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° ' ‘ ‘ | Abstrq;t

Adaptlve controllers are typlcally designed w1th the
prlmary»empha51sion séfbo response. "In realtlme chemlcal‘,
engineering applications,ghowever, the chief task of most

@

control schemes is regulation This thesls analyzes the

I3
&

regulatory behav1our of .a number of single-step.and multl—'
_-step,control strateglés w1th the objective of unifying thelr'
varlous approacHes to- the probl?m of predlctlng future

outputs, espec1ally in the presence of nonstatlonary sto-
. bt~

chastic dlsturbances.

- Work in.the 1970's on'the,equivalence of optimal:sto-'
chastic controllers implemented in the/state space and
transfer functionfdomainS»culminated in a general proof of
’equlvalence for minimum variance control of plants subject
to stationary stochastlc dlsturbances /This theSlS presents
L a 51mpler approach to -the problem by analogy with- the Smith

*predlctor ,and extends the reshlt to: 1nclude plants hav1ng

3.

:nonstatidhary dlsturbances. The correspondence that ex1sts
between the Generallzed Mlnlmum Varlance forms of these con—
trpllers is also shown - o |
Adaptiye long-range predictlyeocontrol strategies have‘
found a wide range of‘application in chemicalfprocess cone
trol becausefmhey haye demonstrated a greater degree‘of
robust,ess'than singlé—point strategies ln the presence of.

model/plant mlsmatch Once,?galn, methods have been pro-

posed that may be 1mplemented in the state space domaln

I
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3

using a Kalman filter, or in the.}ranéﬁer function domain by
fécursiqn of.a Didphahtin¢ equation.  Two such algorithms,
Mﬁltistep Adaptive Predictive Control (MAPQ),ahd Generalized
Predictive Control ére{;ﬁg;h to pfoyide as?mptotiCally équal
control of time-invariant p}ahts subjecf ;o time &élay and -
nonzero-mean disturbances, Ey‘ﬁh’extensiqn of the eqﬁiva—

s

lence result derived for the minimum vériénce case. A com-~
parison between these techniqués and th nonparametric LRPC )
SChemés, Dynamic Matrix Coﬁtrqi and the ﬁultivariable,
Optimal., Constrained Cohtrol Algorithm is also préSentedr
.The thesis concludes with an experimental evaluation of ‘
Multistep Adaptive Predicfive Congrgl on the double-effect
evaporator at the Uﬁivergify of Alberta. The MAPC scheme is
'showﬁ to §rovide excellent'sérvo/régulatdry pé;formance,
usiﬁgfafhinimum éf a }nﬁorikhdw}edge regaéding the plant

dynamics.



Acknowledqement

I would like’to express my thanks to my thesis
supervisor, Dr. D.G. Flsher, for his support durlng the
course of this wark. I would also like to thank the DACS
center staff, especially Mr. R.L. Barton, for thelr help
w1th the department computing fac1llt1es and the workshop
staff for thelr a551stance w1th the pllot plant evaporator

Appreciation .is extended as well to my fellow gradgate

students for their patience and friendsnip.

I would like to thank my parents for their constant

support and encouragement, without which this work would not

‘have been possible.

Finally, finanqia; support provided by the Department of
Chemical Engineering at thé University of Alberta and the
National Sciences and Engineering Research Council is

{j gratefully acknowledged.

4 j‘-‘r/(

vii

L



Table of Contents

CHAPTER - o ,  PAGE-
1 Introduction ....... e e e 1
1.1 References ........c.o... e e e e, . 3
2 -Single-Step Predictive Control ............iee.uv.. 4
2.1 Introduction ... e e e e 4
2.2 Smith Predictor R ........ N e e . 5
2.3 Kalman Filter P;f' ‘nyile} S W eaeeaaae 7
2.4 Least Squares Predictor e i e e ,' 13
2.5 KFP versus LSP-based Minimum VarianCe.Contfel . 16
2L6'Mpdified Kalman Filter Predictor ,.}...:;..,.J. 17
2.7 Integrating Least Squares Predictor ...... ;\,..-; 20
2.8 MKFP versus ILSP-based Minimum Varlance fe‘ 3
Control .......... e e e et e eee et ceetees 21
" 2.9 Extension to Generallzed Minimum Varlance ERE
Control ............. B R R 22
.2.10 simulation EXAmMPLle . veueenrennnnn. PR 28
I2.11Conc1usioﬁs e et et . 34
2.12 References e e e cee e et ec e . 34
3 Single- Step Adaptive Predlctlve Control ........... 76
3.1 INErodUCEION vt eeerneninnneenensoneioesen. ... 36
3.2 Parameter Identification }.......- ..... u.....}ﬁ..'l37
3.2.1 Parameter Identification us1ng a Kalman |
Fllter ittt ittt inenenianananns 41 -
v3.2.I.10bservability R 44
3.2.1.2 Stability ......... e ... A5
3.2.1.3 Positional Formulation .......... 50 -
3.2.1.4 Conclusions re Kalman Filter ‘ : ‘
* - .. Parameter Estimation ............ 54
3.2.2 Improved Least Squares ................ .. 54
3.2.2. J.Normallzatlon e e e, 55
'.32223ca11ng et e e, . 55
©3.2.2.3 Constant TEACe 4......oeeoeeenns. 56
3.2.2.40n/off Crlterla_.,..;....,..f.;{. '57:
3.2.2.5Mé&an Deviational Data ........ O 57
3.3 .The Adaptive Kalman Filter'Predictor.;., ..... .. 60
3.4 Integrating Self-Tuning Control .:.............. 65

viii @



3 5 Slmulatlon Results ......... cee

3.6 Conclus1ons .;,,........, .....

-------------------------------------
-----------------------

"4 1 Introductlon e

------------------------------

'4,é Multistep Adaptive Predictive Control .........
4.2.1 Long-Range Predictive Control Strategy

4.3 Generalized Predictive Control

' 14 3.1 Long-Range Predictive Control Strategy
4%3.2 GPC versus MAPC

4.4 Multlvarlable Constrained Control Algorithm

: 4.4.1 MOCCA with a Polynom1a1 Dlsturbance
~ Generator c et ees e .

4.4.2 MOCCA with a Kalman Filter Predictor
' 4.4.2.1 Reduced Order Model ...... e e

4.4.2.2 Derivation of an Equivalent
. Polynomial Observer .............

\4;4.3 Long Range Predlctlve Control Strategy
4.4.4 MOCCA versus GPC versus MAPC

" 4.4.5 MOCCA versus DMC a.a ............. e
4 5, Conclu51ons e e e I et e U
?4 6 References ......;....}..;.......... .............
Multlstep Adaptive Predlctlve Control ............. >
5.1 ,Introductlon ............ e e e
5.2 ‘The State Space Progess Model ....... .........
' 5.3 The Kalman Filter Pje ' :

edictor ...uv.i..i i i,
5.4 Innovationg Analysis for the RFP """?”";"'
5.5 -Analogy with the Smith Predictor ..............
5.6 . Improved Least. Squares ................ .

5.7 Difficulties with the Formulation .............
5.8 The Modified Kalman' Filter Predictor ..........
5.9 Long- Range Predictive Control Strategy ..3..'

5.10. Feedforward Control et e s e cceco oo c e e e

......

© 5.11 Simulation Examples et sttt et e s ecnee s

5.13 conclusions .. S e et e e s

~



6.1 Introduction e e et et e e et a et .
6.2 Description ¢f Equipment ..... e
6.3 Evaporator Model R
6.4 Multistep Adaptive Predictive Control .........
6.5 Expefimeqtal Results ..... ........... e et e e
6.6 CONCLUSIONS +evvuvnnenneeronnn.. feeccia e .
6.7 References ........... e e A
7 Overall Conclusions and iulture WOrK ............. ..
7.1 conclusions ....... '”u.u....; ....... e e e
7.2 Future Work ............ e e et e R
7.3 References ............ e e e S
Appendix h: Optimal'Pafameter Estimation ..: ..... ..
A.l Batch Least SQUAYES vttt inen e et iaeean
A.2 Recursive Least Squares ..... e S
A.3 The Kalman Fiiter‘....,.; ..... e ..
A.4, References ............ e e e

Appendix B: Innovations Ahalysis\for the Modified KFP

Appendix C: Sfeady State Opefating Data for the
Evaporator ..... Ch e et e e e e

kY

-t



-3

. ' List of Figures

FIGURE . ' o

2.11\Time delay compensation using theuSmith

3.3b

W

.3d

.4a

w

3.4b
3.4¢C
3.5a

3.7b
3.7c

predictor ........... et

Minimum variance control using the Modified
Kalman _¥Filter Predictor

Kalman §aih trajectories

Minimum variance control using the Infegratlng
Self-Tuning Controller

Structure of the adaptive Kalman filter control
scheme .......... ce et ae e

Structure of the Implicit Self -Tuning
Controller ..... e e AP

Adaptive minimum variance control using the
AMKFP ...... et ene e -

Parameter ‘estimation using ILS (tr P(-)=+1) ......

Adaptive minimum variance control using the
ISTC it ittt tnenneann e e e e

Parameter estimation using ILS (tr P(-)=70)..

Adapé\ée control of a tlme—varyln plant using

the AMKFP plus, Recursive Leazé/sq Tes ......v.. i
Parameter estimation using. R e ceberaaan IR
Trace of the covarlance matrix for RLS .........

Adaptive control of a tlmg-varylng plant u51ng
the AMKFP plus RLS with covariance

modification ............ h e o e e e ee et
Parameter estlmatlon using RLS w1th covariance
modification ...... P ettt et e e,
Trace of the covarlance matrix for RLS with
covarianteé modification ............. e .
.Adaptive control of a time-varying plant using
th AMKFP plus ILS ....c.... S
Pa. meter estlmatlon using ILs e S

Trace of the (unscaled) covarlance matrix for

,ILS ce e e et Tee et s e et e e e N

Adaptlve MV. control-:of a/noﬂmlnlmum phase plant
usxng the AMKFP .............. e e

Parameter estimation using. ILS (tr P( ):4) ...... -

Adaptlve MV control of a nonminimum phase plant

. using the ISTC ;;.l..............f...ﬂ.u...,1...

Parameter.estlmatiqn qsinngLS'(U' P(: ) 870) ...
X1

R N

64

68

70

71

73
74

76
76

78

80
g0

81
82

82

84
85

86
87



o Jm WM

(8]

.8a

.8b
.8¢C

.8d

.2a
.2b

.3a

.3b
.4a

5.4b

5.4¢F

5.49

5.4h
", order mﬁsmatch (N,=N,=1, N,=10, A=0,

.41

Adaptive .GMV Contrql of a nonminimum phasé plant
USIing the AMKFP ...ttt itnennenneennneennnnna

. _ ‘
Parameter estimation using ILS (tr P()=4) ..... .
Adaptive GMV control of a nonminimum phase plant
using the ISTC .......ciiiieecons e e
Parameteéer estimation using ILS (tr P(~)=800)

Generalized block diagram for Long-Range
Predictive COontrol ...iieeieninnnnenneeeennnenn.

Predictor structure.of Multistep Adaptive
Predlctlve Control ... .t ie it itaeneannnnans

Predictor structure of Generallzed Predictive
167 ) o o o« 30

Predictor structure of MOCCA with ARMA domain )
disturbance forecasting .........0ciiiiiiiinn.

Predictor structure of MOCCA w1th a Kalman -
Filter Predictor ..........ciiiiiiiiinieiennnn..

Structure of the Kalman Filter Predictor .......
Multistep Adaptive Predictive Control ..........
Parameter eétimation using ILS (tr P(:)=4) .....-
Multlstep Adaptive Predictive Control of a
nonminimum phase plant ........cciierrernnnnnn. o
Parameter estlmat19n‘using ILS (tr P(-)=4)...;...
Unit stepﬂresponse of a second order plant ..... '

Multistep Adaptive Prédictive Control with model
order mismatch (N, =N, =1, N,=10, A=0, T=1,
RI/R2=O.1,ZF P()=2) ..... PR o e e

Paramet.er esfimation'using I1IS ....... e
Multlstep Adaptive Predlctlve Control with model
order mismatch (N, =N, N2 llﬁ o, T=1,

R,/R,=0.1,tr P()—2) .................. e i e
Parameter estimation using TLS  evvevenneennnnnn.

Multistep Adaptive Predictive Control with~modél

.order mismatch (N,=N,=1, N,=10, A=100, T=1,

RU/ZR,=0.1, 15 P )=2) teeieeeeeineenaananenn.

Parameter estimation using ILS covvnn.. e ee s
Multlstep Adaptive Predictive control w1th model

T=1-08z"", R, /R;=0.1, tr P() 2) e,

Parameter estimation u51ng ILS voieiveneee.s e eee

xii

105
106
113
122

135
154
168

169

171

172

174 .

175
176

177
178

179
180

181
182



5. 47

(82}

.4k
.41

[$)]

5.5f

5.5g

6.6b
6.7a

6.7b

Multlstep Adaptive Predlctlve Control with model
order mlsmatch (N =Ng=1, N,=10, A=0, T=1i,

R\/R,=0.01, tr P(-)=2) ........

Parameter estimation using ILS

-----------------

Mﬁltistep Adaptive Predictive Control with model
order mismatch (N, =N, =1, N,=10, A=0Q, [ =1,

R\/R3=0.1,tr P()=0.2) vuuu....

¥ . d .
Paraméter estimation ﬁ51ng ILS

-----------------

Adaptive MV control of a varlable time delay

plant using the AMKFP .........

Parameter estimation using ILS (tr P(H)=t) ......

-----------------

Adaptive MV control of a variable time delay

plant u51ng the ISTC ..........

Parameter estimation usinfgILS (tr P(*)=900)

'Mdltistep Adaptive Predictive Control of a

variable time delay plant (R,/R,=1) ..........:.

Parameter estimation using ILS (u4 P(1)=-U ......

Multistep Adaptive Predictive Control of a
variable time delay plant (R,/R,=10""%) .........

Schematic dlagram of the double

7aporator L.l i e

‘Parameter estimation using ILS (ir P(-)=:4) ......

effect

-----------------

Fructure of the realtime _nterface ....... e e

Actual and pfedicted C2 step response data .....

Fixed parameter Multistep Adaptive Predictive

Control (default settings) ....

Fixed parameter'MAPC with feedforward control of

the feed flowrate .............

Fixed parameter MAPC regulatory
change in steam supply pressure

response to

----------------

Multistep Adaptive Predictive Control

(r P()=0.6) veveernnnnnnn.

Parameter estimation using ILS

Multistep Adaptive Predictive Control

(A PCY=60) eeenneeeaanannnn.

Parameter estimation uv=ing ILS

Parameter estimation using ILS

xiii

ooooooooooooooooo

ooooooooooooooooo

‘Mulfistevadaptive Predictive Control
(0(O)=[1 1 1 1 1 177) vueurrnun ‘

183
184

186
187

188
189

190
191

193

194

195

196

200

200

203
209
210

211

213
214

216
217

218

219



6.9a Multistep Adaptive Predictive'Control*

(Nl’NznlO) e s s 2 0 s 0 08 s e e s ® e e 0 0 e 0 s 060 s e e e e v e e
6.9b Parameter estimation using ILS ...... R
i 4
&
L ]
N
/'~
¥
v,

xiv



oM

Nomepclatuie

Technical Abbreviations

© AMKFP

ARMA

ARIMA

DARMA

“-DMC

ELS

FF

- GMV

GPP
GPC
ID

ILS

"ILSP

IO
ISTC
KF
Krp
LQG

LRPC

-LSP

MAPC

MISO

MIMO

MKFP

S—

‘Linear Quadratic Gaussian -

v : e
Adaptive Modified Kalman Filter Prediétof;

Autoregressive, Moving Average

’Autoregressive,‘@ntegrated, Moving Average
'Covériance Modification

Detefministic, Altoregressive, Moving Average

ynamic Matrix Control

-Extended Leasf Squares

Feedforward
Generalized Minimum Variance . ‘e

Generalized Pole Plagement

Generaliéed Predictive Control

Identification
Imprdvéd Least Squares
Integrating Least Squares Predictor

Input/Output N

. Integrating Self—Tuning Control

Kalman Filter

y,
.\

' \
Kalman Filter Predictor

7
Ty
\

Long-Range Predictive Control

Least Squares Predictor

Multistep Adaptive Predictive Control

Multi—inputl Single-output
Multi-input, Multi-output

Modified Kalman Filter Predictor



i

I Kl

MOCCA Multivariable Optlmal Constrained Control-
‘ Algorithm
MPM Model/Plant Miématgh B
MV L ;Minimum Variancé 
 éDG Polynomlal Dlsturbance Generaﬁor
- RLS Recur51ve Least Squares'
SISO - 'Single—input Slngle output R
Sp Smith Pred1ctor~
SSF Sinéle'Series Forecasting
sTC , Selﬁ—Tuning Céntrol
VTEG. .- Triethylene Glycol
Alphabetic | |
A(:"); Pblynomiél corresponding to the process ouﬁput
a,““,d;' Coefficients of A(z™')
B(:'l)' Polynomial corresponding to thé'proqess input
by, 5; Coéfficientg of B(z 1) |
C(="" Polynomial corresponding to the stochastlc
disturbance .
d Physical time delay of the process - 4
E{) Statistical expectation operator ’
E(z™") Diophantine'polynomial of degree (k—l)
_ F(=Y Diophantine polynomial correspondlng to the

remalnder term

G(z™") Product of E(z™') and B(z™'); also actual plant
’ transfer function .

Gr(z=™h) Residual filter transfer function
Cm(z™')  Model of plant with delay
Go(z™h) Model of plant without delay

Output coefficient vector
J Quadratic cost index

Kiy(z™h) Polynomial of Kalman gains, order n-1)

xXvi



\

~ Polynomial of Kalman gains, order (d-1)

&uDiophantine‘polynoﬁial of order (k-1)

Diophantine polynomial corresponding to
remainder term :

) Diophantine polynomial corresponding to
remainder term

Time delay of process plus hold device

Kalman gain vector

Elements of Kalmanlgain vector

the

the.

Lower limit of output weighting»horizon'.

Upper limit of output'weighting’horizon
Qontrol_weighting horizon

Output weighting horizon

order of A(z™')
Process noise
Meaéurement noise |
'Outpﬁt ueighting transfer function
Input”weighting transfervfuhctioﬁ

- Setpoint weighting transfer function
Process noise covayfance ’ q
Measurement noise!covariance

Procéss input
State vector
Process output

Forward shift operétor

Differencing gperator

order of polynomial

State coefficient matrix.
Process noise coefficient vector
First n elementé of T ﬁ

Input coefficient vector

d xvii

N—



St

=&

RLS forgetting factor; .also input welghtlng

Kalman filter innovations sequence

" coefficient

w ()

Superscripts

F\ Filtered value

-

Estimated value

Augmented variable

Subscripts

SP
5SS

.Setpoint

‘o

i

'Steady state.

o oxviii

. .
L

-

e

A<



ya
I

o

L
Introduction

Optimal;stochastic control strategies may be-divided
into two maﬁor categorfes4 ie. those that use a Kalman fil-

ter to predict future outputs, and those that accompllsh

this by solutlon of a Dlophantlne 1dent1ty The original

s
objectlve of thls ‘thesis was to compare two such algorithnms,

the integrating Self- Téplng Controller of Tuffs and Clarke

(19385) and a control'scheme/derlved by Lu (1986) for use
P ~~\ L 3
with the‘Modlfled Kalman Filter Predictor of Walgama et al

(1988) This work resulted in a new general proof of equiv-
alence for state space and transfer function controiler

designs. . o

e

However, as the work progressed it became'apparent that
these arguments could be extended to the multlstep case to

include a comparison of Generallzed Predictive Control

(Clarke et al, 1987) and the Multlstep Adaptlve Predlctlve
Control algorlthm of Srlpada (1988) Moreover, a general-v
ized block diagram developed for this analy51s was found to
prov1de a convenient framework for comparlson pf these
algorithms with "nonparametrlc"‘control techniques such as
Dynamic Matrixégontrol (Cutler and"Ramakerf 1980) and the
Multivariable Optimal Constrained Control Algorithm (Sripada
and Fisher} 1985). |

Chapters 2 to 5 of this thesis follow approximaﬁely the

chronological order of these developments, i.e.

1) Slngle—step predictive control of ‘'known systems

. -



2) Singlé—step”adaptiQe predictive control

3) Multistep predictibe—control of known systems S
PTec ,

4) Multistep adaptive pred}ctive control
In addition, a series of expe%iméntal trials conducted using
the double effect evaporétor at the University of Alberta
has been included invChapter 6, which represents a feasibil-
ity study of_theﬁMAPC algorithm when applied to a real
plant. '

Each of the;e chapters Bgilds on’the results of previous
chapters, ana numerous Cross referenéeé have been included:
ﬁerver, key results from earlier chapters have béen
repeated to make theﬁ felativelywindependent, in acccordance

with’the "paper format" option for theses at the University

 ‘of Alberta. " The overall conclusions and some recommenda-

tions for future research are included in Chapter 7 to pro-

vide a iarger perspective on the contributions of this

" thesis. «
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2
single:step Predictive Control
2.1'Introduotion
fhe eéquivalence of the Kalman Filter Predictor and the
Least Squares Predictor was a tébic of considerable interest
in the mid-1970's, following the advent of optimal stochas-

tic controllers ‘that could be implemented in the transfer

r

function domaln,L e. w1thout resort to conventlonal state
space de51gn_techn1ques. ?he equivalence of the two
aporoaches was for ally demonstrated by Caines (19%2) for

the unity delay case. This result wasvsubsequently
‘strengthened'by Hughes (1973) to include a general delay
term, subject to the restriction A(z™')=1 (cf. Eqn. (2.18)
below). This final requireﬁent was in turn removed b; Wat-
son151976) to complete the proof.;or_the general case.

The strateqgy used'bytthese authors toeestablish the
equivalenoy principle'consisted of two steps. First, it was
demonstrated that the innovation sequences for the state
space and transfer function methods are asymptotically

equal. An expre551on was then construoted for each tech-
glque relatlng the control actlon to the 1nnovatlon
,squence,_so that the‘two‘control laws could be compared on
‘a term-by-term basist This step proved to be somewhat
tedioys, despite the fact that .the (nonminimal) state space
realization was chosen to lead to ‘a block dlagonal state
transition matrlx Furthermore, it is dlfflcult to general-
ize this result to state.space'controlLers which do not pos-

L4 ‘»\

s



~

. \\ ‘1
sess this special property. -

ThiS‘chqpter will present a novel derivation of the
principle by analogy with the Smith'Predicfor, and'will
exteﬁd the result slightly to dgmon;trate the equivalencevof
tge © ~imum variance forms of the integratins Self—Tuning~
Controller of Tuffs and Clarke (1985) and the Modified Kal-
man Filter Predictor of Walgama (1986). 1In addition, the
correspondeﬁce of the Generalized Minimum Variance forms of
these schemes will be discussed. The chapter concludes with’
'a simulatioﬁ examplé”dembnstratiné‘tbis réiationship for
minimum variance control‘gf a second order plant having™time
delay and nonstationary stochastic disthfbances.

2.2 Smith'Predicto:

It is well known thdt stability consiéeratio;s often
' require very low proportional constaﬁts tolbe\uséd in the
application of .conventivnal PID contrgl to pidnt§ @aVing
‘significént ti@é delay, which results in sluggish servo
and regulatory perforﬁance. For this reasén;'Smith-‘
(I957,g1959)'developed2a time delay compensation scheme
for deterministic- systems to eliminate dead time from the
closed loop éharactéristic‘equation. The development of
the discrege Smith Predictor (SP) begins\by considering

\

the DARMA plant model:

Az Dy () =B(z"Hu(l-k) | (2.1)

where

91}
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and Gg(z"')=1.

. T

and the plant dead time k> ircludes the unit delay due

4

" to discretization. The essential idea is to feed to the

controller the output‘of the plant minus the delay,’br

equivalently 7 (l{+k|!) using the'following expression:
\ -1 ) ’ : . - (S

g+ k=200 \

J/ P ,_1) .

!

-1
‘+{y(5)_z‘*§ﬁiL_2u(¢)]
o Az ?

1(z™h)
- (2.2)
_or
VUKD =6p(2 ) u()+ 6 (2 )Y (1) =6 (2 Hu(®)] (2.3)
where for the Smith Predictor,
s . //
Sy _B(=ThH kB (zTH ~
Cp(z"Hy="220 6o (z = e )
P =TT Cu(ET) T o

1

., Gr may be interpreted £é'an,ad hoc noise filter useful

when applying‘the'Smith Predictor to stochastic plants,
but is &ncluded here primarily for 1ater_reféreqce; .
Equation (};3)g(in'clqsed‘loop.form) is represented sche--,
ma}ical}y‘in‘Fig; 2.1. | |

~ &
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Figure 2.1 Time delay compensation using the Smith Predictor
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Note that if no disturbances are present (w(t)=0) and

there is no€modél/procéss mismatch (MPM), then the error
terq/or residual is zero, ahd'?(t+k¢t)=GPu(t)
2.3‘Ka1man ?ilter Predictor

The optimal ;ontrofilaw;éerivedvby Lu (198§)ffor the
Kalman Filter Predictor‘(KFPS minimizes the performance
index- |

. - -1- 2
. “Tkep =[R2 )y sp(t+ k)= P ) E(y (k) I1)]
- o, (2.4)
+[Q(z"Hu(t)] . i
where P(z™'), 0Q(z ") and R(z ') are transfer functions
chosen to tailor closed loop performance to the user's
specifications: (Note that Q(1)=0 and P(1)=R(l) are
: © necessary conditions for zero controller offset.) The

[%



k~step-ahead output prediction E{y(t+K)|ty=9(t+k|t) is

obtained using the Kalman Filter Predictor of Bialkowski

(1978, 1983).

Consider the discrete state space represent:- ._o

N(L+ I)—~<bx(l)+/\u(l)+r.n,(t)

y(L) =

where for d=k-1,

Hx(t)y+n,(t)

N =[x (0,30 X () X e ()

I 0 .. 0 -a,, 0 .. 0
bd=]0 0 1 -a, O ... O
0 0 o . 0 0
0.0 0 0 0 1
\=[b,. b, 0.0, Vixcae
' T ..
F=ly,. v, Yo Ovenns ]lx(nod)
and ’
H=, .0,..., O.l]lxm;ai

‘\

Va

0
0]

X g (D]

(ned)x(n+d)

-

(2.5)

(2.6)

nyp(t) and n,(t) are uncorrelated Gaussian noise sequences,

with covariances R and R,

'As mentioned above, the optimal predlctlon y(t+k1!)

W

‘can be obtained by. applylng the standard Kalman filter

~

N

-



(Appendix A) to the state eﬁuatiqns (2.5), (2.6) as fol-
lows. A one-step-ahead state egtimate conditioned upon
da* up to and including time t is given by
STty = (1) Au(l)
J(t+1 |z)=H,\‘-(z+\1°|T)v
which in turn implies that
kIO =HR( kD)
. t+d .
=H* % (O)+ ) HO" " Au())
Y
='i.n-l(t)_al."%m(t)—"blu(tj‘ (2.7)
A minimum variance control law design using the KFP is
obtained by setting P(z ')=R(z')=1 and Q(="')=0 in ‘

(2.4), leading to the modified cost functional:

Juv = [Ysp(t+k)=F(t+k O] (2.8)
Juy 1is clearly minimized by choosing u(t) in (2.7) such
that y(t+k|l)=ysp(t+k). i.e.,

U([):bL[ysp(t*’k)_)Zn-l(t)J*allfn(t)] (2j9)
1 .

Innovations analysis is a useful tool in the interpre-
tétion of the Kalman Filter Predictor, as it enables the
KFP to be represented in terms of Fig, 2.1. The
developmeni beginS'by writing the steady state Kalman

filter equations corresponding to Egns. (2.5) and (2.6):

LU+ D) =dR () + Ault)+Lw(t+1) I (2.10)

wt)=y)-y(tlit-1)
=y()-HX(tIt-1)
=.'/(f)—H‘4>.fC(Z—l)—H/\u('t—l) (2.11)



The Kalman gain vector [ is given by
L»T=[Ll."l_2,....L,,,d]
and w(!) is henceforth assumed to be a zero—mean‘randbm

sequence. Using successive forward substitution for

states 1 to n,

2 () =[1- Az, 0+ Bz Hu(d-1)
’ A
Lo+ L,z v+ L 27 o)

=[1- A=D1, 0+ B(z7Hult- 1)+ K (z7Hw(t)

(2.12)
where
Ki(=y=Lov Ly 27 v v L 2™ - (2.13)
Similarly, for states n+l to n+d-1,
'{.no(l—l(t)zz—d.lxn([) ‘ v
[ Lpeger 2 '+ L 277wt + 1)
or
Rpegor (L= 1) = 2798 () (27 Hw (L) (2.14)
‘with -
. R »
Ko(z )= Lpgoz e v, 27! ‘ (2.15)
. gquation (2.12) implies that -
T =AT(=THB(THut- D+ AT THK (2T Hw () (2:16)
so that - ' '
Ly (=D =279 AT (2T Bz Hu(t-1)
| (2.17)

. +z AN (2THK (zTHw () + K (2 Hw ()

From (2.11), :

y(t)=\>7(.t|t—1)‘+u3(t)
=HOX(t- 1)+ HAu(t- 1) +w(t) s

.~

10



Note that for d2 1,9

Hd=[0,0.....1.01(n.qy

and HA=0. Therefore,

y (1) =7 |t—'1)‘+uo(t),\‘
= L g (L= 1)+ (1)
=:'94”(z”)8(:'5u(z41)+:‘%4”(:”)K}(:”)umz)
AT T HETHU K (T ) w)
.or . . :
\ x(t>‘='%%&(z—k>.+%f,—iwm ,, oo
where |
C(z™)=Az")U+Ky(z'" N+ 27K (27" ’ (2.19)

Equation (2.18) is an ARMA representation equivalent to
e state space model (2.5), (2.6). A(z"'), B(z="" and
the delay k are as defined in Eqﬁ: (2.1); C(z"") as
defined above is a monic-pblynomial of degfee n+d-1,
where d is the'time delay exclusive of the hold device.
A k-step-ahead minimum vériance control Strategy

requires an estimate of the future output y({+k) (or
equivalently, y(t+d+1)). For the Kalman Filter Predic-

tor, it was demonstrated in (2.7) above that
S

E{y(t+d+1)y=y(t+d+1]t)
=HX(t+d+1]t)
=%, () -a, %, (1) b u(t)
. A

But from (2.10),

X (1) =X (D -a, X (Db ()~ Lyw(t+1)



Thus,

- Gtvd+ 1) =%, (t+1)=Lw(t+1)

Now, (2.16) implies that
L.+ l")éA"(::")Btz'l)'u(t)+A_l(z'l)l{,(z”)w(ﬁ 1)
Therefore, |
CgUeds 110 = AT )BT u()
+ AN (2K (2" DHw(t+ 1)
AT (T AT L wt+ 15

=B(z'5
A(z™)

u(t)

[Ki(z7)- L. A(z™D] .,
+ Z

A(z™) wit)

(2.20)

(2.21)

Rewriting (2.18) in terms of » Y/ A(z™h) énd substituting

o
into (2.21),

. ' B(z™" )

y(t+d+llt)=A(z~l)u_(z) | | ’
+W.l[/\'n(z“)—LnA(-z“)][ a1 BCzTY }

z , ) y(t)-=z A(z")u(”

or

YUK ) =GCp(z Yu(t)* G (= Dy () =Gy (= Hu(t)]
where G,(z"') and Gu(z™') are as defined for the Smith
Predictor, and
‘l(Kn(z'l)‘LnA(Z_l))

G;‘(:-l)=z C(,y—l)

t

Returning to the definition of C(z”') Eqn. (2.19),

a

(2.22)

(2.23)

12



C(=)=A(=TH Kz N+ 27 K (27 \
‘ U ¢
= AT+ Kp (27 D L+ 2 (R (27 = 1)

IR I E R LA
(L= ATINL =™ 2K (7)Y - L)

§

= Az K (2 )+ L,z

n

+x TR (2T - L A(zTYY)

or
C(z"" ) LKLzt
—L79=K3@:U+zk—igjl :
ACz™) A(zT) : (2.24)
where

3

Koz )y =1%K, (2" )+ L,z

Ky(z"y==""[K,(z7)-L,A(z™"))]

. It is clear that the KFP as given by Egn. (2.22) may also

be represented by Fig. 2.1, with G, defined as

-1
-1 _K4(Z ) A‘(“E.

Gr(z - e
F C(z™") o : “XJ (2.25)

"The KFP may therefore by interpreted as a Smith Predictor

with an optimalidisturbance filter G,. The KFP in fact
reduces to, the SP when w(t)=0 and Gy =GC. As discussed in
Walgémg et al (1988), G((l)=1 is required to preveht
predicti;n offset in the.preseﬁce of nonzero-mean w(t).
This ié equivalent td requiring that K4(l)=(?(l% which is
not true in general, according tolEqn. (2.24).'
2.4 Least Squares Predicﬁor |
THe.SelféTuning‘Controller (STC) of Clarke and Gaw-

throp (1975, 1979) minimizes the cost functional

13



Jore =[R2y sp(t+k)=E{P(2 )y (t+k)It)}]° ,

o 4 (2.26)
“[Q(z"Hu(t)]?

It is clear that any strategy for which P(z™')=1 will
make the performance index in (2.26) équal to that of.
(2.4). 1In particular, this is true for minimum variance
control, where P(z'l)=R(z'l)=l and Q(z'f)=0. which leads

~

to Egn. (2.8) above:

Sy =7 sp(tr k)= T4t vk ID)E T (2.8
For this casé, the k-step-ahead prediction of the”process
ouﬁput,‘y(t+kit)=l?{y(z+k5|t} is obtained from the Least
Squares Predictor (LSP), which is formulated as follows.

Consider the ARMA plant gi§én by gqn. (2.18):

/l(::'»')y(t)=Bv(::")u(t—k)+C(.z"l)uu(t)‘ - (2.27)
It is evident from (2.19) that the polynomial C(z™!) is
monic and is of order 6C=rnéX(n,n+A¢-2). In addition,
C(z" ) is assumed to have all ité roots inside the unit
circle. (This requirement is equivalent to requiring
that all eigenvalues of the state\transition matrix of
the KFP are stable, which was shown to be true by Walgama
(1986).) Multiplicatién of (2.27) by E(z'{)and reér—
rangement Yieldé |

CEy R = F(Ty 0+ 6= )

+C(2™YE(z Hw(t+k) (2.28)
. where tﬁe polynomials E(z"') (of 6rder k-1) and F(z ') (of
ordéf n-1) are'obtaihed from the biophantine identity

T

14
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. _kF ~
e R e S |
A(=z™H A(=h ’ (2.29)

3

and G(z"')=FE(z="")B(="'). Equation (2.28) can be rewritten

as
C(="yU+k)=C(="DFU+k IO+ C(2TYE(=Yw(ts k)
where |
F(=™") C(z™H o (2.30)
+ A = +
J+k|t) Ci= )() Cio )“(‘)

This implies that
YUER)Y= YR E(zT D w(t+k)

Itvis seen that 7(f+k|t) represents an optimal prediction
f

. { ‘
of y(t+k) in the least squares sense as it is uncé¢orre-

lated with the future noise terms F(z ')w(t+hk). Once
again, it is. obvious that J,y is minimized by choosing
u(t) in (2.30) such that y{t+k[t)=ysp(t+k), (.0

c="h F(zTH (2.31)
U(f)=ai:;jgySp(f+AJ"Ez;F73Y(f) ,

Follow1ng the development of Gawthrop (1977), (2.30)

. can be expanded to give

F(z") B(::"){C(z") LF(2h
kit)= yACD s : -z t
A DL Cz )/(t) C(z Ol Az FTER w(t)
_F(Th BT FET) BT
c T aEnt e At
_BG=TH ;F(:f‘){, Y-IEHD l
A(Z-l)“(t) C(z'l)“/(t) z A(x")u(t)

or



FUK 1) =C o= ult) .

(=l (0) = C (2 u()) (2.32)

where G, and G, are as defined above and

=F(z;ﬁ l

(;'f.(;i_l) m

‘ i

Referring to Fig. 2.1, it is clear that the LSP can be
interpreted as ; SPdwith an optimal noise filter G%. The b
LLSP.in\fact reduces™~to the SP when w(t)=0 and Gy=G. It
‘is also clear from Eqn. (2.255 ﬁhathF(l) must equal
unity for no prediction offset in the presence of
noﬁzero—mean disturbances. This is equivalent to assum-
ing that F(1)=C(1), which is‘nqt’in general true in Egn.
(2.29). S_E/
2.5 KFP versus LSP-Pased Minimum Variap?e COntrolg

Since bdth the KFP and the LSP can be represented by
Fig..z,l, it is natural t§ ask whether they are equiva-
lent; that is, whether G for the KFP is identical to G,

for the LSP. Equations (2.25) and (2.32) state that

e Kz
((JF) C(Z-l) t

Rz
(- EED) | . |
C(z"") : _ ,
Thus, proving the equivalence of the two schemes requires
showing that A,(z')=F(z™'). 'To see that this is true,

considef'ths. (2.24) and (2.29):\

le
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C(z"" . ARz
ot KT e
=) A(z7) y
” Nl
£E(Z_I)+Z‘kr(~_l)
A=Y
But 6K,(="')=6E(z"")=k-1, so Ky(z2"")=F(=") because the

expansion C(z"')/A(z™") is unique.
Now, ‘a minimum variance control strategy for either
_scheme sets y(l+k|t) to y (t+k) if the setpoint is known k
éteps in advance (cf. Egns. (2.9) and (2.31)). Since each
predictor scheme is represented by (2.3), this would
imply
-1

B(z")
ym4f+k)=;?;jsu(ﬂ

- B(z""
*Gp(x l)[Y(t)_‘lfTTl
. - A(zT

-

u(t—k)‘

and that . !
:A(z'l)\ w
u(t) EE??TTS[/SP([ k).
o -~ B(z™) | o
”GF(%I)(YU)‘;?;jSUU‘k))] e

All terms on the RHS of the above exbression are known
and identical for both methods; hence the MV control
aétion obtained using the ISP and the KFP are aéymptoti—
cally equal (i.e. when the Kalman gains have converged).
2.6 Modified Kalman Filter Predictor

As noted in the final paragraphs of Sectiéns 2.3 and
2.4, both the.Kalman Filter Prediétor‘and the Least
Squares Predictor will exhibit offset, in the_presence.éf

o ) . )



unmeasured determiniStic disturbances.i This phénomenon.
has received a good deal of attention recently in the
self-tuning literatufe with the result that the algo-
rithms have been modifiéd to ensure zero prediction off-
set. In particular, the integrating Self-Tuning
Controller (ISTC) of Tuffs and Clarke (1985) and the
Modified Kalman Filter Predictor (MKFP) of Walgama et al
(i988).have thisvproperty.‘ The next two sections' demon-
strate the equivalence of the new schemes for known, v
time—iﬁvariant stochastic processes.

" In order%o guarantee zero steady"staté prediction
offset, the KFP was modified by Walgama et al (1988) to
model the process noise n,(t) in EgQn. (2.5) as a random
walk. The state space model (2.5),'(2.6) can then be
augmented with an édditional state x,(!) having an inte-

grator to represent the disturbance dynamics:

. v oo, .0 1] : (2.

(! l)—[r ¢}AU) [Aiu(w [0}742) E

y()=[0 H]x(t)+n,(t) ' - (2.
where

\

xN(t) = [xp(t),x,(z)....,xn,d(c)]T_

A minimum variance controi law analogous to that
derived.above for the KFP is obtained by notiﬁg that the
k—step—ahead prediciioh y(t+k|t) of the MKFP &s'given by

G+ =HR(L+k 1) | |

= VA%, () + X, ()=, $,(0)+ b u(l)

33)

34)

A\
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It is again apparent that J,, in Egn. (2.8) is minimized'

by the optimal control policy

T

Nt ) - S 2.35
W0 = 1Y sp (- K) =¥, 8, (0= %y (0, 250 (2-39)

Uéing an innovations analysis similar to that of

Section 2.3 (seeﬁgppendix B), (2.33) and (2.34) may be

represented in the equivalent ARIMA form

B(z"") C(z=""yw(t) | - (B.7)
a = —_—— —k + — ! .
v A(z")u([ ) A(z"h A

“

where

T (2 ) =lAzT (K (27 )+ 27K (27 )]A |
o B 7 (2.36)
+ 2z de[yn: be e 2T , ( )

Note that C(z™') is now defined to be of order n+d. The

k-step-ahead prediction is once again givén by

T K10 =6, (27 () + 6, (= DY) -6 (= Hu()] (B.12)
where

] i Ks(z™") .

G (z l)=-—i—————

o C(z™") , (B.13)

Koz = 2 0K, (27 5= LA™ aD(=T) (B.11)

As discussed in Section 2.3, zero prediction offset
requires that.CF(1)=l~or Ks(l1)=C(l). Equation (B.14)

~states that

1

c(="hH L Ks(z™h
——=K5(z )*rz —m—— »
;4(zl)A 3 ) A(leA (5,14)£>§

from which it is apparent that CF(1)=1. 7

4
1
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2.7 Integrating Least Squares Predietor

Consider the ARIMA process representa:ion given by

(B.7)

B(x') \ Clzw(t) ((B-7).-~
- = — 7 (. _k + —_ .~ 7 . - e
/(l)'/ /i'(::")'“(‘..t ) A(z7h) '

g

—~ Y

. , \
Multiplication of (B.7) by E(z ')A, where 6E(z"')=k~1 and
. . _

rearrangement yield

Cl= D)y (t+k)=Fla Dy )+ 62 Hu(t) |
L ecETHEGE D wr R T (2.37)

where E(x")and F(z™') are obbqined from the Diophantine

identity
iy .- . ) (2.38)
CETD oy FE ) - N
A(="Ha A(z DA —

and G(="")=E(="")B(z"'). (Note that E(z")and‘F(z;')are

different from £ and F defined in Section 2.4. ) It is

ev1q¢nt from (2. 37) that the least squares prediction of

il
2 "

((+k) is given by
\ . -1 . .
F(=z ) G(z™") , (2.39)
+}\ = X -~ ‘ '
y(t If) ca y(t)+ C(?_I)Au(l) ~

A minimum variance control law based on the ILSP is given

by -

\

Fla! (2.40)
u<t>=u<r—1)+—§———§—ysp<z+k>~E iy(t) |

m——

which sets J, to its minimum value of zero. Using the '<>

-

. B AN
identity (2.38), Egn. (2,39) may be written as



. L F(zTh B(:"S{C(:") J(:“)] 7
K1) = —=—2y(t)+ e
7 10 C(:")Y( ) CGEOL A YR w(t)
~ ~-1 IR -
= (:'Iit'l(t)+c(~";[}/() ~ ‘%—211(!)‘
‘OI'
FU+ k1D =Ca(z u(t) ’
G2 Y ()= Gy (= (D)) (2.32)
_yhere * )
- Fiez=="
G,z =222
I
andv
C=H= A+ Ko7 27K (7)1
| 2Ly Z—l+¢.+y1:;ﬂ - = f?'41)

Féom (2.38) it is seen that F(l)=(f(l);hénce’ﬁhe
integrating LSP exhibits zero steady state offéet Ln/fhe
presence'of nonzero—meanvdfsturbances.

. 2.8 MKFP versus ILSf—b#sed Minimum Variance Control

To demonstrate the equiva%ence of the MKFP and the
ILSP, it is sufficient éo éhow,bas iﬁ Section 2.5,-that
Ge(z™h) in §ig. 2.1 is the same for both mthods- A com-
parison of Eqns, (8.13) and (2.41) ihdiqates Ehat this is
indeed true if Ks(z ')=F(z"'). But from (B.14) and (2.38)

it is seen that

c(=z"")y o e Ks(=™h)
"‘K Ve z
A(z™ A (7 ) A(z7HA
x F(z™h)
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'K”(x")=ﬁ(;f') because 5K3(z")=65(z")=k—1; hence

4

(G )" = )'"*” and the two schemes are equivalent.

Using an argument similar to that of Section 2.5, it may

.be concluded that the minimum variance forms of the inte-
‘gratlng Self -Tuning Controller and the MKFP~ based scheme
provide asymptotlcally equal closed loop performance for
stochastic plantsahaving time—invariant‘dynam1Cs.

:.2,9 Extension to Genéralized Minimum Variance Control

In the previous section, the equivalence of minimum

variance coritrol schemes based op the Modified Kalman

. . N . P
Filter Predictor and the. integrdating Self—Tuning Con-

troller was discussed However, as seen 1n (2.4) and

(2.26), ‘both methods minimize cost functlonals contalnlng

’

“rational weighting polynomlals P(z hy, Q(Z'U,and R(z™ ")

hence it’is natural to_ask whether this equivalence holds

for general P, Q and R. - ’ -

Rewriting (2.4) and (2.26) for ease of. reference,

[Rc~ )ysp<t+/x> Pc;">E<y<t+k>|c>]

" (2.4)
+[Q(~ Mu()®

Jsre =[R(="y sp(t+ k)= E(P(z" )y (t+ k) 11}

. SRS ' ' 2.26
e ey (2e2e)

The obvious dlfference between these expre551ons 1s that

in JAH)the quantlty P(Z'I)E(y(t+k)ll} is con51dered

' while in JbTC it.is E(P(~")y(t+k)|t) ‘The case'ofﬁgeneral

Q=7 )h_R( "y and scalar P(z" f)ﬁye. P(z")=;y)will be .

’

15
7 \d‘\
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examined first. For this case it is apparent that
Jxrp=Jsrc because. E{poy(t+k) |ty =poE{y(t+k)|t}. This
\ .
implies that
"j:‘jKFf;:JSTC
' ; - | 2 - ot (2.42
S[R(="Dysp (T k)= po E{y (t+ k) 1317+ [Q(="Du(y)” (2-42)
However, as pointed out earlier, both prediction

schemes may be represented by

k=G huy |

*G (= )y (=G (= a1 , (2.32)
‘so that ' S . . .
. B ﬁ" .
poy<z+klz>=poﬁu(z>
- B(z"
N WNE: ‘>[y<z>——(_—,)u<z~k>v
A(z™)
(2.43)
Differentiating w.r,t. u(t),
oS o Py kD)
au(»t)—VZ[R(& )Iysp(t-k) Poy(t+kit)] 30 (D)
- ,
~210(z" u(n) D] . (2.44)
u(t)
But it is easily seen from (2.4%) tha’c:\.3
opey(LrkID]_ D
au(l) ] pO 1
Q= Hu(n)] | -
su(t) qo, _ 7

where g, is defined as the first coefficient in the expan-

'sion of Q,(z7')/Q4(z™"). Setting dJ/ou(t) in (2.44) to

zero yields, upon rearrangement,



B(z™")

Job
w(t) = Poby TEHE

UL S -b Ju(l)
(Pob 1)’ -k 1

[R(55-1)75P0+k)fpo[

NAICE IO TERS IO I

) . i [ . | 2.45
+(—p—b,(—’)32—_—q—2[o(z D -golu) ’ (2-49)
oYl 0 .

All terms on the RHS of (2.45)-are known and (asymptoti;
cally) equal fo; both methods;-hence t th control
strategies are’equivalent for general Q(z™"), R(z™') and
scalar P(="').

The optimél control law that results from minimiéation
of (2.4) for general P(z™"Y, 0(z™') and R(z ") will now be’
formulated. Différentidting (5.4) w.r.t. u(t),

oS krp _
au(t)

2Rz )y sp(t+ k)= P(2")F(t+k ()]

,?[P(Z“)Ytt+kl.t)]+ 1y, 0200z U] (.é.46)
) 2[Q(=z Hu(t)] MO : _

- From (2.32),

(PnO*Pn’i,_Z_l L CIR - PEARE

P I KI = . - u(t)
(Pao*Par2 1+-~-)(1+alz.l+---)
N B(z™") i
+P(z" Y6 ! t)- t—k
(2 )Gr(z )[Y( )' A(z.")u( )J
from which it is evident that | '
O[P(=T)Y(U+KID] Paoby | (2.47)
- R =p0b1 , :

du(t), P 40

.

where P, = DPn/Pdo 1s the first coefficient of the

Pn(:")/Pd(:”)iexpansion. ‘Setting-aJKgP/au(f)=O in (2.46)

'yieldsv-

24
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Pobi -1
t)= ——[R(z L+ Kk
w(t) /(pobl)z-qa[ ( )}’sp‘( )
TpP=yB=Y) ‘
—[ (,u):-*() )-pob,JuQ)
Po(=")Ce (=) ]
- Pd(:_ﬂ) [Y(1) =Gy (="Hu(OT]
70

+E;;377;j2%[Q(:_l)_QO]U(D | (2.48)

The formulation of the integrating STC for general
P, Q. R weighting will now be treated. .Recall the ARIMA

plant representation given by (B.7):

BGTD) gy CETDOW (B.7)

YOG I TER

(B.7) may once again be multiplied by E(z ')A and
rearranged to obtain

F(z"j

- C(z,'.l)P('z_l)y(Hlc)=r(z_—l—),y(‘t)+c(z'l)Au(t)
+C(z E Hw(t+k), " (2.49)

v

. where E£(z”') and F(zfl)gre obtaihéﬁ from theuDiophantine

identity R ' v ‘ ;
| P - Loty : k! ' ' \
H(Z-R C(%l) = E{z ')+ fde(é ?r ' Y
Pa(= " )A(z77)A Pa(z7)A(z"")A . (2.50)

-
[

and G(z )=E(z ")B(z"'). After defining"

v (L)

: - .,—l . + "t 4=
v (¢ k)_(’,(é Yy (t+k), v (1) Pz )

-L\\

and substituting in (2.49) one obtains



F(z"'y . +G(z")
cen’ e

L

Au(t)

w(t+k)=

+E(z " Dw(t+k)

Thus, a least‘squares prediction of w(t+k) is given by

[:'(l’(::")y(t;/c) |ty

=h(l+k|t)

I ACHD NN C )

C(;c'l)/ (0 C(Z'X)Au(t) S

_reTh o BT P(z"h)C(z ) =Rz }
e’ W C(z")[ A=) Paz a0

=B(\::")F(z") . F(z™") | [ ~ _kB(z;l) }
Ay T eE TP YT GEht

nr
YU+ =P(27")G (2" Hu(t)

LCr(z™h
Pz

[y (t)=Gu(z"Hu()]
where,Gp.»G; and G, are as defined in sec%ion 2.7.

Differentiating Jsrc in Egn. (2.26) by u(t),

0J s1c _ - T o dU(t+k|t)
3u(l) 2[R(z Dysp(t+k) w(ﬁt k“)_]——_—au(t)

o[Q(=z Hu(t)]
du(t)

+200(="u(n))

" But from (2.51),

(Pao* Par 2 +..) (b, +boz  +.0)

V(trkit)= ; —u(t
(Pdo’“Pdlz_l*n‘-)(l+alz-l*---)U()
cm‘“).[. BT }
Pz ) y(t) u(t-k)

P CHD R

A
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(2.51)

(2.52)



so' that
QY(t+k|t) Paob, : : ‘ (2.53)
. = :pobl
ou(l) Pao

where p, is the leading coefficient of P(="'). Setting
~—, . .

-

0J src/ou(t)=0 in (2.52) leads to

Pob, :1
u(t)=——F—=[R(x Jysp(t+k) =
(.Dobn_)?‘—qé P ‘
P(=")B(="") }
- - b, |ut
[ A=) Poby |u(t)
Ce(z™") B |
2y () -Gy (= DHu()]]
Pa(z™')" .
QO -1
+——=—[Q(z ) qgelu(t)
(Pob1)?-q5 ° : | (2.54)
which is:clearly Aifferent from Eqgn. (2.48). " Note in
particular the- )™ in (2.54) is different than (C)*”

in (2.48) becau e the Diophantine equations (2.50) and
(B.14) are now different.

Hence, the two échemes~are not equivalent when nonsca-
1af P(z‘l)weighting is used. This raises the guestion of
whether one cost functional is better than the other and
if ‘'so, how might one eﬁsure the equivalence of the

schemes for general P(z '), Q(z') ahd R(z ')? The ahéxer
to this question lies in the fact that J kep and Jsrg are
“both phisically'reasoﬁable strategies, hence there would

;ppear to be no benefit to, for instance, modifying Egn.

(2.4) to include E{P(z ')y (t+k)|t) rather than



b}

PO YE(y(t+ k) ty. (This could be achieved if hécessary
by basing theldesign of the Modified Kalman Fillter Pre-
dictor uwpon an“augmented-DARMA process model such as
/}(::'l)y(t)=/§(::"l‘)u(t—k)' o - (2.55)
where /i(::")={>(z“)/1(ic") and B(z"))=P(z"HB(z"").)
2.10 Simulation/Examplé
In this section the equivalence of the minimum vari-
ance control schemes based on the Modified Kalman Filter
Predictor (cf. Eqn. (2.35)) ‘and the integrating Lqut
Squafes Predictor (cf. Egqn. (2.40)) is demonstrated using

the underdamped second order state space model

DT 0 0 0 o]
Xyt 1) I 0 -0.7 0 o] x,Ai(H)
X,(t+ ) f=[ 11 1.5 0 0] x,(t)
Xo(t+ 1) o o X 0O O] x3(t)
a0 Loo o1 o] x|
F 0 ] 1]
0.5 o
1 |u(t)y+| 0 |n ()
0 0
L O L O]

y(t)=[0 0 0 O I]x(t)*n,(t)

where n,(t) and n,(t) are ihdependent Gaussian noise
seQuenées'of variance 107%, (Note that the DARMA eqﬁiva;. '
lent of the process is @

(1-1.527" +O.7}z'2)y(t)= 27%(1+0.52"Hut-1))

The plant was first confroiled using the minimum vari-

ance control law (Egn. (2.35)) based>on the Modified Kal-

man Filter Predictor (see Fig. 2.23). The MKFP was

28
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equipped with a perfect model &f the plant, and the noise

covariances R, and R, were set to their Xrue values (107%).

The control error variance obtained for this run was
0.0548. Notice that offset-free regulation was achieved
despite the nonstatioﬁary nature of the.disturbance.
Figure 2.2b shows that the Kalman.gain trajectories con-

'verge very quickly to their steady state values, (.e.

[ C 0.3274 ]

L -0.9710
Les=| L, =] .2.8120
T, 1.8548

1,| Losozs |

[

Before conducting a comparable trial using the, inte-"
grating Self—Tuning Controller, it was necessary to

derive an equivalent observer polynomial C(z™') using Egn.

(2.36): )
, \ ) : ' .

CCx ) =[AGz" I+ K27 N+ 27K (2718
+z'de[ynz’ oty 2] . —

Ki(z™') and K,(z™') are as defimed in (2.13) and (2.15),

respectively. For this example, n=d=2 and y2=yl=1;

o

Hence,
/\'l(:“)=L2+L_l:"

.=2.8120-Q0.9710z""

and

1 n 5 (2.36)

30
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32
Inserting these values into (2.36) yields, upon rear-

rangement,

C(2")=1-0.6452=z""'+0.3750z"%-0.0752"°

+0.00004 "%

| -0.6452%" ' +0.375022-0.0752"° (2.56)

i

The above values for C(z”)an& A(z™') were then substi-

tuted into the Diophantine equation (2.38), leadihg to
the solution - .
B(:)=1+1.85482" +2.7895z
/5(::")=3.538—4.8448z'1+ 1.9527 z7° |
G(="'y=(1+ 1.8548:"’1:12.78952_2)(1+O.Sz")

=1+2.345827 ' +3.712427%+1.39482"°

v

It is interesting to note_ that G (z') ﬁér this example is

o~

given by
L F(=TY Ks(z™H
(JF(:: )= ..1= . -1
C(="") C(=z™)
_ 3.538-4.8448z '+1.9527z7° :
1 -0.6452z""+0.378027%2-0.075z"3
which‘implieg‘that e : _ y
. 3.53Bz(z-0.6847 +0.2883)
Ce(z)=

\ " (2-0.1885+0.4847 j)(z-0.2773)
The calculated C(z7'), F(z ') and G(z"') were subse-

quently used in the minimum variance control law Eqgn.

(2.40). The results are Shownvin‘Fig. 2.2c and are seen
- F

to be identical to those obtained using the MKFP after

the first 15 sample intervals, which from Fig. 2.2b is
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precisely the time during which the Kalman gains ire con-
verging to their final vélues. Moreover, the control
error variance obtained for this run was identical to
that of the MKFP example, i{.e. 0.0548. |

2.11 Conclusions .

The main resultg“of this chapter may be seen as a
reprise oﬁ the Bok,'Jenkins - Astrém and Kalman linear
regulator equivalence problem, which was a topic of some
interest in the mid - 1970's.  The equivalence has been

"demonstrated here in a new way by anélogy with the Smith
-~ Predictcr, and the method is readily applied to other
state space realizations. The'reéult was strengthened
slightly to include plants ha&ing,nonstationary distur-
bances and has been demonstrated via simulation exampie.
The extension to'Generalized'Minimum Variance - type“ww

control schemgé has also been discussed.
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3
8ingle-8tep Adaptive'Prediétive'Control
3.1 Introduction |

In Chapter 2, a comparison was made ofiseyéral single—
step predictive control strategies for the contrél of linear
time-invariént éladtsi. In this chapﬁer,‘the extension of
these techniques to plants having time—varying dyﬁamics
and/or mild nonlinear%éharacteristics will be presented.
This extension is accomplished by estimating plént parame-
ters online using avrecursiVe parameter estimation algorithm
such as Recufsive Least Squares (RLS).

Several variants of the basic .RLS technique are dis-
oussed with particular emphasis on énlapplication of the
Kalman.filter to parameter identification. The Kalman
Filter app;oach is shown to be equa®’ to RLS with covariance
modificapion (Goodwin and Sin, 1984). The improVed Least
Squafes (ILS) algorithm'df'Sripada and fisher (1987) 1is also
: discussed and - cqrrection is made to the variable forget-
tingtfactor calculation. The metho& of removing the d.c.
bias from the I/0 data by 1ndependently estlmatlng the mean
levels of y(t) and u(t) will be shown to be equlvalent to
1ncremental IP with a first order T- fllter (C}arke et al,
}1987) Adaptlve versions of the MOdlfled Kalman Filter Pre-
dicfor of Walgama et al (1988) .and the integrating Self-
Tuning Controller of Tuffs and Clarke (1985) are then

formulated and illustrated by means of a simulation study.

<

3.6 | _ .
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3.2 Parameter Identification 7 4
Copsider the n'th order ARIMA process representation

.-1<z“,>y<t>=B(:“>Lt<r—k>+c<:")“;§’2 R

&here vy (t) and ﬁ(o are the process output and inpﬁt,
respectively, a?d |

A(z" Ny = 1+alz'L+¢.+an:'7

‘B(z”)=b}+b23ﬂ+.“~b z e -

C(zy=lwc,z ' ¥, v,z "¢

7k is the total process time delay, i{.e. the sum of the

physical delay (d) and the unit delay -due to discretiza-
tion, and w(!) is a zero-mean Gaussian noise sequence. -«
Multiplying Eqn. (3.1) by A=1-2"! and rearranging yields

the compact form :

37.

Ay () =67 (£)0+w (1) ; 3.2y
where ’ '
o) =[-Ay(t=-1),.... Ay (t-n),Au(t-k)....,

Aud—k—n+1)m»u—1y””uxz—d—an’

O=[{a,,...a,.by.ccobpiCivCig)’

(3.3)"

If the process were time-invariant, i.e. if O wés'l
cqnstant, then the batch least squares technique.
descriﬁed in Appendix A could be applied to get an
bptimal/or least sqﬁares estimate of 0 (provided that w( )
was measurabie)f This is achieved by minimizing the

least squares cost index



,

“

" the’disturbance mode C(z ")w(t)/A in Eqn. 1321). Since
. & 7 ) Bo |

38

x »m/ . (3.4)
}_A/mMe A

[ )
)

However, for online identificatidngpf the system parame—‘
: ] 3 . .

ters it is necessary to use the Recursive Least Squares

algorithm, also derived in Appendix A:

a) Gain Calculation

P(t=1)o(t) N R
L+oT(DP(L-1)0(t) " |

K(L=1)=P()o(t) =

b) Parameter Update

O(l)=o(f"1)*'K(f—1)[AY(LT‘¢TU)é(f“l)i - (A.18)

c) Covariance Update . : ' ~
' - 7 - ' A.22
P(l)=P(t—l)—P(F Do) ()pP(t~-1) . ( )

T (OPU=1)0()

This scheme is known- in ‘the literature as Pseudolinear or

Extended Least Squares (ELS) hecause of the presence of

w((t) is pnmeasurable, it must he proxied, e.g. by
u‘o(z—1)=Ay(c~—1,)'—¢T(z—1)é(;—1) S o (3.5) "
An attractive alternative to ELS is the "regressor

filtering" or "Tuff's.T—Filter",approach of Clarke et_ai}g

(1987): In the context’of their Generalized Predictiveaﬁh

Control,algorithm, the authors point out’,that C(z" fié

very difficult to 1dent1fy because<»(t)1s not dlreotly

measurable, that 1s,‘1t‘must be - prox1ed by Eqﬁ ;(g‘S)

For ‘this reason the authors recommend flltexlng the

1nput/output (I/O) data by a flxed low-pass fllter

1/T(~‘ ) where T(=z" 'y is typlcally chosen, as

.0,

£



T(z""Y-1-08z"

From Egqn. (3.1), this implies that

g

(=" y (1) -5 :‘-1
B )T(:”) ( ,)T( T A
or ; |
C(="H (3.7)
A = e+____ :
AyF(t)=¢7 (l) T l}w(t) .
where ;

¢(t)=l[TAyF(t—l) ..... —Ayf(t—n).a\uf(zik) ..... .
Auf(t-k-n+1)]7 |

by....b,1 | N

(3.8)

o

and the superscript "F" denotes division by T(:"'). For’

the special case T(z ')=C(z™"), it is seen that applica-
‘tion of standard RLS to (3.7) will result in unbiased

estimates of A(z")and'B(zgl)as the disturbance term

will be uncorrelated with the regressor ¢({). The form of.

Egn. (3.2) is called "incremental" because of the
presence of the A term operatlng on y(!) and on the
regressor vector ¢(t)

It is appareﬁt from Egqn. (A.22) that the covarianee
matrix P(t) will tend to zero for large t because the
second term on the RHS of (A.22) is positive defihite.
Hence, as t becomes large, the Kalman gain vector

\
K(t)=P(t)$(t) becomes small due to the decay of FP(!). This

u(_ C(zHw(n) # (3.6)
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;y of
fact makes Edgns. (A 22) and: (A.23) unsuitable for track-

q\

ing changes in 6 becauSe llttle updating of (A.18) will
occur even if the innovation iS‘large For thls reason,

the RLS algorlthm 1s sa1d te "go ‘to sleep"

\.

One approach tvoverqoglng this difficulty is to

introduce exponential data forgetting into the cost func-
tional of Ean (3.4) to yield

e[ (A.24)

x'\.:l-—"k

te=1

N o
==Y AV Ay (Y= eT(H8)”

‘which implies that '(A.22) and (A.23) are to be replaced

by :
K(t-1)= P(L=1)(t) : : ' O(A-25’)
%~+¢ (t)P(t-1)¢(t) ' '
u e - 7 - : A.26
Pm{pu-u_”f OO L) L
' I (DOP(L-1)0(t) Ih

_The function of the forgetting factor, xé(dfl] is to
weigh out past data; hence it is useful to compute the
"aeyﬁptbtic sample length" « (Clarke,and Gawthrop, 1975)

given by
a =Z)\‘= [
t«0

which shows that A must be close to unity so thaé,fldc—

. : Con : \
"tuations in the data are not excessively reflected in the
estimates.

The main difficulty with this method arises from the

' fact that (A.26) reduces to

40



P(t-1)

P(1) =~

9

I
during periods of low excitation. Sinée?pfiAS L. P(t) is
; U‘“ i

seen to increase exponentially, giving rise to the term

"covariance blowup." This phenomenon can lead to %%xr—
‘ . Kl

sting in the ou%ﬁut because of the large parameter -

1

changes that may be caused

¢C).

by relatiQely small values of
Several methods héQe béeﬁ propqsea which maintain the
alertness of the algorithm while pfeventing_éovariance
blowup, generally at the expense: of an increase in compu-
tational complexity of the least sguares solution (Shah
and Cluett, 1987). bne such technique.involves use of
the Kalman filter for parémeter estimation; this is the
subject‘of the‘following subsection. ,
3.2.1 Parameter Identification=using a Kalman Filter

The similarity that exists between the RLS. and KF

algorithms is well known (Goodwin and Sin, i@é@_ Ljung
simultaneous estimation 6f the stafe and ARMA model
.parameters ia the Extended Kalman filter. It has also
been noted in the literature that because of the duality
that exists between the Kalman filter and the matrix
Ricatti equation, it is sometimes possible when impfg—
menting Linear Qﬁadratic Gauséian (LQG) cohtrél to use
the same subroutine_for parameter identification, state

estimation and calculation of the optimal control action

+



(see Clarke et al, 1985). Here it is of interest to
determine whether the KF approach will be subject to the
d@%ficulties di§cussed in the previous section. |

It is possible to model the time-varying paramepgés of

S

Eqn. (3.2) by the Markov process (Astrém and Wittenmark,

o

1984) :
OCL+1)=d0(t)+u(t) (3.9)
Ay (L) =67 ()8(t)+w(t) (3.10)

where v(t), the process noise, is a zero-mean Gaussian
sequence which is assumed to be uncorrelated with the
measurement noise, w(t). From Appendix A, it is apparent

that the KF equations written for this system are

a) Gain Calculation

EC) =
2 Ro+¢T(LYMGE)O(L)

b) Measurement Update

s

i) A Posteriori State Update L

©0()=B()+ LAY () =97 ()8(t-1)] | (3.12)

ii) A Posteriori Covariance Update

S

PO MO - L(HTOM(L) - (3.13) -

c) Time Update

i) A Priori State Update

(t+1)=o8(t) - : - (3.14)

0
ii) A Priori Covariance Update

MU+ 1)=dP()dT+ R, : o (3.15)

MO o S (3.11)
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where R, =F{v(t)v" (1)} and R,=E{w(t)w’(t)}. R, may be

chosen equal to unity in the above expressions‘without
loss of gepgrality. Further, let ¢=/; this implies that
the system‘paramétgys vary as a random walk. Equations
(3.11) ‘through (3[45) may now bé'combined to give the
one~step Kalman filter: ' |

a) Gain Calculation .

L) = fT’(t‘l)d)(l) (3.16)
L+¢"(OPC=1)0(L)

b) A Posteriori State Update

'é(t)=é(t—l)+VL(’t)[Ay(t)b—¢‘)T(t)6(t—l)] | | (3.17)

c) A Posteriori Covariance Update

_P(t—1>¢u>¢TU)P(c—1)+R (3.18)

P()=P(t=1) LvoT(OP(t-1o() ,

where the prfar covariance M (t) has been replaced by’

j | -
P(t=1). . .

P4

Comparing these equations with Eqn._(A.ls), (A.22) and

t parameter estimation with a Kalman
”}£'7 equal to RLS with covariance modifica-
Thon (Goodwin and éﬁn, 1984). .1t is therefore interest-

/ -g to analyze th{é algorithm from a state space point of

view. Cle

Py

ly, the RLS covariance matrix decays to zero
x
because tir

% method implicitlv assumes that the process

d&namics}are time—inv3riant (i.e. Ry =0 implies v({)=0 in
(3.9)). But this is exactly the "filter divergence" g
problem found in the Kalman filter literature. From con-

sideration of this phehomenon has evolved the practice of

11
J
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assuming a nonzero value of g, even if it is felt that no.
: : P
process noise is present in the system. This ensu§g§~

that the”covariance matrix P{-) converges to a nonzeréﬁgf' & )
. SR g Y ¢_y@
final vajlue which in turn implies a nonzero Kalman gaf% R
: ‘&\ b

“‘\

vector. Thus the algorithm remains "alert" and is Capgfg

 >ble of tracking chanqeé in the parameter vector 6.

‘The matrix R, may altérnately be considered as a "tun-

ing knob" which allows the size of P(t) to be varied to -%¥ '
‘reflect «a ;Nﬁoriknowledge regarding the proéess noise

covariance. (Note that virtually all variants of the

simple RLS te&hnique assume; explicitly or otH;rwise,

some degree of knowledge concerning the vériéncé of the
measurement noise.) TYpically,ﬂRl==kl. where k is a con-

stant value, e(f.unity. Howevér, it should be notéd here

that covariance windup may also occuf using this method,
“since Eqn. (3.?%) reduces té P(t)=P(t-1)+R, during peri-

ods of low excitation, Le.l’U) behaves as a ramp func-

tion. This phenomenon will be further illustrated by

means of a simulation éxample in Section 3.5.

3.2.1.1 observability .

Note that the obser?ability matrix for the system

¢ (3.10) is given by‘
BCHO)
o7 (t+ 1)

l 'I’ =

Lo (tvm) ]



'
4

where m=3n+d. The observability requirement that I’ be
I3

of full rank is seen to.be a requirement that the regres-
sor vector ¢( ) be persistently exciting.
‘3.2.1.2 Stability
The pa?ametér update law for the Kalman filter is
given by Egn. (3.17): ' oy
0(t)=0(t= 1)+ LAY (D) =0T ()L~ 1))
or, using (3.2), ’
B(t)y=0(t- 1)fL(z)q>T(z)é(té— 1)+L(z)w(z)’ |

=[1-L(O)o (DBt~ 1)+ L(Hw(L) (3.19)

where 0(t)=6({)-0. From Egn. (3.19) it is apparent thag
. S
the stability of the estimation scheme is contingent upon

«

the location of the eigenvalues_of the matrix

[=L(t)e" (1) .
L PU=10(6T () : ~
L+ 0T (P (- 1)o(t) (3.20)

from (3.16). (The time argument will henceforth be
dropped from ¢(!{) for convenience.)

Lemma 3.1
The matrix P(t-1)¢¢" :is of rank <1 and its only (po-
tentially) nonzero eigenvalue is given by’

A =0 TPU-1)0 | ) (3.21)

Proof:

45
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\f : Wi
. First, recallgtpgt r(A-BY<min(r(A),r(B)) for arbi-
trary mxin matrices A and B. fherefore, the rank of
P(lj})¢¢T is‘at most unity since r(¢¢’)=1. This implies

A= z}f‘y?b(c— 1)oo7) because tr(A)=3 N (A) Y Anxm.

-Observe that 7
—¢’|v : , i Jou P2 ) ’ le‘
b, |- ‘ P2 Pa. ) )  Pam
o= | Pu-L=[ |
. 7
r_q)m__‘ 1 L_plm pZm ' .‘*\ ’ /pm__
0 =[0,. 0,00 0,]
and so | )
— ’ —_ i
o7 00 o o 610,
010, 03 0.
T . . .
.¢)1¢)'n (p“m ’ ) .. ¢r2n . . \

[y el

Hence, t* Jiagoral e.. nts of 00’ P(t-1) are gf@én by

‘P.zj'* P00 R R0
RN P ‘q’g*"-’“p?w‘pz"
Irld)!¢m7p2m@2¢;;;+" 71¢51‘

or
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» /
Pld’?*,zpl,{,“})l‘b/( : 7.
=1 \3! ‘ )
p2¢)§+ Zp2/62¢./ ,'.
=1 e
Pnbat ) Dy bmd,
=1 .
Therefore,
ANOOTPU=1))=p 93+ ) P00, 4.t pLod
j=1
+me/¢m¢/ (3.22)
=1 .
It is also apparent that
PO+ ) Db,
j=1
P(t-1)6= Lo B
pmq)r.n-‘-zpin/(b/
L . 1=l B N -~
. k- B
which implies that .
T ’ 2 < 2
¢) P([—1)¢=pl¢l+Z,pl¢?41¢/+“.+pm¢)m *,.:'.
j=1 F -
+Y Pyt
/=1 i
3 (3.23)

’

-

However, since P({-1) is positive semidefinite,

¢"P(t-1)$20 and so A=A, (647 P(L-1)).



.7 Using the above lemma, it is clear that

P(=1)0¢7
L+¢"P(t=-1)6 "

’

has (m~1) eigenvalues at zero and one at

r

2. T P10

“Imax . ]+v¢)TP('l_ 1)¢)
But the stability of+(3.17) is dependéﬁt’oh the eigenva-

lues of | : ‘ -

A S

!

,%(5_1)¢¢T - _ N2

- TR A e '
;o :

so that it is 5f interest to develop é relationship
between the eigenvalues of an afbiﬁfgry
-matrix (/- A). The follow%ng‘two legﬁé;¥wiil;é§pve useful

matrix A and the

in this respect.
Lemma 3.2

~

If it,, i€[l,m] are the eigenvgiﬁi$ of an arbitrary

—— ] {Bp
. K &3 S ot I .
N o“-",@f. r 2 N o .
“mxXm matrix A, and v, ie€[l,m] aﬁéft%e eigenvalues of 4,
- Lo ‘
then j1,=-v,, ie[l,m]. RITREL
A , )
Proof: -

3
v

o : ¢
If the it; are the eigenvalues of A, then they sqtisfy

the characteriétic-éﬁuation

<3

W= Al=0 5 o
. 3

Also, since the v, are genvalues of - A,
: . TN

i e

_48
QfE.D.
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|vi+dl=0 . ‘
=ivicA(-D"
=|-v/i-d]
=l (=v)/- 1]
=0 #
Hence, the -v, are the eigenvalues of 4, so ji,=~V,.

Lemma 3.3

If a matrix A,«, has (m-1) eigenvalues at S/%nd one

eigenvalue at X. then /- A has (m-1) eigenva{ﬁés at 1 and

‘one at I-A.

, g K
Proof:  , . , e

For conveniénée, define B==/—/1and assume,that.the m o
eigenvalues of A are giVén by ‘ .
A (A)=0,....0. X
Now, the eigenvalues of B satisfy

IN[=B|=|N[+]-A|

a
=[(A+1)I-A] .
=lpl-A]
=0

so that p,, 1€[l,m] are the eigenvalues of A, Lo

,=0,....,0,x
‘But ﬁ(=xw+1. which igplies
T .
P - o
N, = ode=T A~ ] : (3.24)



i
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l/ -

_/
The eigenvalues of A-/ are therefore given by (3.24).

Using Lemma 3.2, the eigenvalues of -(A-/)=/=A are in
turn given by
A=l IRIEDN Y
Y u ' . i .
t.e, (m-1) eigenvaluesyat 1 and one at Ii=A.
N Q.E.D.v
Using Lemmas 3.1 and 3.3, it is apparent that the.
matrix
,__PU-1e0"
1+¢7\<(z—,1)¢ : .
has (m-1) eigenvalues at 1 and one at
e . _PU-DeoeT
min 1+¢TP(Z_1)¢
I
1+o"P(L-1)¢
so that O<A,,,£1l. This would imply that the parameter
update equation (3.17) ié'marginally stable, although it
is difficult to predict the time»domain behaviour of 6(t)
since the regressor vector ¢(!) is timejvérying and is
genérallx&not known a priori.
-3.2.1.3 Positional Formulatidn
"In Eqn. (3.1) the ARIMA plant model Y
T - w(t) - (3.1)

A=Yy () =Bz HYult-k)+C(z"") A o
was seen to lead to the incremental input/output rela-

tionship
/

Ay =870 w (D), . - 3.2)



Since w(!) is uncofrelated with the regressor ¢(!).

.applicatioh of-the RLS scheme described abové'to Egn. .
(3.2) will result in an asymptotically,unbiaséd 0.

- The difficulty that afises from this approach in préc—
‘ tice is‘that A 1s a high pass filter. This means that
high fréguency effects due to MPM and/or measurement
noisevwill tend to be amplified at the expense of the low.
frequénéy siénal content which is;é@picélly of greater
cdncern in éheﬁical process control. .An alternate pro-

cess model that has been proposed in the past (c.g. Clarke‘

and Gawthrop, 1975) is given by
@’ °

& A(é”jf@)ﬁétz”)uu—k)+C(z”)w(o+(z (3.25)
Or : ."4
() =0 ()0 +w(t) ' (3.26)
where )
O()=[-(L=1)er,=y(t=n) u(l=K), . su(l-k=n+1),

wu—liﬂnwu*d—nylf

C0=[@y @byl d]]

(3.27)
Eguation (3.25) now employs a stat&onary_noise model in

contrast to the nonstationary noise model of ﬁdnfyfl):

The” &.c. bias d may be considered to be constant or

slewly time-varying.

This is known as the "1l-in-the-data-vector" method

because the final element of &(t) is unity. Note that the ‘i
regressor is now full-valued or positional, as opposed to A
incremental or deviational. The approach appears to have

°

i@
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fepn abandohgd<because of difficurties associated with

'; estimating d* espec1ally if it varies with operating

'regfﬁn These dlfflcultles arlse from the 1nherently

!

poor condltlomlng of the problem due to the fact that the

"w-element "1" in the regressor is obviously not per-

sistently exciting.

H Lgn;as'pointed out by-Astrém and Wittenmark (1984),
uring a discussion of the" frequency domain propértiga of
the steady-state Kalman filter, that in order ta design a
Kalman'filter!that blocks certain frequencies ({.e. a notch
filter), it is necesaary to incorporate into the filter aa

nois model with poles at those frequencies. Here it is

desired to block the effect of the d.c. bias on 8(t), so a

noise'modal must be chosen with a pole at zero frequency,

wT
10T = 0= |

Le._:=e In order té determine, then, whether

. . L }
the KF approach offers any advantages over the "1 -in-the-
data-vector" method, the state space model will be parti--
tioned into process and disturbance subsystems as

follows:

' (3.29
y(0) =167 (1) 1][ 8} w(t) (2-29)

where U(~). Q('L'and UJC) are sequences of uncorrelated

~zZero-mean rand&m warlables Note that ¢(-) and 6 have

been redefined once more as

3

.

7\

'[e(ul)}[l O}{O(yt)};[u(t)} o (3.28)
le(t+1) 0 1 ]jle(®) q(t)] . . o

52
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-

¢U)=[;y(t—1)“@.—y(t-n)xdt—k) ..... u(l—k—n+l),—

w(t-1)..... w(t-d-n)]" 5

O=[a,..... Apby..., N S | C oy
' (3.
& The augmented system may be represented as
()= (D) v, (L) ' (3.
Yy =H{)z=(t)+w(l) (3.

This leads to the:one-step Kalman filter (with R, again

set to unity):

a) Gain Calculation A

: ~
L(t) = P(t~))H(t)T : (3
L+ HOP-1)YH () '
b)'A Posteriori State Updags
ZA+ D=2+ L[y U+ 1) -H{+ D)2 o (3
c) A Posteriori Covariance Update
- T -1 3.
P(£)=P(l—l)—P(t IYH (OHH)P(t 1)+R }

L+ HYPU-1YHT(L) '

But it is obvious that these equations are identical to

5

those obtained by the "1-in-the-data-vector" approach, L0

by redefining the regressor vector ¢(!) as
{
-t =[]

where ¢(t) is given by Egn. (3.30). Hence, it is apparent
that a Kalman filter design utilizing frequency domain
considerations to eliminate parameter offset due to:the
d.c. hias term results in the well-known (and pporiy con-

ditioned) "1l-in-the-data-vector" technique.

~

T,
R
30)

31)

32)

.33)

.34Y

35)
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3.2.1.4 Conclusions re KF Parameter Idertificaticn

It has been demonstrated in this section that applica-

‘tioh of a Kalman filter to the identification\of ARMA

model parameters is in fact equal to the "RLS with
covariance modification" technique. Although this method

preverits "turnoff" by ensuring that the covarlance matrix

does not decay to zero, 1t was shown to alte&fﬁﬁ% geome-
try of the parameter update in an ad hdc. fashiéﬂ and may
be subject to covariance blowup when the plant is
operating near.steady state. 1In Section 3.2.2 a method
due to Sripada and Fisher (1987) will be presented whigh
maintains alertness by keeping.Ete trace of the covaria-
nce matrix EOnstant without altering the least squares
properties of the algorithm. -
3.2.2 Improved Least Squa:es

In order to maintain optimal control of time-varyiné
systems, a candldate algorithm must bedable to adaptlvely
update the parameters of Egn. (3. 1),”wh11e av01d1ng the
estimation difficulties associated with standard Recursive
Least Squares. The,method to be described in this section.
is tﬁe fmproved Least Squares (ILS) of Sripada and Fisher
(19@7) which miniﬁiées the ekponentially weighted least
sqﬁares cost functional:

7= S AR Oy (=87 (0B 1T | o 5030

t=0



The algorithm is charadterized‘by five modifications to

the standard least squarés procedure'whiéh are described in

the following subsections.
3.2.2.1 Norﬁalization,
The regressor vector’¢0) and the output v (‘) are normal-

ized by a factor n, (.e.

yI(t)y=y(t)/n

o, (t2=0(t)/n

V.
where n=max((l,|[o6{)]]).

3.2.2.2 S8caling

In order to improve the numerical conditioning of the .
least squares problem, scaling is introduced to minﬁgize the
condition number of the scaled covariance matrix. The

T . :
parameter update law becomes

-

B(1)=6(t= 1)+ S(™ P,(1)8,,(D[¥" ()~ ,(1)76(L~ 1)) o (3.37)
with PS(U==S(OFKI)S(U.ang ¢m(t)éST'U)¢ng)ﬁ

S(t) is a diagonal scaling matrix chosen to minimize
C{S(1)Q(1)}. where P(HYy=Q(M)Q™(t), i.e. a Chdlesky factoriza;
tion of P(t). The S, are chosen‘as_the absolute row sums bf
Q(t). It is important to note thqt the geometry of the

update  (3.37) is unaffected by the scaling procedure.

PesY
3,
[

Although the authors recommend scaling on}y Qhen
C{P,(")}>Cr.x (see«3.2.2.4 below), it has been‘observed that
scaling'should be carriéd out at each sampling intgrval
since FSO)‘can become negative definite if;the number of

intervals between scali. 3 bedomes too large.

55



56
3.2.2.3 Constant Trace

The covariance update law corresponding to Eqn. (3.37)

is

p ¢-</_ Po(t=1)0m (D& ()T )P,'a—l) | (3.38).
“ A+ 0, (DTP(t=1)0,(8) ) AN(E) :

In order to maintain constant tr{P.(-)}, one may set

tr{P,(1)y=tr{P,(t- 1)) and rearrange to obtain

_ ] | 411 P, (t=1)6,. (1) 112 % |
At)y=1-= - 2 _ s i '

h)
7

where g(1)=1+0, (TP, (1=1)en(1). The trage of P.(1) is

chosen by the user when P (O) 1ahspec1ﬁ;

It was found by experlence, however, tﬂét this methodA
does not actually resu}t in a constant (r{P,(-)) because the
trace of P (') will change each tine the matrix is rescaled.
‘Therefnre, it was decided to rewrite (3.39) in terms of the
unscaled covariance matrix P(-), because the true gain of

. ¢
the update (3.37) is

STHOSHPDS)STH(, (1) =P ()6, (1) ' o
so that it is actually tr{P()} that should be kept constant

and no% tr{P.()}. Rewrltlng th? expression for the forget-

ting factor K(t)w1thtr{P(U} tr{Pet-1)},

N} FHPCE=1)0,(t) 112 : 4
MO=1 2 Q(f)‘<g(t)2— ( ALL ), > (3.40)

trP(t-1)
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U

[

where g(4) = L+0,() P(t-1)¢,(t). Again, tr{P(0)} must be set
oy the user and should be chbsen carefully to balance
a priori knowledge regarding the variance of the plant avna-

)
AY

Mics ‘against the noise level of the proceSs.
- _3 2.2.4 On/off Cr1ter1a - 7
oIn order to prevent drift of the parameter estimates

”“durlng perlods of low exc1tatlon, the algorlthmwls desxgned

mito shut off if elther

1) P00 1<,
or 2) C{P,(1)}>C

,'where‘A and C;“ are-user-specified;oonstapts.
3.2.2.5vMean ﬁeviatronai Data - ' - -
The relatf&e advanteées/disadVanteqes-of incremental .
vs. p051tlonal data for recursive parameter estimation
have been dlscussed above. However, a third optlon
exists for the: identification of systems of'the_form:
Qo ;

w(t), T (3.a

Az >y(r>-8(z">u<t—k>+cc M= ed

which involves removal of the d.c. bias by independent
estimation of the mean levels (5,‘a) of'y([)and U(ly.zb

since d=Ay-Bu. The mechanism for doino this is prob-
; ; ) . .

lematic; Sripada and Fisher (1987) recommendﬂueing}%he : Ef"

first order filters l IR ) L
V() =N,y (L= 1)+ (1=A )y

L() = A (= 1)+ (1 =X, )u(t) (3.42)



where A, and A, are chosen in an ad hoc fashion subject to-
O<(A,,A,)s}l. For the choice A, =A, =X,

AONEE u(t)y  1-A
y() 1-xztoult) 1-az

or e
Sy 2 gy w
y(t)= T 1)- u(t) T2
with
AT, -1 =1")\Z_l :
=) -

IS
AY
3

(Note that A Here is generally different from the forget-

ting factor of Eqn (3.40).) Dropplng the argument 2!

ot

- .
for convenience, the effect of u51ng dev1atlonal

variables on the ILHS of (3.41) is seen to be

1-A ’
Ay (D) -y () = A(y(f)—l_—*—_-—ly(t))

Az
AAY(t ,
y }'(_)1 ,1AY() (3.43)
l-Az . T
where
T eT(z =t \ (3.44)
. N

’

Subtracting (A(z )y (t)-z *B(z"")u(t)) from both sides of
V2 ALY e : . i,

Ay ()= (AY (1) - 2B (1))

A
-

FBU() - (AT (1) -z Bu(t);: Cwit)

d
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Ay (D)= (1)) :
wa_,i’.. A
+d - (1yu>—~*8uu),

ok EEPRVINI ()
=z "Blu(t)y-ult))+~C 0

But,
A7 ()= Bu(t)

- (A== Bu() -

=L(Cw+d)
T\~ a »

Therefore, (3.45) becomes

( (- /(t)) .

( (t)- “m) Cw(t)+d——l—<cgi—[2+d)

Il

A T

euo-52) floo- 52 (-

Using Egn. (3.43), this in turn becomes

II

AY() _ pAu(t-k) Cow(t) Ad
T T A T T

A

-

or ' . _ 5

-1
Az Hay () = B(z'l)AuF(t—k)Jri(z_liw(t)

k.

which would iwmply that

C(z™") o~
(?:'l)w(t)

AyT()=¢"(1)o+

where the superscript "F" denotes division by 7(z"').

This scheme is ¢learly equal to that of Clarke et al

(1987), i.e. incremental ID with prefiltering of the

(3.45)

(3.7)
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regressor using "Tuff's T-Filter". Note once again that
unbiased estimates of 0 will be obtained only when
Y{:T{)=l/%;—z'L=C(z'l)ahd is designed to be used in place
of, rather than in conjunction with Extended Least
Squares; Notice also that*usingrky#kg“is equivalent to
multiplying the LHS and RHS of (3!41) by different T(z"')

polynomials, which will result in biased parameter esti-
mation. X
. Q
3.3 The Adaptive Kalman Filter Predictor

In Chapter 2 of this thesis, a.,genéralized k-step-

o

ahead control law (Lu, 1986) was introduced to be used

with the Modified Kalman ¥ilter Predictor (MKFP) of

Walgama et al (1988). Iﬁﬁsummary, the cost functional to

be minimized was given by"

Jerr=[R(z )y sp(t+ k)= P(27 YELy(t+k) 1))

60

dqoHum? e
where P(z"'), Q(z‘w and R(z"') are rational weighting
polynomials subjecﬁ to P(1)=FR(1) and Q(1)=0 for zero
céntroi}er offset. |

The state space model of the’process was given by .
N(t+ D) =dx )+ Ault)+Tn,t) (3.47)

y(t)=Hx(t)+n,(t) (3.48)

whefe for 'd=k-1,



/

N =[N, () N () N, (D) X (D) v, (D]

1 0 .. 0 O O .. 0 0]
=y, O ... 0 -a, O ... 0 O

\ %
=y, 0 1 -a, 0 ... 0 0
0O O O 1 © 0 0
o0 ... 0O 0 O .. 1 0

A{nek)x(n+k)

n,(-) and n,(*) are uncorrelated Gaussian random vAriables

having covariances R, and R, respectively. The state
vector is not directly measurable and so is reconstructed

by means of the Kalman filter update (see Appendix A):

-

KU+ 1) =%+ 1) =X () + Au()+L{t+ B)w(l+ 1) (3.49)

where the innovations sequence w(-) is defined as

(»(t*1)=¥(t+l)—f12(t+1[l) - (3.50)
By innovations analysis for the stéady state KF, "it
was found that an equivalent ARIMA represqntation for .
(3.47), (3.48) 1is given by

) 3.1
A(z“mt):B<z")u<t—k)+6(z">'(% oo

- . [,
P B
¥

where



(3.51)

and

/\,2(":_])=[‘nod—l+'[‘nod—.27‘-l+"'+LnolZ
D(="")=L,[y,z" ' +...+y,z™"]
(The /; in Egn. (3.51) are elements of the steady state

Kalman gain vector L.)
It was also pointed out in Chapter 2 that the k—step;
ahead KF prediction of the-process output is;given by |
E{y(t=Kk)1y=9(t+K|0)
=HX(t+k]|t)
. iy |
=HO ()~ ) He " u())
) /=t y

=Yn'\".p([)-*.‘{"n—l(t)_,alxn(t)*-blu(t) (3_52)
Differéntiating (3.46) with respect to u(t) yields

aij
au(t)

=2(R(=")yop(t+ k)= P(27)7(t+ K1)

_a[P(z_l)}'/(’tw*klt)]+2[Q(Z-1)u(t)]a[Q(Z’_l)U(t)] (3.53)

ow(t) ou(t) .,
But (3.52) implies that

P27+ k 1) =P(=T)Y,2,(0* 2, () -a, 2,(0)]
L PerpaEte

1

(Pao* Par1z" +

)
b,u(t
) ‘1‘( )
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so that

P(=TIIUKID] Pao, L (3.54)
™ ou(t) Pao T PoT

'where po is the first coefficient in the expansion

P.(z7')/P4(=z""). similarly,

2LQ="Nu(t)]_Tno _ ’ - (3.55)
ou(t) { do o

Substituting (3.54) and (3.55) into (3.53) and setting

aJK}F/au(z)=o leads to the cerféinty equivalence cg
l_aw' : ) ' °fg’

b, - s
- . - R(z Ysp(t+k
OIP(27')* qaoQ(= l)[ \ Y P(l, 1 )

u(t) =

STV, () PGTE (04, PTDEM) (3056

S
Sy

Note that a, and b, in Egn. (3.52) have been replaced b

o)

. and b, to'féflect the fact that they are to be
estimated_online using the Improved LeéSt Squares algo-
rithm described in Secﬁion 3.2.2 above. Combining a
recursivé estimationlsgheme such as‘ILS.w{th the MKFP
results in the Adaptive Modifiéd Kalman Fi%ier Predictor
(AMKFP) of Walgama (1986), which is iilustrated in Fig.
3.1. From this diagram, it is evident that th proposed
' cnhtrol scheme 1is explicit or indirect. This implies
that the parameter eétimation step and the controller
design step are accomplished separately. (It is poséi—

ble, hoWeverr to design an implicitvor direct scheme

Iz




{ xmation and state estimation

wherein the parameter «

] .
steps are carried out simultaneously, e.g. by use of the

Extended Kalman filter (Walgama, 1986)).
(n‘('f)———b Logq‘ _ﬁ
; /S B -
RO —— Luy v .
(%) L COnf_rbller T _> - Priocess 7 - - y N
T - os |
/ . ' /
/o T
’ ‘ / . e
/ : S| | ﬂ_____.._
/- . LS
/
- ¢ T ~~ - )
' A' B ";:,{5
i —»|  AMKFP -
' -
H
y 9
y(t+kit) .

. ’ . t PIR

'?""';CP:‘ .

Flgure 3 1 - structure of the Adaptlve Kalman Fllter Control
' Scheme .
< , o
A ; , ’ .
As a final note, recall that the independent mean

‘ estimatipnﬁdescribed'in Section 3.2.2 effectively employs

a.first‘order T(z™" filter-in én effort to cancel C(z™.)’

in (3 51), whlch is of order 6C(~ “Y=n+d. It is_abpar—

that' some degree of correlation w1ll nor-
o

mally exist’ between the regressor vector ¢(0 and the

ent therefore,

disturbance tefm C(:f'ﬁ»(z)/f(z’l) in Eqn. (3.7) unless -

b}

") is exactly equal to C(z7').



. 3.4 Integrating Self—&uniﬂg Control
Ae described in'Chapter 2 in the context of optimal
control’ of time—invariant processes, the integrating form
of the Self-Tuning Controller (Tuffs and Clarke, 1985)
minimizes the perlormance index
Jsrc=[R(?")ysp(nw)—E(P(:“>y(z+k>|t>1""

- (3.57)
[0z Hu))’?

where P(z™'), Q(z ') and R(z™') are ueer#specified rational
.weightlﬁg-polynomials. Once again, P(l)=R(1) and
Q(z"')=0:ere seen to be necessary conditions for zero

control offset. The‘predicted.k—step-ahead auxiliarf

output w(tfklt)—lf(P( 'l)y(t+k)|£) is formed using the

ARTMA plant model - 5 R - . o "

— . ' (3.1)
A(zl)y(t)=B(Z )U(f‘k) ( y»éﬂ

"where‘A(z'l% B(f”) and C(z"') are as defined in Egn.

I . . 5 o o
R

“ (3.51) above. Multipliéation of (3.l) by F(z ')A, where

‘65(2")=k;lfand rearrangement yields

‘ w(t+k) P(J‘)xcwk)

o ¥ ‘
-1 ) ’ ,','l . i v
= F_(17 ) - y([).t('_(_f_:Tz‘Ad(t)_*E(zv 'l)uo(l+k)/
% . Pa(z")C(= ) C(=z ) | (3.58)
Where £(z7') éhd‘F(Z'l)arenobtained'frOm‘thngiophantine' 'l"‘,%
identity i :
Pn(z_l)c(z_l) E( _l) . . !F(Zl_l) . A ) (3.59)
) = zZ. + Z : ‘
Pd(Z_l)A(Z—l)A . Pd(z'_])A(z-l)A q

™ -
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.

and G(z YY=F(z"")YB(=z"'). It is evident that a least

squareé prediction of the auxiliary output y(t+k) is

given by
B e =) (3.60)
YU FRI) = - /@t)+——Att(t)
. Pa()C(z"! )’ C(z"") \
Differentiating Jsk;in Egn. (3:57) w.r¥t. u(t)f o
2J sre e e 2U(t+k )
d“‘([)—Z[R(« Y)Y sp(t+rk)—w (L klt)]——W

~

3[Q(z"Hu()] (5.61)

+ 7 y !
2[Q(= Hu(t)] )

_But from (3.60),
F(z™h)
Pa(z7)C(2™h)

W(t+h|t)= yU)+go%uU)

G(z2") " " (3.62
| g [dult) (3-62) .
AC(="") i - .
because C(z*')@s'monic.'vKuation (3.62) implies that
a@gzwktz) g - . .,
- =go : .
ou(l) : . i
and it may be recalled from (3.55) that ‘
i . *I‘ 1\ ‘ . . .
5[@(:"Miu)]_qno_d - '_/5 | (3.55)
- ou(t) Gao - ° | v S .
’

’ Substltutlng these relatlonshxps 1nto (3 61) and settlng

aJSTC/au(t) O leads to the optlmal control 1aw a

T G (Z_])
(t)= R(=z sp(t+k .
u. 7,002 [ (27 y sa( ) P.(z JC(z y( )
E «. —' N R C(Z ) (3;.63)
u(t-1) ( C(a )>AU(Q] o

i



The polynomials /, ¢ and C have been,replaced in

(3.63) by their estimated values, which must be obtained

la online parameter identification in order to maintain
optimal control of plants having time-varying dynamics.
This can be accomplished in an implicit or direct fashion
by directly estiﬁating these polynomials as il;ustrated
in Fig. 3.5, i.e. the parameter eStimation and controlier
design steps have been combined. Equation (3.58) may be

.I‘.

rearranged to obtain

! V() =(1=C="" N+ F(=" Dy (t-k),

+'G(Z'I)Au_(t—k)+ E(z"Hw(t)

_or
) (z) o7 (t)9+E(z By () (3.64)
where .
O = (=W (t= 1), =w(t=n=d).y (t=K) ey (L= 0F),
o ‘ Auu—ky,”Aquzk—n+2ﬂT P
6=[c1.....cnld,fo,'...,f“,go,...,gk,n_ij ' (’ .
' ‘ Teeow T (3.65)

y'(D ie defined as y’U)=)(tj/Pd(sz and the drdeg‘of
F(;'yjis‘given by 6F(2”)=Jnax(6P +n—1'6Pd+n) Apﬁlica—
tlon of a’ recursxve parameter estlmatlon scheme such as -
" ILS w111 produce a*LS estimagz of 6 51nce the noise’ term
E(W )U)U ‘k) 1s 1ndependent of ¢(l) Once agalﬁ; C(z")
could be" replaced by T(é ) in Egn. *(3:64), . .thereby
reduc1ng the“dlmenelon Qf the estimation proeleﬁ consid—
erably. - ,‘ ; . |

‘. . ) . . “”.-.'?
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Figure 3.2 Structure of the Implicit Self-Tuhing Controller

—a

3.5 Simulation Results

b}

The adaptive versions of the MKFP and ISTC algorithms
. : . R P 1
_introduced in Chapter 2" were first tested on the same

~plant described in the simulatibn éxample of that chap- 8

\
ter, i.e.
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D T 0 00 0 o] Y]
N (e 1) 1 0 -07 0 Of (D
N+ D) =1 1 1.5 0 0| xu(t)
xL(t+ 1) |0 0 I 0 0| xq()
vyt 1)) L0 0 0 b O} ()

Y l I_L(t)"' { ";:, .,411

Cy(D)=[0 0 0 0 1]x(t)*+n,(MYg: L : |

Y= 0 1]x(0) ’”7‘.(1)@,@, L “ (3.66)

_ , . CoEme i

n,(t) and n,(t) are~independent Gaussian noise scquences j&f
ca 1

variange 107", Note once again ‘that an equ1valent DARMA

representationéof the process is given by

Az )‘/(f)“" B(” )u(l—l) ¢

(1-1.5z7" +O.7'z_2)y(t) =z (1 »o.s:"w’u— D)

The performance of the. minimum variance form of the

l

AMKFP based controller (LQ Eqn (3 56) with

P(z"" )—R(z =1 and Q(z = O) is illustrated in Fig

‘L .
M ‘ ‘\’*"

~3.3a.. The ratio of thq§ﬁ01se cova%ﬁances R, /R2 was set

to its correct value of unity. The Az and B(“ ) -

paraﬂeters were identified using ILS with trf P(-)=4, - , ~
A=10"¢ and Cmax*lO ¢,.i.e. the algorithm wasvon at all

:times throughout the run. JThe:estimated‘parameter‘vector Qg‘ o

8(D was initialized to_e(Q)%[l 11 J]T and a first order

7 T;filter, T(Z'n)= I;O 8z, was used to reduce the effect_w

" of. correlated noise on the estimates (c/ Eqgn. (3.7)). ﬁt-

is ev1dent from Fig. 3.3b that the parameters converged

to "good“ values after approx1mately 75 samples. Thls.

-
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Fd

corresponds roughly to the time-at. which the plant output
was stab%plzed in Fig. 3.3a, after which tge.performance
was very close to that obtalmed for the fixed parameter
case (c/. Fig. 2. 2a) ~

Im Figs. 3.3c and 3.3d the behaV1our of the minimum
variance ISTC (Egn. (3.63) with P(z")—R(z'l)—l and
Q(z')=0) is demonstrated with imitial parameter esti-
Jnates O(O)=[l 1 1 1 1 ]]T? The regressor,fector was

!, rather than trying to

filtered by T(ﬁ'l)=ll—0.8z‘
vestimate C(z"') online as described in Section 2;4. Fig-
ure 3.3d indicates that parameter.convergence for the
iq¢c was generally poorer than that obtained in Fio. 3L3b
for the AMKFP, despite the fact that the trace of the
covariance matrix was kept'at a much higher levei. .This
is due to the fact that: mo;e parameters were estlmated in
the implicit ISTC scheme (seVen) than 1n the explkglt
AMKFP (four). .Note also that even after the output-was
stabilized at t=80, the‘performance of the ISTC was sig—
nlflcantly worse than that observed for the flxed parame—
ter case (cf Fig. 2.2c). | ‘
Several idEntificatiomAtechnigues,were discussed im;
‘Sectiom-Jﬂé .with particuiar emphasis onfimproved‘ieast.
Squares and Kalman fllter parameter ID, tne latter method’
was shown to be equ1valent to the well- known "Rquwlth-
’covarlance—modlflcatlon".method.w In Flg. 3.4 the beha—

“viour of these algorithms was compared for minimum

) variance control of a time-varying ARMA plant given by

s, i TG
- R

3

1
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(Lva, ="y =b,ult-1)+w’t) (3.67)
a,=-0.9 | "
b,=0.1, VYtc[1.250] , -

AN

-

=0.5, Vt>250 .' )

where w(!) is a zero-mean Gaussian sequence of™variance

4x 107" All simulations were &adrried out using the AMKFP

with R,/R,=1, correct initial parameter estimates, (.c. .
. ! - ) <J‘

6(0)=[-0.9 0.1]" and initial covariance matrix P(O)=/.

(Mote that a positionalfformulation was used, in this
\
€ :n.le since the disturbance term in Eqn. (3.67) is

stgr;onary;)f"

Figure 3.4a s ‘ormance obtained using
- -~ o [
Recursive Leastg¥ 'mate.a, and b, Minimum
variance co e>the first 250 samples,
. . _‘:."‘ . .

but the chay yused- a period of instabil- "

ity in the k. "algorithm was able to

recover event ;réhaviour was‘significantly
'worse than that observed prior to thg parameter change.
The RLS approachrwaslunable to track the change.in b, (see
Fig. 3.4Db) becausé‘the trace of the covariance matrix héd
decayed to a very smail Valﬁe, as evidenced by Fig. 3.4c.
(Note also the parameter~drift tﬁat‘ocqurred during'ghé
v period;éf steady state operation from t=0 to t=iooh when
tr P(D was still relétivély‘large.)
Fig. 3.5a illustrates the results obtained using RLS

with covériénce modification (CM) for the choice R1=/? in

~Egn. (3.18). There was a marked Emprovement over the
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performance obtained using simple . RLS, as-the parameter
o N 7

chahge at time 250 was‘immediately”tracked by the identi-

fication algorithm (see Fig. 3.5b). This is because the

trace of P(U was much hlgher in Fig. 3.5c than .in Fig.

A 2

3.4c, which also led to a.greater varlance in the parame—

ter estimates. Indeed, (& P(U was seen to increase.in a:

.

roughly linear fashion during periods of steady

\
{

- operation;'this caused significant drift in the estimates

whlch could lead to bursting in the output.
'In Fig. 3.6, however, the sxmulatlon was repeated

using Improved Least Squares to malntaln the trace of the

‘covariance matrix at ‘its initial value of 2.‘JThe'beha—

viour of the algorithm can be said to lie somewhere in

'between that observed for simple RLS and RLS with CM in’

the sense.that although there was some some movement in
- = \

the output at tlme 250, it was much less than that

observed using RLS.  As seen in Fig. 3.6b, the parameter

change was tracked fairly well using ILS, particularly
“after the setp01nt change at g}me 500. Thls is because

‘ hthe trace of the covarxance matrlx was kept ‘at’ 1ts 1n1—'

o N,
tial value.‘ Thls°1n turn resulted in a much smaller

5amount of paramezer drlft than observed for RLS-with CM,

¢

which lessens the p0551b11ty of burstlng Indeed, -1t may -

be argued that the servo reponse obtalned us1ng ILS was

superior to that of F1g 3 Sa after the setpornt change

i

at t= 300.

79.
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Finally,$ the behaviour of the AMkFP and ISTC aldB—

rithms was illustrated in the control of the nonminimum

phase‘state'spaqe'plaht B
__x‘p(l+l)— "1 0 0- 0 0 _O‘-—xp(l)_
()L ' o -0.8981 0 0 O x1(D
X+ 1)L 11 1.8954 0 0 O ff x2(8)
x50+ 1) Q O 1 0O 0 O] x3(t)
N x,(t+1) 0 0 0 1 0 O X 4(t)
__XS([+ [)d _O 0 L 0] ‘ 0] 1 O“LXS(,{)_
S o
0.9 0 -
0.797s | . _ o |
+ 0 u(t)+ 0 fll\(t) | ,
” 0 ol /¢
. _ O -] _O_ / a <

;,Qu)e[o 0 0 0 0 1lx(t)+ny(t)
where n,(t) and n,(t) are ihdepehdent random sequences of
variaﬁce 10°°. This process has the.deterministic
equiValentt . \

(1-1.895427'+0.898123)y (1)

.=z4(0797540924)uu—1)
which is ciearly'nonminimum phase.dae to the zero at
==-1.12885. o | '

AS expected the minimum variance forms of the AMKFP

and ISTC controllers were ‘observed to be unstable (see

Figs. 3.7a, 3.7c), desplte the fact that "qood"festlmates_J

TR
ANEY

of the plant parameters were obtalned in bothw

Flgs. 3.7b, 3.7d). (All parameters estimates were 1n1-*

(3.68)
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t1allzed to unlty and'r(~4) was chosen as | -(.g8-"' ) This

is . because a model inverse strategy results in an

+

unstable control law if the plant zeros are unstable.

A}

It is well known, however, that the’ addition &f suit-

s’

‘ably chosen control weighting to the minimum variance

cost functional will move the poles of the controller

‘inside theronitpcircle, resulting in a stable configura-

tion. In this example, Q(z™') was chosen as

.8 . , .
; : A ; o
Q(z )= ——"=— . : . .
1-0.95z )

which resulted in stable control of the plant (see Figs.

3.8a, 3.8c). It was observed that the ISTC took longer

to stabilize, possibly due to the larger number of param-

etersfto be estlmated U e. eight in Flg 3.8d versus four
in Flg 3. 8b) ' It should be noted however, that the
ch01ce of Q(z )1s very dlfflcult to ‘make without

a ;nworzknowledge of the plant, ‘in Chapter 4, multistep
vers1ons of these algorlthms w1ll be 1ntrodnced that gen-
erally prov1de stable control’ of(nonmlnlmum phase systems
u51ng default controller settlngs. | |

3. 6. Conc1u51ons: .

- ThlS chapter has outlined the exten51on of the Modl—
fied Kalman Filter Predictor of Walgama et al (1988) and
the 1ntegrat1ng Self‘Tunlng Controller of Tuffs ond'
Clarke (1985) ‘to the control' of plants having time-
hvarylng dynamlcs and/or mlld ‘nonlinearities. This has

‘been.accompllshed by combining the flxed parameter 0\

o “
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versions of these methoas with a reiprsive parameter
estimation algor}thm‘for online identification of the
process parameters. ‘ | N
In this connectibn, it was shown that use of'ﬁhe Kal}
man filter to recurs}yely.estimate the parameteré of. an
ARMA process model is equivalent to |
"RLS—with;covariance-modifLuation” (Goodwin and Sin, »
> .
1984). It‘wés fdund, however, that this techniquelwaé
subject to covariaqce windup during periods of low exci-
tatioﬂj which,hay lead to burskting in'the output. The
Improved Least Squares algorithm of Sripada and Fisher
(1987) was also introdﬁ;ed to overcéme this bursting
problem.\ A correction was made to the célculation of the
variable forgettingvfactor in TILS.

A series of simulation examples demonstrated that both~

the ISTC and the AMKFP~based control strategies perform

well on unknown of time-varying plants subject to tim¢
delays and nonstationary stochastic distﬁrbances.' Hofv—
ever,%it was observed that the‘number of parameters’ be
estimated in the ISTC may bécome prohibitively/} ge due
to the implicit nature.of the algorithm. This leads to
generally slower convergence thaﬁ‘that observed using tﬁe
(expiicif) AMKFP. |
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4
B Multistep Predictive Control

4.1 Introduction » . V

This chapter gxamines the i&milarities that exist
jpé%ﬁeen tﬁe designs of certain iong—range predictive con;ro]
(LRPC) strategies.. In particular, Multistep Adaptive Pre-
dictive Cohﬁrpl (Sripada, 1988),,Géherélized Prediptive‘Con—
t?dl (Clarke et al, 1987) and thé‘MultivariaBLé, Optimaif’
'Cpqgtfained Control Algorithm‘(éripada and Fisher, 19857 Li
et.ai, 1988;TNav;atil et al, 1988) afe”ekamined'for'their
aﬁproach to the contrdi‘ofgknown, time—inv;riant SISO plants
by analogy with ;he.Smith Predictor.v | N |

The Multistep Adaptive Predictive Control (MAPC) scheme
'of'SripaQa'(l988) will be exféﬁsivelylanalyﬂﬂi in Chapter 5,
>'héh¢e ohly é summary of the.app;oach wili be g%ven here. “
Specificaliy,nit Qill‘beKShowh in‘Chapter 5 that the pro-
posed metﬁod-df partitiﬁhing the state space formulationi
.intov"u—y"'and-disturbance‘subsysfgms is infeasible when the
system parameterS‘are;unknan and/or time—varying. 'It was
therefore decided to use the ﬂodified Kalman Filter Prédic-
l tor (MKFP) of Walgama et al (1988) to formulate the output
trajectory, which will guarantee asymptotically zero
prediction offset in the preséncé of nohéﬁat&ona:y distur-
‘bances. )

The Generalized Predictive Control (GPC) algorithm of

Clarke et al (1987) is a generalization of the single-point

or "k—step—ahead"'Generalized Minimum Variance (GMV) scheme

v
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of Clarke and Gawthrop (1975, 1979). The primary motivation
for this development was the rather poor gerformance yielded
by GMV Wheh applied to plants w;th unknown and/or 'variable
time delay. Additionally, it was found through experiénce
that the weighting polynomials P(z"'), Q(z"') and R(afﬁ
often required.a good deal of‘ohline tuning. GPC, on the

other hand, Hasubeén‘observed to work well on a wide variety

of applications using a "default" controller configuration,

te. Ny=N,=1,;N,=10, A=0 (cf. Egn. (4.1) below).

The Multivariable, Optimal, Canstrained Control Algo-

rithm or MOCCA (Sripada and Fisher, 1985; Li et al, 1988;

.Navratil et al, 1988) is in essence a refinement of the

°

indgftrially successful Dynamic Matrix ControLv(DMC)'of cutg
ler and Ramaker (1980). Both methods emplby.a "nonparam-
etric" model of the process to form a trajectory of future
control errors ﬁo be ﬁinimized in a multistep predictive
control strategy. The models.are cangd‘ndﬁparametric since
they use step responSe data (e.g. the précess reaction

dufﬁé) directly, rather than an ARMA or state space repra-
sentation'df the prcdesé. This method of modglling the pro-
cess, unlike the MAPC and GPC schemes, requires no a pitwrt
assumptions regarding the model order or timéddelay. (The
time delay can in fact be obﬁainéd from thg>reactidn curve
by‘counting the number of leading zero‘steb respdnse coeffi-
cients.) On the other hand, the DMC or MOCCA approach is -
iimited’Zzytime—invariant processes. A further disadvantage

A

3

-
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arises from the fact that the process representation is non-

minimal as'it'will generally result in a less computation—

ally efficient‘implementa”*on ~hat those of the ARMA or
state space. methods. .
In a recent review article comparing Generalized Predic-

tive Control with various representative Model Predictive

Control (MPC) schemes (of which DMC and MOCCA are two \\
examples), Clarke and Mohtadi (1986) aphear to heve claimed
that this class of algorithms is strictly limitéd to open
loop stable processes. This isiuntrue.insofar as virtmally

'

any unstable or marginally stable system can be stabilized

by the additionyof a proportional controller with a suitably
chosen gain. , Step response data may then oe obteined from.
the augmented plant by issuing a step change. in setp01nt to
the proportlonal controller. The ana1y51s whlch follows.

will, however, 'assume that the p;ant is vpen loop stable for

,g;pufposes of comparison with the MAPC and GPC schemes dis™

cussed earlier as these algorithms would surely be different

-%from MOCCA operating on ah augmented process. Furthermore,
the assumption of 'a known and time‘tyvariant(plant implies

"that»the“step response data are uncorrupted by unmeasured

disturbances.
4.2 Muitistep Adaptive Predictive Control .

The Multistep Adaptive Predictive Controller of Sripade
(1988) min%mizes a cost functionalvof the form

J= Z(ysp(tw) Jl+jIt))? +ZMAu(t+/-1>> . .
=N, ‘ (4.1)

L

~oe 97

S



&

/
/

As mentioned in the introduction, the trajectory of pre-

. dicted outputs {Y(t+j|t). Je[N,. N2} is formed‘using the.~

Modified Kalman Filter Predictor (Walgama et al, 1988),
which is based upon the follow1ng state space process modgl:

x(t+1)= ¢\(n+,\uu) Tn, u) .\ ’ £ (4.2)

ﬂrequywxn , , L (4.3)
where ) ’

(1) = [, (1 %1 (D eer Xl Xy (1) X g (D1

1 0 .. 0 0 0 .0 0]
vy, 0 .. 0.-a, O 0 0 .
N %
¢=|vy, O 1 -a, &\ 0 0 .
0O 0 O 1 .01%4. 0 0
M) v "L_\ - ,/-
i - |
[0 0 .. 0 0 0 o 1 Olpnen
A=[0,b,,...b,,0,...,0]"

H=[0,0,. 1] - (4.4)

and\d is the time delay excludlng that due to dlscremlza-

98

tion. In Appendlx B an ARMA representatlon for the Kalman

Y

filter prediction /(t+klt)was derlved using innovations

4

analysis, where ké{i+1. i.e. the total time delay of the -

process. The derivation was‘parriéd out for the steady

state Kalman filter, assuming no model/plant mismatch (MP%);
(.

7

A similar exercise will now be performed for the KF

prediction y(t+jIt), where j is an arbitrary integer such

N -
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that N, =k< <N, Note that'N in Egn. ‘@4.1') will be set

equal to k.nas %t is uselesékt§ penalize outputs which

cannot be affected by Au(é). (This assumption is consistent

with the overall requirement of a perfect process model.)

Equation (B.7) indicates that an equivalent ARIMA repre-

sentation for Egns. (4.2), (4.3) is given by

B(z"") C(z " YYyw(t) | (4.5)
3 = t-k)+ St
y (1) /1(;;‘-')“( ) TR _
where

A(z"Yy=1+a,z '+ . +aq.z "

-n+1
n d

Bz ')=b,+b,z "+, +b.2

=)= 1A (1 Koz ) 27K (=7 )]a 27 D(=™) |
. (4.6)

and

D(z )= L[,z .y 27"]
The L, are steadyhstate'Kalman gains taken from the Kalman

filter state update (see Appendix A):
E{x(t+1)|t+1)y=x(t+1)
=dR(D)+ AU+ Lw(t+ 1) (4.7)

‘and w(t), the innovations sequence is defined as .

W)=y ()-F(tit-1)

=y (t)-H&S(t-1)-HAu(t-1) (4.8
.o " /
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Recall that w(!) becomes a zero-mean random éequence when
-thé Kalman gain vector L has con&erged to its final
solution. To obtain an optimal j-step-ahead output predic-
tion, consider the state update (4.7) written for a férward
shift of j sample intervals:’
R+t )=bx(t+j-11t+j-1)+Au(t+j-1)

S+ Lw(t+y)) v (4.9)

Using successive backward substitution to time t, (4.9) may

be written as
R+ jIt+ ) =d IO+ Ault+j-1)+dAu(t+j-2)

v b AU F Lot j)+dLw(t+ 1)

ST Lt 1) (4.10)
To obtain an optimal predicﬁion of x(t+ /) using data “
évailable at time tfa—d, |
X(U+jlt+j-d)=d' Xt |+ Au(t+j-1)+PAu(t+,;-2)
cL AT A u() S L (- d)

s o +...+4>"‘/,w(z+1j (4.11)
which‘is obtained by setting the future innovations
(b(t+j),“.3»(t+j—wi+l) to the;? expected value of zero.

(Note that it has-been assumed that tﬁé future control
actions w(t+j-1),....,u(t+j-d) are known at time t+jfd.)j 3

Similarly, the prediction conditfoned upon data up to and
includihg time t is
LU+ jIO)=d' T+ Ault+j-1)+dAu(t+j-2)

+vd TP AU

(4.12)
' Subtraction of (4.12) from (4.11) leads. to
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.»z(e+/|z+./—d)=>z(c+/|:)+¢de(t¥j—d)+‘§:;.
+&/ 7 Lw(t+1) | | (4.13)
Hence, the optimal prediction of the future output y(t+jj'at
time t+j-d is éiven by
J(t+ e j=d)=Hx(t+jlt+j-d)
=gt jl)+ He Lw(t+j-d)
| v HO T Lot 1) o (4.14)
" At this point, ndte that a d-step-ahead prediction of y
at time t can be obtained from Eqn.‘(f.IZ) by setting j=4,
i.e. x
y(hmuf)=H¢dXUIU+fh\qU+d—1)+H¢fudt+d—2)
| +...+H<b‘;"/\u(t) - (4.15)

But the scalars HA,...,H®9'A are the first 4 coefficients
» ’ ' '
of z ¥B(z"')/ A(z™"), i.e. he first d impulse response coeffi-

cients of the process, which are zero because k=d+1. (This
may also be verified from the state chfficient'matrices

-

given in (4.4).) It may be further verified that
Hé%=[0,...,0,1,0,...,0]

with the wnity element occurring in the n+l'st position.

-

Therefore,
J(trdity= 2,10
whiéh implies that
JU+jltr j=d)=%,(t+j-d|t+j-d) _ (4.16)
Using (4.14) and (:1,16), then,v
yctw‘|r>=.x*-n(t+j—d)—K':;.,(z")w(tw'—oo (4.17)

where
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l\'”3,,(z-l)=‘kd.l+kd.2:-l+...+k Z-I.d"l . - (4.18)
“and
ko=HO 'L - . (4.19)

However; Egn. (B.5) indicates that

—

Su(ivjma)=A7 (=B ultr jod= 1)
«ATN(ETHK (2wt j-d)

I .

SRS L -._;—x w(t+j-d)
AV (z )D(= )———77~—*

Therefore, ' o .
D y 1
g+ iy =AY B(="Hut+ j-d-1)
AT TR (2w - d)
" N _ (v j-d
‘*'fi_l(Z l)D(Z l)w( +A/ a)

—A”(z”)ﬂ(z”)K’;Kz_WuMl+jid)

\ -

‘ /
B(z™") ,
= t+ -k
A(Zq)u( J-k) ;
UK (2T =K (2T AT ) A DD
A
aw(t) o
_ S S
or U . '
. * peaty K4'Ezﬂ)uxt)a .
J(t+ )= —"—u(t+ j~k)+— - ' i
v ( /L)‘ FYESE (t+j-k) Az ) B S (4.20).
with |

Ko (=70 =2" (K (27 =K 5 (2 AGT oD (421

Rewriting (4.5) in terms of‘uxt)/ﬁ(z")/g and substituting

in (4.20),
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) , B(zYy
. + = —_— L + j -k
7L+ 1) A(z")u(z J=k)

C(Z-])|:./(t)“ A(Z_l)u(t)
or 3

G 1) =G p(z ult j=k)

+GF4(ZZU[V(1)—GM(t",ua)] (4.22)
where -
R . -
(}.P(Z'l)_ (z_l). GM(Z—1)=Z—kﬂ~;~2
AGTY oy AG ) (4.23)
and _
- /\"4/(:—l) -
Cp (=)=t
r" C(Z l') " (4.24)

Notlce that the j- step -ahead predlctlon that would be given
by the Smith Predictor (Smlth, 1957, 1959) is obtalned from
(4.22) by setting G,(z ')=1. 'Returning to the definition of
C(;_l)in Egqn. (4.6), |
C(::"j=[.4(z")(1+Kz(z“‘))fz‘dkl(:")]m.z'“D(z")

S A=Y (1K (=T A+ 2 K (27 YA+ D(=™)]

.-

o) q

CCY e -d[Kl(z")A+D(z")]
Az A (1+Ka(z0)- A(z"Ha
v | -d[A(z“>1< WERTS

=1+ Ky (="
(1Ko (=))e pre |

L WlK (T K ,(;‘)A(v“))mD(z")]
K ) Az Ha

4 <
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=(L+R,(= D)+ K5 (=7 -

I R (T R R W G LI CRP VRS- TCRPID,

A(="HA
This may be written as
—~ -1 . -1
(=) - K.,
-1 "1\3./(~ l)+:l }—1
1(z7)aA A(=z7)H)A (4.25)

Ky (27 =1+K,(z")+="K", (=71
and K5 ,(z7') is of order 6K, , =~ L.

From Egn. (4.22),'it'is seen that the trajectory of
fdtufe outputé {y(t+j|t), AH=¥kSJé£N2) ﬁa§ be represented.by
the é}ock diagram of Fig. 4.1. Hence the prediétor struc—
ture of MAPC may be interpreteq as a network’of‘barallel,' '
optimal Smith Predictors. It is-seén from the diagram that
G, (1)=1, je[k,N,i is required to eiimina;e steady state
.predictionAoffset in‘the pfesehce of nonzérblmean distur-
bances. From-Eqn..(4.24) the condition G¢ ,(1)=1 implies
K4J(l)=(f(})fwhich from (4.25) is true for éll j. Thus?
the multistep KF prediction scheme exhibits zero offset }n
'thé presence of nonstationary load prOCesses;

Figuré 4.1 may be modified slightly using Egn. (4.24)
and redrawn as‘in Fig. 4.2., in order that‘certajn other
interpretations of the predictorvstfucture can be made.
Consider”firsﬁltﬁe limiting-case of zérovadel/plant mis- . .
match. In this instance, tﬁe residual si§n31 ret) Qiil

- exactly represent the process disturbances. Man (1984)
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describes a method of disturbance modq}ling called "Single
Sefies Forecasting (SSF)" in which the residual term is pre-
filtered, typically using a first-order low pass filter.

The filtered fesidual, rfct), is {hen forecast j steps into-
;hé future using an'éutoregressive model which is identified
online,by a recursive parameter estimation technique such as
Improved Least Squares (Sripada and Fisher, 19u7),‘thch was
described in Chapter 3. The structure of the autorégressive

forecaster was generally chosen in an ad hoc manner.- From

\e—

Fig. 4.2, it is apr.rent that the optimal choices for the -
residual filter. and forecaster are 1/C(z"") and K;J(z'ly
respectively. ‘ | |

It should also be notéd‘that the rétio of the noise
covariances, KR,/R, may be tuned to alter the roots of
C(="'Y). A decrease in this ratio will cause the footu of
C(="') to move toward the unit circle, which results in a
more conservatiﬁe disturbance prediction scheme. Hence, the
 MAPC scheme is a "two—degreés—of—freedoﬁ" controller as it
allows the servo and regqulatory pérformances to be‘specified
independently for the limiting case. of no MPM.

; The‘second case of interes. involves MPM with no distur-.
bance‘term. Here again,qC(z'l)can'be chosen via R,)R; to
control the MPM conﬁribution to the predicted outputsz' The
Smith pPredictor lacks thig extra degree of freedom (i.e.

GFJ(:f1)=l) and is known to perform very poorly in the

presence of MPM.
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4.2.1 Long-Range Predictive Control Strategy

The state space contrpl law .to be derived subsequently'
in Chapter 5 (i.e. Egn. (5.51)) is the one actually implem-
ented in practice.v Howéver;'for.the purposes of analysis an
eqﬁivalent ARMA domain éf%ression can be obtained that
minimizes (4.1)'by use of. the b” .ck diagram of'Fig. 4.1.
Equation (4.22) implies that .

JC+ 1) =G (2 Yt j=K)+ G e (=) ()

Vjelk N;]

or
o B(="") o .
) J(t+ jlt)y= —————=A. L+ -AY+G e (T r(t
I R ey G URCA LA )r ()

=g,AuU+j~k)+géAanj—k—1)4“.
VN HGn AU (D) g du(t = L)
“Cp (=70 ()
where the g‘ére the step response’coefficients of the open

loop plant. It is clear that this expression is composed of
f, 2pendent upbn future controls and on present and past
”? controls and residuals. Grouping the latter terms together

Teads to

JU+ I =g, du(t+j-k)+ v g e du() w7 L+ 1) (4.26)
¢ R LY . :

where SR

y'(tv+jlt)=g/_k,2Au(t— D)+ g, g du(t-2)+...

K4 /( )I'([)
C(z™") | . (4.27)
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froﬁ which it is appaggnt that vy '(t+j|t) represents "the
autput j éteps into the future that would result if no
furthe;Achanges were made to the manipulated variable.
Writing Eqn.v(4.267 for the entire trajectory leads to

Y (1) =Y )+ AAU(L) (4.28)

where ¥ (1)={7(t+ /1), jelk.No1}, Y ()={y (t+j1), jelk,N,]}.

AU ={Au(t+j-1), je[l,N,]} and

g, 0 - 0
Y2 G Y
S :
{ = ;
On, Ywn,-1 g,

(4.29)

| 9w, In,- S Iny-N,+1 | v
with N,=N,-k+1 and Au(t+;)=0, j2N,. Expressing (4.1) in

vector/matrix form yields

J =[>'s,)(t)—Y’(t)]T[YSp(t)-Y"(tﬁ)]ﬂ“- IOTNTAU(Y)
¢ (4.30)

by

where Y sp(t)={ysp(t+ /), je[k,N,]y. Differentiating (4.30)

with respect to AU(t) and setting 2J/0AU(t)=0, results in
the bbtimal control policy

AU =AY (=Y (DY : . (4.31)
where

A = (AT AN AT (4.32)
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The control action is implemented in a receding horizon -
fashion, hence only the firis row of é; has to be calcylated
at each control interval.
4.3 Generalized Predictive €ontrol
Generalized Predictive Control (Clarke et a1.1987é,

1987b) is an ARMA domain predictive controllef’which,mini—

mizes the cost functional of Egn. (4.1):
J= Y {ysp(t+ =g+ 10+ ) Mou(+j-1))"
. j=1

J* Ny

(4.1)
where y(t+j|zf=E(y(t+j)|t}. (Note that the ‘cost index given
in the 1987 papers by Clarke et ai was

Ny N, ‘

J=5<. . (Ysp(t+ )=y (t+ )"+ le(mt(w/— 1))2>'

J=Ny 6 A
Using arguments similar to those presented by MacGregor
(1977) in a discussion of the Clarke and Gawthrop (1975) GMV
paper, it is evidené that the control policy derived by the
authors actually minimizes ﬁhe related cost functional
(4.1).) The trajectory of future outputs is formed using

the ARIMA process model given by

ool : -1y,
Bz gy GO W) (

A(zTH A(z™h) {3 H(a.5)

The development which follows assumes that the plant is

y(t) =

known and time-invariant; in addition, N, in Eqn. (4.1)
Qill be set equal to k to avoid penalizing outputs which
cannot be affected by Au(tl).

Mﬁltiplication of (4.5) by E,(z”)A. where bF ,= /-1

yields, upon rearrangement, - —
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CC D)y Dy =F (27706 (=" Hau(t+j-k)

SC (T EGE T YW ) (4.33)

where £,(="') and F,(z"') are obtained from the Diophantine

o

identity

C(="" . F(z7! (4.34)
_“£—7_1'=£V(z l)+z /_JETT_l .
A(=7)A A(z" ')A !

and C,(="')=F (z"")B(z"'). (Note that it is possible to

write a recursive formula for calculating £,., and £ ,., given

7, and F,, which speeds online computation of these

polynbmials“considerably (see clarke et al, 1987a).) The

optimal or least squares j-step-ahead prediction of y(!) is
2 ' “3

given by
_r<~") LG,z
yt+jlit)y= Cia (t) Cia )Au(t j=k)
Fo(z"!
) CI((*'))ym
B(z")[C(z"‘) _,F,(Z-l)} o
+ - t+i-Kk
Clz"HLAz™H < A(z™Y) ut=j=k
o1
= 1(t_1)u(t+j k)
| F\T’f') B(z™hH
C(z™) ‘1( )
or ' S

YU+ I =C o= Yult+ j- k) -
G E(2THY D) -Gz Hu] (4.22)

where



G (~"")—/"u_l)
Fo\~- )= 7/~ )
(4.35)

Hence, the GPC predictor structure can also be represented
by Fig. 4.1, and (using.(4.35)) by the block diagram of Fig.
4.3. Now G, ,(1)=1 or equivafently F,(1)=0C(1) is a
‘necessary condition for zero steady state predictg:; error
in the presence of nonstationary disturbances (see Figs.
4.1, 4.3). It is evident ?rom.Eqn. (4.34) that thks'
condition is indeed satisfied in the GPC ‘scheme.

Equation (4.22) indicates that the intefpretations given
earlier for the KF predictor structure (e.g. optimal Smith
Predictor, optimal single series forecaster, etc.) apply
equélly to GPC. It appears from~Fig.»4;3 that GPC iacks the
extra degree 5f freedom ﬁeceesary‘to design servo and regt*
latory response independently. This is in fact the case
when the polynomial C(z ') is estimated online, ¢.g. by
Extended‘Least Squares (see Chapter 3). However, this is
seIdSﬁ'done in practice since“the parameters of C(="') are
known to be slow te-conyerge. Instead, an ad hoc obserQer

polynomial T(z ') (see Clarke et al, 1987b) is specified, .

ald is typically
T(z ')=1-0.8z"
so that 1/T(z'f)may serve as a low-pass Eesidual filter

"(see Fig.:4.3). This filter enables the user to specify
setéoint following and disturbance rejection characteristics
separately. For example, disturbance forecasting may be
made mofe cautious by moving the reotvof T(g")toward the

~

!
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unit circle; this is analogous to decreasing the ratio g, /R.
in the MAPC approach. However,'}f the true plant is given
‘by’Eqn. (4.5), then this extra design feature 'is achieved at

- the cost of suboptimal prediction of y(l+ ;).
4.3.1 Long-Range Predictive Control Strategy
As inh Section 4.2.1, it may be written using Fig. 4.1

{or Egn. (4.22)),

I J10=6p(z Yults j=K) 6, (= )r(t)

-~ s

Vjie[k,N,) _
or
. A B(z™") 4 .
y('t+/It)=mm(zk+/—k>+cﬁ,(; '):(z)
-:glAU(l+j”k)+-~+g,4.uﬁu0) (4.26)
Y (10
Whére
Y (L It =g g, DU(t= 1)+, . 5BU(l=2)+ ...
F(z™') ' 7 (4.36)

i

Equation (4.26) may once again be cast in the vector/matrix

- form of Egqn (4.28), [.e.

N

\’Y(t)=Y'(t)TAAU(t) | , R (4.28)
Minimization of (4.1) with respect to AU(t) leads to the
optimglginput tréjectory

| AU ) =AY (=Y (1)) | (4.31):

where AU(t), A’ and Y s»(t) afe as defined for the MAP

-

controller above. . -
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4.3.2 GPC versus MAPC

‘The optimal GPC law

AU =AY () =Y (1)) | - (43D
was derived in the previous section and is seen to be
iden;ical in form to that derived using innovations analysis
for the MAPC algorithm (Section 4.2.3). Since A" and Y ()
are iﬁdependent of the type of observer used, the two
schemes can be shown to pro-ide equal control action in thé
steady state if it can be demonstrated that
(YE(U);;;=(Y'(U)MAMP. The Y'(U vector in either case is

defined as (y'(t+j|t)6;j€[k.Né]},where
Y (1) =g, g 0u(t=1)+g, . 0u(t=2)+...

Fo(z™') ,

+ = r(t

ci=y (- | (4.36)
=G, g2 BU(L= 1)+ G, pBu(t=2) ...

Ky ,(z7h) |
+——r(t
c(z™h) rt) ' (4.27)

So it is apparent that the elements of the Y (!) vector will
be equal if F,(z7')=K, ,(z7'), Vje[k.,N;]. To see that this"

N

is' indeed the case, Gonsider Egqns. (4.34) and (4;25):

'r_l . -1
MC(“_ ) =E/(Z—l)+z-,' F](Z )
Az HA ' A(z"HA

_/K4.j(z-1)

s ~_l ~
"R (E s A(z"HA

But 6F:(x2"')=6K; ,(27')=)-1, so F;(z7')=K,45(z™') and the

oyerall GPC and MAPC schemes will provide asymptotically

equal control of plants with known, time-invariant dynamics.

“«



116
4.4 Multivariable dptngl COnstreined Control AlJjorithm
The Multivariable Optimal Copstrained Controi Aigorithm
also minimizes a performance index of the farm of Eqn.
(4.1): - | )
Ny, .
= ) AVsp(L+ jI-90+ 1) +L>\<Au(z+1—1>>

. =Ny

¢

(4.1)

where N, will be set equal to k, as the time delay is known

oy v1rtue of the perfect plant model assumptlyn The
trajectory of future outputs is affected by both measured
1nputs and unmeasured 1nputs pr disturbances. There are
several;gifferent techniques (i.e. observers) available for
incorporating the effect of disturbances into the prediction
of future outputs. In this connection,uMOCCA has been
formulated using both an ARMA domain disturbance forecaster
(Sripada andiFisher, 1985) ard a Kalman‘filter (Li et al,
1988; Navratil et ai,'1988). The former method will: be
described first. |
4.4.1 MOCCA with a PolynoﬁiﬁivDisturbance~Generator

The derivatiou beginslby considering‘the ARIMA process

model of Egn. (4.5):

B(z*)' C(z™hH )uNt) n,

u(t-k)+ FrEEa

yu?=A(z”)‘

(4.5)
where y(), u(’) and w(-) are the process output, input and

unmeasured random disturbance, respectively. As mentioned
above:.the future outputs of the plant will'depend upon both
measured (e.g. u(t))-and unmeasured (e.g. w(!)) process

inputs. Consider first the deterministic part of (4.5):

i

-



-

‘/117

B(z ") o (4.37)
y(l)m;I 7_l)u(t—k) :

Expansion Qf?ﬁpé transfer function B(z ')/A(z7!) yields the

impulse réSponsé“coefficients of the plant. Note that one

definition of (bounded inpﬁt, bounded output) stability of-a

-

linear system (Ludeman, 1986) is -the fequirement that the

impulse response of the plant is bounded; that is,

»

|8

~[h(|<Oo

t= .
3

This implies that Egn. (4.37) may be written (for stable,
systems)  in the form

N ‘ = 4.38
y(t)= ) "hu(t-i-d) ( )
=1

where d=k—l;i.é.the physical time delay of the system. The

h, are the impulse reépbnsé coefficients and h,=0, Vi>N,
‘ A

where N-4s the settling time of the plant. Eqﬁation (4.37)

. N ’ .
may be written-in terms of control increments Au(t) (or

equivalently step changes in u(t)) as;

. Bz
y(t)=—.(——_—l——).—- u(t-k)
cAzT)A , (4.39)
. .(/ V » ) 2
Clearly, the tréqsfer function B(z ')/ A(z"')/A now repre-
- N < \ . - )

sents the step response or process reaction curvevpf the
. 20 .

plant. Equation-(4.39) can also be written as the discrete

-

convolution sum
~ | . , |
y(1)=) g du(t-i-d)+ y g,Au(t-i-d)
= Nel i _ (4.40)

~
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where the g‘afe now the step response coefficients of the
plant; It is obvious from a comparison of Eqns. (4.37) and
(4.39) that g,=h, and Ag,=h,, VYi>1|. Hence, h,=0., Vi>\
.implies gi=ds, YI>N. This means thét (4.40) can be
written as ' | g

, N .
y(1)= ) gdu(l-i-d)+gssu(t-d=N=-1)+gssu(t=-)

t=1

3

y)=) g Au(t-i-d)+gssu(t-d=N-1) (4.41)
=1

if it caqvbe assumed that the process input was at. its
steady state value at {=-«. 1In order to develop a
"trajectory of future outputs, the time argdmenté in (4.a1i
can be shifted forward by an arbitrary number of samples (3j)

giving~
. ) | | |
J(U+jIt)= ) gAu(+j~i-d)+gssu(t+j-d=-N-1)
{=] ] N L
or

P+ 1) =g, 0ult+j=k)*inr g, bu(t)+y (L j1t)  al4.26)

where

A

y'([+_jlt)=g/_k.2Au(t— 1)"'@,'_1(.3&&({—2)'4—“_ |
+gNAu(t+j—N“k+1)+g$su([+j—N._/\~) ' ) (4.42)

At this point, it becomes necessary to consider the
design of the observer mechanism‘to account for thé pfésence
ofjihe disturbahce mode in Eqgn. (415). Sripada and Fisher
(1985) .recommend that disturbance prediction bg_achieved

husing a polynomial "disturbance generator™ (PDG) &f the form

-/
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CC(TDHw(t) - ” .

rit)y= ———— .
ACz") A (4.43)

where A=Yy, C(z'ﬂ and w(!) are as defined in Egn. (4.5)
and r(t) is as illustrated in Fig. 4.1, i.e.

B(z!
' ’(l)=7(f)“‘£;i7%u(f) i ’

Al =

2
T
< L

Sirce w(.) 1s unﬁeasurable, it is difficult if not impossi-
ob;e éo»obtain step;requnse data relating‘r(UVtOf»(t) It is
thefefore necessary ?o obtain C(z™') and ﬂ(z”l)by a least
vsquares fit of Ar(t) aﬂd'uxt).b.g.‘usihg some variant of
Récursiye Least Squares (RLS) as described in Apbendix A.
,Reéalling that botﬁ H(z'l)ahd C(z"jare ﬁéﬂic (i.e.
4(0)=C(0)=1), (4.43) may be written as :

A=A = (0T Do) e () . (4.44)
‘Thé first terﬁ on the RHS represeqts past noise and must be
i "éfoxigd" by ‘ 4

oy (fo,('tjl); .rcl_(:_l)Ar(t—1)—(C(it;l)—_l)d)’(t*'~l) s
The second term ohﬁthe RHS of (4.44i‘wili be uncorrelated
~with the‘regresSor ;s w(t) is a zeré—mean'uncorrglatéd noise
. seqﬁence. o :

Assuming that perfect estimates of A(z™") and C(z7') have

been obtained by whatever means necessary, Egn. (4.43) may

g

be rewritten as

| ] Rz (L
ru+n=5xz‘y»u+/w “:4).E%

<
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where E,(:‘U is of order j-1 and is obtained by solution of
the Diophantine identity

c(="" | N L F,
;fgfrl‘=fﬁ(: DR ——E———l ' '
AC=THAN A(z7HA , (4.34)

o

Note that £, and /7, can be calculated efficiently using the

Diophantine recursion of Clarke et al (1987a) . It is
evident that an optimal or least squares.prédiction is

achieved by setting the future noise E,(z ')w(t+ /) to its
e (/
expected value of zero, leading to the expression

F,(= )U>U) \»n

A(z™") A

,r(t+/|t)—

which becomes, using (4.43),

-1

. [— . ’ .
fU*JIU"C; ;fU) . . ‘ ‘

=CFJ(Z‘WF(U : (4.45)

where G, ,(z”') is as defined in (4.35), i.c.

N F(z™'y -
Gr. ,(x Py L2 .
& - C(z™h | (4.35)

Having obtained the j-step-ahead disturbance farecast in
this manner, it is simply added to v (t+j1t) in Eqn.3(4.42f7
that is,

y'(f%f|5)=g,¢;2Au(t—l)+g,*,3Au(L—2)+”.

*gNAU(t+jTN_k+ D+gssu(t+y=-N-k)

RACED . ‘
C( )r( . - (4.46)
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It is cleaf tha% MOCCA with a polynomial disturbance
generator can also be represented by Figs.‘4.l and 4.4, witn
the attendant interpretations (optimal Smith Pre@ictor,
optimal SSF, etc.); The blo&k diagram of Fig. .4.4 is seen
to be identical ﬁo that of Fig. 4.3 presented above for GPC.
It is natural, then, to ask whether this form of MOCCA is
equél to GPC - this is the subject of a later section.
4.4.2 MOCCA with a Kalman Filtgf Predictor | o

In an effort to éimplify the disturbance forecasting

—

\\\\\‘scheme discussed in the previoué section, Li et al (1988)
and Navratil et al (1988) héve presehted ar J observer
scheme which uses a Kalman Filter Predictor (KFP) to fore—
cast residual effects. _This-method obviates thé‘neédvfor
least squares identification of the load dynamics and N
subsequent recursion of a Diophahtiné‘equation as described
above. "

vaheAnew appraach was facilitated by Li et alj(l988) when
thejauthors,noted that Egn. (4.42) lends itself naturally to
E a (recursive) state space form:
",'.\-(t)=<1>.x'-(z—1)+A'u(t~1) (2.47)
y)y=Hx(t) . S ' (4.48)

where
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NORIVEGI NG AR EIDE

SUrd L), It d+ N D) wwen

0O 1 0 ... 00
0O 0 ! ... 0 O
’\N

P =

0O 0 0 ... 0 1 . . o, NS

0 0 0 ... O llneoxinen ' '

/

A=10,0,....0,.92,.-\ w4 ss) : ' V“\\
H=11,0.....0] xn-x) S | (4.49)

It is evident that the first d states are due to the
physical time delay of the plant. It is importaﬁt to note
that by convention, ="' is assumed to operate only on the

second argument of -each element of the state vector, l.e.
N D) =[y =),y =)y (e d - ),

. vy (ted o Lt= 1)y (U d N T D

To see how Egns. (4.47), (4.48),5re developed, aséume
that ‘a change in the input variable Au(-) is made at time
t-1. .It is of interest to estimate the new output trajeé¥
tory, t.e. to add the effect of Au(t-1) to the known predic-

tion. From Egn. (4.41) it is apparent that w

t B lj
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4.4.2.1 Reduced Or¢ '~ ‘odel

YAUDENAGRUIERD!

e
K

yi(trd~-11D)=y (t+d|t-1)
'/'flf+dlt)=y'(t+d+l|t—l)+gl_\u((—l)

y(t+d+ 1=y (t+d+21t-1)+g,Au(t-1)

~
-

vi(t+d+N-1 |z)=y‘(z+d+N L= 1)+ gydu(t-1)
yi(trd+N[t)=y (t+d+N+l|l—1)+q§pz\u(l—l) (4.50)

But Egn. (4.41) 1mplues that

y(t+d+N|t-1)=y (t+d+N+1|t-1)
i.e. the- output settles to a new steady state value in N
steps. With this subétitution Egn. (4.50)'becomes'

y'(t+d+/V|t)=y'(tfd+N|t—1)+gSSAu(t~ b (4.51)
and the state space (4.47), (4.48) is established.

Recall ﬁrom Egn. ’:.l)4that it.is necessary to predict
only N, steps into the future, where N,<N. 1In an effort
to reduce the computational load associated with Egns.
(4.47) , (4.48), a redﬁced order state space model was also

proposed by Li et al (1988). The derivgtioh begins as

before by writing
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AGIOEVERRRIERD

s d =)=y (tedt=1)
t "
Jtrdity=y (t+d+1|t=-1)+g,Au(t-1)

Y AN, = 1) =y (U N, = 1)+ gy, gbu(t=1)

' / -
SN, =y (e N L= 1)+ gy g Au(t=1)

(4.52)
But it is again apparent from (4.41) that
YU N = 1) =gy, d DU =2)+ Gy g2 Bu(t=3) .
+gyAu(t-N-d-1+N,)
+ssU(t-N-d-2+N)
. (4.53)
and
P U+ N+ L= 1)=g g2 DU(t=2)* Gy, a.Au(t=3)+ .2,
+gnAU(t=-N=-d+N,)
. - (4.54)
Subtracting (4.53) from (4.54) and collecting like terms
leads to 4
Y+ N+ t-1)=y (t+N,iIt-1) 1
~ . +(Q/s/z-'doz"gNz-dol)Au(t“.g)

.+(g,v2—do3_gNz-d.z)AU(t"3)+...
*(gss—gn)Aut-N-d=-1+N;)
+gssuU(t-N-d-2+N,)

“gssu{t-N-d-2+N,) "}
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As noted previously, the difference in step -esponse

coefficients can be replaced by impulse response coeffi- |

N
cients to give v
YN L= 1) =y (U N = 1)+ iy g du(t=2)
+thﬂ;§Au(t—3) ‘

vt g AUt=-N-d~ 1+ N,)

(4.55)

Substituting (4.55) for y (t+N,+1|t-1) in Egqn. (4.52) leads

o ' | ]
/ () =bx(t=1)* AAU(t- LY | (4.56)
<// ) y()=Hx(t) . (4.57)
where |

.r(t);[y',(tlf),...,'y"(t*rd|[).y'(t+:'d+ Lit),

- T
Y TN GO L, . L

AN

01 0 ... 0 O]
0O 01 ... 00
.q>= -
0 0 O 0 I
_O 0 0 Y 1~(N5~UX(Ny1)
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~

0O, 0 .. 0 0

0o 0 .. 0 0

0o 0 .. 0 g, ‘
AN=lo7 0 0 7,

0 o ... 0 IN,-a

hss e hiy,-aez g”?'d"_(Nzel)x(N«k-Nz)
AU=1)=[Au(t=-N-d=1+N,),....,Au(t- 1Y/ (4.58)
i

(N+k-N,)x1
Note that the input term in (4.56) becomes a matrix/vector
product rather,than a vector/scalar product (cf. (4.47)) and
thét the ;odel order has been reduced to ~2+ .
In order to account for the effects of unmeasured sto--

chastic disturbances on the future outputs, (4.56), (4.57)

may be modified to include process (n,(-)) and measurement

(hzb)) noises as‘followé: \ A | .
N =dx(t-1)F AAU(t=1)#Tn (t- 1) - (4.59)
y (1) = Hx()* n,(t) o ~ (4.60)

n,(-) and n,(') are zero-mean uncorrelated noise sequences

-

having covariances R, and R, respectively. It has been

assumed for the sake of simplicity that

F=[0, e bo.oe, PN, - 1yx1

but I' could be replaced by disturbance mode impulse response

cogfficients if n,(t) was found to be measurable (cf. feéd—ﬂ‘
foqﬁard'control). Note also that no process noise is gdded

to tﬁé\delay states.

“
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A minimum variance estipate of the state vector may be

\

obtained using the two-step Kalman filter described in

Appendix A. Since Moccg\is to be applied to timé;invariant‘
plants only, the Matrix Ricatti Equation (Egns. (A;33) and
(A.36)) may be iterated upon until a final solution is
reached, yielding a st?ady—state Kalmgn gain. vector! Hence

the state upjates may be written as

a) A Postes,orl State ggdate

() =x(t)+ Lw(t) o (A.35)

b) A Priori State Update ' , .

~~

N(t+ 1))=Y+ AAU(L) | : o | (A.30)

where by convention, x(t{)=x(t|t) and X()=x(t|t-1). The

innovations sequence w(t) is defined as

-

W)=y () =yLtlt-1)
—y(-HxXW . S (4esD)
which will be a zero-mean random sequence when the Kalman
filter has converged. Using this apﬁroéch ﬁé obtain < (!),
Bné is in fact obtaining optimal or minimgp vari;nCe

estimates of y (t+/|t), je[k.N,] which may be added to the

effects of future inputs to form the tngjectory of predicted

outputs y(t+j[t), je[k,N.] (see Eqn. (4.26)).

4.4.2.2 Derivation of an Equivalent Polynomial Observer
< In practice, the y'(t+j|l)are indeed'computed using

(A.35) and (A.30). However, for ﬁhrposes of comparing MOCCA

with a’'Kalman, Filter Predictor versus the LRPC schemes -men-

~ |

P
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‘tioned earlier, it is advantageous'to bring these equations
into the ARMA domain where they can be representéd in the
form of Fig. 4.1.

| Using successive forward substitution for states | to d.

2

()= 2,05
Np()=xX,(0L- 1)+ Fw()

X, (1) =%,(t=-2)+L, 0¢t-1)

_ ' ‘ i 4.62
-\'l(t)‘"‘-{‘d.l(t"d)+(1~22—l+'--'-+/—dzi_d‘l)w(t) ( )

For states d+1 to N,

S (D= %gp(b= 1)+ g dult= 1)+Ld,1w(t-)
Tgoa(1)=X4.5(t- 1)+ gAu(t- 1)+ La,w(1)
.{‘,,,1('t);,\E‘d,3(l—2)+glAu(t— 1)+ gAu(t-2)
F(Lgor+ Ly = D)
rv

— \‘ -

.\”‘d,l(t)=/\’;N‘Z,l(t—Nz**d.)*'glAu(t— 1)+...

—

AN N2+-d\)+(Ld,l whr Ly z T ()

N, o1 () =xpy, (- l)'th‘z-dolAu(t_ 1)th2—dgzmu([—2)’

(4.63)

N .
For stqté‘N2+1.v

ot hgsAu(t=-N-d- 1+ N+ Ly w(t)
U
Ny, (D)= gnegnt(t=1)*hy s u(t=-2)+...

%4

‘ w (1) o
Phesu(t-N=d= I+ No)+ Ly, oo = ' (4.64)
' - ’

I ' . -
e, ]
. . . )

~

\
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Substituting (4.64) into (4.63), !

id}ﬂt)=g1Au(t—1)+“.+ngdAu(an2+d)
( .
‘+g‘v2-do1“(t°/\(2+d" 1)+h&2-d.2'll(l—lV +(=-2)
\ ' .

s st N = 1)+ (L v v Ly s

2

=N L.
T )(A)(f)

— | (4.65)

Continuing in this fashion, (4.65):1is inserted into (4.62)
‘ AN ) » ‘ ) :

to obtain

-

E,(z)=glAuf€-‘z:d— D)+t Gy, adU(t=N)
+gN2*A{%(t—ﬂlz—I)+11Nrd,ytu-N-—2)

+.+rhesu(t-N-d-1)

-, ()
I

W-l ‘N-lvzol r
Lz Dy, T w0 Ly, ®

— ¥ : ; .
X (=hut®d=-1)+...+hy Ju(t-N,)

hydgau(t=No= 1)+ v hgou(t-N-d-1)

-Nel

~+[(Lzz'?+”.+LNZ; wt)

. N2

)ATLNz”"'~].A ) (44.66)
A )

But, from (4.61), . !

X (D) =J(tIt=1)
=y (1)~ w(t)

Therefore,

YAy =hyy(t=d= 1)+ .+ hy qu(t=Ny),

\,
.

*Ry g t(t=N,= 1)+ chogu(t-N-d-1)

TNgel

+[(1+...+LN;,1; wit)

L N2
)A+’LN2,,/. ] <
or, if the truncation‘erndr is sufficiently small (i.e. if

h,=0, ?>AL¥I)7 then this expression becomes

-
)



/

a, h Fo-1
B(x"") C(=

. JBGTD .
7 (1) A(x”)u(t )

where

(;(::")5[(1+..,+LNZ:‘Nz")A»fLNZ,,z'”z]A(z“)

(4.5)

(4.

67)

so that C(z ') is a mgpic polynomial of degree 6C(z ')=N,+n,

with n=6A(="").
/

Note that the @ﬁz"l)polynomial defined

here is in general different than that derived for MAPC in

"gection 4.2.

Note at this point that (4.62) may be written as

Y()= % g (L=d | t=a)+ (L + Loz o+ v L, =" Yo (t)

Now, y(t+jit+j)=Hx(l+ ]Il
| 2

XU+ jIt+ )=/t + z@l-l/\AU(t“f[—l)
t=1

+i¢"‘Lw(k+Z)

l:l

Further,

Y

S jltr ) d)=d R(L] z)+'2

t=1

-

and

B

+ /) and

PITAAU(LHI-1)

j-d o .
£ ST Lty
L |

;
Y

SUF IO =d/ Tt t)+ t@'_‘/\AU(tw“i— 1)
=1

or, using (4.68) and (4.72),

- Subtracting (4.71) from (4.70) gives

-l

j-d o
Rt jd) =2 j 1)+ ) & Lt i)

(4

(4.

(4

.68)

.69)

.70)

71)

.72)

131
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gl = HS W
::d.l(t+/-—dll+/-d) \‘
=Y+ IO+ HO Lw(t+ - )
CHOT Lot j=d=1)+ ..
=g+ I+ K5 (T hw (s - d)
where -
_ K’3,/(:_1)=Ld‘l+”_+L/:'I'd*l
which implies that
FUH I =R (U4 =)= K 5 (27wt jred) L (4.74)
l\\ L -
But from (4.65),
- B(z"Yy
X 4. <[)=__—____U(t—‘l) “
AT
e e |W (1)
+[(Ld*1+ +LN2~ 2 )A /‘N24l‘: 2 3
Therefore,
y<t+/|£>=—Bé::—_1)Ll([+1_d*—l)
A(z™ )

or . - N

(4.73)

132
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B(z""
7<z+/|t>=~%%—)u(z+/—k>

+[(L/’l ot Lsz/_Nz.l)A+'LNz’lZ/-Nz}
w (1)

A= )A(z”)a

(4.75)
Rewriting (4.5) in terms of w(t)/A(z ')/A and substituting
N ' .

in (4.75),

. , B(z™" : v
yU+/lU=i( 4)uu+/—ﬁ)
/’1(2 ) \ ' —
Ka (=D _.B z"!
+—4—’—Tl———[y(t,)-,z."~—(—:—)~u(t)
c(z"") Az 7
or
G+ 1) =G p(z Yult+j—k)
. : - ‘ (4.22
Gy (2DY (D)= Gz )] (4.22)
where
L K=Y
(;F./(:: 1,)=——_—4’ -
C(="") (4.24)
and
kmxz‘)=HLP1«”+LM;ﬂ2‘)A~Lwﬂz’,ﬂA(z‘)
K;J(z")satésfies the identity
CED) e amtye i KaaE) (4.23)
A(z™Ha LT T ATHA
‘Qhere _ ;

'V_I.‘l . }

Ky (= y=1+l,z e+ L,z

from which 6K3J(:'l)fj—l.
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From Eqgn. (4.22), it is seen that the txajector¥ of
future oﬁtputs {y(t+j1t), N, =K<$jSN,} may»be represented by
the block diad}ams_of Figs.‘4.1 and 4{5. Once aygain, MOCCA
with a KFP invites the various interpfetations given to the
previous schemes (optimal Smith Predictor, optimal SSF,
etc.). Note again that Egn. (4.255 guarantées that
Ky ,;(1)=C(l), hence the prediction scheme will exhibit
asymptotically -zero prediction offset in the presence of.
nonzero-mean disturbances. Furthermore, Egn.” (4.22) may be

‘written in the form

s

JU+TID =g Au(t+ j=K) v+ g e du(D)+y (e j1)  (4-26)
where
Y U+ I =G AU = 1)+ g, g Bu(t=2)+ ...
+gyDu(t+ j-N-k+1)+ggsu(t+/j=-N-k)

Ky (27"
SR A ——

C(z™H rio

(4..76)
4.4.3_Loﬁg—Range Predictive Control Strategy

The multistep cost functional Egn. (4.1) is of course
identical for both MOCQAvpredictors. Equation (4.26))
implies that the vector equation |

?(t)=y'(t)+AAU(t) ‘. ' (4-28)!
is valid for both schemes, with Y (t), A and AU(!) as defined)
- in EqQn. (4.29); Minimization of (4.1) with respect to AU(!)

. leads to the by now familiar control strategy - :

AU(t')/é A'{Ys;(t)—)/'(t)} | ' (4.31)
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Y (t) here rebresents the effects of past inputs ind

disturbances on the vector of predicted outputs f(ry so to
compare the'two forms of MOCCA one must cdhpare Egns. (4.46)

and (4.76):

Yeoc(L+ 10 gl du(t=1)+g gdu(t-2)+...

s

‘ +gNAu(z+j~N—k¥l_)+gssu(t+/'~N~k);;;.;,

F(z""
+__](___l_)_r(t)
C(z™") (4.46)
}/;\'FP(t*_.j|[)=g/—k;2Au(l— l)+U/-k'3/3u(t_2r)+"" : ‘
rguAu(t+j=N-k+1)+ggeu(t+)-N-k)
K z ! | ’ o j ..
+_____*~’(_l )r(z) o
C(z™ ") (4.76)
where, for both schemes,
r()=v({t)-g,Au(t-k)-g,Au(t-k=-1)-...
~gnOu(t-k=N=+1)-gssu(t-N-k) (4T

Hence, it is apparent that yrpc(t+jlt)=yxrp(t+jlIl) if

F,(Z'U==K44(z‘1y But from (4.34) and (4.25),

-1 -1 ' R
ii&i_glﬁ=Ev(z‘1)+z‘lf¥£§__l .
A(z"HA A(z™HA
i _1.+ —/K4”(Zjl
KB./(Z ) Z A(Z-{)A

Therefore, F,(z ')=K, ,(z7') since 6E,(z ' y=0K, (x ')=/-1

implying that Eqné. (4.46) and (4.76) are equivalent in the
steady state;‘that is, after the Kalman gains have converged
to their final values. Consequently, the vector Y'(t) in

" Eqn. (4.28) is the same for both schemes, which in turn
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implies that the two formsgpf HbCCA i.e. MOCCA with a poly-
nomlal disturbance generator (Srlpada and Fisher, 1985) and
MOCCA witp a KFP (Li et a}, 198@; Navrat;l et al, 1988) will
provide aﬁymptotiCally ea;al centrol of stable, time-
invariant plants of the form of Egn. (4.5), with C(z ') as
déﬁ;ned in (4.67). ./6 '

1.4.4 yoeCA versus GPC versus MAPC

Tﬁe optimal MOCCA control 1a&;derived in the previous
section was seen totbe identical to that derived eariier for
GPC and MAPC, (.e. “

AU(z)=/}'<>'Sp(t)—y‘(c.),} : (4.31)
Theﬁcoffesg&ndence thatJéQists between GPC and MOCCA with a
,polynomiai.distugbance generator will first be examined.
Sinte A" and Yse(t) inh(ﬁ.31)bare independent of the
pfedictor mechanism, dembnstrating that (Y (t))epe = (Y (1)) mocca

would prove the equallty of the two schemes. ;Rewriting'

'Eqns. (4. 36) and (4 46),
(y’ (¢+]|U)cm:=g,1.2Au(€“l)*Q;wfaAu(t_2)+~~

F}(Z—l) o . = .
,‘C(z“)r(‘t) o | (4.36)

(Y U+ 1) wocea =T j-k-20u(t = 1)+ G pasbu(t=2)+ ..

/

vgubu(t+ j=N-k+1)

Fi(z™h)

+gssu(t+j-N—-k)+ C(Z_l)r(t) (4.46)

“from which it is evident that MOCCA with a PDG becomes equal
to GPC (and therefore gglvalent to MAPC) 1f N in Eqn

(4. 46) is safflclently large, i(.e. if the assumptlon
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S g.u(t-i-d)=gssu(t-N-k)

t= N~

is wvalid. ;

It was demonstrated in the previous section that MOCCA

with a Kalman Filter Predictor is equivalent to MOCCA with a

PDG -hence MOCCA with a KFP is equivalent to GPC if the

entire process reaction curve is captured*wbéﬁ the step or
B "
qlmpulse response data are col}ected. To examine the rela- ,

tionship that exists between this algorithm and Multﬁﬁtep

Adaptive PredictivglControl, consider €gns. (4.76) and
W B

- (4.27): '

i

(v Ct* D)) mocca =T k- zAu(t— 1)+, 1L\u(t—2)+...

+gNAuU+/—N k+l)

+ U.([“"'—N—}C)J*\Mr(l)
st' J (=) \ (4.76)

(y (t+/|t))u,1pc gox-20u(t- l)+g, ks ‘;A“(t"/)*'”

x>

+K4,/(3— )I‘(t)
C(z™") (4.27)

from which it would appear that (Y U))meA (Y () yapc as

N o, This is in fact not the case because as mentioned in

Section 4.4.2.2, the definition of C(x~ 'y for MOCCA with ‘a
’(J . Q2 ou '.'.‘

KFP is generally different from that of MAPC, “M”F

(C(Z_l))Mocu:[(l +--.+L'NZZ_NZH)A+LN2,,Z-.N2 ACz) (4.67)
(CC=" N fare =AY+ Ky(2 N+ 27K, (274 (4.6}

+Z-dD(::—~1)
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Hence, MOCCA with a KFP is not equivalent td MAPC because .
the two meéhods differ in their assumptions regarding the .
?ynamics of the disturbance mode in Egn. (4.5).

4.4.5 MOCCA versus DMC )

As'mentioned earlier/ MOCCA may be regarded.aé a refine-
ment of the Dynamic Matfix Control (DMC) algorithm of Z:Eggr
and Rag@ker (1980) in the sense that the cost functional
(4.1) was formally applled by Sripada and Fisher (1985) to:
the DMC approach. In particular, Sripada aqd Fisher first
presented the idea of an output horizon N,=ﬂVz—ﬁVl+I, and
introduced the idea of control weighting (cf. A in Eén.

(4.1)).I Perhaps the most important difference between the
two schemes,,howeVer, is their repective methodé for distur-

N

bance foreéasting. As seen above, MOCCA incorporates the

‘disturbange transfer function C(z'l)/A(z'l)/A into the

predictor design and "splits"'the projected disturbance into

future and past terms using the Diophantine equation‘(4.34)l
k)

The future terms are then set to zero to provide an optimal

or least squares forecast of the disturbance.

©

DMC, on tha other hand, computes ﬁhe residual r(D and
simply adds it to‘tha open lﬁdp predicfion for each value of
je[k.N,]. "In other words, F,(z”)/C(z")?GFJ(z;l)in Egn.
(4.46) is set to unity (cf. Fig. 4.1). Bﬁf this strategy is
exactly that of the 3mith Predictor (cf. Section 2.2) Qrit4
ten forlan arbitrary forward shift of j sample periods.
Hence, DMC will provide suboptimal control of plants,subject:

to stochastic disturbances.
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4.5 Conclusions
It/has been established innthis chapter that for stable,

kno&n, timeéinvariant plants, ;f

1. GPC (Clarkes et g;', 1987) is equivalent to MAPC (Sripada,
1988) in the steady statg/i.e.when the Kalman gains have
converged. (This statemént does not require the assump-
tion of open loop stability.)

2. -MOCCA with a polynomialiobserver or disturbance genera-
tor (Sripada and Fisher, 1985) becomes equal to GPC when
N approaches « (Le: as the trunc;tion or modelling error

t

becomes zero). Hence, MOCCA with a PDG may be considered

equivalent to MAPC in the steady state when the MOCCA

)truncation error is small. |

3. MOCCA with a Kalman filter predictor (Li et al, 1988;
Navratil et al, 1988)Aan§ MOCCA with a PDé provide asyﬁp—
‘totiéélly equal.cbﬁErol action. Therefore,.éPC and MOCCA
with a KFP wilJ aISO'beco;e eQual in Phe steady state if
the truncation error associated with the MOCCA approach

is small.

4. Althoughy MAPC and MQCéZ\with a KFP can both be consid-

ered equivalent to GPC ag} MOCCA with a_ PDG, they are not

. S . . [
generally equivalent to each other. This 1s because

. GPC and MOCCA with a PDG) can be shown to be
f\ N

‘#iivalent to both of these échemes because the choice of

her scheme is arbitrary.
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Mﬁitistep Adaptiée Predicti&é.Control
5.1 Ihtroduction |

) Adag//vq long-range predictive contro% strategies such
'5@ Geneﬁpllzed Predlctlve Control (Clarke et al 1987), ﬁ@n—
eraljized Pole Placemewt (Lellc and Zarrop, 1987; Lelic and
Wellstead, 1987) and Llnear Quadratlc Gaussian control
(Clarke et al, 1985) are currently ah area of cohsidera?le
iresearchw®nteresf. This is due primarily tﬁkﬁhe E?ct that
single point strategies have been found to lack roghstness

in the presence of unknown and/or variable time delays.

'W1th this experience in mlnd Srlpcda (1988) proposed a gen-

' eralization of the Adaptlve Modlfled Kalman Filter Predlctor )

/

(AMKFP) of Walgama (198%) to includé output and control
horizons. In addition,‘the integrator disturbance model of
the AMKFP was extenaed in the Multistep Adaptive Predictive
control (MAPé) scheme to allow disturbance models of arbi-
trary structure to be included in the state space'?épreSEﬁ—e
tation. ) |

In this chapter the univariate form of MAPC -.is dérived
and analyzed with particular emgpasis on residual model%ing
as a technique for imr“oving thé transient cheracteristiés
of disturbaﬂc Zje. on. = is shan that'{ﬁe proposed
scheme for artitionirg the = *e space formulation into
"y-y" A+ dis urbance subsystem is infeasible when the sys-

teir pa ameces are unkrown and c time-varying:

alter .t:ve appfbach is formule® :d based on the/Modified -

7 .
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Kalman FiJter Predictq;'of wWalgama et af (1988). A s®@ries

h r 2

mismatch, rigble 'time delay and nonstationary stochastic
. A T

disturbances. W_ : _ ~ B .
"5.2 The State¢ -i-ace Process- Model

Consider the n'th order DARMA process model

A=y () = 2782 DHutt- 1) (5.1)
where ™ g - }

A(z Y =lva, = b0 "

B(z='y=b,+b,z" "+, el

. - £ :
and d is the process time delay excluding the unit delay.

An equivaientvstate space. representation of (5.1) is given

by | | / .

' |
VT L) = )+ A u(t) )‘ . (5.2)
y(t)=H, x (1) . (5.3)
or B ' ' L ‘ g/f
Cx(t+1) ] [0 ... 0 -a, .. 0 O] x
Xt 1) 1 .. 0 -da,, .. 0 0}l x,(
:"j . . .
{. ’
™ _ :
x 1) L ro L1 g e 0 0
| x aU+1)] L0 0o 0 L O 2 o
- L
) ' ! ‘3“":“
) £
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{ b"
};;7 bn-l
. < r
’ + u(t
: )bl () ,
Vo
L O

v (1)={0.0,....,0,0,.... L ]x (1)

. : ‘ %
For plants having process and measurement hoise (5.2)
‘and (5.33 oen'he written as | o
- x’(t+l)=¢1x’U)+/\,d@)+rlh10)+rzr(0 ' k514)
Y= H s (O Har(D o ng(t) S (5.3
where I' =[y|.....¥s,0,....0]. (n;( and n,(t) are zero-mean
i .
Geussian'noise sequehces known as the process ahdlgeesure—
ment noise, resoectively. It is\assumed that the'prooess
n01se affects onfy the process states, Le.’ L) to x L)
‘The term r(t) is included in (5. {) and (5 5) as a
dlsturbance term generated by the linear" systeh »?ﬁi
E(t+1)=®,E(1)+ Fana(t) . e (see)
r(ty=HE(t) | ~ - (5.7)

an) is typically a P01sson«dlstrlbutedeglse sequence, [.e.

ﬂ
5‘35&» P

it ‘assumés non-zero values only at 1sé&a@Ed 1nstants 1n
time. It w1ll henceforth be assumed for,slmp1lclty that

r(t) is addltlve at the output only, Le FZ—O and F13—1

'0

i
.Equatlons (5.4) through (5¢7) can be combined to form the

P

/.

augmented system
I A ' :
o Z
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(s Dy =dx () Au() gy | (5.8)

()= Hx () +v(t) (5.9>'

SRR
0 ¢, 0 .
/1=[qu H, x(;)=[.§~'(t)’ £y’
q(t)=[n,(t) ny(). vt =n,s(0)
5.3 The Kalman Fiiter Predictor

_ . LI .
A minimum variance estimate of the state vector A (!) .in

Egn. (5.8) above may be obtained using the standard two-step

Kalman filter (see Appendix A) summarized below:

a) Gain calculation ; .

L(ty=M(OHT[HM(OH+R,]" (5.10)

b) Measurement Update

i) A Posteriori State Update

LRI =R 1) L)W S § (5.11)
‘iii A Posteriori Covariance Updaté ‘ (”//
P(t)%-M(t)_—L(tQHM(t) ' ’ ' (5.12)
c) Time Update, - o ' B A &

i) A Priori State Update

XL =R+ Aut) _ | (5.13) :

ii) eA Priori Covariance Update

M(t+1)=dP(t)dT +0Q, | - (5.14)
where Q1=I‘RQFT' The innovations\sequence, w(t), is defined
as

W)=y O=-7it=1)

=y (D -HZ(tIt-1) : ‘(5.}5)
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. ) /
Application.of Egns (5.10) through (5.15) i:Sthe state
model (5.8), (5.9) is known in the literature the Kalman
Filter Predictor (KFP) (see Walgama et al, 1988). For

time-invariant systems, the Kalman gaip L(t) will tend

toward a unique steady state solution if the plant—is
: ” ;

‘completely observable and controllable (Watson, 1976). " For

this case, a stéady state L(!) may be precomputed offline byJ
iteration of Eqnsg. (5.10), (5.12) and (5.14). Hence only
Egns. (5(}1) and (5.13) bin for opline‘computation; this
is knoWn és the steady sftate Kalwan filterf (Note that it
is a probefty of fhe Kallman filter that the innovations
squence(p(t)bécomes a ro-mean uncorrelated seqguence upon
convergence of L(t) fo its final value).

5.4 Innovations Analysis for the KFP

| In this sectioh, an ARMA domain realization of (5.8},

(5.9) ds derived by innovations analysis.. The discussion

"will assume time-invariant dynamics, no model/plant mismatch

L

(MPM) and will empldy the steady state Kalman filter

described above. The development begins by assuming the

following structure for the disturbance model (5.6), (5.7):

Bt 00 o 6 = Fn B t 3
(1) | L1 0 o 0 —fan || B [ ¥E | o~

(™

bt

‘E”E(,+ ])__ _O ' O e _fl __Em(t)_ _Y,:.in_ N (5 16)

_,Ow---:l],é,(:f) . (5.17)

F()= [0,



Denoting f(t)é.Q([H), Egqn. (5.11) may be written for the

plant model defined by (5.8) and (5.9) as

S+ 1)

Tt 1)

tF

Npea (L+ 1)

Lo

—

{_fnodom(l+’l)d

0]

u(t)+

L

L

n+1

Ln‘d

n+d-+1

ned+m _]

. yl(;)
0 '.\*“‘(t)
e
“f1 u"n,;ﬁ(l).
!fﬁ

(5.18)

'Using successive forward substitution for states 1 to n,

R (t+ 1) ==—a, % (D+bu(t)+L w(t+1)

\

T

”
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f\){’.‘ , .
i _L(flU)=—whgflxnﬂ)¢bnx'ku0)+L,Z'H»(l+1)

* 2 -
[ . e Al

o

,)

(D -[1- /'1(5;"" NEROL B;(/:lc' Yu(t-1)

*

g ..J +{Ln*ﬁkquz‘{¥"-+'le-n‘l]U)([)

.

AF0 TR, - BCT - K (27w ()

A $

(5.19)

wﬁgxggA(xfﬂ1and B(z ') are as defined in (5.1) and

-n+1

K (=""y=L,+L,,z ' +,..+L,z
T e ' ‘
For states n+l to n+d;l,

(U 1) =%, (O L ua(te 1) - -

S (=27 R () Lz w1

g =27 R (O [Lyegr 2™ 4+ L 27wt + 1)

=274 (O * K (= Hw ()
(5.20)

where . L Y
'Kg(i'l)=L,,;d_l+...+,L,,,1‘z'd°l
~ Note that from (5.19),
.Qn(t)¥A'l(z")é(z‘l)u(F1)+A'l(z_l)Kl(_z‘-lj.w(_t) V (5-21‘)
.\"n,d_l(t)=z'f’A'l(z")B?(z'l)u'(t—1) | .

r2 AT (2K (27w 0+ Ko (T Hw (D) (-22)0

" For states n+d+1 to n+d+m,

et (1) = = f X (1 Lpegoy @ (E+ 1)

v &

Voo

o ] N

v . A
s
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. T -
'\rl'd*l(t):-fm: ‘\n'(i*nx(t)+[‘n'd’1: lw([+ l)

- - -1 -m -
'\:no‘d'm({)=[fl: +"'+fmz ]'\.n'd~m(t)
L gems e Ly m Mot 1)

= FN (="K Hw ()

where
& -1 -1 im
F(z " )=1l+f,z "+...+f,.x
KI}(Z-l)zLn«dom+“‘+l‘n~d«l:-n‘l

Recall from Egn. (5.15) that.
w()=y)-y(tlt-1) S )

- (1) -0eE(t- 1) -0 AL(t 1)

— ~
Since for d>1 and m21 3

04 =[00...010...1 - f,]

and ©A =[0], then from (5.18), (5.22) and (5.23),

y('t|t_ l)z’%n'd-l(t— 1)+’%n~d~m-l(t; l)_ /l'{.n’(lvm([— l)

=‘>2nod—l(t— l)+xn‘dom(t)“Lnodwrlw([)
%z'“A"(z“)B(z")u(z— 1y
+z'd/1“(z")/<,(z")w(z)+Kz(z“»)w(z)

. FFTN (2K (2T DW= Ly mW (1)

But y(t)=w(t)-y(t|t-1). Therefore,
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Sy == AT T BCG Y- 1)+ AT (22K (2w )
P AT CTYACGTDK (T Dw()

CATCEYAGETDY( = Lyege )W)+ FH 2T K (27 Hwol(t)

or g
BT C(z"")
S0y =2 P TS 1) s =t (1) + (L)
_ A=Y A(="") . (5.24)
where
K :i' ,
l‘(t)’=—.—3(—.r—)w(l)
' E(=77) g ‘ (5.25)
and C(:'t)is a polynomial of{or@erx; max (n,nfdfﬁi/ggfghed

as ( o
C2 )= (1 Lgem) AT+ Az DK (27 +% 70K (271 (5-28)
Thus, it has been shown that the state space model given

by Egqns. (5.8) and (5.9) Qas an equivalent ARMA realizatioq

ygiven by (5.24). . In order that r(!{) may represent step-like

changes in load: F(z")will‘henceforth be assumed to have a

factor A =1-z"" i.e. F(z")=l)(z'1)A. where -
D(z"Yy=l+d,z '+ rdy 2™ (5.27)
It is proved in the following section that the inclusion ofL

A in F(:")gu;rantees zero steady étate prgﬁictib?{@gfﬁgﬁ»

for the KFP in the presence of nohzefd-mean disturbaﬁéé;Q'

5.5 Analogy with the smith Prédiétor
In order to simplify the disCussién of the asymptotic

properti;s of the KFP and the analogy that exists~betwé§n

the KFP,and the Smith Predictor (Smith 1957, 1959), D(z™")
in Eqn; (5.27) will be set to unity, i.e. F(z'l)#zk-?,;'

L=
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A minimum variance d-step-ahead prediction of the state
vector x (1) in Egns (5.8) and (5.5) is obtained by setting
the future innovations {(Ww(t~+ ;). jél..“d&_to their expected.
value, i.c. zero. This»resultslin the expféssion given by
Sripada (1988):

Gt+d|t)y=HI(+d]|t)

ted-1 (5.28)
=He(t| )+ He ™ A
(- ) Aa(y o,
For the special case F(z')s’A., Eqn. (5.28) becomes
- . N . w (!
Y(t+(1It)=-Vn([)+-Vn~d~1(t)=-Vn(t)*'Ln»d~|7T§_2
Using (5.21), this becomes
J(t+d|t)=AM2"YB(z Hu-1) .
v B _ _ o . t
+ AT (2 THK (= ')w<~z)+Ln.d.l‘”—i—)
ORB(x"NYy . ‘ K,(z! A+ L g z'l) w(t)
_ 4<>_l)u(t— 1)+[ (z27) - -ldl ( | i )
A=) o, T ) (5.29)
But Ean (5.24) may be written as |
o _ B(z! C[C(zDYA+ Ly Az D) Tt
)=z (Zq)uu—1)+[-( ) il (z Dlw(t)
A(z™h) A(z™YH A
which implies that ;
I w(t) I ,
Az A /[C(Z_1N3+anb1A(Z-lﬂ ;
. B(zYHY J
Ay~ 2zt a1
[/() AT (
Hence,
i



[KI(::_IJA*—./-!)'!I'I"1(:/’_])]()‘)([)

A=Y | A
) [[/\c[<(::“" >)\A - z[,, l/f((:j 2 >)]] " {y“)_ 2 %z—'%““ o )} |
C= G (T (D= Gy (T (- 1))
| | (5.30)
where '
and . s »
GF(:-,.)={/<‘,<z_.‘l'm+Ln.d.lA(z_'l‘)]
[C(=" 0D+ Laeqr A(Z7 )] . (5.31)
‘Substituting (5.30) in (5.29), - )
*](l*dvl‘t)=GP.(z")u(z—1)
+G (2 DY (D=6 y(z Hut-1)] (5-32)
where - o
»GP(:")=52%E;%%

]

Equation (5.32) is illustrated in block diagram form in
Fig. 5.1} where it is seen that the KFf may be interpreted
as a Smith Predictor with an optimal disturbance filter
C,(:"); (Recall frbm‘Chaptef 2 that the SP is obtained
froﬁ (5.32) when GF{:")=1). ”indeed, iﬁ,is apparegfkalsd

that-the KFP reduces to the SP when E(Z);O (i.e. no distur-

?,banCes.p}esent). Furthermore, the disturbance filter is

'capable of reducing the, effects of model/plant mismatch

which limit the applicability of the' SP and reintroduce the

time delay into the closéd loop characteristic equation (see
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Gawthrop (1977) and Walgama et al (1988). for additional

discussion of these points). Finally, Egn. (5.31) indicates
that G.(1)=1, which is a necessary condition for zero

steady state ,rediction offset if F({)l\ S nonzero mean.

2 K
———ee ,
. bt

() — » Load

/.
{ - Controtler u(t)

S -
\/gp(jt+d’>_‘.>(-\4 : G > Pro;e-’s S VR N
o k. ” N :
s o ‘ ) Modet with 4 §
o - B =] delays U )
. W] ' G +
. ’lh Lo e
T t] : ‘ : e fihr
g : ! .
- : |
/ Modelaw /0 *"Y
delays e - | i
GD -
T ;
Jlt+dlt)

' ﬁigure 5.1 Structure of the :Kalman Filter Predictor -

e

5.6 Improved LeastSSquares

In order to maintain optimal control of tlme varylng

systems, an adaptlve Q\atroller must be able to update the

o
parameters of the Kalman fllter estlmate in Eqn. (5 18) or

©

.equlvalently the polynomials A(z~ Yy, B(zh) and l(/ )in

~Egns. (5. 24) and (5.25). The method selected for use 1in

this the51s was the Improved Least Squares of Srlpada and

4
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Fisher (1987) which was discussed in detail in Chapter 3.
In summary, this estimationf scheme minimizes the exponen-

tially weighted least squares cost functional:

S : (5.33)
RS OIIO R HOLIGERNI
=0

oy
The algorithm is characterized by five modifications to
the standard least squares procedure resultlng from the
e P

minimization of (5.33):

2
a) Normalization

The regressor vector ¢(-) and the 'output y(-) are normal-

ized by a factor n, (.e.

y'()=y()/n

o, (t)=0(t)/n
where u=lnax(l.||¢(wl|% ’

. <.

b) Scaling

In order to improve tFe numerical conditioning of the
least squares problem}_écaling is introduced?fo minimize the
condition number of the scaleé covariance matrix. The
parameter update law becomes |

6<t>~0<z—1)+8<z>“/> (z)cpm(t)ry ()= 9,(1)78(t= 1)) (5-34)
Wwith P,(1)= S(OP(1)S() and 4, (1) =S (18.(1). |

S(t) is a diagonal scaling matrix chosen to minimize

s s

C{S(HQ(1)). where P(t)=Q(t)Q'(t), i.e. a Cholesky factoriza- °
tion ofxfft). The S, are chosen as the absolute row sums of
Q). f

c, Constant Trace

i
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The covariance update law corresponding to Egn. (5.34)

i
~— T

is . -~

N —~ 1 T _.
PS(}):(,{ P(t 1>¢;ns(t>¢ns(t) )m(t 1)
BN ORN O NI OVERAG)

(5.35)

Afcohstantftr(P(-)) may be maintéined by setting:

L

‘equal to tr{P(t-1)) and rearfaﬁging to obtain
1 ' .

A(t)=1-2 ! _{ 2_4|lP(t—1)¢H§L)A{| > \
ZLQ() QU) trP(t-1) )

where g({)= 1+¢nU)TP(;—1)¢n(Z)? The trace of P() is‘@bdéen

by the user when P(0) is specified.

d) On/off Criteria

—

.‘TO*Q;eveht drift of the parameter estimates during peri-
ods of low excitation, the algorithm is designed to shut off
if eifher ) | .

1) 1PL(D6,L(D11<A,

or 2) C{P,(1)}>Cmax

where A and C;.x are user~specified constants.

e) Mean-Deviational Data

In order to prevent parameter offset due to the presence

of g\nonzero d.c. bias term,sthe mean levels of v and
' AN

uA(y, G) are subtracted from'the current values; (.¢. the

.-~

P >y ~
regresssor becomes mean-deviational. 7y and u are updated-

4

using ad hoc exponential filters given by
() =Ay(t=1)+(1=-A)y ()

Uty =Au(t- 1)+ (1= A)ut) ~ (5.37)
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As shown in Chapter 3, this scheme is equivalent to
incremental ID combined with a first' order "T-filger" (see

. Clarke et al, 1987).

a@7~g577 Difficulties with the Formulation

'This section treats the difficulfies tﬁatfariée when one

tries‘to adaptively estimate the coefficients of the state
space model (5.8), (5.9) (i.e. the coefficients of
ACzY), B(z'ly and F(z ') . As discussed iq Section 5.4, an

equivalent ARMA representation is given by

. aB(z™") c(z"") . _

O i g B + P
B o R TR /
\
or “
Y1) =0,,(0)70,,(1)+w(t)+r(t) o (5.38)
where

0 (T ==y (= 1)y () u(t=d = D)
u(t—d-—n)xb(t—1)?”.A»(t—n—wi+1)]

0,1 =[a,,...a,,...by.,...
Also, from (5.25),
) Y Ka(zh)
AR EICY _Ka(z )
r(t) (~l)<v(0 ‘AD(z"fDKG
. i \w-‘-—-/
Ar(t‘)=¢'r<t>Te',(t>+Ln.d.mw<t) (5.39)
with )
¢;(07f[;dru-1y“”—Ar(wwn+fyuxi—1y””

h w(t-m+1)]

O’r(t)r =[(11v----d,n-lan»dom—lv---an~d01]
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v N v

“But the Kalman gain elements L,.gum-i..oslpeu-n are deter-

ministic; that is, they can be taken directly from the
Kalman gain’*%ﬁmor. So, for the purpéses of least squares ~
B ‘ '
(LS)-ident%fication, Egqn. (5.39) can be written as
: ’ : 4
]
Y ras (1) =0, (070, (1) * Lycgmw(t) o (5.40)

where ' )
Yo ()= AF () =L gm0 (L= == Ly 0 (t=m+ 1)

The queé%ioﬁ that one is immediately led to ask regard-, "

ing the ID procedure is this: "When should the u-y and

~—

residual identification be on or off, and will they interac
if they are both on. at the same time?". Sripada (1988)

suggested that the two scpemes can run in parallel despite

the interaction that will exist between them, and proposeQAI

the following on/off criteria: ,

u-yv Model Identification

1. Switch on if setpoint changes or external excitation is

added. j . :

2. Switch off if disturéﬁnce is detected (e.g. by CUSUM
= )

tééting on the residuals). Switch on when 7y returns to y”;
i.e. when the disturbance has been removed.

3. Switch off when‘the ILS criteria for £he u-y model have
been Qiolated. ' .

!

Residual Model Identification

1. Switch off when the ILS on/off criteria for the residual

model have been violated.
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The difficulty with this approach arises from the fact

]
!

that«r(t) is a time-varying nonstationary disturbance, ich

means that unbiased estimates of A(z"),and B(z'{) (i.e. 6,3

’ w1}l never. be attained u51ng Egqn. (5.38). | So although the

///kalman filter update can be wrltten as (5. 18) when the
A(=""), B(z') and ﬁ(z 'y polynomials are known, this model
cannot be realized in pridtice if the system dynamics are
unknown and/or time-varying. L

Since it appears to be at best difficult to estimate the
o

parameters of the state model (5.8), (5.9) online, the simé-
plest alternative would seem to be to choose the disturbance
model as an integrator, as discussed above in the Smith
Predlctor section. This will not guarantee good trensient
dlsturbancefrejectlon but will ensure zero steady state pre-
dictor offset. However, if this assumption is to be made
regarding-the disturbances, then rather than proceed as
above it i's convenient to use the Modified Kalman Filter
Predictor (MKFP) of Walgama et al (1988). 1In addltlon, Wal-
gama (1986) proved that for multivariable systems having a
diagonzi interactor matrix the MIMO MKFP decomposee into p
MISO subsytems, where p is the number of outputs. This
property would become important in any multivariable exten—
sion of the MAPC technique.

5.8 The Modified Kalman Filter Predictor

The MKFP ensures zero steady state prediction offset by

modelling the process noise term as integrated white noise.
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This implies that the state space model (5.4) can be aug-

mented with an additionél state v (!) having an integrator
- t m

to represént thebdisturqpnce dynamics: Y v
X(D)y=ex (O Au(t)+Tn(ty B (5.41)
| .-
y(&y=Hx{t)+n, (L) (5‘42)vx

where i

Bt 5T .
X)) =[x, x|, X5,...,. o S | _ ff——\
. " {

Using an innovations analysis similar to that in ééc— }
tions 5.2.4 and 5.2.5, Walgama et al (1988) derived an ARIMA K&
expression equiﬁalent to (5.41) and (5.42) and analogous to
Egn. (5.24), which was derived for‘thé full disturbancé

model:

w ()

A(z")y () == B(z Yu(t-1)+C(x"") A

where

Oy = AGTA 2T K (T ) 2 AT (K

+2 (2T

4% s :
K (2 Y=L, L,z v L,z -
Kz(z'l)=ln,;_l+Ln,d_,z'l”.+L Lz 4
DT =Ly, ey 2T o “
The optimal d-step-ahead estimate of the process output
obtained from the MKFP may also b? represented by Fig. 5.1
(or equivalently by Eqgi. (5.32)) where
(8K ()= D(=™)

L Ge(z ! - .
rlz ) C(z"") ». . © . (5.44)
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and it is seen that L,(1)=1.
5.9 Long-Range Predxctlve Control Strategy
The MAPC algorithm calcul it¢s a vector of future outputs
Lﬁu(1+[),abo[l.N“]) (where N, is the control horizon), to
‘min}mize the following multistep quadratic‘cost functional:

N, 7

: =S U7 ) v,.(z)

. =Ny . ‘

' N, S (5.45' :

: +L(Au(lfb—l)}zy.u,(t? )
=l .

whe%e {(y(+ilt), (e[N, ,N;]} is the tra]ectory of optlmal

i?step—ahead predictions of the process output. The w(t)
and vm(t)represent welghts on the output dev1atlons and

changes in the 1nput variable, respectively. (Note that

this cost:;pdex is of a slightly more general nature than

that presented 1n Chapter 4 (cf. Egn. (4 1)) in the sense

) q

that (5. 45) allows the user to welght individual elements of
the output and control horlzons dlfferently ) To establlsh

the output trajectory,ﬂcon51der Eqn.l(5.28) Wr;tten for, 4n

\ A mv
: arbitraryfforward shift of i sample intervals:
}7(,f”lf.)=,b'i‘(t+ilt)
\ ‘ ' . tei-} »
—All¢'{gt|t7+ Z ch"‘ INTED
. (5.46)
In vector-makrix notation, this Becomes
(7001t (e[N | NI ={H®'2(tI1). (€[N, N,]}
. . 6. . - - - N v
. ‘ s Au(tri-1), (e[l N,]}-  (5#47)

3
i3
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and N, ,=N,-N,;+1. Equation (5.47) can be written in terms

of control increments Au(l) as follows:

(FC+ilty, ([N Ny =(y (10, i(l[/Vl'N?__].}‘

s A{Au(t+i-1), {e[1.N,]) (5.48)
with ‘
; 170 .. 0]
1 1 ... 0 é
4=A"S, S={1 1 l
" 11 1
g
'_1 1 lv“‘le"Nu L

Syt Te[NTINLD)

;(¥1¢[X(IH). ie[NI,X%]}

A}

. i ) | \ | .
1 +<(Za L‘-N“_»l.,)ll(l—l). LE[Nl’lN2]> ‘
. J=1 ) o |

3 ..

It\is\seen”that the y ' (f+il|t) are termst6ntaininé'the
' . o EEN Y ]
effects of past (known) inputs-on ,’ +i|t). The Au(t+i1)

» _ N . ) . . ) { »
-are thé current and future inputs to be calculated. Defin-
“ing Y (D) ={F (10, TeENNR]Y YT ={y Ut D, e[ NN ]

and AU()={Au(t+i-1), ie[1,N,]). Eqn. (5.48) can be

L .
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reexpressed as
Y (ty=Y (t)umU(t) (5.49)
which is obtained by settlng Au(t+t—l) O for (>N, w1th
LY
N,<N.,. Writing (5.45) in vector-matrix form leads to
J=1Y (O=Y O T (O, (0O)=Y ()]
(5.50)

- +A»U(t)Tl‘u(l)AU(l)

where ‘
>’sp((l)=(.yf;p(twl:‘t)., L[N /NLTY, T () =diag{y,(t), (€[N, Na]}

and ', (1) =diag{V.(t). t€[1,N,]}. Differentiating, (5.49) with

| : ¥

‘respect to AU(!) and setting o0J/2AU(t)=0, ©
AU =AY ,(D)=Y )y (5.51)

where .

A= (AT, AT ) AT

" The control action is implemented in a receq%ng horizon

fashion, hence ohly the first row of A  has to be calculated
A - s :

&

at each control interval.
Note.that although&thetprpces time deiay d does not
appear’explicitly in (5‘51), it is”common practice to set
2N, 2(d+ 1), wthh w1ll make the matrlx A non51ngular (i.e.
by asslg/}ng no penalty to future output dev1at10ns that
caant be affected by u(l)). Refer to Sripada (1988) and
McIntosh (1988) for dlscu§51QDs regar g the choice of the.
y,-T“,j;d the varioﬁs spe-.

cial cases (e(] minimum varlance control mean 1evel con— »

-\trol, etc. ) as well as an 1nterpretat10n of MAPC as.an, {

Internal Model Control (Garc1a and Morarl, 1982) scheme that

is optlmal for stochastic processes.
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5..0 i'eed:orward Control | '
The aidition'of a measured feedforward mode tp the MAPC
strategy is relatively straightforward. Denotiﬁg the manip-
ule =4 variable by u,(t) and the feedforward variable by

(¢t . Zgns. (5.41) and (5.42) become '
v

S+ 1)Y= e () A (D) A ua(t=q)+ iy () (5.52)
- ()= Hx(t)+n,(t) | : (5.53)
where g=d,-d,, i.c. the difference between the physical

delays associated with the feedforward and manipulated

variables, respectively. (Note that d,2d, is a necessary
~

condition for Egns. (5.52), (5.53) to be a causal realiza-

tion.) A, and A, are Oi+dl+l)xl vectors defined as

N t

o ro7] -
4 bln bZn . : ' 7
Ap=1by, [ Ayp=| by
. o .
. , A | \ \
0 | . 0 ]

>

The coeff1c1ent matrlces ¢ H and [ are as defihed in

(5.41), (5.42). It is ev1dént that an equlvalent DARMA

representatlon of Eqns. (5.52) and (5.53) 1is given by:

ATy =2 B (2 (- 1) 2T B, (7 (- 1)

where

(5.54)

v
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R R . "

,‘I(::‘l

RN

By, b et

B, (2 y=b,, v, +...+07n:,_"°l
Vi

()

The trajectory of future dhtputs is formed 1n a fashion
analogbus to the development of Section 5.9, i.e.
GOl = HS(+i]1)

t+1-1

=T t)+ . Z Hd>"‘/l ’[/\ u (j)+/\ u,(j=qjl

v (5.55)"

where Y ({|() is obtained from application of the MTSO Kalman

In vector-matrix notation,

filter to (5.52), (5.53). Eqn.
(5.55) may be written as
{(yU+ilt), (¢[N, Ny} s
S (HS (1), ([N LN+ A, (u,(t+i-1), ie[1,N,1}
+ A {u,(t+i-1-q), te[1.N,]}
where
7 R N
e AL He TR " HA, 0
"‘I|: )

Qe AL He A, L He T A, HA, |
e AL HeV A, HA, o |,
A=
| _ ; : ) S

R chV? ‘A, ch” YA, e HAL

y Thls can be wrltten in terms ofgEgn. (5.49)“gs-_
| >(z)—> () Ase l(z) (5.56).. -
T v

)

.4 N



Where.1=.118.

(v (t+a1t),

= {Hd" XL

g t
N\ 1
(S
JARY

fa{u(t+i=1-q), te[1.N,]}

AL =N (i 1),

1),

(The «/ , in (5.7)

PN,

Val)

(€[N, N,])

(t=1)., N,

i
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tel b N LY

denote elements of the

(5.57)

A matrix.)

The remainder of the derivation is identicai to that

presented  in 5.9 for the singlezjinput,

2

Note also that u,(t¥ir|-q)=uj

of thévfeedférward variablé are.

measurement

RETING:

).

5.11 Slmulatlon Examples

.

. e

single-output case.

c..future values

2

"ﬁ§

&

The &APC approach was tested Qn an underdampedqﬁecond

¥ order state space;process glyen,by

A+ D)
No(t+ 1)
X5(t+ 1)
ENGEY

[, (1) ]

|
1
1
0
0

4(1)=[0 0,0 0

o O — O O

§ o o]
0.7 0 -0
1.5 0 0
1 0 0O
o 1.0

11X (1) ()

X, ()
sz(!)
Xat)

Lxa () |

(0]

;
S

JCIGRK

(5.58)



167

where n,({) and n,(l) are independent, zero-mean Gaussian -
-\
~

X Ao .
noise‘seq&ences of variance YO"4$'Note that the ?r0cess has

A

a determiﬁéstic,equivalent

>~

AT )/(/)— TR D ut- 1)

(1—1.15:;“+o.7 2y =2"2(1+0.5z Yu(t-1)
' (5.59)

This simulated plant was used in ChapteriB of this

thesis to demorstrate the self-tuning behaviour of minimum

<
L}

variance control schemes hased on the MKFP and the
integiating Self-Tuning Controller of Tuffe_and'Clarke -
(1985) (cfﬁ Fié. 3.3). An identical run was earfied eut.
using MAPC and is shown in Fig. 5.2a. vAs in the earlier
example, the A(§ ) and B(z )parameters were estimated
recur51ve1y u51ng (1nc1emental) ILS with 6(0)={1 1 1 1]7,
wsi] (0) =15 1”('*‘)—1—0 82" A=10"° and Cp,, = 10¢ The control-
ler parameters were chosen ass N, =N,=1, N2 10, I', =1,
'v=Al=0 (default settings) and R, =R,=10"". The °
“performance using this‘default configuration was.eatisfac—
tory, if somewhat cecillatory in comparison te the MV
contrellere of Chaptef73. Convergence of the parameter

estimates in Figl-S.Zb was also more sluggishfbecause o
control actiop ih'this example was much iess viéorous.thah
that of Flg 3 Sa. . _ ; . | : ~7

It may also be recalled from Chapter 3 that the AMKFP

_and ISTC strategles were applied to the nonminimum phase

Q;state space plant R i>;>'.' i

i .
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LDy o o o o ol
N (e ) I 0 -0.8981 0 0O O] V()
N+ D) 1 18951 0 0 0} va(D)
Nyt 1Y oo 1 0 0 0| x,(
NL (L D) o o0 0 L0 0} vy
xg(te1) ] LO O -0 0O 1 0l v )
D 0 il 1
0.9 0
.| 07975 (i) o1 (0
.0 ol
0 0
0] 0
N = . (5.60)
(=[O0 0 0 0 0 1]x{)+n,(1) v

n,(t) and n,(t) were zero-mean Gaussian sequences of variance

10"6.‘It was obseiyed that the miniﬁum vafiance forms of
these controllers could be stabilized by the addition qf
suitably chosen control weighting Q(:")to the MV cost
fuhctional. 'However, the choice of Q(:")becomes very
‘difficult in systems where little d priort Rnowledge of the
plant is available. 1In Fig. 5.3, the MAPC approach was seen
to provide stable control of the plant using the defaul£
control settings listed above. This is due to the_preéencé

of. the output horizon.V, and the control horizon M, =\

AY

.which move the poles of the controller inside the unit

circle.
ToAinQeStiqate the robustness of the MAPC design philos-

ophy, the cortroller was applied using a reduced-order model
cf othe second crder plant e ‘ A
. . :: ‘ ot .

N Qe Y
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A(="") in this example has poles at z=0.8320 and z= .4422 so
that neglecting the faster mode should still result in a
realistic approximation Qf the true plant. Indeed, the unit
step response of Fig. 5.4a looks very much like that of a
typical first order plant with delay. “- L

However, as sezn in Fig. 5.4b, the control aetion was
unstabile for T(x'i)=l, R,/R,=0.1, P(O)=7, and default values
of N, N,, N, and A. The trajectories of estimated a, end
h, are shown in Fig. 5.4c, where it is evident that they did
not converge to constant values.

It was observed that stable control of the process could.
be obtained by detuning the controller in any of several
possible ways, ¢.¢g. by increasing N, or A, adding
T—filtering, or decreasingAR /R, or Ir P(l).‘All of these
cases are illustrated in the remaining graphs of Flg 5.4.
Flgures 5.4d through 5.4g show that stable, coffset-free coh-
‘trol was achieved by 1§c5ees1ng the output ‘horizon N, to'll
or by the eddltlon of the control weighting A =100. In both
examples, the estimated parameters were seen to converée to
constant valhesﬁ(see Figs. 5.4e and 5.4q).

Prefiltering the regressor veetor using the T-filter

(= 'y= 1 -0.8:"" also resulted in- satlsfactorv control (Figs.

5.4h, 5.41), as did a reduction in the ratlo of the proces

and measurement noise covariances A, &. from 0.1 to .01
(see Figs. 5u4j, 5.4K)Y. This latter nmodification 1 the
effect of moving the poles o;s&;i.”% in Fig. $.1 toward the

unit circle, which is equivalent to low-pass filtering the
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~ble control of the process.‘, ' : i

“because the: AMKFP -was de51gned assum1ng—a~t1me delay of four

| . _ : B
s , : - 185

vresidual due to MPM [,Q_y([) G (~'Wu(t) Finally, in Flgs.

5.41 and 5. 4m 1t was shown- that detuning the estlmatlon by’

: reduc1ng the trace of .the covarlance matrix from-2 to 0.2

!

~also enabled the default. MAPC. conflguratlon to provide. sta-

» LA

\

One of the prlmary applications for LRPC strategles such .
as MAPCvlS 1n.ppocesses_w1th unknown and/or variable -time
delay.‘ Figures 5.5a to 5.5d show the behaviour of the nini—"\
mum—Vatiance AMKFP and ISTC-based schemes for‘servo control
of the DARMA plant (5.59) with a va;iable time delay, t.0.

| d=4 V<150, zé[zso.sooj -
-G vie[1s0,2s0] . |
=8 v(>500 '

The proces54parameters were 1n1t1a11 ed to the true values

i.e. O(O)—['l 5 0.7 1. 0. ()S] ,and the covariance matrix was

1n1t1allzed to P(OQ—I4 for ‘the AMKFP and P(0)= HX)h;for the

ISTC. No- T fllterlng was . used (T(z"" )—l) and the ratio of

the covariances R,/R, was set to unity. ' (’ : R

-

. In Figs. S.Sa,-5.5b'it'is seen that the KF-based con-

troller prov1ded desdbeat setp01nt follow1ng for (<150

‘intervals.: However, the - controliler was observed to become

unstable when the delay,decreased to‘o at time 150, and was
never able to regain control of ‘the process Likewise, the

ISTC approach 1llustrated in Flgs. 5.5c, 5.54 was observed

(G
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to‘become unstable both when the time delay was onreSti*

mated during the period [150, 250} and when it was underesti-

- mated, (.0, vz>\xx1 ThlS typlfles the sen51t1v1ty of

single-po:nt control strategles to tlme delay mlsmatch

F ires 5.5e and. 5 Sf show the 1mproved perfomance

£

obtai: =d mlth MAPC using the default de51gn N,—-N
4

'“Ngaru), r=0. It is. apparent that the long- range strategy

~was able to provide satisfactory servo performance while the

delay was overestimated, but‘not when the delay exceeded its
assumed value, despite the choice of N,>d .+ 1. In fact,

stable results could only bé achieved in this example by

ffdetuning the Kalman filter, i.e. by reducing the value ..

R /Rpofrom unlty to lO * (see qus 5.59 and 5/5h). This is

analogous to mov1ng the root(s) of the observer polynomial
oloser to the unit circle in the GPC approach described in
Chapter 4%
5.12 COnclusionS'
This chapter presents a study of the theoretlcal proper—
tleg and performance characteristics of the Multlstep Adap-
tive Predictive Controller of Sripada (1988). ]}t was
demonStrated that the prediction mechanism, i.e. the Modified
Kalman Filter Predlctor can be interpreted as a Smlth Pre-
dictor w1th an optimal disturbance»filter. The long-range
'/redictive control approach that MAPC shares with several
other techniques (eg..GPC, GPP, LQG, MOCCA, etc.) was seen

to be capable of providing stable control of plants in the

lpresence of MPM, e.g. model order or time delay mismatch, .
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vprovideP that the controller parameters are chosen in a con-

servative manner. It was shown that the MAPC algorithm in

. N :
combination with an 'alert! estimation scheme such as
Improved/igést Squares can provide optimal tontrol of plants

with unknown and/or time-varying system dynamics. Addition-

- ally, the‘schemg proposed by Sripada.(1988) for simultaneous

online identification of the 'u-y' and residual models was

demonstrated to be infeasible in its present form.
. » . .
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Adaptive Control of a Double Effect Evaporator

6.1 Introduction

r

In Chapter 5, the Multistep Adaptive Predictive Control

- (MAPC) algorithm of'Sripéda (1988) was discussed with empha-"

sis on its proposed fechniqﬁg for ontime identification.of

disturbance dynamic..  Specifically, it was demonstrated
that biased ﬁ@rameter estimation will dgenerally result from

- :
the application of this scheme to systems having unknown

a
and/or time-varying dynamics. The algorifhm was therefore
reformulated using the Adaptive Modified‘Kaiman Filter Pre-
dictor éf Walgama (1988), which does not involve online
éstimation of the disturbance mode.

This chapter presents an application df the reformulated
MAPC to control of a bilot plant doﬁble effect ev porato;lat
thg‘Univefsity of Alberta. The algdrithm is seen to proQide
stable control of the plant using a default configufafion(b

provided that a "good" set of iﬁitial parameters is avail-

able.” _ o : :

6.2 Description of Equipment . , ) S
The double effect pilot plant evaporator has been

describe: 1in detail elsewhére (see Fisher and Seborg, 1976),

A4 L)

hence a cursory description will be given here. The evapo-
ragor is illustrated in the schematic diagram of Fig. 6.1
and ‘a Iist’of typical steady state operating values has been

included in Appendix C.
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The first'effect of . the -evaporator is a natural circula-
tion calandria-type unit w1th thirty-two 3/4 inch OD tubes,
18 inches long. Triethylene glycol (TEG) of known
conce%tration~is fed tg the first*effect and process stean.t.
is used to heat the solution The concentrated product
solution’is then fed to the second effect The'second
effect is a forced c1rculation evaporator w1th three 6 feetﬂ
flong, 1 1nch OD tubes. It is- operated under vacuum and is
heated by the overhead vapour from the first effect.

‘The primary controlled variable is the second effect or
product concentration'Cz,"so a typical'%ISO control stategy.
(such as the one described in Section 6.5 below) will'manipe
ulate the steaﬁ'flowrate S to'controlithis‘concentration.

'Other'variables of interest are the first (Wl)'and second
(W2) effect'mass holdups, which are cascaded to the bottoms
flowrates bl«and B2, respeCtiQelf.

The euaporator is fully instrumented and can be con-

-

-trolled either by COnventional PID electronic controllers

A/

(as shown in Fig. 6.1) or under direct digital control (DDC)
using a Hewlett Packard 1000/A700 computer. A process con—

o -~

trol software package,vPMC (Process Monitoring and Con- °
trol)/lOOOvsupplied by Hewlett Packard ‘is used to interface
user- written FORTRAN control subroutines.called Advanced
Control Modules - or ACM's = to the HP2250 Measurement and
Control Processor (see Fig. 6. 2). Tne PMC database is

accessed by program PAINR and is linkéd together w1th the

ACM to allow pilot plant_variables to be measured and/or



manlpulated online. User-selected variables are logged to a
dataflle by PAINR for later anlay51s. 'In additﬂon,_key pro-
cess variables are dlsplayed by PMC on the HP2267 graphics

terminal (andvby several smaller HP150 microcomputers) using

preformatted colour displays. System parameters such as PID

'controller constants (or flags to be used as 1nput to the

ACM) can then be changed online via ‘keyboard 1nput.
Bumpless transfer from the local control panel to 'DDC is
achieved using program BPLST, which initializes the set-

, . , .
points of all slave loops to the current measured.values.

‘Program CRASH is used to monitor critical process variables

r' L . .
~such as the first and second effect holdups and shuts the

evaporator down if these are found to "persistently" exceed

predefined upper or lower limits.

-

6.3 Evaporator Model . -

. Before applying/adaptive control to a real plant, it is

.’

‘often‘useful to carry out some'offline_analysis of plant

Aoperating data in o. ler to obtain an initial model of the

process.* Figure 6.3 shows the, response of TEG concentration
to step changes cf +1o% in steam and feed mass flowrates.

The second order eBMA model
(l+(‘1[:' +(12:" C2(1) o _ ‘ o

) I
= (b b2 IS 1) by v IF(E-1) (6.1)

- was fit to the data u51ng batch least squares (see Appendlx

A),, which resulted in the estimated model

(1 ‘-()._8091 27 -0.1565z7%)C2(t)

L =(2.622+3.82127)S(t- 1)+ (-0.9884 1 .434z" YF(-1) (6:2)

202



203

200

300

200
200

Time

100
100

M f=) (@] o . (=} > MU o (@]
(LW /[ow) UuoI}LIjUadUO]) (s/9) sojeamord pos. UIBols
MH . A . .

Figure 6.3 Actual and pfedicted C2 step resporise data



™~

204

N

Note that the relationship between C2 and S is n-nminimum

phase due to the presence of the unstable’ zero at z=-1.457.

The integrity of the model was te;Led by comparing the
actual C2 with that generated using‘Eqn. (6.2), Lé.
CRMU)=(L8091CQ(1—l)+01565C2(t—2)
+2.6225(t-1)+3.821S(t-2)

-0.9884F (t- 1)—1.4§4F(¢—2) (6.3)
which is also plotted in Fig. 6.3. It is seen frop the
figure that these Qalues are essentially coincident with’
those observed expefimentally.

6.4 Multistep Adaptive Predictive Control

This seétién'presents a brief summary of the Mﬁltistep
Adaptive Predictive Contr' | scheme of Sripada (1988), which
has been discussed extensively in earlier chapters. The
algorithm minimizes thevfollowing multistep quadrétic cost

functional:

J =

i

<

(VU D=7 U+ L1y, (1)

N
£ (At iz 1))y, (1)
t=1 :, (6'4)

where {(y{+ilt), (e[N,.N>]}) is the trajectory of predicted

future oupputs. rhe-vy,(¢) and v,(t) represent weights on the
output deviations and changes in the inéut variable,
réspectively. Fér convenience in the seqﬁel, YW(O wili_be
set equal to unity and vy, (!) to an arbitary constan£ AL

The state space mbdel of the process is given by |

*

.\‘([+‘l)=d>.\'(t-)+.\lu(t)+Fnl(t) ~(6.5)
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y(l)=71xkt)+n2(l) : v v , (6.6)

w .re for d=k-1, (.e. the physical delay of the process,
. ) s
'\.(t) =['\.p(l)"\.l(l) """ \.n(l)"\.7101([)"""\.nwt(l)]l

2

1 Q ... 0 0 0 ... 0 0
v, O ... 0 =a, O ... 0 O . -
.(.b: Yn O e 1 ‘\(ll O e O O
0O 0 «. 0 1 0 .. 0 0
LO 0 .00 00 0 w10 e

n,{() and nzﬁ) are uncorrelated zero-mean Gaussian noise

sequences havir >variances R, and R, respectively. The
state véctor is not directly measurable and so is recon-

'structed by means.of the Kalman filter update (see Appen-

dix A):
, : ’ : . .
X+ D) =X (t+ 1) =X (O) 5 Au()~ L+ Dw(t+ 1) (6.7)
where the innovations sequence w( ) is defined as j
. - £
A ‘
w(t+ 1)=y{U+1)-HX{+1]L) , (6.8)

By innovations analysis for the steady state KF
(Appendix B), it was found that an equivalent ARIMA

representation for (6.5), (6.6) is given by

-

N
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T ) . ] 0 (6.9)
/ux‘)yu)=3u:Wuu—k)+C@:U&%l .
~ where
ACz )y =0 e v,
Bz y=b,+b,x s v, 2!
C(u')y=lwc v vc, ="

(The coefficients ¢, to ¢,.4 in (6.9) are complex functions

of A(="") and the steady state Kalman gain vector, L.)
,//’j

. Equation (6.9) can be rewritten in the compact form

£ ‘ - ,

AyP() =9 (1H0+w(t) . . (6.10)
where '
o)==y (t=1)...., -ayf-ny, aufe-k). .,
Aut(t-k-n+1)7 .
O={c,.... Ly b v b1
| ' - . v
and the superscript "F" denotes division by (. ). A least

squares estimate of O may then be obtained online using the
co%stant'trace Improved Least Sqﬁares technique of Sgipada
and Fisher"(1987), which was analyzed in Chapter 3. Note
that as C(=""') is generally unknown.ana/or fime—varying, it
may be réplaceq by ﬁﬁg ad hoc observer polynomiél T(z™")
(Clarke et al, 1987). Combination of a recursive parémeter
estimation algorithm such as ILS with the Kalman filter
state updafe given by'Eqéy (6.7) fésults fn the Adaptiv;
Modified Kalman Filter Predictor,of Walgama (1986).
Equatioﬁ (6.4) can be wfittén in vector/matri& form as

follows:
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J =Y (O =Y (O (D =Y (D] AN ()AL (1)
. J i .
N ) . (6.11)
,r" L .
where Y sp(0)/={ysp(1+118), (€[N, . N,]}.
)ﬁ'(t)={‘j/(t+i|t). Le[ N N2y and AU ={Nu(t+i~1), (c|1.N,]).
Differentiaténg (6.11) with respect to \{'(!) and setting
0J/0AU(t)=0 leads to the optimal control trajectory
AU =AY (=Y (1)) B (6.12) ,
where- .
A= (AT e AT (6.13)

arnd the vector ) '(¢) is given by

Yy ={y (i), te[NLNL]D)

={H®' L), (e|N, N,

: +<(Za,‘_w“)u(z—1), u-:[/\/l./\/z]>
W4 |

The a’,’, are_elements of the matrix 4, which is generally a

RS . lower triangular patrix éOnsisting of the first N=N_,- N + ]
,impulse'resbonse“coefficients of the process, wﬁich are in
T turn obtained by deconvolution of B(=:"Y/4(:"") in (6.9).
The matrix .1 in (6.13) is then giyen bygﬂ=.1ﬁﬁ‘where.3 is
an N,;X N, matrix defined by. 1
s”=b. (< j
. s, =1, 02y

The control action is implemented in a receding horizon
fashion, hence only the first row of A  has to be calculated

_ét'each control interval.

AP
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Refer to McIntosh (1988) for a full discﬁssion regarding
choice of the parameters N,, N,, N, and A in Generalized
Predictive Control (GPC). These guidelines apply equally
well to the MAPC scheme since it was shown in Chapter 4 that
MAPC and, GPC provide ésymptotically equal control of known,

time-invariant processes of the form of Egn. (6.9).

~

6.5 Experimental Results
The fixed parameter version of the MAPC algorithm was

first used to control second effect concentration by manipu-

‘

lating the steam)flowrate (i.e. by replacing Y with C2 and U
\ .
with S in (6.12)). This implies that the initial C2 to S
relationship given in Eqn. (6.2) was used throughout tﬁe
.dufafion of the run. The results obtained using the default
MAPC configuration (N, =N,=1, N,=10, A=0) wit'h_Rl/sz=O.l
are éhdwn in Fig. 6.%. The setpoint was varied as a sqﬁare
wave Of amplitude +10%, and a step decre&se‘in feed flow was
introduced at time 130. The Servo/reéulatory behaviour in

this example is seen to be stable, if somewhat sluggish.

‘Furthermore, it is agparent thét,offset—free regulation of

5

-the process was achieved desph{f;the nonstationary nature of
the (unmeasured) feed disturbance.
Figure 6.5 illustrates the effect of incorporating féedéA
forward (FF) control of the feed flowrate (cf. Section 5.10)
to the control strategy pf'Fig. 6.4 using the estimated
model in Eqn. (6.2). It is evident that both servo aﬁd

regulatory behaviour were improved by the addition of the
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feedforward mode. A smaller deviation in C2 from the set-
point is observed when the step change occurs in F because
the controller-ant1c1pates an increase in C2. That is, the

- e
steam flowrate in Fig. 6.5a is seen to decrease immediately

after the change in feed, as opposed to Fig. 6.4 where the

’

. . . v . .

controller waits several m%nutes-before reacting, (.e. until
J » '

it observes an increase in C2.

_ Figure 6.5b is a continuation of flg 6.5a, and has been

5

gz

included to demonstrate the response of MAPC to a very real-
istic type of plant disturbance. The first 310 minutes of
operatiohaare identical to the results of Fig. 6.5a; at time
310, the feed flowrate is increased back to its steady state
level of 35 g/s, produc1ng a response smmllar in shape to'

that caused by the step decrease after 130 min. At time

425, the steam supply pressure was increased by approxi-

y

mately 30%, which was seen to change the gain of the process

h

cons1derab1y (cf steady state steam ‘levels before and after

;

t=4295).. The fixed parameter MAPC scheme was seen to retain

. control of the process despite the presence of significant

-

;model/process mismatch.

In Fig. 6.6, the adaptive version of MAPC (with FF) was
tested on the process using the initial controller parame--
ters éiven above. The parameters of Egn. (6.1) were<%pdated
using'Improveg Least Squares with P(0)=0.1/,, ahd T(z"H)=1

N :

l.¢. no T—filtering was used. In addition; the on/off param-

~eters A and Cha.c (Cf. Section 3.2.2) were seét to 10°° and 10°,

respectively, so that the estimation_al@ortihm was on at all
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times. The results of Fig. 6.6a are seen to be very similay
to those of Fig. 6.5a, which is rzfsonable given the fact
that the parameters in Fig. 6.6b Marely deviate from their
initial values. | |

R .

o see wﬁether a larger estimator,gaingaould yield an
improvement in performance, the covariance matrix was:ini—
tialized in Fig. 6.7 to P(O)=107,. t.o. tr P(t)=60 Vt. This
change seemed to haﬁﬁmgery little effect on C2 control, as
the parameters remalned essentially constant despite the
increase of tr P(t) by a factor of lOO. This would seem to
indicate that the 1n1t1al parameters obtalned from offllne
analysis were indeed representatlve of the true process
dynanmics.

Té test the selfntuming capability of thée MAPC scﬁeme on
a real plant, the controller was_imolememted using the above
default settings with the initial parameter vector | '
0(0Y={1 1 1 1 1 17" (cf. Eqn{'(6 10)). Once agaln, the
trace of the covariance matrix was maintained at 60 for ~the
duration of the run. The control action was held constant
for the first seven minutes of operation in order that the
"~ gressor vector, etc. would contain "good" values when the
controller was'turned on. From Fig. 6. 8a, one-can see that’ r.
the 1mmed1ate reactlon of the algorithm upon closing the
loop was to manlpulate the steam flowrate in an unstable
manner, desplte a good deal of movement in the estimated

parameters (sege Fig. 6.8b) . The steam was observed tc satu-

rate at its upper limit for t >23 min, which efentually

N
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caused the pressure relief valve in the first effect to vent
to the atmosphere, requiring shutdown of the evaporator. |
Thus, the contfolier was unable to bring the process under
control with no « priori knowledge of the plant parameters.

Finaily, an alternate controller design was employed in

. v , A
an effort to inprove upon the performance obtained above fo

the default configuration. Figure 6.9 illugéfates thew \
results for N,=N,=10, Ny=1, A=0 and R,/R,=0.1. (Note
that this strategy is analogous to the Exten@ed Horizon
Adaptive Controller of Ydstie (1984i.)‘ The servo response
is seen to be much tighter than that of Figé. 6.4 through
6.7 and is in fact comparable to that which has been
_obtained using weli—tuned-PI. The advantage of the MAPC

approach in this }espect is that these design parameters

were obtained with a minimum of effort, while tuning the PT

Y
controller online involves a 4-5 day trial and error proce-

dure= "nrthermore, the effeqt of the feed disturbance is
almost entirely cancelled in Fig. 6.9a, due to the less
conservative (and consequently less robust) nature of thié
design. | |
6.6 Conclusibns

This chapter has déhumented the appllcatlon of the Mul-
tistep Adaptive Predlctlve Control technique of Sripada
(1988)_to control of the p:qducp;condentration of the_double

effect evaporator at the University of Alberta. .Stable,

offset-free control of the process was obtained using a-

2
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default controller configuration in the presence of nonsta-
tionary disturbances, nonlineafities and model/plant mis-
match. If was found, however, that it may be unreallstlc to
commission adaptlve controllers without some « priori
’knowledge of the plant (e.g. from a least squares analysis
of step response data) since the initiel period of instabil-
ity will cause most industrial plants to shut down before a
stable set of rq;ameters can be obtained by the %stlmatlon
algorithm.
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7
Overail_anclusions and Future Work
7.1 Conclusions ‘ .

The main contribution of this thesis is in the analysis
aﬁd proof of equivaience of several estimatiog and/of adap-
tive control algorithms base& on state spéce techniques ver-
sus those based on transﬁef function design methods. For |
example, it was shown that minimum variance coﬁtrollers
implémented using a Kalman filter are asymptotically equal
to those based on a least squares approach,.e.g. via solﬁ—

‘ ! .
tion of a Diophantine equation. Although the result was
previously proved by Watson (1976) for the general éase, his
derivation was cumﬁeréome and di}ficult to generalize to'
other state space realizations. . v .
Other»contfibutions made during the course of this-yprk

are listed below: ‘ : : h

\
1. The equivaleﬁce result was extended to }nclude plants

t

‘subject to nonstationary stochastic disturbances.
: A -

2. A Generalized Minimum Variance-type cost functiopai
derived by ﬁu (1986) was presented for use with the -
Modified Kalmén Filter Predicto£ of Walgama et al-
(1988). The equivalence of this scheme with the inte-

-grating.Self—Tuping Controller of Tuffs'an@ Clarke
(1985) Was»demonstratéh for general Q(z '), R(z ') and
scalar P(:'P) When a nonscalar.chpice'of P(z"") was
hade, the two schemes were shown to minimize different

|

cost functionals. | .
. N
> ., ‘

T 224
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An adaptive control law based on the MKFP was introduced
’ .

by cgmbining;%he MKFP and the GMV-type control law of Lu

(1986) with the Improved Least Squares algorithm of Sri-

|

pada and Fisher (1987); A corre%fion was made to the
ILS forgetting factor calculation to ensure that phékﬂ
trace of the unscaled c%}ariance matrix remains con;-v '
stant. '

The Multistép Adaptive Predictive Controller (MAPC) pro-
posed by Sripada (l988)\is a long—rangeApredictive‘con—
trol strategy based on a Kalman Filter Predictor that e
incorporates full disturbance modelling. It was found,
howevgr, that it is difficult to obtain unbiased esti- -

mates of the "u-y" model parameters in the presence of ~

disturbances; hence an alternative aéproach was proposed

‘based on the MKFP of Walgama et al (1988). . \

The quivalence of the MAPC Scheme,(based on the MKFP)
with GPC (Clarke et al, 1987) was demonstrated for time-

invariant plants subject to ndnstationary stochastic

i

distﬁrbances, by a further extension of the minimum

'variavce result. The discussion was then broadened

sofiewhat to include” DMC (Cutler and Ramaker, 1980) and
ﬁOCCAL two nongarametric LRPC techniques. It was shown
that Mocca Qith 2 polynomial disturbance gene;?tor (Sri-
pada~énd Fisher, 1985) is equal to GPC (and, by associ-
étion, equivalent to MAPC) providéd that the entire
reaction curve of the plant ié céétured‘when‘the step or

impulse'respbnse data are collecgi:. MOCCA with a KFP

(Li et al, 1988; Navratil et al, 1988), on the other

1 . ~
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hand, was found to be equivalent to GPC, and different
from MAPC because the two élgorithms implicitly differ
in their assumptions regarding the dynamics of the plant
disturbancgs:.
The robustness of the MAPC approach was demonstrated by
a series of experimental trials on the double=-effect

evaporator at the"University'of Alberta. The algorithm

.provided stable offset-free control in the bresence of

both unmeasured and measured disturbances using a
default controller donfiguration.

Future Work

It is important for MAPC ro‘be compared with GPC on an
éxperiﬁental basis, vis a Vis ease of cbmmissioning,
sensitivity of ‘controller parameters, robustness in the

presence of nonlinear{ties and model/plant mismatch,

" etc. ' ' ; T

e
fmma¢nbustnes% of the ﬁglman fllter approach should be
further analyzed on a theoretlcal level as well, }n

order to determine whether this design offers any bene—
flt\over the conceptually (and computatlﬁnally; simpler
tranéfer function techniques. - ‘

It may be interestin;>Eb recast the equiﬁalence analyses
présented in Chapters 2 and 4 in tgé form of_the Intefi .
nal Model Controlvéppr;;ch of Garciafan?'Morari (1982).
This would enable the MAPG and GPC)\approaches to be

upifiéd with the larger class of algorithms known as

Model Predictive Cohtrol.

/
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4. The success of the experimental evaluation of Chapter- 6
seems to justify an extension of MAPC to the multivari-

able case.' This topic was discussed briefly by Sripada

A}

(1988) for the KFP with full disturbahce modelling, but

the revised MAPC should be refermulated for MIMO systens

t

with a view to implementation on a real plant.
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Appendix A
Optimal éarameter Estimation )

Tﬁe”Kalman Filter was originally presented bz Kalman
(1960, 1963) and Kalman and Bucy‘(1961) as a method of
obtaining an optimal}estimate of the state vector'in the
presence of process and measurement noise. - This appendix
will follow the examble of Franklin and Powell (1980) and
derive the'KQTman filter (KF) by generalization of the
Recursi Leas Squéres (RLS) parameter estimation tech-

nique. Alternative derivations of the KF can-be found in
| . :

for example, Astrom and Wittenmark (1984) and Goodwin ana
ST N ' v [
Sin (1984). , i

4

A.1 Batch Least Squares

Consider the n'th order ARMA process representation’

AT O =BT D= W) - - (a.1)

where
A D= lva, = v va,

BRCIC R R TP SR I S

: R

T B TRt
7(+) and u(-) are the plant output and input, resﬁéﬂggm
The plant time delay k is the sum '0f the physical @@%ﬁtwg
delay (d) and the unit delay due to discretization, (.0. "

k=d+1. Equation (A.l1) may be written in a more Compact‘form

as |

() =67 (1)0+w(t) N : . (A.2)

where

e
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DY =11 =y (L =n) (L =K, u(l-k=n+1)]"

O=fc,..... (b, b,]
(A.3)
Define further
(1) =4 ()0 (A-4)

‘The least squares problem requires that 6 be chosen in

such a’'way that the cost index

(A.S).

.,/"(()):‘,lic(t)?' ‘
2 &
is minimized, where
o ((D=y () =9(), t=1,....N o - (a.6)
(// » Equépion (A.S) can be written in vector notation as
o . (A.7)
J(())=§<f.c
where .
“ c.=[((l)..‘.‘(;(N)]T_
,Invadaiticn,-define
2'='ry'(1)...y’<N)1T
‘and
V=0 ' L | o (A.8)
with—- | L ‘ ' —
ol )
. ,
OT(N).
Using this n$£étion, (A.7) cén_bedwritten,as (Astrém and a .

Wittenmark, 1984)
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2J(0)=2"9=yTd0-0"d") +0" b $0 (4-9)
Before proceeding further, a m%thod of minimizing anctidns
of the type given in Egn. TA.9) will be established]
Theorem A.1 - Completing the Séuare

~'Considef the following general cost function (Astrom and

Wittenmark, i984):

J(wy=u"Su+rTu+u"r ~ . (A.10)
whefé<S is a symmetric positive definite matrix of ofdér
llxn'and u and r are n vectors. The minimum of ./ with
respect‘to it can be obtained by setting

u=-5""'r ] . ' (A.11)
Proof:

EqugtionﬁjA.lO) may be rewritten as

J(u)=urgu+rTu+u7r

T - T -t
WSu+rTu+u'r+r’s ' r-rTs 'y

i

(u+S 'Y su+S ' ry-rTs'r
The first term is always nonnegative; thus the minimum is

obtained for ‘

u=-S"'r . (A.11)

and the minimum value of J(u) is

Joo=-r’S7'r : P (A.12)

m

Q.E.D.

Equation (A.9) is easiiy cast into the form of (A.10) by

defining ¥
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and ignoring > ') as it is a constant‘unaffééted éyﬁthe‘

2

choice of (. Hence, the least squares cost functional (A.5)

is minimized by setting

0=(e"d) o7y

-

=¢h )

where ¢ = (d'b)

pseudoinverse of the matrix .

A.2 Recursive Least Squares

(A.13)

¢’ is kxnown as the extended inverse or

It was shown in Section A.1 that 6 as given by (A.9)

‘minimizes the least squares cost fuctional (A.5).

@ ¢

Note;

however, that the dimension of the pseudeoinverse is NXWN,

where N is the number of observations. If 6 is to be iden-

tified online, the computational requirements are clearly .- .

. . 4
prohibitive. 'Hence a recursive

form of (A.13) has been

g

derived and is known in the literature as Recursive Least
. p -

'Squa:és (RLS). The derivation presented here closely fol-

lows that of Astrém and Wittenmark (1984) and bégins by

defining
el ] Cy(h
SNzl - [ rv)- '
SO ) .
LoT(Vy ] Ly (V)]
w:'iﬁén additional measurehent is obtained,

~



.

$(\) l‘ y(x+1>=‘ (V) ‘
+ 1) N+ 1)

.

(N 1) =
el

It is apparent from (° 3) that
O(N +1)=[dT(NV+ D)B(N+1)]  dTLN« 1)) N+ 1)
| STV (N = DO (V- ] |
BTN (MY + 0T (N o+ 1) (N - 1 (B35

Dropping for convenience the argument N\ - (V) and Y (X))

and the»argument‘A/+l of ¢(N+1), (A.15) can be written

o

AN ) =[BT b 00T STy oy (N - 1))
=(@7) Ty (@ e 00 ) - () )

(PTH+00T) oy (N + 1)

(A.ls)f
But from (A.12), " : v
O(N)= (b d) &y (A.17)

Z}ISO,

2' [(eTd+00") = (oTd) o7y
= (¢T¢+<p¢7)"'(¢7¢> ~dTo-go Y (b b)Y
== (@ e+ 007) 00T (Te) @Y
(6T o 007) 06T O(N)

from (A.17). This implies that Egn. (A.16) can be put in

the form

.;(N+1)‘=(>(./\f)+/<(,\')[y(N+1)‘—¢”'(;\/+1)()(,\/)] | (A.18)

where K(.N), the Kalman gain vector is given by
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| KbVVﬂ¢%NYHN>yMN+U¢WN+rnfmx+;)
;‘ =[P (N DI eV 1) - |
SPVEDRN ) . ’
" ' e S (A.19)
aﬁd "
PN+ 1) =[dT(N+ 1) SN +1)] | S (A.20)

P is called the covariance matrix as?itvmgy be shown to
be proportional to the variance of 0(') (Kétrém and
. Wittenmark, 1984).

At this pointvit is necessary to apply the Matrix Inver-
sion Lemma (MIL):

(A+BCD) ' = A" =4 B[C +DAT B ‘DA™ (A.21)
where A1, C and C'+DA™'B ére’nonsingﬁlaf square matrices.
- Setting Ao T, B=¢, C=1, apd D=3¢T,”(i.20) can be rear-
"réngedﬁto give ‘

PN+ T)=[0 d+00"]"

- 2 o L | i, -1 : ,

=) - (@) p(1+0T(@T) o) 6T (T

or

Pf,(//\/)l¢(N+1)¢T(N+l)‘P(N) ‘ (A.22)
L+oT(N+1D)P(NIO(N+1)

P(N+1)=P(N)-

“which leads to
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_POVSN DTV )PV
L+ 0T (N + D)P(NYO(N +1)
PINYO(N + 1)

. . r ) , . '
= n g + .,‘\,_,, 5 N . N
<0 (V= )P (Ve Y DPODeV -

N(N)Y=P(NYO(N+ D)

0 (N D)PCNIO(N+ D] T
KN = PINYO(N + 1)
ST L+ (N DP(N)O(N + 1)
(A.23)

v AN

Hence, the sequenge of calculaﬁ@%ns for computer implementaf
tion at time t=N+1 is . w

1. »Calculate ~N({N) uéing (A.2§).

2. Update O(N+1) using (A.18).

3. Update P(N +1) using (A.22).

Note that the algorithm requires the user to specifﬁ 0(0)

and P(0). P(0) is generally chosen to reflect the degree of

“\certainty. regarding 0(0). =
-The RLS cost functional Egn. (A.5) weights all data

equally. This approach leads to sluggish identification if

0 is time-varying. Therefore, (A.5) can be modified to B

G e

3

include "exponential data forgetting" as follows: D

L& | b (A.24)
J(O)=5ZKN ‘e (1)? ? -
<]

where O<A<]l. A 1is called the "forgetting factor" and it

s

is seen that the choice A< places more weight on newer
data points. A parallel development to that given above for
(A.5) leads to the modified gain and covariance updates:

P(N)da(.\w‘l) , (A.25)
A+ o (N+DYP(NYO(N+1)

e \

K(N)=



<

PN+ 1)=| P(N)-

A+oT(N+1)P(NYG(N+1) |

-~

)
A.3 The Kalman Filter

The Kalman filter is designed to provide a minimum vari-

ance estimate of t&%?process states given the.model:
} ,
( L
N+ D)y =dN () Ault)+Tn, () (A.

() =T11x () +n,(t) (Ai

/’(.r\/)(b(N+l)¢>T-(N+l)P(N)J_I_ (A.26)

27)

28)

The process noise 7n1,(-) and the measurement noise n,(-) are

v

random sequences with zero mean?.he.
E{n, (O)y=I{n,(t)y=0,
have nQ-tihe éorreiatibn or are "white noise", i.c.
(O, () = F{r(Dny(j)y=0, Yi#j
and have covariances or Znoise levels" defined by
F{n, (t)n|(L)y=R, »' |
En,(OnL(1)) = R,

It is proposed to design an estimator of the form

4 -

NOERIORIOICIOR:FIO) S (A.
where . ‘ N
?(z+1_)=<1>_\‘-(z)+;\u(z) ‘ | o A(A-

The Kalmanggain'vecto;'L(O is to be chosen such that the
estimate <(!) is optimal.‘quuétion CAf29) is referred to
the "meésﬁrement update"f.(A.BO) is called the estimator
"time.dpdate"; (

Comggring this problem to the identgfication problem

Section A.2, it is evident that the measq#ement equatian

(A.28) is similar in form. to Egn. (A;Z);(thus the optimal

~

29)

30)

as
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state estimation solution is given by Eqns. (A.18), (A.22),
and (A.23) with A=R,. With modifications for notation, the

?gglution equatibns are N
. : &
SO =X MOHT(HMOHT+RDZ (v (1)~ HN () (A.31)
P =M - MOHT(HM(OHT + /‘e_;ﬁ)"/»/,\r(r)/ (A.32)
after making the replacements
O(N+1)- (), O(N)Y> (D), 67 ()~ H;

P(NY=M(L), P(N+1)=P(L), /x—wez

It is noted that M(:) represents the.estimation error

covariance before measurement; P(') is the error covariance

-~

after measurement. 'Subtractiﬁg (A.30) from (A.27),

N D) =X D) = () -+ Ty
so the error po?ariance before measurement is' apparently

equal to

i

E{(x(t+ 1) =X+ 1) (x(t+ 1) =Xk 1)y
= E(IO (N () =)+ T (0] [ (x ()= X))« iy (1))
If n,(t) and n,(t) are uncorrelated, and x(¢{) and n,(l) are

uncorrelated, the cross pro&uct terms vanifj, leaving

EQ(e(ts 1) =% (t 1) (x(t+ g )

= L{d(x(1)- 3 z))(x(z)—_{-(z))’f@+ Fn,(Onb)r’y
- ;gi“ﬁ o »

or wy”

(A.33)

MU+ 1)y=oP)e"+TR, IT

where &z

M)y = E{(x()=>@)(x)-x()) )
Puyffux<w—fu>k;g)—fu>f>
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The Kalman filter algorithm can theref&re be summarized

» oy
4 Pl

as

a) Gain Calculation

L= MM H R, | »(A.34)
b) JMeasurement deéte_

i) A Posteriori State Update

S =X () + L) (7 ()= HX (1)) (A.35)
'iii A Pbétefiori Covariance Update '
PY=M()~L(L)HM() (A.36)
c) Time Update !

i) A Priori State Update '

XL+ 1)=dX(t) - Au(t) - (A.30)
ii) A Priori Covariance Upaate | .

M+ 1)y=dP()d T+ 1R, TT - (A.33)
~ .
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Appendix B

Innovations Analysis for the Modified KFP

4

Writing the Kalman filter update (A.35) for (2.33) and

B ‘(2‘.34)‘,

%’ T 1) =@ L0 A () L+ 1) (B.1)
S w(OMBD -y B

o =;/(t;)—//l<1>l.\""(t—'1_)**’iH_l,\lu(!—1) L ~(B.2)
where - o~

‘ 11 0 0
4 4>,1=‘r q,]- f\r=[/\1- 1, =0 1]

and the Kalman gain vector

L={Ly Ly, Loiy) )

s

Using successive forward subiﬁitution for states p to n,

X () =[1= A=, (OD+B(="DHu(t-1)+ /\',(::‘:”)u)(z)
; A\

-«

L w( . " (B.3)
LIGBES -
where
D(::-l)=Lp[yn::'-l+...+yl::'"]\ : | (B.4)
and K,(=7") is defined by Egn. (2.13).
Similarly, fo: states n+! to n+d-1,
~.\"-,,-d_1'(z)=::‘=”.€~n(é()+-/<2(::")w(z) o T (2.12)

where K,y(z3%) is defined by (2.15). 'Equafion (B.3) implies

that : o

L, ()= /1"(:r.")B(z"‘)u(:~ 1)+/1"(::")/<",(;:“)uﬁ(_t)

s eaT T HED L
} S - (B.5)
@
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) \
'so that o : ~
- "-1 -1 -1 N A . ‘/ ’
g (U= 1) = 277 (T B2 e - 1) p -
' - - : o
s AT ETYK (2w (D) KL (2T Hw ()
.. . ',._”.W(. )D(= )= | . (B.6)
From (B.2), v
(D)=t =-1)+w(t)
=1 (= 1) H A u(t= 1)+ w(t)
Note that for d=1, ‘ \
Hy® =[0,0,....1,0] 4 (neae )
and //;\ | =0. Therefore,
Y == D) s w () \ ‘
= T (L= 1)+ (1) |
== (ETYB (T DU - Dy F 2T AT (2K (2 DY w ()
AT T AT K (2w
;
cd e, - " t
) A R CRNY & ‘)w—i)
=TT YB (=) 1)
+:.:_d.‘l._l(.’:-l)v’1 :,_L)A(}U—(l2
A
o0 " ) )
R Cb BTGRP PR
A
o ld - - uu’t)\
g yD( T el
( (=7, 3
or
B(="" Co T w( . (B.7)
(D= —u(t=h) s = —<—
o . Az, ;



where

C="D) 242" (1+ K, s2UR G2 IN e s T DTy (B.8)
Equation (B.7) is an ARIMA representation equivalent to the
stgté‘space model (2.33),‘(2.3£j. CQ}'T)is now defined as.
‘é monic polYnomiai of order n+d;\: |

To obtain an optimal k—step-aﬁ%aﬂﬂestimate of y(t+d+1),

E{y(t+d+1" Y=y +d+1})

s~ = H (U dERL L)

A
t+d .
=H L S{IR(O* Y H U AN u()) o
o
=YL (D) ma, X ()b ()
¢ But from (B.1), e
T 1) =y, x, () £, ()=, €, (0D + 0w - Lw (1)
Thus,
2 ' \
JU+d+ 1 0)=X, U+ 1)-L,w(t+1) (B.9)
But (B.5) implies that - )
L 1) = AT ETY BT Y u () AT (TR (2T Y (L 1) e
,-‘ ) ) l+l ) i
+Al(zl)D(zf)&i———2 &

A : s

Therefore,

o ty

J i o R
JU+d= 1 1)y=A""(=""YB(z Yu(y)
*?rl(zq)ﬁi(z_lﬂp(g:l) -
WY + A 1(:, l,)_D(’_l (A.)(l*’ l) yy . 3
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o

< - ./j(,, |>(,
= w(ly >
Az L

KL G =L AGT A D)) w ()

L

AC=TH) T A

B(="") Ks(= )w(t)
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(/+(/+1|z)-——— w(t)y+ - - :
| ACzh) A(=z"1y A \/ . T (B.10) .
where . /
R = KT S LA YA D( )T (B

Rewrltlng (B.7) in terms-of w(t)/A(="'Y/A and substituting

in (B.10), Co-

/({+(l+lll)

3]( il(t)

\

. - (
~ C(::'.‘>L/(” ST e

or
A
!
&

JUK =6 (=7 Cp(=7DIY ()= (=7 Hu(D)]

PINETRED énd/G,\,(:") are as given in (2.3), and

N e - ;%5 (B.13)
Cp(z )= N
. - C(e="") ‘ iy, ge
Returning to Egn. (B.8), - ‘ ”.P-"”“J;
LT AT KT ) 2 K (2 ) A 2T ID(ET
. s 7
AT K= ) 2 KA o
S —f:“.~<:">(1+K2<:‘-1)->+:\\f* "K1<z“>]
. ' ,_-(i[)(N ) T | : | \\//':J

~




S (AT K (= L, one
SRR TR [Q I N S S
R CRE N O T END EY ST N

e ) w1 .
S S CRED PR AR )Y E R Y

AR+ Ko(="')a+1, =7

-d-

o ‘[::"(/\'1(:");\—/4,,.-‘1(::")+’/)(-.-.“))1

Il

ACTDALI* Ko (=T il = e Ay,

6 +::"d”'[::’l(/\’,(‘::")A—[.,z.'l(::")+D-(::'l))l

1]

ACzTDAL K, (=)L, =™
L

| e E TR A S LA A DT ) L .
LTSty b
o =:1‘(::-1)L_\[("1+/\'2ﬁ J-l))*Ln::'d] [_

b+;;""l.[:‘:"(/\"l(:c"'_)—[_“/1(::'1))/\;/)(::-l)]’

So it is apparent that (B.8) can be rearranged to give an .

expression of the form:

C="1) _ (=1 w Ks(=™h) (B.14)

———=K (z )+ — : .
A(="Ha T A(z"HA

. | y

- where K;(=7') is as defined following Egn. (2.24). /
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Appendix C

Steady Stéte Operating Data for the Eﬁaporator

"The 'following list of steady state operating data for

the double effect evaporator was adapted from Wilson (1974).

\.:—.L‘
Symbol |Description Steady State
Tg Steam temperature “x 177.8 ©c
, T i '
Twil First effect tupe wall temperatu 108.3 °C
| . e 1083,
Wq First effect ‘holdup y/ 20.64 kg
Al ‘ - B
Cq First effect concentration \\. 1305 mol/m3
Hq |First effect enthalpy 440.1 kJ/kg
Tw2 Second,effect tube wall temperature |82.8 ©C
Wy Second effggt holdup “ 18.82 kg
! Co Second effect concentration 675 mol/m3
; ' -

‘| Ho Second effect enthalpy '311.9 kJ/kg
Tw3‘ |condenser tube wall temperature 42.2 ©cC ¥
S Steam flowrate 0.0151 kg/s
By First effect bottoms flowrate 0.0263 kg/s
B> /|Second effect bottoms flowrate 0.0120 kg/s

‘“F |Feed flowrate 0.0378 kg/s
Cr Feed cohcentﬁat}pn : ’ 211 mol/m3

Iug Feed enthalpy 364.9 kJ/kg.
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