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Happiness is like a butterfly. When you pursue it ,  it  is always beyond your 

grasp. B ut when you s it down, it  may alight upon you.
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Abstract

In  th is project problems related to  wavelet applications are studied. An analysis 

o f the behaviour o f a chain o f decimators when its  input is white Gaussian noise on 

the assumption o f fin ite  duration input signals is presented. A  structure for the output 

correlation m atrix of the system is obtained. In  addition, an upper and lower bound 

for the unitary norms of the output correlation m atrix are given. These bounds w ill 

provide inform ation about the inverse of the output correlation m atrix w ith  respect to 

its  condition number. A fter this characterization is done, the creation o f a positive 

wavelet projection in to wavelet subspaces to  represent positive signals is shown. The 

positive wavelet projections are based on the creation o f positive kernels as shown by 

W alter [1]. This theory is applied and simplified in  order to obtain computationally 

feasible positive projections which can be applied in  real life  applications. Finally, an 

application where a positive wavelet projection is used to improve the computational 

speed o f a QR factorization algorithm  is showed.
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1

C hapter 1

Introduction

For a long tim e the Fourier transform has been widely employed in  engineering applica­
tions. However, the Fourier transform  presents problems in some applications such as 
the processing o f non-stationary signals.
In  recent years the wavelet transform  has become an alternative to  the Fourier trans­
form. The wavelet transform has already been used in  problems like signal denoising, 
signal compression and signal detection w ith  satisfactory results. Due to th is fact, there 
is a lo t o f interest in  using the wavelet transform  in  other applications. However, the 

wavelet transform  theory remains under current development, and there are some parts 
o f the theory tha t have not been completely developed.
In  th is thesis we are particularly interested in  a group o f wavelets known as the compact 
support wavelets. Generally we use the Daubechies [2] wavelet fam ily which is the most 
well known compact support wavelet family.
We study two problems related to  wavelet applications. The firs t one is the behaviour 
o f a chain o f decimators when its  input is white Gaussian noise. The decimation opera­
tion  is one o f the basic operations to  compute the coefficients o f a wavelet projection. In  
many applications (i.e. signal compression, signal prediction) the signals to  be processed 
w ith  the wavelet transform  are affected by noise. Hence, the behaviour o f the system is 
modified by the presence o f noise. The characterization o f decimator outputs when the 
input is noise improves the results obtained in  these applications.
There have been previous attempts to  explain the behaviour of decimators when the 
input is noise [3] [4] [5]. However, previous authors made assumptions about the sys­
tem th a t are not always common in  actual applications. In  Chapter 6 we present the 
characterization o f a chain of decimators when the input is white Gaussian noise on the 
assumption o f fin ite  duration input signals, in  contrast w ith  previous works which as­
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sume signals o f in fin ite  duration. We give a structure for the output correlation m atrix 
o f the system. This m atrix can be used to  predict the statistical properties o f a noisy 
wavelet-based m ultirate system. In  addition, we give an upper and a lower bound for 
the unita ry norms o f the output correlation m atrix. These bounds provide inform ation 
about the inverse o f the output correlation m atrix-w ith  respect to its  condition number.

The second problem to be analyzed is the projection o f positive signals into wavelet 
subspaces. When a positive signed is projected we would want the projection coeffi­
cients to be positive. Furthermore, if  the input signal presents discontinuities we want 
to reconstruct the original signal from the projection coefficients w ithout Gibbs’ phe­
nomenon. This is not norm ally the case for either the Fourier or wavelet projections. 

There are methods to  m odify the Fourier projection in  such a way tha t these problems 
are avoided [1]. There have also been attempts to  solve these problems for wavelet 
projections [6] [7], but they use the ir theory to  denoise signals and do not present a 
mathematical explanation to  support the elim ination o f the Gibbs’ phenomenon. Wal­

te r [1] also presents a theory to  solve these problems. He gives a complete mathematical 
explanation to  support his findings. However, the processing of signals using W alter’s 

theory present some computational problems. In  Chapter 7 we reconsider the theory 
given by W alter and m odify it  in  such a way tha t these problems are eliminated. 
F ina lly in  Chapter 8 we w ill present an application where we use the positive wavelet 
projection of a positive input signal combined w ith  the m inimum description length 
criterion o f Rissanen to  determine the rank o f a m atrix.

In  order to understand the theory given in  Chapters 6, 7, and 8 we give a review o f the 

theory o f function projections and Gibbs’ phenomenon in  Chapters 2 and 3 , orthogonal 
wavelet projections in  Chapter 4 , and the m inim um description length criterion in  

Chapter 5.

2
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3

Chapter 2

Function Sequence Convergence 
and Series

2.1 Function Spaces

The mathematical representation of a certain physical phenomenon is called a signal. A  
signal w ill contain certain characteristic inform ation about the represented phenomena 
and it  is defined as a function o f th is inform ation. Furthermore the functions used to 
represent a signal possess common mathematical characteristics. Hence we can group 

these functions in to collections. These sets are called function spaces and the area of 
mathematics tha t studies the properties of function spaces is called functional analy­

sis [8].
In  th is thesis we deal w ith  some o f these spaces. They are the differentiable func­
tions, the integrable functions L 1 and the square integrable functions L2.

D e fin itio n  2.1.1 (C ^  D iffe re n tia b le  F un c tions). Given a number p € N 1 , we say 

tha t a function / ( f )  defined on an interval o f length T  located anywhere is if  i t  is p 
times differentiable on the interval T  and the pth derivative is also continuous.

D e fin itio n  2.1.2 (L1 (T) Space). A  piecewise continuous function / ( t )  on an interval 

T  is a ^ ( T )  function i f

J  \f(t)\dt < oo.

D e fin itio n  2.1.3 (L2(T) Space). A  piecewise continuous function / ( t )  on an interval

1N is the set of natural numbers.
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T  is a L2(T) function if

J  \f(t)\2dt <  °°-

The L2 inner product is given by

< f ,9 > =  J
where g*(t) is the complex conjugate o f the function g(t). The L2 norm is derived from 
the inner product and it  is defined by

Note tha t these sets are not m utually exclusive, so then there are functions tha t can 
belong to  two or more o f these sets at the same time.
The norm operator in  L2 provides the space w ith  a function to  measure the size o f its  
elements. Furthermore using the norm we can construct an operator to measure the 

distance between two functions. This operator is called a metric and it  is given by:

d(x,y) =  | |z - y | | ,

where x, y are elements o f the function space.

2.2 Sequences

I t  is possible to form a sequence o f elements in  a space using an iterative process. These 
sequences usually have practical value only if  there is a lim itin g  element when the number 
o f iterations goes to  in fin ity . This concept is referred as the convergence o f a sequence 
o f functions.

D e fin itio n  2.2.1 (C onvergence). A  sequence o f functions xn(t) w ith  n 6 Z 2 inside a 
space X  converges if  and only i f  there is a function x(t) € X  such tha t

lim  d(xn(t),x(t)) = 0 ,
n—*00

where d{x,y) is a suitable m etric on X ,  for x, y € X .  We say that

lim  xn =  x.
n-+oo

2Z is the set of integer numbers.

4
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This definition o f convergence is very general, and it  only lim its  itse lf to  show the 
s tab ility  o f the iterations. We can extend the defin ition of convergence of a sequence to  
account for some extra characteristics of the iteration process. We w ill introduce two 

particular cases of convergence.

D e fin itio n  2.2.2 (P o in tw ise  C onvergence). Given a sequence o f functions x n(t) we 
say the sequence converges pointwise i f  and only i f  there is an x  (t) so tha t for a ll e >  0 

there is an N  =  N(e,t) such tha t

|x „(t)  -  x (t)| <  e

for n >  N. We say xn tends pointwise to  x.

I t  is very im portant to  note th a t the value N  used in  th is defin ition can depend on
both e and t. This dependence implies tha t under th is defin ition it  is possible to  find 
sequences where although the distance from  a sequence element to the lim it function 

tends to  zero the error o f approximation is not the same for a ll the points t.

E xam p le  2.2.1. The function

1
2nt i f  t  € [0,

2 - 2 nt i f  t  € [ ^ ,  £)

0 i f  t  €

belongs to L i(0 ,1] and jL2(0, 1]. This function converges pointwise to the function x(t) =  

0, and so we say xn(t) —> 0 pointwise.
The behavior o f th is sequence can be seen in  Figure 2.1. Note how as n  increases most 
o f the points t  from  the sequence element xn tend to  zero. However as the gray area in 

Figure 2.1 shows there are some points tha t are not going to  zero.

D e fin itio n  2.2.3 (U n ifo rm  C onvergence). Given a sequence of functions xn(t) we 
say the sequence converges unifo rm ly  i f  and only i f  there is an x(t) so tha t for a ll e >  0 

there is an N  =  N(e) such tha t

|zn(t) - * ( 0 1  <  e 

for n > N .  We say xn converges uniform ly to  x.

I t  can be clearly seen tha t the difference between uniform  and pointwise convergence

5
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*n(t)

0.1 02 19 04 &» 04 OJ u
t

Figure 2.1: Sequence of functions w ith  pointwise convergence

is the dependence of N  or otherwise on the variable t. Moreover, due to  this fact a 
uniform ly convergent sequence is also pointwise convergent but the converse is not true.

E xam ple  2.2.2. The function

belongs to  Lo(K) 3. This function converges uniform ly to the function x(t) = 0, and so 
we say xn(t) —*■ 0 uniform ly.
The behavior o f th is sequence can be seen in Figure 2.2. The gray area shows how as n 
increases a ll of the points t  of xn tend to  the lim it function.

2.3 Orthonormal Series Expansion

Using the inner product given in Definition 2.1.3 we can say a set o f functions (e i. . .  en) € 

I?  is an orthonormal set if  and only if

for every em, en- The orthonorm ality between two functions en and em is often symbol­

ized as en -L em-

3R is the set of real numbers.

0 i f  m  7̂  n

1 i f  m  =  n,

6
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03

Figure 2.2: Sequence of functions w ith  uniform  convergence

I t  is easy to  prove tha t the members o f an orthonormal set are linearly independent. Us­
ing th is fact a linear combination of orthonormal functions [e i. . .  e„] w ill be an element 
o f some subspace S  € L2 tha t they span. Hence we can say span [e i. . .  e„] =  S.
In  addition, as it  is shown by Kreyszig [8], a function x  € L2 can be projected into the 

space S as
n

Psx = ^ 2  < x , ek > e*- (2-1)
*=1 Qk

Note tha t if  x  € S  then Psx — x  and then the projection is called an orthonormal series 

expansion.
We can extend the concept o f series expansions to  the case where we have an in fin ite  

number o f orthonormal functions ( . . . ,  e_i, eo, e i , . . . )  [9].
The projection of the signal using an in fin ite  number of orthonormal functions is

00

P sx=  < x,en> en.  (2.2)
n=-° ° ' X. "

This projection can be seen as the lim it o f the sequence

TO
Xjfi — ^   ̂ ^  £) €n ^  Cn)

n= —to

7
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when m —> oo. Furthermore in  the case x  6 span(.. . ,  e_i, eo, e i , . . . )  we expect

lim  xm = x.
771—>00

Note the projection is based on a sequence and then we have to  assure the sequence 

converges.
The convergence o f the sequence depends on the characteristics o f the function to  be 
approximated. For some functions the series expansion converges uniform ly, but for 
others pointwise, and for others the series does even converge at all.

In  the orthonormal projections used in  th is thesis the coefficients an decrease as 

|n| —* oo, and for th is  reason the projection can be approximately computed using a 

truncated version o f the sum. The error introduced is known as the truncation error and 
can be decreased to  a desirable value by increasing the number of terms used to  compute 
the projection.

2.4 Conclusion

In  this Chapter, the concept o f a function space and a sequence has been introduced. The 
convergence o f a sequence and two different types o f convergence have been explained. 
In  addition, the use o f a set o f orthonormal functions to  obtain a sequence which give us 
a series expansion has been shown.

8
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Chapter 3

D elta sequences and Fourier 
Series

3.1 Reproducing Kernel

As it  was seen in  Section 2.3 when a function is represented by means o f in fin ite  series 
expansions firs t we need to  check i f  the series converges at a ll. Furthermore i f  the series 

converges then we need to find what type o f convergence the series possesses. Checking 
the convergence o f a series using Definitions 2.2.1,2.2.2 and 2.2.3 d irectly can be d ifficu lt. 
For th is reason alternative methods have been developed. One o f these methods uses 
the concept o f the reproducing kernel.
I f  we truncate the series expansion for x(t) given in  Equation (2.2) we obtain

where 8m(t,p) is known as the reproducing kernel sequence for the space S  using the 
orthonormal set ( . . . ,  e_i, eo, ex,. . . ) .

m
Xm(p)= X  4)>en(P)

f  roo
\ /  x(t)en(t) dt [  en(p)

L=-m W-OO J

[  x(*){ X)
J - 00 I  n = - m  >

^  1 '  111 ■ ^

[  8m{t,p)x{t)dt
J —  00

(3.1)
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Through Equation (3.1) we can note there is a resemblance between the function 
6m(t,p) inside the space S  as m —* oo and the D irac’s delta function 5 defined on the 
real number line. Due to th is reason the reproducing kernel sequence is also known as a 

delta sequence.
Further analysis o f the sim ilarities between the D irac’s delta function and the delta 

sequences gives rise to  two different types of delta sequences.

3.1.1 Q uasi-positive d elta  sequences

A  set o f sequences Sm(-, t) 6 i 1(M) is called a quasi-positive delta sequence if

/ OO

|̂ m(p? t)\dp < C, t € R, m  € Z+}  (3.2i)
■OO

/ oo
<5m(p,t)dp—> 1 uniform ly in compact 2subsets of R as m —» oo. (3.2ii)

■OO
For each 7 >  0, suP|£-p|>7 <5m(p, t) —► 0 as m  —► 00, (3.2iii)

where sup|t_p|>7<5m(p, t) denotes the maximum value o f 5m(jp, t) on the region given by 
\t — p\ >  7- The first property guarantees the delta sequence is bounded in
magnitude for a ll values o f m. This bound is made w ith  respect to the absolute value of 

the delta sequence, making possible for the delta sequence to  have negative values. This 
behaviour is different than the one presented by the D irac’s delta function, but as it  w ill 
be seen la ter it  is common to  find orthonormal projections whose delta sequences have 

this behavior.
The second property ensures tha t the integral value for the delta sequence goes to  one as 
m —> 00, which is the same value possessed by the integral o f the D irac’s delta function. 
The th ird  property ensures tha t the delta sequence is concentrated in  a small interval 7 

around t. Ideally we want to  concentrate a ll the values o f a delta sequence on a single 

point as m  —► 00.

3.1 .2  P ositive d elta  sequences

A  positive delta sequence is a sequence where condition (3.2i) is replaced by

&m(x, y) > 0, X, y € R  (3.3)
1Z+ is the subset of nonnegative integers.
2 A compact subset of R is a  closed and bounded subset of real numbers.

10
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This new condition makes these sequences more sim ilar to D irac’s delta function than

the quasi-positive sequences.
Equation(3.3) combined w ith  (3.2iii) makes every positive delta sequence a quasi-positive 
delta sequence. However the converse is not necessarily true.

3.2 Fourier Series

The Fourier series is em in fin ite  orthonormal series. The orthogonal functions tha t define 
the series are a basis for the space L2[—tt, tt].
This series is created w ith  the orthonormal set o f functions

^  = emt =  cos(nf) +  is in (n i),

for n  € Z.
The inner product < x ,en >  for this system is defined as

Using this inner product the series given by Equation (2.2) becomes

00

Px(t) =  J T  <x(p), en(p))en(t)

(3.4)

<5oo (p,t)

3The reader will note that the inner product used in the Fourier series is different from the one we 
previously defined by a  factor We will limit ourselves to say this inner product is valid. For further 
discussion on the subject see Kreyszig [8].

11
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Equation (3.4) shows the kernel sequence for the Fourier series is

1 m
im fe t)  =  £  £

n = —m

= f 1 + £  e_in(p_t) + 53
' \  n = l  n=—m /

(  m m \
=  _ L  h  +  £  e -» n (p -o  +  y j r  ein (p-£) J

*  V '  (3.5)

=  ^  ( 1 +  X j  (e_in(p_£) +  ein(p- £)) J

1 1  ^  e-in (p -t) +  gtn(p—t)

=  +  2 
n = l

1 1 m 
=  2; + 7 L “ ” (p - ' ) -

n = l

This kernel is known as the D irichlet kernel and it  is often represented as Dm(jo — t).
In  the case o f the D irichlet kernel as in  many other kernel sequences the behavior o f 
the delta sequence 6m(p, t) depends on the tim e difference between t  and p. Due to  this 
reason in  this case the delta sequence is analyzed w ith  the term  Sm(k) where k = p — t. 
For the D irichlet kernel i t  can be shown tha t

1 1 ,m 
Dm{t) =  —  +  -  5 3  cos nt

27r 7r

sin(m +  |) t  
27rsin |

1 /s inm icos4  \
=  7T ------:—t—  +  cos’71* •2w \  s m | J

12
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This kernel can be seen in  Figure 3.1. We can check Property 3.2ii computing the integral 

of the D irichlet kernel and obtaining

00

5m(j>, t)dp
00L w

= f  Dm{Pi t)dp
J—7T

= J  + ~ cos ^  dp 3̂'6̂
_ 2t t  1 sinn(p — t)

O'rr nr /  ^2tt 7r n
7 1 = 1 p = - ir

=  1 .

Notice Equation (3.6) tells us the integral for the D irichlet kernel is equal to  one for a ll 
the values o f m. Inspecting Figure 3.1 we notice the peak value o f Sm(p — t) increases 
when m  increases. Notice also tha t the m ajority o f non-zero values for the delta sequence 
are concentrated around the peak value as m  increases. Then in tu itive ly  Property 3.2 iii 

is satisfied. Note however th is kernel is neither positive or quasi-positive.

aa

ai

3

o ' z

s 1

.... — j»—•

vA A A /\ j V v v v

IS  

O , 

: U

*  0 z f
0 M 4 c t Kernel te r m *5

O 3 
£  z

>w<A/Wy-|jVwW W

OMcMct Iten d  form  -10
* 0 2 t

O M diel (tend  for m >tS

Figure 3.1: D irichlet kernel for various values o f m.

I t  is of interest to find the set o f functions whose Fourier series converges and what 

type o f convergence they present. Over the years various kinds of these sets have been

13
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found.
One o f these sets is the group o f 27r-periodic functions tha t have a Lipschitz continuity 
condition.

D e fin itio n  3.2.1 (L ip s c h itz  c o n d itio n ). A  function x(t) 6 L 1 satisfies the Lipschitz 
condition of order a  >  0 at to if  there is a constant C such tha t

|x (i) -  x ( t0)| <  C\t -  *o|a

for \t — t01 <  e, where a  and C do not depend on e.

I t  has been shown [1] tha t the functions x(t) € L 1(—7r ,7r) that satisfy the Lipschitz 

condition converge pointwise in  accordance w ith

P l( t o ) ^ ? fa + > + * f o - ) = s (to )

as n  —► co. 4 I f  the function x(t) is a continuous function tha t satisfies the Lipschitz 

condition, then Px(to) —*• x(to) a s n -» o o . On the other hand, i f  the function possesses 
a discontinuity, the Fourier series converges to the average o f the right and le ft lim it 
values o f the function at the discontinuity.

3.3 Gibbs’ Phenom enon

The Gibbs’ phenomenon is the anomaly present in  some orthonormal series when they 
try  to  approximate a piecewise continuous function w ith  a countable number of discon­
tinuities. The Gibbs phenomenon was firs t observed by Michelson [10] in  1898 when he 
build a machine to  compute the Fourier series o f a function. However it  was Gibbs [11] 
in  1899 who explained the problem.
The phenomenon appears due to  the lack o f uniform  convergence of the projection of 
piecewise continuous functions. The lack o f uniform  convergence does not at a ll im ply a 
lack o f some type o f convergence in  the projection. Generally, the orthonormal projection 

converges pointwise a t the discontinuity. In  spite o f th is convergence the value obtained 

using the projection presents an overshoot near the discontinuity tha t does not decrease 
as the number o f terms in  the sum used to  compute the projection goes to in fin ity.
This overshoot introduces undesired effects in  the projection. One o f these effects is

*x(to+) is the right limit value of the function x (t) as t —► to- Similarly x(to—) is the left limit value 
of the function x{t) as t  —* to.

14
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the introduction o f negative values in  the projection o f a positive function. This is un­
desirable in  the approximation o f non-negative functions such as gray-scale images and 
probability density functions. Also, “ringing artifacts ”  can appear in  series-based signal 

compression schemes as a result of the Gibbs’ phenomenon.

3.3.1 Gibbs’ Phenom enon in  Fourier series

We w ill show the Gibbs’ phenomenon in Fourier series using an example extracted from 

[1]. Consider the function

t  =  0 when n —* oo. When t  is close to  zero the term  |  goes to  zero and we only need 

to  analyze the term

£ — i /2 if  0 <  t  <  vr 
x(t) =  2 7

—|  — i /2 i f  — ?r <  i  <  0.

This function is known as the sawtooth function, and it  satisfies the Lipschitz condition

at the point i  =  0. Its  Fourier series is

We are interested in  finding the value o f the projection close to  the discontinuity point

sin n i

(3.7)

15
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Expanding this term we obtain

7r /  Dn(s)ds
o

+  cos nt I ds

I siant I ■
Jo V

— cos ntdt. 
2

(3.8)

The second and th ird  integral go to  zero as n —► oo, leaving only the firs t integral. 

Through a change o f variable we obtain

effect fo r the sawtooth Fourier series representation can be seen in  Figure 3.2.

3 .3 .2  G ib b s ’ phe no m e n o n  fo r  p o s itiv e  d e lta  sequences

As we have seen in  previous sections the Gibbs’ phenomenon has a close relation w ith  

the convergence of the projection of a function. For th is reason it  is of interest to  find 
what kind of convergence a positive delta sequence possesses. The following theorem is 
given by W alter [1]. However, he does not provide a complete proof o f the theorem. Due 
to th is reason we present a proof here.

Theorem  3.3.1. Given a function x(t) 6 L 1(R) f l  L 2(R), a positive delta sequence 
5m(p, t) which spans a space S  and a projection xm(t) of the function x(t) into the space

(3.9)

Using th is Equation we note
Px(t) « I(nt).

I f  we choose t = £, then t  goes to  zero as n  —► oo so

P z(0+ ) _  I( ir )  
x (0+ ) — tt/2

and there is an overshoot in the projection as t —* 0. The Gibbs’ phenomenon overshoot

z. I f  Mi <  x(t) < M2 for t € R, then M\ <  xm(t) < M2 for t € R and m €2.,

16
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Figure 3.2: Sawtooth function and its  Fourier series for various values o f n.

ii. I f  Mz < x(t) < Mu for t € [a, 6], then for each e > 0,Tf >  0 there is an m o such 
that for t  € (a + r),b — rj), Mz — e < xm(t) <  M 4 +  e, for m > mo, and hence

xm(t) —> x(t) uniformly a s m —> 00

Proof. i. Recalling property (3.2ii), we note that for a ll e > 0 there is a number 

N  = N(e) such tha t

I TOO

/  Sm(p ,t)d p -1  < e 
J —00

for a ll m  >  N  and t on compact subsets of R. This equation can be expressed as

l - e <  f  6m(p ,t)dp< l + s.
J—OO

Using th is inequality and the function x(t) bounds in  the projection o f the function 

x(t) we obtain

/OO
5m(p, t)x{p)dp

■00

<  [  Sm{p, t)Modp 
J—OO

< M 2  f  sm(p,t)dp 
J—oo

<  M 2( l  +  £).

17
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In a similar fashion,

/OO

6m(p,t)x(p)dp
■OO

>  [  5m(p,t)Midp 
J —OO 

> M i [  6m(p,t)dp 
J —OO

Then,
M i <  x(t) < M 2,

as e  —► 0 . 

ii. For t E (a +  77, b — 77) we have

/ OO
6m(p,t)x(p)dp

-OO

Ua -H ?  f b - T j  r o o  ' j

/  /  M m (p,i)x(p)dp
■00 J a + r j  J b —Tj) 

f  ra + rj  ro o  ^  f b —p
= \  /  I 6m(p,t)x(p)dp5

w —  00 J b —T j )  J a + T )

Ua+r) roo  ^  rb —tf
/  Mm(P, t)x(p)dp+M4 / 6m{p,t)dp.

■OO * /  6 —77 J * /  0 + 7 7
h

By properties 3.3 and 3.2ii we know

r b —T)

/a-Hj

then I 4 <  M 4. Since x (t) € L X(R) we can find a real number 17 such that

0 <  [  6m(p,t)dp<  1, 
Ja+n

[  x(p)dp < U,
J  —OO

sHere we use the notation | x(p)dp to represent x(p)dp +  x[p)dp.

18
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using this fact we obtain

U a + v  r o o }  |

/  \ 5m(p,t)x(p)dp\
■OO J b — T ) )  I

aa + r j  r o o }  M f  ra+7) r o o }

/  \ s m(p,t)dp\\l /  >x(p)dp 
■oo J b —i j )  I I w  — oo J b —T])

I r  r a + r i  r o o }  | | roo  I

- 1 /  /  ( Sr n f a t ) d p \ \  X ( p ) d p \
I w —oo J b —Tj) I \ J —oo I

Ua+T] r o o }  |

/  \5m(p,t)dp\U.
■00 J b —T}) I

By means o f property 3.2iii we know

suP|t—p|>min(t-a-J7,t-6+i?) ^m(P> t) —+ 0 asm  —+ 00,

where m in(z, y) gives the minimum value between x  and y. In  addition, since 

8m(p, t) > 0, we can find a number J  such tha t for every integer m >  J
a a + T ]  r o o }

/ >Sm(p,t)dp <  K j
-OO J b— T) )

where kj is a real number dependent on J. Hence, we can choose the value J  in  

such a way tha t

I r  r a + T ]  r o o }

l-kl < •{ / / \& m {p ,t )dp
I W —oo Jb—T])

< € .

u
(3.10)

Using the bounds obtained we note

xm(t) <  M 4 +  e,

19
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for t  € (a, b). In a similar form

/OO

Sm(p, t)x(p)dp
■OO

r  r a + 7 7  roo  ^ rb~rj
= \  /  \Sm(p,t)x(p)dp+ sm(p,t)x(p)dp

W — oo Jb—T)) Ja+T)
f  ra+n roo rb-rj

- 1 /  /  f^m(P»t )*(P)4P +  -W3 /  5m(p ,t)d p .
U - o o  Jb—t]J Ja+fj

In  this case we can find the lower bound for /5 is M 3. Since the bound for the 
absolute value o f the term  I 3 is given in  Equation (3.10), the lower bound for xm(t) 
is

xm(t) >  M 3 -  e.

This characteristic of positive delta sequences w ill ensure tha t they do not present 
Gibbs’ phenomenon since the overshoot in the projection o f a function w ith in  a bounded 

interval cannot be bigger than e, and this value can be controlled w ith  the number of 

terms used in  the delta sequence.

3.3.3 Positive sequences for Fourier analysis

As we have seen a positive delta sequence does not exhibit Gibbs’ phenomenon. Due to 
th is  reason, there are some positive kernels created through modifications of the Fourier 

series.
One o f these kernels is the Fejer kernel. I t  is given by

n—1

k=0
sin(¥ )2

27msin(5)2’

The Fejer kernel and the projection of the sawtooth function using th is kernel are shown 
in  Figure 3.3. Another kernel based on the Fourier series is the Poisson kernel. This 

kernel is based on the Abel mean o f the Fourier series. The Abel mean for the Fourier

20
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Figure 3.3: Fejer kernel for different values o f n and the representation o f the sawtooth 
function using th is kernel.

series is given by
oo

(3.11)

The Poisson kernel is

*(*>=b  £  r 'nle" !

1 — r 2

27r(l — 2r cos t +  r 2)

Note tha t the Poisson kernel has a closed form  for the sum from minus in fin ity  to  in fin ity. 
Due to  th is  reason, the dependence on n  on the D irich let kernel is somehow replaced by 
a dependence on 0 <  r  <  1 for th is kernel. In  spite of th is change, the Poisson kernel 

behaves like a positive delta sequence except tha t the condition n —► oo is replaced by 
r  —*■ 1.

3.4 Conclusion

In  th is Chapter, the concept o f reproducing kernels has been introduced, and a few types 
o f reproducing kernels have been discussed. Moreover, we have derived the reproducing 
kernel fo r a Fourier series. This kernel can be used to  analyse the Gibbs’ phenomenon

21
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in  a Fourier series expansion. In  addition, some examples o f positive kernels derivable 
from  the Fourier series kernel have been given.

22
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Chapter 4

Wavelets and Wavelet Packets

The wavelet transform has arisen as an alternative method to the Fourier representation 
o f functions. The Fourier representation projects the original signal in to  the frequency 
domain. The problem w ith  this projection is the loss o f inform ation about the tim e lo­
calization of the signal. This is not a problem if  the signal to  be represented is stationary. 
However, in  many practical situations, we do not have stationary signals. For example, 
moving targets in radar and sonar, and voice signals and images have nonstationary 

characteristics. In  this case we require a transform tha t provides us w ith  inform ation 
about the frequency and tim e localization of the signal at the same time.

The wavelet transform gives a solution to the above problem, and, in  addition, i t  also 
brings other advantages such as higher levels o f signal compression and better conver­

gence behaviour. The firs t known wavelet fam ily was created by Haar a t the beginning 
o f the twentieth century. However, his work was almost forgotten u n til around the year 
1975 when Jean M orlet introduced the term “wavelets” to describe th is type of func­
tion, and in  1981 teamed up w ith  A lex Grossman to introduce the concept o f continuous 
wavelet transforms and the ir inverses. M allat [12] introduced the concept of multireso­
lu tion analysis which gave a new and easier way to  compute the projection o f a signal 
in to a wavelet space. His work also contributed to  the discovery of the discrete wavelet 
transform and wavelet packets. Around 1988, Daubechies [2] used the m ultiresolution 
analysis combined w ith  other wavelet concepts to  create her fam ily o f orthogonal wavelets 
w ith  compact support. The Daubechies wavelet was the firs t wavelet function to  possess 

compact tim e support,and that is why it  is one o f the wavelet families most often used.
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4.1 M ultiresolution Analysis (M RA) of L2(R)

The m ultiresolution analysis theory is based on the existence o f an orthogonal basis 
function. In  the case of wavelets this function is called the scaling function <j>(t).

D e fin itio n  4.1.1 (M u ltire s o lu tio n  A n a lys is ). The m ultiresolution analysis o f Ir (R )  

is a subspace sequence {Vj}jez € Zr(R ) such that

— n)  : n  € Z } is an orthonormal basis o f Vo (4.1i)

Vj C Vj+1 for every j  € Z  (4.1ii)

<j>{t) 6 Vj if f  <j>(2t) e Vj+i (4.1iii)

P | ^ ' =  { ° }  span |  (J  V ) j = L 2(R). (4.1iv)
j = - O O  ^  J = - 0 0  '

The basis for the space Vm is given by 

w ith  m , n € Z.
In  addition to the properties given by the MRA, <f>(t) is r  times differentiable w ith  
continuous and rapid ly decreasing functions [1]. Hence, for a suitable Cpk,

| ^ )( t ) | < Q * ( l  +  W)“ P. fc =  0 , l , — , r  p € Z+ , t € R .  (4.2)

This property is related to the convergence of the projection o f functions onto wavelet
subspaces. There is also a function ip(t) € Wo € L 2(R) called the wavelet function which 
forms a set o f closed subspaces Wm, where

^ n , n ( t )  =  2m/2xp(2mt -  n)

w ith  m, n € Z  is an orthonormal basis for Wm.

Some o f the wavelet functions including those o f Daubechies [2] are also orthonormal 
“between spaces” , so that

(lpm,n (t) i (t) ) = <5'm—p&n—ki (4-3)

where Sm is the Kronecker delta.
The space Wm is a complementary speice to  V^ and the union o f the two yields V ^+ j.

24
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This means

Vm+i = V m ® Wm-1 (4.4)

Using Equation (4.4), we note W -\ C Vq and since <f>(t) yields a basis for the space Vo 

we can find a set o f coefficients {gk}  such tha t

(1) = S 9k^  ~  ® ' 4̂‘5̂
In  a sim ilar way, V I i C Vo so we can also find a set o f coefficients { h k }  such tha t

^ * ( 5 ) = £ * * * < * - * ) •  (4-6>

Equation (4.6) combined w ith  the orthogonality properties o f the basis function <f>(t) 
gives rise to  other properties. F irs t they introduce an orthonorm al-like relation for the 
coefficients {hk}-  This relation is

^n^n+2k =  (^*7)
n€ 2

Secondly they give rise to a property known as the “partition  o f un ity” . This property 

states
5 > ( t - * )  =  l .  (4.8)

k

In  addition, the dependence o f the function ip(t) on <f>(t) creates a relation between the
coefficients {<&} and {hk} [13]. This relation is given by

gt  =  ( - l ) * * ! * . , .  (4.9)

I t  is sometimes called the “alternating flip ”  relationship (Strang and Nguyen [14]). Using

'The A ® B  operation gives as a result a subspace whose span is the union of the elements spanned
by the subspaces A and B. The spaces are also orthogonally complementary, so if a € A, b € B,  then
<  a, b > =  0 for a  suitable inner product

25
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Equation (4.6) the definition o f the function <pj,k(t) becomes

Sim ilarly we obtain

=  V '24>{2h -  k)
-  2O+D/2 hr<l>(2j+1t -  2k -  r)

T

= ^ 2  hr<j>j+l,2k+r(t) 
r

= 2O+D/2 Y  h n -n tt2 J'+1f  -  n) 
n

=  ^ ]hn—2k4>j+ l,n { t)-  
n

tyjjkfy) — ^  9r<t>j+l,2k+r (Q 
r

=  ^  .,9 n — 2 k & j + l , T i { t ) -

(4.10)

(4.11)

The Daubechies wavelet and scaling functions axe special due to the fact tha t they 

have a compact support in  tim e [2]. The scaling function is defined inside a given interval 
[0, M  — 1], where M  is a natural number which is always even. The scaling function is 
identically zero-valued outside o f [0, M  — 1]. In  th is case the number o f coefficients hk is 
M. These coefficients axe found in  tables and axe constructed from  Daubechies theory.

4.2 Projections o f f(t) € L2(R) onto Vj and Wj

The projection of a function f(t)  6 L 2(R) on the space Vj+i is given by

PVj+if =  '^2  <  /)  > 0 j+ l,n (t). (4-12)

ci+1
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Since Vj+1 =  V j®  Wj

Pvj+J  = P v J  +  PWjf
=  ' 5 2 < f ,  4>j,k >  <t>j,k{t) +  ^ 2  < f ,  Tpjyk >  Tpj,k(t) 

k k

=  5 3  4 < M * )+ 5 3  4 ^ M * )
k k

=  5 5 4  y " !  hn-2k<f>j+l,n{t) +  5 5 4  5 5 ^ n ~  2A:0j+ltn (^)
(4.13)

n L k
=  5 5  5 5 C*/ln-2fc +  554Sn-2fc

=<i+1

The operations

F0V  =  J ])  cjchn—2k , Fidj  =  5 3  4 g n-2k (4.14)

are known as the interpolation operators, and concisely c7'+1 =  FqcP 4- Fj*dP. Hence the 

interpolation operations allow us to  compute the coefficients o f projections of functions 

in to  the space V)+i w ith  only the knowledge o f the coefficients from the spaces Vj and 
Wj. Note also the coefficients <?k can be expressed as

4  =<- /> ^ iik >

f: )  ] ^n—2k4>j+l,n{t) >
71

= <  /)  T 3 fer<Aj+l,r+2fc(*) >
r

=  ^  / j 4>j-rl,r+2k{^) >
(4.15)

= E t < £ l r
r

=  £ 4 +1'C -:2fc-

Analogously, we can obtain

4  =  E 4 +1Sn-2fc- (4.16)
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The decimation operators are defined as

f o c ' - E - i 'C a .  *!<** =  (4-17)
n  n

and so concisely c7 =  i'bc7+1, and d? =  F\d?+l. The decimation and interpolation 

operators are related in  accordance w ith  the following properties:

F q F o +  F i F i  =  I

f 0 f ;  =  F i F q  =  o

F q F o =  F * F i  =  J ,

where /  is the identity operator.
The above properties yield a method of the construction o f a recursive tree to compute 
the coefficients associated w ith  a set of spaces {V }} and { W j } .  In  Figure 4.1 we notice 
how using the decimation operators we can decompose the projection coefficients c£ into 
different sets of coefficients. The original coefficients can be recovered from the new set 
o f coefficients using the interpolation operators. This process w ill allow us to  represent 
the projection of / ( t )  onto V j  in different forms. The coefficients used in  the alterna­
tive representations can have advantages over the original coefficients (i.e., become zero) 
allowing us to  represent the signal more efficiently. This has applications in  signal com­

pression and denoising.
In  the case shown in  Figure 4.1, an alternative for the coefficients c£ is the set of coef­
ficients 4 ~ \  dfc-1 - Another choice can be the set c£“ 2, d£~2, e£-2 , f£~2- In  general we 
can form  at least 22L different sets to represent the coefficients from the projection of 
function f(t)  in to the space Vi. These representations are known as the “wavelet packet 
basis” for the space Vjr,. The wavelet transform is a specific case o f a wavelet packet basis. 
In  this case the set of coefficients chosen to  form  th is basis is c£-p , d£-p , d£-p+1, . . . ,  d£-1 

as it  is shown in  Figure 4.2.

4 .3  M a t r i x  O p e r a to r s  f o r  C o m p a c t ly  S u p p o r te d  W a v e le ts

In  Section 4.2 we noted tha t the decimation and interpolation operations are used in  the 
computation o f coefficients for wavelet packet bases. Assuming the scaling function <f>{t) 
has compact support (such as Daubechies compact wavelets), i t  can be expanded by a 
fin ite  set o f coefficients hk w ith  k € [0...M  — 1], where M  is an even number.
The system H  w ill be defined as the system whose impulse response sequence is given

28
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Figure 4.1: Decomposition tree for wavelet packets
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Figure 4.2: Decomposition tree for wavelet transform
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by hk . The asterisk superscript denotes complex conjugate, but we w ill usually assume 
hk € R for a ll k  in  what follows, and so the conjugate w ill often be dropped.

The decimation operation can be divided into two stages:

1. Convolution w ith  the tim e inverse and conjugate o f system H .

2. Down-sampling by a factor o f two.

This operation is depicted in  Figure 4.3.
I f  the input signal is o f fin ite  length N, the decimator operation becomes

V
Fo

Figure 4.3: Decimation operation (decimator).

JV-1

Vn = F0{sk} = ^ 2  Skhk-2n- 
fc=0

(4.19)

Since the scaling function has compact support, then k  — 2n € [0...M — 1]. For k =  0

- ( M  -  1) <  2n <  0

so tha t

For k  =  N  -  1
- ( M  -  1) <  - IV  +  1 +  2n <  0

so that
N  — M  < 2n < N  — 1.
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Therefore,
N - M < n <

J V -1

L 2 J L 2 J
Combining these inequalities we find that

suppj/n =
M - l J V - 1

1i

y

11

(4.20)

The decimation can be represented as a m atrix operation [15] of the form y  =  D H s , 

where

H  =

^Af-1 0 0 0 >
h *

M —2 • • • 0 0

h i ••• h *M -1 0
h m0 h i h *M -2 h *M -1

0 | h *M -2

I I

0 0 *5 h i

V 0 0 0 k  y

and

D  =

A> i  o o 
0 0 0 1

0 0 0 0 
V0 0 0 0

e  C (iV +M -l)xiV

0 0 0 o \ 
0 0 0 0

1 0  0 0 
0 0 1 0

g  £LX (JV +M -1)

w ith
L = J V - 1 M - l

+  1 =
N  + M - l

For the interpolation operation the output for a fin ite  signal s of length JV is

JV-1

Vn =  K { sk} = ^ 2  Skhn-2k- (4.21)

For k = 0

fc=o

JVf — 1 >  n  >  0

suppxn  =  [A, B] means th a t x n is nonzero only for A < n < B
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and for k = N  — 1

or

M  — 1 >  n — 2{N -  1) >  0, 

M  — l > n  — 2N +  2 >  0

so that
M  +  2N  — 3 >  7i >  2N  — 2.

Combining these inequalities we find that

supp yn =  [0, M  +  2iV — 3 ]. (4.22)

This function can be represented as a m atrix operation o f the form  y  =  H U  s, where

H  =

and

f  ho 0 0 0 \

h i ho 0 0

h M - 2 hfA-■3 ho 0

h M - h u - -2 h i ho

0 h u - ■1
*

h i
• *

h M -2
•

0 0 ... h in - i h.M- 2

I  0 0 0 h.M- J

f l  0 0 0 ... o 0 0 o'
0 0 0 0 ... o 0 0 0

0 1 0 0 ... o 0 0 0

u  = I ; 1 1 ; 1 ; *

0 0 0 0 ... 0 0 1 0

0 0 0 0 ... 0 0 0 0

0̂ 0 0 0 ... o 0 0 1

£ (M + 2 N -2 )  x  (2 JV -1)

€  £ (2 N -1 )x N
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4.4 W avelet Kernel

In  previous sections we showed tha t we are able to  approximate a function f i t )  € L 2(R) 
through a projection in to  a space Vm. This projection can be expressed as

OO
= y  ] (/> 4>rn,n)4‘m,nify 

n=—oo

=  £  {  / ° ° / ( x ) 2m/2̂ (2mx - n ) d x |  2m/2<̂ (2mt - n )
n = —oo ^ J

=  f  f (x)  / 2m <j>(2mx — n)<f>(2mt — n ) l  dx
L n = —oo J

(4.23)

9 m ( z , t )

rOO/ OO
qm{x,t)f{x)dx

■OO

qm(x,t) is known as the reproducing kernel for Vm-, note qm(x,t) = 2mqo(2mx, 2mt). 
W alter [1] shows this kernel is a quasi-positive delta sequence.

4.5 G ibbs’ Phenom enon for W avelets

The wavelet kernel is not a positive delta sequence. Hence we must check if  th is kernel 
gives rise to  Gibbs’ phenomenon. In  addition, the wavelet series kernel qm(x,t) given in 
Equation (4.23) does not depend on the tim e difference x  — t. Due to th is reason the 
behavior o f the wavelet series for a function w ith  discontinuities must be analysed at a 

general point.
The function used to test for Gibbs’ phenomenon w ill be:

(6 — 1) — x  {b — l ) < x < b
g(x) = f ( x - b )  = <(b +  1) — x  b < x < (b +  1) 

0 otherwise.
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This function has a discontinuity at the point x  =  b.

The projection of this function into the space Vm is given by

/OO

9{y)<lm{y,x)dy
■OO

J rb rb+l
' [ ( b - l ) - y ] q m(y,x)dy + /  [(& +  1) -  y]qm(y,x)dy
6 -1  Jb

= f b [(6 -  1) -  y] 2mqo(2my, 2mx)dy 
J b - l

rb+ 1
j b [(6 +  1) -  y] 2mq0(2my, 2mx)dy

=  f b [ ( b - l ) - y } 2 mq0(2my,2mx)dy 
J b - l

rb+ 1
+ J  [(6 +  1) -  y] 2m9o(2my, 2mx)dy

r2m b
= [(6 -  1) -  2-m t l qo(t, 2mx)dt

J2m(b-1)
r2 m (b + l)

+  /  [(b +  1) — 2-m t] qo(t, 2mx)dt.
J z ^ b

t b+l

rS' ' ...............................................  (4-24)

lb- 1

We are interested in  the behavior o f the projection close to  the discontinuities, so we 
w ill choose z  =  2-m o +  6, where a is a fixed real number, and we w ill allow m  —> oo.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Substituting th is choice for x  in to Equation (4.24) we obtain 

r2 mb

Note that

Pvmg{2~ma +  b) =  /  [(b -  1) -  2_mt] q0{t, a +  2mb)dt
J2m(b-l)

r2m(b+l)
+  I [(6 +  1) — 2 mt] qo (t, a +  2mb)dt

J 2mb 
r°

=  -  /  [(£> — 1) — ( - 2~mu  +  b)] qo{-u + 2mb, a +  2mb)du
J 2m
r2m

+  /  [(6 +  1) — (2~mu +  £>)] qo(u +  2mb, a +  2mb)du
Jo

f O

= — I [—l + 2~rnu]qo(—u + 2mb,a + 2mb)du 
J  2m
r2m

+  / ” [ l  -  2-mu] qo{u + 2mb, a + 2mb)du
Jo
f °

=  / [ l  — 2 mu] qo(—u +  2mb, a +  2mb)du
J2m 

/■ 2m
+  /  [ l  — 2-m u] qo(u +  2m6, a +  2mb)du 

Jo
-2m

= — I [ l  — 2-m u] qo(—u +  2m6, a +  2mb)du
Jo
r2m

+  /  [ l  — 2 mu] 5o(u +  2mb, cl +  2mb)du
Jo
-2m

=  I [ l  — 2 mu\ [—5o(—̂  -b 2m6, a +  2mi>) +  9o(u -b 2m6, o +  2m6)j d  
Jo 

,2m
= I [ l  — 2-m ti] [qo(u +  2m6, a +  2mb) — qo(—u +  2mb, a +  2m6)] dtt.

Jo
(4.25)

q0(x ,t)=  ^  <j>(x-n)4>(t-n)
n = —oo 

00

=  ^  <£(x- (n +  n i ) ) ^ ( i -  (n +  n i))
n = —oo

=  ? o ( a : - n i , i - n i ) ,
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with ni € Z. Then,

q0(u +  2mb, a +  2mb) =  qQ{u +  2mb -  |2 m5J, a +  2mb -  |2 m6J)
' v '  '  v '

6m 6m (4.26)

=  qo(u +  bm, a +  bm).

Using Equation (4.26) in Equation (4.25) we obtain

r2m
■fVmp(2-Tna  +  b)=  [l -  2~mv\ [g0(u +  bm, a +  bm) -  qo(-u + bm, a + 6m)] du.

Jo
(4.27)

W hen m  —*■ oo, Equation (4.27) becomes

TOO
/  [<Zo(u + bm,a + bm) -  qo[-u + bm,a + 6m)] du 

Jo
roo roo

= /  qo(u + bm,a + bm)d u -  /  g0( - u  +  bm, a + bm)du
Jo Jo

Jroo r —oo
' qo(u, a +  bm)du + /  qo(u,a + bm)du
bm Jbm
roo  rbm

=  /  qo{u,a + bm)d u -  / q0(u,a + bm)du
^  "°° (4-28)roo  rbm '  '

=  /  qo(u,a + bm)d u -  qo(u,a + bm)du + 1 -1
Jbm  J - OO

/•oo rdm /-OO
=  /  ?o(w , a  +  6m ) d u  -  /  g o ( u ,a  +  6m )<£u +  /  go(“ > a  +  & m )du -  1

J  6m */—oo «/ —oo
roo roo

=  / 9o(^>a +  6m) d u +  /  go(«,a +  6m) d u - 1
«/&m ^ fern

roo
=  2 qo(u, a +  i>m)cht — 1.

Jbm

Using th is equation we note th a t there is G ibbs’ phenomenon near the  point b if there 
is a  num ber a >  0 such th a t

/ 6m

or a number a < 0 such tha t

roo
/  q0(u, a +  bm)du > 1, 

Jbm

roo
/  go(u,a +  6m)du <  0. 

Jbm
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Using this test, Kelly [16] showed that the Haar scaling functions which are given by

. 1 i f  0 <  t  <  1 ,
m  =  { (4.29)

0 otherwise,

do not present Gibbs’ phenomenon. On the other hand, Daubechies’ scaling functions

present the Gibbs phenomenon on the points where bm =  0.

4.6 Conclusion

In  th is Chapter, the basic m ultiresolution analysis concepts have been reviewed. These 

concepts have been used to  introduce the concept o f wavelet and wavelet packet trans­
forms. The decimation and interpolation operations which are used in  these transforms 
have been illustrated also. F inally, a study has been undertaken o f the Gibbs’ phe­

nomenon for wavelet and wavelet packet transforms.
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Chapter 5

Minimum Description Length 
(MDL) Criterion

The use o f wavelet packets and the wavelet transform have increased considerably. How­
ever, the variety o f existent wavelet functions and basis sets to choose from is a prob­
lem when we want to  apply the wavelet theory to a problem. Sometimes the previous 
knowledge of the problem is enough to  find the ideal wavelet function and projection 
coefficients. Nevertheless, it  is o f interest to  find an automated criterion to  choose the 
best basis among a given set o f possible bases. A  short introduction to  some o f these 
methods is given by Merhav [17]. One of these crite ria  is the M inimum Description 
Length (M DL) criterion proposed by Risannen [18] [19] [20].

5.1 The Model-Order Selection Problem

Consider the noisy function

y =  z  +  e, (5.1)

where y, z, e 6 R. The signal y is the noisy function, z  is the signal to  be estimated and 
e is noise. In  addition, z, y, £ axe functions o f tim e. We often assume £ is Gaussian noise. 
For the model-order selection problem we use a number n o f sample points obtained 
from the signal y.
We have a group o f models b u ilt using orthonormal bases. These bases can be wavelet 
packets, projections in to different wavelet spaces V j  or any orthonormal basis capa­

ble o f representing the data y and z. Suppose we have a set o f orthonormal bases 
f? i, I?2, - • •, Bm . . . ,  Bd- The model m is constructed by projecting the noisy data y us­
ing the basis B m  from  the set o f orthonormal bases. The number o f coefficients different
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than zero for the projection in to the space Bm w ill be km- The number km is known as 
the order given by the model m.

The M D L criterion w ill pick the model w ith  the basis Bt and the model order kt that 
represents the signal x  in  the best form. Note the M DL criterion is just a model-order 
selector. Hence it  w ill try  to find the best model-order to  represent the signal among 
the models at hand. However, i f  the bases chosen from the orthonormal basis set do not 

represent the signal x  well, the solution obtained w ill not be satisfactory, but i t  w ill be 
the best possible solution from the given ones.

5.2 Selection Criterion

The M DL criterion measures the quality o f a certain model as the complexity to  rep­

resent the data w ith  the model. I f  the model does not represent the data well, we w ill 
need a lo t o f inform ation (i.e. bits) in  order to obtain the desired representation. Hence, 
the complexity o f representation for tha t model w ill be large. On the other hand, if  the 
model used represents the data well, the complexity is small.
In  the case the model fits  the data well, we need to ensure tha t the model is not overfit­
ting. This means the basis represents the data well but any small variation (i.e. noise) 
w ill cause the model to  be inaccurate. The possibility o f overfitting is related to  the 
level o f complexity o f the basis used to  represent the signal. I f  the elements of the basis 
axe highly elaborate functions or the number of coefficients used to  represent the data 
is large compared to  other bases, then the model is more complex and hence th is model 
w ill be less desirable than a simpler model.
The M DL criterion measures the data representation complexity assuming the data ob­
tained by representing the signal using a model m  is a symbol which has to  be coded and 

transm itted. The coding scheme used to  represent the symbols w ill be a prefix scheme. 
This scheme creates the codewords in such a way tha t no codeword is a prefix o f any 
other codeword. The codewords are related to the symbols according to the probability 
o f appearance o f the symbols. Hence the word w ith  the shortest codelength w ill be given 
to  the symbol w ith  the greatest probability. The M DL criterion does not care about the 

codewords. I t  only selects the codelength value used to  assign the codewords. The M DL 
criterion proposes to  measure the codelength for the model H  using the formula

L(H) + L(D\H), (5.2)

40
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where L(H) is the codelength, in  bits, o f the description for the model H  and L(D\H) 
is the codelength, in  bits, o f the residual D  (i.e. the difference) between the actual data 
y and the model prediction o f the data using the model H. The M DL criterion says the 
best model to  represent the data D w ill be the one w ith  the smallest codelength.

5.3 L{D\H) Codelength Com putation

As we have seen the prefix coding scheme codelength is closely related to  the probability 

o f occurrence o f the symbols. Equation (5.1) shows us the data to be represented by the 
models is a random function. Hence it  is straightforward to  use th is random function to  

obtain L(D\H).
By definition, L(D\H) is the codelength o f the data D when the model H  is used, then 
we can use the probability p(D\H) o f obtaining the data D given the model H  to get the 
codelength. In  order to  obtain the minimum possible codelength we need to  maximise the 
probability p{D\H). This maximization is accomplished using the maximum likelihood 
estimate (M LE) [21] p(D\H) of p(D\H).
Using the M LE L{D\H) is given by

L(D\H) = - lo g 2 [p(D\H)]. (5.3)

5.4 L(H ) Codelength Computation

The definition of term  L(H) is harder due to  the fact we cannot relate a probabilistic 
value d irectly to  the model. However, this term  can be related to  the order o f the model. 

The order o f the model w ill be used to measure the grade o f compression the model H
is capable of delivering. I t  has been shown [20] [22] tha t this can be accomplished as

L ( tf)  =  | lo g 2(n) +  cfc, (5.4)

where k  is the number o f coefficients used to  express the data using the model H, c& is a 
constant tha t depends on k, and n  is the number o f data points obtained from the signal 
y. Furthermore, Saito [22] suggests tha t the term  c* has an almost constant value when 
we are using wavelet bases, and then it  can be ignored.
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5.5 Conclusion

In  this Chapter, an introduction has been given of the use o f the m inimum description 
length criterion. This criterion has subsequently been used to  find the best basis functions 

to  represent a positive-valued signal.
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Chapter 6

Gaussian Noise as a Decimator 
Input

The wavelet transform  is used in  many applications. Generally, the signal to  be processed 
is projected into a scaling function subspace V j  and then the transform coefficients axe 
computed using the decimator operation as it  was shown in  Figure 4.3. The transform 
coefficients amount to  a representation o f the original signal. A fter the coefficients are 
obtained, they can be processed, perhaps for purposes such as denoising, compression, 
or signal detection. However, the original signal is often corrupted by additive noise. 
This noise can create problems when we want to recover the signal from the transform 

coefficients.
In  Section 4.3 we noticed tha t the decimator operation can be implemented as a ma­
tr ix  operation when the scaling function has compact support. In  th is chapter we w ill 
characterize the behavior o f white Gaussian noise (WGN) introduced in to  a system 
composed o f a chain o f dedmators. The scaling function <p(t) in  th is system w ill have 
compact support. Hence it  w ill be associated w ith  a fin ite  number o f coefficients hk w ith  

[0 . . .M - 1 ] .
There have been previous works [3] [4] [5] tha t analyzed the behaviour o f a function 
w ith  noise when i t  is introduced into a chain of decimators. However, in  a ll these works 
the input signal used has a support of (—00, 00). In  many practical applications, th is is 
generally not the case. Furthermore, i f  the support o f the function to  be processed gets 
close in  size to  the size of the scaling function’s support, then the statistical behavior is 
very different from  tha t considered in  these works. In  th is chapter we w ill consider some 
of these difficulties.

The analysis o f a random signal as an input to  a system is very im portant in  various
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fields (i.e. estimation theory, detection theory). For example, i f  we want to detect the 
presence of a known determ inistic signal in  WGN, then consider the following simple 
case. In  th is case the detection process can be converted in to a hypothesis selection 
problem where the hypotheses are:

Ho : x[n) =  iu[n] n =  0 ,1, . . . ,  P  — 1 

H i : x[n] =  s[n] +  u;[n] n =  0 ,1, . . . ,  P  — 1,

where s[n] is a known determ inistic signal and iu[n] is zero-mean WGN w ith  variance 
a2. In  this model the hypothesis Hi represents the presence o f a known signal in  the 
system and hypothesis Ho represents the presence o f just WGN. Hence a procedure which 
chooses between Hi and Ho w ill perform the detection. A  procedure suggested in  [23] 

to  perform the detection is to  choose the hypothesis Hi if

T (x ) =  x t R - 1 s >  v,

where x  =  [x [0 ]x [l]. ..x[P  — 1]], s =  [s [0 ]s [l]. . .  s[P — 1]], R is the output correlation 
m atrix of the system when the input is WGN, and v  is a selected threshold level. The 
threshold level would affect the detection accuracy o f the model.
As we can notice, the correlation m atrix inverse R-1 plays an im portant role in  the 
detection problem. For th is reason we have to  study the behavior of m atrix R to check 
i f  i t  possesses an inverse and if  the inversion process is ill-conditioned.
In  our case the system to analyze is a chain of n  decimators since this is associated 
w ith  wavelet based detectors. Hence, we w ill analyze its output correlation m atrix 
when the input is WGN. We w ill find a predictable structure for the output correlation 
m atrix of th is system. A fte r tha t, upper and lower bounds for the unitary norms for the 
output correlation m atrix norm of the same system w ill be given. These bounds w ill be 

based on the the eigenvalues o f the output correlation m atrix. They w ill give us some 
inform ation about the condition number o f the correlation m atrix. As it  is shown for 
example by Horn [24], the condition number is related to  the ill-conditioning o f a m atrix 
inversion process. Hence, we w ill obtain some inform ation about the ill-conditioning in 
our problem.

The m atrix correlation structure and m atrix norm bound study are the new contributions 
tha t we have made in  the analysis o f Gaussian noise as an input in to  a decimator chain.
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6.1 Random  Process as an Input to  the System

The output of a decimator given a nonstationary real random input can be described 
(partia lly) by the firs t and second order statistical moments as

N - 1

= E  { y n }  =  hk - 2n E  {s*} (6.1)
k=0

Tyy (nu n2) =  E { (yni -  mVni) (y„ 2 -  ) * }  (6.2)

for — <  n i , ri2 <  X> where E { .}  denotes statistical expectation. In  m atrix
form  we have [15]

E {y }  =  D H E {s } (6.3)

**» =  E { (y  — 1% ) (y  -  m j,)*}

=  D H  E { (s — m s) (s — m s) * }  K HT>H (6.4)

= D H R sHhDh

Note th is model does not assume any kind o f stationarity in  the input signal. This ap­

proach is different from the one used in  [3] [4] [5]. In  these works, the authors constructed 
stationary-like random functions (i.e. circularly stationary) and used them as input into 

the system. We do not like th is approach since the model then becomes dependent on 
the stationarity o f the input signal.

6.2 Gaussian noise (GN) as input to  a W avelet-Based Dec­
imator Chain

6.2.1 D ecim ator O utput Characterization

A white Gaussian random process has a correlation m atrix R s =  a~I ,  and so the mean 
of the output o f the system in  Section 6.1 can be expressed as

m y =  E {y }  =  D H  E {m s}  =  D H m s (6.5)

1 [xj is defined as the greatest integer that is less than or equal to x €  R.
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and the output correlation matrix is

= ct2DHH*D* (6.6)

In  addition, if  the input mean is zero, then Equation (6.2) can be reduced to

iyy(n i,n2) = E{yniy*2}
fN -1  N - 1 'j

=  E < hk-2nisk y  ] hm-2n2Sm f 
I  k=0 m=0 J

N - l  N - 1

=  £ £  fyfc—2ni hm—2t»2 E {sfcSm} 
k=0 m =0  
N - l  N - l

=  £ £  '̂k—2ni^ri—̂n2a' m)
k=0 m=0 (6-7)

AT-1
=  ^  ^k-2ni hk-2n2

k= 0
JV -l-2 n 2

=  0-2 ]C  ^P + ^n i-n i) 01 
p = -2 n 2

N - l -2 n i  

— O2 ^  ^pV +2(n i-n2)
P = - 2 m

Note how the lower and upper lim its  on the output correlation can depend either on n i 

or on 7X2-
Due to the fact tha t the coefficients for the scaling function <t>(t) have a support

supp h =  [0...M  — 1], Equation (4.20) shows the intervals o f n\ and 7i 2 where the auto­

correlation is defined are 7x1 € [— — L ^r^J ] and 712 € [— — L^T^J]-
For the sake of clarity, the terms o f the correlation w ill be displaced in  tim e, where th is 
displacement is not going to affect the structure of the correlation; it  w ill only m odify 
its  tim e location which is not im portant in  our problem. The tim e localization can be 
re-established w ith  a displacement in  tim e o f the correlation after it  has been obtained. 
This effect is achieved w ith  a change of variable. We w ill define 77x1 =  7x1 +  and
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m2 =  7i2+  L ^ V J  • W ith  th is  change, Equation (6.7) becomes

^ (m L m a )  =  E {» TOl_ L« ^ i jy ^ _ L̂ i j }

JV -l-2m2+2[^ f !J  

=  <r2 hphp+2d or
p= -2m2+2[ ^ J  (6*8)

JV -l-2mi+2L ^ iJ  

=  <72 £  ^  V 2d.
p= -2m1+2L ^ iJ

where d — m 2 — m\.
Equation (6.8) is only defined on the interval 0 <  m i, m2 <  L\ — 1 =  [ N+^f~1 j  — 1.

I f  the system H  describes an orthogonal wavelet transform  w ith  compact support, 
then the system’s coefficients satisfy the orthogonality condition

M- 1

£  K K +2k =  fc , (6.9)
71=0

where supp h =  [0 ...M —1]. This equation is sim ilar to  the one obtained in  Equation (6.8), 
where the equivalence between both depends on the upper and lower lim its  of the sum 

in  Equation (6.8). I f  the lower lim it p = — 2m\ +  2 or p =  —2m2 +  2 <  0

and the upper lim it p = N  — 1 — 2m i +  2 Ln f^J  or p = N  — 1 — 2m2 +  2 [^ f^ J  > M  — 1 
these two equations are equivalent. Then, for <  m.i <  and

[ ^ i j  <  m2 <  j  +  L ^ r^J  j Equation (6.8) can be reduced to

r'yy (™ .i, m 2)  =  a 2 6 m 2 - m l ■ ( 6 . 1 0 )

Note also th a t if  |d| =  |m2 — m\\ > Equation (6.8) is equal to  zero.
P utting together the correlation values obtained, we form  the correlation m atrix for 

the decimator where m i is the row index, and m 2 is the column index. This m atrix 
depends on the tim e difference d =  m 2 — m i as i t  is shown in  Equation (6.8), so then 
it  w ill possess a Toeplitz-like structure. This structure w ill subdivide the correlation 
m atrix in to certain areas as shown in  Figure 6.1; 2 as it  has been seen w ith  the previous
arguments there are only three areas tha t are different from zero. The upper le ft comer,
the m iddle and the bottom  right comer, where the m iddle subm atrix is equal to a 
diagonal m atrix as given by Equation (6.10).

2In order to  save space on the matrix representation, the elements of the form haht,+hehd-i \-hehj
are represented as h(o,6)+(e.<0+—+(e./)-
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I f  the coefficients hk 6 R  as it  is the case fo r the Daubechies’ wavelets [2], then the 
correlation m atrix is real and symmetric. Due to th is structure, the elements of this 
m atrix are defined by the ir position relative to  the main diagonal.

h ( N - l .N - lW N 4 .N -2 1
hlN-3.V-lWN-t.N-31 kgi-l.N-ilKN-t.N-XWN-a.N-atHN-i.N-*)

h n . N - l W i . N - 2 1  I h (3 .N -lW « ..M -2 W 3 .A t-3 W 2 .J 't~ t1

h fO .O W l.lW 2 .2 W 3 .3 3

"B.OW3.n
h(2.0W 3.11
“ (O .O W I.l)

Figure 6.1: M a trix  structure for R j, (assuming cr =  1)

The elements in  the upper le ft comer subm atrix axe given by Equation (6.8), w ith  
m  i  and m<i in  the interval [0 .. .  — l ]  • Note th a t in  th is  case the lower lim it of the
sum — 2m i +  2 Ln f^J  ^  greater than zero and approaches zero when we approach m i 
or m2 =  ■ As a result, the number o f terms in  the sum is less than the number
needed to  obtain the equivalence w ith  Equation (6.9). The sum values obtained in this 

case for different values o f d = m\ — m2 are shown in  Figure 6.2. In  th is figure it  can 
be seen how the correlation coefficients tend to  zero rapid ly as d becomes larger. This 
effect is produced by the rapid ly decreasing coefficients o f system H.
In  a sim ilar form, the upper lim it sum in  Equation (6.8) gets smaller than M  — 1 for the 

elements on the lower righ t comer. In  th is case the number of elements in  the sum would 
get smaller as we get close to the lower right comer. The result o f the sum for this case 

is shown in  Figure 6.3. In  this figure we can see how the elements on the diagonal, d =  0, 
w ill remain close to  one u n til they are close to  the comer. Away from  the diagonal, 
where d #  0, the elements w ill have a small overshoot as they approach the comer and 
then they return to  zero.

Note the size o f the upper le ft comer m atrix is LC\ =  |_^T^J > ^  ^  independent
of the size o f the inpu t signal. Analyzing Equation (6.10), we notice the size of the 
identity  subm atrix is given by IM \ =  +  1, where N  is the size o f the input

signal. Note how th is value is dependent on the size o f the input signal N. Subsequently 
the bottom  righ t comer is also dependent on the length o f the input signal and its  size 
is RC\ =  +  1 i f  IV is odd and RC\ =  i f  AT is even. The structure o f this
m atrix is shown in  Figure 6.4, where Q\ is the upper le ft comer subm atrix and W\ is 
the lower righ t comer submatrix.
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Dstsncc from Diagonal (d) 2
Number of Ttrjns in IheSum

Figure 6.2: Correlation terms for which the sum lower lim it of r^ , (m i, m2) is greater 
than zero, and here M = 8.

0.5

•02

DtSbace from Diagonal <d) 2'

Figure 6.3: Correlation terms for which the sum upper lim it of r^ , (m i, m2) is less than 
M , and here M = 8.
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Qi 0 0
0 ii 0
0 0 Wi

Figure 6.4: D iH iH ^ D ?  structure

WGN n+1

Figure 6.5: Decimators connected in a chain.
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6.2.2 Chain of Decimators Correlation

Suppose we have a chain o f decimators as illustrated in  Figure 6.5. In  th is case the input
correlation m atrix o f the next decimator w ill be the output o f the previous one, and
we continue to  assume the input to  the system is white Gaussian noise w ith  zero mean. 
Papoulis [25] shows tha t the output of th is system w ill be Gaussian noise as the system 

is linear.
The system correlation can be represented in  a recursive form  as

=  D nH n Ryn H n" D n" ,  (6.11)

where Ryn is the nth decimator correlation m atrix and

Ky, = ^ D iH x H i^ D i*  (6.12)

gives the behaviour o f yi as was analyzed in  Section 6.2.1. The size o f Ryn is given by

L n_ i +  M  — 1
L n  =

w ith

Li =

(6.13)

N  + M - l
2

where as before N  the length o f the signal to  be input in to  the chain o f decimators 
and [0 ... M  — 1] € Z+ is the support o f the scaling function <j>(t). In  Section 6.2.1 we 
analyzed the structure for the firs t correlation m atrix R yx. The structure of th is m atrix 
was shown in  Figure 6.4. To obtain the second correlation m atrix R y2 the m atrix R yx is 
prem ultiplied by the m atrix D H  and postm ultiplied by the m atrix (D H )h . The m atrix 
D H  is shown in Figure 6.6.
We w ill find the conditions needed to  obtain a nth correlation m atrix R yn for a chain 

o f n decimators w ith  the structure shown in  Figure 6.7.
For n =  1, the values L C i, IM \ and RC\ can be obtained by analyzing the m atrix D H . 

The size of the iden tity  m atrix  I  Mi w ill be equal to  the number o f rows tha t contain a ll 

the M  elements ho to  h ^ - i  inside them; then the value o f LC\ is the number o f rows 
from the firs t one u n til the one whose firs t element is either zero or ho, and the value of 
RC\ is the number o f rows from  the last one u n til the one tha t has the element h ^ - i-  
When there are no rows tha t contain a ll the M  elements there w ill be an overlap between 
the upper le ft comer and the bottom  right comer. This case appears when the length of 
the input signal is very close to  M , and then the size of the transient in  the system w ill
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h M - 3 h M - l 0 0 0 0 0 0 0 0 0 0
hM - 4 2 h M - l 0 0 0 0 0 0 0 0

:

ho hi ha hj h M - X 0 0 0 0 0 0
0 0 ho hi ha h3 h M - l 0 0 0 0 0
0 0 0 0 ho h X h M - 3 h M - 2 hM - l 0 0 0
0 0 0 0 0 0 ho hi h M - 2 h M — 1 0

0 0 0 0 0 0 0 ho hi h2 h3 h*
0 0 0 0 0 0 0 0 0 ho hi ha
0 0 0 0 0 0 0 0 0 o o ho

Figure 6.6: D H  m atrix structure

L . C n

I M ,

R .C ,

1

”1
A

L . C n  

■<--------------- ►
I M *

- 4 — ►
R . C n  

< ---------------►

Qn o 0
0 In 0
0 0 W„

Figure 6.7: D nH nH « D j*  structure
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make the analysis of the signal very d ifficu lt. In  th is case i t  is better to use a smaller 
M  or a bigger signal length N. In  accordance w ith  this, from  now on we w ill assume we 
have an in itia l identity m atrix o f size IM \. Figure 6.8 shows LC\ for M  =  12.
For re >  2 we have to m ultip ly Ryn_x w ith  the m atrix D H  and its  conjugate to  get Ryn.

*•3

O
*-3

h a hu 0 0 0 0 0 0 0 0 0 0 I T
ha ha hio h u 0 0 o 0 0 0 0 0 0
he h? ha ho hio h u 0 0 0 0 0 0 0
h i te he h7 ha hg hio h u 0 0 T 0 0
h2 h3 h i hs he h7 ha tl9 hio hu 0 0 0

hi ha h3 hi " 7 T h7 ha ha hio h u 0
0 0 ho h i h2 h j ht hs he h? hs h9 hio
0 0 0 0 ho h i J h h i hs he J 2 L
0 0 0 0 0 B m h i h2 h j h i J L he
0 0 0 0 0 0 0 0 h i h2 h3 h i
0 0 0 0 0 0 0 0 0 0 MBBM hi h2
0 0 0 0 0 0 0 0 0 0 0 0 ho

Figure 6.8: DH  upper le ft comer for M =12.

We want to obtain an output m atrix w ith  the structure show in  Figure 6.7. In  order 
to  get this result we w ill partition  the m atrix D nH n in to nine submatrices as shown in 

Figure 6.9.
We w ill start the iteration process w ith  re =  2, then for n —1 =  1 we have LC\ =  ,

I C „ _ !  I M n - .  1 K C „ _ l

L C n \ An Bn Cn = 0
I M n  | Dn = 0 En Fn = 0

Gn = 0 Hn Jn
Figure 6.9: D nH n subm atrix division
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I  Mi =  +  l  and RC\ =  [^T ^J  +  1 i f  AT is odd, and RC\ =  [^T ^J  if  AT is even.
As i t  was shown in  Equation (6.12), when n =  1 we pre-m ultiply a diagonal m atrix by 

D iH i and post-m ultiply it  by H ^ D j1 which is the conjugate transpose o f D iH i.  In  
the subsequent cases instead o f a diagonal m atrix we now have to  pre-m ultiply R yn_! 
by D nH n and post-m ultiply by its  conjugate transpose. I f  the m atrix R yn_ i has the 
structure shown in Figure 6.7, then only the middle subm atrix is equal to  the identity 
m atrix. Due to th is reason, the structure o f the m atrix R yn given by the recursion is 
subject to  the following rules

LCn >  LCn- 1 

RCn ^  RCn— 1 

0 < IM n <

the recursion w ill be finished when IM n <  0.
The value o f RCn is an integer chosen in  such a way tha t the subm atrix G n is equal to 

the zero m atrix. Analogously, LCn is an integer that makes C n equal to  zero, and fina lly 
IM n makes D n and F n also equal to  zero. The structure o f the partitioned D nH n m atrix 
using these values is shown in  Figure 6.9. Using this m atrix partition  for D nH n and 
the m atrix partition  shown in  Figure 6.7 for R yn .! we w ill obtain the m atrix structure 
shown in  Figure 6.10 for m atrix R yn =  D nH n R y„_ !(D nH n)H . The structure o f the

Q n  = AnQn_! A« + BnB» + 0 0 +  BnE“  +  0 =  0 0 + BnH « +  0 =  0

0 + E„B”  + 0 = 0 0 + EnE“  +  0 0 + EnH « + 0 =  0

0 + HnB « +  0 =  0 0 + HnE« + 0 = 0 0 +  HnH ^ + J nW n_i J H

Figure 6.10: nth correlation m atrix structure.

autocorrelation m atrix Ryn given in  Figure 6.10 w ill have an upper le ft comer given by 
Qn =  AnQ n—iA H  +  B nBH.The lower right comer w ill be W n =  J nW n_ i J *1+ H nH**. 
In  addition to  the previous conditions imposed upon LCn, RCn and IM n, the values 

of LCn and RCn w ill be chosen in  such a way tha t E nE *f =  I n. This is accomplished 
when a ll the m atrix rows from m atrix E n contain a ll the elements hk, k  € [0 ... M  — 1]. 
Furthermore, using Equation (6.8) it  can be shown tha t th is  choice w ill make the matrices 
B nE ^ , B nH n and E nH ** equal to  zero.

Suppose as an example we have a chain o f two decimators. The value o f LC2 can be 
obtained by examining the submatrix of D 2H 2. The recursion rules given in  Equation
(6.14) te ll us LC2 has to be greater than or equal to  LC\. This characteristic can also
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be seen in  Figure 6.7 due to the fact tha t the subm atrix Q i is different than the identity 
m atrix. We need to  find the number of extra rows starting from row LC\ needed to 
construct LCi. In  order to find these rows we w ill create a new m atrix by getting rid  

of the firs t LC\ rows and the same number o f columns o f m atrix D 2H 2. Then, we w ill 
perform the same analysis used to  obtain LC\ in  th is new m atrix. That is to  find the 

number o f rows starting from the upper le ft comer that do not include the element ho. 
As it  can be seen in  Figure 6.11, the number of rows is given by

M - L C i - 1
(6.15)

Finally, as it  is shown in  Figure 6.11 LCi is given by:

«o

hjo hu 0 0 0

hs h9 hio hu 0

h6 h? ha ho hio

he hs hs h7 ha

hs t*3 he hs hs

_hs_ hs h7 ha ha hu hn 0

h3 he hs hs h? ha h9 hio

hi te he hs h? Jbbi

B H
MB
hi ha hj he _hs_ hs

0 0 0 hi h2 h3 he

0 0 0 0 0 ho hi h2

0 0 0 0 0 0 0 ho

Figure 6.11: D 2H 2 le ft comer sub m atrix, for M  =  12.

LCi — LCi ■+■
M - L C i - l

(6.16)

The argument used to  compute LCi can be extended for a chain o f three or more 
decimators. Hence as it  is shown in  Figure 6.8 the size o f the upper le ft comer m atrix 
which represents the transient effect of the system w ill be given by

LCn =
LCn~ 1 +  

LCn—1

M—LCn-l —-J ■“[
, otherwise.

(6.17)
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hu m 0 0 0 0 0 0 0 0 0 0 0

ha hs hio 0 0 io_ 0 0 0 0 0 0

ha hr h. hs hio m 0 0 0 0 0 0 0

ht hs ho hr hs hs hio hu "0” 0 0 0 0

h2 hs h« hs ho hr ha hg hu h ii 0 0 0

ho hi l>2 hi lu hs ho 1>7 ha hs hio tm 0

0 0 ho hi h2 hi h« hs he hr ha ho hio
0 0 0 0 ho hi hi hi tu hs he h7 ha
0 0 0 0 0 0 ho hi hs hs h« hs he
0 0 0 0 0 0 0 _o_ ho hi ha hs h«

0 0 0 0 0 0 0 0 0 0 ho hi h2
0 0 0 0 0 0 0 0 0 0 0 0 ho

c;

Oa;

I t t
Figure 6.12: D nH n lower righ t comer w ith  N  odd.

The analysis of the lower right comer is sim ilar. However, remember the size o f RC\ 
depends on the length of the input signal. I f  the input signal length N  is odd the last 
element in the lower righ t comer is ho- This is shown for M  =  12 in  Figure 6.12. The 

recursion in  th is case w ill be given by:

M-RCn-l
RCn

=  J RCn-l +  ,if [ ----- 2-

RCn- i  ,otherwise,

> 0
(6.18)

w ith  RCi =  +  1.
For N  even the last element in  the lower righ t comer is h^. This is shown for M  — 12 
in  Figure 6.13.The recursion in  this case w ill be given by:

RCn =  <

w ith  RC\ =

RCn- 1 +  

RCn- 1 Otherwise,
(6.19)

6 .2 .3  M a tr ix  S tru c tu re  E xa m p le s

To illustrate the structure of the correlation m atrix , we w ill look at some examples. 
3 Suppose cr2 =  1, N  =  8 and M  = 8 , so L =  7, LC\ — 3, IM \ — 1 and RC\ =  3. Note

3Numerical calculations of these examples are shown in the Appendix A.
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h inm 0 0  I 0 0 0 0 0 0 0 0 0

ha hs h io 0 0 0 0 0 0 0 0 0

ha t*7 ha hs h io m 0 0 0 0 0 0 0

h, hs ho h r ha hs h io h u 0 0 0 0 0

ha ha h« hs he h7 h . hs h io h u 0 0 0

ho h i t«2 ha h« hs he Ht ha hs h u m 0

0 0 ho In h2 ha h« hs he h r ha he h io

0 0 0 0 ho h i t>2 ha lu hs he Hz h«

0 0 0 0 0 0 ho h i h2 ha he hs he

0 0 0 0 0 0 0 0 ho h i h2 ha tu

0 0 0 0 0 0 0 0 0 0 ho h i h2

0c;
8

a;

Figure 6.13: D nH n lower righ t comer w ith  N  even.

in  th is case i f  we want to  connect the system to  another decimator we w ill get an overlap 
o f LC2 and RC2- The next matrices w ill show the structure of m atrix D iH x H i^ D i^ .
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r«.
N ifl M
i i i S'©  ©  ©

&  i  s i H
 ̂i i i UsI f l I f l W I f l NN W «*) H H<M> s>/ w  w>

+  +  +  + +<—"K ^  <««>» «-N
^  ^  ^  so
so M1’  cm"  o ’  o“W  'w ' W-C -C ^  -C -C o  o

N N N NN uf <*f *H
+  +  +  +.«—■» ^  **s
SO so SO SO
SO* M1’  N  O"

o  o  o

s  U) co h

i i '+ icr cr ?  ©
SO o f c f

O O O -fiT J=̂

II

© ,

II

CM
so

©
Hh

+

CO
CO
+

CM
+

P*. ©'w' W
Hh +  
c f c f
SO  M **

+  +
©
CM

o
c f

CM
c f

© O -C -C -C -C -C

©sT ©
Iff

o  i  i

cor*f
Hh

sO

H-

+ + 
CO CO 
©" CO
+ + 
CM CM

+ +
P- ©  CO *-l^  w  w
+  +  +  +0—0 #-S #«s
©  ©  ©  ©
so’ cf O*

©
CO
■h

c f

Hh

~h

c f

©

>w>’
+4»—V
©

*C -C JC -C

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The numbers surrounded by parentheses are obtained by applying (6.9) to  the m atrix. 
Now suppose a2 =  1, iV =  8 and M  =  4 , so L =  5, and the structure o f m atrix 

D iH iH i^ D i*  is

^(2,2)+(3,3) : (0) 0 0 : 0

(0) : (1) (0) 0 i 0

0 i (0) (1) (0) : 0

0 : 0 (0) (1) : (0)

0 : 0 0 (0) ; tyo ,0) + ( l , l ) + ( 2,2)_

In  this case LC\ =  1, IM \ =  3 and RC\ =  1. Connecting the system to  another
decimator we w ill get LCo =  LCi +  [ Af~£2CL~1j  =  2 and RC2 =  i?C i =  1 since 
[ M - * C - 1 -2  j  =  a

6.2.4 Correlation M atrix Inverse

I f  we have a chain o f n  decimators w ith  W GN as an input the output correlation m atrix 

w ill be given by:

R j,n =  cr2D nH n • • • D a H a D x H x H i^ D x ^ H z ^D z " • • • H n* D n* . (6.20)

I t  is of interest to  find i f  th is m atrix possesses an inverse. In  order to  solve th is question 
we w ill start w ith  the m atrix

c ^ D iH iI iH i^ D i*  (6.21)

where I j  is the identity m atrix. Notice matrices D i and H i are fu ll rank matrices. This 
means a ll the ir rows are independent. Notice also tha t for a ll nonzero vectors x

x ^ I ix  >  0.

Due to th is property, m atrix I i  is part o f a group o f matrices known as positive definite 
matrices. I t  is im portant to  note tha t a positive definite m atrix always has an inverse
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matrix [24]. Horn [24] also showed that the product

c a c h ,

where A  is a positive definite m atrix and C is a fu ll rank m atrix is a positive definite 
m atrix. Hence, the product

<72H i I lH ! *

is positive definite. Using this argument we can also conclude (6.21) is positive definite. 
Furthermore, the argument can be used in  a recursive manner to  show tha t the correlation 
m atrix is positive definite, and then has an inverse.

6.2.5 Correlation M atrix Eigenvalue Bounds

In  Section 6.2.2 we showed the m atrix given in  Equation (6.20) is usually real and 
symmetric as it  is derived from the Daubechies construction method for wavelets. Horn 
and Johnson [24] show tha t th is m atrix can be represented as

D i H i H ^ D i *  =  UAUh , (6.22)

where here n =  1, and U  is a square un ita ry m atrix and A is a diagonal m atrix w ith  the 
eigenvalues o f D iH x H i^ D i^  Horn and Johnson also show tha t these eigenvalues are 

real and can be arranged from minimum to  maximum as

Am i n  =  Ai < A2 f ;  ' • ‘ ^  A£ , j  — A m a x  (6.23)

Using (6.23) and a unitary invariant m atrix norm 4 , we can put a bound on the norm

of the m atrix given in  Equation (6.22) as

Amin =  Am in |||U U * ||| <  |||U A U *||| <  X m a x  |||U U * ||| =  Ama* . (6.24)

The output o f the firs t decimator w ill be the input o f the second one, and so upon
applying (6.24) we can determine a bound on the norm of the correlation m atrix o f the

4A unitary invariant matrix norm has the property |||U A ||| =  |||A |||. Some examples of these norms 
are the Frobenius and the spectral norms.
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output of a two decimator chain as

(6.25)

(6.26)

M R * III =  ^ H ID a H a D iH iH i^ D ^ H a ^ ^ l l l 

=  a2|||D 2H 2U iA 1U iTH 2iirD 2f f |||

<  a2^  IH D a H a U iU ^ H a ^ D a ^ lll 

< g 2^ I x \ \ \D 2H 2I 1U 2 h D 2h \\\

— ff2^mai ll|D 2H 2H 2'ffD 2'f f |||

< * 2A ^ | | |U 2A2U 2" | | |

< » 3a S xa S ,|| |U 2U 2" || |

< ^ A ^ x A ^ x ,

where A^-c represents the xxx  eigenvalue o f the m atrix D p H pH p ^ D pH. I f  we consider 

a chain o f n decimators, the output bound w ill be given by

HI -Ry HI =  or2|||D nH n . . . D 2H 2D 1H 1H i/ fD 1i f H 2HD 2i f . . .  H nHD n" || |

=  cr2|||D nH n . . .  D 2H 2U iA iU ir H 2* D 2* . . .  H n ^ D n *  |||

<  a2^  |||D nH n . . . D 2H 2U 1I 0U 1HH 2ir D 2a ' .. .H n* D nK |||

<  a2A ^  |||D nH n . . .  D z E fe lx H ^ D ;,* .. .H nHD n* || |

<  <t2A ^  |||D nH a . . .  U 2A2U 2HH nHD n" | | |

IIID n H n H n ^D ^ IH

<  |||U nAnU ntf  III
<  _2\H i AH2 aHs \H n- i  \H „— u Amai/ Tmix/ Tmii • • • ''max ''max'

In  a sim ilar manner the lower bounds can be calculated. Using these results, lower and 
upper bounds for the unita ry invariant m atrix norm o f the correlation m atrix o f the 
output o f a chain o f decimators can be obtained as

^  IIID oH n • • • D jH iH i^ D i*  • • • ||1 <  <t2A ^  • • •
(6.27)

In  practice the upper bound is close to  a2, and the lower bound goes to  zero as the 
number o f decimators increases due to  the fact tha t the elements o f the upper le ft comer 
subm atrix o f the correlation m atrix are close to  zero. In  Figure 6.14 we can see the lower 
bound for a chain o f decimators w ith  a2 =  1.

Note how the ra tio  between the maximum and the minimum bound goes to  in fin ity  
as the number o f connected decimators increases. This behavior suggests the condition
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M nrm n Eigenvalue Bound

ae

a7

as

■3 °-6

Figure 6.14: M inimum eigenvalue bound.

number is big. Hence, it  is possible tha t the inversion problem is ill-conditioned.
Figure 6.15 shows the structure of the correlation m atrix R j,7 w ith  N  =  320 and M  = 8. 
In  this case the upper le ft comer and the lower righ t comer overlapped. Notice how 
a lo t o f the terms in  the upper le ft comer have a zero or close to  zero value. In  th is 
case the correlation m atrix R j,7 inverse cannot be computed using M atlab due to the 
ill-conditioning.

6.3 Conclusion

In  this Chapter, the structure o f the output correlation m atrix for a chain o f decimators 
when the input is white Gaussian noise has been analyzed. The structure obtained 
has three diagonal submatrices. A  recursive formula has been given to obtain the size 
o f these submatrices. In  addition, the existence o f an inverse correlation m atrix has 
been discussed. However, i t  has also been shown tha t the m atrix  inversion problem is 
ill-conditioned.
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Matrix Columns

Figure 6.15: Correlation m atrix for a chain o f seven decimators in  gray-scale w ith  M  =  8, 
and N  — 320.
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64

Chapter 7

Quasi-positive Sampling in 
Wavelet Subspaces

In  general, the approximation error between a signal /  and its  projection / „  decreases 
more rapid ly as n —► oo when we use a wavelet projection than when we use a Fourier 
series representation [1]. However, even w ith  this behavior a lo t o f the wavelet families 
constructed present Gibbs’ phenomenon. In  general, as it  was shown by Shim and 
Volkmer [26], any wavelet scaling function <f>(t) w ith  ^  0 for a dyadic number 1 t 
tha t satisfies

m < c ( i + \ t \ r 0,

w ith  t and C 6 R, and /? >  3. Then the wavelet projection presents the Gibbs phe­
nomenon on the righ t or the le ft o f the point t = 0. Most o f the wavelets used presently 
satisfy th is condition. In  particular, Daubechies’ wavelets present this behavior. Fur­
thermore, as i t  was shown in  Section 4.5, the Daubechies wavelet projections present 
the Gibbs’ phenomenon on the righ t or the le ft o f any discontinuity located at a dyadic 

point.
There have been some attem pts to  elim inate the Gibbs’ phenomenon from  the wavelet 

projections using thresholding and averaging of the projection coefficients from various 
translations o f the input signal [6] [7]. We w ill present another method to  elim inate the 
Gibbs’ overshoot in  wavelet projections using compact support wavelets based in  the 
work o f W alter and Shen [27].

1A  dyadic number is a  number that can be written as k2p where k,p  €  Z.
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7.1 Positive D elta  W avelet Sequences

Every scaling function w ith  compact support possesses the pa rtition  o f unity property. 

Recall th is property is
y  <i>(t—n) =  i ,  t € r .

n

D e fin itio n  7.1.1 (A b e l S u m m a b ility  F u n c tio n ). The Abel sum mability function of 
a compact support scaling function <f>(t) is given by

Pr(t) = — n) for 0 <  r <  1. (7.1)
n

W alter and Shen [27] b u ilt the positive delta sequence

kr,m(s, t) =  2mkr(2mS, 2mt), (7.2)

where ^

kr(s, t) =  J 2  pr(* -  n )p r ( i -  n ). (7.3)
'  '  7 1 = —OO

W ith  th is kernel we obtain a nonnegative and uniform ly convergent approximation to  
f (t)  € L 1(R) D i 2(R) when m oo. This approximation is given by

/ ^ ( t ) =  f  kr,m(s,t)f(s)ds. (7.4)
J — OO

7.2 Series Expansion

By construction fin € V m and due to  th is fact there is a 6-sequence 6* such tha t

OO

f in (t)  =  ^  1 bn<f>m<n(t) .  i 1 -5)
n=—oo

In  [28] these coefficients axe found to  be

=  f e ) 2 £  E  a s )
'  '  l——oo k=—oo

We may only compute 6n approximately. A  truncation in  the sums is necessary to  
calculate these coefficients d irectly from (7.6). A  feasible truncation is proposed in  [28]. 
However, th is truncation w ill give rise to an error in  the computation o f these coefficients.
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7.3 Bounded Kernel Definition

As it  has been seen in  section 7.1, W alter gave a method to obtain a positive sampling 
delta sequence using wavelet scaling functions. The projection of a function using this 
delta sequence w ill not present Gibbs’ phenomenon. However, the only practical form  of

section 7.2. The computation of the projection using th is method is a com putationally 
expensive task. Due to  this reason we modified the theory of W alter and created a new 
delta sequence which does not present Gibbs’ phenomenon for functions tha t are defined 
on the interval t e  [0 . . .oo). This new delta sequence can be computed in  a recursive 
manner. Then, the computational complexity w ill be reduced.
I f  a function f(t)  to be projected is such tha t it  starts at a given tim e t = 0, the behavior 
of f(t)  for t  <  0 is no longer an issue and can be discarded. For this reason the following 
m odification to the positive delta sequence definition is proposed:

<5m(s,y)>0, as m —* oo and x, y G R+2 (7.7i)

/oo
<5m(x, y)dx —► 1 uniform ly in compact subsets of R+ as m  —► oo (7.7ii)

We seek to  m odify W alter’s kernel to fu lfill the constraints imposed in  (7.7), and in  

this way create a new kernel Gr,m(s ,t).
Expanding Equation (7.2) we have

I f  the scaling function has compact support, tha t is supp <f>(t) — [0, M  — 1], then

and using this equation we can put an upper and lower bound for k  and n at a given 
tim e t. This bound is given by

computing the projection coefficients is through a truncation in  a sum as it  is shown in

For each 7 >  0, sup|I _y|>7 6m(x, y) —*■ 0 as m —► 00 and x ,y  € R+. (7.7iii)

supp 4>(2mt — k — n) = k + n k + n + M  — 1
(7.9)

2m ’ 2 m

2mt > k  + n >  2mt -  M  + 1. (7.10)

Since we want to  characterize functions tha t are only defined for t > 0 we w ill obtain an

2R+ is the subset of nonnegative real numbers.
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upper and lower bound for k +  n  for this case. When £ = 0, (7.10) becomes

0 ^  k  +  n >  —M  +  1,

and if  £ —► oo then oo > k + n, and putting these two inequalities together the bounds 

for k + n  axe
oo >  k + n > — M  +  1. (7.11)

In  a sim ilar fashion, we can obtain

oo >  j  +  n >  —M  +  1. (7.12)

We w ill introduce the sum

OO

Y m <f>(2mt — k — n) for £ € R+ and oo > k + n > —M  +  1. (7.13)
k=0

I f
0 <  2m£ — k — n < M  (7.14)

for a given £ € R+ the partition  o f un ity  property (4.8) tells us the sum in  Equation (7.13) 
is equal to one. This is the case when m —► oo. On the other hand, i f  for certain t € R+ 
the inequality given in  Equation (7.14) is not fu lfilled  we can s till put an upper bound
to the sum in  Equation (7.13) due to the fact <j>(t) is compactly supported. Combining

these results we can conclude

OO

<f>(2mt — k — n) < S  for t, S  € R+ and oo >  k + n  > —M  +  1. (7-15)
fc=0

I f  we only consider Equation (7.13) for a given £ in  a closed interval £ € [0, M^ " ] w ith  
m —*■ oo the sum lim its  can be changed obtaining

f2mt—n"l
^  4>{2mt — k — n) 1 for oo >  fc +  n >  —M  +  1 as m —► oo3. (7.16)

fc=|2mi—n—Af+lJ

Since th is is a fin ite  function series which converges to  a constant value, we can say tha t 
Equation (7.16) converges uniform ly for £ € [0, as m —► oo.

The Abel sum mability function o f series (7.15) for £ 6 R+ and oo > k + n > —M  + 1

3|Y| is the smallest integer such that fx] > x
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IS oo
Pr<n(2mt) = J 2  rk<f>(2mt - k - n ) for 0 <  r  <  1. (7.17)

k= 0

Analogously we can define the Abel sum m ability function for t  € R+ and oo > j  + n >  
—M  + 1 as OO

Pr,n(2mf) = - j - n )  for 0 <  r  <  1. (7.18)
j=o

For j  > 0 and r € (0,1 ],fj(r) =  r J is a bounded decreasing function 4 , and for 
t  6 [0, Equation (7.16) converges to  one when m —+ oo. Therefore, the Abel
sum m ability functions (7.17) and (7.18) converge uniform ly fo r r  € (0,1], t € [0, ,
and m —* oo. Consequently there exists a 0 <  ro <  1 such tha t Pr,n(2mi)  >  |  for r  >  ro, 
t e  [0, M~2n"n], and m  —► oo. In  addition, if  now t = M~£nrTl +  , where I >  0 ,

v >  0 (I, v € Z ), then

OO
Pr,n(2mi)  =  (2mi  — j  — n)

=  -  1 +  n  +  ^  -  j  -  n j

=  £ r t y  ( m - i  +  L - j \
j =o '  '

=  £  r P + | > J < ^ M - l  +  ^ -  ^
P = -L ^ r J

P =  J ~ 2V
(7.19)

/ \

=  V  r p+ 

P =-L^rj

z
_2V “ P

\  >M /

+  ^ r p+L^rJ0
p = 0

/ \

M - 1 +  1 -

*3
1-

1

“ P

\  <Af /

4A bounded decreasing function is a function where /j+ i( r )  <  / j ( r )  for all j  and also 0 <  / ,  (r) <  B 
for all r  e [a, 6] for some a, b 6  R.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



since supp<£ =  [0... M  — 1] then this equation becomes

P r ,„ ( 2 ” * t ) =  £  +

p = — L ^ rJ  s v  ■ —  '
=0

+ f ^ rP+[M4>( M - l  + ± ; -  ^J -p)

= E ^ V ( m -1 + 1 - ^ J - P)

= rl>J J2rP<t> (M ~ 1 + ^  ~ ^  - p)
p = 0  '  L  J /

=  r l- ^ J p  f  2m ( ^  ~  1 +  n  I  ̂ ^r>n I I 2m 2u+m 2V 2m y y

(7.20)

Since +  ^ 9r -  [ y j  ^ r )  e [0, M 2m - ]> w« can conclude tha t Pr,n(2mt) >  0 forr M - i + r a  
i. 2m

t  >  M^ i and m —► oo. Combining th is result w ith  the Abel mean convergence for 
t € [0, ^g£r], we obtain Pr>n(2mi)  >  0 for oo >  j  + n > —M  +  l,oo > k + n > —M  + 1, 

t  6 R+ , and m  —► oo.
Equations (7.17) and (7.18) are linear combinations o f the scaling function <j>(2mt) 

which depend on the value o f n. Due to th is fact, as shown in  [27], they are rapid ly 

decreasing functions which obey:

|Pr,n(2mt)| <  Cp( l  +  |2mt -  n|)-P , p e  Z+, t € R + (7.21)

for a suitable constant Cp.
We w ill define a new delta sequence Gr,m(s, t) as

OO OO

Gr,m(s, t) = 2m( l  -  r f  Y, E  ~ k ~ n) E  r j^ 2m$ ~ j  ~ n) (7-22)
n=—M + l k= 0 j = 0

Moreover, the new delta sequence is constructed from Equations (7.17) and (7.18), since 
these sequences have the positive property (7.7i).

The proof o f property (7.7iii) though sim ilar to the one presented in  [27] w ill be given
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here for the sake o f c la rity  and completeness:

OO
G r,m (M ) =  2m( l - r ) 2 £  Pr,n(2mt)Pr,n(2ms)

n=—M +l
00 -I -I

<  C22m V  7------—— :----- rr-r- — prr v ia  (7.21) w ith  p =  4
n=f jJ +i  (1 +  |2mt  -  n |)4 (1 +  |2ms -  n |)4 v '

00 i  - i i
<  C2 2m V  _______ -_____________ -_____________   5

t i=£m +\ ^ + I2"** ”  27”SD2 + I2™* ”  nD2 t1 + l2T”S “  nD2 
C22m g  1 1

“  (1 +  |2mt -  2ms|)2 n=f ^ +1 C1 +  I2™* ~  n D2 C1 +  l2ms _  n D2
  „ '

= H (t,s )< H {  0,0)

^  C22mJ?(0,0) ^  d  2m
~  (1 +  2m|t -  s|)2 “  (1 +  2m|t -  s|)2

d  2 m

-  ( i  +  2 S ) 2 ^ ° f 0 r | t ~ S |~ 7 a S m ^ 00'
(7.23)

Now, le t us see i f  property (7.7ii) holds. We want

/  G r,m (s , t ) d s  =  1. 
./o

Expanding the le ft side o f this equation we have

2m( l -  r )2 f ° °  J 2  r V (2 mi  -  k -  n) r?>(2ms -  j  -  n)ds
* '°  n = —A f+ 1  fc=o j = o

Changing the order o f the integral and the sum we obtain

OO OO OO - o o

(1 -  r f  y  J 2  rk<f>(2mt ~ k ~ n) J 2  rJ'2m /  # 2,7,5 ”  J ~ " ) *
n = - M + l  fc=0 j = 0  ^ - 0 °

=  (1 -  r ) 2 5 3  rk<j>(2mt -  fc -  n) f  <f>(jp)dp,
n=-M +l k=0 j=0 J~°°

where p =  2ms — j  — n  and dp = 2mds.

5The identity >  (1+|t_A|) (i-H«-n|) *  ^  here-
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As it is known that <j>{p)dp =  1, Equation (7.24) becomes:

OO OO
(1 -  r-)2 £  £ y « 2 “t - * - n ) 5 V

n = —M + l fc=0 j= 0

n = - M + l  fc=0 V '
oo oo

=  ( i - r ) 5 3 r * 2  0(2mt  — k — n) for fc +  n  6 [—M  +  1, oo) and t € R+
fc=0 n = —M + l

=1 as m —oo
oo

k
=  (1 - r ) 5 3 r '

*=o 
(1 ~  r ) _  
( 1 - r )  5

and property (7.7ii) holds.

7 .4  C o m p u ta t io n  o f  bn

Using Equation (7.4) w ith  G r,m instead o f Av,m we have

f t n { t ) =  f  G rjm { s , t ) f { s ) d s .
Jo

roo 

10

By construction 6 V^, and due to this fact there is a 6-sequence 6* such tha t

/m W  ~  5 3
n = —oo
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The coefficients bn axe given by

bn =  (im W> ^m,n W)

= [
J —oo

=  /  [  G r,m ( s , t ) f { s ) d s  <j>m ,n { t)d t
J —oo JO

=  f  f  Gr,m(s,t)f(s)ds <j>m>n{t)dt 
Jo J—oo

(7.28)

— [  \  f  G r jn(s,t')<pmtn ( t ) d t
Jo  L J - o o

f(s)ds

=9(s)

Using (7.22) we have

g{s) =  23m/ 2( l  -  r ) 2 j r ,  J ^ r k f°° -  k -  l)<f>(2mt -  n)dt j r  r ^ ( 2 ms -  j  -  I)
i—n L J —oo J ,-_nj= 0

oo
Z=—M + l k-0

=  2m/ 2( l  — r )2 f ;
Z=—M + l fc=0 i= 0

=  2"-'2( l - r ) 2£ ; r ‘  f )
fc=0 £=—Af+1 j=0

OO 0 0

=  2m/2( l  — r )2 ^  r fc ̂  r 7̂ )(2ms — j  — n + h) for n  € [—M  + 1 , oo). 
fc=o j=o

(7.29)

Note tha t Equation (7.29) lim its  bn to the interval n 6 [—M  +  1, oo) which implies 
supp fin(t) =  [0,oo). Since su p p /(t) =  [0,oo) th is result is expected.
Substituting (7.29) in to  (7.28) yields

bn = [°° 2m/,2( l  -  r f  £  r̂ <f>(2ms - j - n  + k)f(s)ds 
fc=o j=o
00 00 -oo

=  2m/ 2( l - r ) 2 /  ^(2ms - j - n  +  fc)/(s)ds
fc=0 j=0 •'°

=(1 -  i f  f v  £ )  r> </(i),
fc=0 j=0 ' ^ 7 ^  "

'   '

(7.30)

9 n —k
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7.5 Truncation Error Bound

Calculating the coefficients bn  directly from  Equation (7.30) is not com putationally fea­
sible. However, applying a truncation in  the series can generate an acceptable approxi­

mation. We propose the following approximation:

bn  »  (1 -  r ) 2 ( f ( t ) ,  <£mj+n-fc (t)} •
k=  0 j= 0  ' T 7 ~ s< '

— J T n ,j+ n —k

(7.31)

—V“
9 n - k

Assume tha t s u p p /(i) =  [0 ,T ].6 The series coefficients ( / ( i) ,  are

fm,k — (fit)i<f>m,kit)) =  f
J —oo

rT
=  2m/2 /  f(t)<f>(2mt -  fc)dt.

Jo

Since supp<£m>fc(t) =  [^ r ,  <£m,fc(t) overlaps / ( f )  when

k + M  — 1 ^ ^ _
 — ------> 0 , and —  <  T.2 m — 2m

P utting  together these two inequalities, we obtain

- M + l < k <  [2mTJ =  P.

(7.32)

(7.33)

From (7.33) and (7.30) the function f mj+n-k is only defined in  the region j  + n — k € 
[—M  +  1,P ]. However, by construction, gn-k  is only defined for j, k € [0,oo). Hence, if  

we le t p = n — k, then gn-k  in  (7-31) can be sim plified as:

9 p  =

E  rj ( f i t) ’ <t>m,j+p(t)), i f  p < M  -  1
j = —M + l—p

(7.34)

E  ( fi t) ’ ̂ mj+p {t) ),
U = o

i f  p > M  — 1.

When p < M  — 1, the number of terms in  the sum tha t determines gp is

(P  — p) — ( - M  +  1 — p) +  l  =  P  +  M ,

6This type of signal is known as a finite duration signal.
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and if p  >  M  — 1 this number is

(7.35)

( P - p )  + l <  P + M.

We w ill assume tha t f mj +n-k  is bounded such tha t / m j+n_fc <  B < oo. Then, if  

p < M  — 1

p - p

l5pl — 7̂ { f(^ )^ <f>m ,j+p(i)}
j = —M + l—p 

P -p

<B  E  r>
j = —M + l—p 

P -p

< B E  1
j= - M + l - p

< B (P  + M),

and i f  p > M  — 1

p - p

\9p\ <  2 ^  < /(* ), <t>mj+p{t)) 
i =o 

p - p

< B j V
j = 0 
p -p

< B £ i
i= o

< B ( P  +  M ).

We see tha t the same bound can be applied in  both cases.
Using Equations (7.35) and (7.36), we can find a bound on the truncation error 

generated by the approximation (7.31). Equation (7.30) can be expressed as

b n = ( l - r ) 2 f ^ r k f ^ T j ( f ( t U md+n- k( t ) )+ e n ,  (7-37)
fc=0 j = 0

' ------------------------------v ----------------------------- '
S n - k

(7.36)
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where en is given by

OO OO
en =  (1 -  r)2 2 3  rfc S  ̂  ^mJ+w-fcW) • 

fc=£)+l j=0
'-----------------v---------------- '

9 n - k

Using Equations (7.35) and (7.36), we obtain

| e n | < ( l - r ) 2 2 3  lrfcHS"-fcl 
fc=£>+l

oo

< ( l - r ) 2B (P  +  M) Y u  r*
k=D +l
r D + l

<  (1 -  r)2B(P  +  M y-  =  (1 -  r)B(P  +  M )r°
1 — r

7.6 Recursive Com putation of th e b sequence

From Equation (7.30) we have

9n—k — ^  fm,n—k+j 
j=0 

0
9n—k = 2  1 r  ̂fm,n—k—j 

j=—oo 
oo

9p =  2 3  r ~Ju\-i] f miP~j >

where p =  n — k, tt[n] is the un it step function, and / m,fc =  (f{t),<pm,k(t)) 
fc <  —M  +  1 and k >  P.
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The z-transform of h j, H (z )  =  Z { h j }  for \z\ < £ is:

H (z) =  r  3u [ - j \ z 3
j= —oo 

0

= E
J=—00

<7-4 i>
J=0 

_  1 
1 — rz  

_  - ( r z ) " 1 
1 — (rz )-1 "

The system -ff(z) is a noncausal system as can be seen in  (7.41), so it  is not possible to 
realize th is system in  a causal recursive form  since it  w ill be unstable. However, gp can be 

calculated d irectly using (7.34) w ithout introducing any error in  the computation. This 
is due to  the fact tha t the sum in  Equation (7.34) is fin ite  and possesses a correlation 
like structure. Hence, algorithms such as the FFT  can be implemented to  compute gp 
in  an efficient way. In  addition, from Equation (7.30) we have

bn = ( l - r ) 2j r / rkgn- k. (7.42)
k= 0

The z-transform for ck — r fcu[/c] , C(z) = Z { c j }  for |z| >  r  is:

00
c (z ) =

*=-oo (7.43)
_ 1 

1 — rz -1

Taking the z-transform of Equation (7.30) w ith  B(z) =  Z{bn} we obtain

B ( z ) = £ - r £ C ( z ) G ( z )

(7.44)

SO
B (z) =  fiG(z) + rz~lB(z), (7.45)
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and upon taking the inverse z-transform we obtain

bn+i =  (3gn+1 +  rbn. (7.46)

I f  supp / ( i )  =  [0,T ] , we may assume s u p p /^ (t) =  [0,T ]. Since supp<£m>n(t) =  

[# r ,  " t f f i " 1],  overlaps f^ ( t )  when

n + M  — 1 „  , n  m
— !— ------- > 0 , and —  <  T.

2  m  — ’ 2 771

However by construction, as shown by Daubechies [2], <£(0) =  <p(M — 1) =  0. Therefore, 

w ithout loss o f generality, we can say

n +  M  — 1 „  , n
 —  >  0 and —  <  T.2m 2m

Combining these inequalities we obtain

—M  + 2 < n  < [2mT] - l  = R. (7.47)

This means tha t we only need to  calculate the coefficients bn for n  6 [—M  +  2,12]. Using 
Equation (7.31), we can compute b-M+2- Using th is result as the in itia l condition in  the 
recursion (7.46) for n  € [—M  + 2,R — 1], we can obtain the values o f bn € [—M  +  3,12].

7.7 Exam ples

The algorithm  was implemented to  calculate the approximation to  a un it square pulse, 
shown in  Figure 7.1, defined as:

1, i f  0 <  t < 1 

0, otherwise,
u(t) =  <

and a un it triangle pulse which is shown in  Figure 7.5, defined as:

f(t)  = <
t, i f  0 <  f  <  1 

0, otherwise.

Our results are shown on Figures 7.3, 7.7, 7.4 and 7.8. For comparison, the results 
obtained in  [28] are also shown on Figures 7.2 and 7.6.
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Figure 7.1: U n it square pulse.
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Figure 7.2: U n it square (W alter’s approximation m =5, r=0.5).
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Figure 7.3: U n it square (new truncated approximation m=5, r=0.5).
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Figure 7.4: U n it square (new recursive approximation m=5, r=0.5).
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Figure 7.5: U n it triangle pulse.
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Figure 7.6: U n it triangle (W alter’s approximation m=6, r=0.5).
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Figure 7.7: U n it triangle (new truncated approximation m=6, r=0.5).
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Figure 7.8: U n it triangle (new recursive approximation m=6, r=0.5).
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7.8 Positive Sampling W ithout Integration

The bounded kernel projection solves the problem o f Gibbs’ phenomenon on wavelet 
projections. However, we have to  compute the inner product integral in  order to obtain 

the projection. W alter [29] proposes the following delta kernel sequence to  avoid this 
problem

and 5(t) is the Dirac delta function. W ith  th is kernel, we obtain a nonnegative and 
uniform ly convergent approximation to /(£ ) € L 1(R) f l I r (R )  when m  —* oo. We can 

compute th is kernel approximation using Equation (7.5).

7.9 Positive Sampling Series Expansion

B y construction E Vm. Therefore, we can use Equation (7.6) to  obtain the coefficients 

o f the projection. The coefficients bn are given by (sim ilarly to  (7.30))

Gr,m{s,t) = 2mGr(2ms,2mt) (7.48)

where

(7.49)

J — oo

—oo J — oo•oo J — oo
/  Gr,m{s,t)f(s)ds 4>m,n(t)dt (7.50)

=g(s)
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Using (7.48) and (7.49) we have 

9(s)

= 2m( r i I )  r  E  5(2ms - k ) P r(2mt-k)<pm<n{t)dt
\  ‘ r / J - 00  __

 rfim/2

=  2m/2 ^  

=  2m/2 ^ 

_  2m/2 

_  2m/2

/ l  — r  
\ l  +  r

(

&=—00 
00

— )  ^  <S(2ms — fc) f 00 Pr(2mt -  k)<j>(2mt -  n)dt
+  r '  fc=-oo •y-° °

00

+  r  

— r

+  r

— r
+  r

— T

)  Y  S(2m$ -  k) Y  r 'zl \2m f°° <f>(2mt - k -  l)<p(2mt -  n)dt
'  k=-oo l=-oo L J~°°

Y  5(2mS -fc )  Y  ^ n - k - l
fc=—oo Z=—oo

) oo oo

E  r"1 E
1——O0 fc=—c

\  oo
J rlẑ (2 ms - n  +  Z),
'  Z=—oo

(via (7.1))

S(2ms — k)5n-k-i

(7.51)

(7.52)

where 5* is the Kronecker’s delta, while 5(t) is the Dirac delta function. Substituting

(7.51) into (7.50) yields

bn =  E  r|Z|̂ (2ms — n +  l)f(s)ds
oo +  r y  i=_oo

= 2m/2 ( j ^ )  E  rW J°° S(2ms - n  +1)f(s)ds

=  2™/z{1— L \  Y  r |z|2~m r  5 ( p - n  + l)f{p/2m)dp 
\ 1 +  r / i=_00 J -00

- - ( ^ ) E j ' V ( ^ ) .

Note /  ( ^ )  is f(t)  sampled at a rate of so bn can be interpreted as a lowpass filtered 

version o f the sampled function.
I t  is not possible to  put an upper and lower lim it on the summation used to  calculate bn 
w ithout involving approximation to  the exact value of bn. However, due to  the factor 
the sum can be truncated depending on the index o f the coefficient Z>„ tha t one wants to
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calculate.
Assume tha t s u p p /(t) =  [0, T\. We can obtain an upper and lower lim it on I for each 

n  in  Equation (7.52) as

(7.53)
n -  [2mT\ <1 <n.

In  addition, in  Section 7.6 we found tha t we only need to calculate the coefficients bn 
for n 6 [—M  + 2, JS]. Using th is fact and Equation (7.53), we can obtain lim its for I in  
Equation (7.52) as

The results obtained can be viewed in  Figure 7.10, where a series representation for the 

function depicted in  Figure 7.9 is shown.

7.10 D igital Signal Series Representation

D ig ita l signals can be obtained by sampling real-time analog signals at certain sampling 
frequencies. The d ig ita l inform ation is processed and after tha t the result may or may 
not be converted back in to a real-time signal. When the data needs to be converted 
back to  a real-time signal, the sampling frequency is o f importance. However, nowadays 
there is a tendency to  preserve the data in  d ig ita l form in  case further processing is 

desired. That is why in  some cases it  is necessary to process d ig ita l data w ithout proper 
knowledge o f the underlying real-time signal or the method used to  convert i t  in to  a 

d ig ita l signal.
I f  the real-time signal is known we can apply any o f the positive sampling transforms 
previously considered. In  the case where we only have the discrete data we can associate 

a real-tim e signal to th is data.
Suppose we have fin ite  duration d ig ita l data fd[n] defined in  the interval n € [0 ...  q— 1]. 
We w ill assume w ithout loss o f generality tha t the real-time signal used to  obtain the 
d ig ita l data was sampled w ith  a sampling period ts = 2~m and has supp f(t)  = [0, T  =  
q — 1]. Since we have a fin ite  d ig ita l signal we w ill assume the real-time signal is zero 
outside the interval given by the d ig ita l signal. We can use Equation (7.5) to  obtain 
a projection o f the associated real-time function in to the space Vm. The d ig ita l data

~ M + 2 -  |2mT j <1 <R. (7.54)
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Figure 7.9: O riginal square signal

0.«

02

t

Figure 7.10: Square signal series approximation m =4, r=0.4
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projection can be obtained by

(7.55)
n=—N + 1

Note also the coefficients bn are obtained by m odifying Equation (7.52) in to

(7.56)

=  2- W — \  V  r » U [ n - l \ .

7.11 Conclusion

In  th is Chapter, a wavelet projection has been developed for representing compact sup­

port positive-valued real signals. The new projection has uniform  convergence in  compact 
subsets, and avoids Gibbs’ phenomenon. The computation o f the projection coefficients 
by means o f a series truncation and recursion has been given. A  sim ilar projection which 
can be used to  represent positive-valued d ig ita l signals has also been introduced. This 
projection also avoids the Gibbs’ phenomenon.
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87

Chapter 8

MDL Criteria for Rank 
Estimation Using Singular Values

In  th is chapter we w ill use positive wavelet projections to  estimate the rank o f a m atrix 
using singular values. This w ill be done in  a simple way using the Haar scaling function. 
Suppose we have the overdetermined system function

_ B{z) B(z)d(z)
A(z) A(z)d(z)

This system can represent for example a plant model transfer function. I t  is o f interest 
to  find the common factor d{z) between the numerator and the denominator when the 
system function coefficients axe perturbed by noise. A  procedure to compute th is factor is 
given in  [30]. This procedure obtains the com m on factor from the last nonzero row o f an 
upper triangular m atrix R  obtained from a QR factorization o f a near-to-Toeplitz m atrix. 

The most commonly used method to  compute the last nonzero row o f the m atrix R  is its 
singular value decomposition (SVD). The number of singular values bigger than zero w ill 

determine the number o f rows w ith  nonzero coefficients. However, the SVD method is 
com putationally expensive and generally requires manual adjustment to  compensate for 
the noise in  a given problem. An alternative method to  the SVD is given by Zarowski [30]. 
This method uses the incremental condition estimator (ICE) [31]. The IC E  w ill estimate 
the smallest singular values o f the leading principal submatrices of R . F ina lly the degree 
o f the polynomial A(z) is the number o f singular values whose value is different than 
zero. Hence, the rank determ ination problem is translated in to  a test to  find the number 
o f nonzero smallest singular values o f the leading principal submatrices.
The method used by Zarowski in  [30] to  find the number o f nonzero smallest singular
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values is to  use the M DL criterion in  an orthogonal polynom ial projection of the smallest 

singular values. This procedure delivered good results. However, the computational 
complexity of the orthogonal polynom ial projection is s till high and was the bottleneck 

of the rank prediction algorithm . In  th is section we w ill use the M DL criteria  in a positive 
wavelet projection of the smallest singular values to replace the orthogonal polynomial 
projection given by Zarowski. The goal is to  reduce computational complexity w ithout 
greatly sacrificing the statistical performance o f the rank estimator.
Suppose we have a set o f smallest singular values o f the leading submatrices 1 of a real 
valued m atrix R  =  [r^-]

G 0 ^  • ”  G f  ^  ^

where Gj > 0 for j  =  0,1, • • • , q — 1 and Gj =  0 for j  =  q, • • • , n — 1. In  practice, i t  is 
d ifficu lt to  access the values G j  directly, and so usually an estimate G j  is given. We w ill 
assume the estimated value is

G j  =  G j  +  Z j ,  (8.1)

where Z j  is from  a set o f sta tistica lly independent random variables whose probability 

density function (pdf) is defined as

p (Zj) =  <

.2

J =  (8.2)
j  =  ?,••• ,n  —2,n  —1.

8.1 Haar Scaling Function Representation o f the Singular 
Values

We w ill suppose the singular values can be expressed w ith  the real d istribution function

9-1

. ” <?) "  + !))) 
n  (8-3)
3=0

where <p{t) is the Haar scaling function (recall the definition in  Equation (4.29)).
Note w ith  the definition given by Equation (8.3) suppu(t) =  [0, g]. Hence, using wavelet

1A leading submatrix of a matrix R  is an square submatrix that starts at the first row and first
column.
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packet theory we can project v( t )  into the space Vm as

J =  u

9 - 1

=  ^  Gj <  0OJ? 0m,p >  •
j=0

I f  we have m  >  0, Equation (8.5) can be reduced to

_ . n—1

for 0 <  p < 2mq, and bp = 0 otherwise.
On the other hand, i f  we have m < 0, Equation (8.5) is reduced to

bp Gj (u(t -  j ) -  u(t -  {j +  1))) <f>(2mt -  p)dt

p

where bp is given by

<l>(t -  j)<f>(2mt -  p)dt

9 -1

=  2 ?<7L#rj

1

j= 2§C
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for 0 <  p  <  2mq, and bp = 0 otherwise. I f  m < 0, the computation o f the coefficients bp 
becomes more complex. Since one o f the goals o f the rank estimation algorithm  is speed, 

from  now on we w ill assume tha t m  >  0.

8.2 M DL Criterion for the Singular Values U sing the Haar 
Scaling Function

We can obtain a representation of the individual singular values from  Equation (8.4) as

2mq
O j  =  v(j) = Y ^ b p<f>m,p(j).

p = 0

In  accordance w ith  th is model, aj is a random variable w ith  jo in t pd f given by

>

09-1
p (d # P,0-2,a,TO,g) =  J J  

3=0 \ / 2tcg2

2m<J
p = 0

qz=o

2<r2

2m q
Z  &p^m,p(j)

pssO

n — 1

3=q
(8.8)

(27T<72) 5

Note tha t th is distribution is conditioned on the unknown parameters bp, a2, a, m  and 
q. The codelength (recall Equation (5.3)) for the residual between the real and the 

predicted data can be obtained from Equation (8.8) as

L(5j-|6p, a2, a, m,q) = — log2 [p(<3#p, o2, a, m, q)] 

=  - ( n  -  q) log2 o: +  |  log2[27rcr2]

+  1°S2e ( ^ £
3-0

2 mq

Gj ~  bp4>m,p{j)
P=°

=V(6(«))

n —1 (8.9)
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We w ill define

1 9 - 1 2 mq 2-1
n —1

E
j= 0

O'j — ^  ]  fe p 0 m ,p ( i )

p = 0
+a235>'

j = q

1 9-1 =^E
j= 0  

71—1

+ a J 2 ai

2mq 2mg 2mq

O’j  — 2 CTj bp4>m,p(j) +  ^ 3  2 3  ^dbp f m yd ( j )4>m,p(j)
p=o ' /d= 0  p= 0 2m5d-p

(8.10)

1
2cr2

j = q

9 - 1 2mg 9-1 2mq

2 3 aj ~  2 23 bP 23 a^rn,pij) +  2mg 5 3 6?
j = 0  p = 0  j = 0  p = 0

=  ^ 2  [p, -  2[s(9)]t6(9) +  &(9)tH (9)6(9)] +  a ]T  dj,

71—1

+ a 2 3 a7
J=9

.7=9

where p9 =  E  &(,) =  ibo ■ • • 62-*JT» *|fa) =  E  s(?) = [ s o ^ f V "  > 4™9]
i=o j=o

and HW =  2mqlfo>.
Note also tha t for m > 0

s\q) =  2 3  O j& n jO ’)
j=o

2™ai i f  osr 62”* “
0 i.o.c.

(8.11)

8.3 M axim um  Likelihood Estim ates

The M LE (Maximum Likelihood Estimate) for 6 ^  is < 
given in  Equation (8.9). The minimum value can be obtained taking the gradient Vfcfo) 
of and finding where it  is zero-valued. The gradient o f Equation (8.9) is

Vftti) [H&Abp, a2, a, m, q)] =  ^  -  2 [s ^ ]r ]  , (8.12)

and th is equation is zero-valued for =  6 ^ ,where

5(9) _  h (9)_ ts(9). (8.13)
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Furthermore, since in  our case =  H ^ T, we have

H (9 )-r =

When bp replaces bp for a ll p, one obtains

V(bto) = pq ~

and hence Equation (8.9) becomes

L{aj\bp,a2,a ,m , q)

= - ( n  -  q) log2 a  +  |  log2[27r<r2]

+ log2g
2<r2

Pq -  +  a log2 e
n —1 

7=9

Note also tha t

dL{aj \bp,a2,a,m ,q) q
da2 2 S2

- l c (9

_ log2g
2<j2

1
P q  -

which implies tha t the M LE a2 for a2 is

a 2 =  -  [p , -  [aW f  ,

and tha t

dL(aj\bp, a2, a, m, q) 1
—  ■■■■ -Q---------- — =  ~(n -  q) log2e -  +  log2<a

n -1

i=q

=  log2e
- ( n  -  q)

a

n —1

7=9

which implies tha t the M LE d  for a  is

a = n — q

2In this equation we use the fact —loga(u) — loga(e)^$i.
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Substituting the MLEs in to Equation (8.14) we obtain 

L(d'j\bp,a2,a ,m , q)

~2n

+

9) logo
n — q

: +  ( n - 9) log2 e

?)log2
n — q

+  110§2 \ ~ { p q -  [S(9)]TH (9)

+  ( n -  | )  lo§2 e 

=  (n  -  | )  log2 e — (n — q) log2
n — q

y n -n-1  - 
q ° J J (8.15)

n — q
=  (n  -  I )  log2 e —(n — q) log2

+ | iog2 [ y  (*  -  i ^ r i r ^ r 1̂ )

=  (n  -  | )  log2 e — (n — q) log2 ^ — 7

Using Equation (8.11) we note 

[sh ) f sM

2 2 [cOi Oj. . .  , O’!} 0 ,.. ., Og, 0 , . . . ,  <7<y—1] 2 2 [o"0j 0) • • • 7 0?•• • j Og, 0, . .. , Oq—1]
9 - 1  

=  2m £ > ?
i= o  

=  2m Pq.

(8.16)
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Then, Equation (8.15) can be transformed into

L(arj\bp, a2, a, m, q) = ( n -  log2 e - ( n - q )  log2

+  | lo g 2

n — q
En—1 -

J=? J.

n — q
y n -n—1 -

(8.17)

=  ( "  “  I )  l0g2 e ~ ( n ~ q} l0g2

• M t M-;))]-
The M DL criterion applied here, as it  is defined by Saito in  [22], w ill give us

2mq .MDL(q*,m*) = m in 
2<q<n—1 
l<m <n—1

■ log2(n) +  L(aj\bp, d , m, q)

=  min 
2<q<n—1 
l<m <n—1

2m lq log2(n) +  (n  -  | )  log2 e - ( n - q )  log2
n — q

En—1 ~ 
j=q

+  |  lo o2

(8.18)

Note the term  L(aj\bp, a2, a, m, q) is independent of m , and the only term  tha t depends 
on m  in  the computation o f the M DL criterion is 2m-1glog2(n). In  th is term, log2(n) is 
constant. Due to  th is reason 2m-1glog2(n) is a monotonically increasing function w ith  
respect to  m  and q, and the m inim um  is obtained for m = 1.

Using th is  fact Equation (8.18) becomes

MDL(q*) = m in
2<<7<n-l

q log2(n) +  (n  -  | )  log2 e - ( n - q ) log2

HIM";))]

n — q
y n -n—1 -

9 ai (8.19)

The term  ?log2(n) is introduced in  the M D L in  order to  pick the model tha t possesses 
the smallest number o f terms. In  our case we axe more interested in  picking the best
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fitting model. For this reason we can choose the model using only

MDL(q*) =  min
2<g<n—1

+

(n  -  log2 e — (n — q) log2

H tM-S))

n — q
n —1 -

9 ai
y n -

.^3=' (8.20)

The simulation results obtained using Equations (8.19) and (8.20) are shown on Sec­
tion  8.5.

Note the fina l selection o f the model order estim ator has to  be based on the results 
obtained by sim ulation instead o f using only analytical reasons [32]. This is due to  the 
lack of a consistent analytical method which gives us a criterion to choose one model 

order estimator from another.

8.4 Com putational Com plexity

In  the computation o f the M D L criterion the two terms w ith  the highest computational 

complexity axe &j and Pq- For YZjZq we ne®d n —q—1 additions. Note also tha t 
we need q m ultiplications and q — 1 additions to  compute pq. Therefore, Equation (8.19) 
requires n +  3 additions, q +  6 m ultiplications, 4 divisions and 2 logarithms for every q. 
I f  we suppose tha t the computation o f logarithms, additions, m ultiplications and division 
take one clock cycle each we can see the number o f cycles needed to  determine the M DL 

criterion is

n —1
c =  (n — 2) [(n +  3) +  4 +  2] +  'y ' (q +  6)

9=2
n —1

=  (n -  2) [(n +  3) +  6 +  4 +  2] +  ^  q -  1 (8 21)

=  (n — 2) [(n +  3 )+  6 +  4 +  2 ]-i— —- — -  — 1 

=  (n -  2)(n +  15) +  ^  -  1.

From Equation (8.21), we can infer tha t th is  implementation requires only 0(n2) opera­
tions which is an improvement from  the 0 (n 3) operations used in  the algorithm  presented 

in  [33].
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8.5 Simulation Results

Suppose we have the system function

B{z) B{z)d{z)
K } A (z) A{z)d{z)'

Now we add uniform  pdf noise w ith  a maximum noise value e, where the pdf is given by

p (i) =  / i  I f
10 otherwise

to  the polynomials A(z) and B(z) obtaining

A (z) =  A(z) + na(z)

B(z) =  B(z) +  nb(z),

where na(z), nb(z) are the introduced additive noise terms. Then estimate the degree 
o f the polynomial A(z) from  A (z) and B(z). F irst, we obtain the m atrix R  from A(z) 
and B(z) using the theory given by Zarowski [30]. Afterwards, we compute the leading 
principal submatrices o f m atrix R  using the ICE algorithm . The smallest singular values 
obtained using th is procedure w ill be the input to  the M DL rank estimation algorithms. 
The algorithms w ill estimate the degree of the polynomial A(z).
The problem w ill be recreated w ith  different maximum values o f noise e and it  w ill be 

repeated 100 times for each different level of noise.

Example 8.5.1. Consider the following polynomials:

9 1

d(z ) =  2 ~  z l1 ”  = zl° ~  o'
j =o

Then the degree of the polynomial A(z) is q =  11. The smallest singular values obtained 
using ICE w ith  e =  0.01 are shown in  Figure 8.1. The results obtained by Zarowski 
using the polynomial M D L rank estimator are shown in  Table 8.1. On the other hand, 
employing the same estimated singular values and maximum levels o f noise and using 
Equation (8.20) for the estimator we obtained the results shown in  Table 8.2. Figure 8.2
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e
< 1 0 10 11

q
12 13 14 >  14

0.010 0 0 58 40 2 0 0
0.007 0 0 79 20 1 0 0
0.003 0 0 99 1 0 0 0
0.001 0 0 100 0 0 0 0

Table 8.1: Polynomial M DL rank estimator Example 8.5.1.

e
< 10 10 11

q
12 13 14 > 14

0.010 70 0 30 0 0 0 0
0.007 34 0 64 2 0 0 0
0.003 0 0 98 2 0 0 0
0.001 0 0 100 0 0 0 0

Table 8.2: Haar scaling function M DL rank estimator Example 8.5.1.

16

1.2

o.e

0l$

0.4

20
Principal Submatrix

Figure 8.1: ICE-estimated smallest singular values o f the leading principal submatrices 
of R  (Example 8.5.1).
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shows a p lot (versus q) of

q log2(n) +  (n  -  | )  log2 e - ( n - q )  log2
n — q

+  | lo g 2

for various levels o f noise, and Figure 8.3 shows a p lot of

( ™ - | ) log2e —(n —$)log2
n — q

+  |lo g 2

w ith  the same levels o f noise. From these results we note Equation (8.20) achieves a

120

100

-Ja2
i

2 40 

! .
1
>  B

-»

-«0
q

Figure 8.2: M D L versus q w ith  the term  glog2(n) (Example 8.5.1).

better result compared to  the results obtained using Equation (8.19). In  addition we note 
the strong dominance o f small values o f q when we are computing the M D L criterion. 

This behavior is due to  the dependence o f the M D L criterion on the factor

H )-
When q is close to  one, M D L  —*• —oo and then the true M D L criterion value can be 
mistaken. I t  gives too much weight to  small values o f q.
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-20

•40

Figure 8.3: M D L versus q w ithout the term  <jlog2(n) (Example 8.5.1).

e
1 2 3 4 5 6 7 8 9

q
10 11 12 13 14 15 16

10~4 0 0 0 0 0 0 0 0 0 13 57 7 5 18 0 0
1 0 "5 0 0 0 0 0 0 0 0 0 51 47 1 1 1 0 0
1 0 "6 0 0 0 0 0 0 0 0 0 48 52 0 0 0 0 0
1 0 "7 0 0 0 0 0 0 0 0 0 46 49 3 1 1 0 0

Table 8.3: Polynomial M DL rank estimator Example 8.5.2.

E xam ple  8.5.2. In  th is case we have the following polynomials:

d(z) =  z5 -  0.6z4 -  0.05z3 -  0.05z2 -  1.05z +  0.55

A{z) =  z10 -  1.6z9 +  2.43z8 -  1.148z7 +  1.2248z6 +  1.3875z5

-  0.9895z4 +  0.9751z3 -  0.7813z2 -  0.623z +  0.0692 

B (z) =  z9 +  1.95z8 +  0.0.6699z7 +  0.1978z6 +  0.2271z5

-  1.5652z4 -  1.9118z3 -  0.7413z2 -  0.0801z +  0.0634.

The predicted value in  th is case has to be q = 10.
The results obtained using the polynomial M DL rank estim ator are shown in  Table 8.3. 

Our results using Equation (8.20) are shown in  Table 8.4. The singular values obtained
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e
1 2 3 4 5 6 r 8

q
9 10 11 12 13 14 15 16

10"4 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10"5 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10"6 0 98 0 0 0 0 0 0 0 2 0 0 0 0 0 0
lO "7 0 81 0 0 0 0 0 0 0 19 0 0 0 0 0 0

Table 8.4: Haar scaling function M DL rank estimator Example 8.5.2.

O*c
3

<

Principal Submatrix

Figure 8.4: ICE-estimated smallest singular values o f the leading principal submatrices 
of R  (Example 8.5.2).
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from IC E  starting at the second subm atrix are very close to  zero. This can be seen in  
Figure 8.4. In  th is case our predictor take these values as zero. Hence the likelihood of 
obtaining a wrong predicted value is very high even for small values o f noise.
Figure 8.5 plots Equation (8.19) which is used to  compute the M DL for various levels of 
noise, and Figure 8.6 plots Equation (8.20) which is another alternative to  compute the 
M DL w ith  the same levels o f noise employed when we used Equation (8.19). In  this

 ;..
I
I  *

2

1
I
>

..r.
-100

q

Figure 8.5: M DL versus q w ith  the term  glog2(n) (Example 8.5.2).

case the algorithm ’s accuracy decreases substantially.

E xam ple  8.5.3. Consider the following polynomials:

d(z) = (z +  l ) 3 =  z3 +  3z2 +  3z 4-1 

A(z) = z3 +  2z2 - f 5z +  1 

B(z) =  z  +1.01.

The predicted value in  th is case has to be q = 3.
The results obtained using the polynomial M D L rank estimator are shown in  Table
8.5. O ur results using Equation (8.20) are shown in  Table 8.6. Figure 8.7 plots Equa­
tion  (8.19) which is used to  compute the M DL for various levels o f noise, and Figure 8.8 
plots Equation (8.20) which is another alternative to  compute the M DL w ith  the same
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■40

6 10 120 2 4 8
q

Figure 8.6: M DL versus q w ithout the term  glog2(n) (Example 8.5.2).

e
1 2 3

q
4 5 6 7

1oH

0 0 84 3 13 0 0
5 x  10“ 3 0 0 89 4 7 0 0

1oH

0 0 87 8 5 0 0
5 x  1 0 "2 3 0 71 17 9 0 0

1 0 "1 22 0 33 30 15 0 0

Table 8.5: Polynomial M D L rank estimator Example 8.5.3.

e
1 2 3

q
4 5 6 7

10“ 3 0 2 98 0 0 0 0
5 x  10“ 3 0 79 21 0 0 0 0

10-2 0 95 5 0 0 0 0
5 x  10“ 2 0 100 0 0 0 0 0

O 1 M 0 97 3 0 0 0 0

Table 8.6: Haar scaling function M DL rank estim ator Example 8.5.3.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



levels of noise employed when we used Equation (8.19).

30

o>
i / i
oo
u

■o
0
I / I
3
I / I
0J3
IS
>

-10
4.52.5 3.51.5

Figure 8.7: M DL versus q w ith  the term  ?log2(n) (Example 8.5.3).

E xam p le  8.5.4. Consider the following polynomials:

A(z)d{z) =  z5 +  5.503z4 +  9.765z3 +  7.647z2 +  2.762z +  0.37725 

B(z)d(z) =  z4 +  2.993z3 -  0.7745z2 -I- 2.0070 +  0.7605.

In  th is case the common factor is:

d(z) =  z2 -  1.007z +  0.2534.

Hence, the predicted value in  th is case has to  be q =  3.
Our results using Equation (8.20) are shown in  Table 8.7. Figure 8.9 plots Equa­
tion  (8.19) which is used to  compute the M DL for various levels o f noise, and Figure 8.10 
plots Equation (8.20) which is another alternative to  compute the M DL w ith  the same 
levels o f noise employed when we used Equation (8.19).
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>  -15

-ZO
1.5 2.51 2 3 3.5 4 4.5 5

Figure 8.8: M D L versus q w ithout the term  qlog2(n) (Example 8.5.3).

e
1 2 3

q
4 5 6 7

lO -a 0 48 52 0 0 0 0
5 x 10"s 0 93 7 0 0 0 0N(OH

0 91 9 0 0 0 0
5 x 10-2 0 100 0 0 0 0 0

10"1 0 98 2 0 0 0 0

Table 8.7: Haar scaling function M DL rank estimator Example 8.5.4.
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352.51.5

Figure 8.9: M D L versus q w ith  the term  <7 logo (n) (Example 8.5.4).

JC
4-1

ffl
VI
o
O 20

“ 5X10'

JCu
o

4-1

■oa>
V I
3
V Ia
3
ia
>

3.52.5

Figure 8.10: M D L versus q w ithout the term  glog2(n) (Example 8.5.4).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E xam ple  8.5.5. F inally, consider the polynomials:

A{z)d(z) = z4 + z + 1 

B(z)d(z) = z3 + O.Olz.

In  this case the common factor is:
d(z) =  1.

Hence, the predicted value in  th is case has to  be q =  4.
In  th is case our prediction algorithm  predicts q =  2 instead o f the actual value. This 
behavior may be produced by the rapid decrease of the ICE value as can be seen in  
Figure 8.11. In  contrast the polynomial M DL rank estimator predicts the correct value. 
Therefore, in  th is case i t  is better to  sacrifice the speed increment achieved by our 
algorithm  and use the polynomial M DL estimator instead.

3.5

=  2.5

1.5
! 2.5 3
Principal Submatrix

3.5

Figure 8.11: Estimated IC E  value w ith  e =  1 (Example 8.5.5).

8.6 Conclusion

In  th is Chapter, a rank estimator for a m atrix using its  principal submatrices smallest 
singular values has been presented. The singular values are real positive-valued signals.
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Due to th is reason, a projection for th is type of signals has been used. The basis function 
used to project the signals is the Haar wavelet. The results obtained have been compared 
w ith  the ones obtained from  a rank estimator using an orthogonal polynomial projection 
[33]. I t  has been shown tha t the rank estim ator developed in  th is thesis has a better 
computational efficiency. However, i t  has also been shown tha t the increase of speed 

diminishes the accuracy when the noise level is high.
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Chapter 9

Conclusion and Further Work

9.1 Conclusion

In  the firs t four Chapters, an introduction has been given to  the basic theory in  orthonor­
mal series projections, wavelet theory and the m inimum description length criterion. The 
inform ation given in  these Chapters has been used to  develop the theory introduced in 

the main part o f th is thesis.
In  Chapter 6, the analysis o f the output convolution m atrix from a chain of dedmators 
w ith  white Gaussian noise as an input has been presented. I t  has been shown th a t this 

m atrix possesses a diagonal like structure consisting o f three submatrices. A  recursive 
method has been developed to compute the size o f these submatrices. Since the m atrix 
inverse o f the correlation m atrix plays an im portant role in signal detection and signal 

estimation problems, the existence o f th is inverse has also been proven. However, as it  
has also been shown the inversion problem for th is m atrix is ill-conditioned.
In  Chapter 7, a series projection w ith  uniform  convergence in  compact subsets has been 

developed. This projection can be used when the signal to be processed is a positive­
valued real signal w ith  compact support. Due to its  uniform  convergence, this projection 
avoids the Gibbs’ phenomenon. Two methods to  compute the coefficients o f the pro­

jection have been developed. The firs t one consists o f a series truncation. In  th is case, 
a bound for the truncation error magnitude has been obtained. The second method 
obtained to  compute the projection coefficients is a recursive method. In  addition, a 
series projection to  process positive-valued d ig ita l signals has been given. An equation 
to  obtain the projection coefficients for th is projection is also given. This projection also 
avoids the Gibbs’ phenomenon.
Finally, in  Chapter 8, a rank estimator using a projection for positive-valued signals has
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been developed, where the basis used to  project the signals is the Haar wavelet. The 
results obtained have been compared w ith  the ones obtained from  a rank estimator using 
orthogonal polynomials [33]. I t  has been found tha t the rank estimator developed in this 
thesis has a better computational efficiency. However, i t  has also been found tha t it  is 
less accurate than the orthogonal polynomial rank estimator when the noise level is high.

9.2 Further Work

The existence o f the output correlation m atrix inverse for a chain o f decimators w ith  
white Gaussian noise as an input has been shown in  this thesis. However, an algorithm  
to compute th is inverse s till needs to  be developed. In  addition, the analysis o f the output 
correlation m atrix for a chain of interpolators when the input signal is white Gaussian 
noise is also needed. These two problems can be the subject o f new research work which 
may lead to  better methods for signal estimation and signal description using wavelet 
transforms.

The projection o f one dimensional positive-valued signals has been analyzed in  this 
thesis. There are m ultiple applications where th is theory can be used (i.e. fiber optics 
ligh t intensity functions, histograms). However, i t  may also be o f interest to  extend the 

theory so tha t it  can be applied to m ultiple dimension positive-valued signals (i.e. d ig ita l 
images).
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Appendix A

Matlab Correlation Matrices

A .l  M = 8  N = 8  Results

1.1-10- 3 -6 .4 1 0 - 3 2.1-10- 2 - 2 .4 - 1 0 " 10 0 0 0

—6.4-10- 3 3.7-10- 2 —1.2-10- 1 6.7-10-1 0 - 2 .4 - 1 0 " 10 0 0

2.1-10- 2 -1 .2-10-1 4.3-10- 1 —1.9-10- 9 6.7-10“ 10 -2 .4 -1 0 “ 10 0

—2.4-10-1 0  6.7-10-1 0 —1.9-10- 9 1.0-10° —1.9-10- 9 6 .7 -1 0 -10 - 2 .4 - 1 0 - 10

0 2 .4 -1 0 -10 6.7-10“ 10 —1.9 -1 0 "9 9.9-10- 1 6 .4 -10“ 3 —2.1-10- 2

0 0 - 2 .4 - 1 0 - 10 6.7-10-1 0 6 .4 -1 0 -3 9 .6 -1 0 -1 1 .2 -1 0 -1

0 0 0 —2.4-10-1 0 —2.1-10- 2 1.2-10- 1 5.6-10“ 1

M = 4  N = 8  Results

^  6 .6 -10- 2 5 .0 -1 0 -17 0. 0. 0 . ^
5 .0 -10-1 7 1.0-10° 5 .0 -1 0 "17 0 . 0.

0 . 5 .0 -1 0 -17 1.0-10° 5 .0 -1 0 "17 0 .

0 . 0. 5 .0 -10-1 7 1.0-10° 5 .0 -1 0 -17

\  ° - 0 . 0. 5 .0 -10-1 7 9 .3 -1 0 -1
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Appendix B

Matlab Code

B .l  Code Function makephi

Listing B .l: makephi

%
% makephi.  m
%
% Given the two—scale  sequence which s p e c i f i e s  a sca l ing  
% f u n c t io n  c o n s tru c t  the matr ix  whose e ig en vec to rs  give the 
% sca l ing  fu n c t i o n  at the in t e g e r  knots  ( th i s  is matr ix  M ) .
%
% This program then f i n d s  the sca l ing  f u n c t io n  at the 
% in t e g e r  knots  and n o rm a l i z e s .
%
% The i n t e r p o l a t o r y  graphica l  d isp lay  algori thm (IGDA) is 
% used to compute the sca l ing  fu n c t io n  in between the 
% in te g e r  kno ts .
%
% This f u n c t i o n  requ ires  the in p u ts :
%
% p = two—scale  sequence corresponding to the lowpass QMF 
% f i l t e r  J  = we want to i n t e r p o l a t e  the sca l in g  fu n c t i o n  at 
% the dyadic p o in t s  2 ' ( —J)* Z  
%
% The sca l in g  f u n c t i o n  phi may be p l o t t e d  by the user  at the
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% p o in t s  in v ec to r  tp h i .
%
% NOTE: Execute M - f i l e  psequence .m before  running th i s  
% M - f i l e  . This w i l l  create  vec tor  p.
%
% This f u n c t i o n  requ ires  upsample .m.
%

f u n c t io n  [ t p h i ,  p h i ]  =  m akephi ( p , J )

N =  le n g th  (p ) — 1;

% Compute matr ix  M

fo r  i  =  1:N—1 
fo r  j  =  1:N— 1 

k = 2 * i  — j  +  1; 
i f  ( k  >  0) &  (k  <  N+2)

M (i , j ) =  p (2 *  i  -  j  +  1 ) ; 
e lse  

M ( i , j )  =  0; 
end 

end ; 
end ;

% Find the e ig e n v ec to r  o f  M corresponding to 
% the e igenvalue  o f  u n i ty  and normalize  i t  to 
% give the sca l in g  f u n c t io n  at in t e g e r  knots

[V ,D ] =  e ig  (M ) ; 
sum =  0; 
f o r  i  =  1:N— 1 

sum =  sum +  V ( i  , 1 ) ; 
end ;
p h i i  =  ( l / s u m ) * V ( :  , 1 ) ;  

p h i i  =  [ 0 : p h i i  ; 0 ] ;
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% Use the IGDA to compute sca l ing  f u n c t io n  phi  
% at the dyadic p o in t s

b =  [ 1 ] ;  
f o r  j  =  1 :J

b t =  upsam ple(b  ,2 )  ; 

b =  c o n v ( b t , p ) ; 
end ;
p h i =  c o n v ( p h i i  , b ) ;  
s te p p h i  =  2* J ; 
f o r  k  =  0 :s te p p h i * N  

t p h i ( k + l )  =  k / s t e p p h i ;  
end ;

B.2 Code Function upsample

Listing B.2: upsample

%
% upsample.m
%
% This ro u t in e  upsamples an input  sequence x by f a c t o r  I .  
%

f u n c t io n  y =  u psa m p le (x ,  I )

N =  l e n g t h ( x ) ;  
i f  I  = =  1 

y =  x ;  
e lse

y =  ze ros  (1 ,  I * N - I  — 1); 
fo r  k =  1:N

y ( I * k  -  I  +  1) =  x ( k ) ; 
end ; 

end ;
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B .3 Code Function psequence

Listing B.3: psequence

%
% psequence.m  
%
% This rou t ine  c rea tes  the des ired  two—scale  sequence p 
% which is a s soc ia ted  with the lowpass QMF f i l t e r .  The 
% parameters  f o r  the Daubechies wavele ts  are from Table 6.1 
% (p.  195) o f  I .  Daubechies , Ten Lectures  on Wavelets.
%

f u n c t io n  p =  psequence ( o rd e r )  

s w i tc h  o rd e r
% Haar wavele t  ( Daubechies 2—tap wave le t)  

case 2

P =  [ 1 1 ];
% Daubechies Ĵ—tap wavelet (N = 2 in Daubechies n o ta t io n )  

case 4
p =  ( i / 4 ) * [  l - f - s q r t ( 3 )  3 + s q r t ( 3 )  3 —s q r t ( 3 )  . . .

1—s q r t  (3 )  ] ;
% Daubechies 6—tap wavele t  (N = 3 in Daubechies n o ta t i o n ) 

case 6
p =  s q r t  ( 2 ) * [  .3 3267 06  .8 0689 15  .4 5987 75  . . .

- .1 3 5 0 1 1 0 2  - .0 8 5 4 4 1 2 7 4  .03522629 ];

% Daubechies 8—tap wavelet (N = 4 Daubechies n o ta t io n )  
case 8

p =  s q r t  ( 2 ) * [  .23037781  .7 1484 657  .6 3 0 8 8 0 7 6 8  ...
- .0 2 7 9 8 3 7 6 9  - .1 8 7 0 3 4 8 1 2  .030841382 ... 
.0328830117 - .0 1 0 5 9 7 4 0 2  ];

% Daubechies 10—tap wavelet (N = 5 in Daubechies n o ta t io n ) 
case 10

p =  s q r t  ( 2 ) * [  .1601023980  .6038292698  .7243085284  . . .
.1384281459 - .2 4 2 2 9 4 8 8 7 1  - .0 3 2 2 4 4 8 6 9 6  ... 
.0775714938 - .0 0 6 2 4 1 4 9 0 2  - .0 1 2 5 8 0 7 5 2 0  ...
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.0033357253  ] ;
% Daubechies 12—tap wavele t  (N = 6 in Daubechies n o t a t i o n ) 

case 12
p =  s q r t  ( 2 ) * [  .11154 0743 35  .49462 3890 398  ...

.751133908021 .31525 0351 709  ...
- .2 2 6 2 6 4 6 9 3 9 6 5  - .1 2 9 7 6 6 8 6 7 5 6 7  ... 
.097501605587  .027522865530  ... 
- .0 3 1 5 8 2 0 3 9 3 1 7  .0005538422011 ... 
.0047772575109 - .0 0 1 0 7 7 3 0 1 0 8 5 3  ];

end

B .4 Code Function phifunc

Listing B.4: phifunc

%
% ph i func  .m
%
% This f u n c t i o n  re tu rns  phi ( k / 2 ' J )  f o r  any in te g e r  k.  I t  
% needs the output  from makephi.m. Note tha t  N =  len g th (p )  
% — 1, where p is the p—sequence vec tor  from psequence .m.
%

f u n c t io n  y  =  p h i fu n c  ( k ,  p h i , J ,N)

i f  k < =  0 
y =  0; 

e l s e i f  k > =  ( 2 'J ) * N  
y  =  0; 

e lse
y  =  p h i ( k + 1 ) ;  

end ;

B.5 Code Function dechain

Listing B.5: dechain 

% dechain .m
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% This archive in t ro d u ces  the output  o f  a decimator in to  the 
% inpu t  o f  another  one ”n t ” t im es .
%
% An i d e n t i t y  matr ix  o f  s i ze  ”N ” is in troduced  to the f i r s t  
% dec im a tor . This inpu t  r ep resen ts  white Gaussian noise  with 
% variance equal to one.
%

n t =  8;

N =  320;

R in  =  e y e (N ) ;

em =  z e r o s ( l , n t ) ;  
eM =  z e r o s ( 1 , n t ) ;  

e m ( l )  =  1; 
e M ( l )  =  1; 
c n d i ( l )  =  1;

f o r  i = l : ( n t  — 1)
[Rout,eM,em , c n d i ]  =  d e c im a to r  (R in  ,eM ,em , i  ) ;

R in  =  R o u t ; 

end

f i g u r e  ( 1 ) ;  
p l o t  (em(2: n t ) ) ;
t i t l e  ( ’M inimum E ig e n v a lu e  Bound’ ) ;
x la b e l  ( ’Number o f in te rc o n n e c te d  d e c im a to rs  ’ ) ;

y l a b e l ( ’ E ig e n v a lu e  B ound ’ ) ;

f i g u r e  ( 2 ) ;  
p l o t  ( e M ( 2 : n t ) ) ;
t i t l e  ( ’Maximum e ig e n v a lu e  b ou nd ’ ) ;
x la b e l ( ’ Number o f in te r c o n n e c te d  d e c im a to r s ’ ) ;

y la b e l ( ’ Bound ’ ) ;
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f i g u r e  ( 3 ) ;  
p l o t  ( c n d i ) ;

t i t l e  ( ’ C o n d i t io n  Number’ ) ;
x l a b e l ( ’ Number o f  in te r c o n n e c te d  d e c im a to r s ’ ) ;  

y la b e l  ( ’ C o n d i t io n  Number ’ ) ;

B.6 Code Function decimator

Listing B.6: decimator 

% decimator .m
%
% This ro u t in e  computes the output  covariance matr ix  o f  a 
% decimator g iven  a c o r re la t io n  input  matr ix  with s i z e  NxN 
%
% The maximum and minimum e igenvalues  of  the output  
% covariance are also ca lcu la ted  , and the accumulated  
% maximum and minimum bounds are computed again and added to 
% the vec to rs  eigMaxAcc, eigMinAcc r e s p e c t i v e l y  .
%
% The covariance matr ix  is p l o t t e d  in a gray scale  
%
% This ro u t in e  needs psequence .m and s h i f t ,  m

function [Ry, eigM axAcc , e igM inA cc , end] =  . . .
d e c im a to r  (Rx, eigM axAcc , e igM inA cc ,num b)

N = length ( R x ) ;
p =  psequence ( 8 ) ;  % obtain the wavelet  c o e f f i c i e n t s

h =  ( 1 / sqrt ( 2 ) ) * p ;  
h t  =  f l ip lr  ( h ) ;
M  =  length ( h ) ;

c =  [ h t  zeros ( [1  ,N — 1 ])  ] ;
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c =  c . ’ ;

H =  [ c ] ;

fo r  n =  1:N—1 
H =  [ H s h i f t  (c  , n ) ] ;  

e nd ;

L  =  f l o o r  ((N-fM—1 ) /2 ) ;

% Compute O u tp u t C o variance  to  In p u t Rx 
R =  H *R x*H  ’ ; 
r  =  d i a g ( R ) ;

% Compute Ry = DHRxH’D ’ , where D is the down—sampling  
% matr ix

f o r  i = l : L  
f o r  j  = 1 :L

R y ( i , j ) =  R ( 2 * i , 2 * j  ) ;  
end ; 

end ;

% Compute O u tp u t ’s Covariance max and min e igenva lues  and 
% co n d i t io n  number 
d =  e i g ( R y ) ;
M eig =  m a x (d ) ; 
m eig =  m in ( d ) ;  
c n d (n u m b + l) =  c o n d (R h y ) ;

% Calculate  the accumulate max and min e igenva lues  
eigM axAcc (num b+1) =  e igM axAcc (num b) * M e ig ; 
e igM inA cc  (num b+1) =  e igM inA cc  (num b) * meig ;

v a r ia n c e s  =  d ia g ( R y ) ;
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e l f

y =  a b s ( R y ) ;

b ig y  =  eigMaxAcc (numb+1);

for i= l:L  
for j= l:L

y ( i , j ) =  b ig y  -  y ( i , j ) ; 
end 

end

% Plot  the values  o f  the matr ix  as a shade o f  gray colors  
% square su r fa ce .

y  =  y / b i g y ;  
y  =  256 * y ;

m in v a l =  — c e i l  ( ( L  —1 ) /2 )  +  0.5;

%Axis = m in va l : minval+L— 1;
A x is  =  0: L —1;

f igu re  (4);
image ( A x is  , Ax is  , y ) ;
colormap (gray (256));

t i t l e  ( ’ Gray sca le  c o r r e la t i o n  va lues  f o r  cha in  d e c im a to r ’ )

B .7 Code Function shift

Listing B.7: shift

%
% s h i f t . m  
%
% This rou t ine  down—s h i f t s  a vec to r  x  by
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% n adding n zeros  to the vec to r .  
%

f u n c t io n  y  =  s h i f t  ( x ,n )

N  =  le n g th  ( x ) ;

i f  n = 0  
y  =  x ;  

e lse
x  =  x .  ’ ;
y  =  [ z e r o s ( [ 1 , n ] ) x ( l : N - n )  ] ;

y =  y-
end;

B .8 Code Function unitapproxr

Listing B.8: unitapproxr

%
% un i tapproxr  .to
%
% This rou t ine  computes the p o s i t i v e  wavelet  
% ’f _ m ~ r ’ f o r  the un i t  square pulse  f ( t )  = 1 
% in a Recursive  and non Recurs ive  manner.
%

f u n c t io n  [ i n t e r v a l ,  f ]  =  u n i ta p p r o x r  (m)

J =  0; 
r  =  .54 ;

p =  psequence( 4 ) ;
N =  le n g t h ( p )  —1;
[ t p h i ,  p h i ]  =  makephi (p ,  J ) ;

o f f s e t  =  2*m;
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s c a l e  =  2 * J ;
N1 =  - N ;
N2 =  2 * o f f s e t  —1;

% bl w i l l  s to re  the non r e c u r s iv e  p r o je c t io n  c o e f f i c i e n t s  
% and b2 w i l l  s to re  the r e c u r s iv e  p r o je c t io n  c o e f f i c i e n t s . 
[ b l , b 2 ]  =  U n i tS q C o e f f (m ,N 2 ,r  , p ) ;

t l  =  —2* ( m f j ) ;  
t2 =  2 *2 *  ( m f j );  

f o r  k =  t l  : t2

f ( k  -  t l  +  1) =  0; 
f l  ( k  -  t l  +  1) =  0; 
f o r  n =  N1:N2

p f  =  p h i fu n c  (k—n *s c a le  , p h i , J , N ) ; 
u n (k  — t l  +  1) =  0;
f ( k  — t l  +  1) =  f ( k  — t l  +  1) 4 - b l ( n  — N1 +  l ) * p f ;  
f l  (k  -  t l  +  1) =  f l  ( k  -  t l  +  1) +  b 2 (n  -  N1 +  l ) * p f ;

end ;
end;
—t l :  — t l+ 2 ~ (m + J )

u n ( l  ,2* ( m f j )  +  l : 2 * 2 *  (nri-J) +  l ) = l ;  
f  =  (2 * (m / 2 ))  * f  ;

f l  =  (2 "  ( m /2 ) ) *  f l ;

i n t e r v a l  =  [ t l : t 2 ] / ( o f f s e t * s c a l e ) ;

e l f

% Plo t  the non r e c u rs iv e  p r o j e c t i o n  and the u n i t  square  
% p u l s e .

h o ld  on;

p l o t ( i n t e r v a l , f , g r i d
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p l o t ( i n t e r v a l , u n )  

x la b e l  ( ’ t  ’ )
y l a b e l ( ’ f _ {  m } ‘ {  r }  ( t )  ’ ) 
h o ld  o f f ;

% Plo t  the r e c u r s iv e  p r o je c t io n  and the u n i t  square pu lse .

f i g u r e ; 
hold on;
p lot ( i n t e r v a l  , f l  , ’ ) , grid
p l o t ( i n t e r v a l  ,un ) 
x la b e l  ( ’ t  ’ )
y la b e l  ( ’ f _ { m} “ { r  } ( t ) ’ ) 
hold o f f ;

B .9 Code Function U nitSqC oeff

% This ro u t in e  computes the g—sequence in a non r e c u r s i v e l y  
% manner. In a d d i t ion  i t  computes the p r o j e c t i o n  
% c o e f f i c i e n t s  b— sequence using s e r i e s  and r ec u r s iv e  
% approaches . This f u n c t i o n  can be only used to compute the 
% c o e f f i c i e n t s  o f  a square pu lse  s ig n a l .

Listing B.9: UnitSqCoeff

%
%
%
%

UnitSqCoef f  .m

% This f u n c t i o n  needs hOfunc.m.

% User in p u ts
m = index on Vjm and m >= 0 is assumed
N2 = number o f  p o in t s  used to compute the p r o je c t io n
r = a number between 0 and 1 chosen to con tro l

%
%

convergence behavior o f  the s e r i e s  according to 
the theory  in Walter and Shen ( P o s i t i v e
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% Est im at ion  with Wavelets) .
% p = required, p— sequence fo r  the sca l ing  fu n c t i o n  used
% in the s e r i e s  ( obtained using psequence.m)
%
% The ro u t in e  re tu rns  bl (b—sequence computed using a se r ie s  
% e x p a n s io n ) , and b2 (b—sequence computed r e c u r s i v e l y ) .
%

f u n c t io n  [ b l , b 2 ]  =  U n itS q C o e f f (m ,N 2 ,r  ,p )

N =  le n g th  (p )  — 1;

M  =  2 ‘ m;

% Set  up v—a x is ;  t ( v )  has support  on [—2 ‘m + 1,N—1] 
v =  [—M: 1 : N ] ;

% Compute matr ix  Mx

f o r  i  =  1:N—1 
f o r  j  =  1:N—1 

k =  2* i  — j  + 1 ;  
i f  ( k  >  0) h  ( k  <  N+2)

M x ( i  , j ) =  p (2 *  i -  j  +  1); 
e lse  

Mx( i , j  ) =  0; 
end 

end; 
end;

% Compute the in t e g r a l  h ~ { ( 0 ) } ( x )  o f  the sca l ing  f u n c t io n  on 
% the dyadic p o in t s  over the i n t e r v a l  [ 0 ,N]

I  =  t o e p l i t z ( [  1 z e r o s ( s iz e  ( [ 1 : N —2 ] ) ) ] ) ;

A  =  I  — .5*Mx;

% Compute the i n t e g r a l  h0(x )  f o r  x = 1 , 2 , . . . , N ~ 1
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f o r  k  =  1:N—1
i f  ( k  > =  1) &  (k  < =  (N—1)/2 )  

c ( k )  =  0; 
e lse

c ( k )  =  0; 
f o r  j  =  N :2 * k

c ( k )  =  c ( k )  +  . 5 * p ( 2 * k  — j  + 1 ) ;  
end ; 

end; 
end;

hO =  in v ( A ) * c .  ’ ; % i n t e g r a l  f o r  x  =  1 , 2 , . . .  ,N—1

hO =  [ 0 ; hO ; 1 ] ;  % i n t e g r a l  f o r  x  =  0 ,1 ,2 , . . .  ,N—1,N

% Compute the  c o e f f i c i e n t s  f_ m ,k  ( p r o j e c t i o n  c o o rd in a te s  o f  

% f ( t )  on to  space V_m;)

fo r  k =  1: le n g th  (v )
f ( k )  =  hOfunc (hO ,M +  v ( k ) )  — hOfunc (hO , v ( k ) ) ;  

e n d ;
f  =  f / s q r t ( M ) ;

% Compute the g—sequence us ing  s e r ie s  expans ion  wh ich 

% g ives  th e  v e c to r  g l

f o r  k =  —N:N2 
g l ( k -+ N + l)  =  0; 

fo r  j  =  0 :(N 2  - p )  
in d x  =  —j — k ;  
i f  ( in d x  > =  —M &  in d x  < =  N)

g l  ( k - fN + l)  =  g l ( k + N + l )  +  r  “ ( j  ) * f  ( M + in d x  +  1 ) ; 
e n d ; 

end; 
e n d ;
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% Compute th e  b—sequence us in g  s e r ie s  expans ion  wh ich  g ives  
% the  v e c to r  b l

be ta  =  (1 —r  ) .  * 2;

fo r  n =  —N:N2
b l  (n  +  N +  1) =  0; 
fo r  k  =  0:M

g =  0;
f o r  j  =  0 : ( M + k  —n) 

in d x  =  k  — j  — n ; 
i f  ( in d x  > =  —M &  in d x  < =  N) 

p =  n - k ;
g =  g +  r ‘ ( j ) * f  ( M + in d x  +  1 ) ;  

e n d ; 
end;
b l ( n  + N  4- 1) =  b l ( n  +  N  +  1) +  r “ ( k ) * g ;  

e nd ; 
end;

b l  =  b e t a * b l ;

% Compute the  b—sequence us in g  the  r e c u r s iv e  fo rm ,  

c l  =  r ;

b 2 (1) =  b l ( 1 ) ;

f o r  n =  —N :N2—1 
n-HST+2;
b2 (n-+N+2) =  0; 

in d x  =  n+ 1 ;
b2(n-fi'J+2) =  b2(n-*N+2) +  b e ta * g l  (N + in d x  +  1 ) ;
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b2(n-+N+2) =  b2(n-+N+2)+ c l * b 2 ( n 4 N + l ) ;  
e n d ;

B .1 0  C o d e  F u n c t io n  t r ia n g a p p r o x r

Listing B.10: triangapproxr

%
% tr iangapproxr  .m
%
% This ro u t in e  computes the p o s i t i v e  wavele t p r o j e c t i o n  
% ’f . m ~ r ’ f o r  the t r ia n g u la r  pulse  f ( t ) = t f o r  0 <= t <= 1 
% in a Recurs ive  and non Recurs ive  manner.
%

f u n c t io n  [ i n t e r v a l  , f ]  =  t r ia n g a p p r o x r  (m)

J =  0; 
r  =  .50;

p =  psequence( 4 ) ;
N =  le n g th  (p ) — 1;
[ t p h i ,  p h i ]  =  makephi (p , J ) ;

o f f s e t  =  2~m; 
sca le  =  2" J ;
N1 =  - N ;
N2 =  2* o f f s e t  —1;

% Compute the p r o je c t io n  c o e f f i c i e n t s  bl has the non 
% re c u r s iv e  c o e f f i c i e n t s  and b2 has the r e c u r s iv e  components

[ b l , b 2 ]  =  T r ia n g C o e f f  (m,N2, r  , p ) ;

t l  =  — 2*(m ); 
t2  =  2*2~ (m ) ;
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% Compute the p r o j e c t i o n s  f  is the non r ecu rs ive  p r o je c t io n  
% and f l  is the rec u rs iv e  p r o j e c t i o n .

f o r  k  =  t l : t2
f ( k  -  t l  +  1) =  0; 
f l  ( k  -  t l  +  1) =  0; 
f o r  n =  N1:N2

p f  =  p h i fu n c  (k—n* scale , ph i ,J  , N ) ; 

f ( k  -  t l  +  1) =  f ( k  -  t l  +  1) +  b l ( n  -  N1 +  l ) * p f ;  

f l  ( k  -  t l  +  1) =  f l ( k  -  t l  +  1) +  b2 (n  -  N1 +  l ) * p f ;  
end ; 

end;

f  =  (2*  ( m /2 ) ) *  f ;

f l  =  (2~ ( m /2 ) ) *  f l  ;

i n t e r v a l  =  [ t l : t2  ] / (  o f f s e t  * s c a le  ) ;

e l f

% Plot  the non recu rs iv e  p r o je c t io n

p l o t ( i n t e r v a l , f , ’—’ ) , g r id  

x la b e l  ( ’ t  ’ )
y l a b e l ( ’ f _ {  m } ‘ {  r }  ( t )  ’ )

% Plo t  the r e c u r s iv e  p r o je c t io n  

f i g u r e ;
p l o t ( i n t e r v a l  , f l  , ’—’ ) , g r id  
x la b e l  ( ’ t  ’ )
y l a b e l ( ’ f _ {  m } ' {  r }  ( t )  ’ )

B . l l  C o d e  F u n c t io n  T r ia n g C o e f f
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Listing B . l l :  TriangCoeff

%
% TriangCoef f  .m
%
%
% This ro u t in e  computes the g—sequence and 
% the b—sequence both using s e r i e s  and
% recu rs ive  approaches.  Obviously , the two methods ought to 
% agree with each o ther .  This is done on the assumption  
% tha t  the input  s igna l  is a t r i a n g u la r  f u n c t i o n .
%
% This f u n c t i o n  needs hOfunc .m and h l func .m .
%
% User in p u t s :
% m = index on Vjm and m >— 0 is assumed
% N2 = number o f  p o in ts  used to compute the p r o je c t io n
% r = a number between 0 and 1 chosen to con tro l
% convergence behavior  o f  the s e r i e s  according to
% the theory in Walter and Shen ( P o s i t i v e
% Es t im at ion  with Wavelets) .
% p = required  p—sequence f o r  the sca l ing  fu n c t io n  used
% in the s e r i e s  (ob ta ined  using psequence.m)
%
% The rou t ine  re tu rns  bl (b— sequence computed using a s e r ie s  
% expansion)  , and b2 (b—sequence computed r e c u r s i v e l y ) .
%

f u n c t io n  [ b l , b 2 ]  =  T r ia n g C o e f f  (m ,N 2 ,r  ,p )

N =  le n g th  (p )  — 1;
M  =  2~m;

% Set  up v—a x i s ;  t ( v )  has support  on [—2 'm  + 1,N—1] 
v =  [ —M: 1 : N ] ;

% Compute matr ix  Mx

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



f o r  i =  1:N—1 
f o r  j  =  1:N—1 

k =  2 * i  -  j  +  1; 
i f  ( k  >  0) &  ( k  <  N+2)

M x ( i  , j  ) =  p (2 *  i  -  j  +  1); 
e lse  

Mx(i , j ) =  0; 
end 

end; 

end;

% Compute the i n t e g r a l  h~{(0)}  ( x )  o f  the sca l ing  f u n c t i o n  on 
% the dyadic p o in t s  over the i n t e r v a l  [ 0 ,N]

I  =  t o e p l i t z ( [  1 z e r o s ( s iz e  ( [ 1 : N —2 ] ) ) ] ) ;

A  =  I  — .5*Mx;
A1 =  I — .25*Mx;

% Compute the i n t e g r a l s  h0(x)  and h l ( x )  f o r  x  = 1 , 2 , N-1

f o r  k =  1:N—1
i f  ( k  > =  1) &  (k  < =  (N—1)/2 )  

c ( k )  =  0; 
e lse

c ( k )  =  0; 
f o r  j  =  N :2 * k

c ( k )  =  c ( k )  +  . 5 * p ( 2 * k  -  j  + 1 ) ;  
end; 

end; 
end;

% in t e g r a l  f o r  x = 1 , 2 , . . . , N —1 
hO =  i n v ( A ) * c . ’ ;

ml =  0;
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f o r  k  =  0:N 
m l =  m l +  k * p ( k + l ) ;  

e n d ;
ml =  .5*ml;  % s c a l in g  func t ion  f i r s t  moment

c l  =  . 5 * m l * c ;

fo r  k  =  1:N— 1 
e t a l  ( k )  =  0;
fo r  n =  ( 2 * k  -  N ) : ( 2 * k - 1 )

i f  ( n > = l ) & ( n  < =  (N—1) )
e t a l ( k )  =  e t a l ( k )  +  .2 5 * p ( 2 * k  — n +  l ) * h 0 ( n ) ;  

e l s e i f  ( n > =  N )
e t a l ( k )  =  e t a l ( k )  +  .2 5 * p ( 2 * k  — n +  1); 

e n d ; 

e n d ; 
end;
h i  =  i n v ( A l ) * ( c l  +  e t a l ) . ’ ; % in t e g r a l  f o r  x =

hO =  [ 0 ; hO ; 1 ] ;  % in t e g r a l  f o r  x = 0 , 1 , 2 ,N—1,N
h i  =  [ 0 ; h i  ; m l ] ;  % in t e g r a l  f o r  x  = 0 , 1 , 2 , . . .  ,N— 1,N

% Compute the c o e f f i c i e n t s  f - m , k  ( p r o j e c t i o n  coordinates  
% of  } ( t )  onto space  V im; see (4 -1 ) )

f o r  k =  1: le n g th  (v )
f ( k )  =  h l fu n c  ( h i  ,m l ,M  +  v ( k ) )  — h l f u n c ( h l  ,m l ,  v ( k ) ) ;  
f ( k )  =  f ( k )  — v ( k ) * (  h O fu n c (h O ,M +  v ( k ) )  — h 0 func (h0  , v ( k ) ) ) ;  

end;
f  =  f /  (M. ( 3 / 2 ) ) ;

% Compute the g—sequence using s e r i e s  expansion (4-8)  which 
% gives  the vec to r  gl

f o r  p =  —N:N2
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g l ( p + N + l )  =  0; 
f o r  j  =  0 :(N 2 —p) 

in d x  =  -  j  -  p ;  

i f  ( in d x  > =  —M  &  in d x  < =  N)
g l ( p + N + l )  =  g l ( p + N + l )  +  r “ ( j  ) * f  ( M + in d x  +  1); 

end; 
end; 

end;

c l  =  —1 / r  ; 
c2 =  1 / r ;

% Compute the b—sequence us ing s e r ie s  expans ion .

b e ta  =  (1 — r ) .  “ 2;

f o r  n =  —N:N2

b l  (n +  N  +  1) =  0; 
f o r  k  =  0:M

g =  0;
f o r  j  =  0 : ( M + k  —n) 

in d x  =  k — j  — n ;  
i f  ( in d x  > =  —M &  in d x  < =  N) 
p =  n - k ;
g =  g +  r * ( j ) * f  ( M + in d x  +  1); 
end ; 

end;

b l  (n  +  N +  1) =  b l  (n  +  N +  1) +  r “ ( k ) * g ;  
end; 

end;

b l  =  b e t a * b l ;

% Compute the b—sequence using the r ecu rs ive  method.  

c l  =  r ;
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b2 (1) = bl (1);

f o r  n =  —N:N2—1 
n # + 2 ;
b2 (n+N+2) =  0; 

in d x  =  n+1 ;
b2(n-HST+2) =  b2(n-HNT+2) +  b e ta * g l  ( N + in d x  +  1 ) ;

b2 (n+N+2) =  b2 (n+N+2)+  c l * b 2 ( n + N + l ) ;  

end;

B.12 Code Function hOfunc

Listing B.12: hOfunc

%
% hOfunc. m
% This f u n c t i o n  computes some values  needed to p r o je c t  a 
% square and a t r ia n g u la r  s ig n a l  in to  a wavele t  space.
%

f u n c t io n  x  =  h O fu n c (h 0 ,k )

N =  le n g th (h O )  —1; 

i f  k <  0 
x  =  0; 

e l s e i f  k >  N 
x  =  1; 

e lse
x  =  h 0 ( k + l ) ;  

end ;

B.13 Code Function h lfunc

Listing B.13: h lfunc

%
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% hiJune .m
% This f u n c t i o n  computes some values  needed to p r o je c t  a 
% t r ia n g u la r  s igna l  in to  a wavelet space.
%

function  x  =  h l f u n c ( h l  ,m l , k )

N =  length  ( h i )  —1; 

i f  k <  0 
x  =  0; 

e l s e i f  k  >  N 
x  =  m l;  

e lse
x  =  h l ( k  +  l ) ;  

end;

B .14 Code Function DiscRecProj

Listing B.14: DiscRecProj

% DiscRecProj  .m
%
% This f u n c t io n  is designed to probe the d i s c r e te  p o s i t i v e  
% sampling proposed by G. Walter.
% The t e s t  s igna l  w i l l  be cons truc ted  in s id e  the f u n c t i o n  
% and i t  w i l l  be a t ra in  o f two un i t  square p u l s e s .

function  D iscR ecP ro j (m, r )

% m equals the order o f  the r e p re s e n ta t io n  
% The s e r i e s  w i l l  we computed with an i n t e r v a l  o f  2~(m)

o f f s e t  =  2 'm ;

% D e f i n i t i o n  of impulse t ra in  time length  = n 

t f  =  o n e s ( 1 ,1 0 ) ;
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t f  (1 ,5 :7 )  =  0; 
l _ n _ t f  =  l e n g t h ( t f ) ;

f  =  z e r o s ( l , ( l _ n _ t f  ) * o f f s e t  ) ;

f o r  1 = 0 :  1
f  (1 ,  i  * o f f s e t  + 1 : (  i+ 1 ) *  o f f s e t ) =  t f ( i + l ) ;

end

l_n =  l e n g t h ( f ) ;
i n t e r v a l  =  [0: l _ n —1 ] / o f f s e t ;

% Plo t  f u n c t i o n  to be p ro je c te d
f i g u r e ( 1 ) ;
p l o t ( i n t e r v a l , f ) ;
g r id
x la b e l (  ’ t  ’ ) 
y  la b e l  ( ’ f  ( t )  ’ )

% psequence w i l l  r e turn  the values  f o r  bu i ld ing  Daubechies  
% wavelet  
p =  psequence( 4 ) ;
N =  l e n g t h ( p ) —1;

% phi w i l l  have the sca l in g  f u n c t i o n  values  from zero in 
% the in t e g e r  p o i n t s .
[ t p h i , p h i ]  =  m akephi (p , 0 ) ;

N1 =  —N + l;
N2 =  o f f s e t  * (  l _ n _ t f ) — 1;

% Compute the d i s c r e t e  p r o j e c t i o n  c o e f f i c i e n t s  
b =  D is c P rC o e f f  (m ,N l ,N 2 ,  f  , r  ) ;

% Compute the p r o j e c t i o n  o f  the f u n c t i o n  f  us ing the  
% d i s c r e t e  co e f f i c i e n t s
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t l  =  0;
t2  =  o f f s e t  * (  l _ n _ t f  ) ;  
f o r  k =  t l : t2  

f -P  (k  +  1) =  0; 
f o r  n =  N1:N2

p f  =  p h i f u n c ( k —n , p h i  ,0 ,N ) ;  
f _ p ( k + l )  =  f_p ( k + 1 )  +  b ( n  -  N1 +  l ) * p f ;  

end ; 
end ;
f_p =  (2 *  ( m /2 ) ) *  f_p ;

% Plot  the p ro je c te d  f u n c t io n

i n t e r v a l  =  [ t l : t 2 ] /  o f f s e t  ;

f i g u r e  ( 2 ) ;  
e l f

p l o t ( i n t e r v a l , f_p , ’ )
g r id
x la b e l  ( ’ t  ’ )

y la b e l  ( ’ f  _ {m} “ {  r  }  ( t ) ’ )

B.15 Code Function D iscPrC oeff

Listing B.15: DiscPrCoeff

%
% DiscPrCoef f  .m
%
% This f u n c t i o n  computes the D iscre te  p r o je c t io n  
% c o e f f i c i e n t s  o f  a f u n c t i o n  f .
%
% User i n p u t s :
% m = index on VLm and m > =  0 is  assumed
% N l , N2 = de f ine  range o f  c o e f f i c i e n t s  b-n
% ( i . e . ,  n = N l , . . . , N 2 )
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% r = a number between 0 and 1 chosen to con tro l
% convergence behavior o f  the s e r i e s  according to
% the theory  in Walter and Shen ( P o s i t i v e
% Es t imat ion  with Wavelets) .
%

f u n c t io n  b =  D is c P rC o e f f  (m ,N l,N 2 ,  f  , r )

o f f s e t  =  2 ‘ m; 
l_n =  l e n g t h ( f ) ;

n . te rm s  =  l_n  ;

f o r  n =  N1:N2
b (n  — N l +  1) =  0;

g =  0;
f o r  1 =  n — ( l _ n —l ) : n

i f  (n— 1) >  =  0 Sc (n— l)< n _ te rm s  
g =  g +  r  ~ (abs( 1 ) ) *  f  (n—1-t- l);

end
end ;
b l ( n  -  N l  +  1) =  g; 

end ;

b l  =  (2 ~ (— m / 2 ) ) * ( l  — r ) / ( l + r ) * b l ; 
b =  b l ;

B .16 Code Function QRMdl

Listing B.16: QRMdl 

% QRMdl.m
%
%
% This f u n c t io n  computes the GCD o f  a system with the form
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% H  = Al/Bl=A*d/B*d when the matr ices  have no ise .
%
% The noisy  model equation is assumed to be 
% Hn= (Al + n l ) / ( B l  + n2) where noise sources n l and n2 are 
% uniform noise de f ined  over the i n t e r v a l  [—e , e ] .  The
% algori thm is based on ”MDL c r i t e r i o n  f o r  Rank 
% Determination Via E f f e c t i v e  S ingular  Values” where the MDL 
% rank e s t im a tor  is  changed to a p o s i t i v e  wavelet  
% decomposit ion c r i t e r i a .
%
% A  and B are the c o e f f i c i e n t s  o f  the system and d are the 
% c o e f f i c i e n t s  o f  the common f a c t o r .  Vector e has the lev e l s  
% of  noise  tha t  w i l l  t e s t  the system.
%

function  ma?=QRMdl(A,B>d, e)

% D e f in i t i o n  of  the terms ex t ra c te d  from the model given in 
% Zarowski MDL paper

Al =  conv(A,d);
Bl =  co n v (B ,d );
%A1 = A;
%B1 = B;

1A1 =  length  (A l);
1B1 =  length  (B l);

% Define the maximum d e v ia t io n .  We w i l l  use uniform noise .

ma =  z e r o s ( l e n g th ( e ) ,1A1);

figu re  (1);  
e l f ;
f igu re  (2);  
e l f ;
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% Reproduce the t e s t  100 t im es  f o r  every maximum l e v e l  o f  
% noise  given on vec tor  e

f o r  i  =  1 : le n g t h ( e )  
f o r  j  =  1:100

n l  =  e( i ) * ( r a n d ( s i z e  ( A l ) )  — 0 .5 ) ;  
n2 =  e( i  ) * ( r a n d ( s i z e  ( B l ) )  — 0 .5 ) ;

An =  A l  +  n l ;
Bn =  B l  +  n 2 ;

% Generate the f o u r  matr ices  g iven in Zarowski MDL paper .

51 =  ze ro s  (1A1—1);

52 =  z e r o s ( lA l  —1);
53 =  z e ro s (1 B 1 ) ;
54 =  z e ro s (1 B 1 ) ;

TempRowl =  [A n ( l : e n d  —1)];

TempRow2 =  [An (2 : e n d ) ] ;

TempRow3 =  [0 B n ( l  :end  —1)];
TempRow4 =  B n;

fo r  k  =  1:1A1—1

S l ( k , : )  =  TempRowl;
TempRowl =  [0 ,TempRowl ( [1  :e n d  —1 ] ) ] ;
S2(1A1—k , : )  =  TempRow2;
TempRow2 =  [TempRow2 ( [  2: end ] )  , 0 ] ;
S 3 (k , : )  =  TempRow3;
TempRow3 =  [0 ,TempRow3 ( [  1: end — 1 ] )  ] ;
S4(1A1—k , : )  =  TempRow4;
TempRow4 =  [TempRow4 ( [  2 : end ] )  , 0 ] ;  

end
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S l ln v  =  i n v ( S l ) ;

K  =  —S 3 * S l I n v ;
% Obtain the des ired  QR decomposit ion  
[Q,R] =  q r ( K ’ *S 2 ’+S4 ’ ) ;

% Use the ICE algorithm on matr ix  R 
a lp  =  IC E (R , j  ) ;

[q ,m ] =  M D L2(alp , j  ) ;

[q ,m ] =  M D L l(a lp  , j  ) ;

m a ( i , q )  =  m a ( i ,q )  +  1; 
end

end

B .17 Code Function ICE

Listing B.17: ICE 

% ICE.m
% Function to obta in  the Increm en ta l  Condit ion Es t im at ion  
% f o r  al l  the p r in c i p a l  submatr ices  o f  the upper t r ia n g u la r  
% matr ix  R.
%

fu n c t io n  d i= IC E (R , i t e )

% Transpose m atr ix  R to obtain a lower t r ia n g u la r  matr ix  

R  =  R ’ ;

x ( l )  =  1 / R ( 1 ,1 ) ;  
d i ( l )  =  l / n o r m ( x )  ;
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f o r  i= 2 : s i z e  ( R , l )  
v  =  R ( i  ,1 :  i  - 1 ) ;  

a lp  =  v * x ;

b e ta  =  R ( i , i ) “ 2 * x ’ * x  +  a lp  '2  — 1;
n =  b e t a / ( 2 *  a lp  ) ;

u =  n +  s i g n ( a l p ) * s q r t ( n ‘ 2 + l ) ;
lm ax =  a lp * u  + 1 ;
ny =  s q r t  ( lm a x ) /a b s ( R ( i  , i ) ) ;
d i ( i )  =  1 / n y ;
i f  ( a lp  ~=  0)

fa c t  =  l / s q r t ( u * 2 + l ) ;  
s =  f a c t * u ;  

c =  fa c t  * (  —1); 
e lse

s =  0; 
c =  1;
i f  a b s ( R ( i , i  ) ) * n o rm (x )  >  1 

s =  1; 
c =  0;

end
end

x =  [ s * x  ; ( c—s * a lp ) / R ( i  , i  ) ] ;
end
d i  =  d i ’ ;

% Plot  the es t imated  s in g u la r  values  f o r  the f i r s t  
% i t e r a t i o n . (Used when t h i s  f u n c t io n  is ca l led  m ul t ip le  
% times  in s id e  another r o u t in e ) .  
i f  ( i t e  = =  1) 

f i g u r e  ( 3 ) ;  
p l o t  ( d i ) ;

end

B .18 Code Function M D L l
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Listing B.18: MDL1 

% MDLl.m
%
% This f u n c t i o n  computes the MDL f o r  f o r  a p o s i t i v e  sampling  
% s e r ie s  w i thout  the q /2  c o e f f i c i e n t  
%

f u n c t io n  [q_m,m_m] =  M DL1(alp , i t e r )

% Total number o f  given s in g u la r  va lues .

n =  le n g th  ( a lp  ) ;
N =  1;

m =  1; 
nun  = 1 ;
% Calcula te  f i r s t  t ime se t  the minimum to th is  value

% We w i l l  obtain the f i r s t  term on the MDL supposing we only 
% have one s in g u la r  value d i f f e r e n t  than zero and rre=0 
% ( space VO).

q =  2;

% Calculate the value of  rho.q  
rho_q =  s um (a lp  ( l : q ) . * 2 ) ;

% mdljmin w i l l  s to re  the minimum value obtain f o r  the MDL.
% Due to the f a c t  tha t  th i s  is  the f i r s t  i t e r a t i o n  we w i l l  
% store  the MDL s t r a i g h t  in to  mdLmin.  The MDL is  computes 
% according to the formula ob ta ined .  (See  research notes  fo r  
% more in fo r m a t io n ).

m d lu n in  =  ( ( n  — q / 2 ) * l o g 2  (exp  ( 1 ) )  . . .
— (n—q ) * lo g 2  ( (n —q ) /s u m (  a lp  (q + l,e n d  ) ) ) . . .
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+  q / 2 * l o g 2 ( 2 * p i / q * r h o _ q * ( l  — 1 / q ) ) ) ;

% qjm w i l l  s to re  the number o f  terms ” q ” of the MDL and ”m” 
% wil l  s to re  the order o f  the p r o je c t io n  space used to 
% obtain the MDL. 
q-m =  2;

% Compute the value f o r  the MDL f o r  the remaining values  of  
% ”q ” and ”m ”. A t the end o f  th i s  r ecurs ion  the MDL w i l l  be 
% s tored  in mdLmin and the corresponding  ”q ” and ”m ” values  
% w i l l  be s to red  in ”q .m ” and ”rrun” r e s p e c t i v e l y .

f o r  ( q = 2 :n —1)
rho_q =  sum ( a lp  (1 : q ) .  * 2 ) ;
rem  =  sum ( a lp  ( q + l , e n d ) ) ;

m d l(q )  =  ( ( n  -  q / 2 ) * l o g 2  (exp  ( 1 ) )  . . .
— ( n - q ) * lo g 2  ( (n —q ) / r e m ) . . .

+  q / 2 * l o g 2 ( 2 * p i / q * r h o _ q * ( l  — 1 / q ) ) ) ;

i f  (m d l(q )  <  m d l-m in ) 
m dl_m in=m dl ( q ) ;  

q-m =  q;
end

end

% Plo t  the r e s u l t  obtained in the f i r s t  i t e r a t i o n  when th i s  
% fu n c t i o n  is  ca l led  m u l t ip le  t imes  in s id e  another  ro u t in e

i f  ( i t e r  = =  1) 
f i g u r e  ( 1 ) ;  
g r i d  on; 

h o ld  a l l ; 
p l o t ( m d l ) ; 
h o ld  o f f ;

end
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B.19 Code Function MDL2

Listing B.19: MDL2 

% MDLS.m
%
% This f u n c t i o n  com-putes the MDL f o r  f o r  a p o s i t i v e  sampling 
% ser ie s  w i thout  the q /2  c o e f f i c i e n t  
%

fu n c t io n  [q_m,m_m] =  M D L2(alp , i t e r )

% Total number o f  given s in g u la r  v a l u e s .

n =  le n g th  ( a lp  ) ;
N =  1;

m =  1; 
m m = 1 ;

% Calcula te  f i r s t  t ime se t  the minimum to th i s  value

% We w i l l  ob ta in  the f i r s t  term on the MDL supposing we only 
% have one s in g u la r  value d i f f e r e n t  than zero and nv=0 
% ( space VO).

q =  2;

% Calculate the value of rho.q  
rho_q =  su m (a lp  ( 1 : q ) .  " 2 )  ;

% mdLmin w i l l  s to re  the minimum value obtain  f o r  the MDL.
% Due to the f a c t  tha t  th i s  is the f i r s t  i t e r a t i o n  we wi l l  
% s tore  the MDL s t r a i g h t  in to  mdLmin.  The MDL is computes 
% according to the formula ob ta ined .  ( See research notes fo r  
% more in fo r m a t io n ) .
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m dLm in  =  ( q * lo g 2 ( n )  +  (n  — q / 2 ) * lo g 2  (exp  ( 1 ) )  . . .
— (n—q ) * lo g 2  ( (n —q )/su m ( a lp  ( q + l , e n d ) ) ) .  

4- q /2 * lo g 2  ( 2 * p i / q * r h o _ q * ( l  —1 / q ) ) ) ;

% q.m w i l l  s to re  the number of  terms ” q ” of  the MDL and ”m” 
% wil l  s to re  the order o f  the p r o je c t io n  space used to 
% obtain the MDL. 
q_m =  3;

% Compute the value f o r  the MDL f o r  the remaining values of  
% ” q ” and ”m ”. A t the end o f  th i s  recurs ion  the MDL wi l l  be 
% s tored  in mdLm in and the corresponding ”q ” and ”m ” values  
% wil l  be s tored  in ”qjm” and ”m jn ” r e s p e c t i v e l y .

f o r  ( q = 2 :n —1)
rh o .q  =  sum ( a lp  (1 : q ) . '  2 ) ;  
rem  =  sum ( a lp  ( q + l , e n d ) ) ;

m d l(q )  =  ( q * lo g 2  (n )+ ( n  -  q / 2 ) * lo g 2  (e xp  ( 1 ) )  . . .
— (n—q ) * lo g 2  ( ( n —q ) / r e m ) . . .

+  q /2 * lo g 2  ( 2 * p i / q * r l i o _ q * ( l  — 1 / q ) ) ) ;

i f  (m d l (q )  <  m d L m in ) 
m dl_m in=m dl ( q ); 

q-m =  q ;
end

end

% Plot  the r e s u l t  obtained in the f i r s t  i t e r a t i o n  when th is  
% f u n c t i o n  is ca l led  m u l t ip le  t imes  in s id e  another  rou tine

i f  ( i t e r  = =  1) 
f i g u r e  ( 2 ) ;  
g r id  o n ; 
h o ld  a l l ;  
p l o t  ( m d l ) ;
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hold  o f f ;
end
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