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ABSTRACT

This thesis is divided into two parts.

Part I

In the usual N/D calculations for the partial
waves in potential scattering only the left hand singu-
larities nearest the threshold are taken into account.
This approximation does not yield a partial wave ampli-
tude (for 2 2 1) satisfying the threshold condition that
the partial wave amplitudes behave like sl near thres-
hold. 1In this part of the thesis an additional pole is
introduced to simulate the effects of the distant singu-
jarities. The parameters of this pole are determined by
imposing the threshold condition. Both s and p wave
amplitudes for scattering by an exponential potential

are calculated.

Part II

The Veneziano model, which does not satisfy uni-
tarity, has had remarkable successes in predicting the
low energy behaviour of many scattering processes, like
nn, nK and KK scatterings. In this part of the thesis
various aspects of the Veneziano model are investigated.

The s and p partial wave projection of the Vene-
ziano amplitude has been made for am, @K and KK (and KK)
scatterings and the scattering lengths have been calcu-

lated.



The ww+mA, reaction has been discussed with an
alternative way of imposing the Adler zero condition
on the amplitudes.

Finally, the Kg»ﬁ+n-y and Kg*YY decays are con-
sidered in the pole model, in which the intermediate
state is taken as an off-mass shell pion rather than

an on-shell pion and the strong interaction part des-

cribed by the Veneziano model.
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PART I

THRESHOLD PROBLEM IN N/D METHOD FOR PARTIAL WAVES IN

POTENTIAL SCATTERING




Introduction

The N/D formalism(l) has been extensively used to
calculate the partial wave amplitude satisfying unitarity.
If the discontinuity across the entire left hand cut for
the partial wave were known one could, via the N/D formalism,
generate the exact partial wave amplitude. An exact solu-
tion would also satisfy the correct threshold condition,

namely,
£,(/5) - ( s)% as s + 0,

where /s is the centre of mass three momentum. In practice
one does not know the entire left hand singularity and one
hopes that the effect of the singularities nearest the
threshold would be large and thus the calculation of the

N function (and therefore of fi(s)) proceeds with the
neglect of the distant singularities. This type of appro-
ximation does not always yield a partial wave amplitude
which satisfies the threshold condition. The vanishing of
the partial wave amplitude for 2 2 1 at threshold can be
looked upon as a result of delicate cancellations between
the contributions of the jeft hand cut and the right hand
cut. Any approximation to the left hand cut will upset
this delicate balance. One way to enforce a correct thres-

(2) (3)

hold behaviour is to work with an amplitude

< £
fz(s) = fi(s)/( s) .



This however leads to unpleasant high energy behaviour and
a cut-off is required(3) in such calculations to keep
integrals finite.

An improvement in the usual N/D calculation can be
achieved, as suggested by Dilley(4), by adding to the
nearby poles a pole on the left hand side to simulate
the effects of the distant singularities. The parameters
of this pole can be determined by imposing the threshold
conditions. Based on this idea a calculation has been
presented in the following chapter for the scattering of
spinless bosons by an exponential potential whose s wave
phase shift has been discussed in detail by some authors(s)(s).
The scattering problem has been solved exactly for & =0
and & = 1 and the exact result has then be compared with
the various approximation schemes. For an exponential
potential the exact solution for % = 0 can be written down

analytically(7)(8).

Even though for s-wave there is no
threshold problem as such since f£ goes to a constant, we
have evaluated this constant in various approximation

schemes.

The s wave problem is treated in Section I and the

p wave problem in Section II of Chapter I. The exact

phase shift for p-wave was obtained by a numerical method

suggested by Calogero(g).



CHAPTER I

N/D METHOD FOR SCATTERING BY AN EXPONENTIAL POTENTIAL

Wwe shall study the scattering of two jdentical spin-

less particles of mass m by an exponential potential,

U(r) = -as2e BT . (1.1)

Here A is a dimensionless constant and B has dimension of
mass. U(r) of (1.1) is the usual potential v(r) multiplied

by m/ﬁz. The radial Schroedinger equation takes the form

2
Q—E%EL + [s - U(x) - £i&%lll u(r) =0
dr r

' (1.2)

where s = k% = mE/hz. The total scattering amplitude is

defined in terms of the partial wave amplitudes as

(2]

£(s, cosd) = ) (22+41)P (cosB)fy(s) (1.3)
2.=0
where
i§,(s)
fz(s) = iL-e % sinéz(s) = 1 .
/s /s cotél(s) - i/s

(1.4)

Section I : S Wave Solution

(i) Exact Solution

With an exponential potential the Schroedinger equation

is exactly soluble for s waves and the solution is given by(lo)



u(r) = ¢é‘)(s)ei/§r + ¢é+)(s)e—i/§r . (1.5)

The coefficient ¢é—) and ¢é+) are as follows

¢f) (s) = (2/%) 1 /75218 By e 21 —‘/33_) ,

(1.6)

1J42i/5/8

. . .
where J2i/§/8(2/x) is the Bessel's function of order

2iv/s/B, and T (1% 2i 4?) is the gamma-function.

The s wave amplitude is then given by
(=) _ g ()
1 %o " 8) ¢, * (s)

£ (s) = . (1.7)
° 2ivs ¢é+)(s)

By expanding the ¢ functions in powers of A and s and
retaining only the first two terms in each expansion we
find the phase shift given by

PEEN

— -1_ Br_3 2
Vs cot60(s)—-Re[f°(s)] = ZA[l 8A+-O(X )]

s 9 2 2
+ BY (2 + Tgx + 0(2°)] + 0(s™) . (1.8)

Equation (1.8) gives the exact expansion for cot 60(5)

for small X to order A° and to first order in s. In the
remaining part of this section, we shall solve the problem
in various approximation schemes and then compare the

results with that of equation (1.8).



If the asymptotic limit (s =+ «) of the exact solution

is taken, one finds that

/s cot§(s) — %% 1 3
S-+w s + (B°/4)

(1.9)

which we shall see is the first Born approximation.

(ii) First Born Approximation
The first Born approximation to the s-wave amplitude

is given by

£15(s) = - z Z sin? (/Sr)u(r)dr = B — 182/4) .
(1.10)
Let us write this as
£,5(s) = T)/(s + a]) . (1.11)

with Fl = BA/2 and ai = 62/4. The first Born approximation

gives a simple pole on the negative real axis. The phase

shift is given by

= -1 _ 8,28

/5 cots (s) = [f1p(s)) 7 = 37 * gy - (1.12)
Comparing this with (1.8), we see that it reproduces the
order A—l term correctly. To produce terms of order \°

we have to go to the next term in Born series.



(iii) Second Born Approximation

In the second Born approximation the s-wave amplitude

is given by

£,5(8) = £yp(s)+ L [f sin(/Sr)U(x)G(x,x")U(r")sin(/5r")dr dx
(1.13)

where G(r,r') is the Green function,

sin (¥sr')cos (/sr)
/s

G(r,r") for r' < r

sin (/sr)cos (/sr')
/s

I

forr' >r .

After carrying out the relevant integrations in (1.13),

we get
_ -1
/s cots_(s) = (£,5(s)]
- B -3 S 9
= 5 (1 8X)+ 3 (2 + lﬁk) (1.14)

for small s. To order Ao and to order s, this solution

coincides with the exact solution (1.8).

(iv) Determinantal N/D Method

The N/D method in general consists in writing

NQ(S)

fl(s) = B—E—(?)- (1.15)



where Nz(s) is assumed to be analytic in the s-plane apart
from singularities on the negative real axis. D function

on the other hand carries the right hand unitarity cut.

(1)

Thus
s
L ds'D,(s')Im £,(s"')
_1 L %
N,(s) = 3 {m - (1.16)
and
1% ds'ys' Ny(s')
Dy(s) =1 -2 é - . (1.17)

The determinantal approximation(ll) consists in assuming

that the N function be approximated by the first Born

term; thus,

|
22
2

No(s) (1.18)

]
-
]

©

D, (s) [ as' = . (1.19)
0

This approximation has the advantage of simplicity. It
also ensures the correct threshqld behaviour for £ 2 1
partial waves since the Born term satisfies the threshold
condition. In a situation where an exact solution of the
problem is difficult to obtain one hopes that such an
approximation which amounts in a sense to the inclusion
of only the largest range forces gives a reasonable des-

cription at low energies.



Substituting (1.10) in (1.19) one gets

Do(s) l - — (1.20)

ay - ivs
and

a.(a,—- I'y) + s -1
11 1 - i/3] ) (1.21)

fo(S) (

"
The phase shift is given by (using parameters A and B in
favour of T, and al)

2s

/§ cots(s) = g% (1 -2) + 22, (1.22)

™

Wle notice that the order A—l terms have been reproduced

correctly but not the order \° terms.

(v) One-pole N/D Method

The exact solution(s) of the s-wave problem shows
that we have infinite number of poles on the left hand
side. A correct and exact description of the scattering
process in N/D type of calculation must take all these
poles into account. Let us first make the simplest possible
approximation and take only the nearest pole into account,

then
o oxT 2
Im.fo(s) = nrlé(s + al) for s < 0 . (1.23)

From (1.16) and (1.17) one gets

2
r.n_(-ay)

N (s) = Lo L -Rry/(s+ ui) (1.24)
s + al




where
R. = T.D_(-a°) (1.25)
1 170 1 *

and
R
1 - 1 ] (1.26)

D _(s)
© a; - i/s

]

It is clear from (1.24) that the one-pole approximation
normalizes fo(s) to le(s) at s = ai whereas the deter-

minantal method normalizes fo(s) to le(s) at s = =, we

then get
2
as - a,R, + s -1
£ (s) = [—t1 - i/5] . (1.27)
and the phase shift is given by
= B - A 2s A
/s cotd (s) = 5y (1 5) + o3 (L +3) . (1.28)

The leading terms are again correctly reproduced but order

o

A\° terms are incorrect and also different from that of the

determinantal approximation.

(vi) Two-pole N/D Approximation
To simulate the effect of all but the nearest pole
we shall add another pole to the left of the nearest pole.

Thus one writes

- 2, _ 2
Im fo(s) = nrlé(s + al) nrzé(s + az) for s<0

(1.29)
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with Pl = BA/2 and ai = 82/4. The parameters of the second
pole could be determined if the two boundary conditions
could be imposed on the partial wave. For partial waves

2 > 1 the threshold condition would be an obvious one to
impose. For s-wave no threshold condition exists; however,
we may demand that fo(s) > le(s) as s + ®. Thus only one
(the residue) of these two new parameters can be determined.
We have varied the other parameter (the position of the
pole) and looked at the solution as a function of this

parameter. On using (1.29) we get

il
+

No(s) 5 5 (1.30)

R R
D (s) = 1 - 1 _ - 2 (1.31)
a. - ivs a, - i/s
1l 2
with
Ri = Pi D(‘ui) i=1l,2 . (1.32)
1f now we demand the poundary condition that
£ (s) — T /(s +a2) , (1.33)
o 1 1
g+®
we find that
8 = R.[L - D(-a2)1/D(-a?) (1.34)
2 1l 1 1l
or
R R R R
1l 2 1 2
R,[(1 - - ] = Ryl + ] . (1.35)
2 201 ci+ a2 1 Zal a.+ «a



From (1.35) and (1.33) we obtain the following

20 4. Fz
T .« i S
171 oy + o,
Rl = o T (1.36)
F1+2°‘1’—%¢—1‘
C!lU.Z
1
R2 = o T . (1.37)
1~1”’2‘3‘1""31:’L
Rl )

Since Fl is proportional to A, R2 starts off like xz as

indeed it should. The phase shift is then given by

Re Do(s)

\/g COtGo(S) = T(;-(—S_)——

2 2, 2 _ 2 2_ 2_ 2
_ s +s(al+a2—R1ul R2a2)+ala2 Rlalaz Rzazal
- 2 2 ‘
Rl(s+a2) + R2(s+al)
(1.38)
Expanding in power of s and A we get
B 1, g2
/s COt50(S) = oy {1 - (5 + -8—(;—2-)>s]
2
2 4
+3X5-[1+(-’5-§-—2-+ B2l . (1.39)
4a2 3202

We summarize our results in the following:

parameters: » = 0.1 and B = 1 in arbitrary units.

11
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(i) Exact: Vs cots (s)

(4.687+0(A))+(20.56+0(A))s
(ii) First Born: = (5.0040()))+(20.00+0(X))s
(iii) Second Born: = (4.687+0(x))+(20.56+0(A))s

(iv) N/D (Determinantal)

(4.540 (1)) +(20.00+0()))s
(v) N/D (l-pole) = (4.7540()))+(21.00+0()X))s

(vi) N/D (2-pole)

(4.5+0(A))+(20.00+0(A))s (a2=a)
= (4.687+0(k))+(20.56+0(x))s (a2=1)

= (4.747+0(1))+(20.98+0(}))s (u2=5)

(4.749+0()))+(20.99+0()X))s (a2=10)

(4.75+0 (1) )+(21.00+0(X))s (az*w)

It is clear that up to and including order ko terms,
the second Born approximation and the 2-pole N/D method,
with a2=1, give the exact solution. This is only to be
expected since the second Born pole is located at a2=l.

In the two-pole approximation if the second pole is super-
imposed on the first pole then the solution is the same as
that in the determinantal approximation. This result again
can be understood once it is realized that in the two-pole
approximation we did impose the condition that fo(s)——»f (s)

s+ 1B
which is automatically satisfied by the determinantal method.

Section II : P Wave Solution

(i) Exact Solution
The Schroedinger equation for the p wave scattering

from exponential potential cannot be solved analytically.
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Ve adopt the method, given by Calogero(g), of a numerical

solution of the integral equation

tanéz(s,r)=- U(r')lﬁz(/gr')- tansg(s,r')ﬁg(/gr‘)]zdr'

T
ovV—nH

(1.40)

where the Riccati-Bessel functions 39(/§f) and ﬁp(/gf) are

defined as follows:

32(.@7:) = /5rj, (/Er)
ﬁz(/s—r) = /§rj2(/§'r) ,

in which jg(/gr) and nl(/gr) are the spherical Bessel
functions of the first and second kind.
The function tanél(s,r) satisfies the boundary

condition
tanén(s,O) =0 and tanél(s,r+w) = tanéz(s)

where tanal(s) is the tangent of the phase shift. There-
fore, if the value of r in (1.40) is taken to be large
enough in the numerical integration, ve obtain the value

for tan&i.

(ii) The Born Approximation
when the first Born term is calculated, wve obtain

the following
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2 -1 2 3

_ AB 8 2s+8 _ AB 4s
£,g(8) = 5 [s*-_4] (=) 1s2 In(l + =) (1.41)
which has a pole at s = —82/4 and a cut runs from s= -32/4

to -». It seems that we have also a pole at the origin,
but when we expand both the terms in (1.41) in powers of

s, the terms like % are cancelled. As s + 0, we also

find that
£,,(s=0) = 0 (1.42)
£15(5=0) = 81/38> , (1.43)
and  f£],(s=0) = -322/8° . (1.44)

The appearance of the cut in the Born term makes it
quite inconvenient to solve for the p-wave amplitude using
the N/D determinantal method in which the N function is
taken as the first Born term. Thus, to simplify the cal-
culation in the N/D approximation schemes, ve shall make
a further approximation of the first Born expression. We
shall simulate the cut by a pole and write the Born expres-
sion in term of two poles, in which the first pole is
located at s = -82/4 = -S,p and the second pole at s = =S,p
whose value is yet to be detexrmined

T r
1B 2B
f..(s) = + (1.45)
1B s + s1B s + Sop 4
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where T g and FZB are the residues. Imposing the conditions
(1.42)-(1.44), we get the following set of parameters

2
=8 (1.46)

_ 2
=3 BX and SoB 5 .

Tos

Then, the Born term, which we expect to be well-approximated

at low energies, becomes

B 28\
£..(s) = - + . (1.47)
1B 3s + % 32 3s + % 32

The phase shift obtained from the approximate first Born

term is given by

3/2 2

= L
s cot6l = X [38” +

ST
©»
ool

s + 2 (1.48)

(iii) peterminantal N/D Method
We take the 1! function to be the approximate Born
expression, (1.48), in which the left hand cut has been

replaced by a second pole,

(- 3)8) (%182
+

2 2
@ L e

Nl(s) = . (1.49)

When substituting (1.49) into (1.17), we get the expres-

sion for D function;

py(s) = 1+ Br/3 _ _2BM\/3 (1.50)

%-i/é' J/Zg - ifs



The phase shift is then given by

3/2 2 1-2/5 /’

§3/2cots = At3s?+ G412 np%s v (G IS ST I

(1.51)

(iv) Three Pole N/D Approximation
Here, we approximate the left hand singularities in

terms of three poles

In £)(s) = ~nT;8(s+al) = 1T, (s+a5) =108 (s+a3) (1.52)

where the first two poles.are the two Born poles, that is,
2
2_.2 2 _ 8 . o1 _ 2
al—s /4, oy = —i-w1th r,= 3 BA and r,=3 BA, and the

third pole is added to enforce the threshold condition.

The N and D functions take the form,

R R R
N, (s) = 1 2 32 (1.53)

s+ai s+a§ S+a3

|

R R R
D (s) = 1 - 1_ . 2 _ - 3 (1.54)
- i/s ay" i/s ay" iv/s

where the R functions are given by

R.
1

ry D(-ai) for i=1,2,3 . (1.55)

There are two unknown parameters, ay and F3, in the above
equations. In principle two conditions would determine

these parameters. However as we are working with an

16
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approximate form for the Born term we can only impose the

threshold boundary condition,
a2a2 + R a2a2 =0 (1.56)
27173 37172 ! :

with confidence. The second condition that one could
impose would be the asymptotic boundary condition which
we, in our low energy approximation scheme, cannot enforce.
However, we can introduce an asymptotic parameter as
follows. From the exact Born expression (1.41), we see

that

(s) const
fBorn —_ = as s =+ o , (1.57)

We may tentatively set

N (s) R1+R2

+R c'T
£, (s) 3 -
1 z s-rm s

(oxr = 1

nia

—=) (1.58)

where c is a free parameter and proportional to AB and

c' = %i would be a pure number.
By solving the egs. (1.55) and (1.58), we obtain
Ry =Ny * i(ui+§3 - 2i1’+ ELPR +a3'.alia2)+ 007
R, = r2-+r2(5;;;;-5§;)+ PTG +u3-—a11u2)+-0(x3) ) (1.59)
Ry = (c.-l)rl- ry* ri(Zil ul+a3) * I‘2(20.2 ainB)
+ r1r2(alia2.—uilg;-uliu3) + 0(13) : /
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Imposing the threshold condition (1.56) on (1.59), we

get the expression for ag,

1262 .T.(a24a?) o’r?
22 e Talaleatea) 4ty iy o ta2e? -
3 2a o .t 20 1 277172

1 1te) 2

242

2 1-2¢" 2 2 192

Iy (=5—)ajay =TyToas0; + ThTy a,ta,
quza
2 2%1%2

After putting the values T';= -BA/3, o? = 8%/4, T, = 28\/3
and ag = 62/2 in (1L.60), we have

a§ = %.[3(c'+1) (5/2 + 7)3\1- + 3 +/2'+(6+4/'2')c']62. (1L.61)

One can now look for the probable values for c'.

1) If fy(s) approaches f (s) = BA/3 in the limit

app.B
s + », then from (1.58) we see that c'= -1 and

2

- -3 2
ay = 3 (L + V2)8 .

This is not a desirable result as it places the pole in

the unitarity continuum.

2) If we set fL(S) = fexact B(s) as s + «, then

— | I
Rl + R2 + R3 = BA/2 or c 3/2 .
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a§ now takes the value,

a3=-3[;’7(5/§+7)-(6+5ﬁ)162.

Thus ag is positive definite only for negative values of

A. This is not a desirable result.

3) We are not happy with the way that ag depends on

A, when c' is required to take different set of values

for positive and negative A. If we were to solve the
problem exactly (numerically) then there would, in
principle, be no difficulty of this kind. The difficulty
arises when we try to solve the problem approximately with
some parameters determined from the threshold boundary
condition and then try to impose an asymptotic condition

on this approximate solution. Let us now define b via,

(c'+l) = bA or c'* =bx -1, (1.62)

then

2
“§=§4— [3(5/Z + 7)b - 3(1 +/Z) + (6 + 4/2)bA] .

(1.63)
If X is small, ag would not be effected by A drastically.

Dropping the third term in (1.63), we have

a§ = %— 82[(5/Z + )b - (1 + /D) , (1.64)

which is greater than zero for b > 3-2/2 > 0 .
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If we write (c'—l)l"l - Fz = F3, then from (1.62)
and the values of Fl and Pz, one obtains

ry= -peA2/3 which is of order A2,

The phase shift for the three pole N/D method is given

by
3/2 _ 2.2 2. 2 2. 2..,-1
s cotd, = {(Rl+R2+R3)s*-[Rl(a2+a3)4-R2(al+a3)*-R3(al+a2)]} x

3 2,2 2, 2
x {s“+s [al+a2+a3-Rlal Ry0, R3a3]

22, 22 22 2.2, _ 2, 2, 2, 2

+ s[ala2+a2a3+ala3 R(a2+a3)al R2a2(a1+a3) R3a3(al+a2)]
2.2 2 2 2 2 2 2 2

+ [a1a2a3-Rlala2a3— R2a2a1a3— R3a3ala2]} . (1.65)

If we take ag = % 82 (a choice made with the expectation

that a2>a3), then I3 = ~(3/7-4)82%/3. We £ind from (1.59)
that
R, = - e+ 5 812 [4/2-5]
R, = 5 BA + 1 ga?(2/2-4] (1.66)
Ry = - : (5/2-7)82% .

Substituting (1.66) into (1.65), we have
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s3/2cots, = {s81[0.333-0.0808A] + 83110.25-0.056111"1 x
% (s34 s82[1.5-0.30471+0.09227]
+ s8%[0.6875-0.26301+0.07962°]
+ 50.09062-0.02592+0.00602°1) . (1.67)

The results for the p wave calculations are dis-
played in the plots of s3/zcot61 versus the energy s for
A = *0.1 and A = *0.5 for 8 = 1. For negative A the three
pole N/D method gives better results than approximate
Born solutions and determinantal results over a wide
range of energy. For positive value of X, thg three
pole N/D method is better in the region where s is small.
Wwe conclude then that the imposition of the threshold
condition by putting an extxa pole on the left hand real
axis improves the result at low energies, in the sense
that it is closer to the exact solution. If the solution
could be obtained without making any of the approximations
we have made, it would be expected that the improvement in
the solution will extend over a much wider range of

energy.

~)



for A=-0.1 B =1
Approx.
Born 2 pole N/D

0.1 -6.3 -6.4949
0.2 -9.4 -9.7363
0.3 -13.15 -13.5777
0.4 -17.55 -18.0191
0.5 -22.50 -23.0505
0.6 -28.05 ~28.8019
0.7 -34.20 -34.9433
0.8 -40.95 -41.7847
0.9 -48.30 -49,2261
1.0 -56.25 -57.2675
for A= -0.5 g =1

0.1 -1.26 -1.4549
0.2 -1.88 -2.17634
0.3 -2.63 -3.0177
0.4 -3.51 -3.9791
0.5 -4.5 -5.0605
0.6 -5.61 -6.2619
0.7 -6.84 -9.5833
0.8 -8.19 -9.0247
0.9 -9.66 -10.5861
1.0 -11.25 -12.2677

3 pole N/D
-6.247
-9.430
-13.19
-17.57
-22.48
-27.99
-34.1
-40.79
-48.08
-55.91

-1.319
-1.979
-2.746
-3.611
-4.599
-5.685
-6.955
~-8.181
-9.588

-11.10
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Exact
-6.3391
-9.4061

-12.9628
-16.9981
-21.5033
-26.4715
-31.8974
-37.7769
-44.1064
~-50.8818

-1.3247
-1.9684
-2.7054
-3.5352
-4.4546
-5.4639
-6.5617
-7.7479
-9.0221
-10.3837



for A= 0.1 g =1
Approx.
Born 2 pole N/D

0.1 6.3 6.1050
0.2 9.4 9.1636
0.3 13.15 12.8222
0.4 17.55 17.0808
0.5 22.50 21.8889
0.6 28.05 27.3979
0.7 34.20 33.4567
0.8 40.95 40.1151
0.9 48.30 47.373
1.0 56.25 55.2323

for A = 0.5 B =1
0.1 1.26 1.06568
0.2 1.88 1.60366
0.3 2.63 2.26224
0.4 3.51 3.04082
0.5 4.5 3.9394

3 pole N/D

6.139

1.175
1.783
2.531
3.414
4.427

Exact

6.1929

9.1811
12.6697
16.6458
21.0994
26.0228
31.4098
37.2554
43.555

50.3054

1.1784
1.7433
2.4128
3.1824
4.0502
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PART II

APPLICATIONS OF VENEZIANO MODEL
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Introduction

Three years ago, based on the assumption of the
linealy rising Regge trajectories, G. Veneziano(l)
proposed a remarkable formula which, despite its simple

form, exhibits many important features of the strong

interaction theory, namely, it

(i) satisfies the crossing symmetry,
(ii) gives the correct asymptotic behaviour,
(iii) satisfies duality,

(iv) predicts a family of parallel daughter trajectories.

(2)

Later, Lovelace , in his fascinating paper, applied
the Veneziano model to the mm scattering and 3m final state
processes and obtained results coincident with the predic-
tions of current algebra. This initial success led to
the suggestion(3) of the close connection between Veneziano
model and current algebra.

A further investigation by Kawarabayashi et al.(4)
on the 7nn, 7K and KK scatterings, revealed that good
agreement between the s-wave scattering lengths obtained
from the Veneziano model and that from current algebra
existed in all cases except the KK case. The current
algebra result in this case is suspect since the PCAC
assumption is used in current algebra together with a

linear extrapolation from the Adler zero point to the

threshold for the process. Since the KK channel is not
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exotic, one expects this extrapolation not to be smooth
because of the presence of bound state contributions.

The Veneziano model on the other hand, in the case of

KK scattering, provides a highly non-linear extrapolation
from the Adler zero point to the threshold. In the follow-
ing chapter, this point is further elucidated in the evalua-
tion of the s and p wave scattering lengths by an explicit
partial wave projection of the Veneziano amplitudes for

the m7, 7K and KK (and KK) scatterings.

In Lovelace's paper, the Adler zero(s) was produced
by demanding the gamma function in the denominator of the
Veneziano amplitude to have a pole. From this constraint
he obtained the intercept of the p trajectory at zero
energy to be 0.485, while the experimental result is

=0.57(6) .

Applying the same technique to the ww+mA,;
reaction, Fayyazuddin and Riazuddin(7) derived the

Weinberg mass formula(e) for ma mp and m_ . Since there
are two invariant amplitudes serving to define the complete
amplitude for nn»nAl process, an attempt is made in

Chanter III to enforce the Adler zero in an alternative

way namely by requiring that the numerators of the two
invariant amplitudes cancel at the Adler zero point.

The consequences that follow are discussed in that chapter.

The pion pole model treatment by Lovelace to the

pn+3n, K+3n and n+3n processes, was questioned by several
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(9)-(12) (10)

authors As Sutherland(g) and Jacob et al.
had pointed out in their papers that the off-mass shell
effect of the intermediate pion should be gquite large;

in the last chapter of this part, the Kg+n+n—Y and KZ+YY
decays are considered in pole model in which the inter-

mediate state is taken as an off-mass shell pion (or 0 m

like meson) rather than the on-mass shell pion.
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CHAPTER II

VENEZIANO MODEL OF THE wm, 7K AND KK SCATTERINGS

Section I : Introduction

The form of the scattering amplitude proposed by
Veneziano(l) has a simple structure which demonstrates
the Regge pole-resonance duality. It was not intended
to use the amplitude at low energies. 1In a fascinating
yet somewhat intriguing paper by Lovelace(z) the Veneziano
amplitude for the pion-pion scattering was used in an un-
expected direction, namely, at very low energies with some
intriguing results. Among the many successful results
obtained by Lovelace from the leading term of the Veneziano
amplitude were, (i) that the imposition of the Adler zero
demanded that the intercept of the p-trajectory at t=0 be
~0.485 while there is experimental evidence from the

(6)

charge-exchange data that it is =0.57; (ii) the ratio

of the s-wave scattering lengths ag and a, was within 10%

of the ratio predicted by Weinberg through current

(13)

algebra There were other successes of the Veneziano

model for w-m scattering(3).

Led by this initial success
of Veneziano model to 7-w scattering a great deal of work
was done on other two-body scattering processes, for

example, m-K and KK (and KK) scattering with varying degree

of success(d). The evidence most of these works were
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seeking was the answer to the question; is there a
connection between the Veneziano model and the predic-
tions of current algebra. The conclusion one can

arrive at after the dust has settled down is that the
Veneziano model has been remarkably successful in repro-
ducing the current algebra results (say, the scattering
lengths) for process involving pions, like m-m scatter-
ing and, though not successful to the same extent, the

7~-K scattering. It has however provided an entirely
different result for the KK scattering lengths compared

_ to the current algebra results. An explanation for the
success in nn and 7K case and the failure in KK case is
that if one matches the Veneziano amplitude to the current
algebra amplitude at the Adler zero point, the physical
amplitude is obtained through rather a small extrapolation
in the external mass (or equivalently s, t and u). Current
algebra predictions use a linear extrapolation in s, t and
u while for small s, t and u the gamma functions in
veneziano model also provide essentially a linear extra-
polation. Thus one can understand why one has a remarkable
success for mn and 1K scatterings. In the KK case the
amount of extrapolation in s, t and u involved in moving
out of the Adler zero point to their physical values is
very large and the gamma functions provide a highly non-
linear extrapolation leading to extremely large scattering

lengths.
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Though the Veneziano amplitude has the Regge pole-
resonance duality it is not obvious that the amplitude
provides partial wave amplitudes with the correct thres-
hold behaviour. In this chapter we have done an explicit
partial wave projection of the Veneziano amplitudes for
the ww, 7K and KK (and KK) scatterings. Wie have also
evaluated the s and p wave scattering lengths for all

these scattering processes.

Section II : mm Scattering

In n+n-+n+n_ scattering there are no u-channel
resonances since this channel is exotic, having I=2.
In terms of Regge trajectories this situation is brought
about by the exchange degeneracy of the p and £ trajec-
tories. However, this reaction is symmetric under s and
t exchange and one may write the Veneziano amplitude for
+

W e as 2V (14) (on1y the leading term has been

retained),

. T(-a(s))T(1-a(t))
A(s,t) = -B T(i-u(s) - a(t)) ° (2.1)

with this form the right asymptotic behaviour A(s,t)gzgsa(t)

is also guaranteed. a(s) is the p-trajectory taken real

and linear in s

al(s) = % + a'(s—mﬁ) (2.2)



with
. - 2 _  2,,-1
a' = [2(mp mﬂ)] . (2.3)
B is identified as
_ 2

by going to the p-pole at s = mi and identifying the p
wave contribution with the p pole Feynman diagram.

The three iso-spin amplitudes for the n-m scatter-

ing. in the s channel are(l4)
MO(s,t) = 3 (Als,t)+ A(s,u)] - 5 A(t,u) (2.5)
ml(s,t) = A(s,t) - A(s,u) (2.6)
2
M“(s,t) = A(t,u) (2.7)

and s, t and u are the Mandelstam variables.

One can write A in an alternative form. Consider

34

A(s,t) written out in terms of the Euler Beta function in

its integral form(ls).

A(s,t) = - B(l—a(s)-a(t))B(l—a(s),l~a(t))
1
- - B(l-a(s)-a(t)) [ x%08) (1-x)"@ () gy (2.8)
0

for a(s),a(t) <1,
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where B(l-a(s),l-a(t)) is the Beta function

B(1-a(s) ,1-a (£)) = LizeleUIGoa )

By taking a transformation § = % - 1, one can convert the

finite range of integration to span the range 0 + «,

o a(s)+a (t)
A(s, )= -8 (1-a (s)-a () | EEL sl (2.9)

Using the linearity of the p trajectory, one can write

(2.9) as

2
w a' (s+t-2my)
Als,t) = -Ba’ (2m2-s-t) | (1+€)

— > ag . (2.10)
+ -
(1+€) £V (t-my)
Similar expressions for A(s,u) and A(t,u) can be obtained

by appropriate substitution of t and u into (2.10).

The 2=0 partial wave of A(s,t) can be projected out

as follows:

1
1
Ao(s,t) = 5 _{ A(s,t) d cos® (2.11)
with cosg = 1 + 2t 5 . (2.11) can be written as
s=4mg
1 —(s-4m§)
Ao(s,t) = - 5 A(s,t)dt
s-4m“ 0
2
- (s—-4my) a't
L By at(2m2-s-t) (FF) X
12
s-4m“ 0
a'(s-2m§)
3 (1+£)
x é dg T . (2.12)

(14€) £ &0
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We first do the t integration. The term with coefficient

proportional to t° is

2 2
- (s-4m_’) a't -(s-4m})
J T at (lié) = [ T"dt expla't 1ln 118,
0 & 0 £
o1 v (e A2 1+£, _
= LI {expl-u' (s=4m_) 1ln —E—] 1} . (2.13)

12
For s close to the threshold, i.e., s+4m§, (2.13) may be

expanded into a series form as follows,

2
- (s-4m_) ol

T 1+E CremamZy (1 - & (gmdam? 1+£
é ’dt (== = -(s-4m7) [1- 5 (s-4m7) In == + cee)

(2.14)

The term with coefficient t in eq. (2.12) is,

2 s-4m2 2
- (s=4m;) 14E a't _ (- L - 1 B
o tt (—E—) a'lnl%E a'ln;%é

x expl-a'(s-4m2) 1n 3‘—2-5-1 + 1“5 2. (2.15)

a'ln —>
[3

In the limit s»4m?, eq. (2.15) yields
(s-4m2) (5 - %-a' (s-4m_) 1n -1—25- PR I (2.16)

Putting (2.14) and (2.16) into (2.11) one has
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© b
Ao(slt) = a'p ‘; ! (1+£) ag
0 z—a'm“
(1+£) &
2 o a'(s—2m§)
- g_g& (s+4m2) I (1+¢£) > ln(l+€) ag
4 lé_ulrn‘" E
(1+£) £
or
i a'(s-4m§)+a'2mﬁ
Ag(s,t) = 2q" 8(k24m2] [ ALEE) . dE

(1+g) £2 ™

a'(s-4mi)+a'2m2

g T
_ 4 o2gakteank?) [ L1EE) x
3 m 0 L-a'm
(1+8) ¢& w
« [ln(l+£) - 1n E] AE (2.17)

where k2 = % (s-4mi) is the momentum of the pion in C.M.

) ) a' (s-4m7)
system. The factor in the integrand (1+§&) =
exp[a'(s-dmﬁ)ln(l+§)] can be expanded in powers of (s-4mi)

when s+4m§. Keeping the terms of order a', one obtains

the following

. 2a'mi
Agls,t) = 20t g(k24m2] | are) " a¢
(+g g ¢ T
2 o 2a'mi )
, dur’e 2k +am2k2) | (L+E) InE 4
0 Y-a'ms
(L+€) &
- 2a'mi
+ 5 o' 2grak?+3m2k?) [ (1%€) In(1+E) gg.  (2.18)
0

(1+4g) €2 &0
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To simplify the above integrations, one can make the

following approximation. For a'm2 = é% << % , one may
a'm% -a'm%
neglect the factor (1+£) y43 in the integrand,
then the above integrals give(ls)
< d )
[ — =
0 (1+£)¢E
[ L (2.19)
0 (1+£)g*

dg ln(lf&) = 27 1n 2 ,
(1+€)E2 J

O

and Ao(s,t) becomes

Ao(s,t) = na'8[2k2+ 2m2

8 4 2 2
n-+§-a'(4k + 3k mﬂ) ln 2] . (2.20)

The =0 partial wave of A(s,u) is given by

1l
A_(s,u) 1 | A(s,u) @ cos6
o 2

2
-(s=-4m_)
--l T au A, ()
0 s-4m
T
= A (s,t) . (2.21)

Therefore,

A (s,u) = sa'B[2k3+ 2m§+ % o (axd+ 3k2m:) 1n2]. (2.22)
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The 2=0 partial wave, Ao(u,t), of A(u,t) is pro-

jected out in a similar way as follows:

1l
A (u,t) = & [/ A(u,t) 4 cosé
o 2 -1
L - (s-4m?2)
=-1 at A(u,t) (——)
0 s-4m1r

= —ma'pl4k3+ 2m§— 16a' (2k%+ kzmi)ln 2] . (2.23)

Now using egs. (2.5)-(2.7), the s wave isospin amplitudes

for mnm scattering can be written down,

3
MO(s,t) = 3 (aj(s,t) + Agls,w)] = 3 Ay (E)
= na'6[8k2+7mi+16a'(k4+k2m§)ln 2 4 ...] (2.24)
Mé(s,t) = a_(s,t) - Ag(s,u) = 0 (2.25)
m2(s,t) = A_(u,t) = -2na’'8(2k>+m>-8a’ (2k+k2m)1n 2 + ...1.
(o) o] m (i
(2.26)

The remarkable feature of equations (2.24) and (2.26) is
that we get the ratio of s wave scattering lengths

ao/a2 = - 7/2 which is precisely the current algebra

value(13). A more remarkable feature yet is that to

order a' even the effective range term (terms proportional

to kz) are precisely those given by current algebra(16).
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The p wave projections of A(s,t) and A(s,u) can be

calculated in the same manner,

1
A, (s,t) =:—]£- | A(s,t) cos©&d cosb
-1
2
-(s=-4m_)
= -1 " ae a(s,t) (1 + —25—)
s-4m> 0 s-4m>
w n
2
-(s=4m_) P
| T 4t (2m2-s-t) (L+—2ts) [ dE x
m 2
s-4m_ 0 s-4m 0
'ﬂ 'ﬂ
o' (s+t-2m2)
(1+€)

x e (2.27)
(1+£) € m

In (2.27), the term of order t2 can be evaluated as

follows:
"(5'4mﬁ) 2 1+
t° expla't 1n —EQ] dt
0
2,2 2
(s-4m_) 2(s-4m_)
2 1+¢ ] i 2
= {exp[-(s-4m7)1ln 1}I( + + ]
T & n TEE (1n 52 (1n 1257
3 3 £
- 2 A (2.28)
(in l%E

In the limit s+4m§, one expands exp[-(s-4m§)ln L%E] in

a power series in (s-4m%) and obtains
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2
- (s=-4m_)
i T 23t expla't 1ln 1tE
0 £
--1 (s-4m?)> (1 - 3 (s-4m?) 1n —1—:::-&— +o..a) . (2.29)

After all the integrations in (2.27) have been carried

out, one gets
Ap(s,t) = L a'B[2k2+8a'(2k4+k2mﬁ) 1n 2] (2.30)

Al(s,u) can be shown to be equal to —Al(s,t)

1
A. (s,u) = L [ A(s,u) coséd cos8
1 2 4
2
- (s-4m_)
- . T 3qu A(s,u) (1 + 2“2)
s-4m_ O s-4m
n n
= -A, (s,t) (2.31)
and
Al(u,t) =0 . (2.32)

Therefore, for the p-wave amplitude, only the I=1 isospin

amplitude is non-zero and has a value,
1
Ml(s't) = Al(s’t) - Al(Sru)

4

3 natg(k2+dat (k142 In 2 + L] (2.33)
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The scattering lengths can be determined from the ampli-

tudes (2.24), (2.26) and (2.33).

(1) 32na‘{mTr = [Mg(s,t)l

© . 0.175 m* 2.34
ao ~ 0. m'ﬂ ( L] )

(ii) 32na§mﬂ = [Mg(s,t)]

k=0
2 -1
aj = -0.05 m_ (2.35)
1 Mi(s,t)
(iii) 32nalmTT = [————i——]
k k=0
1 -3
aj = 0.033 m_ . (2.36)

All these results are in excellent agreement with
current algebra results(l3). The conclusion one can draw
from these calculations is that the Veneziano amplitude
for n-n scattering (with the leading term) has the correct
threshold behaviour in the low partial waves and that the

amplitude has a remarkable likeness to the current algebra

amplitude at low energies.

Section III : uwK+nK Scattering

Consider the elastic scattering

n(p) + K(g) — a(p') + K(q') ,
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where p, q, p' and q' are the four momenta of the parti-
cles. The Mandelstam variables s, t and u in the centre

of mass system are

s = (p+q)2 = (po+qo)2 (2.37)
. ey 2 2

t = (p-p')" = -2p (1-cos8) (2.38)
u = 2mi+2M§—s+2p2(l-cose) . (2.39)

The isospin amplitudes in the t channel (nmw+KK reaction)
are(14)

TO(s,t,u) = A' [V (S,€) + Vyy (0,8)] (2.40)

]

(s, k) = B' [Vyu (5,8) = Vi (w,8)] (2.41)

The Veneziano amplitude with the correct asymptotics

is given by(l4)(l7)

' (l-a (t))F(l-aK,(S))
P , (2.42)

vK*p (S 't)

where up and ags are the p and K* trajectories. Assuming

universal slope and imposing the Adler zeros we get

=1 ' (tem?
ap(t) =5 t+ta (t mﬂ) (2.43)

aK,(s) = % + a'(s—mi) . (2.44)
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The slope a' = (m~ - mi) . , (2.45)

N
©

The s channel isospin amplitudes are obtained from

(2.40) and (2.41) through the crossing matrix(l4).

/% »

st

2
Ao
. o . . B o .
By imposing the condition A —/; g', the exotic I=3/2
s channel pole is removed. The s channel isosopin 1/2

and 3/2 amplitudes are then

1
§1/2 (s, ,u) = Br (3V 4 (£,8) =V gy (£,0)) (2.46)
83/2(s,t,u) = B'V i (£,0) (2.47)
with
2
B' = -29,,49pkk =~ “Jpmw (2.48)

As in the previous section the Veneziano amplitude can

be written as

o a.. (s)+a (t)
I (1L+E) K* P d

Vx*p(s,t) = [1-ap(§)-ux*(5)l

a_ (t)
0 a+pg®
or
o a‘(s+t-mi-m§)
2.2 (1+€)
Viep (808) = (mytmy=s t) é e (o) ag. (2.49)

(1+E£) €
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The s wave amplitude VK*p(S’t)z=0 is then projected

out via

=1
=2

=

VK*p(S't)2=0 VK*p(s,t)d cosf. (2.50)

Since cos8 = 1 + —3 (2.51)
2p

and
2 2.2 2 2.2
2 s -Zs(mn+mx) + (m"-mx)

p- = s (2.52)

one has

Voo (s,8), o == =5 [ Vg (s,t)dt
K*p . 2=0 4p2 0 K*p
2

_4p o
_o_a' 2, 2 __ ' 1+¢
= 5 £ dt(mK+mn s-t)expla't 1ln _E—] £ dag x

AN

)

a'(s-mi—m
x (1+8)

) P,
(1+E)E

a'm%
After the integrations have been worked out, in the

region where s—*(mK+mn)2 and 4p2»0, the result one gets

is

2a'm
_ e [ oaE) i 2 2. .2
Vgap (8/8) o= "0 g o) ag{ [ (s-my-m7)-2p°)
(1+€) € m
- [(s-mi—mi)sz-% (4p2)2- (s-mi-mi)(s—(mx+m“)2)

+ 2p2(s-(mx+mﬂ)2)]a'ln(l+5)

+ [(s-mﬁ-mﬁ)zp" -1 @ ?ietm g) . (2.53)
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1 1
[ ] — ] ~ =
As a'm_ = €0 and 2o mm_ gr ve can neglect these
exponents in the integrand. The integration can then be
reduced to the same simple form as in (2.19). After the

£ integration has been done, we end up with the expression

' sz-(mi—mi)2
Vgap(Sitdg o = —@'" [—53 ]
2 1n 2 4 3,2 2 2
- a'n 35 {25 +s HmK-mn)-3(mK+mﬂ) ]

2

' 2 2 2, 2,,.2 2,2
+ s [ BmeTr ] - s[S(mK+mn)(mK—m“)

- 3(mi-m§)2(mx+mn)2] + 2(m§-m§)4} ) | (2.54)

Taking the leading term, i.e., term of order a' in (2.54),

we have

Vx*p(s’t)£=o = -2a' mm, (2.55)

at threshold.

Following the same procedure, the s-wave projection

of Vx*p(t,u) is

]

\Y/ a'n(s—mi-mﬁ)[l - 2u'(s-(mx+mﬂ)2)ln 2]

(2.56)

K*p (tlu) 9‘=0

1

]
or Vx*p(t,u)2=0 20 ' wm m_ at threshold.
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Then from (2.46) and (2.47), the s channel isospin

amplitudes at threshold are, .

]

172 B -

[

—tlo;'e"nml(_m.TT (2.57)

3 2 [] 1] 1
So/ (s,t,n) B VK*p(t,u)g=o = 2a'g'wmm_ . (2.58)

The scattering lengths for 1K scattering are given

by the following relations

1/2 1/2
8na0/ /s = So/ (s,t,u)

sme

Jeag ~ 0.2 m (2.59)
and
8na3/2/§ = 53/2(s,t,u)
o o
Sxm
K
. .3/2 _ -1

Seag =-0.10 m. . (2.60)

Both results are in good agreement with the current
algebra predictions(lg).
For the p-wave projections of Vx*p(s,t) and VK*p(u,t)

we have the following

. 4p° 1, 15 (g-mi-m?- 502
VK*p(s't)£=l a't =3 [5+a 2 (s=my-m_-mm, 2p“)1n2]

(2.61)
and

Viapitdgy = 0 - (2.62)
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The p wave isospin amplitudes are given by

Si/z(s,t,u)==a'B'np2+a'28'nln2[4p?(s-mi—mﬁ—mxmﬂ—sz)]
(2.63)
Si/z(s,t,u) =0 . (2.64)

The scattering lengths obtained from (2.63) and (2.64)

are then
1/2 _ -3
al =~ 0.0125 m. (2.65)
ai/z =0 . (2.66)

Section IV : KK and KK Scattering

K(q") K(p')
Consider the KK scattering
K(p) + K(g) — K(p') + K(a") e
where p, q, p' and g' are the
particles' four momenta. Since -
K(p) | K@)

there are no resonances in the t

channel (being exotic), we write the t channel amplitude
as(ld)

7°(s,t,u)

"

a“(vp¢(u,s) - vp¢(s,u)) (2.67)

Tl(s,t,u)

B"(Vp¢(u.5) + Vp¢(s,u)) . (2768)



Here the Veneziano amplitude is

r(l-a (u))F(l—a¢(s))
2 (2.69)
P(l-ap(u)-a¢(s))

Vp¢(u,s) =

and ap(u) and a¢(s) are the p and ¢ trajectories with the

universal slope a' = aé .
_1 2
ap(u) =3 + o' (u mn) (2.70)
_ 1 2, 2
a¢(s) = 3 + a"s 2mK+m“) . (2.71)

In the centre of mass system the Mandelstam varia-

bles s, t and u are defined as

(s = (pra)? = (pgrag)” (2.72)
t = (p-q')3= 4m§-s+222(1-c050) (2.73)
J}u = (p-p')2%= -2p®(1-cos0) (2.74)
s+t +u= 4m2 . (2.75)

where the three momentum of the K meson p is given by

s - 4m§
92 = - . (2.76)

The s channel amplitudes are determined from the

crossing matrix(l4)

49
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1
Mge = 2 °
1l 1

To exclude the ¢ pole in the Sl amplitude, we impose the

condition that B" = -a', hence
O _ gn
s’ =8 (2Vp¢(u,s) + Vp¢(s,u)) (2.77)
sl = g"v_ (s,u) (2.78)
pd

and B" can be identified as = -4ngR .

In the case of KK scattering we cannot write

Vp¢(s,u) = (l-ap(s)-a¢(u))B(l-ap(s), l—a¢(u))

with

1 =-a_(s) -a, (u)
B(1-a,(s), l-a, (@) = [ x P (1-x) ¢ ax ,
0

because this integral form is valid only for l-ap(s)> 0
and l-a¢(u) >0. 1In the present case we have l—ap(s) =
% - a'(s-m§)< 0 even at threshold s = 4mi. We may
however modify vp¢(s,u) in the following‘waj

P(l—ap(S)F(l—a¢(U))
F(Z-ap(s)- a¢(u))

vp¢(s,u)= (l-ap(S)-a¢(u))

50

2-ap(s)-a¢(u) F(Z-ao(S))F(l—a¢(u))

= (l-ap(s)-a¢(u))

2—ap(S)-u¢(u)

= (l-ap(S)-u¢(U)) B(Z—up(S).1~a¢(u)

l—ap(s)
(2.79)

l-ap(S) P(3—up(s)- a¢(u))

)
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Now, we can express B in the form

1 1l-a_(s) -a, (u)
B(2-a_(s),1-a, (u)) = [ % P (1-x) ®
P ¢ 0

dx . (2080)
The requirements l—a¢(u)> 0 and 2—ap(s)> 0 are now
satisfied. Using the transformation £ = % - 1, the
expression (2.79) is changed into the form,

o (s)+a¢(u)—l

1-a, (u) ®
= % __1(2- - (1+£)
Vp¢(5.u) (1 l-ap(s)](z a,(s) a¢(u))£ AN CY dg
(1+£)° &
a'(s+u-2mi) 2 ®
= [ =511 + a' (2my-s-u)] [ x
5= a' (s-mj) 0
ba'(s+u—2mi)
(1+£) ag
x : v ri (2.81)
(l+£)2 £a+a (“'zmx+mn)

Wwith the integral form of Vp¢(s,u) determined in (2.81)
we are ready to project out the s and p wave components

of V_,(s,u).

pd
The s wave amplitude Vp¢(s,g)9=0 is given by
0
1 du
v (s'u) = = I v (slu) —— .
2=0 2 2
pé ~ap2 P? 2p

Treating the u integration as in the previous sections

we have up to the order a'2 the expression
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Vo (5:0) g = < (f -5+ @ (82—2m25+4m4)] x
pé 2=0 %—a'(s—mﬁ) é 2 3 K K
2a'm§ -
(1+£) dg a 2 2
g Lo Z_ 2y [ =3 (s-4my) (s-my) X
(1+g)2g6 o' (2me-my) 0
Za'mi .
(1+£) 1n (L+£)dE { o 2 9
X - [ 2= (s-4my) (s+2m,) X
% ~-(20'mg-a' 2) 6 K K
(1+£) %€ ge'mp) 0
2a'm§
. L1+E) . J:nzg ngz . 2.82)
()2 g2 2Rk

The value 2a'm§ = % is quite large and cannot be ignored
as we have done in the case for Za'mi. "The various inte-

grations in (2.82) can be evaluated approximately as

follows:
w 2a'mi o
(1+£) 1
| dg 2 - z [ dg = 2
o T e Enimp) ~ o
(2.83)

o 2a'm§ I

(1+£) Yln (1+E) in (1+E)

dag = dg .

b (Leg)? 2 (2mgmmy) b )72

With the transformation § —%-— 1, the last integral can
X

be shown to be

1 1
[dx (2 1n =) =4 . (2.84)
0 X



53

T (1+g)2a'mi in £ < in &
% (1+s;)2g’"2'°‘"2“‘i°‘<"“12r’ 1
and with the transformation £ = JE - 1, this is
x
1 2 1 1
2 £ in(1-x")dx + 2 é dx 1ln ;7 =4 1In 2 . (2.85)

with egs. (2.83)-(2.85), the final form of Vp¢(s,u)2=0

is obtained as

' 2 2 . 2 4
v .(s,u),_n = & ((-s+ F a'(s"-2m s+4m.,)
po ’.L—o %-a' (s-m_) 3 K K
- 3a (s-4m§) (s-m2) - 2—%'(5—4m§) (s+2m}2<) In2]}. (2.86)
The p-wave amplitude qu)(s,u)z=l is
v_, (s,u) =—1-(j) v (s,u) (1 + ) L au (2.87)
pp ' e=1 2 5 PO ' 2 2, 2 *
4p P P

where Vp¢(s,u) is given by (2.81). The calculation is
quite similar to the s wave calculation and the result
is

a' 2
EE emm——————— -
(ss,u)z=l (s 4mK) x

\"
pd L-a' (s_m“)

1 a's 2 qe_og?y -2l 2



To calculate the s and p wave components of the
amplitude Vp¢(u,s), we first write down the integral

form for Vp¢(u,s)

2-a (u)-a¢(s) ®

X

Vp¢(u,S) (l-ap(u)-a¢(s))

l- u¢(s) 0
o, (s)+a (u)-1
(a+g) ° P

o (u)
(1+£)2

x

dg
£ P

) l+a'(2m§-s-u) o
' - -
a' (2my-s u) [ 5% ] é X

1, ] -
L-a' (s 2mK+m“)

2
] -
a' (s+u ZmK)

(1+E)
X d
Lea' (u-m2)
(1+£) %€ "

then

_ 1
Voguis)yo = 3 J Vo (0rs) —5

al

[%—a'(s-Zmﬁ

n

2 2 2 4
5 {[-s+F a'(s -2mys+4my)
+mn)]

- % u'(s-4m§)(s-mi)+-2a's(s-4m§)ln 21} .

54

v (2.89)

(2.90)
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v_ (u,s) 1 _?pz v (u,s) (1 + =) d
u,s = - =5 u,s — u
pp T =1 492 0 pd 292

2
o' (s-4m)
= (- L9 (s-amZ-2(s-4m)1n 2]}, (2.91)
1 1
5-a' (s=2my+m )

Using egs. (2.77) and (2.88), we can calculate the s and

p wave isospin amplitudes for the KK scattering.

Sg(Ki) = B"a' [~s - % a'(sz—Bmis+4m§)] x

x [— . 2 ]

k-a'(s-mﬁ) k-a'(s-2m§+m§)

2
(s+2m,)
+ %Q.ZB“ln 2[_ K 6s

+ ]X
k-a'(s-mi) %-a'(s—2m§+m§)
2
x  (s-4ml) . (2.92)
si(xﬁ) = B"a’' '1 J[~s- % a'(sz-Bmis+4m;)
L-a (s-mﬂ)
- % a'(s—dmi)(s+2mi) in 2] (2.93)
sQ (kR) = %; a' (s-am2) { [ 1 + 1 ] x

%-a'(s-ZmK+m§) %-a'(s-mi)
. 2
x [-1~-a (s-4mK))

(s-4m2) mﬁ
+ 4a'ln 2| 53 + = 5 1} (2.94)
k-a'(s-ZmK+mﬂ) %-a' (s-m_)
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2
" s-4m
si(xi) - '8 — K](-l-a'(s-4m§)+4a'm§
-a' (s-m)

1n 2).

(2.95)

The KK scattering lengths derived from the amplitudes

(2.92)-(2.95) are

o -
S~ (KK) "
0,, o g'a’ 2 4
a (KK) = = e—— l_4m +8a'm ]x
o gnvs 2 lG‘leK K K
s——4mK
x | 1 + 2 ] .

o' (am2)  %-a' (2mg)

To avoid the divergence of the second term in the last
bracket, the more precise value of 2a'm§ = 0.45 has to

be used instead of 0.5. One then gets

O 0Dy ~ -1
ao(KK) = 9,28 my: (2.96)
and
l -
S~ (KK) "
1,.35 o B"a’ 2 4
a” (KK) = = [-m +2u'ﬂ5J [ ]
° gn Vs s=4m12( amm, - K o (4mi)
~ -1
-~ -0‘6 mK . (2.97)

The p wave scattering lengths are
o

0.~ _Sl(KK) 8" " 2 1
a; (KK) = P , " T IImy g2 Y de 2
KP |s=4my K a Wy
4a'miln 2
R
PR [ 2
% ~-4a mK
3

5.66 m; (2.98)

u



l -
_ ST (KK) "o
al (kB) = — = B8 144¢'mZin2] —E2—
L l6mm 2 2 lZHmK K %-4a'm2
Kp s=4mK K
x -0.136 m.° (9.99)
~ . K . .

The results on the s-wave scattering lengths, egs. (2.96)
and (2.97) coincide with those of the Kawarabayashi's(4)
calculations and are quite different from the current
algebra predictions. The current algebra prediction for
KK scattering lengths is not expected to be very good as
the KK channel is rich in bound states and the extrapola-
tion from the Adler zero point to the KK threshold is
not expected to be very smooth. Kawarabayashi claims
that the large KK s-wave scattering lengths are in good
agreement with the experimental data(lg).

Working in the t-channel, one gets the amplitude
for the KK+KK process. The isospin amplitudes, as given

earlier, are

TO

-8'(Vp¢(u,s) - Vp¢(s,u)) (2.100)

ol

8”(Vp¢(u,s) + Vp¢(s,u)) . (2.101)

In the t channel centre of mass system, the Mandelstam

variables s, t and u become

2

= 12 = ' I 2
t = (p-q')° = (ptk')" = po+2poko+ko (2.102)

57
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s = (ptq)2= (p-k)2= 4m§—t+2p2(1-coset) (2.103)
_ 2 2
u = (p-p')° =-2p° (l-cosb ) (2.104)
where k'= -q' and k = -q
u 2 _ 2
coset =1+ — and 4p” = t-dm, . (2.105)
2p

At threshold t»4mi, and both 1-a_(s) and l-a,(u) > 0,

therefore we can write

o (s)+a¢(u)

T (1+£)
Vo¢(s’u) I I

(1-~a,_(s)-a, (u))
p ¢
(l+&;)2 £ ¢

a'(s+u—2m§)

a'(2mi—s-u) / (1+E)
(L+£)E

%+a'(u_2mﬁ+m%) dg. (2.106)

Along the same line of treatment as in the previous sec-
tions, we can project out the s and p wave amplitudes of

Vp¢(s,u)

1
=1
Vo (s gg = 3 -{ Vp¢(s,u)d cos0,

= 2u'(% - s)+ 4a'2[s(2m§-s)— %(t—4mi)(t-3 s-mi)]

+ u'z(t—4m§)[% (t-3s+2m§)1 in 2 (2.107)
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1
=1
Vp¢(s,u)z=l = 3 _{ Vp¢(s,u)cosetd cos8,

2
[ ]
--3 a'pi- 23—(4p2)[(4s-4m§-8p2)— 2 In2(s-2m2-4p%) ] .

(2.108)

Similarly, one findé

a'(s+u—2m§)
(1+E) ac, (2.109)

vV . (u,s) = a'(2mi-s-u) |

pd L+a' (u-m2)
(1+£) € w
L 1
Vp¢(u’s)2=0 =3 -f Vp¢(u,s)d cos8 .
2 2
_ (t-4m2) (£-3s-m2)
= a'(t-zs)+4u'2[s(2m§-s)- mK3 LS
- 2¢'2(1n 2)s[t-2s) (2.110)
and,
vV . (u,s) oA 2 4Pl 12 (4 (s-m2-2p2)-2s 1n 2]
g (UrS) gy = 73 a'p -« k2P s 1n .
(2.111)
The s and p wave amplitudes finally are
O (KK) = 8"a'? 1n 2{2s(t-2s)+§(t-4m§)(t-3s+2m§)}
(2.112)
Ti(xx) = 8"’ (2(t-25)+8a’ [s (2ma-5) - %(t-4m§)(t-3s+2m§)1

- «' 1n 2[2s(t-2s) - % (t-4m§)(t-35+zmi)1}. (2.113)
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T(KK) = -~ 22 pu’p" (m2+2p%) 1n 2 (2.114)

TI(KK) = - 2 p2u'p (1 + 20 (s-m2-2p°) (2-1n 2)]. (2.115)

From these amplitudes (2.112)-(2.115), we get the follow-

ing scattering lengths

(o]
7° (KK)
ag(KK) =2 , =0 (2.116)
167 /& t=4mK
s=0
1 Ti(KK) 1 -1
a_ (KK) = ——— , = 7= B"a'mg = -0.436 my (2.117)
167/t t=4my w
=0
(o]
7° (KK) 2o
a} (KK) = l_'_i 2=~ aens mg 1n 2
16/t p t=4mi
p=0
- -3
= 0.0044 my (2.118)
L (kK) Ty (K0 @ B [1-2a'm,( )]
at (KK) = ————— = - -2a'm, (2-1n 2
1 16m/t p2 t=4mi i2nm, K
p=0
x 0.059 m;<3 . (2.119)

Since the KK scattering amplitudes do not have bound
states or resonances the deviation from the current alge-

bra results should be small. In the case of the KK
(18)

s-wave scattering lengths this is true
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CHAPTER III

VENEZIANO MODEL OF ﬂﬂ+ﬂAl REACTION

Section I : General Properties of the mun-+mA, Scattering

Amplitude

Consider the reaction
nT(@ + 1t (p) — 1T (@") + AT(K)

where q, p, q' and k refer to the particle four-momenta.

The Mandelstam variables are
s = (p+q)2 t = (q-q')2 u = (k—q)2 (3.1)

with s+t+u = mil + 3m§ . Because of the energy-momentum
conservation there are three independent four momenta in
the problem which one could choose as (q+q')u, (q-q')u
and, say., pu. The gauge condition n.k = 0 (where nu is
the polarization four-vector of the AI) implies that

n.p = n.(k+q'-q) = n.(q'-q). Thus two invariant ampli-
tudes, called A(s,t) and B(s,t) in the following, serve

to define the complete amplitude. One can therefore

write the amplitude for um-+ud, as(7)

Ton,nay (S08) = A(s,t) (g@-q').n + B(s,t)g+q').n .

(3.2)

Under the exchange of s and t, we see from eq. (2) that



A(s,t) « S(3B(t,s) - A(t,s)]

(3.3)

B(s,t) *—v%{A(t,s) + B(t,s)] .

The amplitude T (s,t) in eq. (2) can alternatively

nn,nAl
be written as

= - '
Tm'ml(s,t) = [A(s,t)+ B(s,t)]( p,n)+23<s't)q . .
(3.4)

In the s channel, the contribution of the p pole

to the amplitude (Fig. la) is given by

9y (K-2P) €, s_;z (Gge,en + 26y (Kum) (k. )] (3.5)
p

where K=p+q is the four momentum transferred, € _ is the

polarization of the p meson and the coupling constants

are defined as follows: The T (q) + n+(p) —a-po(K)

vertex is defined as,

Vp“ﬂ= gp““(q-p).ep P (3.6)
and the

p°(K) — 7 (q') + AT (K)
vertex as,

= Gsc .n + ZGD(K-n)(k.ep) . (3.7)

Vona, o
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By a rearrangement of the parameters in eq. (3.5), we

can write it as

gp“"{ZGsp.n + (q'.n)[Gs—GD(mil + 3m§-—s- 2t]} 1 > .
s-mg
T (q') A7 (k) T (q') A7 (k) (3.8)

| |

Fig. la | p(K) Fig. 1b | o (k)
| I

|

" (@) * * (p) "-fg}’///‘\\\\qifp)

s

The contribution of the o (the 0+ p-daughter) to

the amplitude (Fig. 1b) is given by

D S . 1
gnndoma, (2K k)en ——3 = 9oqrIgmay 2q'.n —5— - (3.9)
P P

The coupling constants in (3.9) are defined as follows.

The n (q) + n+(p) —» o0 (K) vertex is given by

Voarn = Joun ! (3.10)

and the o(K) + 7 (g') + A] (k) by

- ]
vonAl = gonAl(K+q Y.n . (3.11)
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Compare egs. (3.8) and (3.9) to (3.4), one finds that

_ .1 _ 2 2___ 1
p s—-m
P
(3.12)
__1 2 2_oop)] 2 I
P P
(3.13)

Similarly, one can obtain the p-pole and o-pole

contributions to the amplitude in the t channel (Fig.

2a and Fig. 2b).

+ . +
nt(-q") A7 (k) ¢ (=a’) By (k)
TP (K) S (K)
1 (q) 7 (-p)

7 (q) m (-p)
Fig. 2a Fig. 2b
1
-— L]
Tp—contribution' gp“ﬂ(K+2q ).ep ;:;ileep.n+2GD(K.n)(k.ep)]
p
=- {2q'.nG_-p.nlG_ -G (m2 +3m2—t—25)]} 1
gpﬂﬂ qQ’-Nbg™Pe s D Al bl t 2!
~m
)
(3.14)
- (3.15)

To—contribution=-Zgonngcnh p.n 2
1l t--mp
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From eqgs. (3.14), (3.15) and (3.4), one gets

— 2
B(s,t) = gpﬂﬂGs/t mp ’ (3.16)
1

t-m
p

1
+ 2g g 5

pT 978} t-m

A(s,t)=g nGD(m§l+3m§-t—zs) -

(3.17)

Carrying out the partial wave expansion of the
invariant amplitudes A(s,t) and B(s,t), in the t channel,

one obtains for the two helicity states » = 1 and
A = 0(7)(20).

/2q B(s,t) = L — 231 <30|T,|005P) (coso,) . (3.18)

J [J(I+1)]*

2 -
a;—[wtktA(s,t)—qtstB(s,t)coset]- §(2J+1)<00|TJ|00>PJ(coset),

1
(3.19)
where
_ 2_ 2 2 2 __2,2.% -
kt = [t 2(mAl+mﬂ)t + (mAl m“) 1#%/2/t ,
Yl . 2.5 _ 2.2 .5 _ 2. 2.%
dy = 5(t 4m“) r ELT (kt+mA1) and W= (qt+mn) .

In the s channel, the partial wave expansions for A(s,t)

and B(s,t) in the helicity 1 and 0 states are,

1 2J+1
— q [A(s,t)+B(s,t)]}= L ————————r<10|TJ|00>P3(coses) '

/2 J (J@+)]73
(3.20)

e et R e A S A SN X
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1 =
m—A— fwk, ( A+BB)-qSES(A+B)coses]— §(2J+1)<00|TJ|00>PJ(coses). :
1

a(t)-1 a(t)

, while
a(s)

t .
As s+, PJ(coset)« s and PJ(coset)a s

as tre , P&(coses)« ta(s)—l

and PJ(coses)a t
Therefore, from egs. (3.12), (3.13), (3.16), (3.17) and
the above equations, one obtains the asymptotic behaviours

for A(s,t) and B(s,t)

a(t) a(t)-1

A(s,t)~s B(s,t)~s for t fixed and s-x ,

as,t)~t48), B(s,t)-t* S for s fixed and t+e .
(3.22)

According to the Adler's consistency condition(s),
the amplitude for the ww>mA; reaction vanishes as one of
the pion four momentum goes to zero. Hence, from eq.

(3.2) one gets the following:

(i) When g'=0, T(s,t)=0 gives

N

Als,t)+B(s,t) = 0 at s=mi , tem’ ; (3.23)
1

(ii) When g=0, T(s,t)=0 gives

A(s,t)-B(s,t) = 0 at s=m> t=mZ (3.24)
(iii) When p=0, T(s,t)=0 gives
2 2 '
B(s,t) =0 at s=m t—mA . (3.25)
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Section II : Veneziano Model for wmn-+mA, Amplitude

One can write the Veneziano formula for amplitudes
A(s,t) and B(s,t) as

T(l-a(s))T(l-a(t))

B(slt) (Yl + th) F(z_a(s)_ a(t)) ’ (3.26)

1]

P (l-a(s)) T (l-a(t))

A(S,t) (Yl + ZYZS - th) r(z_a(s)_ O.(t)) (3.27)

in which B(s,t) is the same formula as given by Riazuddin
and Fayyazuddin(7); and A(s,t) is so written that
T (s,t), eq. (3.2), is equivalent to that given
nn,nAl
]
(21). It can be shown that v,= %T

and Y o= -a'y, where y and y' are the parameters introduced

by Rosner and Surra

in eq. (2) in reference (21). We also see from (3.26) and
(3.27) that A(s,t) and B(s,t) satisfy the crossing condi-
tion (3.3) and that both amplitudes give the correct Regge
behaviour for large t or s.

Generally the Adler zeros are enforced via a pole
of the gamma function in the denominators of A(s,t) and
B(s,t)(7). such a constraint gives a mass relation between

mAl, mp and m_, i.e.,

2 4 md = 2m> . (3.28)

This relation is also obtained from VWeinberg sum-rules
based on chiral symmetry. This has been the usual procedure

pursued in all the published works.
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Notice however that both A(s,t) and B(s,t) have
gamma functions multiplied by a polynomial in s and t.
There is therefore an alternative way to enforce the
Adler zero namely by demanding that these polynomials
van;sh at the kinematical points required by the Adler
zero. We have followed this procedure to see what con=-
sequences follow from it and whether there is any
evidence that this is not a consistent procedure. Thus,
from (3.23)-(3.25), we have
(i) A zero for B(s,t) at t=m§l P s=m§ provided that

. 2 _ .
Yl + YzmAl =0 ’ (3-29)

(ii) At s=m§ ' t=m2, T(s,t)=0 requires
1 b
A(s,t) + B(s,t) =0,

or 2y; + 2y, s = 2(y, * Yzmil) =0

-e

(iii) At s=mfr , t=m12r, A(s,t)-B(s,t)

|
o
-

Hence all the zeros can be secured if (3.29) holds, i.e.

Y= yzmi . From eq. (3.26), we see that the residue of
1

B(s,t) at the pole s=m§ is
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(v, * Ypt) L (3.30)

where o' is the slope of the p-trajectory, and

a' = [2(mg—m§)]_l. Comparing egs. (3.12) and (3.30),
one gets

T2 3.3
o' GDgpwn ’ (3.31)
Il.: 1 (G -G (m2 —m2+3m2)] - (3.32)
a’ 29pnn s D Ay P m gonnganl : )

At t=m§, the residue of B(s,t) is
-y * Yo /e (3.33)
l 2 p . L]
From egs. (3.16) and (3.33), one obtains

(v, + Yzmﬁ)/a' = 9pCs - (3.34)

1t follows from eqgs. (3.31), (3.32) and (3.34) that

I 3 2 _, 2., 2
gonngonAl = ) gp”[Gs+GD(mAl 3mp+3mn)] . (3.35)

If we impose the condition that y;= -Yzm% , then eq. (3.34)
1l

gives

2 _mq? " = -
Yz(mAl mp)/a gpnnGs ' (3.36)

which when combine with eq. (3.31) produces



_ 2 2
y = G /Gy = (mAl me) (3.37)

Using the mass formula mi +m§=2mi which we shall use as
1

an empirical relation, one gets
= I 2
Y = Gs/GD = (mp + mn) . (3.38)

From egs. (3.31), (3.32) and the condition y;= —yzmgl,

one finds thaé
2

_ 1 2 a2
= 2 g (G G, (my 4m =3m)] (3.39)

g g
onm onA, pT 1

. 2 2 :
with Gs/GD= -(mAl- mp), both (3.35) and (3.39) give

-1 2_, 2
gonngonnl_ 2 gpﬂﬂGD[zmp 3mil . (3.40)
If we use the relation ginn = migi“"(Z)' which results

from the Veneziano model of the wa-+w7 scattering, we can

show from (3.40) that

_ 1 2_, 2
gonA1 = Eﬁg GD(Zmp 3mﬂ) R (3.41)
or
gonAl = GDmp for m_ = o . (3.42)

1f the g-contribution were absent in eq. (3.35),

*
one would obtain the result of reference (7) .,

*
The Gp of reference (7) has opposite sign of ours

because of the difference in metric matrix used.
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_ (w2 - 2 2
y = G /Gy = (mAl 3mp+ Bm“) ‘
or
2 2 2 2
Y = mp for m = 0 and my = 2mp . (3.43)

Note that the result here is opposite in sign to (3.38)
which is '

2 2
Y = mp for m_ = 0o .

Rosner and Surra(Zl), using the experimental result of

the SLAC group, estimated that y may take the values

. 2 2
0.1 m? <y & -0.06

(1) mp S Y. mp '

(ii) 0.16 mi <y, < 0.44 mi .

Section III1 : Decay Rates for A »mo _and A,*pT Reactions

Using the value y = —mi, the decay widths for

A,+on and A,»pm are calculated and listed below

2
9ouA mg_
Tfpyrom) = T2 To/z
2.2 .2 _3
3y+
T (A,»pm) =S;_g£_1.ln£-)-—=ig.,_“_‘9_
17P7Ta=0 47 96/2 m T a7

2’
||| UQ
\a

F(A7P™) oy =

71



ra +p-n') = —
1 total = 4w 24/3

where A denotes the helicity state. Using oA, GDmp,
1

one can estimate the ratio of these partial widths.

F(By7PT) y 0

_ 1
= 7T ’
F(Al»pw)k=l 4
e — =% (3.0
17PT =1
P(Al+on) _ 1
T(A7PM) oea1 10

In reference (7), three sets of results vere given:

(i) wWhen gonAl = 0, then Y=mﬁ and one gets,

P(Al*on)

"
o
-

i AP
F@A2e1) )2

and

= 1.

(ii) If GD = 0, then = GS/Zmp and one gets,

g
onAl
F(Al+pn)k=0 =0

F(Al»on)
fThl+pn)A=l 32

4

and
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(iii) If G = 0, then % m G and this gives

gonAl p°D

P(A1+pﬂ)k=l =0,

P(Al»on) i 1
T(A;>pT), g 2

The results (3.44) are quite different from those

given in the three cases and the relation g =mG
onAl o}
we obtain, is twice of that given in case (iii).

Dl



CHAPTER IV

VENEZIANO MODEL OF Kg->n+1r-y DECAY

Section I : Introduction

In the pole model prescription for the decay pro-
cesses, the initial particle is envisaged as converting
weakly (or electromagnetically) into an intermediate
state which subsequently decays into the final state
through strong interaction. since the successful appli-

cation of Veneziano model(l) to the mm scattering and

74

spectra in 3w final state process (2)(3), several authors

have used the pole model, with the strong interaction part

of the decay amplitude described by the Veneziano model,
to calculate the K-+3m, n¢3n(9)(10), Ki+ntnoy(22) and

g»n+n—y(12) decays.

K
Sutherland(g) and Jacob et al.(lo) considered the
K+37 and n-»3n decays in the pole model and showed that

the contribution from Fig. 1 dominates that from Fig. 2.

w
T
K
KT \,, et DU
w
s

Fig. 1 - Fig. 2
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In the works of references (9) and (10), the
transition amplitude <n|Hwk|K> for the K meson going
into the intermediate pion state is calculated in terms
of <nn(0)|Hwle> using the current algebra. Neglecting
all off mass shell effects they obtained an amplitude
for K+37 which was about 6 times larger than the experi-
mental result. Therefore, they concluded that large off
mass corrections were needed for the weak vertex and/or
strong interaction part.

Rockmore(lz) used the pion pole model for Kg+n+n-y
in which the K meson converts to a pion weakly through

a phenomenological mixing of K and n mesons with the

pion (Fig. 3). With the uncertainty in the sign of n-no

T T
K K n T Knn "n A/"

Fig. 3

mixing relative to the K-u mixing and also in the sign
introduced by a model of PVV coupling, he calculated the
branching ratio F(Kg*n+nwy)/r(xg*all) for all the possible

sign combinations. All the results lie within the experi-

mental upper limit of 4 «10”4 (23),

(22)

In the paper of Dass and Kamal on the magnetic

+ + . .
radiation in K‘»ﬁ"noy decays, the intermediate state was
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taken as a JP = 0 m-like meson. They estimated the
amplitude for the transition of K meson to the m-like
0~ intermediate meson (mn') by relating the K 1%
amplitude to the T decay (K-»3m) amplitude whose size is

known experimentally. The function ¢ defined in their

paper
]
v = <m'|H [ K> .
2 2 'n
Mg = Mo P

embraces all the off-mass shell factors and hence takes
care of the off-mass shell effects in the K-u' transition.

In this chapter the Kg*n+n_y decay will be treated
along the same lines as in rcference (22), that is, the
intermediate state is taken as an off-mass shell pion
(or 0° w-like meson) rather than the on-mass shell pion.

The transition amplitude for Kg+n'°, <n'°|Hwk|Kg>,
is evaluated in three different ways in Section II and
the decay rate for Kg»n+n-y is calculated in Section III
of this chapter.

As a test of the validity of the transition ampli-
tude <ﬂ'o|Hwleg> the pole model of the Kg*yy decay is
investigated in Section IV. There, we make use of the
results for <n'°|uwk|xg> amplitude obtained in Section
1I and consider the decay of ﬂ'°+yy, according to the
vector meson dominance model, going via the 7'%+pw or

ﬂ'°+py processes with p and w meson coupling to the final

i bt A M Tt S et
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state photons (Fig. 4 and Fig. 5).

Fig. 4 Fig. 5

. o -
Section II : Transition Amplitude for K2+n+n vy Decay

o,
2

the 'direct process' (Fig. 6) and the 'innerbremstrahlung

To order e the decay K n+n—y will proceed via

process' (Fig. 7).

If we assume cp invariance, then the processes of Fig. 7
would not be permitted. In the pole model we shall break
up the vertex of the direct process (Fig. 6) in the manner

illustrated in Fig. 8. . ﬂ+(p)

(o] (o]
KZ(K) N Tt :'/
PNy
>~

n (q) Fig. 8

—

"y (k)
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If the Al = l/2 rule holds, the intermediate state should
be either a cp = -1 and I = 0 meson (n-like meson) or a
cp =-land I = 1 meson (7w -like meson). In the previous
calculation of Rockmore(lz) there are too many unknown
parameters. We choose to restrict ourselves to the
discussion of the m-like meson as the only intermediate
pole in the transition and neglect the n pole contribution
(and the 7-n mixing effect). This model will then have no
free parameter and our calculation would serve to deter-
mine the adequacy Or otherwise of such a model.

The part of amplitude describing the transition of

Kg*n'o is written as

2
<n'®lu, |K3>/ (mg =7 ) (4.1)

where m_, is the effective mass of the m-like meson #'.
In the strong interaction part, making use of the

vector dominance model, the w-like meson (7m') is envisaged

as decaying into 11"V state where V is a vector meson

(p, ¢ or w)which couples to the photon. With G parity

equal to -1 for the m-like meson, the final state n+n-v

is expected to be in G = -1 state, because G parity is

conserved in strong interaction. The G = +1 p meson

cannot participate the reaction, since the G parity of

the nup system will be +1. In the guark model with ideal

nonet mixing, ¢ is made up of strange quarks only (¢= -2
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while the m-like meson is made of p and n quark-antiquark
combination, therefore ¢ would not be expected to couple
to a 37 system. w meson, with G = -1, is the only possi-
ble candidate to fit in the picture.

If 7' were an on-mass shell pion, then we could
apply the Veneziano function to describe the strong

interaction part and write the amplitude(l)

Almwrnn) = B oo [Boe + Bgy + Beyl o
with
o r(l-a(x))T(l-a(y))
Byy = T (2a () - aly)) (4.2)

where Bwn is the strength of the Veneziano amplitude,

o T

a(x) is the p trajectory and s, t and u are Mandelstam

variables

s = (K-K)2, t=(pH)2, u= (g+k)? . (4.3)

K, k, p and g are the four momenta of the K meson,
photon, at ana #” respectively. The amplitude A(nw+nm)
is symmetrical under the exchange of s, t and u. For an
of f-mass shell 7' meson, the amplitude A(n'w-»nw) is only
symmetrical in t and u. The general form for A(n'w=nuw)

should be written as
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1 .
A(n'wrnm) = Bn.w’“"[Bst+ B, * gBtu] '

or

A(n'w+nm) = Bn'w,nn[Bst+ Bsu+ Btu+ (g-l)Btu] ' (4.4)

where the parameter £ measures the deviation of A (w'w+7n)
from A(nw+nm). Normalizing the amplitude for 7w
at the p pole B _, can be identified as
ww',
B = a'g

g ' (4.5)

wn' 7 prn'w’pmm

where o' is the slope of the p trajectory (a'= 0.89 Gev-z).

We shall assume g _, to be the same as g where 71 is
pr'w pTw
the on-mass shell pion. gm”r is defined with all the
particles on their mass shells and is related to the
experimental p-width.
Finally, it follows from the vector meson dominance

model that the strength of the coupling of the w meson to

the photon is given by(24)
emzsine
w Y , (4.6)
2fy

in which ey and fy are defined, in the scheme of w-¢

mixing, by

_ 3 () _ . (w)
£Y = /a x[cos0 J sin0 J."")
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where Y is the hypercharge and Jé¢), Jéw) are the sources

of w and ¢ meson. The total amplitude for Kg+n+n—y is

given by

(o] (o)
<n'”|Hgy [Kp>

A(Kg+n+ﬂ-Y) - [Bst+ Bsu+ gBtu] X

2 _ 2 wn', T
Mg = Mo

e sing u “k°g*

% 2fy euvokp !

' (4.7)

where € is the polarization four-vector of the photon.

In eq. (4.7) all the quantities are known or can
be calculated except <n'°|Hwk|ngﬂm§—mi,). In the follow-
ing we describe different models to estimate the size of
this quantity.

(1) 1f 7'° is an on-mass shell pion, then current
algebra can be used to relate the transition amplitude
<n°|Hwk|Kg> to the amplitude <n°n°(0)|Hwk|Kg>, in which

(9)(10)'

72(0) is a soft pion as

<n®|H, K> = 2 fn<n°n°(0)|uwk|K§> , (4.8)

where fﬂ is defined by the PCAC hypothesis relating the
divergence of the axial vector current to the pion field,

_ 2 - ! o_o o
auJu = fnmn¢' and f11 =~ 91 Mev. If we take <un u (0)|Hwk|Kl>
to be the physical amplitude which is(?3) 0.39x 107® Gev,

we obtain
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<n‘°|Hwk|Kg>/(mi-m§,)= 3.05 x 1077 . (4.9)

Let us look at the pole model of K°+n+ﬂ—n° decay

2
(Fig. 1) whose amplitude is given by
o o
< |H . |K5>
o _+ - 0o, _ wk'!"2" 8 _ _
A(Ky»m'm @ ) = 5 5 > Vg Ver Vsu] , (4.10)
My = My

where

_ L(l-a ()T (1-aly))
Xy I (l-a (x) - aly))

and g, when normlized to the residue at the p-pole in

nn scattering, 1s given by B = ngﬂ“gpn“. If the value

of (4.9) is put in (4.10), we obtain A(K3+n+n~n°) at the
. e oM 2 2

centre of the Dalitz plot (s=t=u=—3 tmoo= 0.1 Gev")

to be 5.5 x10~6 which is about six times larger than the

experimental value 29) (0.89:0.03) x 10”%. Hence, the

of f-mass shell effect is expected to be large.

(ii) We may reverse the situation and take the amplitude

A(Kg+n+n—n°) as a known quantity and calculate the size

1O O (2 _ 2 . . 1O _
of <m |Hwk|K2aﬂmK m ) in which n'° is an off-mass

shell pion, we then get
o ,O 2 2, _ -7
<n’ lﬂwk|h2>/(mx-'m“.) = 0.475x10 ° .

(iii) From the AI= 1/2 rule, one has

+ + (o] (o} o] o]
<n'T|H, K> = V2<n! |uwk|x > = <n’ luwk|x2> . (4.12)
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In the pole model, the amplitude for K++ﬂ+n+n_ is given

by
+ +
<n' |H  _|K">
+ 4+ 4+ - :
A artatsT) = K —— BV, (4.13)
me - m, :

where the Veneziano function Vtu is defined in (4.10).

At the centre of the Dalitz plot (4.13) becomes

A ety = 0.72[3<n'+|

4, 2 2
Hwklh >/(mK mﬂ.) . (4.14)

(25) + 4+ +

With the experimental value of A(K'»n ' m ) =

2 x (0.96+0.02) x 10~°%, it follows from (4.12) and (4.14)
that
<n'®fn , |K3>/ (m2-m2,) = 0.513x 1077 , (4.15)

which is consistent with the result in (ii). Thus in the

following discussion the value of <7

taken to be 0.5 XI0_7.

1O o 2_ 2 ‘o
|4 [ RS >/m=m ) is

From eq. (4.7) the total amplitude can be written

as
o + - -7 sin@
- - ] !
A(Kzrn m Y)= 0.5x10 a gp“wgpﬂ"( 2fy )[Bst+ Bsu+ EBtulx
.V, 0 A
x cuvok p'qg ke” . (4.16)

The ratio of the coupling strength of w and y to that of

p and vy 15(24)
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sin“0

1_. Y - 9.00 : 0.65 ,

2 2
g 4f

pTT

or
sind
0.65 1
= [ . (4.17)
ZfY 9 gp““

After all the values have been introduced in (4.14), one

obtains

o _+ =\ _ -7 £
A(KO+n m y) = 0.579x10 [BoetBgytEBeulEpvaaP ¢ % 5 -

section III : Decay Rate for £9+7 17y

The decay rate of Kg*n+n-y is given by

’ 3 3 3
- (2ﬂ)4 1 IlA 2 d’p d q d 'k

2K, (2m)> 2p, (2ﬂ)32qo (21)° 20

Al

§ (K-p-q-k),
(4.19)
where p . 9, and w are the energies of n+, n and Y res-

pectively, K is the K meson four momentum and A is the

amplitude A(Kg+n+n—y).

0.579 x 10”1 ¢

A HqVk%er (8]

uvoAp
with

B = [Bgt Byt Beut (-1)B,) -
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We have shown in Appendix that the function B does not
vary appreciably over the Dalitz plot and hence can be

regarded as constant. We shall take an average of B,

B = 11.88 + (g&-1) 3.57 , (4.20)

(0.579x10" 'B) 2 [

H.V,,0 A a B,y S
uvoAp a’ke ][EaBYap qkle’]

(0.579x10-7B)2[2(p.q)(q.k)(p.k)—mﬁ(p.k)z-mi(q.k)zl,
where we have made use of the relations

A6 L 26

euvokeaﬁyx = guagvﬁgoy + guBgvygoa + guygvagcﬁ

- guBgvagoY - guYgoang - guagvygso'

We then get

%.: 1 3 -2—%'\;-1[0.579x10—7B]2(2(p.q)(q.k)(p.k)—mﬁ(p.k)2

(2q) o
2 2. a’paqa’
- mi(p.a)?) SR §(K-p-gk) (4.21)
poqo

or

1o 2o 5%—][0.579X10-7B]{2(p.G-p.k)(G.k)(p.k)-m:(p.k)z
(2n) o

3
_ mi(G.k)z} 2n|pld cosé d|lp| da’k

2 2
7. S 61G°-2G.k-m)



where G = K-p = k+g. In the frame where K meson is at

rest (i.e. K = (mK,O,O,O))

§[coss - S

2|p| k| . 2|pl ||

5162~ 26 .k—mﬁ] =

and
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(2 (p.G-p.k) (G.k) (p.k)-mi(p.k)z-mﬁ(G.k)z} = n2|p|%w’sino ,

and the decay rate becomes,

-}f-: 1 f[0.579Xl0-7Blm12<|p|2mzsinedpodwd cos® x
64n my

: 2 2 2

(mK po-w) “PoTw

2|p| x|

m,  max po(w)max -7..2
= 3 / dw | dpo[0.579x10 B]” x
647~ 0 po(w)min

x §[cosB -

2,2 2 1, 2 2
x {w (po-mn) - Z(mK—kapo—Zme+2pom) }

7.2 1 Ymax mim3 (mmax-w)3/2
= {0.579x10" 'B]® ——5 | dw!— TR
641> 0 2m; C
[(wmax-w)+az-]
(4.22)
where
2,2
Ymax = (my 4mn)/2mk'
1 i
Po(u)max = Flmg-wie 1 - .
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After the integration in (4.22) has been carried out,

we obtain

2
m’, _
p= Lo (o.579x107 7812 —E5 Lx0.441x120 5
T _ 33
647
= {4.73x10‘13+2.84x10’l3(g-1)+o.427x10'13(g-1)2} x
(0.441 x 107)m2
X 3 ’
1927w
or
r o= {0.88x10"22+o.51x10’22(g—1)+o.08x10‘22(g-1)2} (Gev)
_ : 2 2 -1
P o= [1.340.75(£-1)+0.118(§-1)“] x 10 (sec” 1) .

The branching ratio for Kg»n+n-Y is then given by

F(Kg¢n+n_y) 2 -5
= [0.76+0.44(g-l)+0.068(£—l) ]x 10 ~. (4.23)

r(xg»all)

If the off-mass shell effect of the intermediate pion in
the strong interaction part is ignored then £=1 and the

above branching ratio would be 0.76 x 10-5. The experi-

mental upper limit(23) for this branching ratio is 4Xl0-4.
The valuc of |Z| would have to be of order 10, if (4.23)
were to be of the order 10_4. Thus it seems that a simple

model with essentially one parameter § can account for the

observed branching ratio.
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Section IV : Decay Rate for Kg*Yl

Consider the Kg*YY transition to proceed as shown
in Fig. 4. The amplitude A(Kg*YY) is written, in the

pole model, as

o _ 'O o, _2 e )‘
A(KZ*YY)_ <u l”wle2> mi“mz. om'y 9___ . Euvoa lkl 2 2!
S
(4.24)

where kl and kz are the four momenta of the photons and
€y and €, are their polarizations,gp“.Y is assumed to be
the same as g 7Y in which 7 is on the mass shell.

Using the value <n'®|H k|I<°>/(n12—m2 )=0.5x% 10”7 and

I (p+my) £ 0.5 Mev(27), we get the amplitude for K2+YY
A(KSryy) < 1.83 %1072 uyv gyl (4.25)
27YY) = My uvorf1%1%2%2 y

o
F(K2+YY) -4
and the branching ratio = ———?;————-S 7.1x10 .
F(K2+all)

If one uses the DESY result(za) I'(p*ny) £ 0.24 Mev,

the result would be

-9
o 1.3 x10 )y
A(Kz"YY) = My HVOA 1k152kz ' (4.26)
F(K *YY) -4
and Branching ratio = ———-—————— < 3.6 x10 .

K(K ©+all)
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We may use the vector dominance model and couple

the second photon to an w-meson (Fig. 5); then gpn'yin
. 22 . .
(4.24) is replaced by( ) egm“.051n6y/2fy. Here, as in
Section 1I, Fum'p is assumed to have the same value as
Iump in which 7 is on the mass shell. The amplitude now
becomes
° ° o sin® e
- — 1 et
AKGryy) = <n' O H 1KY =5 €9yqrp T2 g 7
me=Mm. Y pu
THRVEN TP
% Cuvo)\elklEZkZ
_0.82x107° _ _uv o) (4.27)
m *“uvor-1tiv272 ! *

which corresponds to a branching ratio 1.44 x 10—4.
The experimental values for the Kg+yy branching

_4 (29 _4 (30 _a (31
ratio are 1.3 x1074 (29) 4. 7x 1074 (30) "5 3.107% (31)

—4 (26) _4 (32)

6.7 x10 and 7.4 x10 . The result of (4.25)

is consistent with the larger experimental value and the

vector dominance model calculation (4.27) prefers the

(33)

smaller value of the set of data. There are suggestions

that the correct experimental value might be close to

5 x10" 4.
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APPENDIX

The Numerical Value of B in K?*n+n-v over the

Dalitz Plot

Bst Bsu Btu Bst+Bsu+Btu
(Gevz)
s=0.08 t=0.105 wu=0.105| 3.81| 3.81} 4.01 11.63
0.097 0.097 0.097| 3.86| 3.86| 3.86 11.58
0.11 0.09 0.09 3.86| 3.86| 3.7 11.42
0.12 0.085 0.085| 3.91| 3.91}| 3.7 11.50
0.13 0.08 0.08 3.94| 3.94 | 3.64 11;52
0.16 0.065 0.065| 4.08 | 4.08| 3.5 11.66
0.2 0.05 0.05 4.24 | 4.24| 3.36 11.84
0.25 0.02 0.02 4.56 | 4.56 | 3.13 12.25
0.097 0.13 0.063]| 4.05}| 3.66| 3.88 11.59
0.1 0.12 0.07 3.99| 3.66 | 3.77 11.42
0.13 0.1 0.06 4.05] 3.77| 3.64 11.46
0.13 0.12 0.04 4.7 3.76 | 3.7 11.63
0.2 0.06 0.03 4.25 | 4.19 | 3.31 11.75
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