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Abstract 

Background: Our recent research showed that antibody response to porcine reproductive and respiratory syn-
drome (PRRS), measured as sample-to-positive (S/P) ratio, is highly heritable and has a high genetic correlation with 
reproductive performance during a PRRS outbreak. Two major quantitative trait loci (QTL) on Sus scrofa chromosome 
7 (SSC7; QTLMHC and QTL130) accounted for ~40 % of the genetic variance for S/P. Objectives of this study were to 
estimate genetic parameters for PRRS S/P in gilts during acclimation, identify regions associated with S/P, and evaluate 
the accuracy of genomic prediction of S/P across populations with different prevalences of PRRS and using different 
single nucleotide polymorphism (SNP) sets.

Methods: Phenotypes and high-density SNP genotypes of female pigs from two datasets were used. The outbreak 
dataset included 607 animals from one multiplier herd, whereas the gilt acclimation (GA) dataset included data on 
2364 replacement gilts from seven breeding companies placed on health-challenged farms. Genomic prediction was 
evaluated using GA for training and validation, and using GA for training and outbreak for validation. Predictions were 
based on SNPs across the genome (SNPAll), SNPs in one (SNPMHC and SNP130) or both (SNPSSC7) QTL, or SNPs outside 
the QTL (SNPRest).

Results: Heritability of S/P in the GA dataset increased with the proportion of PRRS-positive animals in the herd (from 
0.28 to 0.47). Genomic prediction accuracies ranged from low to moderate. Average accuracies were highest when 
using only the 269 SNPs in both QTL regions (SNPSSC7, with accuracies of 0.39 and 0.31 for outbreak and GA validation 
datasets, respectively. Average accuracies for SNPALL, SNPMHC, SNP130, and SNPRest were, respectively, 0.26, 0.39, 0.21, 
and 0.05 for the outbreak, and 0.28, 0.25, 0.22, and 0.12, for the GA validation datasets.

Conclusions: Moderate genomic prediction accuracies can be obtained for PRRS antibody response using SNPs 
located within two major QTL on SSC7, while the rest of the genome showed limited predictive ability. Results were 
obtained using data from multiple genetic sources and farms, which further strengthens these findings. Further 
research is needed to validate the use of S/P ratio as an indicator trait for reproductive performance during PRRS 
outbreaks.
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Background
Porcine reproductive and respiratory syndrome (PRRS) 
is a major viral disease that impacts pork production 
worldwide [1] and results in decreased reproductive 
performance in sows [2, 3] and reduced growth perfor-
mance in finisher pigs [4]. The economic impact that the 
PRRS virus (PRRSV) has on just the US swine industry is 
US$664 million per year, including breeding and growing 
pig herds, with an average loss of US$115 per breeding 
female [5].

Replacement gilts sourced from multiplier herds are 
usually introduced into commercial herds following accli-
mation and vaccination procedures that aim at exposing 
these naïve animals to pathogens (or antigens) that are 
common to the herd, such as the strains of PRRSV that 
are circulating in the herd. Due to the impact of PRRS on 
the swine industry, gilt replacement strategies have been 
developed with the objective of reducing the chances 
of introduction of new diseases in the herd or of infec-
tion of the replacement gilts [6]. These strategies include 
not obtaining animals from external sources (i.e. inter-
nal replacement), quarantine, and voluntary exposure of 
replacement gilts to the pathogens that are endemic to 
the herd [7]. A strategy that has not been explored to date 
is the identification of animals that have greater genetic 
potential to withstand pathogen challenge during the 
acclimation period. This strategy could be accomplished 
by assessing the immune response of animals across time, 
combined with high-density genotype data that could be 
used for genomic prediction, with the objective of geneti-
cally improving animals to obtain better performance 
during acclimation and in subsequent parities.

Recent studies on host responses to PRRSV indi-
cate that selection for improved performance following 
PRRSV infection may be feasible for both sow repro-
duction [2, 3, 8] and growing pigs [9]. For reproduction, 
Serão et al. [3] reported moderate to low heritability esti-
mates for reproductive performance during a PRRS out-
break, ranging from 0.06 for number of stillborn to 0.12 
for number of born dead. In contrast, PRRSV sample-to-
positive (S/P) ratio, a semi-quantification of PRRSV-spe-
cific immunoglobulin (Ig) type G (IgG; a major antibody 
produced by the humoral immune system), had a high 
heritability estimate (0.45) and a high positive genetic 
correlation with favorable reproductive performance 
during the PRRS outbreak (−0.72 ± 0.28 for number of 
stillborn and +0.73  ±  0.24 for number of born alive). 
These results suggest that S/P has the potential to be used 
as a genetic indicator trait to select replacement gilts with 
more favorable reproductive performance during a PRRS 
outbreak.

Using data from a PRRS outbreak in a multiplier herd, 
Serão et al. [3] also reported the detection of quantitative 

trait loci (QTL) for reproductive performance and PRRS 
antibody response during the PRRS outbreak. For num-
ber of stillborn piglets, they identified a QTL on Sus 
scrofa (SSC) 2 (between 32 and 25 Mb) that accounted for 
11 % of the total genetic variance for all markers across 
the genome (TGVM). They also reported two major 
QTL on SSC7 for S/P, which accounted for 40  % of the 
TGVM. One of these QTL was located in the major his-
tocompatibility complex (MHC) region, between 24 and 
31 Mb, and accounted for ~25 % of the TGVM. The other 
QTL on SSC7 was located between 128 and 129 Mb and 
accounted for ~15 % of the TGVM. These two QTL for 
S/P on SSC7 were recently validated on an independent 
commercial dataset [10], which is part of the data used in 
this current study. Orrett et al. [8] also identified trends 
toward associations between SNPs on SSC7 and farrow-
ing mortality during a PRRS outbreak, although not in 
the same regions as Serão et al. [3, 10].

Genomic prediction for response to disease is of great 
interest to the swine genetics industry because: (1) dis-
ease traits are generally not expressed in the nucleus 
populations that are used for selection since nucleus and 
multiplier herds must maintain a high health status, (2) in 
many commercial herds, breeders strive to maintain high 
health or vaccinate the animals to reduce the effects of 
disease challenges, thus available disease phenotypes are 
not reliable, and (3) recording of disease phenotypes can 
be expensive (e.g. measurement of antibody and viremia 
levels in blood).

Studies pertaining to the accuracy of genomic predic-
tion of host response to PRRS are still very limited, and 
to date, only results using nursery piglets have been 
reported. Boddicker et  al. [11], using data on ~1400 
nursery piglets (initial age between 25 and 35  days) 
from different genetic suppliers and that were followed 
for 42 days after experimental infection with one isolate 
of type 2 PRRSV (NVSL 97-7985), reported moderate 
genomic prediction accuracies for viral load (measure-
ment of total viral burden during the trial) and weight 
gain across cross-validation scenarios. These authors 
compared genomic prediction accuracies that were 
obtained by using only the SNPs within a QTL region on 
SSC4 that was previously identified for PRRS response 
[9] and by using SNPs within the rest of the genome (i.e. 
SNPs outside this QTL region). When the SNPs within 
this QTL region were used, average accuracies were equal 
to 0.34 and 0.48 for weight gain and viral load, respec-
tively, whereas when SNPs within the rest of the genome 
were used, average accuracies of 0.21 and 0, for weight 
gain and viral load, respectively were obtained which 
indicated  little to no predictive ability. Using the same 
data as Boddicker et al. [11] plus another ~1000 nursery 
piglets infected with a different strain of type 2 PRRSV 



Page 3 of 15Serão et al. Genet Sel Evol  (2016) 48:51 

(KS2006-72109), Waide et al. [12] compared the accuracy 
of genomic prediction when training was on response to 
one strain and validation on response to the other strain 
of the PRRSV. These authors reported similar accura-
cies for viral load between strains (~0.37), but observed 
a lower accuracy for weight gain when the training data 
were from animals infected with the KS06 strain (0.17) 
than with the NVSL strain (0.40).

The objectives of this study were to estimate genetic 
parameters for PRRSV antibody response during gilt 
acclimation in health-challenged farms, to identify 
regions associated with this response, and to assess the 
accuracy of genomic prediction of PRRSV antibody 
response in replacement gilts during acclimation and in 
sows following a reproductive PRRS outbreak. We com-
pared the accuracy of genomic prediction of PRRSV 
antibody response using genotype data from the whole 
genome, by using only the SNPs that are located in the 
two QTL regions on SSC7 that were previously associ-
ated with PRRSV antibody response, and the SNPs from 
the rest of the genome. In addition, these analyses were 
performed in datasets with different proportions of 
PRRSV-seropositive animals in the herd.

Methods
Animals used in this study were cared for according to 
Canadian Council on Animal Care [13] guidelines under 
standard industry conditions.

Description of the datasets
The datasets used in this study were provided by a con-
sortium of the main pig breeding companies (genetic 
suppliers) that operate in Canada (PigGen Canada, http://
www.piggencanada.org/). The two datasets included data 
on (1) purebred multiplier gilts and sows and (2) com-
mercial F1 replacement gilts. A detailed description of 
the first dataset is in Serão et al. [3]. Briefly, this dataset 
included high-density SNP genotype and phenotype data 
on 607 purebred Landrace gilts and sows from a com-
mercial multiplier herd in Canada that experienced a 
PRRS outbreak that was estimated to have occurred on 
November 20th, 2011. Blood samples were collected on 
January 5th, 2012, and used for semi-quantification of 
PRRSV-specific IgG (measured as S/P ratio) by ELISA 
(IDEXX PRRS X3, IDEXX Laboratories Inc., Westbrook, 
ME, USA) and for genotyping using the Illumina Porcin-
eSNP60BeadChip v.1 (Illumina Inc., San Diego). Thus, 
PRRS antibody levels (S/P ratio) were evaluated approxi-
mately 46 days after the outbreak. This dataset will here-
after be referred to as the outbreak dataset.

The second dataset, hereafter referred to as the gilt 
acclimation (GA) dataset, included data on naive cross-
bred (Landrace × Large White) replacement gilts sourced 

from different multiplier herds and genetic suppliers. 
Gilts were introduced into commercial herds that were 
pre-selected for this study based on historical occur-
rence of natural disease challenges, in groups of 10 to 
63 animals (contemporary groups; CG), where they fol-
lowed standard acclimation and gilt rearing procedures. 
Blood samples were collected on all gilts at the time of 
introduction into the commercial herd and at three sub-
sequent time points: after the acclimation period, during 
parity 1, and during parity 2. Summary statistics on the 
number of multiplier herds, CG and farms, and PRRS 
vaccination use by farm are in Table 1.

Seven breeding companies (genetic suppliers), which 
are all members of PigGen Canada, provided gilts for 
this study. Seventeen multiplier herds were sourced with 
two to three multipliers per genetic supplier. Gilts were 
placed in 23 pre-selected commercial herds (i.e. sow 
farms) across Canada, either directly or via a quarantine 
barn. A commercial production herd always received 
gilts from only one multiplier, while the same multiplier 

Table 1 Summary statistics for  contemporary groups 
by genetic supplier

Genetic supplier (GS; number of gilts within parenthesis), multiplier herd (MH), 
commercial herd (CH), number of contemporary groups (CG) and average 
number of gilts (average n̄) per CG, use of vaccination for PRRS (PRRS Vx), and 
average days from introduction to blood sampling after acclimation (days) by CG

GS (n) MH CH CG  
(average n̄)

PRRS Vx Days  
(standard deviation)

1 (381) 1 1 3 (33.0) Yes 88 (13.5)

2 2 6 (20.2) Yes n/a

3 3 4 (33.5) Yes 72 (5.7)

4 5 (22.0) Yes 73.7 (3.8)

2 (277) 4 5 9 (13.3) Yes 58 (21.8)

5 6 4 (20.8) No 29 (2.6)

6 7 5 (18.0) Yes 30.8 (2.8)

8 4 (11.8) Yes 32.8 (3.1)

3 (425) 7 9 3 (40.0) Yes 35 (3.5)

8 10 9 (46.3) Yes 37.7 (4.2)

4 (368) 9 11 5 (18.4) No 32.5 (2.4)

10 12 4 (33.3) Yes 38 (3.6)

13 5 (30.0) No 33.4 (3.0)

5 (367) 11 14 5 (26.2) Yes 36.6 (1.1)

12 15 4 (24.3) No 49.7 (7.6)

13 16 3 (33.7) Yes 32 (5.3)

17 4 (30.0) Yes 33.7 (3.5)

6 (333) 14 18 7 (24.9) Yes 29.9 (2.5)

19 2 (25.0) Yes 32.5 (2.1)

15 20 3 (25.0) Yes 35 (0)

21 3 (24.7) Yes 32.3 (3.0)

7 (204) 16 22 4 (37.8) No 41.5 (11)

17 23 4 (39.8) Yes 34 (5.8)

http://www.piggencanada.org/
http://www.piggencanada.org/
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provided gilts to one or two commercial herds. One hun-
dred and five CG were used in this study, prior to quality 
control. The number of CG per commercial herd ranged 
from 2 to 9, with the average number of gilts per CG 
ranging from 11.8 to 46.3 across the 23 herds.

Before starting this study, the veterinarians for the 23 
commercial herds provided general management infor-
mation, such as general production procedures, quaran-
tine, and use of medications and vaccinations. Table  1 
shows that 18 out of 23 farms indicated the use of vac-
cination against PRRS. The type of vaccination was not 
always identified, although several farms indicated the 
use of modified live PRRSV vaccines. Whenever timing 
was indicated (number of farms), vaccination occurred 
during entry (3), during quarantine (10), during acclima-
tion (4), mid-lactation (1), after weaning (1), or at alter-
nate parities (1). It should be noted that it was not certain 
that all the indicated procedures were consistently per-
formed throughout the duration of the study. In addition, 
these procedures were completely confounded with farm, 
and therefore, inferences on the impact of PRRS vac-
cination will be limited and should be interpreted with 
caution.

Phenotypic data
Phenotypic data were collected on 2852 replacement gilts 
in the GA study. Similar to the outbreak dataset, blood 
samples were collected and used for semi-quantification 
of PRRSV-specific IgG [measured as sample-to-positive 
(S/P) ratio] by ELISA (IDEXX PRRS X3, IDEXX Labora-
tories Inc., Westbrook) at GREMIP (Université de Mon-
tréal, Montreal) and for genotyping with the Illumina 
PorcineSNP BeadChip (Illumina Inc., San Diego; see 
below) at Delta Genomics (Livestock Gentec, Edmon-
ton). S/P was measured at four time points: at entry (S/
PEntry), after the acclimation period (S/PPost-acclimation), 
during first parity (S/PParity1), and during second parity 
(S/PParity2). The exact sampling times were completely 
confounded with farm and not all sampling points were 
available for all farms. Collection dates were available for 
S/PEntry and S/PPost-Acclimation for all but one herd and were 
complete for 92 of 105 CG. Information on the average 
time interval between S/PEntry and S/PPost-Acclimation by 
herd is in Table  1 and ranged from 29 to 88  days, with 
an overall average of 40.8 ±  16.3  days. Intervals by CG 
ranged from 26 to 103  days. Collection dates were not 
available for S/PParity1 and S/PParity2, other than that these 
collections occurred some time between farrowing and 
weaning.

Preliminary analyses revealed that S/PEntry, S/PParity1, 
and S/PParity2 had low heritability estimates across the dif-
ferent S/P datasets (described below), ranging from 0 to 
0.07. These estimates were usually combined with large 

standard errors and sometimes could not be estimated due 
to very low genetic variance. Therefore, only analysis of 
S/PPost-acclimation will be described in the remainder of this 
paper, which hereafter will be referred to simply as S/P.

Percentage of PRRSV‑seropositive animals 
by contemporary group
Five S/P ratio GA datasets were created based on the 
percentage of animals with a positive (S/P ≥ 0.4) PRRSV 
ELISA test within a CG, with the objective of assessing 
its impact on heritability estimates and genomic predic-
tion accuracies. Thresholds used to create the datasets 
were: ≥0, ≥25, ≥50, ≥75, and 100 % positive gilts within 
a CG, which will hereafter be referred to as the S/P0%, 
S/P25%, S/P50%, S/P75%, and S/P100% datasets, respectively. 
Only CG with at least 10 animals were used for these cal-
culations and further analyses (two CG were excluded). 
The numbers of animals, CG, commercial herds, and 
multipliers, as well as the percentage of PRRSV-seropos-
itive animals across S/P datasets are in Table  2 and for 
S/P0%, were equal to 2346, 95, 23, and 17, respectively, 
and for S/P100% to 1361, 56, 20, and 14, respectively. Data 
from all seven genetic suppliers were included in each 
S/P dataset.

Genotype data
A total of 3615 animals were genotyped using the Illu-
mina PorcineSNP BeadChip and 48, 1710, and 1857 of 
these animals were genotyped using versions 60  K v.2, 
60  K v.2B, and 80  K, respectively (Illumina Inc., San 
Diego). These versions include 62,163, 61,565, and 68,528 
SNPs, respectively. A total of 42,145 SNPs that were 
common to all three versions were used for subsequent 
analyses.

Before analyses, the genotypes of the GA dataset were 
evaluated for quality. First, genotypes with a GenCall 
score lower than 0.5 were set to missing (5.25  %). Sec-
ond, SNPs that had less than 80  % of genotypes called 
across all individuals (3954 SNPs) were excluded from 
the dataset. The final dataset included 38,191 SNPs for 
3615 individuals and had a genotype call rate of 99.48 %. 
The genotype data of the outbreak dataset were filtered in 
order to include the same 38,191 SNPs.

Missing genotypes were replaced with the mean coded 
(0/1/2 reference alleles) of the SNP genotype within a 
multiplier to avoid problems with the statistical methods 
used (see below). For SNPs that were completely missing 
within a multiplier, the mean genotype was calculated 
using all individuals provided by the genetic supplier for 
that multiplier. No SNP was completely missing within 
genetic supplier.

Of the 3615 genotyped animals, 2947 were gilts and 
668 were parents of the gilts. Although we had neither 
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the phenotypes on the parents, nor pedigree information 
on the gilts to identify their parents, we kept the paren-
tal genotypes in the dataset to make use of their genomic 
relationships. Visual inspection of the genomic relation-
ships showed inconsistent relationships of some animals 
with others from the same multiplier and/or genetic sup-
plier. For instance, 80 animals showed genomic relation-
ship coefficients lower than 0.03 with more than half of 
the animals from the same multiplier herd, and thus, 
were excluded, which resulted in 2867 gilts with geno-
type data. However, due to missing phenotypic data for 
S/P (S/PPost-acclimation) on 503 gilts, exclusion of another 
nine gilts based on the number of animals within CG and 
of another nine due to missing genotype data, final analy-
ses were performed using 2346 gilts with phenotypes and 
genotypes.

Genomic relationship matrix and genetic parameters
A genomic relationship matrix (GRM) was estimated 
for the GA dataset as proposed by VanRaden [14], using 
38,191 SNPs and 3535 individuals (668 parents without 
phenotypes and 2867 gilts with or without phenotypes). 
Genotypes were coded as 0/1/2 and averaged and cen-
tered within multiplier herd. Relationships across mul-
tipliers, and therefore across genetic suppliers, were 
allowed since animals used in this study had a similar 
breed composition.

Using the GRM, the following genomic model was 
used to estimate variances and genetic parameters with 
ASReml 4.0 [15]:

yij = µ+ CGi + uij + eij ,

where yij is the observed phenotype of individual j at the 
ith level of CGi, CGi is the ith level of the fixed-effect of 
contemporary group, uij is the breeding value, and eij is 
the random error. Vectors of breeding values and resid-
ual effects were assumed to be normally distributed as: 
u ∼ N

(

0,GRMσ 2
u

)

 and e ∼ N
(

0, Iσ 2
e

)

. Variance compo-
nents for S/P were estimated for each of the five S/P data-
sets. The outbreak dataset had its own GRM, and genetic 
parameters for S/P in this dataset were estimated using 
the model described in Serão et al. [3].

Genome‑wide association
Bayesian genomic prediction methods were used to per-
form a genome-wide association study (GWAS) for S/P, 
using GenSel version 4.4 [16] ratio. In addition to fit-
ting SNP effects as random effects, the GWAS model 
included the same fixed effects as used for estimation of 
genetic parameters, with estimates of additive genetic 
and residual variances obtained from that model as pri-
ors. Bayesian method Cπ [17] was used to estimate the 
proportion of SNPs with zero effects (π  =  0.987) and 
Bayes-B with this estimate of π was used for the GWAS, 
consistent with the original analysis of Serão et al. [3].

Genomic prediction analyses
Bayesian genomic prediction methods were used to esti-
mate the effects of SNPs in the training dataset, using 
the same models as used for GWAS in GenSel version 
4.4 [16]. Bayesian Cπ [17] was used to estimate the pro-
portion of SNPs with zero effects (π) for each training 
dataset. Three genomic prediction methods were used 
for training, with two methods based on the estimated π 

Table 2 Summary statistics and genetic parameters for S/Pa ratio across the gilt acclimation and outbreak datasets

a Sample-to-positive ratio
b Subscripts for each S/P dataset represent the minimum percentage of PRRSV-seropositive animals within contemporary group

Item Gilt acclimation datasetb Outbreak 
dataset

S/P0% S/P25% S/P50% S/P75% S/P100%

Mean 1.19 1.36 1.40 1.45 1.55 1.79

Standard deviation 0.72 0.61 0.57 0.53 0.48 0.38

Seropositive rate (%) 81.0 92.3 95.4 97.9 100.0 100.0

Number of

 Animals 2364 2073 1969 1849 1361 607

 Contemporary groups 95 83 79 73 56 1

 Commercial herds 23 21 21 20 20 1

 Multiplier herds 17 15 15 14 14 1

 Genetic suppliers 7 7 7 7 7 1

Heritability 0.275 0.297 0.375 0.449 0.474 0.536

 Standard error 0.041 0.045 0.046 0.047 0.057 0.110

 Genetic variance 0.053 0.066 0.079 0.090 0.086 0.078

 Residual variance 0.141 0.156 0.131 0.111 0.095 0.067
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(Bayes-B and Bayes-C) and one using π =  0 (Bayes-C0; 
hereafter referred to as GBLUP). Estimates of π were 
similar across training datasets, ranging from 0.987 to 
0.991.

Estimates of SNP effects for S/P were obtained by 
including all SNPs in the training analyses. Based on the 
initial findings of Serão et al. [3], five sets of SNPs were 
then used for genomic prediction:

1. All SNPs across the genome (SNPAll).
2. SNPs in the QTLMHC region (SNPMHC).
3. SNPs in the QTL130 region (SNP130).
4. The combination of SNPs in the QTLMHC and QTL130 

regions (SNPSSC7).
5. All SNPs across the genome excluding those in the 

QTLMHC and QTL130 regions (SNPRest).

Although Serão et  al. [3] reported that QTLMHC and 
QTL130 were located within the regions between 24 and 
30  Mb and between 128 and 129  Mb on SSC7, respec-
tively, the QTL intervals that were used herein were 
obtained from the GWAS of each of the five S/P data-
sets. The QTL intervals were defined using the two out-
ermost 1-Mb SNP windows that explained at least 1 % of 
TGVM. Within the outermost 1-Mb windows, the SNP 
that had the highest posterior probability of inclusion 
(PPI) [18] was identified and the QTL region was further 
extended by 2 Mb to account for the limited resolution of 
the GWAS methods that were used [18] and to remove 
any QTL signal when using the regions outside the QTL 
interval. The QTL intervals were similar for the five S/P 
datasets (data not shown) and thus, for simplicity, we 
used the QTL limits derived from the S/P0% analyses (see 
Table 3).

Training and validation datasets
To assess the accuracy of S/P predictions, two training 
and validation scenarios were used.

Genomic prediction in the outbreak dataset
The GA dataset was used for training and the outbreak 
dataset was used for validation. Genotypes of 425 indi-
viduals that were from the same genetic supplier as the 
outbreak dataset were excluded from the training (GA) 
dataset for this analysis, which will hereafter be referred 
to as the reduced-GA dataset and included 1939 animals 
from six genetic suppliers. Independence of the outbreak 
and reduced-GA datasets was assessed by principal com-
ponent analysis of the genotype data.

Sevenfold cross‑validation for the GA dataset
Data from six of the seven genetic suppliers were used 
as the training dataset and data from the other genetic 
supplier was used as the validation dataset. This was 
repeated until all seven genetic suppliers were used as the 
validation dataset. For validation, only CG included in 
the S/P100% dataset were used in order to allow compari-
son to accuracies obtained in scenario 1, since all animals 
in the outbreak dataset were also tested positive. Prelimi-
nary analyses showed that using S/P100% for validation 
yielded slightly better and more consistent results across 
SNP sets than other S/P datasets.

The numbers of individuals used for training and vali-
dation are in Table 3.

Population structure of the GA dataset was evaluated 
by constructing a neighbor joining [19] phylogenetic 
tree based on Nei’s genetic distance [20]. Genetic dis-
tances between genetic suppliers were calculated using 
the R package StAMPP [21] and plotted using MEGA 6 

Table 3 Sample sizes of  the gilt acclimation training datasets and  of the corresponding validation datasets used 
for genomic prediction validation analyses

a Subscript values for each S/P dataset represent the minimum percentage of PRRSV-seropositive animals within contemporary group
b GS Genetic supplier

Validation scenario Gilt acclimation datasetsa Validation data (GSb)

S/P0% S/P25% S/P50% S/P75% S/P100%

7-fold cross-validation

 Fold 1 1983 1712 1647 1588 1149 212 (GS 1)

 Fold 2 2078 1788 1684 1587 1201 160 (GS 2)

 Fold 3 1939 1696 1592 1508 1233 128 (GS 3)

 Fold 4 1996 1761 1722 1602 1114 247 (GS 4)

 Fold 5 1997 1759 1655 1535 1101 260 (GS 5)

 Fold 6 2031 1740 1636 1516 1028 333 (GS 6)

 Fold 7 2160 1982 1878 1758 1340 21 (GS 7)

Outbreak dataset 1939 1696 1592 1508 1233 607
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software [22]. Only animals used for genomic prediction 
(i.e. with phenotype and genotype data) were used in this 
step. Population structure was evaluated for each SNP 
set.

Accuracy of genomic prediction
When the complete GA dataset was used for training and 
the outbreak dataset for validation, genomic prediction 
accuracy was estimated as:

where r(GEBV ,y∗) is the correlation of the genomic esti-
mated breeding values (GEBV) with phenotypes from the 
outbreak dataset adjusted for estimates of fixed-effects 
(y∗) [3], and h2 is the marker-based heritability in the out-
break dataset.

For the sevenfold cross-validation in the GA data-
set, accuracy of genomic prediction was calculated as a 
weighted average correlation across validation sets:

where ri(GEBV ,y∗) and ni are the correlation of GEBV 
with y∗, and the number of animals, respectively, in the 
ith genetic supplier validation dataset. Phenotypes were 
adjusted for estimates of the fixed effect of CG obtained 
from the validation dataset only, using a model that 
included only CG as fixed effect. The marker-based herit-
ability (h2) used in this step was from the whole S/P100% 
GA dataset (Table 2).

Results
Genetic parameters
Estimates of genetic parameters for S/P are in Table  2. 
Heritability estimates in the GA dataset increased as the 
percentage of PRRS ELISA-positive animals within CG 
increased, from 0.28 ± 0.04 for S/P0% to 0.47 ± 0.06 for 
S/P100%. Increases in heritability estimates were due to 
increasing estimates of genetic variance, from 0.05 for S/
P0% to 0.09 for S/P100%, and decreasing estimates of resid-
ual variance as the percentage of PRRSV-seropositive 
animals increased. The heritability estimate for S/P in the 
outbreak dataset (0.54 ±  0.11) was slightly higher than 
that for the GA dataset with 100 % PRRSV-seropositive 
animals, primarily because of a lower residual variance 
estimate.

GWAS results and location of the two QTL
Results from GWAS using the GA dataset and the origi-
nal analysis of the outbreak dataset of Serão et  al. [3] 
are in Fig.  1a. The two QTL on SSC7 for S/P that were 

Accuracy =
r(GEBV ,y∗)√

h2
,

Accuracy =

∑7
i=1 niri(GEBV ,y∗)

∑7
i=1 ni√
h2

,

originally reported by Serão et  al. [3] for the outbreak 
dataset were also identified in the GA dataset for S/P0% 
(Fig. 1b) and S/P100% (Fig. 1c). The S/P100% data showed a 
lower signal at QTLMHC and QTL130 than the S/P0% and 
the outbreak data. Results for S/P25%, S/P50% and S/P75% 
(not shown) were similar to those for S/P0%.

Locations of the two QTL on SSC7, using S/P0%, are in 
Table 4. In the GA data, QTLMHC and QTL130 accounted 
for 20.1 and 6.7  % of the TGVM, respectively, for S/
P0% (Fig. 1b), and 15.2 and 4.7 % of the TGVM, respec-
tively, for S/P100% (Fig. 1c). In the outbreak dataset, these 
two QTL accounted for 25.2 and 15.7  % of the TGVM, 
respectively (Fig. 1a).

Genomic prediction
Population structure
A principal component analysis was performed to 
assess differences in the genetic background between 
the outbreak (validation) and reduced-GA (train-
ing) datasets (Fig.  2). The first principal component 
(PC1) explained 6.7, 22.0, 28.4, 13.2, and 6.7  % of the 
total variance for SNP sets SNPAll, SNPMHC, SNP130, 
SNPSSC7, and SNPRest, respectively, whereas the sec-
ond principle component explained 3.0, 10.7, 8.1, 12.0, 
and 3.0  % of the total variance, respectively. Figure  2a 
(SNPAll) and e (SNPRest) demonstrate that the reduced-
GA and outbreak datasets were genetically independ-
ent, with the two groups clustering in different areas 
of the plot. When using the other SNP sets (Fig. 2b–d), 
the reduced-GA and outbreak datasets were not well 
discriminated, although some discrimination could be 
observed for PC2 when using SNPs in the MHC region 
(SNPMHC; Fig. 2b).

Since the GA dataset included data from seven genetic 
suppliers, we assessed differences in genetic background 
between genetic suppliers based on their genetic dis-
tances for each of the five SNP sets (Fig.  3). Results for 
SNPAll (Fig.  3a) and SNPRest (Fig.  3e) were the same, 
with genetic supplier 6 (GS 6) branching separately (i.e. 
genetically diverging) from the other GS. Genetic dis-
tances based on the QTL SNPs (Fig. 3b–d) differed from 
those based on SNPAll and SNPRest. Overall, genetic dis-
tances based on SNPAll and SNPRest were larger (aver-
age distance of 0.01) than those based on QTL SNPs, i.e. 
0.008, 0.007, and 0.008 for SNPMHC, SNP130, and SNPSSC7, 
respectively.

Genomic prediction accuracies
Genomic prediction accuracies for the outbreak (Fig. 4a) 
and GA (Fig.  4b) validation datasets generally showed 
consistency across genomic prediction methods, SNP 
sets, and S/P training datasets (see Additional file 1: Table 
S1). Results for each fold when training and validating 
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using the GA data are presented in Figures S1, S2, S3, 
S4, S5, S6 and S7 (see Additional file  2: Figures S1, S2, 
S3, S4, S5, S6 and S7). Overall, accuracies were higher 
for the outbreak than for the GA validation datasets. For 
the outbreak validation dataset, SNPSSC7 resulted in the 
highest accuracy, followed by SNPMHC, SNPAll, SNP130, 
and SNPRest, with overall average accuracies across 

methods and S/P datasets of 0.39, 0.34, 0.26, 0.21, and 
0.05, respectively. For the GA validation dataset, SNPSSC7 
resulted in the highest accuracy, followed by SNPAll, 
SNPMHC, SNP130, and SNPRest, with overall average accu-
racies of 0.31, 0.28, 0.25, 0.22, and 0.12, respectively. In 
general, Bayesian model selection methods (Bayes-B and 
Bayes-C) showed higher accuracies than GBLUP. This 
was always the case when the outbreak dataset was used 
for validation, but GBLUP showed higher accuracies than 
Bayes-B and Bayes-C with the GA validation dataset for 
SNPMHC (S/P0%, S/P25%, and S/P100%).

Increasing the percentage of PRRSV-seropositive ani-
mals in the GA dataset used for training had opposite 
effects on accuracies of prediction in the outbreak and 
GA datasets. When the outbreak dataset was used for 
validation, there was a steady decrease in accuracy as 
the percentage of PRRSV-seropositive animals increased 
from S/P0% to S/P75%. However, this decrease in accuracy 
was greater when using SNPAll than when using QTL 
SNPs. In contrast, when performing cross-validation 
with the GA dataset, there was an increase in genomic 
prediction accuracies from S/P0% to S/P75%.

Fig. 1 Manhattan plot for sample-to-positive (S/P) ratio. Each data point represents a 1-Mb SNP window plotted against the proportion of total 
genetic variance accounted for by the markers (TGVM). The chromosomes (1 to 18, and X) and SNPs are ordered from left to right. Plots a, b, and c 
represent results for the original findings by Serão et al. [3] using the outbreak dataset, and for the gilt acclimation (GA) dataset using S/P0% and  
S/P100%, respectively

Table 4 QTL intervalsa and  number of  SNPs for  each SNP 
set used for genomic predictionb

a Intervals for chromosome 7 only
b Determined using the gilt acclimation (GA) dataset

SNP dataset QTL interval (Mb) Number of SNPs

SNPAll 38,191

SNPMHC ALGA0039404 (22.9) to ASGA0032334 
(33.5)

175

SNP130 ALGA0045559 (127.9) to ALGA0045891 
(132.5)

94

SNPSSC7 269

SNPRest 37,922
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Discussion
This study analyzed data from commercial herds to (1) 
identify and validate genomic regions associated with 
PRRSV ELISA antibody response, measured as S/P ratio; 
(2) evaluate the use of different SNP sets, with or without 
QTL SNPs, for genomic prediction of S/P in commercial 
gilts and sows; and (3) assess the impact of the propor-
tion of PRRSV-seropositive animals on heritability esti-
mates and accuracy of genomic prediction.

Serão et al. [3] performed a GWAS for S/P in a repro-
ductive PRRS outbreak herd and identified two QTL on 
SSC7 that together accounted for ~40  % of the TGVM. 
These QTL were validated by Serão et  al. [10] using 
part of the GA data reported herein. One of these QTL 
spans the MHC region (QTLMHC), which harbors genes 
associated with immune response to infectious dis-
eases and vaccines [23], and explained ~25  % of the 
TGVM [3]. Associations between high-density SNPs in 
the MHC region have also recently been reported with 

porcine circovirus type-2b serum viremia in pigs [24, 25], 
PRRS antibody response in pigs [26], and with immune 
response indicators in dairy cattle [27]. The other QTL, 
QTL130, explained ~15  % of the TGVM [3] and was 
located approximately 100 Mb downstream of QTLMHC. 
Serão et  al. [3] also reported candidate genes in this 
region, bringing special attention to the tumor necrosis 
factor receptor-associated factor 3 gene (TRAF3), which 
has an important role in immune response activation 
[28]. Due to the importance that these regions have for 
immune response, we specifically evaluated the predic-
tive ability of these two QTL on SSC7 for PRRSV anti-
body response, compared to the whole genome or the 
rest of the genome.

The PRRSV antibody response data used in this study 
were collected on commercial animals sourced from dif-
ferent genetic suppliers and reared under standard pro-
duction settings in commercial herds. The use of field 
data has several advantages, such as working with a large 

Fig. 2 Population structure between the reduced-gilt acclimation and outbreak datasets. Plots of the first two principal component scores (PC1 
and PC2) generated from SNP genotypes included in the five SNP datasets. Each dot represents one animal. Red dots represent animals from the 
reduced-gilt acclimation and yellow dots represent animals from the outbreak dataset. PC score plots in a, b, c, d, and e are based on all SNPs across 
the genome (SNPALL), SNPs in QTLMHC (SNPMHC), SNPs in QTL130 (SNP130), SNPs in both QTL (SNPSSC7), and SNPs outside both QTL (SNPRest), respec-
tively
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sample size, use of animals from different genetic back-
grounds (genetic suppliers and multipliers) that represent 
current commercial crossbred genetics, and the use of 
different environments under a range of disease pressures 
and current industry production practices. However, the 
main disadvantages of using field data are the variability 
in management and data collection procedures between 
farms, such as the use and timing of vaccination, inability 
to account for multiple unidentified sources of variation, 
and limitations in obtaining additional information that 
could improve the analyses, such as age of the animals 
and complete pedigree. However, in spite of the hetero-
geneity of the GA dataset, we obtained several promis-
ing results, including moderate to high heritabilities of 
PRRSV antibody response of replacement gilts, measured 
as S/P after the acclimation period, and low to moder-
ate-high accuracies of genomic prediction of antibody 
response following a reproductive PRRS outbreak based 
on S/P following acclimation, especially when using SNPs 

located within QTLMHC and QTL130. In both the GA 
and outbreak datasets, S/P ratio was measured, on aver-
age, around peak PRRS antibody response (40 to 60 days 
after exposure), although the time of measurement var-
ied greatly in the GA data (from 26 to 103 days) follow-
ing introduction into the herd. Additional studies are 
necessary to evaluate the impact of the time of S/P ratio 
measurement and of method of exposure on genomic 
prediction accuracies.

Another point that requires attention is the fact that 
none of the animals used in this study were experimen-
tally infected with PRRSV. In the outbreak dataset, all 
animals were naturally infected with PRRSV and infec-
tion likely occurred within a limited amount of time. 
In contrast, in the GA dataset, pigs within a CG were 
exposed using different methods, including vaccination 
with a modified live PRRSV, natural exposure, or delib-
erate exposure using other acclimation methods, but 
the specific method used for each CG was uncertain. In 
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Fig. 3 Population structure between the seven genetic suppliers of the gilt acclimation datasets. Genomic distances between genetic suppliers 
(GS) were estimated for each SNP dataset. Numbers on each branch represent Nei’s genetic distance between the taxon and the node. Neighbor 
joining trees in a, b, c, d, and e are based on all SNPs across the genome (SNPALL), SNPs in QTLMHC (SNPMHC), SNPs in QTL130 (SNP130), SNPs in both 
QTL (SNPSSC7), and SNPs outside both QTL (SNPRest), respectively. Values for genetic distances less than 0.001 are not shown
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addition, the timing of the outbreak or vaccination was 
variable and often unknown. Nevertheless, it is known 
and expected that natural PRRSV infection and response 
to modified live PRRSV vaccination result in similar anti-
body responses [29]. Nevertheless, the moderate to high 
heritabilities of S/P in both the GA and outbreak data 
and moderate accuracies of genomic prediction of S/P in 
the outbreak data based on training in the GA data sug-
gest that antibody responses to vaccination or infection 
with PRRSV are similar traits and have the potential to 
be interchangeably used for genomic prediction of PRRS 
ELISA S/P ratio.

Genetic parameters for S/P ratio
Estimated heritability of S/P was numerically lower in the 
GA datasets (0.28  to  0.47) than in the outbreak dataset 
(0.54). This is likely due to the greater uniformity of the 
data in the outbreak herd. For example, all animals in the 
outbreak dataset were from the same genetic source and 
farm. In addition, the outbreak dataset was composed of 
animals that underwent a PRRS outbreak during the same 
period of time. These more homogeneous environmental 
conditions were reflected in the lower residual variance 
for the outbreak dataset (from 0.07 vs. 0.10 to 0.16 for 
the GA datasets). However, the marker-based heritability 

(0.54) reported here for the outbreak dataset was greater 
than the pedigree-based estimate (0.45) reported by 
Serão et al. [3] for the same dataset. Although heritabil-
ity estimates for S/P were lower with the GA dataset than 
with the outbreak dataset, they were moderate to high, in 
spite of the heterogeneity of these field data.

In general, the estimate of residual variance for S/P 
decreased and the estimate of genetic variance increased 
as the percentage of positive animals for the PRRSV 
ELISA test within CG increased, thereby increasing her-
itability estimates (Table 2). The impact of disease preva-
lence on heritability estimates from field data was well 
addressed by Bishop and Woolliams [30]. These authors 
showed that the true heritability is underestimated when 
exposure to infection is incomplete. In other words, her-
itability estimates are expected to increase as disease 
prevalence, or the proportion of animals identified as 
diseased, increases. In our study we could not distin-
guish PRRSV antibody response (S/P ratio) resulting 
from PRRSV infection from response to PRRSV vacci-
nation, thus we could not confirm that the increase in 
heritability was only due to prevalence. Nevertheless, 
this same pattern was observed in our study, with higher 
heritabilities in datasets with a larger number of positive 
animals.
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Fig. 4 Genomic prediction accuracies for three methods and for different validation, SNP, and sample-to-positive (S/P) datasets. Genomic predic-
tion accuracies in the outbreak and gilt acclimation (GA) datasets are in a and b, respectively. Results when using S/P datasets from S/P0% to S/P100% 
used for training are in panels designated by 0 to 100 %, respectively. Within each panel, color-coded bars represent genomic prediction accuracies 
for each method across SNP datasets. SNP datasets SNPAll, SNPMHC, SNP130, SNPSSC7, and SNPRest are represented by All, MHC, 130, SSC7, and Rest, 
respectively. For the GA validation results (b), white error bars represent the standard deviation of accuracies across the seven cross-validation folds
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GWAS results and location of the two QTL
The locations of the QTL identified in this study encom-
passed the two regions that were originally reported by 
Serão et  al. [3], using the outbreak data. QTLMHC and 
QTL130 were positioned between 22.9 and 33.5  Mb and 
between 127.9 and 132.5 Mb on SSC7, respectively, com-
pared to between 24.0 and 30.9  Mb and between 128.0 
and 129.9  Mb in the previous study of Serão et  al. [3]. 
Since the objective of this study was to evaluate the use of 
SNPs within these QTL for genomic prediction, we fur-
ther increased the regions by 2 Mb based on the further-
most SNPs that had the highest probability of inclusion 
within a 1-Mb windows that explained at least 1 % of the 
TGVM.

Overall, the GWAS results were consistent across S/P0% 
to S/P75%. QTLMHC had similar %TGVM in the GA data-
set (~20 %) as in the outbreak data (~25 % [3]). Results 
for QTL130 were lower in the GA dataset (S/P0% to S/P75%) 
than in the outbreak dataset, with ~7 and ~15 % of the 
TGVM, respectively. For S/P100%, the %TGVM explained 
by these QTL was slightly lower (15.2 % for QTLMHC and 
4.7 % for QTL130) than for S/P0% to S/P75%. These differ-
ences could be due to the big drop in sample size from S/
P75% (n = 1849) to S/P100% (n = 1361). Nevertheless, these 
results are promising, considering that the outbreak data 
included data from only one herd and genetic line, while 
the GA data included data from multiple genetic suppli-
ers, multipliers and commercial herds.

Genomic prediction
Population structure
The principal component analysis using SNPAll (Fig.  2a) 
indicated that the reduced-GA training population was 
genetically independent of the outbreak population. In 
contrast, this genetic independence between datasets was 
not so clear for the PCA plots that were based only on the 
QTL SNPs. For SNPMHC (Fig. 2b), there was no discrimi-
nation between the outbreak and reduced-GA datasets 
based on PC1 (22.0  %) but there was some discrimina-
tion based on PC2 (10.7  %). This lack of discrimination 
could be due to the high level of polymorphism observed 
in the MHC region. Overall, there was considerable over-
lap between PC scores from the two datasets when QTL 
SNP sets were used.

For the GA datasets, we assessed differences in genetic 
background by visualizing trees based on Nei’s genetic 
distance. Similar to what was observed based on the 
PC analysis of the outbreak and reduced-GA datasets, 
SNPSSC7 (Fig.  3d) showed a combination of the results 
for SNPMHC and SNP130 (Fig.  3b, c, respectively). How-
ever, the two main clades for SNPMHC and SNP130 
included different genetic suppliers, indicating that the 
genetic diversities represented by these two QTL are 

in part independent from each other. As expected, the 
trees based on SNPAll and SNPRest were the same, which 
indicates that the SNP QTL do not play a major role in 
assessing the overall genetic distance between genetic 
suppliers.

Thus, both methods used to assess within- and across-
population diversity showed that SNPAll and SNPRest dis-
criminated populations well, while SNPs on both QTL 
(SNPMHC, SNP130, and SNPSSC7) showed considerable 
relationships across populations, suggesting that these 
sets of SNPs should indeed result in higher across-popu-
lation genomic prediction accuracies.

Genomic prediction accuracies
Reports on genomic prediction of antibody response are 
scarce in the literature. In poultry, Liu et  al. [31] evalu-
ated the use of high-density SNP genotypes for pre-
diction of antibody response to Newcastle disease and 
avian influenza across scenarios with different levels of 
relationships between the training and validation data-
sets. With lower relationships between datasets, they 
observed moderate to high genomic prediction accura-
cies for antibody response to both diseases, ranging from 
0.30 to 0.61, after dividing their reported correlations 
of predictions with phenotype by the square root of the 
marker-based heritability (for proper comparison with 
our study). Accuracies of genomic prediction were higher 
when greater relationships between training and valida-
tion were allowed (0.46  to  0.74). In our study, we were 
not interested in within-population predictions but in the 
use of the major QTL for S/P for prediction, regardless of 
the relationships between populations.

Overall, the accuracies of genomic prediction for PRRS 
S/P ratio that we obtained in this study ranged from low 
(typically when using SNPRest) to moderate-high (mostly 
with SNPSSC7, SNPMHC and SNPAll), which suggested 
that the rest of the genome had little predictive ability 
and that only SNPs within the two QTL (QTLMHC and 
QTL130) were needed to obtain sizeable genomic predic-
tion accuracies across genetically different populations. 
Although accuracies differed between folds (i.e. genetic 
suppliers), S/P datasets, and SNP sets when using the 
GA dataset (cross-validation), the differences in accura-
cies when validation was done with the GA versus the 
outbreak dataset were interesting; while there was a clear 
increase in genomic prediction accuracies as the percent-
age of PRRSV-seropositive animals in the training data-
set increased (S/P0% versus S/P100%) when validation was 
done with the GA dataset, accuracies decreased from S/
P0% to S/P100% when using the outbreak data for valida-
tion. Based on the increase in heritability with increas-
ing % of positive animals in the GA training dataset, one 
would expect accuracies to increase with % of positive 
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animals. However, the increase in % of positive animals 
in the GA training data was confounded with a decrease 
in the size of the training data, which is expected to 
decrease accuracies. In order to assess the effect of sam-
ple size on genomic prediction accuracies using the out-
break validation dataset, we randomly selected CG from 
the reduced-GA training dataset to have a similar num-
ber of animals as in the S/P100% dataset (n =  1233) and 
a similar percentage of PRRSV-seropositive animals in 
S/P0% (81  %). We performed five replicates and results 
yielded similar accuracies (e.g. average accuracy of 0.323 
using Bayes-B) as obtained when using S/P100% for train-
ing and validating with the outbreak data. Thus, the drop 
in accuracies with the outbreak dataset from training on 
S/P0% to S/P100% was due to the smaller number of ani-
mals used for training, and not due to differences in the % 
of positive animals.

However this does not explain the increase in accuracy 
with % of positive animals that was observed for the GA 
validation data. There are several differences between the 
GA and outbreak validation datasets that may have con-
tributed to these opposite trends in accuracies. For exam-
ple, although “noisy”, the data from different herds within 
the GA dataset are expected to be more similar to each 
other than to the outbreak dataset, since the GA dataset 
included data from several commercial production herds, 
while the outbreak dataset was composed of data from 
a more controlled environment (i.e. a single commercial 
multiplier herd). In addition, the impact of sample size 
and % of PRRSV-seropositive animals on the accuracy 
of genomic prediction could also be a factor explaining 
the differences in results between validation datasets. 
When validation was done with the outbreak dataset, a 
larger training population size (S/P0%, n = 1939 vs. e.g. S/
P100%, n = 1233) was needed to achieve the highest accu-
racy, while with the GA dataset, the largest training pop-
ulation size (S/P0%; average n =  2023) resulted in lower 
accuracies.

Another component that could be added to this dis-
cussion is that the GA dataset consisted of antibody 
responses both to vaccination and natural exposure, 
whereas the outbreak dataset was the result of natural 
exposure only. Although reports indicate that, phenotyp-
ically, animals that are infected with PRRSV have similar 
antibody responses to those that are vaccinated with a 
modified live vaccine, this may not be true at the genetic 
level. In addition, there are likely to be some differences 
between the modified live strain of PRRSV and the strain 
of virus responsible for the outbreak that may influence 
the effect of host genetics.

Genomic prediction accuracies obtained across all 
methods and validation and S/P datasets suggest that the 

effects of the two major QTL on SSC7 for S/P are addi-
tive and, thus, orthogonal to each other; accuracies using 
SNPSSC7 could be approximately derived as the square 
of the sum of squared accuracies from using SNPMHC 
and SNP130. For example, using the average accuracies 
with SNPMHC and SNP130 in the GA dataset (0.25 and 
0.21, respectively), the accuracy based on SNPSSC7 based 
on additivity is expected to be 

√
0.252 + 0.212  =  0.33, 

which is approximately the average accuracy obtained 
using SNPSSC7 (0.31) across all methods and S/P data-
sets. This was also observed for the outbreak dataset: √
0.342 + 0.212  =  0.40  ≈  0.39, the average accuracy 

across methods and S/P datasets using SNPSSC7. These 
results also showed that selection based on only 269 
SNPs (i.e. SNPSSC7) would result in greater response to 
selection for PRRS S/P, compared to using the whole 
genome (i.e. 38,191 SNPs in this study).

However, it should be noted that there is general con-
cern about losing genetic variability in the MHC region 
[32]. Due to its major role in pathogen recognition, it 
is generally accepted that greater heterozygosity in the 
MHC region leads to detection and presentation of a 
wider range of antigens [33]. This suggests that individ-
uals with greater MHC diversity have more chance to 
survive disease outbreaks but conflicting results in the 
literature indicate that this may not be a rule [32, 34, 35].

Conclusions
Results from this study using field data show that PRRSV 
antibody response, measured as sample-to-positive 
ratio, had moderate to high heritabilities, with estimates 
increasing as the proportion of PRRSV-seropositive ani-
mals increased in the dataset. The two major QTL for 
S/P that were previously found on SSC7 (QTLMHC and 
QTL130) were validated as being associated with S/P in all 
datasets. In addition, results from this study indicate that 
the magnitude of the PRRSV IgG response by S/P ratio 
can be predicted across populations and from S/P meas-
ured during acclimations and PPRSV vaccination to S/P 
measured in a natural reproductive PRRS outbreak with 
low to moderate accuracies using SNP genotypes. Mod-
erate genomic prediction accuracies were obtained by 
using only the SNPs within the two major QTL regions, 
with overall accuracies across all scenarios of 0.39 and 
0.31 for the outbreak and gilt acclimation datasets, 
respectively. SNPs in the QTLMHC region showed overall 
greater predictive ability (0.34 for the outbreak and 0.25 
for the gilt acclimation datasets) than SNPs in the QTL130 
region (0.21 for the outbreak and 0.22 for the gilt accli-
mation datasets). In addition, genomic prediction accura-
cies using the rest of the genome (SNPRest) indicated that 
SNPs not located within the two major QTL had little 
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to no predictive ability for S/P. Overall, variable selec-
tion methods (Bayes-B and Bayes-C) resulted in greater 
genomic prediction accuracies than Bayesian GBLUP.

Our findings suggest that PRRSV antibody response 
(S/P ratio) in replacement gilts following standard accli-
mation procedures or in reproductive sows at approxi-
mately 45  days post-natural PRRSV infection can be 
predicted with high accuracy by using the SNPs that are 
included in just two QTL. Combined with our previous 
result, i.e. that S/P ratio is genetically correlated with 
reproductive performance during PRRS outbreak, this 
suggests that reproductive performance during PRRS 
infection can be selected for using PRRS S/P ratio or 
genomic predictions for S/P ratio, although further 
research is needed to validate these results. Due to the 
nature of the data, we were not able to assess the impact 
of using crossbred versus purebred animals for training 
or validation, or the impact of vaccination, or of the envi-
ronment (production versus multiplier), or of the age of 
animals (gilts versus sows). Therefore, additional studies 
are needed to address these issues and better understand 
the role of these factors on the host genetics of antibody 
response to PRRSV.
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