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Agenda

» PKC 

» PKC Under threat

» NIST PQC standardization (Round 4 & Alternatives)

» CRYSTALS-Kyber Decapsulation Mechanism

» Side-Channel Attacks on CRYSTALS-Kyber

» Chosen Ciphertext KEMs

» Full-Key Recovery



Public Key 
Cryptography (PKC)

PKC Primitives:

» Public-Key Encryption (PKE) -

Confidentiality

» Key Encapsulation Mechanism (KEM) -

Secret Key-Sharing

» Digital Signature Schemes (DSS) -

Authenticity

PKC Primitives we use today:

» Rivest-Shamir-Adleman (RSA)

Security: Prime Factorization problem

» Elliptic Curve Cryptography (ECC)

Security: Discrete Logarithm problem



PKC Under Threat

Cryptosystem Category Key Size
Quantum 

Algorithm

# Logical 

Qubits 

Required

# Physical 

Qubits 

Required

Time Required 

to Break 

System

AES-GCM
Symmetric-Key 

Encryption

128

Grover’s 

Algorithm

2,953
4.61 × 106 2.61 × 1012 years

192 4,449
1.68 × 107 1.97 × 1022 years

256 6,681
3.36 × 107 2.29 × 1032 years

RSA
Asymmetric-Key 

Encryption

1024

Shor’s Algorithm

2,050 8.05 × 106 3.58 hours

2048 4,098 8.56 × 106 28.63 hours

4096 8,194 1.12 × 107 229 hours

ECC Discrete-log 

Problem

Asymmetric-Key 

Encryption

256

Shor’s Algorithm

2,330 8.56 × 106 10.5 hours

384 3,484 9.05 × 106 37.67 hours

521 4,719 1.13 × 106 55 hours

Peter Shor in 1994 developed the first quantum algorithm that solves the factoring problem in 

polynomial time 



Post Quantum Cryptography 
(PQC)

First NIST PQC Standards (US):

BSI Recommendations:

PKE / KEMs Digital Signatures

Kyber Dilithium

FALCON

SPHINCS+

PKE / KEMs Digital Signatures

FrodoKEM XMSS

Classic Mcelice LMS

Lattice-based

Hash-based

Code-based



Classification of PQC finalists and alternative 
candidates

Lattice-based Cryptography

Public Key Encryption (PKE)/

Key Encapsulation Mechanisms (KEM)

LWE/LWR-based

(Kyber, SABER, Frodo)

Digital Signature Schemes 

(DSS)

NTRU-based 

(NTRU, NTRUPrime)

LWE, Fiat-Shamir with Aborts

(Dilithium)

NTRU, Hash and Sign

(FALCON)



Features of CRYSTALS-
Kyber

Key Encapsulation Mechanism (KEM)

Modules Learning with Errors (MLWE) Problem

Prime modules q=3329

Kyber.CCAKEM.KeyGen

Kyber.CCAKEM.Enc

» Encapsulate a (secret) message m

» Session key derived from m

Kyber.CCAKEM.Dec

» Decapsulate ciphertext using long term secret key

» Fujisaki-Pkamoto transform for IND-CCA security



CRYSTALS-Kyber Decapsulation
Mechanism

Ciphertext

(ct) AbortDecryption

(Secret Key)

Verification

(FO)
EncryptionHash (g)

m’ = 0

m’ = 1

r’ = r1

r’ = r2

sk

pk



Physical Attacks on CRYSTALS-Kyber

Side Channels Attack (SCA)
↘ Reveals sensitive data.

↘ Observes device’s physical signature during its operation for cryptanalysis.

Side-Channel Attack Vectors
↘ Timing

↘ Power Consumption

↘ Electromagnetic Emanation (EM)



Experimental Set-up
• Perform all the experiments on the most optimized implementations 

of the targeted schemes present in the pqm4 library, power 
consumption trace analysis on the AT328 microcontroller.

• Clock Speed of 16 MHz;

• The ACS712, a series of current sensor integrated circuits (Ics)

• Voltage sensor measures 0-2.5V

• equipment set-up is capable of capturing power traces of the target 
device

Leakage Traces



Realizing a Side-Channel based PC 
Oracle

Ciphertext

(ct)
Decryption

(Secret Key)

Verification

(FO)
EncryptionHash (g)

m’ = 0

m’ = 1

r’ = r1

r’ = r2

sk

Message = Function (Single Secret Coefficient)

m = 0 m = 1

Abort

pk

ct’



Chosen Cipher-text KEMs

Attacker

(pk,sk)

Special 

Inputs

Alice

(pk,sk)
Bob1

Bob2

Bob4

Bob5

Bob3Bob6

KEM4

KEM5

KEM6

KEM1

KEM2

KEM3

Traces of Side-Channel Leakage

Main Target: Decapsulation Procedure



Key Recovery Analysis

CT0 m = 0

CT1 m = 1

CT2 m = 1

CT3 m = 0

CT4 m = 0

Full-Key recovery



Output from Matlab Calculations

TVLA Leakage



Constructing Malicious Ciphertexts

Chosen u k

u.s

0 0 0 0 0 0

k.s0 k.s1
k.s2 k.s3 k.s4 k.s5 k.s6

Chosen v p 0 0 0 0 0 0

m’ = u.s - v k.s0-p

m = Decode(m) f(s0) 0 0 0 0 0 0

k.s1
k.s2 k.s3 k.s4 k.s5 k.s6

Decryption:

m0 m1 m2 m3 m4 m5 m6



 Polynomial multiplication in polynomial rings have special rotational 
properties.

 Multiplication of a polynomial with xi  ”rotates” the polynomial by ”i” 
positions (cyclic or anti-cyclic)

Chosen u k 0 0 0 0 0 0

Chosen v p 0 0 0 0 0 0

f(s0) 0 0 0 0 0 0

Recover s0 using knowledge of O/X  

m’=Decode(m’)

Constructing Malicious Ciphertexts



Chosen u 0 k 0 0 0 0 0

Chosen v p 0 0 0 0 0 0

0 0 0 0 0 0m’=Decode(m’) f(sn-1)

Recover sn-1 using knowledge of O/X  

 Polynomial multiplication in polynomial rings have special rotational properties.

 Multitplication of a polynomial with xi  ”rotates” the polynomial by ”i” positions 
(cyclic or anti-cyclic)

Constructing Malicious Ciphertexts



Chosen u k 0 0 0 0 0 0

Chosen v 0 0 p 0 0 0 0

0 f(s2) 0 0 0 0m’=Decode(m’) 0

Recover sn-1 using knowledge of O/X  

 Polynomial multiplication in polynomial rings have special rotational properties.

 Multitplication of a polynomial with xi  ”rotates” the polynomial by ”i” positions (cyclic or 
anti-cyclic)

 No Rotation property in schemes based on Standard LWE/LWR (FrodoKEM) - But, attack 
still works…

 Location of non-zero bit of message changes (depending upon secret coefficient to 
recover)

Constructing Malicious Ciphertexts



 Modus Operandi:

 Construct a valid ciphertext ct = (u,v) for message m.

m

x -u

s v

m’ = Enc(m) + es Decod

e

0 

q/2

0 

1 

Decoding of m’[i]

Allocation of values

Full-Key Recovery






