittoas to vutput file, formatted is 3 Matlab array structure )|

i Print all node parasitic energies. formatted in 2 Matlab array structure J|

{ Priat all node 1nterconnect eaergies. formatted in a Matlab array structure B

L Print all average node parasitic energies, formatted in 3 Matlab array structure |

[Print alt average node interconaect energies, formatted is a3 Matfab array structure |

[ Print all average node parasitic powers. formatted in 3 Matlab array structure ]

| Priat all average node interconsect powers. formatted io 3 Matlab array structure |

| Print ail total average node powers, formatted in 2 Matlab array structure J

| Print il aode voltages. furmatted in 2 Matlab array structure i
| Print ail node currents. formatted in a Matiab array structure J
v

Print: average dy ic power dissipation. average short-ciccuit pawer dissipatioa,

average total power dissipation. total aumber of nodes, and
the total aumber of input traasitioas

'
H Call “data_file_transfer® Subroutine |

( End *power_diss® Subroutine )

Figure C.23: Flowchart for “power_diss™ subroutine.

111



112

Appendix C.4 Level — Three and Four Program Flowcharts

(_Start “convert” Subroutine )

[ Initialize i to 0 ]

N

Convert nzmeﬁ] trom upper
to lower case using the *¢c*
function “tolower” and

increment pointer

( End "convert® Saobroutine )

Figure C.24: Flowchart for “convert’” subroutine.

(_Start “strtonum” Fuaction )

Parse data prior to and
including the egual sign *="

Call “c” functios “strtod” to
convert the parsed string to a
double

( End "sirtonam® Function )

Figure C.25: Flowchart for “strtonum” function.



113

( Start "vj_entry® Fuaction )
T
7

Display message to enter vj
magaitude

|
A 4

f Wait for user eatry |
T

alpha characters? ¥ Display error message |

N

N

—
Y

Y
Display message for
entry of vj sign
|

Y
[ Wait for user entry_ i

more than one character?
]
N

vj signa
et or et

Y-»{ Display error message |

¥

Y
Return value of vj
to_“para_cap_calc® subroutine

Y
( Eand "vj_entry’ Funclion )

Figure C.26: Flowchart for *“vj_entry” function.

(C Stant “calculations” Subroutine )

v
fCalculate Oxide Capacitance (Cox) |
v

Calculate iatrinsic and extrinsic
2ate capacitances, sum the results
and store as the total gate
capacitance (Cg)

T

L2
Call “drain_source® subroutine and
store the returned resull as the total
drain capacitance (Cd)
¥
Call “drain_source® subroutine and
store the returned resuit as the total
source capacitance (Cs)

v
( Eand *calcualations® Sabroutine )

Figure C.27: Flowchart for “calculations™ subroutine.



114

CSlart 'data-ﬁle_transfer')
Sabroutine
13
[ Open Matlab data file |

W n| PrintEror Message:
Iovalid Data File

Y
v
{ Get first char of file )
W N> Print Error Message:
" 7| File is Empty or [nvalid
Y

Y
Transfer data 1ato output user
results file and
Close Matlab data file

C End “data_file_transfer® )
Subroutine

Figure C.28: Flowchart for “data_file_transfer” subroutine.

(Start “drain_source* Function )

Calculate area contribution of the
drain or source capacitance

Calculate periphery contribution
of the drain or source capacitance

Sum the two compoanents as the
total drain or soarce capacitance

Return final result to the
“calcolations”® subroutine

¥
(_End “drain_source® Function )

Figure C.29: Flowchart for “drain_source” function.



Appendix C.5 Matlab Program Source Code

%% % %% %% % %% %% %% %% %% % %% % %R % % %% %% %% HHHHT%%
fnt_loop = 1;
while fat_loop
fnt_prompt = {‘Enter Fout Size for Graphs (6pt. to 12pt)'}:
dfit= {10};
fnt_title = ‘Font Size’;
line_pum=1;
tmp_size = inputdlg(fat_prompt fut_title line_aum.dflt).
fnt_size = str2num(char(tmp_size)):
if ((fot_size >= 6) & (fint_size <= 12))
break;
end
end

clear fat_loop;
clear fot_prompt;
clear dfit;
clear fat_title;
clear line_num;
clear tmp_size;
node_axis_label = str2mat(char(node_string_cell)).
%% %% % %% %% % %% %% % % % % % % % % % % %o %o %% % %% B R H %% % %%
program_loop = 1;
while program_loop == 1
range_type = mymenu(Enter Action:',Plot a range of nodes?”,Plot all nodes?”,’End?);
if range_type == 1
node_name_length = size(node_axis_label);
start_node = mymenu('Start at node:".nodc_string_cell);
end_node = mymenu(Finish at node:".node_string_cell);
if start_node > end_node
temp = start_node;
start_node = end_node;
end_node = temp;
node_label = node_axis_label(start_node:end_node, | :node_name_length(2)):
elseif start_node < end_node
node_label = node_axis_label(start_node:end_node. 1:node_name_length(2));
elseif start_node == end_node
node_label = node_axis_label(start_node,1:node_name_length(2)):
end
plot_loop = 1;
newrow = 1;
if start_node < end_node
for oldrow = start_node:zend_node
for col = 1:max_times
voltage(newrow,col) = node_voltage(oldrow.col);
para_E(newrow,col) = node_para_energy(oldrow,col).
inter_E(newrow,col) = node_inter_energy(oldrow,cof);
end
DEWIOW = newrow + §;
end
ave_para_E = ave_para_energy(start_node:end_node);
ave_inter_E = ave_inter_energy(start_uode:end_node);
ave_para_P = ave_node_para_power(start_node:end_node);
ave_inter_P = ave_node_inter_power(start_node:end_node);
ave_dyn_P = ave_node_power(start_node:end_node);

voltage = voltage’;
para_E = para_E;
inter_E = inter_E";
ave_para_E = ave_para_E"
ave_inter_E = ave_inter_E;
ave_para_P = ave_para_P";
ave_inter_P = ave_inter_P’;

ave_dyn_P = ave_dyn_P";

115



elseif start_node == end_node

for col = 1:max_times
voltage(newrow,col) = node_voltage(start_node.col);
para_E(newrow,col) = node_para_energy(start_node.col),
inter_E(newrow.col) = node_inter_energy(start_node.col);

end

ave_para_E = ave_para_energy(start_node);

ave_inter_E = ave_inter_energy(start_node):

ave_para_P = ave_node_para_power(start_node);

ave_inter_P = ave_node_inter_power(start_node):

ave_dyn_P = ave_node_power(start_node);

end

ciseif range_type == 2
start_node = 1;
end_node = max_nodes;
plot_loop=1:

voltage = node_voltage”;
para_E = node_para_energy’:
inter_E = node_inter_energy”:
ave_para_E = ave_para_energy”.
ave_inter_E = ave_inter_energy";
ave_para_P = ave_node_para_power’.
ave_inter_P = ave_node_jnter_power”;
ave_dyn_P = ave_node_power’;
node_label = node_axis_label;

clseif range_type =3

button = questdig('Are you sure you want to quit?",Exit Prograny, Yes', No', No’).

if stremp(button,Yes")
program_loop = 2;
plot_loop =2;
dc
end
end

%% %% %% %% %% T %% %% %% %% %% T %o % Fo %o % %% %o %% %o %o % % H %% %% T Fo

xtick_length = ead_oode - start_node + 1
plotted = [00000000];
while plot_loop =1

plot_type = mymenu('Select a plot to view’, Node Voltages’, Node Parasitic Energy’....

‘Node Interconnect Energy’. Node Average Parasitic Energy’,...
‘Node Average Interconnect Energy’ Node Average Parasitic Power',...

‘Node Average Interconnect Power’, Average Node Dynamic Power', Exit);

if plot_type == 1
if plotted(1) == 1
figure(1);
df:

rotate3d off;
clse

plotted(1) = I;
end

figure(plot_type);
axes('Position’,[0.15,0.15,0.75.0.75]);
bar3(voltage,0.5,'detached’);
set(gea, Xtick',[ 1:xtick_length]):
set(gea, XtickLabef',{ node_label });
set(gea, Xlabel' text('String’, Node")):
set(gea, Ytick’,[ | :max_times]);
set(gea, YtickLabel',{time_axis_label});
set(gca, Ylabel',text('String’, Time"));
set(gca, Zlabel' text('String’, Voltage)):
set(gea, FontName', TimesNewRoman', FoatSize',fut_size):
if xtick_length > 1
set(gea, XLim',(0 xtick_length+1],"YLim'.[0 max_times+1]);
end
set(figure(plot_type), MenuBar', 'none’);

figrotel = uicontrol('Style’, Radio’, String’, rotate’, Position’,[1 31 60 20}, Callback’,rot81%):
clrcisel = uicontrol(‘'Style’, Popup’, String’, PressiPrintiClose’, Position’,[1 10 60 30],'Callback’, close1):

116



117

elseif plot_type == 2
if plotted(2) == 1
figure(2);
df,

rotate3d off,
else
plotted(2) = I;
end
figure(plot_type):
axes('Position’,(0.15,0.15,0.75.0.75])
bar3(para_E.0.5,detached’);
set(gea, Xtick',(1:xtick_length]);
set(gca, XtickLabel',{ node_{abel });
set(gca. Xlabel' text('String’, Node)).
set(gea. Ytick'.[ 1:max_times]);
set(gea, YtickLabel',{ time_axis_label}):
set(gea. Ylabel' text('String’. Time));
set(gca, Zlabel',text('String’,’ Node Parasitic Energy’)):
set(gca, FontName’, TimesNewRoman', FontSize'.fat_size):
if xtick_length > [
set(gea, XLim' [0 xtick_length+1]."'YLim'.(0 max_times+1]);
end
set(figure(plot_type). MenuBar', none"):
figrote2 = uicontrol('Style’, Radio’.'String’, rotate’, Position’,{1 31 60 20],'Callback’, rot82");
clrelse2 = uicontrol(‘Style'. Popup', String’, Press{PrintiClose’, Position’,[1 10 60 20],‘Callback’, close2):

elseif plot_type =3
if plotted(3) = 1
figure(3):
clf;

rotate3d off;,
cise
plotted(3) = I;
end
figure(plot_type):
axes('Position’.[0.15,0.15,0.75,0.75]);
bar3(inter_E.0.5, detached’);
set(gea, Xtick',[ 1:xtick_length]):
set(gea. XtickLabed'.{ node_{abel });
set(gca, Xlabel',text('String’, Node'):
set(gea.Ytick',[ 1:max_times]);
set(gca, YtickLabel',(time_axis_labei}):
set(gca, Ylabel' text('String’, Time?);
set(gca. Zlabel' text(‘'String', Node Interconnect Energy));
set(gca. FontName', TimesNewRoman', FontSize'.fot_size);
if xtick_leagth > 1
set(gca, XLim',[0 xtick_length+1].'YLim'.{0 max_times+1]);

end

set(figure(plot_type), MenuBar’, none’):

figrote3 = uicontrol('Style’. Radio’, String’, rotate’, Position’.[1 31 60 20],'Callback’,rot83);

clrcise3 = uicontrol(‘Style’, Popup', String’, Press{PrintjClose’, Position’,(1 10 60 20],Calfback’, close3"):

elseif plot_type =4
if plotted(4) = |
figure(4);
cif:

rotate3d off;
clse

ploted(4) = 1;
end
figure(plot_type);
axes("Position',{0.15,0.15,0.75,0.75]):
bar3(ave_para_E,0.5, detached’):
time_name_length = size(time_axis_label):
time_label = time_axis_label(max_times, |:time_name_length(2));
set(gea, Xtick'\[1]):
set(gea, XtickLabel',{time_label });
set(gea, Xlabel' text('String’, Period)):



118

set(gea,'Ytick',[1:xtick _length]);

set(gea, YtickLabel’,{nodc_label });

set(gca, Ylabel' text('String’, Node"):

set(gca, Zlabel'.text(String’, Node Average Parasitic Energy’)):

set(gea, FontName’, TimesNewRoman', FontSize'.fot_size);

set(figure(plot_type), MennBar’, none’).

figrote4 = uicontrol(Style’, Radio’, String’, rotate’, Position’,(1 31 60 20],'Callback’, rot84);

clrcised = nicontrol("Style’, Popup’, String’, Press{PrintiClose’, Position’.(I 10 60 20),'Callback’.'closed”);

elseif plot_type==35

if plotted(5) =1

figure(S);
df;

rotate3d off:
else

plotted(5) = 1;
dﬂ.
figure(plot_type):
axes(Position’.{0.15.0.15,0.75,0.751):
bar3(ave_inter_E.0.5,'detached");
time_gcame_length = size(time_axis_label):
time_label = time_axis_label(max_times, | :time_name_length(2));
set(gea, Xtick’,[1]):
set(gea, XtickLabe!', {time_label });
set(gca, Xlabel' text('String’, Period)):
set(gea, Ytick',[1:xtick_length]):
set(gea. YtickLabel'.{node_label });
sey(gea, Ylabel' text(String’, Node");
set(gca, Zlabel',text('String’, Node Average Interconnect Energy’)):
set(gca, FontName', TimesNewRoman', FontSize'.fot_size):
set(figure(plot_type), MenuBar’, none):
figroteS = uicontrol(Style’, Radio’, String’, rorate’, Position',[1 31 60 20],'Callback’, rot85":
clrcise5 = nicontrol(‘Style’. Popup'. String’, Press{PrintiClose’, Position',( 10 60 20}, Callback’.‘close5):

elseif plot_type == 6

if plotted(6) = 1

figure(6);

clf;

rotate3d off:
else

plotted(6) = 1;
end
figure(plot_type);

axes('Position’.{0.15.0.15,0.75.0.75):

bar3(ave_para_P,0.5.'detached’):

time_name_length = size(time_axis_label).

time_label = time_axis_label(max_times, |:time_name_length(2));

set(gea, Xtick',[1]):

set(gca, XtickLabel', (time_labet });

set(gea, Xlabel' text('String’, Period)):

sey(gea, Ytick',[1:xtick_lengthl);

set(gea, 'YtickLabel',(node_label }):

set(gea, Ylabel' text('String’, Node")):

set(gea, Zlabel' text('String’, Node Average Parasitic Power)):

set(gca, FontName', TimesNewRoman', FontSize'.fot_size);

set(figure(plot_type), MenuBar’, nonc’);

figrote6 = uicontrol(‘Style’. Radio’, String’, rotate’, Position’,(1 31 60 20], Callback’, Tot86");
circise$ = uicontrol(‘Style’, Popup'. String’, Press{PrintiClose’, Position',[1 10 60 20], Callback’, close6);

elseif plo(_type =7

if plotted(7) == 1

figure(7);

cif

rotate3d off;
clse

plotted(7) = I;
end
figure(plot_type):



axes('Position’,[0.15,0.15,0.75,0.75]);
bar3(ave_inter_P,0.5,'detached);

time_name_length = size(time_axis_label);

time_label = time_axis_label(max_times, I:time_name_lcagth(2));
set(gea, Xtick’,[1]);

set(gea, XtickLabel', {time_labet});

set(gea, Xlabel' text(String’, Period’)):
set(gea."Ytick’,[1:xtick_length]):

set(gca, YtickLabel',{node_label });

set(gca, Ylabel',text(String’, Node?);

set(gca, Zlabel',text('String’, Node Average Interconnect Power):
set(gca, FontName’, TimesNewRoman', FontSize'.fnt_size);
set(figure(plot_type), MenuBar','none);

figrote7 = uicontrol('Style’, Radio’, String’, rotate’. Position’,[1 31 60 20}, 'Callback’, rot877;

clrclse7 = uicontrol(‘Styie’, Popup', String’, PressiPrintiClose’, Position’.[1 10 60 20],'Callback’.closeT);

elseif plot_type =8

if plotted(8) = 1

figure(8);

df;

rotate3d off;
else

plotted(8) = I;
end

figure(plot_type

axes('Position’ [0 15 ,0.15,0.75,0.75]).
bar3(ave_dyn_P.0.5,'detached’);

time_name length = size(time_axis_label);

time_label = time_axis_label(max_times, I:time_name_leagth(2)).
set(gea, Xtick’,[1]):

set(gca, XtickLabel', {time_label});

set(gea, Xlabel’ text('String’, Period);

set(gea, 'Ytick’,[1:xtick_length]);

set(gca. YtickLabel',{ node_label});

set(gca.Ylabel' text(’String’, Node’));

set(gea, Zlabel' text('String’,'Average Node Dynamic Power’));
set(gca, FontName', TimesNewRoman', FontSize'.fnt_size),
set(figure(plot_type), MenuBar', none).

figrote8 = uicontrol(‘Style’, Radio’, String’, rotate’. Position’.{1 31 60 20}, Callback’.rot88");

clrcise8 = uicontrol('Style’, Popup' String’, Press|PrintClose’, Position’,[1 10 60 20],‘Callback’, close8");

elseif plot_type =9
plot_loop = 2;
end

end
fori=1:8

if plotted(i) == 1
close(i);
end

end

end

119



Appendix D.1 T-Cell XNOR Netlist File

The following netlist is for a T-Cell Exclusive NOR gate.

* # FILE NAME: /SIMULATION/TESTING_CIRCUIT/SPECTRES/
xi31 a2 al output vdd vss tcells_tmr2_extracted
vi3 a2 vss pulse 0.0 5.0 1.0e-6 1¢-9 1¢9 1e-6 2e-6
vi2 al vss pulse 0.0 5.0 500¢-9 1¢-9 1¢-9 le-6 2¢-6
SUBCKT tcells_txnr2_extracted ipl ip2 op vdd vss
c8 ipl vdd 2.603040031855¢-15

c10 a5 vdd 1.27776000060319¢-15

c12 ip2 vdd 2.603040031855¢-15

cl4 n2 vdd 2.603040031855¢-15

cl6 ipl 0 2.65647997577199¢-15

c18 n5 0 1.33120005039929¢-15

¢20 ip2 0 2.65647997577199¢-15

c22 02 0 2.65647997577199¢-15

c24 vss 0 5.95903983777635¢-15

c26 ipl 05 170.815999335532¢-18

c28 ipl n3 170.815999335532¢-18

c30 ip! n2 170.815999335532¢-18

c32 ipl vss 509.919975235956¢-18

¢34 ipl vdd 339.104002370204¢-18

¢36 n5 vss 633.510976086305¢-18

c38 n5 vdd 462.694976750773¢-18

c40 ip2 n3 170.815999335532¢-18

c42 ip2 n2 170.815999335532¢-18

c44 ip2 vss 725.039979938065¢-18

c46 ip2 vdd 339.104002370204¢-18

c48 op vss 341.631998671064¢-18

¢50 op vdd 341.631998671064¢-18

¢52 n2 vss 339.104002370204¢-18

c54 n2 vdd 509.919975235956¢-18

¢56 n3 op 220.627995260308¢-18

¢58 n3 n2 870.900006367322¢-18

c60 op n2 267.075999835063¢-18

¢62 op vdd 174.180003920442¢-18

c64 n2 vdd 266.649995202153¢-18

c66 ipl nl 549.538406096559¢-18

¢68 nl vss 419.959994039866¢-18

c70 05 vss 240.736001562753¢-18

¢72 ip2 vss 309.273381322259¢-18

¢74 op vss 348.360007840885¢-18

¢76 n2 vss 325.136005553507¢-18

c78 ipl vdd 185.832000901109e-18

¢80 nS vdd 274.40699058421¢-18

c82 ip2 vdd 185.832000901109¢-18

c84 op vdd 1.08401995452273¢-15

c86 n2 vdd 615.243016512871¢-18

c88 ipl 0 150.662994407764¢-18

c90 n5 0 260.223000365963¢-18

c92 ip2 0 292.401993790391e-18

c94 op 0 1.06337204412575¢-15

c96 n2 0 361.339993664169¢-18

c98 vss 0 11.0279437627115¢-15

c100 vss vdd 2.53954390102998e-15

c102 vss vdd 686.088005188274¢-18

cl104 ipl nl 47.6519990435507¢-18

c106 ip2 vss 47.6519990435507¢-18

c108 vss vdd 243.832012864086¢-18

c110 vss 0 294.279998183352¢-18

ml 12 06 ipl n5 vdd mpch_0p8 L=800.000009348878¢-9 W=3.00000010611257¢-6
+AD=4.92000017116023¢-12 AS=8.33999969779287¢-12 PD=6.59999977870029¢-6
+PS=12.2000001283595¢-6



121

ml 14 vdd ip2 n6 vdd mpch_0p8 L=800.000009348878¢-9 W=3.00000010611257¢c-6
+AD=8.33999969779287¢-12 AS=4.92000017116023e-12 PD=12.2000001283595¢-6
+PS=6.59999977870029¢-6

ml 16 vdd n2 op vdd mpch_0p8 L=800.000009348878¢-9 W=3.00000010611257¢-6
+AD=8.33999969779287¢-12 AS=8.33999969779287e-12 PD=12.2000001283595¢-6
+PS=12.2000001283595¢-6

m!18 n3 n5 vdd vdd mpch_0p8 L.=800.000009348878¢-9 W=11.7999998110463¢-6
+AD=16.520000645226¢-12 AS=27.1400003165612e-12 PD=14.6000002132496¢-6
+PS=28.2000000879634¢-6

m120 n2 ip! 03 vdd mpch_0p8 L=800.000009348878¢c-9 W=11.7999998110463¢-6
+AD=16.520000645226¢-12 AS=16.520000645226¢-12 PD=14.6000002132496¢-6
+PS=14.6000002132496¢-6

m122 n3 ip2 02 vdd mpch_0p8 L=800.000009348878¢-9 W=11.7999998110463¢-6
+AD=27.1400003165612¢e-12 AS=16.520000645226¢-12 PD=28.2000000879634¢c-6
+PS=14.6000002132496¢-6

mi 24 vdd n2 op vdd mpch_0pS L=800.000009348878¢-9 W=11.7999998110463¢-6
+AD=27.1400003165612¢-12 AS=27.1400003165612e-12 PD=28.2000000879634¢c-6
+PS=28.2000000879634e-6

m!26 n2 nS vss 0 mnch_0p8 L=800.000009348873¢-9 W=8.79999970493373¢-6
+AD=12.3200000548551e-12 AS=20.2400006477088¢-12 PD=11.600000107137¢-6
+PS=22.1999998757383¢-6

m128 nl ipl n2 0 mnch_Op8 L=800.000009348878¢-9 W=8.79999970493373e-6
+AD=12.3200000548551¢-12 AS=12.3200000543551¢-12 PD=11.600000107137¢-6
+PS=11.600000107137¢-6

m130 vss ip2 nl 0 mnch_Op8 L=800.000009348878¢-9 W=8.79999970493373¢-6
+AD=20.2400006477088e-12 AS=12.3200000548551e-12 PD=22.1999998757383¢-6
+PS=11.600000107137¢-6

m132 vss 02 op 0 mnch_Op8 L=800.000009348878¢-9 W=8.79999970493373¢-6
+AD=20.2400006477088e-12 AS=20.2400006477088¢-12 PD=22.1999998757383¢-6
+PS=22.1999998757383¢-6

ml34 a5 ipl vss 0 mnch_Op8 L=800.000009348878¢-9 W=3.00000010611257¢-6
+AD=4.92000017116023¢-12 AS=8.33999969779287¢-12 PD=6.59999977870029¢-6
+PS=12.2000001283595¢-6

ml36 vss ip2 nS O mmch_Op8 L=800.000009348878¢-9 W=3.00000010611257¢-6
+AD=8.33999969779287¢-12 AS=4.92000017116023¢-12 PD=12.2000001283595¢-6
+PS=6.59999977870029¢-6

m138 vss n2 op 0 mnch_0p8 L=800.000009348878¢-9 W=3.00000010611257¢-6
+AD=8.33999969779287¢-12 AS=8.33999969779287¢-12 PD=12.2000001283595¢-6
+PS=12.2000001283595¢-6

ri40vss0 1.0

rl42vss0 1.0

.ENDS tcells_txnr2_extracted

end



Appendix D.2 T-Cell XNOR Schematic Diagram

The following schematic is a representation of the test circuit from Chapter 5. ItisaT-

Cell XNOR gate, which is a standard cell layout from Cadence.

VDD
-1

T P
¢ né “3L ml22

ml20
b

| I[“Z output
n2 -  output
ns F—ﬁ———”leﬁ I 128

nl
—-||m134 —1 ml36 —-| mli30 ml32”—4—-{ mi38
) —e-
al e
Vss

a] —o— -

Figure D.1: T-Cell XNOR schematic diagram.



Appendix D.3 K-Cell Compressor Netlist File

The following netlist is for a K-Cell Based Compressor Circuit. It consists of the
following gate subcircuit structures: XOR, OR, NOR, NAND.

* # FILE NAME: /SIMULATION/KCOMP/SPECTRES/SCHEMATIC/
xi75 netd4 cin sum vdd vss keells_kxor2_[ _b_extracted
Xi76 net99 net84 netdd vdd vss keells_kxor2_1_b_extracted
xi73 d1 d2 net49 vdd vss kcells_kor2_! _extracted

xi74 d3 d4 net54 vdd vss kcells_kor2_1_extracted

xi71 0et99 net84 net59 vdd vss keells_knr2 1 _extracted
xi72 net74 net89 net64 vdd vss keells_knr2 _1_extracted
xi77 net64 net59 net69 vdd vss keells_knr2 _1_extracted
xi64 d3 d4 net74 vdd vss keells_knd2_1_extracted

xi6S ne169 net104 carry vdd vss keells_knd2_|_extracted
xi66 net74 net54 net84 vdd vss keells_knd2 1_extracted
xi67 dI d2 net89 vdd vss kcells_knd2_1_extacted

xi68 net89 net74 cout vdd vss keells_knd2 _1_extracted
xi69 net89 ned9 net99 vdd vss keells_knd2_1_extracted
xi70 netd4 cin netl 04 vdd vss kcells_knd2_1_extracted
vi49 d3 vss pulse 0.0 5.0 640e-9 1¢-9 1¢-9 860¢-9 2c-6
vi60 d4 vss pulse 0.0 5.0 800¢-9 1¢-9 1¢-9 320¢-9 2¢-6
vi61 cin vss pulse 0.0 5.0 480e-9 te-9 1e-9 1.2¢-6 2¢-6

vi3 d2 vss pulse 0.0 5.0 160c-9 1c-9 le-9 1.84¢-6 2¢-6

vi2 dl vss pulse 0.0 5.0 320¢-9 19 1e-9 1.52¢-6 2¢-6
SUBCKT kcells_kxor2_1_b_extracted ipl ip2 op vdd vss
c7 vss 0 5.11667997129205¢-15

<9 op 0 688.344024503727¢-18
cl1n50199.72799991729¢-18

cl3 n3 0753.030024861406¢-18

cl5 n2 0437.375997287039%¢-18

ci7 nl 0216.803998845479¢-18

¢19 ipl 0 87.368000820488¢-18

c21 op vdd 249.22800978479e-18

c23 nS vdd 859.887995717864¢-18

¢25 ip2 vdd 141.448003860576¢-18

c27 n3 vdd 573.756983882691e-18

c29 n2 vdd 2.56287605883681¢-15

c31 nl vdd 464.579995635328¢-18

¢33 ipl vdd 54.0799997313655¢-18

c35 nS vdd 241.567999675194¢-18

¢37 03 5 217.983995150343¢-18

€39 n3 ip2 206.191999505363¢-18

c41 n2 vdd 241.567999675194¢-18

c43 n2 n5 170.815999335532¢-18

c45 02 ip2 170.815999335532¢-18

c47 02 a3 206.191999505363¢-18

c49 ipl n2 170.815999335532¢-18

c51 nS 0 903.440047585516¢-18

¢53 ip2 0 2.74711991266649¢-15

¢55 n3 0938.835013352432¢-18

c57 n2 0 409.12001048804¢-18

¢59 ipl 0 558.990023238497¢-18

c61 nS vdd 2.71711991149887¢-15

¢63 ip2 vdd 2.47664005799332¢-15

¢65 n3 vdd 1.23884497766572¢-15

¢67 n2 vdd 2.16192009600154e-15

c69 ipl vdd 724.450021490303¢-18

m71 op nS5 vdd vdd mpch_0p8 L=800.000009348878¢-9 W=6.10000006417977¢-6
+AD=12.8099995888586¢-12 AS=7.45999963192023¢-12 PD=16.3999993674224¢-6
+PS=8.79999970493373e-6

m73 vdd ip2 n3 vdd mpch_0p8 L=800.000009348878¢-9 W=3.00000010611257¢-6
+AD=7.45999963192023¢-12 AS=5.58000000372427¢-12 PD=8.79999970493373¢-6



+PS=10.2000003607827¢-6

m?75 ul n2 vdd vdd mpch_0p8 L=800.000009348878¢-9 W=6.1999999161344¢-6
+AD=6.44999982243877¢-12 AS=7.4400000049657¢-12 PD=9.20000002224697¢-6
+PS=8.60000000102445¢-6

m77 vdd ipl n2 vdd mpch_0p8 L=800.000009348878¢-9 W=6.1999999161344¢-6
+AD=7.4400000049657¢-12 AS=13.02000000869¢-12 PD=8.60000000102445¢-6
+PS=16.6000008903211¢-6

m79 n2 ip2 oS vdd mpch_0p8 L=800.000009348878¢-9 W=2.799999947455%4¢-6
+AD=5.27999996155493¢-12 AS=3.35999999524772¢-12 PD=9.80000004346948¢-6
+PS=5.200000032346¢-6

m8I nS 03 nl vdd mpch_0p8 L=800.000009348878¢-9 W=2.799999947455%4¢-6
+AD=3.35999999524772¢-12 AS=6.44999982243877¢-12 PD=5.200000032346¢-6
+P$=9.20000002224697¢-6

m83 op n5 vss 0 mnch_0p8 L=800.000009348878¢-9 W=4.50000015916885¢-6
+AD=9.44999981045136e-12 AS=5.50000019486352¢-12 PD=13.1999995574006¢-6
+PS=7.19999979992281¢-6

m8S5 vss ip2 n3 0 mach_0p8 L=800.000009348878¢-9 W=2.19999992623343c-6
+AD=5.50000019486352¢-12 AS=4.62000012899089¢-12 PD=7.1999997999228 le-6
+PS=8.60000000102445¢-6

m87 nl n2 vss 0 mach_0p8 L=800.000009348878¢-9 W=3.80000005861802¢-6
+AD=4.74000005912245¢-12 AS=4.55999994708467¢-12 PD=6.40000007479102¢-6
+PS=6.1999999161344¢-6

m89 vss ipl n2 0 mnch_Op8 L.=800.000009348878¢-9 W=3.80000005861802¢-6
+AD=4.55999994708467¢-12 AS=7.98000034107904¢-12 PD=6.1999999161344¢-6
+PS=11.7999998110463¢-6

m91 n2 03 n5 0 mnch_Qp8 L=800.000009348878¢-9 W=3.00000010611257¢-6
+AD=6.30000001819453¢-12 AS=3.60000007235128¢-12 PD=10.2000003607827¢-6
+PS=5.40000019100262¢-6

m93 u5 ip2 nl 0 mnch_0p8 L=800.000009348878¢-9 W=3.00000010611257¢-6
+AD=3.60000007235128¢-12 AS=4.74000005912245¢-12 PD=5.40000019100262¢-6
+PS=6.40000007479102¢-6

95vss0 1.0

.ENDS kcells_kxor2_1_b_extracted

.SUBCKT kecells_knd2_1_extracted ipl ip2 op vdd vss

c3 vss 0 2.28988602202446¢-15

c5 op 0 323.468991773751¢-18

c7 ip2 0 145.985003493646¢-18

c9 op vdd 441.57000151603¢-18

cllipl vdd 141.448003860576¢-18

c13 ip2 vdd 102.274999833665¢-18

cl5 ipl op 456.146988552024¢-18

c17 ipl 0 452.650013029284¢-18

c19 ip2 0 494.759991304236¢-18

c21 ipt vdd 1.18505002106472¢-15

c23 ip2 vdd 734.359989335823¢-18

m2S vdd ipl op vdd mpch_0p8 L=800.000009348378¢-9 W=5.29999988430063¢-6
+AD=11.129999699655¢-12 AS=6.36000020010075¢-12 PD=14.7999999171589¢-6
+PS=7.70000042393804¢-6

m27 op ip2 vdd vdd mpch_Op8 L=800.000009348878¢-9 W=5.29999988430063¢-6
+AD=6.36000020010075¢-12 AS=11.129999699655¢-12 PD=7.70000042393804¢c-6
+PS=14.7999999171589¢-6

m29 op ipl nl 0 mnch_0p8 L=800.000009348878¢-9 W=5.29999988430063¢-6
+AD=11.129999699655¢-12 AS=3.97500001664275¢-12 PD=14.7999999171589¢-6
+PS=6.79999993735692¢-6

m31 nl ip2 vss 0 mnch_0p8 L=800.000009348878¢-9 W=5.29999988430063¢-6
+AD=3.97500001664275¢-12 AS=11.129999699655¢-12 PD=6.79999993735692¢-6
+PS=14.7999999171589¢-6

r33vss0 1.0

.ENDS kcells_knd2_1_extracted

SUBCKT kcells_knr2_1_extracted ip! ip2 op vdd vss

c3 vss 0 3.04364793629185¢-15

¢5 op 0390.819996011509¢-18

c7 ipl vdd 319.468005177616¢-18

¢9 op vdd 126.40000033146¢-18

cll ip2 vdd 59.3399982331984¢-18

<13 nl op 166.02000614395¢-18

cl5 ip2 vdd 254.611989425555¢-18

c17 op ipl 508.468001945685¢-18



cl9 ipl 0 464.064999603398¢-18

c21 ip2 0 508.219980110817¢-18

c23 ipl vdd 898.655052587358¢-18

¢25 ip2 vdd 655.859993339169¢-18

m27 opipl al vdd mpch_0p8 L=800.000009348878¢-9 W=6.79999993735692¢-6
+AD=14.2799999255927¢-12 AS=5.09999984951715¢e-12 PD=17.7999991137767¢-6
+PS=8.30000044516055¢-6

m29 nl ip2 vdd vdd mpch_Op8 L=800.000009348878¢-9 W=6.79999993735692¢-6
+AD=5.09999984951715¢-12 AS=14.2799999255927¢-12 PD=8.30000044516055¢-6
+PS=17.7999991137767¢-6

m31 vss ipl op 0 mnch_0p8 L=800.000009348878¢-9 W=3.80000005861802¢-6
+AD=7.98000034107904¢-12 AS=4.55999994708.167¢-12 PD=11.7999998110463¢-6
+PS=6.1999999161344¢e-6

m33 op ip2 vss 0 mnch_Op8 L=800.000009348878¢-9 W=3.80000005861802¢-6
+AD=4.55999994708467¢c-12 AS=7.98000034107904¢-12 PD=6.1999999161344¢-6
+PS=11.7999998110463¢-6

r35vss01.0

.ENDS kcells_knr2_1_extracted

SUBCKT kcells_kor2_!_extracted ipl ip2 op vdd vss

c4 vss 0 2.91630394421045¢-15

c6 op 0 505.875975247968¢-18

c8 n2 0 505.875975247968¢-18

¢10 ip2 0 141.448003860576¢-18

c12 op vdd 580.748023252414¢-18

ci4 n2 vdd 653.892018165342¢-18

cl6 ipl vdd 212.655999093436¢-18

c18 nl n2 139.344000489376¢-18

¢20 ip2 n2 265.151990965154¢-18

¢22 ipl n2 170.815999335532¢-18

c24 n2 0 783.200014953624¢-18

¢26 ip2 0 1.03464005128017¢-15

c28 ipl 0 783.200014953624¢-18

¢30 n2 vdd 886.799979457587¢-18

¢32 ip2 vdd 743.120004076327¢-18

¢34 ipl vdd 1.04844001793595¢-15

m36 op n2 vdd vdd mpch_0p8 L=800.000009348878¢-9 W=6.79999993735692e-6
+AD=14.2799999255927¢-12 AS=8.15999958575508¢-12 PD=17.7999991137767¢-6
+PS$=9.20000002224697¢-6

m38 vdd ip2 n} vdd mpch_Op8 L=800.000009348878e-9 W=6.79999993735692¢-6
+AD=8.15999958575508e-12 AS=5.09999984951715¢-12 PD=9.20000002224697¢-6
+PS=8.30000044516055¢-6

mdO0 n! ipl n2 vdd mpch_0p8 L=800.000009348878¢-9 W=6.79999993735692¢-6
+AD=5.09999984951715¢-12 AS=14.2799999255927¢-12 PD=8.30000044516055¢-6
+PS=17.7999991137767¢-6

md2 op 12 vss 0 moch_0p8 L.=800.000009348878¢-9 W=3.80000005861802¢-6
+AD=7.98000034 107904¢-12 AS=4.55999994708467¢-12 PD=11.7999998110463¢-6
+PS=6.1999999161344¢-6

md4 vss ip2 n2 0 mnch_0p8 L=800.000009348878e-9 W=3.80000005861802¢-6
+AD=4.55999994708467¢-12 AS=4.55999994708467¢-12 PD=6.1999999161344c-6
+PS=6.1999999161344¢-6

md6 02 ipl vss O mnch_Op8 L=800.000009348878¢-9 W=3.80000005861802¢-6
+AD=4.55999994708467¢-12 AS=7.98000034107904¢-12 PD=6.1999999161344¢-6
+PS=11.7999998110463¢-6

rd8 vss0 1.0

.ENDS kcells_kor2_1_extracted

.ende



Appendix E.1 UNIX Manual (MAN) Page

The following source code is the man page used in UNIX, for explaining the software
program and its command line.

.TH power 3 local
.SHNAME

.I power

\- simulates and determines dynamic and short-circuit power dissipations for designs prior to device
fabrication.

.SH SYNOPSIS

.B power
[netlist file}
[output file]
PP

.SH DESCRIPTION

.I power

is used to simulate and determine the power dissipation in SSI, MSI, & LSI CMOS designs.
A Spice formatted netlist, produced from Cadence Design Software, or

other design tools, is imported into this program.

The necessary information is extracted and each node of the device is examined. The
total capacitance and the various energy consumption and power dissipations are calculated for each
node, based on the input test vectors. The overall power dissipation is

then calculated.

PP

The results are stored in a matlab formarted data file. Matlab program source

code is then

appended to the data file.

PP

.I power

requires the following command line variables:

TP

.B nedlist file

This is the original Spice extracted netlist file. It should reside in your current
working directory.

TP

.B output file

This is the new file you would like the final results stored in, for analysis and graphing
purposes. It must have a ".m" extension.

.SH Example:

power cmos_cct results.m

PP

This program was developed at the University of Alberta as partial requirements

for an M.Sc. Graduate Thesis. The current version of power is 1.2a.

PP



Y%

N

v
//\\
///\’

/

y
&

&)
&

IMAGE EVALUATION
TEST TARGET (QA-3)

| B3

l.4

150mm

1.25




