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Abstract

In this project problems related to wavelet applications are studied. An analysis
of the behaviour of a chain of decimators when its input is white Gaussian noise on
the assumption of finite duration input signals is presented. A structure for the output
correlation matrix of the system is obtained. In addition, an upper and lower bound
for the unitary norms of the output correlation matrix are given. These bounds will
provide information about the inverse of the output correlation matrix with respect to
its condition number. After this characterization is done, the creation of a positive
wavelet projection into wavelet subspaces to represent positive signals is shown. The
positive wavelet projections are based on the creation of positive kernels as shown by
Walter [1]. This theory is applied and simplified in order to obtain computationally
feasible positive projections which can be applied in real life applications. Finally, an
application where a positive wavelet projection is used to improve the computational

speed of a QR factorization algorithm is showed.
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Chapter 1

Introduction

For a long time the Fourier transform has been widely employed in engineering applica-
tions. However, the Fourier transform presents problems in some applications such as
the processing of non-stationary signals.

In recent years the wavelet transform has become an alternative to the Fourier trans-
form. The wavelet transform has already been used in problems like signal denoising,
signal compression and signal detection with satisfactory results. Due to this fact, there
is a lot of interest in using the wavelet transform in other applications. However, the
wavelet transform theory remains under current development, and there are some parts
of the theory that have not been completely developed.

In this thesis we are particularly interested in a group of wavelets known as the compact
support wavelets. Generally we use the Daubechies [2] wavelet family which is the most
well known compact support wavelet family.

We study two problems related to wavelet applications. The first one is the behaviour
of a chain of decimators when its input is white Gaussian noise. The decimation opera-
tion is one of the basic operations to compute the coefficients of a wavelet projection. In
many applications (i.e. signal compression , signal prediction) the signals to be processed
with the wavelet transform are affected by noise. Hence, the behaviour of the system is
modified by the presence of noise. The characterization of decimator outputs when the
input is noise improves the results obtained in these applications.

There have been previous attempts to explain the behaviour of decimators when the
input is noise [3] [4] [5]. However, previous authors made assumptions about the sys-
tem that are not always common in actual applications. In Chapter 6 we present the
characterization of a chain of decimators when the input is white Gaussian noise on the
assumption of finite duration input signals, in contrast with previous works which as-
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sume signals of infinite duration. We give a structure for the output correlation matrix
of the system. This matrix can be used to predict the statistical properties of a noisy
wavelet-based multirate system. In addition, we give an upper and a lower bound for
the unitary norms of the output correlation matrix. These bounds provide information
about the inverse of the output correlation matrix-with respect to its condition number.

The second problem to be analyzed is the projection of positive signals into wavelet
subspaces. When a positive signal is projected we would want the projection coeffi-
cients to be positive. Furthermore, if the input signal presents discontinuities we want
to reconstruct the original signal from the projection coefficients without Gibbs’ phe-
nomenon. This is not normally the case for either the Fourier or wavelet projections.
There are methods to modify the Fourier projection in such a way that these problems
are avoided [1]. There have also been attempts to solve these problems for wavelet
projections [6] [7], but they use their theory to denoise signals and do not present a
mathematical explanation to support the elimination of the Gibbs’ phenomenon. Wal-
ter [1] also presents a theory to solve these problems. He gives a complete mathematical
explanation to support his findings. However, the processing of signals using Walter’s
theory present some computational problems. In Chapter 7 we reconsider the theory
given by Walter and modify it in such a way that these problems are eliminated.
Finally in Chapter 8 we will present an application where we use the positive wavelet
projection of a positive input signal combined with the minimum description length
criterion of Rissanen to determine the rank of a matrix.

In order to understand the theory given in Chapters 6, 7, and 8 we give a review of the
theory of function projections and Gibbs’ phenomenon in Chapters 2 and 3 , orthogonal
wavelet projections in Chapter 4 , and the minimum description length criterion in
Chapter 5.
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Chapter 2

Function Sequence Convergence
and Series

2.1 Function Spaces

The mathematical representation of a certain physical phenomenon is called a signal. A
signal will contain certain characteristic information about the represented phenomena
and it is defined as a function of this information. Furthermore the functions used to
represent a signal possess common mathematical characteristics. Hence we can group
these functions into collections. These sets are called function spaces and the area of
mathematics that studies the properties of function spaces is called functional analy-
sis [8].

In this thesis we deal with some of these spaces. They are the CP differentiable func-
tions, the integrable functions L! and the square integrable functions L2.

Definition 2.1.1 (C® Differentiable Functions). Given a number p € N1, we say
that a function f(t) defined on an interval of length T located anywhere is C®) if it is p
times differentiable on the interval T and the p** derivative is also continuous.

Definition 2.1.2 (L!(T) Space). A piecewise continuous function f(t) on an interval
T is a L1(T) function if

/ I1F(H)ldt < oo.
T

Definition 2.1.3 (L?(T) Space). A piecewise continuous function f(t) on an interval

IN is the set of natural numbers.
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T is a L?(T) function if
/ £ () 2dt < oo.
T

The L? inner product is given by
<f.9>= [ #0500t

where g*(t) is the complex conjugate of the function g(t). The L? norm is derived from
the inner product and it is defined by

lIflle =< £, f >i= ( /T lf(t)lzdt)%.

Note that these sets are not mutually exclusive, so then there are functions that can
belong to two or more of these sets at the same time.
The norm operator in L2 provides the space with a function to measure the size of its
elements. Furthermore using the norm we can construct an operator to measure the
distance between two functions. This operator is called a metric and it is given by:

d(z,y) = llz - yll,

where z,y are elements of the function space.

2.2 Sequences

It is possible to form a sequence of elements in a space using an iterative process. These
sequences usually have practical value only if there is a limiting element when the number
of iterations goes to infinity. This concept is referred as the convergence of a sequence
of functions.

Definition 2.2.1 (Convergence). A sequence of functions z,(t) with » € Z 2 inside a
space X converges if and only if there is a function z(t) € X such that

lim d(za(t), (1)) =0,
where d(z,y) is a suitable metric on X, for z,y € X. We say that

Iim z, = z.

n—+0o

2Z is the set of integer numbers.
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This definition of convergence is very general, and it only limits itself to show the
stability of the iterations. We can extend the definition of convergence of a sequence to
account for some extra characteristics of the iteration process. We will introduce two
particular cases of convergence.

Definition 2.2.2 (Pointwise Convergence). Given a sequence of functions z,(t) we
say the sequence converges pointwise if and only if there is an z(t) so that for all € > 0
there is an N = N(e, t) such that

|zn(t) —z(t)] < €

for n > N. We say z, tends pointwise to z.

It is very important to note that the value N used in this definition can depend on
both € and ¢t. This dependence implies that under this definition it is possible to find
sequences where although the distance from a sequence element to the limit function
tends to zero the error of approximation is not the same for all the points .

Example 2.2.1. The function

2nt ifte 0,

' 2n
Zn(t) = (2-2nt ift€ (3,2
0 ifie (1]

belongs to L1(0,1] and L2(0, 1]. This function converges pointwise to the function z(t) =
0, and so we say z,(t) — 0 pointwise.

The behavior of this sequence can be seen in Figure 2.1. Note how as n increases most
of the points ¢ from the sequence element z, tend to zero. However as the gray area in
Figure 2.1 shows there are some points that are not going to zero.

Definition 2.2.3 (Uniform Convergence). Given a sequence of functions z,(t) we
say the sequence converges uniformly if and only if there is an z(t) so that for all ¢ > 0
there is an N = N(¢) such that

lzn(t) — ()| < €

for n > N. We say z, converges uniformly to z.

It can be clearly seen that the difference between uniform and pointwise convergence

5
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- nel
" ned
>-nal

Figure 2.1: Sequence of functions with pointwise convergence

is the dependence of N or otherwise on the variable t. Moreover, due to this fact a
uniformly convergent sequence is also pointwise convergent but the converse is not true.

Example 2.2.2. The function ;

1+nt?

belongs to Lo(R) 3. This function converges uniformly to the function z(t) = 0, and so
we say Zn(t) — 0 uniformly.

The behavior of this sequence can be seen in Figure 2.2. The gray area shows how as n
increases all of the points ¢ of z,, tend to the limit function.

za(t) =

2.3 Orthonormal Series Expansion

Using the inner product given in Definition 2.1.3 we can say a set of functions (e; ...en) €
L? is an orthonormal set if and only if

0 fm#n

1 ifm=n,

<én,em >=

for every em, en. The orthonormality between two functions e, and en, is often symbol-
ized as e, L en.

3R is the set of real numbers.
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Figure 2.2: Sequence of functions with uniform convergence

It is easy to prove that the members of an orthonormal set are linearly independent. Us-
ing this fact a linear combination of orthonormal functions [e; ... ey} will be an element
of some subspace S € L? that they span. Hence we can say span [e;...e;] = S.

In addition, as it is shown by Kreyszig [8], a function z € L? can be projected into the

space S as
n
Psz = , . 2.1
ST z<:z: er > €k ( )
k=1 g

Note that if z € S then Psz = z and then the projection is called an orthonormal series
expansion.

We can extend the concept of series expansions to the case where we have an infinite
number of orthonormal functions (..., e_1,€o,€1,---) [9]-

The projection of the signal using an infinite number of orthonormal functions is

o0
Psz = _Z < z,en > en. (2.2)
n=-—00 an

This projection can be seen as the limit of the sequence

m
Tm= Y <Z,en>en

n=-m
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when m — oo. Furthermore in the case z € span(...,e—;,egp,€1,...) we expect

mh'_rpoo Im = ZT.

Note the projection is based on a sequence and then we have to assure the sequence
converges.
The convergence of the sequence depends on the characteristics of the function to be
approximated. For some functions the series expansion converges uniformly, but for
others pointwise, and for others the series does even converge at all.

In the orthonormal projections used in this thesis the coefficients o, decrease as
In| — oo, and for this reason the projection can be approximately computed using a
truncated version of the sum. The error introduced is known as the truncation error and
can be decreased to a desirable value by increasing the number of terms used to compute
the projection.

2.4 Conclusion

In this Chapter, the concept of a function space and a sequence has been introduced. The
convergence of a sequence and two different types of convergence have been explained.
In addition, the use of a set of orthonormal functions to obtain a sequence which give us
a series expansion has been shown.
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Chapter 3

Delta sequences and Fourier

Series

3.1 Reproducing Kernel

As it was seen in Section 2.3 when a function is represented by means of infinite series
expansions first we need to check if the series converges at all. Furthermore if the series
converges then we need to find what type of convergence the series possesses. Checking
the convergence of a series using Definitions 2.2.1,2.2.2 and 2.2.3 directly can be difficult.
For this reason alternative methods have been developed. One of these methods uses
the concept of the reproducing kernel.

If we truncate the series expansion for z(t) given in Equation (2.2) we obtain

zm(p) = D (2(t),en(t)en(P)

n=-—-m
m

= > { [ sentt it} ente)

n=-m

= / :z(t){ Em: en(t)en(p)} dt (3.1)

- n=-m

- "

6"‘ (t,p)

- /_ % St P)(t)dt

where 6,,(t,p) is known as the reproducing kernel sequence for the space S using the
orthonormal set (...,e—_1,€gp,€1,---)-
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Through Equation (3.1) we can note there is a resemblance between the function
Om(t,p) inside the space S as m — oo and the Dirac’s delta function § defined on the
real number line. Due to this reason the reproducing kernel sequence is also known as a
delta sequence.

Further analysis of the similarities between the Dirac’s delta function and the delta
sequences gives rise to two different types of delta sequences.
3.1.1 Quasi-positive delta sequences

A set of sequences 6,,(-,t) € L*(R) is called a quasi-positive delta sequence if

o0

There is a C > 0 such that / |6m(p,t)|dp < C, tER, me ZT! (3.21)
-0
(> o]
/ Om(p, t)dp — 1 uniformly in compact 2subsets of R as m — oo. (3.2ii)
-0
For each v > 0, Supje_pj>y dm(p,t) = 0asm — oo, (3.2ii1)

where supy;_pj> 0m(p,t) denotes the maximum value of 6 (p, t) on the region given by
ft —pl = ~. The first property guarantees the delta sequence is bounded in
magnitude for all values of m. This bound is made with respect to the absolute value of
the delta sequence, making possible for the delta sequence to have negative values. This
behaviour is different than the one presented by the Dirac’s delta function, but as it will
be seen later it is common to find orthonormal projections whose delta sequences have
this behavior.

The second property ensures that the integral value for the delta sequence goes to one as
m — 00, which is the same value possessed by the integral of the Dirac’s delta function.
The third property ensures that the delta sequence is concentrated in a small interval «y
around t. Ideally we want to concentrate all the values of a delta sequence on a single
point as m — o0.

3.1.2 Positive delta sequences
A positive delta sequence is a sequence where condition (3.2i) is replaced by

om(z,y) 20, z,y€R (33)

}Z* is the subset of nonnegative integers.
2A compact subset of R is a closed and bounded subset of real numbers.

10
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This new condition makes these sequences more similar to Dirac’s delta function than
the quasi-positive sequences.

Equation(3.3) combined with (3.2iii) makes every positive delta sequence a quasi-positive
delta sequence. However the converse is not necessarily true.

3.2 Fourier Series

The Fourier series is an infinite orthonormal series. The orthogonal functions that define
the series are a basis for the space L[, 7}
This series is created with the orthonormal set of functions

en = €™ = cos(nt) + isin(nt),

for n € Z.
The inner product < z, e, > for this system is defined as

1 :
< Zen >= o /:r z(t)e ™ dt.3

Using this inner product the series given by Equation (2.2) becomes

Pz(t)= Y (z(p),en(n))en(t)

n=-—00

1 & % . .
=5z 2 { / ac(:l’)<3""“’¢i;0} e’
27 wit o Ller

o & L 34
= %r, B z(p){ Z e—mpemt} dp (3.4)

n=—00

= [-: z(p) {% i e'i"(p"‘)} dp.

n=-—00

~ v

boo(p12)

3The reader will note that the inner product used in the Fourier series is different from the one we
previously defined by 2 factor 5-. We will limit ourselves to say this inner product is valid. For further
discussion on the subject see Kreyszig [8].

11
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Equation (3.4) shows the kernel sequence for the Fourier series is

m

1 il
(Sm(P, t) = Er' Z e in(p—t)
n=-—-m
1 m
(1 + Z e-zn(p—t) + Z e—m(p—t))
2‘7 n=1 n=-m
1 m
- (1 + Z e—m(p—t) + Z em(p—t))
2 n=1 n=1 (3_5)
1 o~ [ min(p—t) o in(p—t)
=1+ ; (e +e )
1 1 & e—in(p—t) + ein(p—t)
2w 2
1 m
= é- z_: cosn(p —

This kernel is known as the Dirichlet kernel and it is often represented as Dp,(p — t).
In the case of the Dirichlet kernel as in many other kernel sequences the behavior of
the delta sequence 6,,(p, t) depends on the time difference between ¢ and p. Due to this
reason in this case the delta sequence is analyzed with the term &,,(k) where k =p —t.
For the Dirichlet kernel it can be shown that

1 1<
Drm(t) = 5=+ ;Zcosnt

sm(m + 2)t
27 sin £ 3
1 (sm mit cos £

= — cosmt | .
27 sin £ N )

12
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This kernel can be seen in Figure 3.1. We can check Property 3.2ii computing the integral
of the Dirichlet kernel and obtaining

[ tnto )i

T
= Dm(p, t)dp

=,/-: (-2}7‘:+;];-n§1cosn(p—t)) dp (3-6)
_ 27r+lisinn(p—t) i

Tor ' w n
n=1

p=—7

= 1.

Notice Equation (3.6) tells us the integral for the Dirichlet kernel is equal to one for all
the values of m. Inspecting Figure 3.1 we notice the peak value of o, (p — t) increases
when m increases. Notice also that the majority of non-zero values for the delta sequence
are concentrated around the peak value as m increases. Then intuitively Property 3.2iii
is satisfied. Note however this kernel is neither positive or quasi-positive.

‘im(ty 0)
du(t,0)

»

6,,,(!,0)

4 o <4 N

Figure 3.1: Dirichlet kernel for various values of m.

It is of interest to find the set of functions whose Fourier series converges and what
type of convergence they present. Over the years various kinds of these sets have been

13
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found.

One of these sets is the group of 27-periodic functions that have a Lipschitz continuity
condition.

Definition 3.2.1 (Lipschitz condition). A function z(t) € L! satisfies the Lipschitz
condition of order & > 0 at tg if there is a constant C such that

|2(2) — z(to)| < Clt — to[*

for |t — tg] < €, where a and C do not depend on e.

It has been shown [1] that the functions z(¢) € L}(—m,7) that satisfy the Lipschitz
condition converge pointwise in accordance with
z(to+) + z(to—) _

P:I:(to) — ) = f(to)

as n — co. * If the function z(t) is a continuous function that satisfies the Lipschitz
condition, then Pxz(tp) — z(tp) as n — oo. On the other hand, if the function possesses
a discontinuity, the Fourier series converges to the average of the right and left limit
values of the function at the discontinuity.

3.3 Gibbs’ Phenomenon

The Gibbs’ phenomenon is the anomaly present in some orthonormal series when they
try to approximate a piecewise continuous function with a countable number of discon-
tinuities. The Gibbs phenomenon was first observed by Michelson [10] in 1898 when he
build 2 machine to compute the Fourier series of a function. However it was Gibbs [11]
in 1899 who explained the problem.

The phenomenon appears due to the lack of uniform convergence of the projection of
piecewise continuous functions. The lack of uniform convergence does not at all imply a
lack of some type of convergence in the projection. Generally, the orthonormal projection
converges pointwise at the discontinuity. In spite of this convergence the value obtained
using the projection presents an overshoot near the discontinuity that does not decrease
as the number of terms in the sum used to compute the projection goes to infinity.
This overshoot introduces undesired effects in the projection. One of these effects is

4z(to+) is the right limit value of the function z(t) as t — to. Similarly z{to~) is the left limit value
of the function z(t) as t — to.

14
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the introduction of negative values in the projection of a positive function. This is un-
desirable in the approximation of non-negative functions such as gray-scale images and
probability density functions. Also, “ringing artifacts ” can appear in series-based signal
compression schemes as a result of the Gibbs’ phenomenon.

3.3.1 Gibbs’ Phenomenon in Fourier series
We will show the Gibbs’ phenomenon in Fourier series using an example extracted from

{1]. Consider the function

Z—t/2 if0<Lt<7
-Z-t/2 if —7<t<0.

z(t) =

This function is known as the sawtooth function, and it satisfies the Lipschitz condition
at the point ¢ = 0. Its Fourier series is

o0

P.’L‘(t) — z sinnt

n=1 n
00 ¢
= E cos nsds
n=1 0
o0

=/t2cosnsds
0

n=1 3.7
tl1 & 1
=/o l:-2-+Zcosns—§:|ds
n=1
tl1] & t
=/0 [§+;cosns] ds—§

t
bm 7 / Da(s)ds — =.
A 2

n—00

We are interested in finding the value of the projection close to the discontinuity point
t = 0 when n — oo. When t is close to zero the term % goes to zero and we only need
to analyze the term

- /0 * Duls)ds.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Expanding this term we obtain

1 (sinntcos

¢ sinnt t cos(() 1 t1
= dt innt{ —=——-—-]dt T~ tdt.
/; t +,[; s (2sin(§) t) +/0 3“0 4

The second and third integral go to zero as n — o0, leaving only the first integral.
Through a change of variable we obtain

t -
I(nt) = / Snnt b
o ¢

nt o
sint
= —dt.
L5

Pz(t) = I(nt).

(3.9)

Using this Equation we note

If we choose t = Z, then ¢ goes to zero as n — o0 so

Pz(0+) _ I(m)
z(0+) — #/2

>1,

and there is an overshoot in the projection as ¢ — 0. The Gibbs’ phenomenon overshoot
effect for the sawtooth Fourier series representation can be seen in Figure 3.2.

3.3.2 Gibbs’ phenomenon for positive delta sequences

As we have seen in previous sections the Gibbs’ phenomenon has a close relation with
the convergence of the projection of a function. For this reason it is of interest to find
what kind of convergence a positive delta sequence possesses. The following theorem is
given by Walter [1]. However, he does not provide a complete proof of the theorem. Due
to this reason we present a proof here.

Theorem 3.3.1. Given a function z(t) € L*(R) N L?(R), a positive delta sequence
Om(p,t) which spans a space S and a projection Tm(t) of the function z(t) into the space
S,

i If My <z(t) < M fort € R, then M} £ zm(t) S M fort R and m € Z,

16
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xn(t)

'Qei.ﬂqﬁr

[} 2 t
Fouier scries wilh n <40

Figure 3.2: Sawtooth function and its Fourier series for various values of n.
it. If M3 < z(t) < My for t € [a,b], then for each € > 0,n > O there is an mg such
that fort € (a +n,b—1n), M3 — € < z,(t) £ My + ¢, for m > my, and hence
Zm(t) — z(t) uniformly as m — oo

Proof. i. Recalling property (3.2ii), we note that for all € > O there is a number

N = N(g) such that
o0

/ 5m(p, t)dp — 1| <e
)

for all m > N and t on compact subsets of R. This equation can be expressed as

(v o]
1—55/ dm(p,t)dp < 1+¢.
—00

Using this inequality and the function z(¢) bounds in the projection of the function

z(t) we obtain
2m(t) = [ : 5, t)2(p)dp
< ™ b, £) Madp

o0
~00
< Ma(1+¢).

17
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In a similar fashion,

em®) = [ bmp,t)z(e)dp

-0

o0
2> 6m(p1 t)Mldp

—0Q

o0
> M / 5ra(p, 1)dp
-0
2 Ml(l - E).

Then,
Ml S (l:(t) S M27

ase— 0.

ii. For t € (@ +7,b—n) we have

Zm(t)

i ™ o, )c(p)dp

{707 [ suo et

[ /b_n} (s £)(p)dp + / 5o )2()d5"

{L.
i /a+n /_,]} m(p,t)x(P)dp+M4 / o m(p,t)dp

14

By properties 3.3 and 3.2ii we know

b—n
0< / Sm(p t)dp < 1,
a+n

then Iy < Mjy. Since z(t) € L*(R) we can find a real number U such that

| sowsu,

-0

5Here we use the notation { e fb_n} z(p)dp to represent [ z(p)dp + Jooy x(P)dp.

18
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using this fact we obtain

1l ={{ [ [ ontotietoran

I
L[ % o] [{ [ 7} =0

<[{[" " /i bntp,0)|| [ to)op

< L)oo

By means of property 3.2iii we know

8:

SUP|¢—p|>min(t—a—n,t—b+n) Oom(p,t) — 0asm — oo,

where min(z,y) gives the minimum value between z and y. In addition, since
Om(p,t) >0, we can find a number J such that for every integer m > J

<[ [

where «; is a real number dependent on J. Hence, we can choose the value J in

{/—‘:" /b:} (2, t)dp ‘ v (3.10)

<e

such a way that

|I3] <

Using the bounds obtained we note

Zm(t) < My +¢,

19
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for t € (a,b). In a similar form

zm(t) = [ Sm(p Da(p)dp

—00

= { / a+n /b:} Sm(p, t)z(p)dp + / i—n bm (P, t)z(p)dp
{/a+"/_n}6m(1’:t)x(p)dp+M3/ . 5m(p,t)dp

~

Is

In this case we can find the lower bound for I5 is M3. Since the bound for the
absolute value of the term I3 is given in Equation (3.10), the lower bound for z,(t)
is
ZTm(t) > Mz —¢.
O

This characteristic of positive delta sequences will ensure that they do not present
Gibbs’ phenomenon since the overshoot in the projection of a function within a bounded
interval cannot be bigger than ¢, and this value can be controlled with the number of
terms used in the delta sequence.

3.3.3 Positive sequences for Fourier analysis

As we have seen a positive delta sequence does not exhibit Gibbs’ phenomenon. Due to
this reason, there are some positive kernels created through modifications of the Fourier
series.

One of these kernels is the Fejer kernel. It is given by

Fa(t) == Z Dy(t)

™ =0

_ sin(%)?

"~ 2mnsin($)?’
The Fejer kernel and the projection of the sawtooth function using this kernel are shown
in Figure 3.3. Another kernel based on the Fourier series is the Poisson kernel. This
kernel is based on the Abel mean of the Fourier series. The Abel mean for the Fourier

20
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Figure 3.3: Fejer kernel for different values of n and the representation of the sawtooth
function using this kernel.

series is given by

o0
or(t) = Z carfle™ 0<r<1. (3.11)
n=—oQ
The Poisson kernel is
1 f: Inl i
Pr(t) = - Tn e‘lnt
27 Mt
1—1r2

= 2n(1 —2rcost+12)’

Note that the Poisson kernel has a closed form for the sum from minus infinity to infinity.
Due to this reason, the dependence on n on the Dirichlet kernel is somehow replaced by
a dependence on 0 < 7 < 1 for this kernel. In spite of this change, the Poisson kernel

behaves like a positive delta sequence except that the condition n — oo is replaced by
r— 1

3.4 Conclusion

In this Chapter, the concept of reproducing kernels has been introduced, and a few types
of reproducing kernels have been discussed. Moreover, we have derived the reproducing
kernel for a Fourier series. This kernel can be used to analyse the Gibbs’ phenomenon

21
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in a Fourier series expansion. In addition, some examples of positive kernels derivable
from the Fourier series kernel have been given.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

Chapter 4

Wavelets and Wavelet Packets

The wavelet transform has arisen as an alternative method to the Fourier representation
of functions. The Fourier representation projects the original signal into the frequency
domain. The problem with this projection is the loss of information about the time lo-
calization of the signal. This is not a problem if the signal to be represented is stationary.
However, in many practical situations, we do not have stationary signals. For example,
moving targets in radar and sonar, and voice signals and images have nonstationary
characteristics. In this case we require a transform that provides us with information
about the frequency and time localization of the signal at the same time.

The wavelet transform gives a solution to the above problem, and, in addition, it also
brings other advantages such as higher levels of signal compression and better conver-
gence behaviour. The first known wavelet family was created by Haar at the beginning
of the twentieth century. However, his work was almost forgotten until around the year
1975 when Jean Morlet introduced the term “wavelets” to describe this type of func-
tion, and in 1981 teamed up with Alex Grossman to introduce the concept of continuous
wavelet transforms and their inverses. Mallat [12] introduced the concept of multireso-
lution analysis which gave a new and easier way to compute the projection of a signal
into a wavelet space. His work also contributed to the discovery of the discrete wavelet
transform and wavelet packets. Around 1988, Daubechies [2] used the multiresolution
analysis combined with other wavelet concepts to create her family of orthogonal wavelets
with compact support. The Daubechies wavelet was the first wavelet function to possess
compact time support,and that is why it is one of the wavelet families most often used.
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4.1 Multiresolution Analysis (MRA) of L?(R)

The multiresolution analysis theory is based on the existence of an orthogonal basis
function. In the case of wavelets this function is called the scaling function ¢(t).

Definition 4.1.1 (Multiresolution Analysis). The multiresolution analysis of L?(R)
is a subspace sequence {V;};ez € L*(R) such that

{¢(t —n) : n € Z} is an orthonormal basis of V (4.13)
V;CVjy1 foreveryje€Z (4.1i)
6(t) € V; iff $(2t) € Vi (4.1ii)
o0 oo
N V=0 wea{ U %)=L (41)
j=—°o j=—00

The basis for the space V,, is given by
¢m,n(t) = 2m/2¢(2mt - n)’

with m,n € Z.
In addition to the properties given by the MRA, ¢(t) is r times differentiable with
continuous and rapidly decreasing functions [1]. Hence, for a suitable Cpy,

6@ ()] < Co(1+1t))?, k=0,1,---,7 peZ*, teR (4.2)

This property is related to the convergence of the projection of functions onto wavelet
subspaces. There is also a function 1(t) € Wy € L?(R) called the wavelet function which
forms a set of closed subspaces W, where

7/’m.n (t) = 2m/2¢(2mt - n)

with m,n € Z is an orthonormal basis for Wo,.

Some of the wavelet functions including those of Daubechies [2] are also orthonormal
“between spaces”, so that

("/’m,n (t), ¢p,k (t)) = 5m-—p5n—k7 (4-3)

where 4y, is the Kronecker delta.
The space Wy, is a complementary space to Vp, and the union of the two yields V4.

24
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This means

Using Equation (4.4), we note W_; C Vp and since ¢(t) yields a basis for the space Vj
we can find a set of coefficients {gx} such that

1 t
— (=)= E P(t — k). 4.5
In a similar way, V-1 C Vp so we can also find a set of coefficients {hx} such that
—1¢> : = hxo(t—k) (4.6)
V2 \2) & ' '

Equation (4.6) combined with the orthogonality properties of the basis function ¢(t)
gives rise to other properties. First they introduce an orthonormal-like relation for the
coefficients {h;}. This relation is

> hahiy o = bk (4.7)

neZ

Secondly they give rise to a property known as the “partition of unity”. This property
states

> t—k)=1. (4.8)
k

In addition, the dependence of the function 1(t) on ¢(t) creates a relation between the
coefficients {gi} and {h} [13]. This relation is given by

e = (—=1)*AZ k41 (4.9)

It is sometimes called the “alternating flip” relationship (Strang and Nguyen [14]). Using

'The A @ B operation gives as a result a subspace whose span is the union of the elements spanned
by the subspaces A and B. The spaces are also orthogonally complementary, so if a € A, b € B, then
< a,b >=0 for a suitable inner product < .,. >.

25
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Equation (4.6) the definition of the function ¢;x(t) becomes

$1(t) = 2/%9(2t ~ k)
= 20+D/2) " (271t — 2k — )

= Zr: hr®j+1,2k4r(t) (4.10)
=20%0/2% " b k(27F1t —n)
= hn-2dis1a(t)-
Similarly we obtain
Yik(t) = Y grdjt1,2k4r(t)
" (4.11)

= Z In-2%Pj+1n (t)
n

The Daubechies wavelet and scaling functions are special due to the fact that they
have a compact support in time [2]. The scaling function is defined inside a given interval
[0, M — 1], where M is a natural number which is always even. The scaling function is
identically zero-valued outside of [0, M — 1]. In this case the number of coefficients hy is
M. These coefficients are found in tables and are constructed from Daubechies theory.

4.2 Projections of f(t) € L*(R) onto V; and W;

The projection of a function f(t) € L2(R) on the space V4 is given by

Py,.f=Y < fidj+1n > ir1a(t). (4.12)
n
G+

26
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Since Vi1 =V; @ W;

Py f = Py;f + Pw, f
=" < f,dik > Gix®) + Y < frbig > Yik(D)
k k

=S dixt)+ > dixlt)
k k

. . (4.13)
=Y d [Z hn—2k¢j+1,n(t)] +> d [Z gn—2k¢j+1,n(t)]
k n k n
=> [Z gk + Y d‘}';gn—zk] Bj+1n(t)-
n k k
gt
The operations .
Fgd = ZC}chn-zk , Fid =Y dlgn (4.14)
k k

are known as the interpolation operators, and concisely ¢/*! = Fyc? + Fyd’. Hence the
interpolation operations allow us to compute the coefficients of projections of functions
into the space Vj41 with only the knowledge of the coefficients from the spaces V; and
W;. Note also the coefficients ¢} can be expressed as

c =< f, b5k >
=<1, hn-2it1a(t) >

=< £, > hrdjsrrron(t) >

= Zh; < frdj1r+2x(t) > (@)
= Z hrdit,

= En: SHRY o

Analogously, we can obtain

d{c = Z gk (4.16)

27
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The decimation operators are defined as
Fod =Y dhh o, Fd =) dgh o (4.17)
n n

and so concisely ¢/ = Fpc/*!, and & = Fid’*'. The decimation and interpolation
operators are related in accordance with the following properties:

FiFRo+FrR =1 (4.18)
FoF} =R F; =0 (4.18ii)
RFR=FFRh=I, (4-18iii)

where I is the identity operator.

The above properties yield a method of the construction of a recursive tree to compute
the coefficients associated with a set of spaces {V;} and {W;}. In Figure 4.1 we notice
how using the decimation operators we can decompose the projection coefficients c,ﬁ' into
different sets of coefficients. The original coefficients can be recovered from the new set
of coefficients using the interpolation operators. This process will allow us to represent
the projection of f(t) onto V; in different forms. The coefficients used in the alterna-
tive representations can have advantages over the original coefficients (i.e., become zero)
allowing us to represent the signal more efficiently. This has applications in signal com-
pression and denoising.

In the case shown in Figure 4.1, an alternative for the coefficients cf is the set of coef-
ficients c£~!,dE~1. Another choice can be the set cr~2,df 2, e 2, fr 2. In general we
can form at least 22° different sets to represent the coefficients from the projection of
function f(t) into the space V. These representations are known as the “wavelet packet
basis” for the space V. The wavelet transform is a specific case of a wavelet packet basis.
In this case the set of coefficients chosen to form this basis is cf 7, dy 7, dy *?,...,dE!
as it is shown in Figure 4.2.

4.3 Matrix Operators for Compactly Supported Wavelets

In Section 4.2 we noted that the decimation and interpolation operations are used in the
computation of coefficients for wavelet packet bases. Assuming the scaling function ¢(t)
has compact support (such as Daubechies compact wavelets), it can be expanded by a
finite set of coefficients hj with k € [0...M — 1], where M is an even number.

The system H will be defined as the system whose impulse response sequence is given

28
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Figure 4.1: Decomposition tree for wavelet packets
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Figure 4.2: Decomposition tree for wavelet transform
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by hi . The asterisk superscript denotes complex conjugate, but we will usually assume
hi. € R for all k in what follows, and so the conjugate will often be dropped.
The decimation operation can be divided into two stages:

1. Convolution with the time inverse and conjugate of system H.
2. Down-sampling by a factor of two.

This operation is depicted in Figure 4.3.
If the input signal is of finite length N, the decimator operation becomes

* (b} _.@_.y*
N Ny /

Fo

Figure 4.3: Decimation operation (decimator).

N-1

Yo = Fo{sc} = ) sthj_an- (4.19)
k=0

Since the scaling function has compact support, then & —2n € [0...M — 1]. For £ =0
—~(M—-1)<2r<0

so that

—|.M—1J <n<0.

Fork=N-1
—-(M-1)£-N+1+2n<0

so that
N-M<2n<N-1.
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Therefore,

s 2]

Combining these inequalities we find that

SUpp Yn = [—- le_ lJ , lNo_ 1” 2 (4.20)

4

The decimation can be represented as a matrix operation [15] of the form y = DHs,

where
(hyr 0 -+ 0 0 \
M-z hy-g 00 0
hi k- hyy O
H= ha '; h?ll—2 h* 11€ C(N+M—1)XN
0 hg - : ki
. . . .
0 0 1
\ 0 0 0 k3 )
and
010 - 0000
0001--0000 _
D=|: : : : s | e gEx(N+M-1)
0000O0- 1000
000O0--- 0010
with

o[£ - (L2

For the interpolation operation the output for a finite signal s of length N is

N-1

Yo = F3{sc} = ) skhnak. (4.21)
k=0
For k =0
M-1>23>0

2supp zn = [A, B] means that z, is nonzero only for A<n < B
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and for k=N —1
M-1>n-2(N-1)2>0,

or
M-12n-2N+22>0

so that
M+2N-3>n>2N -2,

Combining these inequalities we find that
suppyn = [0, M + 2N - 3]. (4.22)

This function can be represented as a matrix operation of the form y = HU's, where

[hg O - 0 0 )
hy hp -+ 0 0
hy—2 hm—z -+ h 0
H=|hM-1 hpy—2 hy ho e CM+2N=2)x(2N-1)
0 hM—-l . h1
: : har—2
0 0 -+ hyma hu-
L0 0 0k
and
(1 000 000 o\
0000 0000
6100 0000
U=|: : : : - ec(:.’N—-l)xN_
0000 - 0010
0 00O - 00 0
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4.4 Wavelet Kernel

In previous sections we showed that we are able to approximate a function f(t) € L3(R)
through a projection into a space V;,. This projection can be expressed as

Py f(®) = Y (f:dmn)Pmald)

= § { /_ : f(z)2™2¢(2™z — n) dz} om/2$(2™t — n)

- /_ Z () {2*" i ¢(2m:r—n)¢(2mt—n)} dz (429)
) - qu.t) ’

= [ anta 0@

gm(z,t) is known as the reproducing kernel for V,; note gm(z,t) = 2™g(2™zx, 2™t).
Walter [1] shows this kernel is a quasi-positive delta sequence.

4.5 Gibbs’ Phenomenon for Wavelets

The wavelet kernel is not a positive delta sequence. Hence we must check if this kernel
gives rise to Gibbs’ phenomenon. In addition, the wavelet series kernel g, (z,t) given in
Equation (4.23) does not depend on the time difference z — . Due to this reason the
behavior of the wavelet series for a function with discontinuities must be analysed at a
general point.

The function used to test for Gibbs’ phenomenon will be:

®-1)—-z (b-1)<z<db
9@)=flz-b) = (b+1)—z b<z<(b+1)

0 otherwise.
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This function has a discontinuity at the point x = b.
The projection of this function into the space Vp, is given by

o0

Py, g(z) = /  oWan()dy

b b+1
= / [(b—1) - y] gm(y,x)dy +/ [(b+1) — ylgm(y, z)dy
b1 b
b
- /b | [6=1) ~3]2"a0(2"y, 2"y

b+1
+ [ 16+ ) - 2wy, 2y
. (4.24)
= / [(b—~1) —y] 2™go(2™y,2™z)dy
-1

b+1
+ / (b + 1) — 4] 2 a0(2™y, 27 z)dy
b
amp

- / [(b— 1) — 27™¢] go(t, 2™ z)dt
om (b—1)

27 (b+1)
+ [0+ 1) — 27™¢] qo(t, 2™x)dt.
2mp

We are interested in the behavior of the projection close to the discontinuities, so we
will choose £ = 2 ™a + b, where a is a fixed real number, and we will allow m — oo.
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Substituting this choice for z into Equation (4.24) we obtain

2mp

Py g2 ™a+b) = / [(6~1) —27™¢] go(t,a +2™b)dt
2m (b—1)

2m (b+1)
+ / [(6+1) —27™¢] go(t, @ + 2™b)dt

O
[(b—1) — (=27™u+ b)] go(—u + 2™b, @ + 2™b)du

m
m

--J,
+ / [(b+1) — (27™u +b)] go(u + 2™b, @ + 2™b)du
0

0

[-1+27™u] go(—u + 2™b,a + 2™b)du
2m

2m
+ / [1 - 2’mu] go{u +2™b,a + 2™b)du
0
0

[1-2""u] go(—u + 2™b,a + 2™b)du
2m
[1-27™u] go(u + 2™b,a + 2™b)du

Hm

- / " [1—27™u] go(—u + 2™, a + 2b)du
0

+

'o\,tg

2m
+ / [1-27™4] qo(u + 2™b,a + 2™b)du
0

om

]
S~— o~

[1—27™u] [~go(—u + 2™b,a + 2™b) + go(u + 2™b, a + 2™b)] du

DM

[1 - 27™u] [go(u + 2™}, @ + 2™b) — go(—u + 2™b, a + 2™b)] du.
(4.25)

Note that

w(x:t)= Y é@—n)pt—n)

n=-—oQ

Y dz— (n+m))d(t— (n+m))

n=—00

= go(z — n1,t —m),
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with n; € Z. Then,

Qo(u +27,a+2™8) = qo(u+ 2" = |27b, 0 + 2" — |27b))
bm bm (4.26)
= go(u + bm,a + bm).

Using Equation (4.26) in Equation (4.25) we obtain

21'1
Py, g(2"™a+b) = / [1 - 2—mu] [go(2 + b, @ + bm) — go(—» + b, a + br)] du.
0

(4.27)
When m — oo, Equation (4.27) becomes

00
/ [go(x + bm, a + b)) — go(—u + b, a + b))} du
0

o0

(<]
= / go(u + bm,a + by )du — / go(—u + b, a + b )du
0 0
00 -00
= / go(u, a + by)du + / go(u,a + by )du
bm bm

oo brm

= / go(u,a + by )du — / go(u, @ + bm)du

ol e (4.28)

= / QO(uy a+ bm)du - / QO(U, a+ bm)du +1-1
bm —o0

00 bm 0
= / go(u,a + by )du — / go(u, a + by )du + / go(u,a + by )du — 1
bm —00

-—00

o0 o0
= / 9o(u, & + by )du + / go(u,a + byp)du — 1
bm

bm

o0
= 2/ qo(u, a + by )du — 1.

m

Using this equation we note that there is Gibbs’ phenomenon near the point b if there
is 2 number a > 0 such that

00
/ go(u, a + by )du > 1,
bm
or a number a < 0 such that

o0
/ go(u,a + bp)du < 0.
bm
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Using this test, Kelly [16] showed that the Haar scaling functions which are given by

8(t) = 1 if0<t<1 (4.20)

0 otherwise,

do not present Gibbs’ phenomenon. On the other hand, Daubechies’ scaling functions
present the Gibbs phenomenon on the points where by, = 0.

4.6 Conclusion

In this Chapter, the basic multiresolution analysis concepts have been reviewed. These
concepts have been used to introduce the concept of wavelet and wavelet packet trans-
forms. The decimation and interpolation operations which are used in these transforms
have been illustrated also. Finally, a study has been undertaken of the Gibbs’ phe-
nomenon for wavelet and wavelet packet transforms.
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Chapter 5

Minimum Description Length
(MDL) Criterion

The use of wavelet packets and the wavelet transform have increased considerably. How-
ever, the variety of existent wavelet functions and basis sets to choose from is a prob-
lem when we want to apply the wavelet theory to a problem. Sometimes the previous
knowledge of the problem is enough to find the ideal wavelet function and projection
coefficients. Nevertheless, it is of interest to find an automated criterion to choose the
best basis among a given set of possible bases. A short introduction to some of these
methods is given by Merhav [17]. One of these criteria is the Minimum Description
Length (MDL) criterion proposed by Risannen [18] [19] [20].

5.1 The Model-Order Selection Problem

Consider the noisy function
Y=I+E, (5.1)

where y, z,€ € R. The signal y is the noisy function, z is the signal to be estimated and
¢ is noise. In addition, z,y, € are functions of time. We often assume ¢ is Gaussian noise.
For the model-order selection problem we use a number n of sample points obtained
from the signal y.

We have a group of models built using orthonormal bases. These bases can be wavelet
packets, projections into different wavelet spaces V; or any orthonormal basis capa-
ble of representing the data y and z. Suppose we have a set of orthonormal bases
By, Bé, «..yBm...,Bq. The model m is constructed by projecting the noisy data y us-
ing the basis By, from the set of orthonormal bases. The number of coefficients different
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than zero for the projection into the space By, will be k,,. The number &, is known as
the order given by the model m.

The MDL criterion will pick the model with the basis B; and the model order k; that
represents the signal z in the best form. Note the MDL criterion is just a model-order
selector. Hence it will try to find the best model-order to represent the signal among
the models at hand. However, if the bases chosen from the orthonormal basis set do not
represent the signal z well, the solution obtained will not be satisfactory, but it will be
the best possible solution from the given ones.

5.2 Selection Criterion

The MDL criterion measures the quality of a certain model as the complexity to rep-
resent the data with the model. If the model does not represent the data well, we will
need a lot of information (i.e. bits) in order to obtain the desired representation. Hence,
the complexity of representation for that model will be large. On the other hand, if the
model used represents the data well, the complexity is small.

In the case the model fits the data well, we need to ensure that the model is not overfit-
ting. This means the basis represents the data well but any small variation (i.e. noise)
will cause the model to be inaccurate. The possibility of overfitting is related to the
level of complexity of the basis used to represent the signal. If the elements of the basis
are highly elaborate functions or the number of coefficients used to represent the data
is large compared to other bases, then the model is more complex and hence this model
will be less desirable than a simpler model.

The MDL criterion measures the data representation complexity assuming the data ob-
tained by representing the signal using a model m is a symbol which has to be coded and
transmitted. The coding scheme used to represent the symbols will be a prefix scheme.
This scheme creates the codewords in such a way that no codeword is a prefix of any
other codeword. The codewords are related to the symbols according to the probability
of appearance of the symbols. Hence the word with the shortest codelength will be given
to the symbol with the greatest probability. The MDL criterion does not care about the
codewords. It only selects the codelength value used to assign the codewords. The MDL
criterion proposes to measure the codelength for the model H using the formula

L(H) + L(D|H), (5.2)
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where L(H) is the codelength, in bits, of the description for the model H and L(D|H)
is the codelength, in bits, of the residual D (i.e. the difference) between the actual data
y and the model prediction of the data using the model H. The MDL criterion says the
best model to represent the data D will be the one with the smallest codelength.

5.3 L(D|H) Codelength Computation

As we have seen the prefix coding scheme codelength is closely related to the probability
of occurrence of the symbols. Equation (5.1) shows us the data to be represented by the
models is a random function. Hence it is straightforward to use this random function to
obtain L(D|H).

By definition, L(D|H) is the codelength of the data D when the model H is used, then
we can use the probability p(D|H) of obtaining the data D given the model H to get the
codelength. In order to obtain the minimum possible codelength we need to maximise the
probability p(D|H). This maximization is accomplished using the maximum likelihood
estimate (MLE) [21] p(D|H) of p(D|H).

Using the MLE L(D|H) is given by

L(D|H) = - log, [p(D|A)] . (5.3)

5.4 L(H) Codelength Computation

The definition of term L(H) is harder due to the fact we cannot relate a probabilistic
value directly to the model. However, this term can be related to the order of the model.
The order of the model will be used to measure the grade of compression the model H
is capable of delivering. It has been shown [20] [22] that this can be accomplished as

L(H) = 5 logs(n) + e, (5.4)

where k is the number of coefficients used to express the data using the model H, cx is a
constant that depends on £, and n is the number of data points obtained from the signal
y. Furthermore, Saito [22] suggests that the term ¢ has an almost constant value when
we are using wavelet bases, and then it can be ignored.
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5.5 Conclusion

In this Chapter, an introduction has been given of the use of the minimum description
length criterion. This criterion has subsequently been used to find the best basis functions
to represent a positive-valued signal.
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Chapter 6

Gaussian Noise as a Decimator

Input

The wavelet transform is used in many applications. Generally, the signal to be processed
is projected into a scaling function subspace V; and then the transform coefficients are
computed using the decimator operation as it was shown in Figure 4.3. The transform
coefficients amount to a representation of the original signal. After the coefficients are
obtained, they can be processed, perhaps for purposes such as denoising, compression,
or signal detection. However, the original signal is often corrupted by additive noise.
This noise can create problems when we want to recover the signal from the transform
coefficients.
In Section 4.3 we noticed that the decimator operation can be implemented as a ma-
trix operation when the scaling function has compact support. In this chapter we will
characterize the behavior of white Gaussian noise (WGN) introduced into a system
composed of a chain of decimators. The scaling function ¢(t) in this system will have
compact support. Hence it will be associated with a finite number of coefficients h with
kel0...M-1].
There have been previous works [3] [4] [5] that analyzed the behaviour of a function
with noise when it is introduced into a chain of decimators. However, in all these works
the input signal used has a support of (—00,00). In many practical applications, this is
generally not the case. Furthermore, if the support of the function to be processed gets
close in size to the size of the scaling function’s support, then the statistical behavior is
very different from that considered in these works. In this chapter we will consider some
of these difficulties.

The analysis of a random signal as an input to a system is very important in various
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fields (i.e. estimation theory, detection theory). For example, if we want to detect the
presence of a known deterministic signal in WGN, then consider the following simple
case. In this case the detection process can be converted into a hypothesis selection
problem where the hypotheses are:

Ho:zln]=wn] n=0,1,...,P-1
le:z:[n]=s[n]+w[n] n=0,1,...,P-1,

where s[n] is a known deterministic signal and w(n] is zero-mean WGN with variance
o2. In this model the hypothesis H; represents the presence of a known signal in the
system and hypothesis Ho represents the presence of just WGN. Hence a procedure which
chooses between H; and Hp will perform the detection. A procedure suggested in [23]
to perform the detection is to choose the hypothesis H; if

T(x) =xTR™ s > v,

where x = [z[0]z[1]...z[P —1]], s = [s[0]s[1]...s[P — 1]], R is the output correlation
matrix of the system when the input is WGN, and v is a selected threshold level. The
threshold level would affect the detection accuracy of the model.

As we can notice, the correlation matrix inverse R~! plays an important role in the
detection problem. For this reason we have to study the behavior of matrix R to check
if it possesses an inverse and if the inversion process is ill-conditioned.

In our case the system to analyze is a chain of n decimators since this is associated
with wavelet based detectors. Hence, we will analyze its output correlation matrix
when the input is WGN. We will find a predictable structure for the output correlation
matrix of this system. After that, upper and lower bounds for the unitary norms for the
output correlation matrix norm of the same system will be given. These bounds will be
based on the the eigenvalues of the output correlation matrix. They will give us some
information about the condition number of the correlation matrix. As it is shown for
example by Horn [24], the condition number is related to the ill-conditioning of a matrix
inversion process. Hence, we will obtain some information about the ill-conditioning in
our problem.

The matrix correlation structure and matrix norm bound study are the new contributions
that we have made in the analysis of Gaussian noise as an input into a decimator chain.
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6.1 Random Process as an Input to the System

The output of a decimator given a nonstationary real random input can be described
(partially) by the first and second order statistical moments as

N-1
Mye =E{tn} = D hi_onE{si} (6.1)
k=0
Iy (n1,n2) = E{ (ynx - m,,,M) (yn2 — my,,l)'} (6.2)

for — | ¥=1] < ny,ne < | %52 1, where E {.} denotes statistical expectation. In matrix
form we have [15]

E{y} =DHE({s} (6.3)

Ry =E{(y - my)(y - my)"}
=DH E{(s-m,)(s—m,)"} HF¥D# (6.4)
= DH R,HD#
Note this model does not assume any kind of stationarity in the input signal. This ap-
proach is different from the one used in [3] [4] [5]. In these works, the authors constructed
stationary-like random functions (i.e. circularly stationary) and used them as input into

the system. We do not like this approach since the model then becomes dependent on
the stationarity of the input signal.

6.2 Gaussian noise (GN) as input to a Wavelet-Based Dec-
imator Chain

6.2.1 Decimator Output Characterization

A white Gaussian random process has a correlation matrix R = 021, and so the mean
of the output of the system in Section 6.1 can be expressed as

m, = E{y} = DHE{m,} = DHm, (6.5)

| z] is defined as the greatest integer that is less than or equal to z € R.
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and the output correlation matrix is
R, = o°DHHY D (6.6)
In addition, if the input mean is zero, then Equation (6.2) can be reduced to

Tyy (n1,72) = E{yn, 45, }

N-1 N-1
=E { > B onsk Y hm_gnzs;'n}

N—-1N-1
=Y ) hi_on hmetn, E {sks}y}
k=0 m=0
N—-1N-1
=D > hion hm-20,0"8(k —m)
w"‘; ' (6.7)
N-1
= 0'2 Z h;_znl hk_2n2
k=0
N—-1~2n3
=% D hehpiomeny OF
p=-2n2
N=1-2m
=q° Z h;hp+2(ﬂ1-n2)
p=-2nm

Note how the lower and upper limits on the output correlation can depend either on n;
or on na.
Due to the fact that the coefficients for the scaling function ¢(¢) have a support

supp h = [0...M — 1], Equation (4.20) shows the intervals of n, and ny where the auto-
correlation is defined are ny € [— | 452] .| %52]] and no € [- |22 ] .| 552 )]

For the sake of clarity, the terms of the correlation will be displaced in time, where this
displacement is not going to affect the structure of the correlation; it will only modify
its time location which is not important in our problem. The time localization can be
re-established with a displacement in time of the correlation after it has been obtained.

This effect is achieved with a change of variable. We will define m) = nj + [#5}| and
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mg = ny + | #1|. With this change, Equation (6.7) becomes

fyy (m3,2) = B {8, a2 07, 021 }
N-1-2mo+2| #71|
= 0'2 Z hph; +2d or
p=—2ma+2| ¥=1 | (6.8)
N-1-2m;+2| #31 |

=g° > hyhp—24-

22| 51

where d = mo — m;.
Equation (6.8) is only defined on the interval 0 < my,me < L; —1= [%J -1.

If the system H describes an orthogonal wavelet transform with compact support,
then the system’s coefficients satisfy the orthogonality condition

M-1
> bohgyor = b, (6.9)
n=0
where supp h = [0...M —1]. This equation is similar to the one obtained in Equation (6.8),
where the equivalence between both depends on the upper and lower limits of the sum
in Equation (6.8). If the lower limit p = —2m; + 2 [#=1] or p=—2ma + 2| ¥ <0
and the upper limit p=N—1-2m; +2 |22 |orp=N-1-2mo+2 |42 | > M -1
these two equations are equivalent. Then, for [451] < m; < |25 + | 252 | and
| 252 ] < me < |25 | + |42 ], Equation (6.8) can be reduced to

r;,y (my, m2) = 620my—m,- (6.10)

Note also that if |d| = [me — m,| > L%J Equation (6.8) is equal to zero.

Putting together the correlation values obtained, we form the correlation matrix for
the decimator where m; is the row index, and ms is the column index. This matrix
depends on the time difference d = ma — m; as it is shown in Equation (6.8), so then
it will possess a Toeplitz-like structure. This structure will subdivide the correlation
matrix into certain areas as shown in Figure 6.1; 2 as it has been seen with the previous
arguments there are only three areas that are different from zero. The upper left corner,
the middle and the bottom right corner, where the middle submatrix is equal to a
diagonal matrix as given by Equation (6.10).

2In order to save space on the matrix representation, the elements of the form hoho+hcha+: < -+hehy
are represented as R(q b)+(c.d)+--+(e.f)-
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If the coefficients hr € R as it is the case for the Daubechies’ wavelets [2], then the
correlation matrix is real and symmetric. Due to this structure, the elements of this
matrix are defined by their position relative to the main diagonal.

hovy N-1yv-2. N-2) | P(N-3. N-1W(Ng N-2)
Bov-3 No1VgV—d N=2) | v N-1WON-2, N2 WON-3. N-3MN—t, Nd)
N [+ [+]
R(a. N 132, N=2) | (s, M= 21048, Ne 233, N 332, N 8)
1
o 0 | .. | hoom1.1342.2m3.3) | h(2.00(3.1)
h(2.0)3.1) h(0,0M(1.1)

Figure 6.1: Matrix structure for Ry (assuming o2 = 1)

The elements in the upper left corner submatrix are given by Equation (6.8), with
m; and my in the interval [0...| 22| — 1]. Note that in this case the lower limit of the
sum —2m; + 2 | #51] is greater than zero and approaches zero when we approach m;
or mp = |#51]. As a result, the number of terms in the sum is less than the number
needed to obtain the equivalence with Equation (6.9). The sum values obtained in this
case for different values of d = m; — mgy are shown in Figure 6.2. In this figure it can
be seen how the correlation coefficients tend to zero rapidly as d becomes larger. This
effect is produced by the rapidly decreasing coefficients of system H.

In a similar form, the upper limit sum in Equation (6.8) gets smaller than M —1 for the
elements on the lower right corner. In this case the number of elements in the sum would
get smaller as we get close to the lower right corner. The result of the sum for this case
is shown in Figure 6.3. In this figure we can see how the elements on the diagonal, d = 0,
will remain close to one until they are close to the corner. Away from the diagonal,
where d # 0, the elements will have a small overshoot as they approach the corner and
then they return to zero.

Note the size of the upper left corner matrix is LCy = |#5], and it is independent
of the size of the input signal. Analyzing Equation (6.10), we notice the size of the
identity submatrix is given by IM; = |& ;M ] + 1, where N is the size of the input
signal. Note how this value is dependent on the size of the input signal N. Subsequently
the bottom right corner is also dependent on the length of the input signal and its size
is RCy = |[#51] +1if N is odd and RCy = |%31| if N is even. The structure of this
matrix is shown in Figure 6.4, where Q; is the upper left corner submatrix and W; is
the lower right corner submatrix.
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Figure 6.2: Correlation terms for which the sum lower limit of r;y (mq1,ms) is greater
than zero, and here M=8.

Figure 6.3: Correlation terms for which the sum upper limit of r;y (my, my) is less than
M, and here M=S8.
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0O I O
010 |W;

Figure 6.4: D;H;HIDY structure

wen =171 y Y1

Figure 6.5: Decimators connected in a chain.
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6.2.2 Chain of Decimators Correlation

Suppose we have a chain of decimators as illustrated in Figure 6.5. In this case the input
correlation matrix of the next decimator will be the output of the previous one, and
we continue to assume the input to the system is white Gaussian noise with zero mean.
Papoulis [25] shows that the output of this system will be Gaussian noise as the system
is linear.

The system correlation can be represented in a recursive form as

Ry.s» = DuHn Ry, H,"D,", (6.11)
where Ry, is the n* decimator correlation matrix and
Ry, = o’D;H;H; 7D, ¥ (6.12)

gives the behaviour of y; as was analyzed in Section 6.2.1. The size of Ry, is given by

Ln= [L"‘L’*#J , (6.13)

with

N+M-1
e =,

where as before N the length of the signal to be input into the chain of decimators
and [0...M — 1] € Z¥ is the support of the scaling function ¢(t). In Section 6.2.1 we
analyzed the structure for the first correlation matrix Ry, . The structure of this matrix
was shown in Figure 6.4. To obtain the second correlation matrix Ry, the matrix Ry, is
premultiplied by the matrix DH and postmultiplied by the matrix (DH)¥. The matrix
DH is shown in Figure 6.6.

We will find the conditions needed to obtain a n** correlation matrix Ry, for a chain
of n decimators with the structure shown in Figure 6.7.

For n = 1, the values LC}, IM; and RC; can be obtained by analyzing the matrix DH.
The size of the identity matrix IM; will be equal to the number of rows that contain all
the M elements hg to hpr—) inside them; then the value of LC); is the number of rows
from the first one until the one whose first element is either zero or hg, and the value of
RC; is the number of rows from the last one until the one that has the element hps_;.
When there are no rows that contain all the M elements there will be an overlap between
the upper left corner and the bottom right corner. This case appears when the length of
the input signal is very close to M, and then the size of the transient in the system will
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Figure 6.6: DH matrix structure

LC, IXM, RC,
- > 4> >

L'C"II Qn 0 0
() III 0

RC, O O Wn

Figure 6.7: D,.I—I,IHI,;IDf,i structure
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make the analysis of the signal very difficult. In this case it is better to use a smaller
M or a bigger signal length N. In accordance with this, from now on we will assume we
have an initial identity matrix of size IM;. Figure 6.8 shows LC; for M = 12.

For n > 2 we have to multiply Ry,_, with the matrix DH and its conjugate to get Ry,,.

Yy hw|hu| 0|0 ]o}o]o olo|ofolo
_||he|hs|hojhu|0]JO}O}|OjO]JO|O]|O 0

S [he |t [ ha[hs [mofhu] 0 olofojo]o

§ he | hs |he {hz { ha Jho jhojhuu[ 0O O | O | O | O
QS’ ha|hs [he |hs | hs Jhz | ha { ho |[hio |h1n} O | O | O
= B h: [ h | hs fhe [ hs | hs [hr fha by [hulhu | O
010 |ho|hit|hefha| he |hs|hs | hz | ha | hs | 1o

\j 0{0]|0]|0|h he he | hs | hs | by | ha

' olo|o]o]|o i} ho | by | he | hs | hs
ojlojo|o|o]o]lo b b | | he
ojolojlo|o]o|o|o]o]o hy | he
ojo|lofolo]o]o olofjolo|n

Figure 6.8: DH upper left corner for M=12.

We want to obtain an output matrix with the structure show in Figure 6.7. In order
to get this result we will partition the matrix DoHjy, into nine submatrices as shown in
Figure 6.9.

We will start the iteration process with n = 2, then for n—1 = 1 we have LC) = | 21|,

LCn_]_ 1M, RC,_1
-t > 4—> -

rc,]| An | Bn 0
IMI Dnp=0| Ey =0

Figure 6.9: D,H,, submatrix division

@
=
I

i
=
|
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IMy=|25M| +1and RCy = |[M1| +1if N is odd, and RCy = | 45L] if N is even.
As it was shown in Equation (6.12), when n = 1 we pre-multiply a diagonal matrix by
D;H; and post-multiply it by H*D¥ which is the conjugate transpose of D;H;. In
the subsequent cases instead of a diagonal matrix we now have to pre-multiply Ry, _,
by DoH, and post-multiply by its conjugate transpose. If the matrix Ry, , has the
structure shown in Figure 6.7, then only the middle submatrix is equal to the identity
matrix. Due to this reason, the structure of the matrix Ry, given by the recursion is
subject to the following rules

LCn _>_ LCn—l (6-143.)
RCp > RCp—; (6.14b)
0< IM, <IM,_,, (6.14¢)

the recursion will be finished when IM, < 0.

The value of RCy, is an integer chosen in such a way that the submatrix Gy, is equal to
the zero matrix. Analogously, LCy, is an integer that makes C, equal to zero, and finally
IM, makes D, and F, also equal to zero. The structure of the partitioned DoH, matrix
using these values is shown in Figure 6.9. Using this matrix partition for DoH, and
the matrix partition shown in Figure 6.7 for Ry, _, we will obtain the matrix structure
shown in Figure 6.10 for matrix Ry, = DoHpRy, ,(DaHn)¥. The structure of the

Qu=A,Qn1A¥+B,B¥+0|{0+B,E¥+0=0] 0+B,HY+0=0
0+E.BH+0=0 0+E,E¥+0 0+E,H{+0=0
0+H,Bl+0=0 0+H,.E! +0=0{0+HHI +J,W,_,JH

Figure 6.10: nt? correlation matrix structure.

autocorrelation matrix Ry, given in Figure 6.10 will have an upper left corner given by
Qn = AnQn-1AY + B, BH The lower right corner will be Wy, = Joa W1 I+ H,HE,
In addition to the previous conditions imposed upon LC,, RC, and IM,, the values
of LCy, and RC,, will be chosen in such a way that E,EH = I,,. This is accomplished
when all the matrix rows from matrix E, contain all the elements hy, k € [0... M —1].
Furthermore, using Equation (6.8) it can be shown that this choice will make the matrices
B,EY, B,H and E,HY equal to zero.

Suppose as an example we have a chain of two decimators. The value of LC> can be
obtained by examining the submatrix of D2Hz. The recursion rules given in Equation
(6.14) tell us LC> has to be greater than or equal to LC;. This characteristic can also
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be seen in Figure 6.7 due to the fact that the submatrix Qj is different than the identity
matrix. We need to find the number of extra rows starting from row LC; needed to
construct LC». In order to find these rows we will create a new matrix by getting rid
of the first LC; rows and the same number of columns of matrix DoHs. Then, we will
perform the same analysis used to obtain LC} in this new matrix. That is to find the
number of rows starting from the upper left corner that do not include the element kg.
As it can be seen in Figure 6.11, the number of rows is given by

M-LC -1
— . 1
== (6:15)
Finally, as it is shown in Figure 6.11 LC> is given by:
A Almo|hulo|o]o
1 |ha|hs |haojhun| O
Q [w
e - 6 | hz | hg | hg | hyo
g he | hs | he | hz | he
‘ ha|hs | he | hs | hs
A s | e | by [ b | b [hu [hy | O
n hs | he | hs | he [ he | ha | s {mo
‘57 hy | he | hs b he | hs | hs | b | ha
S| —
, by | he | s | hs
= 0fo0 Olhx hz | hs | he
— olojoJoJofhe|h |he
olo|o]oJo|o|o|h
Figure 6.11: DoHy left corner sub matrix, for M = 12.
LC,=LC; + [M—‘—I‘z-—q'—lj i (6.16)

The argument used to compute LC> can be extended for a chain of three or more
decimators. Hence as it is shown in Figure 6.8 the size of the upper left corner matrix
which represents the transient effect of the system will be given by

(6.17)
LCp-1 , otherwise.
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he | hs fha | s {ho By | he | ho|huofma] 0|0 ] 0

ha | h: fh2fhafhe lhs {he | h7 [ hs | he hx 0
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=

0|0]o o} |h|h]bs|n|bs|ho|bs|he :0:
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oloJoJo]olo]|o bo | o | bz | P | e | | =

oloJoJolo|o]o 00 {ho|m|h

ojojJojojojoio oooomv"

Figure 6.12: D,H,, lower right corner with NV odd.

The analysis of the lower right corner is similar. However, remember the size of RCy
depends on the length of the input signal. If the input signal length N is odd the last
element in the lower right corner is hg. This is shown for M = 12 in Figure 6.12. The
recursion in this case will be given by:

RChn1 + [——M";C"-’J if [—M"*ZC"-*J >0

RCn— 1 ,OtherWise,

RC, = (6.18)

with RCy = |42 ] + 1.
For N even the last element in the lower right corner is ho. This is shown for M = 12
in Figure 6.13.The recursion in this case will be given by:

RCo1 + [—M ‘RC;-"ZJ if [—————M 'RC;"-*‘ZJ >0

RCp—1 Otherwise,

RCn = (6.19)

with RCy = |41,

6.2.3 Matrix Structure Examples

To illustrate the structure of the correlation matrix Ry, , we will look at some examples.
3 Suppose 02 =1,N=8and M =8,s0 L=7, LC; =3, IM; =1 and RC; = 3. Note

3Numerical calculations of these examples are shown in the Appendix A.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



hi@ooo 0 ofofoJo]o

[ ha [ e o [0 0 [0 |0 |00 0 ]0]0]0

b | bs | ha | bs | o ERM O olo|o]o]o A
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0 {000 ne|n|he]hs|h|hs|he|h|he )
ofoJoJoJo|o|m|n|m|m{nnmin|]|
ololofofolo|ofo |t m|m|m|ne]|
oloJojo]o 0 00 |ho|m|h 'v

Figure 6.13: D,H,, lower right corner with IV even.

in this case if we want to connect the system to another decimator we will get an overlap
of LC» and RCs. The next matrices will show the structure of matrix D;H; H; 7D, .
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.

(0) = Q.Jv.*.@.ov;

(0) = (Lert9)+(s D+(voly

(0) = WoHO'MHE+HrHED+HC'0)y

(1) = COHO'IHE' )+ HEE+(E'2)+1T)+0'0)y
(0) = ED++(ES)H (V) +H1'e)+0')y

(0) = (E€D+E')+H1'9)+H0'v)y

(0) = (r)+0'oy

ﬁ

:_:io.ov._
:.eio.n:_
:.mvie.s._

(0) = (FO+0O9y  (g) = (ED+HE'IHT')+HO'Y)y

0
0

(0) = (OIHR+EN+o)y

a.cin.or_
adimaiziiqoz
3.3+a.3+:.a+8.«5

on —_ :.D+Ao.$£

0
0

0 0
(0) = :.cie.e; 0
(0) = :.sio.e;

(0) = WHEWHEDHPHEDHE'DY (o) = (Le)HO%)HET+H(Voly

:.:+s.ovim.eivs:a.mia.wz
a.:+?.e+a.3+ai;

(2'5)+(9'v)+(s'e)+H(v'2)y
(L'2)+(9'9)+(5's)+H(p'p)y
('D+(9)y (s'+(v'oly

G.cie.s;

(s'EH+(r'2)HED+(E'0)y
(s's)+(r'p)+(e'e)+(2'2)+1 1) +0'o)y

(0) = S+ HE)+HEHT'E)H 02y
(0) = ED+E'IHT'9)+0'v)y

(0) = (FO+(0'9)y
0

0

0

(0) = Q..S+G.of

(L'e)+9'2)y

('s)+9'v)y
(L'D+(9'9)y ]

= Eﬁﬁmzﬁmamﬁﬁ_ﬂ

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The numbers surrounded by parentheses are obtained by applying (6.9) to the matrix.
Now suppose 02 = 1,N = 8 and M = 4, so L = 5, and the structure of matrix
D, H;H; 7D, is

D1H1H1HD1H =
hea+@s : (00 0 0 : 0
© @ (© o0 : 0
0 0 @) (o) : 0
0 20 (0 () (0)
|0 20 0 (0) : h@o)+1+(22).

In this case LC; = 1, IM; = 3 and RC; = 1. Connecting the system to another

decimator we will get LC> = LCi + [_M‘zgr—lj = 2 and RCy = RC; = 1 since
lM—Rg'—l—2 J =0.

6.2.4 Correlation Matrix Inverse

If we have a chain of n decimators with WGN as an input the output correlation matrix
will be given by:

R,, = 0°DpHy - --D2Ho D H H P D FHLPDLF - - H ¥ DL F. (6.20)

It is of interest to find if this matrix possesses an inverse. In order to solve this question
we will start with the matrix

o*DH L H,¥D, 7, (6.21)

where I; is the identity matrix. Notice matrices D; and Hj are full rank matrices. This
means all their rows are independent. Notice also that for all nonzero vectors x

xHI;x > 0.

Due to this property, matrix I is part of a group of matrices known as positive definite
matrices. It is important to note that a positive definite matrix always has an inverse
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matrix {24]. Horn [24] also showed that the product
CACH,

“where A is a positive definite matrix and C is a full rank matrix is a positive definite
matrix. Hence, the product
g 2H111H1H

is positive definite. Using this argument we can also conclude (6.21) is positive definite.
Furthermore, the argument can be used in a recursive manner to show that the correlation
matrix is positive definite, and then has an inverse.

6.2.5 Correlation Matrix Eigenvalue Bounds

In Section 6.2.2 we showed the matrix given in Equation (6.20) is usually real and
symmetric as it is derived from the Daubechies construction method for wavelets. Horn
and Johnson [24] show that this matrix can be represented as

D,H;H; 7D, = UAU¥, (6.22)

where here n = 1, and U is a square unitary matrix and A is a diagonal matrix with the
eigenvalues of D;H;H; "D, ¥ Horn and Johnson also show that these eigenvalues are
real and can be arranged from minimum to maximum as

Amin =AM S A2 <+ S AL = Amax (623)

Using (6.23) and a unitary invariant matrix norm 4 , we can put a bound on the norm
of the matrix given in Equation (6.22) as

Amin = Amin IIIIIUHIII < ”IUAUHIH < Amaz ”IUUH“I = Amaz- (6'24)

The output of the first decimator will be the input of the second one, and so upon
applying (6.24) we can determine a bound on the norm of the correlation matrix of the

4A unitary invariant matrix norm has the property ||JUA]|| = |||A]l{. Some examples of these norms
are the Frobenius and the spectral norms.
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output of a two decimator chain as

| Ry ||| = o®((|[D2H2D1 H1 H1 7D, FHZ Do # ||
= 02|||D2Ho U A U THF D H| ||
< oL |||D:H2 Uy Uy TH D7 ||
< o?ARL, D2 HL Ha 7 Do H )|
< oL, [IID2HH Do H ||
< o2ARL [|[U28.0627 |
< 0 Amaz || [U2U27])|
< 0* Nt Amda >

(6.25)

where Ani&: represents the zzz eigenvalue of the matrix DpHoH, 7D, . If we consider
a chain of n decimators, the output bound will be given by

1Ry Il = 0?|||DnHy - .. DoH, D H HL A D FHL DL . HL DA

= o?|||DaHa . .. DoH U A U THRADL Y L HLPDLF||
< o2H |||ID H, ... D2HU LU TH A DL . HZD ||
< oD ||IDoH, ... D HLHAD,H L HLAD ||
< oH IDoH, ... U282 U2 HL 7D ||
< 0% Xnke iz - - - Amaz® || DaHoHa Do |||
< ARk Nz - - - Aanz® [Ua AR U ™|
< 0 Npke M2z M s - - - Az Mgz

In a similar manner the lower bounds can be calculated. Using these results, lower and

upper bounds for the unitary invariant matrix norm of the correlation matrix of the
output of a chain of decimators can be obtained as

(6.26)

Phia - A < 02 ||[DpHy -+ - DiH H  ¥D1 7 - Ho ¥ Do ||| < 02X n -+ 0L,
(6.27)
In practice the upper bound is close to o2, and the lower bound goes to zero as the
number of decimators increases due to the fact that the elements of the upper left corner
submatrix of the correlation matrix are close to zero. In Figure 6.14 we can see the lower
bound for a chain of decimators with o2 = 1.

Note how the ratio between the maximum and the minimum bound goes to infinity
as the number of connected decimators increases. This behavior suggests the condition
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Figure 6.14: Minimum eigenvalue bound.

number is big. Hence, it is possible that the inversion problem is ill-conditioned.

Figure 6.15 shows the structure of the correlation matrix R, with N =320 and M =8.
In this case the upper left corner and the lower right corner overlapped. Notice how
a lot of the terms in the upper left corner have a zero or close to zero value. In this
case the correlation matrix Ry, inverse cannot be computed using Matlab due to the
ill-conditioning.

6.3 Conclusion

In this Chapter, the structure of the output correlation matrix for a chain of decimators
when the input is white Gaussian noise has been analyzed. The structure obtained
has three diagonal submatrices. A recursive formula has been given to obtain the size
of these submatrices. In addition, the existence of an inverse correlation matrix has
been discussed. However, it has also been shown that the matrix inversion problem is
ill-conditioned.
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Figure 6.15: Correlation matrix for a chain of seven decimators in gray-scale with M = 8,
and N = 320.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

Chapter 7

Quasi-positive Sampling in
Wavelet Subspaces

In general, the approximation error between a signal f and its projection f, decreases
more rapidly as n — oo when we use a wavelet projection than when we use a Fourier
series representation [1]. However, even with this behavior a lot of the wavelet families
constructed present Gibbs’ phenomenon. In general, as it was shown by Shim and
Volkmer [26], any wavelet scaling function ¢(t) with ¢'(t) # O for a dyadic number ¢
that satisfies

¢(t) < CL+ 1),

with t and C € R, and § > 3. Then the wavelet projection presents the Gibbs phe-
nomenon on the right or the left of the point ¢ = 0. Most of the wavelets used presently
satisfy this condition. In particular, Daubechies’ wavelets present this behavior. Fur-
thermore, as it was shown in Section 4.5, the Daubechies wavelet projections present
the Gibbs’ phenomenon on the right or the left of any discontinuity located at a dyadic
point. '

There have been some attempts to eliminate the Gibbs’ phenomenon from the wavelet
projections using thresholding and averaging of the projection coefficients from various
translations of the input signal [6] [7]. We will present another method to eliminate the
Gibbs’ overshoot in wavelet projections using compact support wavelets based in the
work of Walter and Shen [27].

1A dyadic number is a number that can be written as k2P where k,p € Z.
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7.1 Positive Delta Wavelet Sequences

Every scaling function with compact support possesses the partition of unity property.
Recall this property is

> #(t—-n)=1, teR.

Definition 7.1.1 (Abel Summability Function). The Abel summability function of
a compact support scaling function ¢(t) is given by

P (t) = Zr‘”'db(t —n)for0<r<1. (7.1)

Walter and Shen [27] built the positive delta sequence

kr.m(5,) = 2™k, (2™, 2™4), (7.2)
where s oo
b =(1r) T Rl-mPE-n). (7.3

With this kernel we obtain a nonnegative and uniformly convergent approximation to
f(t) € L}(R) N L*(R) when m — co. This approximation is given by

o) = /_ " (s, 8)F(s)ds. (7.4)

7.2 f; Series Expansion

By construction f7, € V;,, and due to this fact there is a b-sequence by such that

fm(@®) = Z bndm,n(t)- (7.5)

n=-oo

In [28] these coefficients are found to be

_ 2 o oo
b = (Lﬂ’j) S 3 A 5), Gt ())- (7.6)

l=—00 k=—00

We may only compute b, approximately. A truncation in the sums is necessary to
calculate these coefficients directly from (7.6). A feasible truncation is proposed in [28].
However, this truncation will give rise to an error in the computation of these coefficients.
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7.3 Bounded Kernel Definition

As it has been seen in section 7.1, Walter gave a method to obtain a positive sampling
delta sequence using wavelet scaling functions. The projection of a function using this
delta sequence will not present Gibbs’ phenomenon. However, the only practical form of
computing the projection coefficients is through a truncation in a sum as it is shown in
section 7.2. The computation of the projection using this method is a computationally
expensive task. Due to this reason we modified the theory of Walter and created a new
delta sequence which does not present Gibbs’ phenomenon for functions that are defined
on the interval t € [0...00). This new delta sequence can be computed in a recursive
manner. Then, the computational complexity will be reduced.

If a function f(t) to be projected is such that it starts at a given time ¢ = 0, the behavior
of f(t) for t < 0 is no longer an issue and can be discarded. For this reason the following
modification to the positive delta sequence definition is proposed:

Sm(z,y) >0, as m — oo and z,y € R*2 (7.70)
o0
/ dm(z, y)dz — 1 uniformly in compact subsets of R* as m — oo (7.711)
0
For each 7 > 0, SUPjz—y>+ om(2,y) = 0asm — oo and z,y € R™. (7.7iii)
We seek to modify Walter’s kernel to fulfill the constraints imposed in (7.7), and in

this way create a new kernel G, m(s,t).
Expanding Equation (7.2) we have

2 (= <] oo =<}
kr.m(s,t) = (l_r) 2™ Y N rHgmi—k—n) D rlg@ms—j—n). (7.8)

l+r n=-—00 k=—00 j=—00

If the scaling function has compact support, that is supp ¢(t) = [0, M — 1], then

k+n k+n+M—1]

suppp(2™t—k—n) = [ o om (7.9)

and using this equation we can put an upper and lower bound for k and n at a given
time ¢. This bound is given by

oMt >k+n>2"t— M+ 1. (7.10)

Since we want to characterize functions that are only defined for t > 0 we will obtain an

2R* is the subset of nonnegative real numbers.
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upper and lower bound for k + n for this case. When t =0, (7.10) becomes
0>k+n>—M+1,

and if t — oo then co > k + n, and putting these two inequalities together the bounds
for k +n are

©o>k+n>-M+1 (7.11)

In a similar fashion, we can obtain

0>j+n>—-M+1. (7.12)
We will introduce the sum
oo
> #(2"t—k—-n) forteRYandoo>k+n>—-M+1. (7.13)
k=0
If
0<2™—k—-n<M (7.14)

for a given t € R* the partition of unity property (4.8) tells us the sum in Equation (7.13)
is equal to one. This is the case when m — 0o. On the other hand, if for certain ¢ € R*
the inequality given in Equation (7.14) is not fulfilled we can still put an upper bound
to the sum in Equation (7.13) due to the fact ¢(t) is compactly supported. Combining
these results we can conclude

o0
> 6(2™t—k—n)<S fort,SeERT andoo>k+n>-M+1. (7.15)
k=0

If we only consider Equation (7.13) for a given ¢ in a closed interval t € [0, #53+2] with
m — 00 the sum limits can be changed obtaining

[2mt—n]
> #2™t—k—-n)—1 forco>k+n>-M+lasm—oc®. (7.16)
k=|2mt—n—-M+1]

Since this is a finite function series which converges to a constant value, we can say that
Equation (7.16) converges uniformly for ¢ € [0, ¥552] as m — co.
The Abel summability function of series (7.15) fort e R* and co > k+n>-M +1

3[z] is the smallest integer such that [z] > =
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o0
Pn(@™t) =Y rF¢p(@™t—k—n) for0<r<1. (7.17)
k=0
Analogously we can define the Abel summability function for t € R* and oo > j+n >
—M+1as -
Pn(@™) =) mM¢@"t—j—n) for0<r<1. (7.18)
3=0
For j > 0 and r € (0,1}, fj(r) = 7 is a bounded decreasing function * , and for
t € [0, 4542] Equation (7.16) converges to one when m — co. Therefore, the Abel
summability functions (7.17) and (7.18) converge uniformly for r € (0,1}, t € [0, #552],
and m — oco. Consequently there exists a 0 < g < 1 such that Prn(2mt) > Lforr >,
t € [0,455%], and m — co. In addition, if now t = MzL% 4 T where | >0,
v >0 (l,v € Z), then

Pon(@™) =) P42t —j—n)

=0

o M-1+n l .
= Z"JQS (2‘"1 ( om + 2m+v) —J —n)
=0
=ZN¢(M—1+n+§—J n)

=0

- S e (w14 % -5)
j=0
=§#JW+L%J¢(M—1+§{7_|.%J_I,> p=j_[%J (7.19)

i Hwle | M- 1+2l—v—liJ—p

=L . < .

R
+}:r"+l'vJ¢ M- 1+2—-—|_-—J—p ,
p=0 .

<M

4A bounded decreasing function is a function where fj4+1(r) € fj(r) forall j and also 0 < fj(r) £ B
for all r € [a, b] for some a,b € R.
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since supp ¢ = [0... M — 1] then this equation becomes

Prn(2™) = Z o+ ] ¢( - 1+% - [%}j _p>

p== I._UJ v o

+irl’+l5‘vJ¢<M—1+2iv— H;J —p)

=0
=I§TP+LT%J¢ (M-—1+%— l%J _p) (7.20)

1 M-1+n l l]1
e o (£ e [£]2)

Since (X552 + Zhs — | & o) € [0, #5552], we can conclude that Prn(2™t) > O for
t>M "}{*‘", and m — oo. Combining this result with the Abel mean convergence for
t €0, A;‘,‘,‘."], we obtain P.,(2™t) 2 0foroo>j+n>-M+1l00>k+n2>-M+1,
t e R, and m — oo.

Equations (7.17) and (7.18) are linear combinations of the scaling function ¢(2™t)
which depend on the value of n. Due to this fact, as shown in [27], they are rapidly

decreasing functions which obey:

|Prn(@™t) < Cp(1 + 2™t —n|)™?, peZ*, teRF (7.21)

for a suitable constant Cp.
We will define a new delta sequence Gy n(s,t) as

Grm(s,t) = 2™(1 —r)? Z Zr"q&(?"t—k n)Zr’q& ms—j—n) (7.22)

n=—M+1 k=0

Moreover, the new delta sequence is constructed from Equations (7.17) and (7.18), since
these sequences have the positive property (7.71).
The proof of property (7.7iii) though similar to the one presented in [27] will be given
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here for the sake of clarity and completeness:

Grm(s, ) = 2™(1 — 1)2 f: Prn(2™) Prn(2™s)

==M<+1

n=-M+1

i 1 1
< C%*m : ia (7.21) with p =4
sC n=§+1 ATt af Qrre—npt o (720 withp

[o ]

1 1 1
< 2om 5
S n=§+1 (1 + [2mt — 2m5)2 (1 + 2™t — n[)2 (1 + [2™s — n])?
< C2om i 1 1
= (14 [2mt — 2msg])2? (1+ 2™t — n|)2 (1 + |2™s — n])?
n

”

=H(t,5)<H(0,0)
C?2™H(0,0) _ c'om
= (1+2mt-s])2 ~ 1+ 2™t - sf)?

<i—>0for [t—s|=>vasm— .
T (1+2my)? -
(7.23)
Now, let us see if property (7.7ii) holds. We want
00
/ Gr’m(s, t)ds =1.
0
Expanding the left side of this equation we have
00 00 1) ®©
2™(1 — )2 / > D orke@mt—k—n)Y ri¢(2™s - j—n)ds
0 = M+1k=0 7=0
Changing the order of the integral and the sum we obtain
-] o0 ® 00
A=1f > YorteEn—k-my v [ gz j-mys
n=—M+1 k=0 =0 -
=a-r? 3 Sreent-k-m Y [ o)
(o]

n=—M+1 k=0 j=0 -

where p = 2™s — j — n and dp = 2™ds.

5 H s 1 1 1 s
The identity rie=syy 2 Grr—n) GaTe=ap 1S used here.
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As it is known that [ ¢(p)dp = 1, Equation (7.24) becomes:

(1-7)? i irké(?nt— k- n)iﬂ'

n=—M+1k=0 3=0
2 - = k orom A 1
=(1-r) E E r¢(2Mt — k — n)e——
n=—M+1k=0 (1=)

o0 o0
=1-nY r* Y ¢@"t—k-n) fork+n€[-M+1,00)andt€R" (795
k=0 n=-M+1

—’

=] as m—o00

=(1 —7')%7"c
k=0

_a-m _
=a-n=b

and property (7.7ii) holds.

7.4 Computation of b,

Using Equation (7.4) with G, instead of k., we have

(o]
£® = [ Grinls Of(s)ds. (7.26)
By construction f7, € Vi, and due to this fact there is a b-sequence by such that
o0
f:n(t) = Z bn¢m,n(t)- (7.27)
n=—00
71
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The coefficients b, are given by

bn = (f;;(t), ¢m,n (t»
= / () bman(t)dt

-0

- /_ > /0 " Crm(s,DF(5)ds  Gmn(t)dt

0 Jo (7.28)
= A Grm(s,t)f(s)ds ¢mun(t)dt
= [7[ [ 6umisspmatiar] s1as
0 LJ-oo _d
=.<;ES)
Using (7.22) we have
=" 3 S| [ sme-k-bowri-ma] 3 odewrs- -
I=—M+1k=0 bJ=® =0 |
= 2™/2(1 —r)? Z Zr"én,k.;.z er ¢(2Ms—j 1)
I=—M+1k=0 j=0
= 2m/2(1 -~ 1‘)2 Zrk Z 5n,k+l ZTJ¢(2ms -j-1)
k=0 I=—M+1 j=0
= 2m/2(1 — T)2 Erkzr]¢(2ms - ] -n+ k) forne [_M +1, OO)
k=0 j=0
(7.29)

Note that Equation (7.29) limits b, to the interval n € [~M + 1,00) which implies
supp f7,(t) = [0,00). Since supp f(t) = [0, 00) this result is expected.
Substituting (7.29) into (7.28) yields

by = / a1 2 Y (s - j —n+ K)f(s)ds
0

k=0 j=0

=YY | #ms = i —n+ Bf(eas

k=0 j=0

==Y r* Y (), bmjan-k(®));
k=0 j=0 e

~

(7.30)

=fm.j+n—k

n—k
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7.5 Truncation Error Bound

Calculating the coefficients b, directly from Equation (7.30) is not computationally fea-
sible. However, applying a truncation in the series can generate an acceptable approxi-
mation. We propose the following approximation:

D (-]
b (1=1)2 Y 8D 9 (£(£), Smjan—i(t)) - (7.31)
k=0 =0 Frgan—i
) 9:::

Assume that supp f(t) = [0, T} The series coefficients (f(t), dm i(t)) are

i = (7O i) = [ : FObma(t)it

T (7.32)
= gm/2 / F)B(2™t — k)dt.
0
Since Supp ¢m,k(t) = (g, EE=L], dmi(t) overlaps f(t) when
E+M-1 k
——2m_ > 0, and '2—"-; S T.
Putting together these two inequalities, we obtain
~-M+1<Lk<L|2™"T|=P. (7.33)

From (7.33) and (7.30) the function fm j4n—k is only defined in the region j+n—k €
[-M + 1, P]. However, by construction, g,—x is only defined for j, k € [0,00). Hence, if
we let p=n — k, then g,_x in (7.31) can be simplified as:

r  pP—
Y @), dmep(t)), HPpSM -1
j=~M<+1-p
9p = (7.34)
P= .
S @ bmia®)s Hp> ML
\ J=

When p < M — 1, the number of terms in the sum that determines g is

(P—p)—(-M+1-p)+1=P+M,

SThis type of signal is known as a finite duration signal.
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and if p > M — 1 this number is
(P-p)+1<P+M.
We will assume that fm jin—k is bounded such that fm jin—k < B < 0o. Then, if
p<M-1

P—p

|gp| < z r (F(£); Bm,j+p(2))

j=—M<+1—p

B > (7.35)

< B(P+ M),

andifp>M-1

P—p

lgpl < D (f(2), Smjp(t))

7=0

<B) " (7.36)

< B(P + M).

We see that the same bound can be applied in both cases.
Using Equations (7.35) and (7.36), we can find a bound on the truncation error
generated by the approximation (7.31). Equation (7.30) can be expressed as

D oo
b= (1=1)2D 15> (£ (), bmjtn—k(t)) +en, (7.37)

k=0 j=0

7

—

n—k
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where e, is given by

o0 o0
en=Q1=7)% D > r(f(2), bmjta—r(D))- (7.38)
k=D+1 z‘=0 )
Gk
Using Equations (7.35) and (7.36), we obtain
o o]
lenl A =7)% D I*llgnsl
k=D+1
o0
<@-r?BP+M) > r* (7.39)
k=D+1
D+1

r

<(1-7)B(P+M) = (1-r)B(P + M)rP+.

l—r
7.6 Recursive Computation of the b sequence

From Equation (7.30) we have

)
In-k = Z’Jf m,n—k+j
j=0
0 .
In—k = E 77 frmn—k—j (7.40)

j=—o0

[o o]
o= rIu[-j] fmpi;

oo
7] =h;

where p = n — k, u[n] is the unit step function, and fmx = (f(t),dmx(t)) = 0 for
k<—-M+1land k> P.
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The z-transform of hj, H(z) = Z{h;} for |z| < 1 is:

[ ]
H(z)= Y ru[—j]z7?
j=—o00
0
= Z r‘jz—j
Jj=—00
o
_ Z i (7.41)
7=0
1
l1—-rz
_ ~(rz)!
T 1= (rz)"V

The system H(z) is a noncausal system as can be seen in (7.41), so it is not possible to
realize this system in a causal recursive form since it will be unstable. However, g, can be
calculated directly using (7.34) without introducing any error in the computation. This
is due to the fact that the sum in Equation (7.34) is finite and possesses a correlation
like structure. Hence, algorithms such as the FFT can be implemented to compute g,
in an efficient way. In addition, from Equation (7.30) we have

oo
bo= (1= 7Y *gn . (7.42)
k=0

The z-transform for ¢x = r*u[k] , C(2) = Z{c;} for |2| > r is:

C(2) = f: rkufk)z—*
k=—00 (743)
1

T 1-rz1

Taking the z-transform of Equation (7.30) with B(2) = Z{b,} we obtain

B(z) = (1-1)>C(2)G(2)

=A ) (7.44)
= b0k
o
B(z) = BG(z) + rz~1B(z2), (7.45)
76
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and upon taking the inverse z-transform we obtain

bn+1 = .Bgn+1 + 7bp. (7.46)

If supp f(t) = [0,T] , we may assume supp fr,(!) = [0,T]. Since suppdma(t) =
[, 22M=1], ¢m,n(t) overlaps f7,(t) when

n-l-—.M—1>0 a.nd£<T.

2m - " 2.”1._

However by construction, as shown by Daubechies [2], ¢(0) = ¢(M — 1) = 0. Therefore,
without loss of generality, we can say

n+M-1

S >0and o= <T.

Combining these inequalities we obtain
~M+2<n<[2"T]-1=R. (7.47)

This means that we only need to calculate the coefficients by, for n € [-M + 2, R]. Using
Equation (7.31), we can compute b_pr42. Using this result as the initial condition in the
recursion (7.46) for n € [-M + 2, R — 1], we can obtain the values of b, € [-M + 3, R].

7.7 Examples

The algorithm was implemented to calculate the approximation to a unit square pulse,
shown in Figure 7.1, defined as:

1, if0<t<1
u(t) =
0, otherwise,

and a unit triangle pulse which is shown in Figure 7.5, defined as:

t, f0<t<l1
ﬂ0={ <

0, otherwise.

Our results are shown on Figures 7.3, 7.7, 7.4 and 7.8. For comparison, the results
obtained in [28] are also shown on Figures 7.2 and 7.6.
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Figure 7.2: Unit square (Walter’s approximation m=5, r=0.5).
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Figure 7.4: Unit square (new recursive approximation m=5, r=0.5).
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Figure 7.5: Unit triangle pulse.
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Figure 7.6: Unit triangle (Walter’s approximation m=6, r=0.5).
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Figure 7.8: Unit triangle (new recursive approximation m=6, r=0.5).
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7.8 Positive Sampling Without Integration

The bounded kernel projection solves the problem of Gibbs’ phenomenon on wavelet
projections. However, we have to compute the inner product integral in order to obtain
the projection. Walter [29] proposes the following delta kernel sequence to avoid this

problem
Grm(s,t) = 2™G,(2™s,2™t) (7.48)
where -
l—-7r
Gr(s,t) = (1 - r) S P(t—K)i(s — k), (7.49)
k=—00

and 4(t) is the Dirac delta function. With this kernel, we obtain a nonnegative and
uniformly convergent approximation to f(t) € L}(R) N L?(R) when m — oco. We can
compute this kernel approximation using Equation (7.5).

7.9 Positive Sampling f; Series Expansion

By construction f7, € Vi,. Therefore, we can use Equation (7.6) to obtain the coefficients
of the projection. The coefficients b, are given by (similarly to (7.30))

bn = (fr(t); dmn(t))
- / (O mnlt)dt

= /_ : /_ : Grm(s,t)f(s)ds Sma(t)dt (7.50)
- /_ : [ /_ : Grm(s,t)bmn (t)dt] f(s)ds

=;(8)
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Using (7.48) and (7.49) we have

z 8(2™s — k) Pr (2™ — k)Pmn(t)dt
k_

/
> i 6(2™s ~— k) /_ ” P,(2™t - k)$(2™t — n)dt
7) 2

i 5(2™s — k) Z "l[om / (2™t —k l)¢(2mt—n)dt] (via (7.1))

t——oo

) i é(2™s — k) Z L

l=—00

) i TM Z 5(2ms—k)5n_k_1

=—00 k=-00

) i rHs@ems —n+1),

l=—00

II
N
/\/\/‘\
o—i»-a
+

(7.51)

where §; is the Kronecker’s delta, while §(t) is the Dirac delta function. Substituting
(7.51) into (7.50) yields

bn =/_°°2m/° (1—7') i rl§(2™s — n + 1) f(s)ds

1+
—o0

—om | me_
om/2 (1+r) ll/ 5(2™s — n + 1) f(s)ds o
_2m/2( 1+T) Z rlig-m = 8(p—n+)f(p/2™)dp

l=—

(i) £ ()

Note f (Z3) is f(¢) sampled at a rate of 5, 0 by can be interpreted as a lowpass filtered
version of the sampled function.

It is not possible to put an upper and lower limit on the summation used to calculate b,
without involving approximation to the exact value of b,. However, due to the factor rltl
the sum can be truncated depending on the index of the coefficient b, that one wants to
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calculate.
Assume that supp f(t) = [0, T]. We can obtain an upper and lower limit on ! for each
n in Equation (7.52) as

n—1
0<—X<T

2™ (7.53)
n— 27T << n.

In addition, in Section 7.6 we found that we only need to calculate the coefficients &,
for n € [-M + 2, R]. Using this fact and Equation (7.53), we can obtain limits for [ in
Equation (7.52) as

~-M+2-2"T| <I<R. (7.54)

The results obtained can be viewed in Figure 7.10, where a series representation for the
function depicted in Figure 7.9 is shown.

7.10 Digital Signal Series Representation

Digital signals can be obtained by sampling real-time analog signals at certain sampling
frequencies. The digital information is processed and after that the result may or may
not be converted back into a real-time signal. When the data needs to be converted
back to a real-time signal, the sampling frequency is of importance. However, nowadays
there is a tendency to preserve the data in digital form in case further processing is
desired. That is why in some cases it is necessary to process digital data without proper
knowledge of the underlying real-time signal or the method used to convert it into a
digital signal.

If the real-time signal is known we can apply any of the positive sampling transforms
previously considered. In the case where we only have the discrete data we can associate
a real-time signal to this data.

Suppose we have finite duration digital data f4[n] defined in the interval n € [0...q—1].
We will assume without loss of generality that the real-time signal used to obtain the
digital data was sampled with a sampling period ¢; = 2~™ and has supp f(t) = [0,T =
g — 1]. Since we have a finite digital signal we will assume the real-time signal is zero
outside the interval given by the digital signal. We can use Equation (7.5) to obtain
a projection of the associated real-time function into the space V;,. The digital data
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Figure 7.9: Original square signal
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Figure 7.10: Square signal series approximation m=4, r=0.4
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projection can be obtained by

2m(g—1)-1

fll = @™ = S bubmal2™R). (7.55)

n=-N+1

Note also the coefficients b, are obtained by modifying Equation (7.52) into

n
- —m/2 l1-17 i} n—1
mern(i5) L2 )

l=n—2m(g-1)
" (7.56)

= (355) X Mk-n

l=n-2m(g-1)

7.11 Conclusion

In this Chapter, a wavelet projection has been developed for representing compact sup-
port positive-valued real signals. The new projection has uniform convergence in compact
subsets, and avoids Gibbs’ phenomenon. The computation of the projection coefficients
by means of a series truncation and recursion has been given. A similar projection which
can be used to represent positive-valued digital signals has also been introduced. This
projection also avoids the Gibbs’ phenomenon.
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87

Chapter 8

MDL Criteria for Rank

Estimation Using Singular Values

In this chapter we will use positive wavelet projections to estimate the rank of a matrix
using singular values. This will be done in a simple way using the Haar scaling function.
Suppose we have the overdetermined system function

_ B(z) _ 'E(z)d(z).
A(z)  A(z)d(z)

H(z)

This syétem can represent for example a plant model transfer function. It is of interest
to find the common factor d(z) between the numerator and the denominator when the
system function coefficients are perturbed by noise. A procedure to compute this factor is
given in [30]. This procedure obtains the common factor from the last nonzero row of an
upper triangular matrix R obtained from a QR factorization of a near-to-Toeplitz matrix.
The most commonly used method to compute the last nonzero row of the matrix R is its
singular value decomposition (SVD). The number of singular values bigger than zero will
determine the number of rows with nonzero coefficients. However, the SVD method is
computationally expensive and generally requires manual adjustment to compensate for
the noise in a given problem. An alternative method to the SVD is given by Zarowski [30].
This method uses the incremental condition estimator (ICE) [31]. The ICE will estimate
the smallest singular values of the leading principal submatrices of R. Finally the degree
of the polynomial m is the number of singular values whose value is different than
zero. Hence, the rank determination problem is translated into a test to find the number
of nonzero smallest singular values of the leading principal submatrices.

The method used by Zarowski in [30] to find the number of nonzero smallest singular
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values is to use the MDL criterion in an orthogonal polynomial projection of the smallest
singular values. This procedure delivered good results. However, the computational
complexity of the orthogonal polynomial projection is still high and was the bottleneck
of the rank prediction algorithm. In this section we will use the MDL criteria in a positive
wavelet projection of the smallest singular values to replace the orthogonal polynomial
projection given by Zarowski. The goal is to reduce computational complexity without
greatly sacrificing the statistical performance of the rank estimator.

Suppose we have 2 set of smallest singular values of the leading submatrices ! of a real
valued matrix R = [r; ;]

00> --0p > > Onei-

where 0; > 0 for j =0,1,--- ,g—1 and 0; =0 for j = g,--- ,n — 1. In practice, it is
difficult to access the values o; directly, and so usually an estimate 6; is given. We will
assume the estimated value is

Gj = 0j + zj, (8.1)

where z; is from a set of statistically independent random variables whose probability
density function (pdf) is defined as

2

132 i=0... qg—
p(zj) = Uzmﬁe 2%, 7 0, ,q—1 (8.2)
ae” %, i=q¢---,n-2,n—-1

8.1 Haar Scaling Function Representation of the Singular
Values

We will suppose the singular values can be expressed with the real distribution function

q-1

()= o5 (ult—j) —ult - (j +1)))
3=0

- (8.3)

= Zoj¢(t - .7)7

=0

where ¢(t) is the Haar scaling function (recall the definition in Equation (4.29)).
Note with the definition given by Equation (8.3) suppv(t) = [0, g]. Hence, using wavelet

1A leading submatrix of a matrix R is an square submatrix that starts at the first row and first
column.
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packet theory we can project v(t) into the space V,, as
Pu(t) = Z bpdm,p(t), (8-4)
P
where b, is given by

b= [ v(O)omalt)et
q-1
= [ X ot - emateic
=0
3 ot
2% / _Zajé(t—jw(?’"t—P)dt (8.5)

Jj=0

g-1

=223 0; [ o(t- ezt - plat

=0

q-1
= ZUJ' < ¢04,bmp > -

Jj=0
If we have m > 0, Equation (8.5) can be reduced to

q-1

=27 [ 303 (ult =) -l — G+ 1)) 62"~ P
© =0

I3

2 / o d
2 c t
; L) (8.6)
O\ )

2 om
220\

o3

w3

for 0 < p £ 2™q, and b, = 0 otherwise.
On the other hand, if we have m < 0, Equation (8.5) is reduced to

q-1

=2 [ 30 (u(e —5) —ult - G-+ 1) (2" — D
© =0
8.7)

-1
=2_12L‘ z oj
=%
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for 0 < p < 2™q, and b, = 0 otherwise. If m < 0, the computation of the coefficients b,
becomes more complex. Since one of the goals of the rank estimation algorithm is speed,
from row on we will assume that m > 0.

8.2 MDL Criterion for the Singular Values Using the Haar
Scaling Function

We can obtain a representation of the individual singular values from Equation (8.4) as

2™q
o =v(j) =Y _ bpdmp(3)-

p=0

In accordance with this model, &; is a random variable with joint pdf given by

2Mq
éj= X bpom,pli)
q-l _ p=0
1
e

202 ] ) n-l N
2(G5]bp, o?,a,m,q) = H H [ae—aa,-]

2
j=o | V2mo =
(8.8)
o=1 2
o {0" 2 e p(J)] =
(2702)2

Note that this distribution is conditioned on the unknown parameters by, o2, a,m and

g. The codelength (recall Equation (5.3)) for the residual between the real and the
predicted data can be obtained from Equation (8.8) as

L(&jlbp7 027 o, m, Q) == 10g2 [p(&jlbm 021 a,m, Q)]
= —(n—q)log, a + %logg [270?]

q-1 2 (89)
+logs e (2 5 Z [0, pr¢mm(])} + az 01)

j=0 p=0 J=q

...V(b(q))
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We will define

-1 2™mq 2 n-1
VD) = 5 [Z [v: memp(:)} } +a) 3

= p=0 i=q
; =t omg 2mg
=530 |07~ 20 pr¢m NOEDD Z babp $m,d(§)bm.p(7)
=0 d=0p=0 ‘—2';3;:—’
n-1
. 8.10
+ QZ oj ( )
Jj=q
1 -1 2mq  g¢-1
= 22 Z"'f =23 by Gi$ma(i) +27 sz + O‘Z”J
j=0 p=0 j=0 p=0 j=q
n—1
= 5% [ - 21969 + BITHONO] +a3 55,

i=q

q-1
where p, = z; 52, 6D = [by-- - bymg]T, 52 = z;o &ima(G), @ = [s@, s, s ]
J=

and H@ = 2m 1(4).
Note also that for m > 0

q-1

=" 3i6mi(d)

3=0
i (8.11)
{2'2‘& if ok € Z

{
m

0 i.o.c.

8.3 Maximum Likelihood Estimates

The MLE (Maximum Likelihood Estimate) for b9 is obtained minimizing the codelength
given in Equation (8.9). The minimum value can be obtained taking the gradient 7
of b9) and finding where it is zero-valued. The gradient of Equation (8.9) is
N log, e
Vo [L(63lbp, 0% 0, g)] = 227 [26@THE — 2[s 7], (812)
and this equation is zero-valued for b(® = b(@) where

59 = g@-T4@), (8.13)
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Furthermore, since in our case H(® = H@T, we have

HO-T = g@-1,

When Bp replaces b, for all p, one obtains

V(@) = Pq ~ [s(q)]TH(q)—l 5@

and hence Equation (8.9) becomes

L(&Jli’p: 02’ a,m, q)

=—(n—gq)logoa+ %logg [2707]
< (8.14)

) . -1 A
+ ;iz; [pq - [s(q)]TH(q)-ls@)] +alogse [} :aj] .
j=q

Note also that
BL(61by, 02, ,m,q) ¢ 1 log, e _
bpZ 0 - Liogge | 5| - g [po = SOITHOS0)]
_ logse 1 @OTH@-14@]| 2
T 202 [q— o2 [Pq 9T H s ] ’

which implies that the MLE 42 for o2 is

1
22 __ 2 1 @NT(9)-14()
G . [pq [s\]"H'Y s ],

and that

OL(5;|by, 02, 0, m, 1 =
(65 Paa 9) =—(n-gq) log2e2+1082€ [Zaj]
j=q

—(n-q) &=,
=logy e — + E Gil»
Jj=q

which implies that the MLE & for « is
n—q

&= =7,
Jj=q 73

2In this equation we use the fact £=log,(u) = loga(e)L 3%.
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Substituting the MLEs into Equation (8.14) we obtain

L(&lelh &27 &’ m, q)

= ~(n—q)logs | 7| + 3 loge [21 (pe - IS“”]TH“-’"Is“”)J
[ 2j=q 95 ] g
+ %-}-(n—q)logze
[ n—q ] g [2n @TH@-146)
= —(n — q)log, _'.';;f}; +§10g2 [—q—(pq-[sq] H'Y s )]

+ (n— g) log, e

q n—gq
={n—=)logrbe—(n—gq)lo —_—

2 —
+1 log, [?ﬂ (pq ~ [s@TH@-! s(q))]

n—q
=({n— %) log,e ~ (n—g)log, [Tl_-'
j=q 93 |

(
+ 108y | 2 (o = WO x50
(

n-g
n- g) logze ~ (n —q)logy | v
2 j=q

g 27 27 (NT (@)
+ 2 lo [—( ~ —[s'9]" s\ .
5 1082 | 7~ #a q[ ]

Using Equation (8.11) we note
[s)Ts@

m.. . - - ToBra - - o T
=272dy,0,...,61,0,...,84,0,...,84-1]" 2% [60,0,...,61,0,...,64,0,...,54-1]

(8.16)
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Then, Equation (8.15) can be transformed into

A 17 a2 A _n—q
L(é3lbpr 8% &m,q) = (n = ) logae = (n — ) oga | oy s~

| 252 63 ]
49 2 2-m 1
5 log, [ (Pq - TQ Pq)
) ] (8.17)
= (n-2)10gze— (n— g) logs | -
| 2.j=q 95 |
s [ (o (1-3))
+ =lo 1—- .
2 g2 [ q Pq q
The MDL criterion applied here, as it is defined by Saito in [22], will give us
MDL(g*, ms*) = g, (n) + L(&;|bp, 6>, &,m, q)
gomx) = min | ==logy(n) + L(G;lbp, 67, 6y miq
1€m<n-1
— min |omt 9 o e— (n— _n-gq_
= 251;1517111_1 [2 qlogo(n) + (n 2) log, e — (n — q) log, [27}:15"]
1<m<n-1 j=q *J
q 27 1
+fom |7 ((1-3))] |
2 g2 q Pq q
(8.18)

Note the term L(&,-IB,,, &2, &,m, q) is independent of m, and the only term that depends
on m in the computation of the MDL criterion is 2™~ 1glog,(n). In this term, log,(n) is
constant. Due to this reason 2™~ 1glog,(n) is a monotonically increasing function with
respect to m and g, and the minimum is obtained for m = 1.

Using this fact Equation (8.18) becomes

MDL(gx) = q_ [q logo(n) + (n - §) logse — (n — q) log, [_"?;;L&j] o9

q

i [ (n (1-2))] |

The term glogy,(n) is introduced in the MDL in order to pick the model that possesses
the smallest number of terms. In our case we are more interested in picking the best
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fitting model. For this reason we can choose the model using only

MDL(g*) = 251;2713_1 [(n - %) logoe — (n —g)log, [_71;;‘1'('1.—]
(8.20)

aE (D))

The simulation results obtained using Equations (8.19) and (8.20) are shown on Sec-
tion 8.5.

Note the final selection of the model order estimator has to be based on the results
obtained by simulation instead of using only analytical reasons [32]. This is due to the
lack of a consistent analytical method which gives us a criterion to choose one model
order estimator from another.

8.4 Computational Complexity

In the computation of the MDL criterion the two terms with the highest computational
complexity are Z;-‘;ql &; and pg. For ;-‘;; &5, we need n—g—1 additions. Note also that
we need g multiplications and g — 1 additions to compute p,. Therefore, Equation (8.19)
requires n + 3 additions, ¢ + 6 multiplications, 4 divisions and 2 logarithms for every g.
If we suppose that the computation of logarithms, additions, multiplications and division

take one clock cycle each we can see the number of cycles needed to determine the MDL

criterion is

n-—1
c=(n-2)[(n+3)+4+2]+ > (¢+6)

q=2

n-1

=(n—2)[(n+3)+6+4+2]+§q-—1 8:21)
=(n—2)[(n+3)+6+4+2]+#—1
=(n—2)(n+15)+@—1.

From Equation (8.21), we can infer that this implementation requires only O(n?) opera-
tions which is an improvement from the O(n3) operations used in the algorithm presented
in [33].

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8.5 Simulation Results

Suppose we have the system function

_ B(z) _ B(z)d(z)

&) =260 = Zeae)

Now we add uniform pdf noise with a maximum noise value e, where the pdf is given by

p(t) =
0 otherwise

{2% te[—e,..., ¢

to the polynomials A(z) and B(z) obtaining

A(z) = A(z) + na(2)
B(z) = B(z) + n(2),

where n4(z), ny(z) are the introduced additive noise terms. Then estimate the degree
of the polynomial A(z) from A(z) and B(z). First, we obtain the matrix R from A(z)
and B(z) using the theory given by Zarowski [30]. Afterwards, we compute the leading
principal submatrices of matrix R using the ICE algorithm. The smallest singular values
obtained using this procedure will be the input to the MDL rank estimation algorithms.
The algorithms will estimate the degree of the polynomial m

The problem will be recreated with different maximum values of noise e and it will be
repeated 100 times for each different level of noise.

Example 8.5.1. Consider the following polynomials:

9
d(z) = sz, A(2) =2z -1,B(z) = 21— %
=0

Then the degree of the polynomial ZG). is ¢ = 11. The smallest singular values obtained
using ICE with e = 0.01 are shown in Figure 8.1. The results obtained by Zarowski
using the polynomial MDL rank estimator are shown in Table 8.1. On the other hand,
employing the same estimated singular values and maximum levels of noise and using
Equation (8.20) for the estimator we obtained the results shown in Table 8.2. Figure 8.2
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e q

<10 10 11 12 13 14 >14
0010} O 0 58 40 2 O 0
0.007| O 0 79 20 1 O 0
0003 O 0 9 1 0 o0 0
0001] O 0 100 0 0 O 0

Table 8.1: Polynomial MDL rank estimator Example 8.5.1.

€ q

<10 10 11 12 13 14 > 14
0.010| 70 0 30 0 0 0 0
0.007 | 34 0 64 2 0 O 0
0003 O 0 98 2 0 0 0
0.001| O 0 100 0 O O 0

Table 8.2: Haar scaling function MDL rank estimator Example 8.5.1.

18 ™

14 %

12r

Amplitude
P o
on @ -
¥ 1] T

5
¥

0.2f -

[ 2 2] § ] 0 » 1] 6 18 20
Prindpal Submatrix

Figure 8.1: ICE-estimated smallest singular values of the leading principal submatrices
of R (Example 8.5.1).
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shows a plot (versus q) of

q n—4q q 2_7:‘ _l
qlogs(n) + (n—- :2-) logy e — (n— g) logy [_n—l 5]'] + 21032 [ q (pq (1 q))]

j=q

for various levels of noise, and Figure 8.3 shows a plot of

q n—gq q 2m 1
n—=)logoe—(n—q)logy |———1| + 1o [—( (1—-))]
( 2) gze—(n—4q) ge[ ?;;&j] 5log2 | - (P 1- 3

with the same levels of noise. From these results we note Equation (8.20) achieves a

BB o e
=" e=0.000 : ; : . : S,
10051~ ¢. 0003 : : A : : : )
— . 0001 ‘ : : : o
, - ; L4

: i i . : 7
: ' :

value used to choose the MDL

Figure 8.2: MDL versus q with the term glogy(n) (Example 8.5.1).

better result compared to the results obtained using Equation (8.19). In addition we note
the strong dominance of small values of ¢ when we are computing the MDL criterion.
This behavior is due to the dependence of the MDL criterion on the factor

(-2

When ¢ is close to one, MDL — —oco and then the true MDL criterion value can be
mistaken. It gives too much weight to small values of g.
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-+ ¢a 0010
e w G007

value used to choose the MDL

Figure 8.3: MDL versus q without the term glog,(n) (Example 8.5.1).

e q

123 456 7 89 10 11 12 13 14 15 16
10%(0 0 0 0 0 0 0 0 0 13 57 7 5 18 0 O
105{0 0 0 0000 0O 51 47 1 1 1 0 0
10(0 0 0 000 0 0 0 48 5 0 0 0 0 0
10-7{0 0 0 0 0 0 0 0 0 46 49 3 1 1 0 0

Table 8.3: Polynomial MDL rank estimator Example 8.5.2.

Example 8.5.2. In this case we have the following polynomials:

d(z) = 25 — 0.6z* — 0.05z° — 0.052% — 1.05z + 0.55

A(z) = 21° - 1.62° + 2.432% — 1.14827 + 1.22482% + 1.38752°

—0.9895z% + 0.97512° — 0.781322 — 0.623z + 0.0692
B(z) = 2° +1.95z% + 0.0.6699z7 + 0.19782° + 0.22712°
—1.56522% — 1.91182% — 0.741322 — 0.0801z + 0.0634.

The predicted value in this case has to be ¢ = 10.

The results obtained using the polynomial MDL rank estimator are shown in Table 8.3.
Our results using Equation (8.20) are shown in Table 8.4. The singular values obtained
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e q

1 2 3 456 7 8 9 10 11 12 13 14 15 16
1040 100 0 0 00000 0 0 O O O 0 O
10-5|/0 100 0 0 0 0 0 0 0 0 0 0 0 O O O
10%(0 98 00 00 O0O0O0 2 0 O 0 0 0 ©
10-7(0 8 0 0 0 0 0 0 0 19 0 0 0 0 0 O

Table 8.4: Haar scaling function MDL rank estimator Example 8.5.2.

”’

7Y SUFE ORI,

Amplitude

i

] 10 s
Prindpal Submatrix

Figure 8.4: ICE-estimated smallest singular values of the leading principal submatrices
of R (Example 8.5.2).
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from ICE starting at the second submatrix are very close to zero. This can be seen in
Figure 8.4. In this case our predictor take these values as zero. Hence the likelihood of
obtaining a wrong predicted value is very high even for small values of noise.

Figure 8.5 plots Equation (8.19) which is used to compute the MDL for various levels of
noise, and Figure 8.6 plots Equation (8.20) which is another alternative to compute the
MDL with the same levels of noise employed when we used Equation (8.19). In this

Value used to choose the MDL

Figure 8.5: MDL versus q with the term glog,(n) (Example 8.5.2).

case the algorithm’s accuracy decreases substantially.

Example 8.5.3. Consider the following polynomials:

diz)=(z2+1P=23+322+3z+1
A) =2 +222+5z+1
B(z) =z+1.01.
The predicted value in this case has to be ¢ = 3.
The results obtained using the polynomial MDL rank estimator are shown in Table
8.5. Our results using Equation (8.20) are shown in Table 8.6. Figure 8.7 plots Equa-

tion (8.19) which is used to compute the MDL for various levels of noise, and Figure 8.8
plots Equation (8.20) which is another alternative to compute the MDL with the same
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Figure 8.6: MDL versus q without the term glog,(n) (Example 8.5.2).

e q

1 2 3 4 5 6 7
10-3 0 0 8 3 13 0 O
5107310 0 8 4 7 0 O
10—2 0 0 8 8 5 0 O
5x1072/3 0 71 17 9 0 O
107 |22 0 33 30 15 0 O

Table 8.5: Polynomial MDL rank estimator Example 8.5.3.

e q

1 2 3 4 5 6 7
10-3 0 2 98 0 0 0 O
5x10°3|0 79 21 0 0 0 O
10~2 0 9% 5 0 0 0 O
5x1072(0 100 0 0 0 0 O
1071 0 97 3 0 0 0 O

Table 8.6: Haar scaling function MDL rank estimator Example 8.5.3.
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levels of noise employed when we used Equation (8.19).

as— 40 sessenr e bitasiiea ......E. ......... .:. ......... oreereers e eneees : -.....---E
=102 : : : L

(1] of ......Z.-.......E....--—..........-..a'.........g.:.),.‘....E
B e=5x107 : : : : >t

: : : R :

25k —0—8-40'2 ..... ST ERRTIE Jeesenens E./.,:.;.,:f .........

| e=5x102

Values used to choose the MDL

Figure 8.7: MDL versus q with the term glog,(n) (Example 8.5.3).

Example 8.5.4. Consider the following polynomials:

A(2)d(z) = 2° + 5.5032* + 9.76523 + 7.6472% + 2.7622 + 0.37725
B(z)d(2) = z* +2.9932% — 0.77452% + 2.0070 + 0.7605.

In this case the common factor is:
d(z) = 2% — 1.007z + 0.2534.

Hence, the predicted value in this case has to be ¢ = 3.
Our results using Equation (8.20) are shown in Table 8.7. Figure 8.9 plots Equa-
tion (8.19) which is used to compute the MDL for various levels of noise, and Figure 8.10
plots Equation (8.20) which is another alternative to compute the MDL with the same
levels of noise employed when we used Equation (8.19).
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Values used to choose the MDL

Figure 8.8: MDL versus q without the term glog,(n) (Example 8.5.3).

e q

1 2 3 45 6 7
103 |0 48 52 0 0 0 O
5x10°3{0 93 7 0 0 0 O
102 [0 91 9 0 0 0 O
5x1072|0 100 0 0 0 0 O
107 |0 98 2 0 0 0 O

Table 8.7: Haar scaling function MDL rank estimator Example 8.5.4.
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Figure 8.10: MDL versus q without the term glogy(n) (Example 8.5.4).
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Example 8.5.5. Finally, consider the polynomials:

A(R)d(z) =2 +z+1
B(z)d(z) = 2° + 0.012.

In this case the common factor is:
d(z)=1.

Hence, the predicted value in this case has to be g = 4.

In this case our prediction algorithm predicts ¢ = 2 instead of the actual value. This
behavior may be produced by the rapid decrease of the ICE value as can be seen in
Figure 8.11. In contrast the polynomial MDL rank estimator predicts the correct value.
Therefore, in this case it is better to sacrifice the speed increment achieved by our
algorithm and use the polynomial MDL estimator instead.

335

(2]

Amplitude
~n
[7,}

1 15 2 25 3 3S 4
Principal Submatrix

Figure 8.11: Estimated ICE value with e = 1 (Example 8.5.5).

8.6 Conclusion

In this Chapter, a rank estimator for a matrix using its principal submatrices smallest
singular values has been presented. The singular values are real positive-valued signals.
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Due to this reason, a projection for this type of signals has been used. The basis function
used to project the signals is the Haar wavelet. The results obtained have been compared
with the ones obtained from a rank estimator using an orthogonal polynomial projection
[33]. It has been shown that the rank estimator developed in this thesis has a better
computational efficiency. However, it has also been shown that the increase of speed
diminishes the accuracy when the noise level is high.
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Chapter 9

Conclusion and Further Work

9.1 Conclusion

In the first four Chapters, an introduction has been given to the basic theory in orthonor-
mal series projections, wavelet theory and the minimum description length criterion. The
information given in these Chapters has been used to develop the theory introduced in
the main part of this thesis.

In Chapter 6, the analysis of the output convolution matrix from a chain of decimators
with white Gaussian noise as an input has been presented. It has been shown that this
matrix possesses a diagonal like structure consisting of three submatrices. A recursive
method has been developed to compute the size of these submatrices. Since the matrix
inverse of the correlation matrix plays an important role in signal detection and signal
estimation problems, the existence of this inverse has also been proven. However, as it
has also been shown the inversion problem for this matrix is ill-conditioned.

In Chapter 7, a series projection with uniform convergence in compact subsets has been
developed. This projection can be used when the signal to be processed is a positive-
valued real signal with compact support. Due to its uniform convergence, this projection
avoids the Gibbs’ phenomenon. Two methods to compute the coefficients of the pro-
jection have been developed. The first one consists of a series truncation. In this case,
a bound for the truncation error magnitude has been obtained. The second method
obtained to compute the projection coefficients is a recursive method. In addition, a
series projection to process positive-valued digital signals has been given. An equation
to obtain the projection coefficients for this projection is also given. This projection also
avoids the Gibbs’ phenomenon.

Finally, in Chapter 8, a rank estimator using a projection for positive-valued signals has
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been developed, where the basis used to project the signals is the Haar wavelet. The
results obtained have been compared with the ones obtained from a rank estimator using
orthogonal polynomials [33]. It has been found that the rank estimator developed in this
thesis has a better computational efficiency. However, it has also been found that it is
less accurate than the orthogonal polynomial rank estimator when the noise level is high.

9.2 Further Work

The existence of the output correlation matrix inverse for a chain of decimators with
white Gaussian noise as an input has been shown in this thesis. However, an algorithm
to compute this inverse still needs to be developed. In addition, the analysis of the output
correlation matrix for a chain of interpolators when the input signal is white Gaussian
noise is also needed. These two problems can be the subject of new research work which
may lead to better methods for signal estimation and signal description using wavelet
transforms.

The projection of one dimensional positive-valued signals has been analyzed in this
thesis. There are multiple applications where this theory can be used (i.e. fiber optics
light intensity functions, histograms). However, it may also be of interest to extend the
theory so that it can be applied to multiple dimension positive-valued signals (i.e. digital
images).
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Appendix A
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Matlab Correlation Matrices

A.1 M=8 N=8 Results

{ 1.110-3  -6410=%  2.1.10-2
-6.4-103  3.7:102  -1.2.10"!
2.1-.1002 -1.210"!  4.3-10"!
-24.1071°  6.7.10710 -19.10"°
0 ~24-10-1°  6.7-10"10
0 0 —2.4-10"10

K 0 0 0

A.2 M=4 N=8 Results

6.6:10-2  5.0-10~%7

5.0.10-17 1.0-10°

0. 5.0-10~17
0. 0.
0. 0.

-2.4.10"10
6.7-1010
-1.9-10~°

1.0-10°

-1.910"°
6.7-10~10
-2.4-10"10

0.
5.0-10~17
1.0-10°
5.0-10~17
0.

]
-2.4.10"10
6.7-10-10
-~1.9-10~9
9.9-10~1
6.4-10—3
—2.1.10"2

0.
0.
5.0-10~17
1.0-10°
5.0.10~17

0 0 \

] ]
—24-10"10 ]
6.7-10710 —24.10"10
6.4:10-3  -2.1.10"2
9.6-10! 1.2-1071!

1.2-107? 5.6-10~1 /

5.0-10—17
9.3-10°!
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Appendix B

Matlab Code

B.1 Code Function makephi

Listing B.1: makephi
%
% makephi.m
%
% Given the two—scale sequence which specifies a scaling
% function construct the matriz whose eigenvectors give the
% scaling function at the integer knots (this is matriz M).
%
% This program then finds the scaling function at the
% integer knots and normalizes.
%
% The interpolatory graphical display algorithm (IGDA) is
% used to compute the scaling function in between the
% integer knots.
%
% This function requires the inputs:
%
% p = two—scale sequence corresponding to the lowpass QMF
% filter J = we want to interpolate the scaling function at
% the dyadic points 2°(—J)xZ
%
% The scaling function phi may be plotted by the user at the
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% points in vector tphi.

%

% NOTE: Ezecute M-file psequence.m before running this
% M-file. This will create vector p.

%

% This function requires upsample.m.

%

function [tphi,phi] = makephi(p,J)
N = length(p) — 1;

% Compute matriz M

for i = 1:N-1
for j = 1:N-1
k=2xi—j 4+ 1;
if (k > 0) & (k < N+2)
M(i,j) = p(2%i —j + 1);
else
M(i,j) = 0;
end
end;
end;

% Find the eigenvector of M corresponding to
% the eigenvalue of unity and normalize it to
% give the scaling function at integer knots

[V,D] =
sum = 0;
for i = 1:N-1

sum = sum + V(i,1);
end;
phii = (1/sum)*V(:,1);
phii = [ 0 ; phii ; 0 ];

eigM);
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% Use the IGDA to compute scaling function phi
% at the dyadic points

b=1[1}
for j = 1:J
bt = upsample(b,2);
b = conv(bt,p);
end;
phi = conv(phii,b);
stepphi = 277J;
for k = 0O:stepphixsN
tphi(k+1) = k/stepphi;
end;

B.2 Code Function upsample
Listing B.2: upsample

upsample.m

This routine upsamples an input sequence z by factor I.

N X X NN

function y = upsample(x,I)

N = length(x);

if I ==
y = X3
else
y = zeros(1,I«*N-1-1);
for k = 1:N
y(Ixk — I + 1) = x(k);
end;
end;
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B.3 Code Function psequence

Listing B.3: psequence
%

% psequence.m

%

% This routine creates the desired two—scale sequence p

% which is associated with the lowpass QMF filter. The
% parameters for the Daubechies wavelets are from Table 6.1
% (p. 195) of I. Daubechies, Ten Lectures on Wavelets.

%

function p = psequence(order)

switch order
% Haar wavelet (Daubechies 2—tap wavelet)

case 2
p=[11}
% Daubechies j—tap wavelet (N = 2 in Daubechies notation)
case 4
p = (1/4)*[ 1+sqrt(3) 3+sqrt(3) 3—sqrt(3) ...
1-sqrt (3) |;
% Daubechies 6—tap wavelet (N = 8 in Daubechies notation)
case 6

p = sqrt(2)*[ .3326706 .8068915 .4598775 ...
—.13501102 —.085441274 .03522629 |;
% Daubechies 8—tap wavelet (N = 4 in Daubechies notation)
case 8
p = sqrt(2)=[ .23037781 .71484657 .630880768 ...
—.027983769 —.187034812 .030841382 ...
.0328830117 —.010597402 };
% Daubechies 10—tap wavelet (N = 5 in Daubechies notation)
case 10
p = sqrt(2)*[ .1601023980 .6038292698 .7243085284 ...
.1384281459 —.2422948871 —.0322448696 ...
0775714938 —.0062414902 —.0125807520 ...
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.0033357253 ;
% Daubechies 12—tap wavelet (N = 6 in Daubechies notation)
case 12
p = sqrt(2)=[ .11154074335 .494623890398 ...
.751133908021 .315250351709 ...
—.226264693965 —.129766867567 ...
.097501605587 .027522865530 ...
—.031582039317 .0005538422011 ...
.0047772575109 —.0010773010853 |;
end

B.4 Code Function phifunc

Listing B.4: phifunc

phifunc.m

X N N

% This function returns phi(k/2°J) for any integer k. It
% needs the output from makephi.m. Note that N = length(p)
% — 1, where p is the p—sequence vector from psequence.m.

%

function y = phifunc(k,phi,J,N)

if k<=0
y=0;
elseif k >= (2°J)*N
y =0;
else
y = phi(k+1);
end;

B.5 Code Function dechain

Listing B.5: dechain

% dechain.m
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% This archive introduces the output of a decimator into the
% input of another one "nt” times.

%

% An identity matriz of size "N” is introduced to the first
% decimator. This input represents white Gaussian noise with
% variance equal to one.

%
nt = §;
N = 320;

Rin = eye(N);

em = zeros(l,nt);
eM = zeros(1,nt);

em(1l) = 1;
eM(1) = 1;
cndi(1l) = 1;

for i=1:(nt-1)
[Rout,eM,em, cndi] = decimator (Rin,eM,em,i);
Rin = Rout;

end

figure (1);

plot(em(2:nt));

title ("Minimum Eigenvalue Bound’);

xlabel ( 'Number of interconnected decimators’);
ylabel(’Eigenvalue Bound’);

figure (2);

plot (eM(2:nt));

title (’Maximum eigenvalue bound’);

xlabel (’Number of interconnected decimators’);
ylabel( ’Bound’);
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figure (3);

plot (cndi);

title (’Condition Number’);

xlabel ( 'Number of interconnected decimators’);
ylabel (’Condition Number’);

B.6 Code Function decimator

Listing B.6: decimator

decimator.m

X N

% This routine computes the output covariance matriz of a
% decimator given a correlation input matriz with size NazN

% The mazimum and minimum eigenvalues of the output

% covariance are also calculated, and the accumulated

% mazimum and minimum bounds are computed again and added to
% the vectors eigMazAcc,eigMinAcc respectively.

%

% The covariance matriz is plotted in a gray scale
%

% This routine needs psequence.m and shift.m

%

function [Ry,eigMaxAcc,eigMinAcc,cnd] = ...
decimator (Rx, eigMaxAcc, eigMinAcc ,numb)

N = length(Rx);
p = psequence (8); % obtain the wavelet coefficients

h = (1/sqrt(2))*p;

ht = fliplr (h);

M = length(h);

¢ = [ ht zeros([1,N-1]) |;
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H=1[c |;

for n = 1:N-1
H = [ H shift(c,n) ];
end;

L = floor ((NM—1)/2);

% Compute Output Covariance to Input Rx
R = HxRxxH’;
r = diag(R);

% Compute Ry = DHRzH’D’, where D is the down—sampling
% matriz

for i=1:L
for j=1:L
Ry(i,j) = R(2%1,2%j);
end;
end;

% Compute QOutput’s Covariance mar and min eigenvalues and
% condition number

d = eig(Ry);

Meig = max(d);

meig = min(d);

cnd (numb+1) = cond (Rhy);

% Calculate the accumulate maz and min eigenvalues
eigMaxAcc(numb+1) = eigMaxAcc(numb) * Meig;
eigMinAcc (numb+1) = eigMinAcc(numb) * meig;

variances = diag(Ry);
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clf
y = abs(Ry);

bigy = eigMaxAcc(numb+1);

for i=1:L
for j=1:L
y(i,j) = bigy — y(i,j);
end

end

% Plot the wvalues of the matriz as a shade of gray colors
% square surface.

y = y/bigy;
y = 256 = y;
minval = — ceil ((L-1)/2) + 0.5;

%Azis = minval:minval+L—1;
Axis = 0:L-1;

figure (4);
image ( Axis , Axis,y);
colormap (gray (256));

title (Gray scale correlation values for chain decimator’)

B.7 Code Function shift

Listing B.7: shift
%
% shift.m
%

% This routine down—shifts a vector z by
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% n adding n zeros to the wvector.

%
function y = shift(x,n)

N = length(x);

if n=0
Yy = X5
else
X =x.";
y = [ zeros([1,n]) x(1:N-n) ];
y=y-7;
end;

B.8 Code Function unitapproxr
Listing B.8: unitapproxr

unitapprorr.m

R X N

% This routine computes the positive wavelet projection
% 'f-m°r’ for the unit square pulse f(t) =1 for 0 <=1t <=1
% in a Recursive and non Recursive manner.

%
function [interval,f] = unitapproxr(m)
J = 0;

= .54;
p = psequence(4);
N = length(p)-1;
[tphi, phi] = makephi(p,J);

offset = 2°m;
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scale = 2"J;
N1 = —N;
N2 = 2xoffset —1;

% b1 will store the non recursive projection coefficients
% and b2 will store the recursive projection coefficients.
[b1,b2] = UnitSqCoeff(m,N2,r,p);

tl = =2"(mt+J);
£2 = 242" (m+J);
for k = t1:t2
f(k — t1 + 1) = 0;
fl(k — t1 + 1) = 0;
for n = NI1:N2
pf = phifunc(k-n=scale,phi,J,N);
un(k — t1 + 1) = 0;
f(k —t1 +1) = f(k —t1 + 1) + bl(n — N1 + 1)*pf;
fi(k — t1 + 1) = f1(k — t1 + 1) + b2(n — N1 + 1)*pf;

end;
end;
—t1:—t14+2"(mt+J)
un (1,27 (m+J)+1:2%2° (m+J)+1)=1;
f=(2"(m/2))*f;
f1 = (2" (m/2))*fl;
interval = [t1:t2]/(offset=*scale);

clf

% Plot the mon recursive projection and the unit square
% pulse.

hold on;
plot(interval ,f,’~"), grid
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plot(interval ,un)
xlabel(’ t )

ylabel (" f-{m}"{ r} (t) ’)
hold off;

% Plot the recursive projection and the unit square pulse.

figure;

hold on;

plot(interval ,fl1,’-"), grid
plot(interval ,un)

xlabel(’ t )

ylabel (* f-{m}"{ r} (t) ’)
hold off;

B.9 Code Function UnitSqCoeff
Listing B.9: UnitSqCoeff

UnitSqCoeff.m

N N NN

% This routine computes the g—sequence in a non recursively
% manner. In addition it computes the projection

% coefficients b—sequence using series and recursive

% approaches. This function can be only used to compute the
% coefficients of a square pulse signal.

%

% This function needs hOfunc.m.

%

% User inputs:

% m = index on V.m and m >= 0 is assumed

% N2 = number of points used to compute the projection
% r = a number between 0 and 1 chosen to control

% convergence behavior of the series according to
% the theory in Walter and Shen (Positive
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Estimation with Wavelets ).
p = required p—sequence for the scaling function used
in the series (obtained using psequence.m)

N N XN

% The routine returns bl (b—sequence computed using a series
% ezpansion), and b2 (b—sequence computed recursively).

%
function [bl,b2] = UnitSqCoeff(m,N2,r,p)

N = length(p) — 1;
M= 2"m;

% Set up v—azis; t(v) has support on [—2°m + 1,N-1]
v = [-M:1:N];

% Compute matriz Mz

for i = 1:N-1
for j = 1:N-1
k=2%xi —j + 1;
if (k > 0) & (k < N+2)
Mx(i,j) = p(2*i = j + 1);
else
Mx(i,j) = 0;
end
end;
end;

% Compute the integral h°{(0)}(z) of the scaling function on
% the dyadic points over the interval [0,N]

I = toeplitz ([ 1 zeros(size ([1:N-2]))]);
=1 — .5xMx;

% Compute the integral hO(z) for z = 1,2,...,N-1
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for k = 1:N-1
if (k >=1) & (k <= (N-1)/2)

c(k) = 0;
else
c(k) = 0;

for j = N:2xk
c(k) = c(k) + .5%p(2«xk — j + 1);
end;
end;
end;

h0 = inv(A)*c.’; % integral for x =1
hO = [0 ; h0 ; 1 ]; % integral for x = 0,

% Compute the coefficients fom,k (projection coordinates of
% f(t) onto space V.m;)

for k = 1l:length(v)
f(k) = hOfunc(hO M + v(k)) — hOfunc(h0,v(k));
end; )

f = f/sqrt(M);

% Compute the g—sequence using series expansion which
% gives the vector gl

for k = —N:N2
gl(ki+N+1) = 0;
for j = 0:(N2 —p)
indx = —-j - k;
if (indx >=-M & indx <=N)
gl(kfN+1) = gl (kN+1) + r"(j)*fM+indx + 1);
end;
end;
end;
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% Compute the b—sequence using series expansion which gives
% the vector bl

beta = (1-r).72;

for n = —N:N2
bl(n + N + 1) = 0;
for k = O:M
g =0
for j = 0:(M+k —n)
indx =k — j —n;
if (indx >=-M & indx <=N)

p = n—k;
g=g+ r (j)*fM+indx + 1);
end;
end;
bl(n + N+ 1) = bl(n + N + 1) + r"(k)x*g;
end;
end;
bl = betaxbl;

% Compute the b—sequence using the recursive form.
cl =r;
b2(1) = bl(1);
for n = —N:N2-1
n+N+2;
b2 (nN+2) = 0;
indx = n+1;

b2 (nN+2) = b2(ntN+2) + betaxgl(N +indx + 1);
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b2(ntN+2) = b2 (n+HN+2)+ cl*b2(n+N+1);
end;

B.10 Code Function triangapproxr
Listing B.10: triangapproxr

triangapprozr.m

X N N

% This routine computes the positive wavelet projection
% ’f-m°r’ for the triangular pulse f(t) =t for 0 <=1t <=1
% in a Recursive and non Recursive manner.

%
function [interval,f] = triangapproxr(m)
J = 0;

= .50;
p = psequence (4);
N = length(p)-1;
[tphi, phi] = makephi(p,J);
offset = 2"m;
scale = 2°7J;
N1 = —N;
N2 = 2xoffset -1;

% Compute the projection coefficients bl has the mnon
% recursive coefficients and b2 has the recursive components

[b1,b2] = TriangCoeff(m,N2,r,p);

tl = ~2"(m);
£2 = 242" (m);
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% Compute the projections f is the mon recursive projection
% and f1 is the recursive projection.

for k = t1:t2
f(k —tl + 1) = 0;
fi(k — t1 + 1) = 0;
for n = N1:N2
pf = phifunc(k-nxscale,phi,J,N);
f(k —t1 +1) = f(k — t1 + 1) + bl(n — N1 + 1)*pf;
fi(k —tl +1) = f1(k — t1 + 1) + b2(n — N1 + 1)xpf;
end;
end;

f=(2"(m/2))*f;

fl = (27 (m/2))=*1f1;

interval = [t1:t2]/(offset*scale);
clf

% Plot the mon recursive projection
plot(interval ,f,’-’), grid
xlabel(’ t )

ylabel (* £-{m}"{ r} (t) )

% Plot the recursive projection
figure;

plot(interval ,fl1,’-’), grid

xlabel(’ t ’)
ylabel (’ f_{m} " {r} (t) )

B.11 Code Function TriangCoeff
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Listing B.11: TriangCoeff

TriangCoeff.m

N N XN

% This routine computes the g—sequence and

% the b—sequence both using series and

% recursive approaches. OQObviously, the two methods ought to
% agree with each other. This is done on the assumption

% that the input signal is a triangular function.

% This function needs hOfunc.m and hlfunc.m.

User inputs:

m = indezx on V.m and m >= 0 is assumed

N2 = number of points used to compute the projection

r = a number between 0 and 1 chosen to control
convergence behavior of the series according to
the theory in Walter and Shen (Positive
Estimation with Wavelets).

p = required p—sequence for the scaling function used
in the series (obtained using psequence.m)

N Y N XN NI NSNSEN

% The routine returns bl (b—sequence computed using a series
% ezpansion), and b2 (b—sequence computed recursively).

%
function [bl,b2] = TriangCoeff(m,N2,r,p)

N = length(p) — 1;
M= 2"m;

% Set up v—azis; t(v) has support on [-2°m + 1,N-1]
v = [-M:1:NJ];

% Compute matriz Mz
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for i = 1:N-1
for j = 1:N-1
k=2%xi - j + 1;
if (k > 0) & (k < N+2)
Mx(i,j) = p(2*i —j + 1);
else
Mx(i,j) = 0;
end
end;
end;

% Compute the integral h~{(0)}(z) of the scaling function on
% the dyadic points over the interval [0,N]

I = toeplitz ([ 1 zeros(size([1:N-2]))]);
A=1 — .5xMx;
Al =1 — .25xMx;

% Compute the integrals hO(z) and h1(z) for z = 1,2,...,N-1

for k = 1:N-1
if (k >=1) & (k <= (N-1)/2)
c(k) = 0;
else
c(k) = 0;

for j = N:2xk
c(k) = c(k) + .5xp(2*xk — j + 1);
end;
end;
end;

% integral for z =1,2,...,N-1
h0 = inv(A)=*c.’;

ml = 0;
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for k = 0:N
ml = ml + kx*p(k+1);

end;
ml = .5xml; % scaling function first moment
¢l = .5xmlx*c;

for k = 1:N-1
etal(k) = 0;
for n = (2xk — N):(2xk-1)
if (n>=1)& (n<=(N-1))
etal(k) = etal(k) + .25xp(2xk — n + 1)*h0(n);
elseif ( n >=N)
etal (k) = etal(k) + .25%p(2*k — n + 1);
end;
end;
end;
hl = inv(Al)=*(cl + etal).’; % integral for z = 1,2,... ,N-1

hO [0; hO ; 1 ]; % integral for z = 0,1,2,... ,N-I,N
h1 = [0 ; hl ; ml }; % integral for z = 0,1,2,...,N-1,N

% Compute the coefficients f-m,k (projection coordinates
% of f(t) onto space Vom; see (4.1))

for k = 1:length(v)

f(k) = hlfunc(hl,ml,M + v(k)) — hlfunc(hl,mil,v(k));

f(k) = f(k) — v(k)*( hOfunc(h0O M + v(k)) — hOfunc(hO,v(k)) );
end;

f=1/M."(3/2));

% Compute the g—sequence using series ezpansion (4.8) which
% gives the wvector gl

for p= —N:N2
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gl(pN+1) = 0;

for j = 0:(N2 —p)
indx = —-j — p;
if (indx >= -M & indx <=N)

gl(pN+1) = gl (pN+1) + r°(j)*fM+indx + 1);

end;

end;

end;

cl = ~1/r;
c2 =1/r;

% Compute the b—sequence using series ezpansion.
beta = (1-r)."2;

for n = —N:N2
bl(n + N + 1) = 0;
for k = 0:M
g = 0;
for j = 0:(M+k —n)
indx =k - j — n;
if (indx >=-M & indx <=N)

p = n—k;
g=g+ r (j)*xfM+indx + 1);
end;
end;
bl(n + N+ 1) = bl(n + N + 1) + r"(k)*g;
end;
end;

bl = betaxbl;

% Compute the b—sequence using the recursive method.

¢l =r;
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b2(1) = bl(1);

for n = —=N:N2-1
n+N+2;
b2 (n4N+2) = 0;

indx = n+l;
b2 (n+N+2) = b2(n+N+2) + betaxgl(N +indx + 1);

b2(n-N+2) = b2(n+N+2)+ cl*b2(n+N+1);
end;

B.12 Code Function hOfunc

Listing B.12: hOfunc

%

% hOfunc.m

% This function computes some values needed to project a
% square and e triangular signal into a wavelet space.

%
function x = hOfunc(h0,k)

N = length(h0)-1;

if k<0
x = 0;
elseif k > N
x = 1;
else
x = hO(k+1);
end;

B.13 Code Function hlfunc

Listing B.13: hlfunc
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% hifunc.m
% This function computes some values needed to project a
% triangular signal into a wavelet space.

%
function x = hlfunc(hl,ml, k)

N = length(hl)-1;

if k<0
x = 0;
elseif k > N
X = ml;
else
x = hl1(k+1);
end;

B.14 Code Function DiscRecProj

Listing B.14: DiscRecProj
% DiscRecProj.m
%
% This function is designed to probe the discrete positive
% sampling proposed by G. Walter.
% The test signal will be constructed inside the function
% and it will be a train of two unit square pulses.

function DiscRecProj(m,r)

% m equals the order of the representation
% The series will we computed with an interval of 27 (m)

offset = 2°m;
% Definition of impulse train time length = n
tf = ones(1,10);
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t£(1,5:7) = 0;
l_n_tf = length(tf);

f = zeros(1,(l_.n_tf)xoffset);

for 1 =0 : l_n_tf-1
f(1,ixoffset+1:(i+1)*xoffset) = tf(i+1);
end

l.n = length(f);
interval = [0:1_.n —1]/offset;

% Plot function to be projected
figure (1);

plot(interval ,f);

grid

xlabel(’ t )

ylabel(’ f (t) )

% psequence will return the walues for building Daubechies
% wavelet

p = psequence (4);

N = length(p)-1;

% phi will have the scaling function values from zero in
% the integer points.

[tphi, phi] = makephi(p,0);

N1 = —N+1;
N2 = offset*(1l_n_tf) — 1;

% Compute the discrete projection coefficients
b = DiscPrCoeff(m,N1,N2,f r);

% Compute the projection of the function f using the
% discrete coefficients
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tl = 0;
t2 = offset*(l_n_tf);
for k = t1:t2
f_p(k+1) = 0;
for n = N1:N2
pf = phifunc(k-n, phi,0 ,N);
f.p(k+1) = f_p (k+1) + b(n — N1 + 1)*pf;
end;
end;
fop = (27 (m/2))*f.p;

% Plot the projected function
interval = [t1:12]/ offset;

figure (2);
clf

plot(interval ,f_p,’=’)

grid

xlabel(’ t )

ylabel(" f_{m}"{ r } (t) ’)

B.15 Code Function DiscPrCoeff
Listing B.15: DiscPrCoeff

DiscPrCoeff.m

N N NN

This function computes the Discrete projection
% coefficients of a function f.

% User inputs:

m = index on V.m and m >= 0 is assumed

N1, N2 = define range of coefficients b_n
(i.e., n = NI1,... ,N2)

X X X
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r = a number between 0 and 1 chosen to control
convergence behavior of the series according to
the theory in Walter and Shen (Positive
Estimation with Wavelets).

N N X NN

function b = DiscPrCoeff(m,N1,N2,f r)

offset = 2°m;
l.n = length(f);

n.terms = l.n;

for n = N1:N2
b(n — N1 + 1) = 0;

g =0;
for 1 =n - (l.n-1):n
if (n—-1) >= 0 & (n—-1)<n_terms
g =g+ r (abs(1))xf(n-1+1);
end
end;
bl(n — N1 + 1) = g;

end;

bl = (2°(-m/2))*(1—1)/(1+r)*bl;
b = bl;

B.16 Code Function QRMdI

Listing B.16: QRMdI
QRMdl.m

N N ¥ N

This function computes the GCD of a system with the form
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% H = Al/Bl=A+xd/Bxd when the matrices have noise.

%

% The noisy model equation is assumed to be

% Hn= (A1 + n1)/(B1 + n2) where noise sources nl and n2 are
% uniform noise defined over the interval [—e,e]. The

% algorithm is based on "MDL criterion for Rank

% Determination Via Effective Singular Values” where the MDL
% rank estimator is changed to a positive wavelet

% decomposition criteria.

%

% A and B are the coefficients of the system and d are the
% coefficients of the common factor. Vector e has the levels

% of noise that will test the system.
%

function ma=QRMdI(A,B,d,e)

% Definition of the terms eztracted from the model given in
% Zarowski MDL paper

Al = conv(A,d);
Bl = conv(B,d);
FA1 = A;
%B1 = B;

1A1 = length(Al);
1B1 = length(B1);

% Define the mazimum deviation. We will use uniform noise.
ma = zeros(length(e),lAl);

figure (1);

clf;

figure (2);
clf;
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% Reproduce the test 100 times for every mazimum level of
% moise given on vector e

for i = 1l:length(e)
for j = 1:100
nl = e(i)x(rand(size(Al)) - 0.5);
n2 = e(i)*(rand(size(B1l)) — 0.5);

An = Al + nl;
Bn = Bl + n2;

% Generate the four matrices given in Zarowski MDL paper.

S1 = zeros(lAl-1);
S2 = zeros(l1Al1-1);
S3 = zeros(1B1);
S4 = zeros(1Bl);

TempRowl = [An(1l:end—-1)}];
TempRow2 = [An(2:end)];

TempRow3 [0 Bn(l:end-1)];
TempRow4 = Bn;

for k = 1:1A1-1
S1(k,:) = TempRowl;
TempRowl = [0,TempRowl([l:end—1])];
S2(1A1-k,:) = TempRow?2;
TempRow2 = [TempRow2([2:end]) ,0];
S3(k,:) = TempRow3;
TempRow3 = [0,TempRow3([l:end—-1])];
S4(1A1-k,:) = TempRow4;
TempRow4 = [TempRow4([2:end]) ,0];
end
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SlInv = inv(S1);

K= —S3*S1llnv;
% Obtain the desired QR decomposition
[QR] = qr(K’#S2°+S4°);

% Use the ICE algorithm on matriz R
alp = ICE(R,j);

(q.m] = MDL2(alp,j);
[a.m] = MDL1(alp,j);
ma(i,q) = ma(i,q) + 1;

end
end

B.17 Code Function ICE

Listing B.17: ICE
% ICE.m
% Function to obtain the Incremental Condition FEstimation

% for all the principal submatrices of the upper triangular
% matriz R.

%

function di=ICE(R,ite)

% Transpose matriz R to obtain a lower triangular matriz
R =R’;

x(1) = 1/R(1,1);

di(1) = 1/norm(x) ;

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for i=2:size(R,1)
v =R(i,1:i-1);
alp = vx*x;
beta = R(i,i)"2*x"’*x + alp”2 — 1;
n = beta/(2xalp);
u = n + sign(alp)*sqrt(n“2+1);
Imax = alp*u +1;
ny = sqrt(lmax)/abs(R(i,i));
di(i) = 1/ny;
if (alp "= 0)
fact = 1/sqrt(u"2+1);
s = fact=*u;
¢ = fact*(-1);

s = 0;

c =1;

if abs(R(i,i))*norm(x) > 1
s = 1;

c 0;

end
end

x = [s*xx ; (c—s*alp)/R(i,i)];
end
di = di’;

% Plot the estimated singular values for the first
% iteration. (Used when this function is called multiple
% times inside another routine).
if (ite == 1)
figure (3);
plot(di);
end

B.18 Code Function MDL1
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Listing B.18: MDLI1

% MDL1.m
%

% This function computes the MDL for for a positive sampling
% series without the ¢q/2 coefficient
%

function [q-m,mm] = MDLIl(alp, iter)
% Total number of given singular values.

n = length(alp);

N =1;
m= 1;
mm =1;

% Calculate first time set the minimum to this value

% We will obtain the first term on the MDL supposing we only
% have one singular value different than zero and m=0
% (space V0).

q = 2;

% Calculate the wvalue of rho_g
rho.q = sum(alp(1:q)."2);

% mdl_-min will store the minimum wvalue obtain for the MDL.
% Due to the fact that this is the first iteration we will
% store the MDL straight into mdl-min. The MDL is computes
% according to the formula obtained. (See research notes for
% more information).

mdl.min = ((n ~ q/2)*log2(exp(1)) ...

— (n—q)*log2((n—q)/sum(alp(q+1l,end)))...
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+ q/2*xlog2(2xpi/q*rho_q*(1-1/q)));

% q-m will store the number of terms "q” of the MDL and "m”
% will store the order of the projection space used to

% obtain the MDL.

gm = 2;

% Compute the value for the MDL for the remaining values of
% "q” and "m”. At the end of this recursion the MDL will be

» »

% stored in mdl_min and the corresponding ”"¢” and "m” wvalues

»

% will be stored in "g.m” and "mum” respectively.
for (q=2:n-1)
rho.q = sum(alp (1:q)."2);
rem = sum(alp(q+1l,end));
mdl(q) = ((n - q/2)*log2(exp (1)) -..
— (n—q)*log2((n—q)/rem)...
+ q/2xlog2(2xpi/q*rho_q*(1-1/q)));

if (mdl(q) < mdl.min)
mdl_min=mdl(q);
qm = q;
end
end

% Plot the result obtained in the first iteration when this
% function is called multiple times inside another routine

if (iter == 1)
figure (1);
grid on;
hold all;
plot(mdl);
hold off;

end
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B.19 Code Function MDL2

Listing B.19: MDL2

% MDL2.m
%
% This function computes the MDL for for a positive sampling

% series without the q/2 coefficient
%

function {q.m,mm] = MDL2(alp,iter)

% Total number of given singular values.

n = length(alp);
N =1;
m= 1;
mm =1;

% Calculate first time set the minimum to this value

% We will obtain the first term on the MDL supposing we only
% have one singular wvalue different than zero and m=0
% (space VO0).

q = 2;

% Calculate the value of rho_g
rho_.q = sum(alp(1l:q)."2);

% mdl_min will store the minimum value obtain for the MDL.
% Due to the fact that this is the first iteration we will
% store the MDL straight into mdl_min. The MDL is computes
% according to the formula obtained. (See research notes for
% more information ).
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mdl.min = (g*log2(n)+ (n — q/2)*log2(exp (1)) ...
— (n—q)*log2 ((n—q)/sum(alp(q+l,end)))...
+ q/2xlog2(2*xpi/q*xrho_q*(1-1/q)));

% q-m will store the number of terms "¢” of the MDL and "m”
% will store the order of the projection space used to

% obtain the MDL.

qm = 3;

% Compute the wvalue for the MDL for the remaining values of
% 7q” and "m”. At the end of this recursion the MDL will be

bed »

% stored in mdi.min and the corresponding "q” and "m” wvalues

% will be stored in "¢g-m” and "mom” respectively.

for (q=2:n-1)
rho_q = sum(alp(l:q)."2);
rem = sum(alp (q+1,end));
mdl(q) = (gq*log2(n)+(n — q/2)*log2(exp(1)) ...
- (n—q)*log2((n—q)/rem)...
+ q/2*log2(2+pi/q*xrho_q*(1-1/q)));

if (mdl(q) < mdl.min)
mdl_min=mdl(q);
qm = q;
end
end

% Plot the result obtained in the first iteration when this
% function is called multiple times inside another routine

if (iter == 1)
figure (2);
grid on;
hold all;
plot (mdl);
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hold off;
end
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