SECURITY ANALYSIS OF CRYSTALS-KYBER

Deepa Thangavelu CARIC 2023

21 April 2023

Agenda

- » PKC
- » PKC Under threat
- » NIST PQC standardization (Round 4 & Alternatives)
- » CRYSTALS-Kyber Decapsulation Mechanism
- » Side-Channel Attacks on CRYSTALS-Kyber
- » Chosen Ciphertext KEMs
- » Full-Key Recovery

Public Key Cryptography (PKC)

PKC Primitives:

- » Public-Key Encryption (PKE) -Confidentiality
- » Key Encapsulation Mechanism (KEM) Secret Key-Sharing
- » Digital Signature Schemes (DSS) -Authenticity

PKC Primitives we use today:

- » <u>Rivest-Shamir-Adleman (RSA)</u>
 - Security: Prime Factorization problem
- **Elliptic Curve Cryptography (ECC)** Security: **Discrete Logarithm** problem

PKC Under Threat

Peter Shor in 1994 developed the **first quantum algorithm** that solves the factoring problem in **polynomial time**

Cryptosystem	Category	Key Size	Quantum Algorithm	# Logical Qubits Required	# Physical Qubits Required	Time Required to Break System
AES-GCM	Symmetric-Key Encryption	128	Grover's Algorithm	2,953	4.61 × 10 ⁶	2.61 × 10 ¹² years
		192		4,449	1.68 × 10 ⁷	1.97 × 10 ²² years
		256		6,681	3.36 × 10 ⁷	2.29 × 10 ³² years
RSA	Asymmetric-Key Encryption	1024	Shor's Algorithm	2,050	8.05 × 10 ⁶	3.58 hours
		2048		4,098	8.56 × 10 ⁶	28.63 hours
		4096		8,194	1.12 × 10 ⁷	229 hours
ECC Discrete-log Problem	Asymmetric-Key Encryption	256	Shor's Algorithm	2,330	8.56 × 10 ⁶	10.5 hours
		384		3,484	9.05 × 10 ⁶	37.67 hours
		521		4,719	1.13 × 10 ⁶	55 hours

Post Quantum Cryptography (PQC)

First NIST PQC Standards (US):

PKE / KEMs	Digital Signatures
Kyber	Dilithium
	FALCON
	SPHINCS+

BSI Recommendations:

PKE / KEMs	Digital Signatures		
FrodoKEM	XMSS		
Classic Mcelice	LMS		

Features of CRYSTALS-Kyber

Key Encapsulation Mechanism (KEM) Modules Learning with Errors (MLWE) Problem Prime modules q=3329 Kyber.CCAKEM.KeyGen Kyber.CCAKEM.Enc

- >> Encapsulate a (secret) message m
- >> Session key derived from m

Kyber.CCAKEM.Dec

- >> Decapsulate ciphertext using long term secret key
- >> Fujisaki-Pkamoto transform for IND-CCA security

CRYSTALS-Kyber Decapsulation Mechanism

$$m' = \mathsf{Decrypt}(sk, ct)$$

$$r' = \mathcal{G}(m', pk)$$

$$ct' = \mathsf{Encrypt}(pk, m', r')$$

$$If(ct = ct')$$

$$K = \mathcal{H}(r' || ct')$$

Else

 $K = \mathcal{H}(z \| ct')$

Physical Attacks on CRYSTALS-Kyber

Side Channels Attack (SCA)

□ Observes device's physical signature during its operation for cryptanalysis.

Side-Channel Attack Vectors

- ightarrow Timing
- **□** Power Consumption
- Sector Secto

Experimental Set-up

- Perform all the experiments on the most optimized implementations of the targeted schemes present in the pqm4 library, power consumption trace analysis on the AT328 microcontroller.
- Clock Speed of 16 MHz;
- The ACS712, a series of current sensor integrated circuits (Ics)
- Voltage sensor measures 0-2.5V
- equipment set-up is capable of capturing power traces of the target device

Leakage Traces

Realizing a Side-Channel based PC Oracle

Message = Function (Single Secret Coefficient)

$$m = 0$$
 $m = 1$ $m = 1$

Chosen Cipher-text KEMs

Main Target: Decapsulation Procedure

Key Recovery Analysis

Output from Matlab Calculations

TVLA Leakage

□ Polynomial multiplication in polynomial rings have special rotational properties. $R_a = \mathbb{Z}_a[x] \mod (x^n - 1)$ $R_a = \mathbb{Z}_a[x] \mod (x^n + 1)$

Multiplication of a polynomial with xⁱ "rotates" the polynomial by "i" positions (cyclic or anti-cyclic)

Recover s₀ using knowledge of O/X

Polynomial multiplication in polynomial rings have special rotational properties.

 $R_q = \mathbb{Z}_q[x] \mod (x^n - 1) \ R_q = \mathbb{Z}_q[x] \mod (x^n + 1)$ $\square Multiplication of a polynomial with x^i "rotates" the polynomial by "i" positions (cyclic or anti-cyclic)$

Recover s_{n-1} using knowledge of O/X

- □ Polynomial multiplication in polynomial rings have special rotational properties. $R_q = \mathbb{Z}_q[x] \mod (x^n - 1)$ $R_q = \mathbb{Z}_q[x] \mod (x^n + 1)$
- Multitplication of a polynomial with xⁱ "rotates" the polynomial by "i" positions (cyclic or anti-cyclic)
- No Rotation property in schemes based on Standard LWE/LWR (FrodoKEM) But, attack still works...

Location of non-zero bit of message changes (depending upon secret coefficient to recover)

Recover s_{n-1} using knowledge of O/X

Allocation of values

Modus Operandi:

concordia.ab.ca

Full-Key Recovery

