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ABSTRACT 24 

Bioacoustic analysis have been used for a variety of purposes including classifying vocalizations 25 

for biodiversity monitoring and understanding mechanisms of cognitive processes. A wide range 26 

of statistical methods, including various automated methods, have been used to successfully 27 

classify vocalizations based on species, sex, geography, and individual. A comprehensive 28 

approach focusing on identifying acoustic features putatively involved in classification is 29 

required for the prediction of features necessary for discrimination in the real world. Here, we 30 

used several classification techniques, namely Discriminant Function Analyses (DFAs), Support 31 

Vector Machines (SVMs), and Artificial Neural Networks (ANNs), for sex-based classification 32 

of zebra finch (Taeniopygia guttata) distance calls using acoustic features measured from 33 

spectrograms. We found that all three methods (DFAs, SVM, and ANNs) correctly classified the 34 

calls to respective sex-based categories with high accuracy between 92 and 96%. Frequency 35 

modulation of ascending frequency, total duration, and end frequency of the distance call were 36 

the most predictive features underlying this classification in all of our models. Our results 37 

corroborate evidence of the importance of total call duration and frequency modulation in the 38 

classification of male and female distance calls. Moreover, we provide a methodological 39 

approach for bioacoustic classification problems using multiple statistical analyses.   40 
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I. INTRODUCTION 41 

 Acoustic communication is used throughout the animal kingdom in the contexts of mate 42 

attraction, territorial defense, raising alarm, and recognition of species, group, and individuals 43 

(Bradbury and Vehrencamp, 2011). Understanding the context in which animal vocalizations are 44 

used plays a key role in understanding biological function and evolution of animal 45 

communication, as well as the underlying mechanisms of vocal communication in the animals 46 

producing the vocalizations under study (Bradbury and Vehrencamp, 2011). Research in 47 

bioacoustics focuses primarily on the mechanisms of production, transmission, and reception of 48 

acoustic signals (Erbe, 2016; Hopp et al., 1998). One approach to bioacoustics research involves 49 

describing and then classifying animal vocalizations into categories. This approach helps to 50 

reduce naturally-occurring complexity among signal classes by forming categories of signals 51 

based on acoustic similarity (Garcia and Favaro, 2017). The categories can be vocal repertoires 52 

of different species (Ficken et al., 1978; Salmi et al., 2013), based on the sex of the vocalizer 53 

(Campbell et al., 2016), based on geographical locations (Hahn et al., 2013a; Tuncer, 2013), 54 

based on ecological habitats (Anderson et al., 2008; Gómez et al., 2018) or based on the 55 

individuals (Elie and Theunissen, 2016; Hahn et al., 2013b; Laiolo et al., 2000; (Montenegro et 56 

al., 2021, Průchová et al., 2017). The application of this approach varies widely from biological 57 

scales (Gentry et al., 2020) to wildlife management and conservation (Laiolo et al., 2008; 58 

Teixeira et al., 2019) to animal welfare (Manteuffel et al., 2004; Röttgen et al., 2020; Schön et 59 

al., 2004) to life history, and evolutionary biology (Warwick et al., 2015; Xu and Shaw, 2019). 60 

Bioacoustics methods, especially vocalization classification, play an important role in 61 

investigations of cognitive processes such as perception, memory, and decision making 62 

(Shettleworth, 2009). Thorough description and classification of vocalizations are an integral 63 
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part of understanding the mechanisms involved in biologically relevant processes like mate 64 

selection (Delgado, 2006; Hernandez et al., 2016; Vignal et al., 2008), predator interaction (Bee 65 

et al., 2016; Congdon et al., 2020), territoriality (Walcott et al., 2006), social interaction 66 

(Slocombe and Zuberbühler, 2005), and individual recognition (D’Amelio et al., 2017; Elie and 67 

Theunissen, 2018). Classification of vocalizations into specific classes as a tool of bioacoustic 68 

analyses dates to the early history of bioacoustics in the 1950s and 60s where scientists used 69 

sound spectrograms to describe the prominent features of vocalization types in domestic fowl 70 

and weaverbird (Collias, 1963; Collias and Joos, 1953). Since then, the field of bioacoustics has 71 

come a long way introducing new concepts, powerful analysis techniques (Herbst et al., 2013; 72 

Kershenbaum et al., 2016; Tallet et al., 2013; Wadewitz et al., 2015), and moving towards data-73 

driven and automated classification (Bravo Sanchez et al., 2021; Brooker et al., 2020; Elie and 74 

Theunissen, 2016; Mcloughlin et al., 2019; Priyadarshani et al., 2018; Salamon et al., 2016).  75 

A multitude of statistical methods, including automated methods, have been used for 76 

classification of vocalizations for biodiversity monitoring (Caycedo-Rosales et al., 2013; 77 

Priyadarshani et al., 2018), constructing vocal repertoires (Elie and Theunissen, 2016; Wadewitz 78 

et al., 2015), and classifying based on sex (Campbell et al., 2016), geography (Hahn et al., 79 

2013a; Tuncer, 2013), and individuals (Elie and Theunissen, 2018; Průchová et al., 2017). These 80 

methods mainly include random forest, decision trees, Hidden Markov models, spectrogram 81 

cross-correlation, support vector machines (SVMs), and artificial neural networks (ANNs) 82 

(Knight et al., 2017). These automated methods are useful for classification, especially for large 83 

data sets, although human, and possibly non-human animal involvement, is required to verify the 84 

reliability and validity of such analyses. Thus, semi-automated methods with human involvement 85 

work best. Uncovering the acoustic features primarily responsible for the classification into types 86 
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based on species, sex, or individual can reveal the locus of biologically significant stimulus 87 

control involved in animal communication signals. An integrated approach is required for 88 

classification, from identifying acoustic units to choosing methods of analyses for identifying 89 

features responsible for classification (Kershenbaum et al., 2016).   90 

Zebra finches are flocking songbirds native to Australia that are highly sexually 91 

dimorphic in a number of important aspects. Only male zebra finches produce songs, though 92 

both sexes produce a variety of calls (Elie and Theunissen, 2016; Zann, 1996). Distance calls or 93 

“long calls” are the most characteristic, species-typical calls produced and are used in a variety 94 

of contexts, especially when birds are visually isolated from their mates or conspecifics (Zann, 95 

1996). Distance calls are sexually dimorphic: males produce shorter, more acoustically complex 96 

calls and females produce longer, relatively unmodulated calls (Zann, 1996). The male distance 97 

call is composed of a downsweep frequency modulation with a fundamental frequency of 98 

approximately 600-1000 Hz (Figure 1). The female distance call is composed of a harmonic 99 

series of unmodulated frequencies with fundamental frequency of 350-550 Hz (Vicario et al., 100 

2001; Zann, 1996). Zebra finches are capable of discriminating mates from others (Vignal et al., 101 

2008) and of recognizing conspecifics (Vignal et al., 2004) using distance calls. The differences 102 

in the acoustic structure between male and female versions of these calls allow this 103 

discrimination (Vignal and Mathevon, 2011). Call duration, fundamental frequency, and rapid 104 

frequency modulation seem to play an important role in eliciting differential behavioural 105 

response to male and female distance calls (Vicario et al., 2001; Vignal and Mathevon, 2011).                106 

 In the past, zebra finch distance calls have been investigated in a number of different 107 

manners using a variety of bioacoustically-based classification approaches. A previous study, 108 

where the primary aim was to classify vocalizations into types (e.g., song, distance call etc.) 109 
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based on sexually-dimorphic acoustic features, quantified the potential acoustic features in the 110 

distance calls in comparison to other vocalization classes (Elie and Theunissen, 2016). This 111 

analysis showed that females produced longer, and lower pitched distance calls compared to 112 

male distance calls (Elie and Theunissen, 2016). A subsequent study (Mouterde et al., 2014) used 113 

DFA with spectral envelopes, temporal envelopes, and spectrogram features of distance calls, to 114 

classify distance calls based on the distance of the emitter of the calls (i.e., from 2m, 16m, 64m, 115 

128m, and 256m) from the microphone. In the Mouterde et al. (2014) study, several density 116 

functions (mean, standard deviation, skewness, kurtosis, and entropy) of spectral and temporal 117 

envelopes and spectrogram principal component parameters were used successfully to classify 118 

distance calls at various propagation distances via the individual acoustic signature of the birds. 119 

However, the complex acoustic features of distance calls used in the bioacoustic analyses of the 120 

two studies just discussed are not straightforward to either measure or manipulate in an 121 

experimental context. The acoustic features described in these two studies are problematic for 122 

use in an experimental context as they are complex to either measure or manipulate by an 123 

experimenter.     124 

In this study, we used three statistical methods (DFA, SVM and, ANN) to classify Zebra 125 

finch distance calls by sex of the emitter based on bioacoustic features, some of which are known 126 

to differ between sexes. We used 10 acoustic measurements in our analyses including both 127 

temporal and spectral measures. We predict similar classification performance in all three 128 

classification methods given the past successes using these methods for similar tasks (Mouterde 129 

et al., 2014, Elie and Theunissen, 2016). Furthermore, we predict that total call duration and 130 

frequency modulation will be the predominant features used to classify the calls, as these 131 

features are visually distinct in the spectrograms of these calls and previous studies (Elie and 132 
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Theunissen, 2016; Vignal and Mathevon, 2011) suggest that these are the key features 133 

facilitating sex-based call discrimination.  134 

 135 

II. METHODS AND RESULTS 136 

A. Recordings 137 

In total, 83 zebra finch distance calls were obtained from the data sets of D’Amelio et al. 138 

(2017), Elie and Theunissen (2016), and from adult zebra finches recorded by members of the 139 

Phillmore lab at Dalhousie University, Halifax, NS Canada. The set consisted of 38 female and 140 

45 male distance calls produced by 21 females and 26 males, with 1-2 vocalizations per 141 

individual. There were 12 male calls and 12 female calls obtained from 12 male individuals and 142 

12 female individuals respectively from D’Amelio et al. (2017), 18 male calls and 20 female 143 

calls from 9 male individuals and 10 female individuals respectively from Elie and Theunissen 144 

(2016), and 15 male calls and 6 female calls from 8 male individuals and 4 female individuals 145 

respectively from the Phillmore lab. All the recorded calls were recorded in the laboratory with 146 

digital recorders and microphones having frequency response ranges from 200 Hz to 10,000 Hz. 147 

The calls from D’Amelio et al. (2017) and Elie and Theunissen (2016) were recorded at a 148 

sampling rate of 44,100 Hz. The calls obtained from Phillmore lab were recorded at a sampling 149 

rate of 48,000 Hz. For all sources, calls were recorded at a distance between 0 and 100 cm from 150 

the birds. Thus, these recordings provided us with a diverse dataset of high-quality recordings of 151 

distance calls. Because calls were recorded with different sampling rates, all distance calls were 152 

resampled using SIGNAL software version 5.16.11 (Beeman, 2017) at 44,100 Hz before further 153 

analyses.  154 

 155 
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B. Acoustic measurements  156 

The following acoustic analyses and measurements were conducted in SIGNAL and 157 

performed by the first author (PS). For each sound file, 5 ms of silence was added to the 158 

beginning and end of the vocalization and tapered to remove transients; peak RMS amplitude 159 

was equalized to 1. Spectrograms were created with a Hanning window and 256 pts transform, 160 

frequency resolution of 172.3 Hz and 5.8 ms time resolution. Power spectra were produced with 161 

an FFT window of 16,384 points and 88 Hz smoothing for amplitude measurement. The 162 

following acoustic features were measured manually from the spectrograms of individual calls: 163 

(a) Total duration (TD), measured from the start to the end of the highest amplitude harmonic 164 

band, (b) Start frequency (SF), measured at the start of the first clearly visible and continuous 165 

harmonic band, in this case, the second frequency band in the spectrogram, (c) End frequency 166 

(EF), measured at the end of the first clearly visible and continuous harmonic band, in this case, 167 

the second frequency band in the spectrogram (d) Peak frequency (PF), measured at the highest 168 

frequency observed of the highest amplitude harmonic band, (e) Ascending duration (AD), 169 

measured from the start to the peak frequency of the highest amplitude harmonic band, (f) 170 

Descending duration (DD), measured from the peak to the end of the highest amplitude harmonic 171 

band, (g) Frequency modulation of ascending frequency (Fmasc; Peak frequency-Start 172 

frequency/Ascending duration), (h) Frequency modulation of descending frequency (Fmdsc; End 173 

frequency-Peak frequency/Descending duration), (i) Frequency at highest amplitude (Fmax), 174 

measured at the peak frequency of the highest amplitude harmonic band from the power spectra 175 

and, (j) Fundamental frequency (F0) (Campbell et al., 2016; Nowicki and Nelson, 1990). The 176 

fundamental frequency was measured in Praat 6.1.38 (Boersma and van Heuven, 2001; 177 
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Goldstein, 2021) Figure 1 shows the measured acoustic features from the spectrograms of male 178 

and female zebra finch distance calls.  179 

Figure 1. Measured acoustic features from the spectrogram showing Total duration (TD), Start 180 

frequency (SF), End frequency (EF), Peak frequency (PF), Ascending duration (AD), 181 

Descending duration (DD) with male distance call at top and female distance call at bottom. F0 182 

was measured in Praat (not pictured here). 183 

 184 

C. Statistical analyses  185 

All analyses were conducted in R 3.6.2 (R Core Team, 2019). The linear discriminant 186 

analysis (LDA) and discriminant function analysis (DFA) were conducted using the MASS 187 
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(Venables and Ripley, 2002) and klaR (Weihs et al., 2005) packages, the SVM was conducted 188 

using the e1071 package (Meyer et al., 2019), and the ANN was conducted using the neuralnet 189 

package (Günther and Fritsch, 2010). Mathews correlation coefficient (MCC) was calculated 190 

using mltools (Gorman, 2018). For LDA, standardized coefficients were obtained using 191 

canonical discriminant analysis from the candisc package (Friendly and Fox, 2021). The relative 192 

importance of variables or weights for SVM were calculated using the weight vectors (Meyer et 193 

al., 2019). The relative importance of input variables for ANN were calculated using the olden 194 

function of NeuralNetTools (Beck, 2018).             195 

All measured acoustic features were scaled by z-standardization, using the scale function 196 

in R to account for and standardize across multiple units of measurement. This allowed us to 197 

compare between measures, even when those measures differed in units. The z-standardization 198 

of an individual acoustic feature involves subtracting the mean of the specific acoustic feature 199 

from the individual measurement and dividing by its standard deviation. We conducted 200 

correlation analyses to identify and omit redundant and highly correlated acoustic features. The 201 

Ascending duration (AD) and Descending duration (DD) were highly correlated with each other 202 

(Pearson's r =0.75, p < 0.001) and with Frequency modulation of ascending frequency, Fmasc 203 

(AD and Fmasc: Pearson's r = -0.85, p < 0.001) and Frequency modulation of descending 204 

frequency, Fmdsc (DD and Fmdsc: Pearson's r = - 0.83, p < 0.001). Thus, AD and DD were not 205 

included in further analyses. TABLE 1 shows correlation across the measured acoustic features.   206 

Below, we review how each technique operates, what kinds of results they return, what results 207 

we obtained using each technique and finally provide a comparison among the techniques.   208 

 209 
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TABLE I. Table showing Pearson's correlation coefficients across acoustic features. * represents 210 

significant correlation  211 

  TD SF EF PF AD DD Fmasc Fmdsc Fmax Fo 

TD                     

SF -0.06                   

EF 0.26*  0.48*                 

PF -0.01 -0.16 -0.22*                

AD 0.56* 0.04  0.43* -0.26*             

DD 0.61* 0.03 0.30* -0.1  0.75*           

Fmasc -0.39 -0.19 -0.46* 0.52* -0.85* -0.54         

Fmdsc 0.43* 0.15  0.49* -0.42* 0.72*  0.83* -0.71*       

Fmax 0.05 -0.14 -0.08  0.51* -0.03 0.02  0.27* -0.2     

Fo 0.22 0.03 0.14 -0.17  0.42*  0.23* -0.50* 0.31* -0.16   

 212 

    213 

1. DFA, pDFA, and LDA.  214 

    Discriminant function analysis (DFA) is used for classification of exemplars into 215 

groups based on a linear combination of features which separate the groups. In bioacoustics 216 

analyses, DFA can be used to classify vocalizations into types (Jaiswara et al., 2013) or across 217 

individuals (Chen and Goldberg, 2020; Mundry and Sommer, 2007). For example, DFA has 218 

been used to classify vocalizations of mountain chickadees (Poecile gambeli) based on elevation 219 

gradient (Branch and Pravosudov, 2015, 2019). DFA has also been used to classify black-capped 220 

chickadee (Poecile atricapillus) vocalizations based on geography (British Columbia and 221 

Ontario; Hahn et al., 2013a) and sex (Campbell et al., 2016).  222 

We used a stepwise DFA with the leave-one-out method of cross-validation for 223 

classifying distance calls based on sex. In this process, a single vocalization is withheld while the 224 
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rest of the vocalizations are used to obtain the discriminant functions. The accuracy of the 225 

discrimination functions can then be obtained by comparing the predicted group, male or female, 226 

of the withheld vocalization to the original class of that vocalization (i.e., was the function able 227 

to classify a male call as male, and a female call as female.). This method was repeated until all 228 

the vocalizations were classified, thus giving us overall percent correct classification (Betz, 229 

1987; Mundry and Sommer, 2007).  230 

When multiple vocalizations from the same individuals are used for DFA, there is the 231 

possibility of pseudoreplication. Pseudoreplication occurs when non-independent data points 232 

from the same subject (e.g., multiple vocalizations from one individual) are analyzed as 233 

independent replicates (Mundry and Sommer, 2007). A permuted DFA (pDFA) can be used to 234 

account for pseudoreplication (Mundry and Sommer, 2007). With pDFA, we compared the 235 

percent correct classifications by DFA from the original distance call distribution to percent 236 

correct classifications obtained from null distributions. The null distributions of distance calls are 237 

constructed by randomly assigning individual calls as male or female. One thousand such null 238 

distributions were constructed, and percent correct classifications were obtained by leave-one out 239 

method of DFA as mentioned above. The proportion of times percent correct classification by 240 

pDFA were equal to or greater than correct classification by original DFA was obtained and was 241 

noted as p-value as described by (Mundry and Sommer, 2007).  242 

The stepwise DFA accurately classified distance calls based on sex using all eight of the 243 

remaining measured acoustic features. In the forward stepwise DFA method for variable 244 

selection for classification, where each feature is entered individually, one by one (rather than all 245 

features entered all at once) with total duration (TD) as starting variable, Total duration (TD), 246 

End frequency (EF), Frequency modulation of ascending frequency (Fmasc), Frequency 247 
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modulation of descending frequency (Fmdsc), and Frequency at highest amplitude (Fmax), were 248 

all used together for the sorting  of distance calls into the respective sex category that produced 249 

the calls. The forward stepwise DFA classified the distance calls into the correct category with 250 

96.3% accuracy. We then used a pDFA to test the validity of the stepwise DFA; conducting the 251 

pDFA involved constructing null distributions of distance calls, where sex identity of each call 252 

was randomized. The mean correct classification for all 1,000 null distributions was 50.2% ± 6.6 253 

(mean±sd), meaning pDFA could only classify the null distributions with ~50% accuracy.  None 254 

of the pDFAs produced correct percent classification greater than the stepwise DFA 255 

classification percentage, thus giving a p-value of 0 for the pDFA null model, indicating that the 256 

stepwise DFA accurately classified calls by sex of producer.                               257 

We also used a supervised linear discriminant analysis (LDA) with the hold out method 258 

of cross-validation to classify distance calls based on sex for a direct comparison with support 259 

vector machine (SVM) and artificial neural network analysis (ANN). In the hold out method of 260 

cross-validation, the data set is separated into two sets: training and testing. The function uses the 261 

training set to build a model to predict the output of the testing set. In supervised LDA, 75% of 262 

the vocalizations were chosen randomly for training and then the remaining 25% are used in a 263 

test to validate the accuracy of the same testing dataset. This procedure was repeated 1,000 times 264 

and mean percent accuracy was calculated (Engler et al., 2014; Ligout et al., 2016). 265 

In the supervised LDA, all the eight acoustic features were used to calculate the 266 

discriminant functions and predict classification for testing datasets. This process was repeated 267 

and cross-validated 1,000 times to obtain the mean correct percent classification. Using all the 268 

eight features, the LDA classified distance calls with 96.3% ± 3.4 accuracy. The mean MCC for 269 

the LDA was 0.96 (range: 0.63-1.00) from 1,000 testing datasets which indicates high 270 
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classification performance, meaning there was no significant effect of unbalanced datasets with 271 

unequal numbers of samples in the two groups. This can potentially pose a problem resulting in a 272 

larger dataset overestimating the classifier. Figure 2 shows the distribution of the individual 273 

distance calls according to the first discriminant function, LD1, male and female calls are well 274 

separated. 275 

 276 

Figure 2. Distribution of the first discriminant function (LD1) for all male and female distance 277 

calls.  278 

 279 
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DFA is a robust and stable classification technique when the classes are well separated, 280 

thus giving accurate parameter estimates that separate the classes. However, when the dataset is 281 

limited with high dimensionality (has more features than samples), there is risk of over-fitting. 282 

This over-fitting might reduce the cross-validation performance of classifiers (James et al., 2013; 283 

Tachibana et al., 2014). Our overall dataset is not high dimensional (i.e., we have more samples, 284 

n=83 than features, n=8), but data are from various sources produced from different individuals. 285 

We used support vector machine (SVM) algorithms, as SVM avoids the problem of overfitting, a 286 

potential issue with DFA. SVM also helps reduce human effort involved in other classification 287 

methods, as SVM works with a relatively small instruction (training) dataset in comparison to 288 

other methods.  289 

2. SVM 290 

Support vector machines (SVMs) are supervised learning algorithms used for mainly 291 

two-group classification problems (Cortes and Vapnik, 1995). SVMs use all the eight measured 292 

acoustic features as input variables, similar to a DFA, and then build a prediction model. 293 

However, when data are not linear, there is a possibility for interaction among variables, which 294 

can happen when classifying using a DFA. SVMs solve this problem by using a kernel approach. 295 

Kernels are various functions (e.g., linear, polynomial, radial, and sigmoid) that can be applied to 296 

input data so that data are separated linearly in the feature space. Here, we used a linear kernel 297 

for both training and prediction. SVMs have been widely used for classification of songbirds to 298 

their species by their songs, for example, using song syllables of 7 bird species (Dufour et al., 299 

2014) or using flight calls of 11 species of birds (Tung et al., 2003), and more recently, using 300 

additional automated methods such as hybrid model of deep convolutional neural networks and 301 

hidden Markov models for classification of birdsong using song notes and syllable elements 302 
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(Koumura and Okanoya, 2016; Tachibana et al., 2014). In this study, we used a linear SVM 303 

where classification boundaries are determined by maximizing margins between the nearest 304 

samples and boundary hyperplane for distance call classification. In this supervised semi-305 

automated method, we randomly divided all 83 vocalizations using a 3:1 ratio to serve as training 306 

and testing datasets, respectively. The validity of the model based on the training dataset was 307 

measured against a testing dataset.  308 

We cross validated performance SVM with the testing datasets. This process of cross 309 

validation was repeated 1,000 times with randomly chosen testing dataset for mean correct 310 

classification percentage. SVM classified distance calls with a mean of 94% ± 5.1 correct. The 311 

mean MCC for SVM was 0.88 (range: 0.42-1.00). Next, we built ANNs to compare ANN 312 

classification accuracy with the accuracy obtained from discriminant analyses and SVM.              313 

3. ANN 314 

Artificial neural networks (ANN) consist of connected input nodes and edges in multiple 315 

layers; acoustic features can be used as input to produce a predicted category as target output 316 

(Izenman, 2008). In bioacoustic analyses, neural networks have been used in the context of 317 

species classification using acoustic features, ranging from whole vocalizations to individual 318 

song and call notes, to sort vocalizations by species (Chou and Liu, 2009, 2009; Piczak, 2016) or 319 

to sort notes into note types (Dawson et al., 2006). ANNs for binary classification are very 320 

similar to SVM, apart from the training algorithms that are used for calculation of classification 321 

functions: ANNs use backpropagation whereas SVM uses hyperplane to make predictions. In 322 

backpropagation, the weights of a neural net are fine-tuned according to error rate or loss 323 

function of previous epochs or iterations in training while in hyperplane, observations are 324 

separated into two classes by a threshold hyperplane, calculated from linear combination of the 325 
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dependent variables (Izenman, 2008; James et al., 2013). ANNs can account for potentially 326 

complex relationships among input features without compromising classification performance 327 

(Collobert and Bengio, 2004; Jakkula, 2011).   328 

We used a supervised ANN, which used the eight measured acoustic features from 329 

distance calls as input, to classify the calls. We built an artificial neural network using the 330 

neuralnet package in R with the default logistic activation function (Günther and Fritsch, 2010). 331 

The neural network consisted of eight acoustic input features with a single hidden layer 332 

consisting of two neurons and one output unit to predict sex of the producer of the distance call. 333 

The input features were multiplied by a random set of weights prior to the training. The logistic 334 

activation function applied to the multiplied numbers and output as neurons in the hidden layer. 335 

The neurons in the hidden layer were again multiplied by a random set of weights, and the 336 

activation function was applied to these numbers to produce a single output. The prediction 337 

output (lies between 0 and 1) was compared with the true output. The loss or error was then 338 

calculated with a cross-entropy function to know how far off our prediction from true output 339 

(Izenman, 2008). We used resilient backpropagation algorithms to get the gradients for each 340 

weight from the initial random weights. During epochs of training, the error got smaller, and 341 

weights got optimized for best prediction of output (Günther and Fritsch, 2010). A schematic of 342 

the neural network is shown in Figure 3.  343 
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 344 

Figure 3. Schematics of the neural network showing acoustic features as input, two neurons in 345 

hidden layer and output layer where TD: Total duration, SF: Start frequency, EF: End frequency, 346 

PF: Peak frequency, Fmasc: Frequency modulation of ascending frequency, Fmdsc: Frequency 347 

modulation of descending frequency, Fmax: Frequency at highest amplitude, and Fo: 348 

Fundamental frequency.      349 

 350 

Seventy-five percent of the total pool of vocalizations were chosen randomly to be used 351 

as a training set for supervised learning, while the remaining 25% of the vocalizations were 352 

withheld and used to validate the accuracy of the training model. This training and validation 353 
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method was repeated 1,000 times. We trained the ANN until all absolute partial derivatives of 354 

the error function were smaller than 0.01 meaning we achieved asymptotic performance, a 355 

standard stopping point for confirming validity of ANNs (Günther and Fritsch, 2010).  356 

 The neural network classified the distance calls to the respective sex of producer with a 357 

mean accuracy of 92.5%±5.4 correct. The mean MCC for neural networks was 0.85 (range: 0.46-358 

1.00), consistent with the MCC for both LDA and SVM.   359 

4. Model comparison 360 

The use of multiple methods of classification of distance calls will give us an overview of 361 

classification using a variety of methods while constructing a base for future classifications of 362 

similar problems. All methods used (DFA, LDA, SVM and ANN) classified calls into the correct 363 

sex of the produce with high accuracy (DFA and LDA: 96 %, SVM: 94 %, ANN: 92 %). For the 364 

stepwise DFA, pDFA validated the classification. To evaluate the relative classification 365 

performance for the rest of the methods (LDA, SVM and ANN), we calculated and compared 366 

MCC and the classification accuracy of each. MCC is a measure of quality of two-class 367 

classification used in various fields of research including songbird vocalization classification 368 

(Chicco and Jurman, 2020; Matthews, 1975; Wellock and Reeke, 2012). The MCC for all the 369 

methods (LDA: 96, SVM: 0.88, ANN: 0.85) were high and consistent with each other. Figure 4 370 

shows a comparison of classification performance with accuracy and MCC. Further, we assessed 371 

the relative importance of specific acoustic features in classification across stepwise DFA, LDA, 372 

SVM and ANN methods. Comparing the relative importance across various methods will inform 373 

us as to whether the same acoustic features were used preferentially for each method for 374 

classification. Such methodological comparisons will further allow researchers to make informed 375 
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decisions when selecting which methodological tools they will employ for their particular set of 376 

circumstances.  377 

 378 

Figure 4. A bar graph showing classification accuracy (scaled to 1) and MCC (Matthews 379 

correlation coefficient) values for all classification methods; pDFA & LDA, SVM, and ANN. 380 

Higher value is better.    381 

 382 

In all four methods (stepwise DFA, LDA, SVM, and ANN), Frequency modulation of 383 

ascending frequency (Fmasc), Total duration (TD), and End frequency (EF) were three top 384 

features used for classifying distance calls according to the sex of the producer (see TABLE II 385 

for full list). Although the methods used apply different algorithms for classification, they 386 

produced similar classification results with a similar relative importance for the input features. In 387 

sum, all methods tested successfully classified zebra finch calls by sex of the producer.  388 
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TABLE II. A table showing acoustic features used and their relative importancea (in descending 389 

order with relative proportion in the brackets) used for classification by Linear discriminant 390 

analysis (LDA), Support vector machines (SVM), and Artificial neural networks (ANN). For 391 

stepwise DFA, the DFA column shows features used for obtaining a classification accuracy of 392 

96%.    393 

 394 

Order of  
Importance  

 
DFA 

      
LDA 

 
SVM 

 
ANN 

1 TD Fmasc (0.43) Fmasc (0.41) Fmasc (0.42) 

2 EF TD (0.15) EF (0.2) EF (0.25) 

3 Fmasc EF (0.11) TD (0.12) TD (0.12) 

4 Fmdsc PF (0.1) Fmdsc (0.08) Fmdsc (0.07) 

5 Fmax Fo (0.08) PF (0.07) Fo (0.04) 

6  Fmdsc (0.01) SF (0.06) PF (0.04) 

7  SF (0.01) Fo (0.04) SF (0.04) 

8  Fmax (0.004) Fmax (0.0001) Fmax (0.01) 

 395 

a Refer to Statistical analysis section for calculation of relative importance of variables 396 

for each method. 397 

 398 

 399 
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III. DISCUSSION 400 

 All the methods (DFA, LDA, SVM, and ANN) were highly accurate at classifying 401 

distance calls into male and female; each had a classification accuracy greater than 92%. Three 402 

methods (LDA, SVM and ANN) had MCC values greater than 0.85, indicating highly correct 403 

predictions for both male and female calls independent of their potentially problematic unequal 404 

sample size in the dataset. The results from DFA, LDA, SVM, and ANN consistently and 405 

accurately classified male and female distance calls. Both the leave-one-out method and holdout 406 

method of cross-validation produced similarly excellent classification performance. This 407 

suggests that there are acoustic features that differ between male and female distance calls such 408 

that they can be used to effectively classify them with all four of these methods. Frequency 409 

modulation of ascending frequency (Fmasc), end frequency (EF), and total call duration (TD) of 410 

the distance call were the top ranked acoustic features used by stepwise DFA, LDA, SVM, and 411 

ANN. The LDA, SVM, and ANN all ranked Fmasc as the most important acoustic feature. SVM 412 

and ANN ranked EF and TD as the second and third most important features whereas LDA 413 

ranked TD and EF as second and third most important features. The order change may be due to 414 

different algorithms used for classification and for relative importance nevertheless frequency 415 

modulation was the most crucial feature used for classification. The stepwise DFA approach is 416 

useful and efficient for investigating and pruning variables when there are a large number of 417 

input variables involved; all variables can be entered in one step and the DFA outputs the 418 

variables used in the classification. SVM, on the other hand, works best for binary classifications 419 

with the use of maximum margin linear classifiers and for high dimension data, relatively large 420 

datasets, with the help of various available kernel functions. ANN is useful with multi-class 421 

classification with large datasets. Ideally, we recommend the use of a combination of these 422 
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methods to account for stochasticity of real-world data. Pragmatically, if we were to choose one 423 

method, SVM would be our recommendation for the current question of sex-based call 424 

classification, due to its simplicity and ease of use for binary classification problems. Our study 425 

adds to the literature of methodological comparisons of vocalization classification (Bat 426 

echolocation: Armitage and Ober, 2010; Mouse ultrasonic: Ivanenko et al., 2020).  427 

The distance calls used here were from several sources: birds were from the colonies in 428 

the USA, Germany, and Canada (D’Amelio et al., 2017; Elie and Theunissen, 2016). Thus, the 429 

study involved calls from a diverse sampling space which extends the external validity of the 430 

study. The acoustic features we measured and entered into the algorithms resulted in successful 431 

classification by DFA, SVM, and ANNs; all approaches were able to classify the distance calls 432 

with high accuracy of over 92%. It would be ideal to test vocalizations from other captive 433 

colonies and to wild birds to determine whether accuracy remains high with vocalizations from 434 

other groups of finches, including non-domesticated birds. Distance calls are sexually dimorphic, 435 

making the classification task relatively easy. It would be interesting to expand this study to test 436 

the performance of the classification methods with other zebra finch calls such as stacks and tets 437 

which contain individuals’ sex identity.   438 

Because all measurements for acoustic features were collected manually, there is a degree 439 

of subjectivity in the data that could have resulted in some potential for increased variability in 440 

the measurements collected. In the future, one refinement might be using an automated process 441 

to measure acoustic features with more consistency and less chance of bias. However, even 442 

automated or semi-automated measurement techniques require some level of human 443 

involvement, either for establishing the method or verifying the accuracy of the chosen method 444 

(Priyadarshani et al., 2018). We did not use additional acoustic measures that were difficult to 445 
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obtain (e.g., Mel-Frequency Cepstral Coefficient or moments of spectral density functions like 446 

skewness, kurtosis, entropy etc.) for classification. Thus, variables used for the classification 447 

may have been oversimplified and as a result some important acoustic features potentially used 448 

by zebra finches for discrimination may not have been detected. It would be interesting to 449 

compare classification performance with the methods discussed here when using predefined 450 

acoustic features (e.g., intensity measures, pitch, frequency measures) vs a complete 451 

representation (e.g., Modulation power spectrum, full spectrogram, Mel frequency cepstral 452 

coefficients) of the acoustic stimuli (Elie and Theunissen, 2016). In future, larger samples from 453 

many individuals may be helpful to alleviate this issue by being able to assess interrater 454 

reliability of acoustic measurements in cases where more than one individual measured calls.  455 

Distance calls contain information about individual identity of the caller. Studies could 456 

compare the classification performance of these methods for the classification of distance call 457 

based on individual identity which would require large number of calls from each individual.   458 

The features used here for distance call classification based on sex of caller can be used as a 459 

starting point to design future experiments to validate the acoustic measures used in the present 460 

study, such as an operant conditioning study to directly test the birds’ ability to discriminate the 461 

manipulated on those features measured here. Such an operant study would add to the literature 462 

combining detailed bioacoustics analysis with perceptual studies by assisting in identifying and 463 

then manipulating simple spectrogram features to create experimental stimuli. That is to say; 464 

studies could test if only duration or frequency cues from the calls are discriminable. We would 465 

expect the acoustic features identified here would be relatively easily discriminable based on 466 

previous research works (Lohr et al., 2006, Lohr et al., 2003, Prior et al., 2018). Apart from 467 

distance calls, other zebra finch calls like stacks and tets also contain sex identity of the caller. 468 
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We predict that a single acoustic feature from distance call will not be enough to convey 469 

information about sex. Our study adds further evidence about the importance of these acoustic 470 

features and methodologies for classification and these methodologies can be used for 471 

classification of other call types. 472 

The relative importance of variables in classification models provide information about 473 

what acoustic features animals may attend to preferentially when listening to and making 474 

decisions about responding to conspecific vocalizations. Previous studies focusing classification 475 

of vocalizations have primarily used Canonical loadings from DFA (Khan and Qureshi, 2017; 476 

Tooze et al., 1990), Gini index, or mean decrease accuracy for Random Forest algorithm 477 

(Armitage and Ober, 2010; Elie and Theunissen, 2016; Henderson et al., 2011; Robakis et al., 478 

2018; Valletta et al., 2017) to determine relative importance of input variables due to their 479 

successful use in various contexts and ease of implementation in statistical software. We used 480 

similar measures for variable importance and expanded with the connection weight algorithm 481 

(Olden and Jackson, 2002) for variable importance in ANN. Future studies could use the above 482 

variables of importance and possibly improve with other methods for assessing the relative 483 

importance of input variables for ANN (Ibrahim, 2013).      484 

In conclusion, we show that discriminant functions, support vectors, and neural networks 485 

were consistent with each other in accurately classifying zebra finch distance calls by sex of 486 

caller. Zebra finch distance calls can be accurately classified by sex using primarily three 487 

acoustic features: total duration, end frequency and frequency modulation ascending frequency. 488 

Highly similar patterns of acoustic feature rankings were observed for classification for all the 489 

methods. We believe our framework used in this bioacoustic analysis and subsequent 490 
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classification of distance calls can be used as a starting point for researchers wanting to conduct 491 

similar bioacoustics studies in the future.     492 
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