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Abstract

In this work, a novel visual navigation method is proposed to estimate the

state of mobile and fixed cold-spray material deposition systems using a stereo-

camera sensor installed in the workspace. Unlike other visual localization al-

gorithms that exploit costly onboard sensors such as LiDARs or fully rely on

distinct visual cues on the robot and grid markers in the environment, our

method significantly reduces the cost and complexity of the sensory setup by

utilizing a cost-effective remote stereo vision system. This allows for the local-

ization of the target system regardless of its appearance or the environment

and enables scalability for tracking and operation of multiple mobile material

deposition systems at the same time. To achieve this aim, deep neural net-

works, kinematic constraints, and learning-aided state observers are employed

to detect and estimate the location and orientation of the deposition system.

A physical model of the system is fused with a remote visual sensing module

and is proposed. This accounts for frames in which depth estimation accuracy

is reduced due to perceptually degraded conditions in the cold spraying con-

text. The visual state estimation algorithm is evaluated on a fixed and mobile

setup that demonstrates the accuracy and reliability of the proposed method.

Moreover, a model predictive controller is formulated, designed, and im-

plemented to enable the task of autonomous mobile robot trajectory track-

ing. The architecture of the model predictive controller incorporates essential

kinematic constraints, input bounds, and control input smoothness, thereby

ensuring the generation of a feasible input for the autonomous mobile material
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deposition system to seamlessly trace a predefined trajectory. A comprehen-

sive comparative analysis is conducted between this model predictive controller

and its PID counterpart, encompassing a rigorous evaluation through a series

of simulated and real-world tests, aiming to elucidate their respective perfor-

mances and characteristics.

Keywords: Visual-based state estimation, deep learning, intelligent man-

ufacturing systems, material deposition, mobile material deposition, state es-

timation.
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Chapter 1

Introduction

The integration of autonomous robotic systems has played a pivotal role in

driving automation across various industrial applications [1]. These systems

have had a profound impact on enhancing safety, efficiency, and productivity in

sectors such as warehouse storage automation, manufacturing, medicine, and

construction [2, 3]. The utilization of autonomous robotic systems has yielded

a remarkable reduction in accidents associated with manual labor while simul-

taneously improving time and cost efficiency [4]. The growing global demand

for these systems has spurred extensive research in robotics and automation,

focusing on the development of innovative software and hardware solutions to

augment the performance of autonomous systems in existing use cases while

also exploring new avenues for their integration into everyday human activities.

The deployment of autonomous robotic systems for automated material

deposition and maintenance tasks holds substantial promise for various indus-

tries. The ability to automate these processes not only increases efficiency

but also offers significant advantages in terms of precision, consistency, and

safety. Automated material deposition, for instance, finds applications in di-

verse domains such as coating, painting, and surface treatment. By leveraging

autonomous robotic systems, manufacturers can streamline their production

processes, achieve high-quality outputs, and reduce waste [5].

In the context of maintenance, the use of autonomous robotic systems al-

lows for timely and accurate inspections, repairs, and maintenance operations

in challenging environments that may be hazardous or difficult to access for
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human workers. This includes tasks such as structural inspections, pipeline

maintenance, and equipment servicing. The adoption of autonomous systems

for maintenance activities brings about improvements in efficiency, reliability,

and safety while minimizing downtime and reducing costs [6].

To enable the successful implementation of automated material deposition

and maintenance tasks using autonomous robotic systems, two crucial com-

ponents must be addressed: state estimation and control algorithms. In state

estimation, the goal is accurately determining the position, orientation, and

other relevant states of the robot. Precise state estimation is essential for

reliable trajectory planning, obstacle avoidance, and interaction with the sur-

rounding environment. Furthermore, control algorithms are required to ensure

that the robot accurately follows the desired trajectories, maintains stability,

and achieves the desired performance metrics.

In light of these considerations, the present research aims to contribute to

the advancement of state estimation and control algorithms for automated ma-

terial deposition and maintenance using fixed or mobile robotic systems. The

development of such algorithms in these areas will enhance and enable robotic

platforms to perform complex tasks with precision and reliability. By intro-

ducing novel approaches to state estimation and control that can be applied to

a wide range of robotic systems, this research aims to propel the adoption of

autonomous robotic systems in various industrial domains, thereby promoting

increased efficiency and improved safety.

1.1 Motivation

In the context of surface treatment and fabrication, both in industrial and

academic settings, the automation of primary manufacturing tasks assumes

paramount importance. A precise and repeatable material deposition is a

critical requirement in various industries, which can decrease variability and

inconsistency, leading to compromised product quality. The controlled move-

ment of material tools along pre-defined paths, with specific characteristics

such as stand-off distance, number of passes, angle of attack, and tempera-
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ture and pressure parameters, necessitates the use of automated systems to

achieve precise and consistent material deposition. Moreover, numerous sur-

face treatment applications are situated in environments inaccessible to human

workers due to hazardous conditions or challenging terrain. Examples include

the treatment of corroded pipelines traversing deserts or the maintenance of

radioactive nuclear power plants.

The implementation of automated material deposition systems brings sub-

stantial efficiency and speed to surface treatment tasks, resulting in cost and

time savings, and reducing the likelihood of human errors. These automated

systems are highly adaptable, requiring minimal hardware and software changes

when dealing with varying target surface sizes and shapes. This adaptability

empowers the production of tailor-made products, catering to specific cus-

tomer demands and enhancing manufacturing flexibility. The integration of

such systems aligns with sustainable manufacturing practices, optimizing ma-

terial usage and minimizing waste, contributing to resource efficiency and en-

vironmental preservation. Furthermore, the pursuit of automation in surface

treatment and material deposition opens up avenues for interdisciplinary col-

laborations and innovative advancements in fields such as robotics, material

science, computer vision, and artificial intelligence, driving educational and

research development.

In the proposed approach, we take advantage of a static sensory unit

namely, a camera that is fixed on a tripod in the working environment. The

utilization of a stationary/remote visual sensing system is strategically ad-

vantageous for countering perceptually degraded conditions caused by factors

such as dust, dynamic object movement, and varying lighting conditions. This

approach leverages the stability of the stationary setup and its elevated po-

sition in the 3D space, which enables us to identify dynamic objects in the

framework. Moreover, in contrast to an onboard sensory system, an external

sensory node offers a comprehensive view of the target system, enhancing its

resilience against issues like dust, material debris, and variations in lighting

conditions.

The potential applications of material deposition extend far beyond sur-
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face treatment. It encompasses a diverse range of tasks, such as autonomous

painting, welding, coating, surface finishing, 3D printing, and additive man-

ufacturing. The development of a general framework for autonomous control

and navigation of robotic agents is a central motivation in this research en-

deavor. By exploring the frontiers of automation in material deposition, this

work aims to revolutionize manufacturing processes, providing not only im-

proved efficiency and productivity but also safer and more sustainable solu-

tions for industries worldwide. As automated material deposition technologies

continue to evolve and advance, their transformative impact will extend to

various sectors, enhancing industrial capabilities and fostering innovation in

cutting-edge technologies.

1.2 Robotic maintenance and deposition sys-

tems

The endeavors made by robotic engineers and scientists in developing au-

tonomous robotic systems with the application of material deposition and sur-

face treatment, maintenance, and manufacturing can be summarized in two

main categories. The first category of such systems capable of enhancing au-

tomation for industrial purposes encompasses mobile robotic systems that can

navigate a complex environment. Furthermore, these robotic systems can be

further modified to enable better control over the workspace through manip-

ulators. The figure below demonstrates two examples of such mobile robotic

systems with the application of surface treatment.

Moreover, by employing fixed robotic systems, manufacturers can achieve

consistent and high-quality results while improving productivity and reduc-

ing costs when performing surface treatment in the industrial context. These

systems are designed while ensuring the safety of workers while leveraging the

precision and efficiency of robotic automation. Similar to their mobile counter-

parts, these robotic systems can also be equipped with necessary maintenance

tools for the task of autonomous manufacturing, welding, material deposition,

and much more. The application of such systems is through the following
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(a) (b)

Figure 1.1: Two prominent examples of mobile surface treatment systems. (a)
is an autonomous mobile robotic system designed for enhancing the surface
durability of ships by depositing anti-corrosion materials made by AMBPR©
[7]. (b) showcases a mobile material deposition (cold spray) system, engineered
by students at the University of Alberta.

figures.

In summary, the mobile and fixed maintenance and material deposition sys-

tems can improve efficiency, precision, and reliability all enabled by innovative

algorithm development in state estimation and controls. Having enumerated

and expanded on autonomous material deposition systems and why they play

a significant part in automation, some of the ongoing research is presented

in two principal components of their autonomy stack, namely the state esti-

mation and controls modules as the main focus of this thesis in the next few

sections.

1.3 Problem statement

The aim of this research is to incorporate autonomous material deposition and

surface treatment systems performed by fixed and mobile robotic systems in

order to increase safety and product consistency. However, in order to in-

troduce automation, the focus is on the primary modules in an autonomous

surface treatment system, namely state estimation and controller design. This

provides the opportunity to localize and control autonomous material deposi-
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(a) (b)

Figure 1.2: Two examples above demonstrate the application of fixed mate-
rial deposition systems in industrial applications. Picture (a) exemplifies a
DDSPLM additive manufacturing unit [8] with a deposition nozzle installed
while (b) demonstrates the fixed manipulator used for the task of autonomous
material deposition at the AHTST lab at the University of Alberta.

tion systems even in remote areas where accessibility is not feasible.

The problem addressed in this thesis research is twofold; The first part

involves estimating the state of the fixed or mobile material deposition system

through a fixed camera in the environment. Having attained the states (posi-

tion and orientation) of the autonomous agent in the face of uncertainties, the

second part involves the implementation of PID and MPC controllers to help

navigate the autonomous agent in the environment.

Traditional control methods, such as PID controllers, may suffer from de-

ficiencies, including agnostic handling of system constraints, occasional over-

shoots, and undershoots. Hence, there is a need to develop more advanced

control algorithms to optimize material deposition and surface treatment pro-

cedures. To overcome these challenges, more advanced control algorithms,

such as model predictive control (MPC), will be developed and implemented

for trajectory tracking of robotic systems in the context of autonomous ma-

terial deposition and surface treatment. MPC has shown significant promise

in providing greater flexibility in control design by incorporating performance

metrics and hard constraints on input and state variables. By predicting fu-
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ture system behavior over a finite horizon and optimizing control inputs ac-

cordingly, MPC can lead to stable and accurate trajectory tracking, ensuring

precise material deposition and surface treatment in real-world scenarios. En-

hancing state estimation accuracy will be explored through the integration of

fixed visual sensors and external landmarks to remotely estimate the robot’s

position and orientation. Developing efficient state estimation algorithms will

enhance the robotic system’s situational awareness, leading to improved path

following and precise material deposition and surface treatment.

Additionally, the research will investigate the impact of noise in state es-

timation and control commands, which can arise from uncertainties in the

environment and sensing modules. Evaluating the the developed MPC al-

gorithms against existing noise will be crucial in ensuring the stability and

reliability of the system in real-life scenarios.

1.4 Autonomous manufacturing and material

deposition

The autonomous material deposition process is a high throughput additive

manufacturing technique that combines and utilizes the speed and heat of

projectile material particulates with high fluid momentum loads to deposit a

layer of free-form structures and coatings. Such thermal spray processes enable

the manufacturing of a wide range of material deposition layers on substrates

of different geometries such as planar, cylindrical, and even irregularly-shaped

surfaces with large dimensions [9]. Such particles usually come in a variety of

different sizes from 1 to 50 µm in diameter. The particles are accelerated to

high velocities using a combustion flame or a cold spray deposition unit [10].

The successive inter bonding among the splats causes a build-up of deposition

materials, leading to a well-bounded layer with a thickness of more than 10

µm [10].

Integrating principles in automation and advantages caused by them in

manufacturing-related areas such as surface treatment has been the focus of

many studies up to date. A select number of such scientific works related to
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the area of integrating automation of material deposition and surface man-

ufacturing were explored in this section. For instance, in a recent study by

Jiangzhuo et al. [11], the need for optimizing the path for achieving desired

coating thickness in thermal spraying techniques using robot manipulators and

handling systems was addressed. A parametric coating thickness prediction

model was utilized, and the Nelder-Mead method was employed to determine

the optimal kinematic parameters of a zigzag path for uniform coating with the

desired thickness. The developed prototype system integrated these functions

and provided an optimal path directly, validated through a case implemented

with a homemade spray system and a robot system. Additionally, Nylen

and Edberg introduced a simulation method to optimize robot trajectories for

achieving uniform coating thickness and predicting transient coating temper-

atures on complex geometries [12]. The trajectory was optimized to ensure a

constant spraying distance, normal orientation to the surface, and adherence

to non-collision requirements, while the plasma was represented using a sim-

plified turbulence model and discrete particle model. As another instance of

work done on multiaxis robots for autonomous material deposition, Candel

and Gadow [13] emphasized the importance of high-accuracy robot systems

for efficient and reproducible thermal spray processes. Specialized software

tools were developed to simulate, generate, and implement torch trajectories,

considering their impact on coating deposition. Case studies demonstrated

practical applications, showcasing how such tools optimized robot trajecto-

ries for autonomous material deposition and surface treatment. This work

was continued by Bolot et al. [9], which focused on offline robot trajectory

generation for thermal spray applications, integrating it with thermal history

computation to analyze thermal stresses during the spray operation, consider-

ing impinging plasma jet and molten particle jet contributions.

In addition to the studies above, scientific approaches were developed for

optimizing robotic trajectories for performing thermal coating deposition to

increase the thermal and thickness efficiency of deposition. In a study by Z. Cai

et al. [9], the authors proposed a mesh-based trajectory generation approach

for thermal barrier coatings, focusing on optimizing the robot trajectory to
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achieve coating thickness homogeneity and uniform heat transfer distribution

on the coating surface. They demonstrated that by doing so, they increased

the effectiveness of deposition by increasing the uniformness of the tempera-

ture field. In another study by Hegels et al., post-optimization was utilized

to increase the efficiency of a designed path by making the thickness of the

deposition uniform across the deposition substrate [14]. The method used a

high-quality GPGPU-based simulation of the spray process to evaluate coat-

ing thickness error and kinematic path quality, efficiently delivering improved

paths that reduced the coating error on real free-form surfaces by up to 3.5%

of the original value in every case study. The post-processing optimization

aimed to reduce thickness error caused by imprecise design, adapt the path to

changes in spray gun or technology, accommodate slight incremental changes

in workpiece geometry, and improve path execution by the robot.

In general, the reviewed papers on the usage of robotics in automation

demonstrate significant advancements in various fields, ranging from indus-

trial manufacturing to surface treatment and material deposition. These stud-

ies have explored the integration of robot systems for tasks such as trajectory

generation and optimization, path planning, and state estimation, leading to

improved process reproducibility, coating quality, and efficiency. However,

despite the progress made in these areas, some limitations persist, including

challenges related to handling deposition environments in which a fixed mate-

rial deposition unit may not be able to operate, as well as addressing the state

estimation part, which may not be possible to perform using the conventional

localization techniques due to the existence of visually degraded environments

in the material deposition context. In the next section, some of the exist-

ing studies that address these challenges in state estimation and controls are

summarized, providing further insights regarding the necessity of this work.

1.5 Visual based state estimation

The task of visual robotic state estimation has been extensively researched in

the field of robotics. As highlighted in the preceding discussion, the implemen-
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tation of autonomous robot navigation and operation in indoor environments

has led to the automation of diverse tasks, ranging from warehousing opera-

tions to transportation services and automated maintenance [15, 16]. At the

core of enabling such complex tasks lies the crucial step of acquiring environ-

mental information to accurately estimate the state of the robot.

In the field of visual state estimation, challenges arise when static land-

marks are solely relied upon [17], where identifiable features continuously vary

in location over time. Consequently, the performance of such methods may de-

grade, and accurate state estimation becomes more challenging. Additionally,

errors due to wheel slip can lead to state estimation drift over time [18] when

IMU sensory data is integrated with wheel odometry. These limitations call

for more sophisticated state estimation approaches that account for dynamic

environments and mitigate drift issues.

Moreover, conventional multi-modal methods for state estimation that rely

on onboard sensory setups, such as cameras, LiDAR, and Global Navigation

Satellite System (GNSS), may encounter difficulties in specific environments.

In cases where visual cues are lacking, such as environments with limited tex-

tures for visual node [19], or environments lacking 3D distinct features for

LiDARs [20], the performance of visual and LiDAR-based state estimation

methods may be compromised. Similarly, in confined environments or re-

gions with obstructed GNSS signals, traditional GNSS-based methods may

face challenges [21].

One possible solution to the state estimation problem is to use fixed sensors

in the environment and estimate the states of the system remotely. This

becomes exceptionally vital in scenarios where a network of robots operates

to carry out a certain task, where the cost associated with replicating the

sensory system on individual robots may become prohibitive to implement in

real-life [22]. The integration of fixed visual sensors with a limited field of view

on the robot’s workspace, as well as active landmarks with a specific design

to determine the position and orientation of the robot clearly, was proposed

by Jankovic, et. al [23]. The performance of this method can be affected

by improper illumination and the landmark’s unique design, as well as color
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thresholding of the landmark for image processing.

The proposed method by Shim and Cho [24] relied on installed indoor

surveillance systems using several neighboring cameras, constructing two-dimensional

maps from multiple image planes. However, this method lacked support for

multiple robots and assumed prior knowledge of the environment’s structure,

necessitating an extensive calibration process for the camera network. In a

similar study by Babinec et al., localization was performed by utilizing mark-

ers developed for augmented reality, installed in the environment [25]. The

accuracy of this method is influenced by the number of markers in the en-

vironment. State estimation was achieved for automated guided vehicles by

utilizing data fusion of an externally installed camera and internal laser range

scanner to reduce estimation uncertainty [26]. The pose of an RGB-D cam-

era was estimated by Fei et al. [27] by incorporating convolutional neural

networks (CNN) for extracting image features and long short-term memory

(LSTM) units to consider the temporal data of the image frames. In another

work by Song and Chang [28], a multi-camera mobile robot poses estimation

was proposed, where the pose of a mobile robot was estimated by utilizing a

marker installed on the robot, and the occlusion problem was addressed by

switching between the cameras as the robot left the field of view of the ego

camera. Lastly, a two-stage localization and instance identification technique

was proposed to estimate the pose of a mobile robot [29]. The first stage pro-

vided the robot bounding boxes for the orientation estimation convolutional

neural network. However, this method was highly dependent on the position-

ing of the camera, environment lighting, the robot’s shape and structure, and

the color of the ground on which the robot was operating.

Similarly, Feng et al. [30] considered the three-dimensional localization

problem of a mobile robot and used a network of wirelessly connected vi-

sual sensors to perform the recursive least squares localization method. This

approach also relied on the color information of the mobile robot, and the sta-

bility of the network communication influenced the robustness of this method.

The mobile robot’s drift challenge over time was addressed by Flögel et al.

[31], where a slip-aware kinematic model of the robot’s motion was utilized to
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forecast the motion of the robot, and this model’s prediction was fused with

an object detection-based visual tracking state observer output for the loca-

tion and orientation of the robot. A similar approach was implemented in [32]

where the depth map of each frame was obtained through a monocular dis-

parity estimation neural network, and the 2D bounding box on image frames

was applied to obtain the position of the mobile robot.

In other works addressing the problem of visual 3D pose estimation of ob-

jects, complex neural networks were designed and developed to learn visual

features in the input images and output the pose of the target object in an

end-to-end manner. For instance, Hu et al. [33] introduced a novel 3D object

detection method for mobile autonomous units, combining monocular image

input with cascade geometric constraints to achieve robust detection. The

framework consisted of two stages: the first stage used CenterNet with an

additional branch to regress orientation, dimension, and center projection of

the bottom face. In the second stage, cascade geometric constraints filtered

out imprecise 2D bounding boxes, leading to improved 3D box output. The

proposed method did not rely on external sources and could be trained end-

to-end. As an additional example, the method proposed in [34] addressed

the problem of occlusion and improved monocular 3D object detection in au-

tonomous driving by considering the relationship of paired samples, encoding

spatial constraints for partially-occluded objects from their adjacent neigh-

bors, and jointly optimizing uncertainty-aware predictions for object locations

and 3D distances through nonlinear least squares. To exemplify methods that

relied on deep learning to extract 3D information of mobile agents, [35] in-

troduced a novel pipeline for 6D object pose estimation from RGB-D images

using raw point clouds, demonstrating robustness against object variations

and occlusions and outperforming state-of-the-art methods on the well-known

LINEMOD and Occlusion LINEMOD datasets.

There are several critical restrictions that prevent the application of such

end-to-end deep learning-based methods for 6 degrees of freedom state estima-

tion. Firstly, the development of such a method requires extensive manually

labeled 3D datasets [36, 37] that cover a variety of cases for target object
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localization. Furthermore, gathering and labeling such vast datasets can be

time-consuming and costly, requiring many hours of work and manual actions.

In addition, the kinematic constraints and physical nature of the problem seem

to be overlooked in the end-to-end learning methods. Moreover, one may face

a trade-off between accuracy and real-time performance when heavily relying

on end-to-end machine learning (ML) based methods. These rely on com-

plex networks, which prohibit their use in real-world applications with limited

computing power in which creating and labeling the datasets is not feasible.

Finally, it seems that there is a gap in the literature in finding the pose of arbi-

trary objects, with a restricted number of training instances. When looked at

as a whole, the 3D object detection community mostly focuses on autonomous

driving applications, and the existing works on detecting and tracking the pose

of objects outside of this application are limited, which will be addressed in

this work.

1.6 Motion planning and controls using sta-

tionary sensors

The challenge of achieving autonomous maneuvering for mobile robots has

been extensively explored in prior research. Numerous conventional approaches

have evolved into optimal control-based methodologies, wherein control inputs

are computed at each time step [38], considering both historical and predic-

tive error information. This focus on model predictive controllers stems from

their effectiveness in trajectory-tracking tasks, which makes them a compelling

choice for our investigation [39].

The trajectory-tracking challenges in autonomous mobile robots are typi-

cally addressed by devising control laws that enable the agents to follow prede-

termined, feasible trajectories. However, this approach encounters limitations

due to the complexities of the vehicles’ dynamics [40], which entail nonlin-

ear terms and significant uncertainties, making the computation of feasible

trajectories a formidable task. Moreover, in the presence of tracking errors,

controllers may attempt to synchronize outputs with time-parameterized de-
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sired outputs, leading to difficulties in closed-loop performance and generating

excessively large control signals [41].

Path-following problems revolve around the design of control laws guid-

ing an object to reach and adhere to a geometric path, while simultaneously

satisfying additional dynamic specifications. In this study, the application of

model predictive control (MPC) theory to path tracking for mobile robots,

particularly in the context of nonholonomic mobile robots, is focused on. The

investigation encompasses both linear and nonlinear approaches, addressing

the primary research concerns related to MPC and nonlinear model predictive

control (NMPC) in mobile robotics. Instead of taking a global perspective on

MPC theory, this literature review centers on its specific application to mobile

robotics. Given the high dynamism of mobile robot systems, the challenges

posed by path tracking are noteworthy and warrant comprehensive investiga-

tion.

As a prominent example, a learning-based nonlinear model predictive con-

trol (LBNMPC) algorithm was introduced by Ostafew et al. [42] to enhance

path-tracking accuracy for autonomous mobile robots during repeated traver-

sals along a reference path. The LB-NMPC algorithm leveraged a straightfor-

ward a priori vehicle model and incorporated an adaptive disturbance model.

To account for disturbances, they employed a Gaussian process (GP) based

on data collected from prior traversals, considering the system state, input,

and other pertinent variables. Similarly, Lim et al. [43] proposed a nonlin-

ear model predictive tracking control scheme tailored for a nonholonomic un-

manned ground vehicle (UGV). Their approach combined high-level guidance

control utilizing kinematic approximation for UGV motion with an NMPC

algorithm to address trajectory planning and optimal control problems. Fur-

thermore, an updated investigation by Ostafew et al. [44] focused on outdoor

mobile robots. In contrast, indoor mobile robots were often preferred for re-

search due to their controlled environments, which allowed for more in-depth

exploration of specific issues. Many researchers focused on obtaining feedback

laws that ensured the asymptotically stable equilibrium of the closed-loop sys-

tem [45]. As a result, MPC theory emerged as a potential solution to address
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this control problem. MPC aimed to solve optimization problems by predicting

the system’s behavior over a specific horizon, considering input and state con-

straints. Ensuring system stability with the chosen prediction horizon became

a major concern, and studies showed that an infinite predictive horizon could

guarantee stability for a system [46]. Nonetheless, the choice of an infinite

predictive horizon might not be feasible for practical nonlinear systems. Sev-

eral approaches to optimal control were introduced, including MPC [47–49].

Although MPC methods vary in model representation, noise representation,

and cost function minimization techniques, they shared a similar structure and

offered the necessary degrees of freedom to address the control challenges effec-

tively. As Findeisen and Allgöwer [50] explained, the model predictive control

(MPC) problem entailed solving an online, finite horizon open-loop optimal

control problem, taking into account system dynamics and constraints con-

cerning states and controls. Leveraging the system model and measurements

obtained at time t, the MPC controller predicted the future dynamic behavior

of the system over a prediction horizon and subsequently determined the input

that optimized a predetermined open-loop performance objective function. In

ideal scenarios without disturbances or model-plant mismatch, and under the

condition that the optimization problem could be solved for infinite horizons,

this enabled a coherent and consistent control strategy for the entire system

operation. Indeed, NMPC implementations showed promise, but they came

with challenges related to nonconvex optimization[51, 52]. Consequently, the

tuning of controller parameters became crucial to achieving satisfactory per-

formance. To ensure asymptotic stability, NMPC typically required terminal

state constraints [53].

Researchers have made significant efforts to address the challenges posed by

online optimization in NMPC and achieve asymptotic convergence of tracking

error. For instance, Hedjar et al. [54] propose the use of Taylor series approx-

imation in the prediction model to tackle the online optimization issue. With

advancements in computational power, experiments have been performed us-

ing more complex robot models [55–57]. Moreover, NMPC has been extended

to handle obstacle avoidance in scenarios involving nonholonomic robots [58–
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61]. Recent research efforts have also focused on the stabilization of nonholo-

nomic mobile robotic systems [62]. Furthermore, Abbas et al. [63] conducted

a study to assess the performance of NMPC controllers concerning the look-

ahead horizon. They compared two different obstacle avoidance methods and

tested NMPC in a range of simulated but realistic tracking scenarios that

involved static obstacles on constrained roadways.

The problem of stability has also been well-addressed in the context of ap-

plying MPC in mobile robots [50, 64]. However, in the context of inherently

nonlinear systems, particularly in highly dynamic environments like mobile

robotics, linear models often fall short of accurately describing the system

dynamics. As a result, nonlinear models become necessary, leading to the mo-

tivation for employing nonlinear model predictive control (NMPC) techniques

[50, 64]. To accommodate the control of time-varying nonlinear systems with

input constraints, Fontes proposed a novel NMPC framework in 2001 [65].

This approach introduced a set of design parameters that enable a priori ver-

ification of the stabilizing properties of the considered control strategies. By

relaxing traditional assumptions on the continuity of the optimal controls and

the stabilization of the linearized system, the class of addressable nonlinear

systems was significantly expanded, including certain nonholonomic systems

that could be stabilized effectively by NMPC [65]. Gu and Hu delved into the

application of receding horizon (RH) control for nonholonomic mobile robots,

aiming at regulation and tracking control [66, 67]. Stability in RH control was

ensured by incorporating a terminal-state penalty in the cost function and

constraining the terminal state within a specific region in the optimization

constraints. Their work revealed that the RH tracking control had the re-

markable capability of simultaneously achieving both tracking and regulation

objectives.

Furthermore, Yang et al. addressed the stability issue in MPC from the

perspective of formation control and obstacle avoidance in a group of nonholo-

nomic mobile robots [68]. They introduced two control algorithms, formulated

to solve the optimal control problem while considering cost functions coupled

with the dynamics of each interacting robot. The incorporation of a poten-
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tial function defined the terminal-state penalty term, and a corresponding

terminal-state region was added to the optimization constraints.

These studies represent significant contributions to the development of

NMPC for nonlinear systems, particularly in the context of nonholonomic

mobile robotics, and their findings pave the way for more sophisticated and

robust control strategies in dynamic and uncertain environments. The con-

tinued exploration of NMPC techniques holds the potential to revolutionize

the field of robotics and enable the safe and efficient operation of autonomous

systems in a wide range of applications, including path planning, formation

control, obstacle avoidance, and beyond.

1.7 Research objectives and contributions

As highlighted in the previous sections, accurate and reliable localization, con-

trol, and navigation of autonomous mobile robots using fixed low-cost sen-

sors in the autonomous material deposition context remain an open challenge.

Solving this challenge can lead to increased accuracy, repeatability, and cost-

effectiveness of the robotic surface treatment systems, therefore, decreasing

human labor. In this study, a unified novel visual localization and navigation

framework is proposed to estimate the state of a mobile cold spray material

deposition system and to control the autonomous material deposition unit on

a predefined path. The main goals and contributions to this work are:

• Incorporating deep learning into the framework while reducing the num-

ber of training examples needed to implement the framework, by ad-

dressing depth estimation and object detection in separate modules.

• Developing a learning-aided object localization and orientation estima-

tion framework, independent of the physical structure of the environment

or the robot.

• Designing and developing a physical motion model of the system consist-

ing of a material deposition head and a mobile platform.
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• Fusion of the physical motion model of the system with the remote sens-

ing module’s output to account for perceptually degraded conditions.

• Incorporating optimization to impose kinematic constraints on the visual

state-observer.

• Developing and implementing amodel predictive controller for the task of

trajectory tracking, while taking into account the kinematic constraints

of the material deposition agent.

• Unifying the state estimation and control algorithms in a single frame-

work called ”infrastructure-aided visual navigation”, allowing the surface

treatment scientists to incorporate automation to increase reliability, and

deposition accuracy in their material deposition tasks.

1.8 Thesis organization

In this thesis, a comprehensive exploration of incorporating autonomy into

the surface treatment industry with a specific focus on autonomous material

deposition using fixed and mobile robotic systems is undertaken. The essential

need for autonomous systems in surface maintenance is emphasized, highlight-

ing the significance of developing necessary modules for material deposition.

The organization and structure of the subsequent chapters are laid out, col-

lectively contributing to achieving the research objectives.

The methodology adopted for state estimation of the autonomous agent,

a crucial aspect in ensuring accurate and reliable performance, is delved into

in the ensuing chapters. The experimental setup, encompassing both fixed

and mobile manipulators, is elaborated, followed by an in-depth explanation

of the visual state estimation framework. The subsequent chapter extensively

elucidates the model predictive algorithm employed for the precise control of

the robot along predefined trajectories. The research then presents the results,

showcasing a thorough and comprehensive investigation of the state estimation

framework and the model predictive control algorithm. This analysis encom-

passes both quantitative and qualitative aspects, allowing for a comprehensive
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evaluation of the proposed methodology in comparison to the traditional PID

counterpart.

The conclusion section serves as the final summation, consolidating the

findings derived from the various research chapters. By reiterating the core

outcomes and contributions of the thesis, it underlines how the proposed

methodology effectively addresses the challenges associated with visual navi-

gation in the domain of autonomous material deposition. Through this orga-

nization, the thesis aims to provide a systematic and in-depth exploration of

the potential of autonomous material deposition systems, contributing to the

advancement of autonomous surface maintenance applications.
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Chapter 2

Visual state estimation for
material deposition systems

In this chapter, the proposed methodology for estimating the state of an au-

tonomous material disposition agent in a working environment will be ex-

plored. The real system setup used for experimentation will be described,

providing essential details of the visual state estimation framework. Emphasis

will be given to possible choices for 2D detection, a crucial step in identifying

the target agent for localization.

The investigation will continue to cover 3D projection, point cloud pro-

cessing, filtering, and optimization steps, all essential in determining a 3D

bounding box for the robotic agent. Additionally, the implementation of a

learning-aided state observer will be studied, enabling the production of a

smooth and consistent estimation of the system’s state.

It’s crucial to highlight that our visual state estimation framework is de-

signed to effectively address the various forms of noise inherent in sensory

data. Ensuring swift convergence to accurate states demands meticulous noise

management. To achieve this, we introduce statistical filtering techniques for

refining dense point cloud representations, along with a constant acceleration

motion model to counteract visual sensor-related noise, particularly tackling

occlusion-related noise. Additionally, we integrate adaptive covariance matri-

ces to model noise across visual and encoder sensory nodes, a key element in

the Kalman filter fusion process.

By presenting the step-by-step process of the proposed methodology, this
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chapter aims to provide a comprehensive understanding of how autonomous

material disposition agents’ state estimation is achieved in real-world working

environments. The utilization of visual state estimation, along with 2D and 3D

processing techniques and learning-based state observers, forms a framework

for accurate and reliable state estimation in this context.

2.1 System setup

This section is dedicated to illustrating the experimental setups utilized to

generate a proof of concept for our methodology. To examine the generaliz-

ability and scalability of our framework, we will consider the case of a mobile

and fixed material deposition system.

Deposition Torch

Camera Sensor

(1) : Right Imager
(2) : IR Receiver
(3) : Left Imager
(4) : IR Transmitter

(1)

(3)
(2)

(4)

𝑋𝑐

𝑌𝑐

RBG-D Camera

𝑋𝑟
𝑌𝑟

𝑍𝑟

𝑍𝑐

Figure 2.1: System setup including the 6 dof MOTOMAN HP20 manipulator,
the deposition torch (dashed white circle), RGB-D camera shown on right
(dotted black circle), Position (three-dimensional) and Orientation (three-
dimensional) of the torch is estimated using the camera sensor.

The experimental setup for visual state estimation involved setting up a

stereo camera sensor on an elevated sensor holder device, as depicted in Figure

2.1. The main components of the experimental assembly included a flame spray
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Camera Sensor

Clearpath Husky Robot

Cold Spray Gun

Figure 2.2: System setup including the Husky Robot made by Clearpath, cold
spray gun, and camera sensor are shown. The goal is to estimate the position
(two-dimensional) and orientation (one-dimensional) pose of the mobile robot.

material deposition system (6PII, Oerlikon Metco, Westbury, NY, USA) used

as the test object.

The algorithm’s performance was tested and quantitatively evaluated on

two cold spray material deposition systems for visual state estimation. The

first system was the MOTOMAN HP20, a 6-degree-of-freedom manipulator

from Yaskawa America, IL, USA, used for automated material deposition tasks

in indoor environments. The setup of this system can be seen in Figures 2.1

and 2.2, which illustrate the deposition torch, the camera sensor, and the

body-fixed coordinate systems of both the deposition torch and the camera.

The mobile deposition system, on the other hand, consisted of a 4-wheeled
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Intrinsic Parameters
Description Property Value
Focal Length in X direction Fx (pixels) 382.73678
Focal Length in Y direction Fy (pixels) 382.73678
Principle Point X position Cx (pixels) 321.24
Principle Point Y position Cy (pixels) 239.32
Baseline B (mm) 50
Camera Skew Parameter s 1

Table 2.1: Table of stereo camera sensor properties and values

mobile robot, specifically the Clearpath Husky robot from Clearpath Robotics,

Kitchener, Ontario, Canada, along with the camera sensor and the cold spray

deposition gun. The dimensions of the manipulator’s end-effector, which was

the target for localization, were 0.1m, 0.057m, and 0.25m. The robot was

controlled using the NX100 controller with standard Ethernet connectivity to

personal computers.

The second test case involved the mobile robot, Husky, which is designed

for heavy-duty applications in both indoor and outdoor environments. It had

dimensions of 0.99m, 0.67m, and 0.39m. A holder was specially designed

and manufactured to install the cold-spray nozzle on this robot for remote

operation.

The stereo camera sensor used in the experiments was the Real Sense depth

Camera D435i from Intel, California, US. It comprised two grayscale cameras

(known as imagers), one RGB camera capable of recording color information,

and one infrared projector. Although the sensor could generate RGB-D im-

ages, we decided to use the grayscale cameras for depth estimation using the

CoEx network. The camera sensor captured 30 frames per second, with a

horizontal and vertical field of view of 87o× 58o and a frame size of 480× 720

pixels.

The camera sensor properties and intrinsic parameters were obtained through

calibration. Notably, the stereo camera sensor described in Table 2.1 was ca-

pable of rectifying the images and accounting for lens distortions internally.

Hence, the sensor’s output did not require further operations before being used

in the subsequent steps of the visual state estimation framework.
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2.2 An overall look at framework

This section outlines the research methodology employed in this work, with a

high-level perspective. We start by illustrating the contents of Figure 2.3. In

the first step, after receiving the left and right images from the camera sensor,

a learning-based method is used to generate a dense point cloud representation

of the target object. Confining our analysis to this point cloud instead of the

full environment contributes to the efficiency of our algorithm. After this

step, a 3D bounding box of known size is fit to this bounding box using an

optimization process which will be described in a future section. Knowing the

location and orientation of this bounding box, we use the predictions of the

physical motion model of the system to refine the estimated state through an

optimal variance filter, leading us to estimate the object’s pose. In the next

sections, we will discuss each stage in greater depth.

Motion Model

LSTM network

Predicted 
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Target
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Mask (M)
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Physically-informed optimal variance filter
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Figure 2.3: Visual navigation and remote sensing framework for the mobile
material deposition systems

2.3 Detection methods

This section focuses on the localization of the target object in one of the two

gray-scale 2D images, with the left image chosen arbitrarily for this purpose.

There are various approaches for detecting objects in images, each dependent

on the specific application. In this context, we will describe three existing

methods and explain why we opt for our chosen approach.
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2.3.1 Two-dimensional Object Detection

When dealing with two-dimensional object detection, the goal is to find a rect-

angular bounding box that encompasses the intended target object(s). This is

achieved by training complex convolutional neural networks capable of learn-

ing various patterns from a training dataset.

The process of two-dimensional object detection comprises two main steps.

The first step involves detecting the target object by estimating the x and y

coordinates of the top-left corner and bottom-right corner of the bounding

box. This information is crucial for the subsequent task. The second step is

object classification, where the detected objects are categorized into different

classes. The rectangular bounding boxes provide regions of interest (ROI) that

contain the objects.

The example in Figure 2.4 demonstrates the output of a widely used 2D

bounding box detector known as YOLO V5 [69]. This particular detector was

trained on a dataset of approximately 300 images. Although two-dimensional

object detection offers advantages in various scenarios, it may face limitations

in providing a tight and fine-grained bounding box for a target object. Conse-

quently, when dealing with sufficiently large target objects, the bounding box

might encompass other obstructing objects, leading to imprecise localization.

Given this limitation, it becomes imperative to explore alternative 2D lo-

calization techniques that are better suited for our specific application. The

goal is to find a method that can offer higher precision and accuracy in localiz-

ing the target object, particularly in environments where precise and detailed

object localization is crucial for the success of autonomous material disposition

tasks.

2.3.2 Instance segmentation

Instance segmentation is a widely adopted computer vision technique for de-

tecting objects with pixel-level accuracy. Unlike other segmentation methods

that group an image into regions or objects, instance segmentation goes be-

yond mere identification by tracking multiple instances of the same object

25



Robot

Figure 2.4: Detecting the mobile robot using the YOLO V5 framework in the
lab environment.

within an image. This capability proves particularly advantageous in scenar-

ios involving networked robots, where detecting and tracking each robot in the

image becomes crucial for state estimation.

By accurately locating and segmenting individual objects in an image, in-

stance segmentation assigns a unique label to each pixel belonging to an object

instance. Additionally, instance segmentation networks can differentiate be-

tween overlapping and occluding objects, a critical challenge in infrastructure-

based visual state estimation. Considering these benefits, we have chosen

instance segmentation as the primary component of our 2D detection module.

In our work, we employ OrienMask [70], a real-time instance segmentation

framework that addresses the challenge of designing highly accurate image seg-

mentors. Built around YOLO V3, this framework incorporates a mask head

that predicts orientation maps, serving as displacement vectors to differen-

tiate between foreground and background in an image. The discrimination

ability of these orientation maps eliminates the need for additional foreground

segmentation, allowing for efficient mask recovery. Moreover, instances with

the same anchor size share a common orientation map, reducing memory us-

age without sacrificing mask granularity. The framework constructs instance

masks concurrently from the corresponding orientation maps using the surviv-

ing box predictions after non-maximum suppression (NMS), resulting in low

complexity. The performance examples of this framework can be observed in
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the figures below.

Head 0.92

Robot 0.81

(a) (b)
Figure 2.5: Accurately detecting the bounding boxes for the robots using
OrienMask. The pixel contents of each bounding box are labeled using the
segmentation framework, providing rich information on the 2D position of the
target object in the image.

As can be observed from 2.5, the results of the instance segmentation

framework can be relied on, specifically, the problem of identifying accurate

object detection boundaries is addressed by selecting this approach and the

information is ready for the next steps of the algorithm.

2.4 Disparity maps

This section addresses the challenge of depth estimation using a stereo camera

sensor. This problem has been extensively explored in the literature for both

monocular and stereo camera sensors, employing a variety of solutions. How-

ever, the common aspect among most of these methods is the initial estimation

of ”disparity” for pixels, followed by converting the disparity information into

depth maps.

Estimating disparity is a fundamental problem that aims to determine the

amount of displacement occurring to a pixel, corresponding to the same point

in space when comparing the left and right images from a stereo camera sensor.

Typically, this involves matching patches of pixels or features in the left and

right image pairs, which is accomplished through techniques like pixel block-

matching [71], graph cuts [72], and other optimization-based methods. While
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these methods take advantage of stereo geometry and image characteristics

to estimate the disparity maps, they can face significant challenges in dealing

with occluded, texture-less, and noisy image pairs.

An alternative approach to traditional block-matching methods is to lever-

age the power of artificial neural networks, which offers several compelling

advantages for this application. Neural networks excel at learning spatial and

geometric features that establish links to depth information, enabling them

to understand complex correspondences between pixel pairs in stereo images.

When trained on extensive datasets, neural networks can handle ambiguities

and ill-posed problems caused by noisy images in stereo matching. Their abil-

ity to model contextual information and incorporate local cues for depth un-

derstanding, along with their adaptability and flexibility for end-to-end depth

estimation, make them an ideal choice for generating disparity maps in our

application.

Figure 2.6: Depth estimation epipolar constraints [31].

The ultimate goal of employing a disparity estimation module in our sys-

tem is to estimate the 3D position of points located on the body of the target

object. This is realized through the ’epipolar’ constraint, which ensures that

the vectors going through the center of the cameras shown as C1m and C2m

and the vector connecting the two cameras C1C2 shown in picture 2.6 lies on
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the same line. One of the real-time open-source and available neural networks

for the task of depth estimation is called ”CoEx” [73] standing for ”Correlate

and Excite”. In this work, the authors present a new method to address the

challenges due to complex and computationally expensive spatially varying

operations and introduce a concept called cost volume excitation. Addition-

ally, they propose using top-k selection before the final disparity estimation

for further enhancement of the accuracy. This algorithm was tested both on

the training dataset and in our case and the generated disparity information

is presented in the figures below. The areas with brighter colors represent

higher disparities (closer objects) and areas with darker colors represent lower

disparities (farther objects).

(a) (b)
Figure 2.7: Estimating disparity on the real setup. (A) shows the training
image and (B) demonstrates disparity inference.

As can be seen from figure2.7, a discrepancy in the performance of the

algorithm can be noticed going from the training image to the test image. It

is worth noting that the neural network was trained on the ”Flying Things”

dataset, a synthetic set of images with automatically generated labels used

for depth estimation and optical flow. Considering the performance of the

algorithm seen in figure 2.7, the flaws in estimating depth can be noticed at

different points of the image. Specifically, one can see the top left corner of the

disparity image and find the bright spot which is in fact supposed to be dark.

For this specific reason, we have to limit our analysis only to the target object

and enhance the estimate of the depth by filtering out parts of the disparity
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information that are incorrect in reality.

2.5 Disparity extraction and 3D projection

In this section, the focus is on extracting the depth information for the target

object to localize using the information from the last two steps. Specifically, it

will be shown how we the information from the generated 2D mask by instance

segmentation described in section 2.3 and the depth estimation method that

was illustrated in section can be uesd2.4.

The first step in this module is to extract part of the disparity information

that corresponds to the target object from the disparity image. This is done

by generating a binary mask of the target object by the instance segmentation

network and applying this mask to the disparity image. Figure 2.8 illustrates

this process in a clear manner.

Head 0.92 Extracting Depth Info

(a) (b)

Figure 2.8: Extracting disparity info from the disparity image. This is done
by applying the binary mask from the instance segmentation module to the
depth image.

After extracting the disparity information, the next step involves projecting

each pixel in the disparity image to a three-dimensional point cloud format.

This process can be accomplished using the following set of equations. First,

a projection matrix Q is defined, which can be derived from the intrinsic

parameters of the stereo camera.

The extracted disparity information can then be converted into a 3D point

in space with respect to the camera frame, enabling point cloud processing.
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The equations required for this step are as follows.

Z =
f.B

d
(2.1a)

X =
xc.Z

f
(2.1b)

Y =
yc.Z

f
(2.1c)

Where (X, Y, Z)T is a tuple of numbers representing each point in 3D

space, B and f are the baseline and focal length of the camera (in pixels) as

described in previous sections, and (xc, yc)
T are the pixel-level coordinates of

each projected point. Despite the fact that the above equations provide a way

of projecting the feature-matched pixels to 3D, for real-time implementation,

these equations mush be converted to vectorized form to allow fast and efficient

point cloud projection. Such calculations are made possible by introducing a

projection matrix called Q, which is used to encompass equations 2.1a 2.1b

2.1c. This matrix is defined as:

Q =


1 0 0 −Cx
0 1 0 −Cy
0 0 0 f

0 0 −1/B Cx−C
′
x

B

 (2.2)

Upon the introduction of this matrix, one can project a set of 2D points

Ps = {(xic, yic)T |0 < xic, y
i
c < W,H} using the following equations given that

W, H are the width and height of the image frame in pixels.


X
Y
Z
W

 = Q


x
y
d
1

 (2.3)

Which facilitates fast computation and allows for finding the homogeneous

coordinates of each 3D point using the intrinsic parameters of the camera.
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2.6 Point cloud filtering and outlying point re-

jection

In this step, the filtering process for improving the point cloud reliability and

eliminating the outliers in the point cloud is described. In this method, a

statistical outlier removal filter is relied on for eliminating outlying points

that are a result of errors in disparity calculation. It is beneficial to note that

such points usually exist on the edges of objects, badly illuminated areas in

the image, and areas lacking texture.

Figure 2.9: Error in disparity calculation in a glance. The areas in the picture
that are marked with a red box are points in the point cloud that lack the
required accuracy for reliable pose estimation. We strive to omit these points
from further calculations.

As can be seen from 2.9, some of the resulting points in the point cloud

seem to be a result of inaccurate disparity calculation, especially on the edges

of objects. The filtering process in our methodology happens in 2 steps. The

first step is done in the two-dimensional binary mask image generated by

the instance segmentation network. After receiving each mask, the erosion

morphological operation is performed on the binary image. This operator

computes a local minimum over the area of the given kernel and by moving

the kernel throughout the binary mask image, we replace the minimum value

of the kernel with all of the pixels in the area. The second step of the filtration
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process happens after projecting the disparity map to the 3-dimensional point

cloud. The key to finding the outlier points is to exclude the ones that are

far from their neighbors given a threshold that can be manually tuned. The

mathematical expression of the filter is:

Pk = {pi,k} i ∈ 1, ...,m ,Ni,k = {nj,k | norm(nj,k − pi,k) ≤ t} (2.4)

Where Pk is the set of the unfiltered point cloud in the k’th frame, Nik is

the i’th point in the filtered point cloud. Furthermore, t denotes the distance

threshold based on which the filtering happens. If the size of points in the

neighborhood of the point in question is less than the threshold, the point is

marked as an outlier and is rejected from further analysis.

2.7 Sequential optimization-based pose esti-

mation

Following our discussion on extracting and filtering the point cloud corre-

sponding to the target object, we would like to estimate the pose of the target

system. Specifically, having estimated a pointset Pk at time step k, our goal

is to calculate the position and orientation of the robot in question. The

following figure illustrates this fundamental problem.

Figure 2.10 illustrates the concept of pose estimation. At each time step,

we would like to find the position of the body-fixed frame denoted by l with

respect to the camera. Concretely, the vector C = [Xc, Yc, Zc]
T is desired to

be found as the vector that connects the origin of the body fixed frame to the

origin of the world frame, defined in the world frame coordinates. Furthermore,

the world frame itself is defined arbitrarily in a fixed position in the room.

The other, perhaps more important and challenging, part of pose estima-

tion is estimating the orientation of the target object in 3D space. In partic-

ular, the rotation matrix R ∈ SO(3) is calculated which defines the relative

orientation of frame l with respect to frame w. Finally, the pose of the target

object in the world frame will be defined as:
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Figure 2.10: Estimating the pose of a target object, namely the material de-
position torch, in 3D space using a visual sensor. The point cloud is extracted
and the body-fixed frame as well as the world frame are defined.

T lw =

[
R C

01×3 1

]
(2.5)

In this work, the pose estimation problem is defined as a nonlinear pro-

gram (optimization cost function). Specifically, a cost function is defined such

that is a measure of the closeness of the estimated bounding box with prede-

fined dimensions to the filtered point set, attained from the last steps of the

algorithm. This optimization program is defined as:
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T lw = argmin
R,C

m∑
i = 1

max
1≤j≤6

[|{pi} − Sj|] (2.6)

The optimization problem presented above entails the evaluation of the

maximum Euclidean distance, with respect to each point within the point

cloud, originating from any of the six surfaces associated with the proposed

bounding box denoted as Sj. The bounding box, characterized by the R,C

pair, is defined by these surfaces. The objective is to compute the aggregated

sum of these distances across all points in the point cloud with respect to the

bounding box’s surfaces, and subsequently optimize the parameters in R and

C to minimize this cumulative sum. In short, the aim is to ensure that the

bounding box is positioned as closely as feasibly possible to the points it is

intended to encompass.

The optimization program defined by 2.6 is a computationally expensive

way of finding the bounding box that best fits the filtered point cloud. This is

mainly due to the fact that in each frame, the optimization cost function re-

quires the program to go through each point and compute the relative distance

from the surfaces of the point cloud using the following equation, which finds

the distance of a point P = [X, Y, Z] from surface defined by the equation

ax+ by + cz + d = 0

h =
aX + bY + cZ + d√

a2 + b2 + c2
(2.7)

Our proposed method includes warm-starting the optimization problem,

with an initial estimate of the pose that is derived by performing the prin-

cipal component analysis (PCA). This method allows us to reduce the

computational weight of our optimization problem significantly, allowing real-

time computation of pose for the next steps.

The first step in finding an initial estimate of the pose (position and orienta-

tion) is to find the initial estimate of the position of the body-fixed coordinate
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system with respect to the world coordinate system. Since the input informa-

tion to our pose estimation framework is a stochastic set of points, scanned

through depth estimation on the body of the target object, the position of

the center of the body-fixed coordinate system is estimated by calculating its

expected value. This is conveniently done by finding the physical centroid of

the points, essentially averaging over the 3 dimensions that define the point

set as the average is an unbiased estimator for the expected value in our case.

The initial estimate of position CO is found as:

CO =

∑m
i = 1 p

i

m
(2.8)

Where k represents the index of the point in the point set, and m is the

total number of points in the point cloud.

In the next step, the points are normalized to have a similar scale in 3D

dimensions to ease the process of covariance calculation. Specifically, each

dimension of the points is fed through the following transformation:

p̃k =
pk − CO

std(pk)
(2.9)

p̃i shows the transformed point and std is the standard deviation operation.

In the next step, our aim is to find how each dimension of the point could vary

in 3D space with respect to the mean. In order to do so, a 3 × 3 covariance

matrix is defined such that has entries associated with pairs of point cloud

dimensions (X, Y, Z). This matrix is of the form:

COV (p̃k) =

COV (X,X) COV (X, Y ) COV (X,Z)
COV (Y,X) COV (Y, Y ) COV (Y, Z)
COV (Z,X) COV (Z, Y ) COV (Z,Z)

 (2.10)

The main diagonals of the covariance matrix defined by 2.10 are the vari-

ances of each dimension and the covariance matrix is symmetric.

As the next step, to find the principal components of the point cloud, the

3 eigenvalue-eigenvector Paris are found. Denoting these sets of values with
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V = [v1, v2, v3] and Λ = [λ1, λ2, λ3], we sort the eigenvalues in ascending order

and find the principal eigenvectors corresponding to each eigenvalue. This is

done through the following equation.

β = Λ =⇒ V ∗ = V (β) (2.11)

The sorted 3 × 3 matrix V ∗ serves as the initial estimate for the orienta-

tion of the target object. In this context, we can link the first column of this

matrix with the largest dimension of the point cloud’s bounding box, utiliz-

ing prior knowledge. Similarly, we associate the other columns accordingly.

Consequently, the initial pose for the optimization problem can be obtained

as follows:

T lwO = [V ∗|CO] (2.12)

Where V ∗ = RO is the initial estimate of the orientation in 3D space.

The following figure provides a visual of how the PCA-based initial estimate

of the pose can help in the refinement of the pose through optimization.

Having defined our optimization cost function as well as an efficient way

of deriving a warm-starting strategy for real-time computation, the last step

of solving the optimization problem to find T lw for each time frame is defining

a reasonable bound for the search of optimal values.

The intuition behind this approach is that the optimal pose for time step

k should reasonably lie within an interval close to the optimal solution for

T lw in time step k-1. To achieve this, a hard constraint can be imposed on

a vector containing the optimization parameters, ensuring that the optimized

values are in proximity to the results obtained in the previous time step. The

vector ζ represents the 3D features of the bounding box, encompassing its 3D

position in space as well as its roll, pitch, and yaw values:
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Initial Estimation 
(PCA)

Refined 
Pose(Optimization)

Figure 2.11: Using PCA and refining the pose through warm-started opti-
mization. The example results show improvement in pose estimation using
the PCA step.

ζ6×1
k =


C3×1
k

ϕk
θk
γk

 (2.13)

Then the hard constraint on the bounds for ζ would be defined as:

|ζk − ζk−1| ≤ α (2.14)

Where α is a manually tuned hyperparameter of the optimization program.
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As a reference for the reader, the Euler roll-pitch-yaw angles are defined in a

Z-Y-X coordinate system and are derived using the following equations from

the rotation matrix Rk for time step k where Rij denotes the (i, j) element in

the rotation matrix:

ϕ = arctan(R21/R11) (2.15)

θ = arctan(
−R31√

R32
2 +R33

2
) (2.16)

γ = arctan(R32/R33) (2.17)

2.8 Visual based state observer

In this section, the incorporation of physical understanding and kinematic

constraints of the rigid body, whose pose is being estimated, will be elucidated.

This integration aims to enhance the algorithm’s performance in handling

uncertainties. The approach offers several benefits, including but not limited

to:

• Estimation Error and Convergence: The performance of the sys-

tem heavily relies on the visual pose estimator module, as described in

the previous section. In scenarios where the system is not visible to

the camera due to occlusion or faces degraded visual conditions, such

as dust and material splash during deposition, it is crucial that our

algorithm continues to estimate the pose of the target object without

failure. By leveraging our knowledge of the physical constraints of the

system, we can create mathematical models that describe its motion in

3D space. This incorporation of information from such models signifi-

cantly improves the algorithm’s performance, leading to more accurate

pose estimation of the target object. We can confidently estimate the

position and orientation of the system visually in 3D space, considering

the consistency of its motion.

Moreover, onboard sensors within the robot’s structure and design, such

as wheel encoders that measure the robot’s motion, provide essential in-

39



formation for the system. Through the use of a visual state observer, we

introduce flexibility into the modeling process, developing mathematical

representations of the sensor-level uncertainties. As a result, if new sen-

sors are integrated into the system, their uncertainties can be modeled

and seamlessly included in our algorithm. This adaptability ensures the

continued accuracy of the pose estimation, even with the incorporation

of new sensors.

• Computational Cost: In the upcoming sections, a physical modeling

approach is proposed, utilizing a linear Kalman filter. The Kalman filter

can recursively incorporate new measurements, enabling continuous state

updates, making it suitable for real-time and efficient implementation.

Additionally, the core principles of the Kalman filter are fairly straight-

forward and easy to implement in practical applications, contributing to

the algorithm’s efficiency.

By leveraging the Kalman filter, the algorithm’s development can be

notably enhanced, and its efficiency in terms of real-time performance

increased. The filter’s capability to handle continuous updates ensures

accurate pose estimation and responsiveness to changes in system dy-

namics and sensor measurements. As a result, the algorithm meets the

real-time requirements of the autonomous material disposition system.

The next few sections will discuss how the kinematic constraints, sensor mod-

els, and recursive fusion can be taken advantage of in order to achieve a con-

sistent estimate of the states of the system. The basic structure of a Kalman

filter is illustrated in the figure below. At first, the estimation process starts

with an initial rough estimate of the states of the system. This rough esti-

mate has high uncertainty, therefore the values on the main diagonal of the

covariance matrix P0 are large numerically. At each time step, the filter goes

through two main steps, namely the extrapolation step and the update step.

In the extrapolation step, the states and uncertainty of the system are pre-

dicted for the next time step using a simple physical model of the system.

40



𝑋0, 𝑃0

Extrapolate State 
Uncertainty 𝑃 𝑘 + 1 𝑘

Extrapolate States 
𝑋 𝑘 + 1 𝑘

Correction 1

Correction 2

…

Correction N
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(𝑘|𝑘)

Extrapolation Step Update Step

Figure 2.12: The linear Kalman filter framework.

In the correction step, noisy measurements from N sensors (whether external

or internal) are incorporated to enhance the accuracy of the prediction and

narrow down the uncertainties associated with it. This process continues for

the duration of the filter’s operation and in the occasion that n sensors don’t

provide any information in the current time step, they are simply skipped in

the update step. In the next sections, we will discuss our formulation of sensor

uncertainties, states, and the equations implemented in order to estimate the

states of our fixed and mobile material deposition systems.

2.8.1 The general constant acceleration motion model

As the first step of the Kalman filter algorithm, a general motion model of the

system is introduced, enabling the prediction of the rigid body’s movement

through 3D space. The states serve as the primary variables characterizing

the pose and speed of the target object. Considering that all objects in 3D

space have 6 degrees of freedom, the state vector comprises 12 variables, with
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6 for position and orientation and 6 for the corresponding speeds. The state

vector Xk
12×1 is defined as follows:

X12×1
k =

ζ6×1
k

ζ̇6×1
k

 (2.18)

Where ζ is defined as the bounding box pose vector, characterized by equa-

tion 2.13. The next step concerns the definition of the prediction model. Since

the samples through time are taken at tightly spaced intervals, it is safe to

assume that the forces exerted on the system are equal for that interval. There-

fore, according to Newton’s second law, acceleration is constant as well. This

allows us to predict the i’th state of the system for time step k represented by

xik+1|k can be predicted as:

xik+1|k = f(xik, uk) =
1

2
ẍik∆t

2 + ẋik∆t+ xik (2.19)

Where xik+1|k is the state’s prediction for the next time step, made at the

current time step.

The general linear motion model of our system requires a matrix implemen-

tation to introduce control inputs, namely system’s acceleration. This im-

plementation is indicated via the following equations.

Xk+1|k = AXk|k +BUk + w (2.20a)

zk = HXk|k + v (2.20b)

Where w ∼ N (0, σ2
w) and v ∼ N (0, σ2

v) represent the random normally

distributed noise in state prediction. Matrices A and B state transition and

input matrices and H represents the measurement matrix, which allows us to

choose the first 6 elements of the state matrix as our measurements.

Due to the large size of A and B matrices, here they are illustrated in a compact

form. Concretely, for the state transition matrix:
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f =

[
1 ∆T
0 1

]
, A = [aij] (2.21a)

{aij = f : i = j; aij = 02×2 : i ̸= j} | i, j = 1, ..., 6 (2.21b)

The compact definition above suggests that the 2 by 2 elements on the

main diagonal of matrix a are equal to matrix ”f” and all other elements in

matrix A are zeros. Similarly for matrix B:

b =

[
1/2∆T 2 0

1 0

]
, B = [bij] (2.22a)

{bij = b : i = j; bij = 02×2 : i ̸= j} | i = 1, ..., 6, j = 1, ..., 3 (2.22b)

Finally, the inputs to the system are defined as accelerations in positional

and orientational states, denoted as U = ζ̈k. Gaussian distributed noises for

w and v are assumed to have bounded values, with their covariances being

uncorrelated and represented by Qk and Rk for time step k. The observation

matrix H is an identity matrix (i.e., H = I12×12) since our measurements are

directly equal to our states..

2.8.2 Observerability analysis and observer design

With the aim of verifying that the system is observable for designing a bounded

certainty state observer, one must check if the observability condition is sat-

isfied for the system for which the observer is designed. The observability

criterion below is a sufficient condition for the implementation of the Kalman

filter.

O = [H, HA, HA2, ..., HAn] −→ rank(O) = n (2.23)

To verify this condition, the observability matrix O is constructed in a

similar compact format as previously illustrated. Since the H matrix is an

identity matrix in our case, the observability matrix can also be calculated

from O = [I, A,A2, ..., A12]. By expanding this equation for the observability
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matrix, it can be demonstrated that the system is indeed observable. Due to

the unique shape and structure of the matrix A, a closed-form solution for Ak

can be calculated in a compact form as:

f ∗ =

[
1 k∆T
0 1

]
, Ak = [a∗ij] (2.24a)

{a∗ij = f ∗ : i = j; a∗ij = 02×2 : i ̸= j} | i, j = 1, ..., 6 (2.24b)

It is beneficial to note that ∆T represents the sampling time in equations

2.21a through 2.24a.

To update the estimation of acceleration, a learning-based input estimation

network is designed. The recurrent long short-term memory network shown in

figure 2.13 is trained to estimate the input to the system in the next time step,

using the short- and long-term memories ξk and δk of the previous measure-

ments Zk. Furthermore, this network performs corrections on current mea-

surements Zk with the objective of improving depth estimation accuracy and

achieving consistent estimation for distant objects. This correction is made to

yield Z̃k. In every instance of using deep-learning-based methods, one of the

most critical challenges is to attain the ground truth for the target variable

to estimate. This is due to the fact that deep-learning methods, at heart, rely

on estimating a black-box object from observations made in the real world,

and acquiring the clean, usable data corresponding to these observations is the

most challenging segment of estimation methods that rely on machine learn-

ing.

For estimating the input acceleration to the state observer, an accurate es-

timation of the acceleration of the system using an independent method is

required, serving as the ground truth for the supervised learning algorithm.

In the case of the fixed manipulator use case, the accurate end-effector pose de-

rived by the encoder sensors of the robot can be used in the forward kinematic

equations of the robot. Using the following equation, which characterizes the

forward kinematics of the fixed manipulator, we can find the pose of the final

link attached to the material deposition gun.
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T oe =
6∏
i=1

eϱiθiTo (2.25)

Where T oe and To ∈ SE(3) are the initial link and end-effector link poses of

the robot, ϱi is the twist vector of the i’th joint and θi is the i’th joint angle.

LSTM
Cell

LSTM
Cell …

LSTM
Cell

𝛏𝟎

𝛅𝟎 𝛅𝐤

𝛏𝐤

𝐙𝟎 𝐙𝟏 𝐙𝐤−𝟏

𝐔𝟏 ෨𝐙𝟎 𝐔𝟐 ෨𝐙𝟏 𝐔𝐤 ෨𝐙𝐤−𝟏

Figure 2.13: Input estimation and measurement correction LSTM. Inputs to
the system are learned via a long-short term memory network, allowing for
learning time-dependent variables such as inputs.

In the case of the mobile material deposition platform, the ground truth

estimation job is slightly more convolved. In this case, we take advantage

of 4 unique markers incorporated on the robot’s top surface which are used

in identifying the corners of the robot. Using a bird-eye-view (BEV) frame

generated from RGB images, a color threshold is used to identify the markers

in the BEV image. After localizing the corners of the robot, the center is found

by calculating the centroid of the markers, and orientation is found by deriving

the slope of the line fit to the 2D location of the markers. The following figure

demonstrates this method for estimating the ground truth for the case of the

mobile robot.

Leveraging the information by the bird-eye view generated by the last step

(figure 2.14), one can determine the ground truth position and orientation of

the mobile robot. This is done by using the three simple equations below:
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Front Markers 

Rear Markers

Original Image Warped BEV

Figure 2.14: Estimating the ground-truth position for the mobile robot. The
corners are identified using a fixed color threshold to extract pixels that have
green and red color tones which correspond to either end of the robot.

Xgt =
Xf +Xb

2
(2.26a)

Ygt =
Yf + Yb

2
(2.26b)

γ = atan2(Yf − Yb, Xf −Xb) (2.26c)

Where the subscripts gt, f, and b stand for ground truth, front and back

respectively.

So far in the discussion of the recursive linear Kalman filter, employing the

input estimator network, definition of states, and the linear model defined by

2.18 through 2.26a to extrapolate the current state and make a prediction re-

garding the expected value of the states for the next time step is discussed. In

addition to predicting this mean value, we must also make a prediction about

the uncertainty of the states in the next time step. Specifically, if our cur-

rent best estimate of the covariance matrix Pk|k representing the uncertainty

of states in the current state is available, we are striving to make a predic-

tion on this covariance matrix by finding Pk+1|k. The following equation is

implemented to yield an estimate of this uncertainty matrix.
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Pk+1|k = APk|kA
T +Qk (2.27)

Where Pk+1|k represents the extrapolated uncertainty matrix of the states,

with dimensions 12× 12, A denotes the state transition matrix as defined by

2.21a, and Q signifies the motion model’s uncertainty matrix. By examining

2.27, it is evident that relying solely on the motion model leads to a continuous

increase in the uncertainty of the states. This is attributed to the presence of

Q, which is added to the state covariance term each time the motion model is

utilized. To obtain an estimate of the uncertainty matrix of the motion model

Q, the following equation is employed.

Qk = E(w.wT ) (2.28)

Where E represents the expected value (mean) of the argument given. In The

next section, we will dive into calculating the sensory noise covariance matrix

R.

2.8.3 Sensory noise formulation

The crux of the linear Kalman filter entails the ability to model the sensors in

the system and their noise based on statistical methods, domain knowledge,

or other estimation techniques. To correct for the uncertainty accumulated by

the motion model, a measure of the certainty of our real-world measurements

is formulated. Specifically, a mathematical representation of the accuracy

of the sensors employed in the system is proposed, considering their known

weaknesses and strengths.

The first sensor under consideration is the camera sensor, renowned for its

rich and dense information and visual measurements. As described in the pre-

vious sections, the estimation of the states of the target robotic system relies

on the camera sensor by incorporating a bounding box and estimating the as-

sociated 6 degrees of freedom. However, this sensor has a significant downside

– the reliability of the measurements rapidly decreases as the robot’s relative
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distance from the camera increases. Additionally, whenever the variance of the

measurements increases, the trust in the camera sensor must be decreased. In

other words, if recent measurements significantly differ, the reliance on the

camera sensor must be reduced, and the estimates of the states should be

obtained from other sensory or model sources. The proposed equation for

adjusting the camera covariance matrix is as follows:

Rc
k = In×n(α + β

√
|z̃k+1 − z̃k|+

γ

1 + e−(|z̃k−zt|)
) (2.29)

The equation above presents the adjustment process for the camera sensor’s

covariance matrix, denoted as Rc
k. In this equation, α, β, and γ are three

manually tuned coefficients, zk represents the measurement vector, and zt is a

depth threshold representing the maximum distance from the camera beyond

which the depth measurement module’s reliability diminishes.

The first term, α, accounts for the inherent noise present in our visual-based

pose estimator. The second term captures the variance in the measurements,

which increases with greater normal distances between two measurements,

potentially leading to reduced accuracy. Consequently, the main diagonal

values of the covariance matrix are increased. The third term incorporates

the depth factor, which is governed by the depth threshold zt. By tuning this

threshold, we impose a limit on the maximum depth value for which the camera

sensor remains accurate. Beyond this threshold, the measurement noise in this

context increases, and there is an upper limit γ that represents this increment

when the target robot is significantly beyond the depth threshold zt.

The next step involves leveraging the information provided by wheel en-

coders to enhance robot localization accuracy. Wheel encoders allow for in-

cremental measurement of wheel rotation and speed, which can be converted

into vehicle speed in body and world coordinates. However, this conversion

necessitates a comprehensive understanding of the robot’s locomotion mecha-

nisms. For skid-steering mobile robots like the Husky Clearpath, a slip-aware

model is developed to convert left and right wheel velocities to vehicle speeds

using a skid-steering motion mechanism.
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Skid-steering robots, such as the Husky Clearpath, possess versatile con-

trol over the wheels, enabling differential speed and direction control. This

mechanism allows the robot to execute tight turns and turns without mov-

ing by adjusting wheel speeds or driving them in opposite directions. As a

result, the robot exhibits agile navigation in confined spaces and reduced sys-

tem complexity due to its straightforward nature, enabling easy traversal of

its environment. The overall view of this locomotion mechanism is depicted

in the following figure:

𝑦𝑙 𝑦𝑟

𝑥𝑖𝑐𝑟

Figure 2.15: The skid-steering locomotion mechanism. In this part, we are
striving to model the mobile robot’s motion by introducing slip in the right
and left wheel pairs.

Figure 2.15 provides a visualization of various parameters involved in mod-

eling the locomotion of a skid-steering mobile robot. The parameters cv, cr, cl

represent the instantaneous centers of rotation (ICR) for the vehicle, left wheel,

and right wheel, respectively. Additionally, yl and yr depict the horizontal dis-

tances between the vehicle’s symmetry axis and the ICRs, while xicr represents

the vertical distance between the vehicle’s horizontal axis of symmetry and the

line on which all three ICRs are situated. The body coordinate system of the
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robot is centered at its midpoint, with x pointing forward and y pointing to

the left. The primary objective is to convert the wheel rotational velocities

ωl,r into vehicle velocities in the body coordinate system, denoted as vx,vy, ω.

To achieve this conversion, a slip-aware motion model is utilized, which

can be expressed by the following equation:vx

vy

ω

 = G(Λ)
[
ωl
ωr

]
(2.30)

In which G encodes the linear, slip-aware motion model in which the pa-

rameters inside figure 2.15 are used. Such parameters are stored in Λ and will

be described shortly. This entity is found using the following equation.

G(Λ) = 1

yl − yr

 −yrαl ylαr
−xicrαl xicrαr
−αl αr

 (2.31)

The slip parameters αr,l encapsulate various factors, including wheel fric-

tion, terrain characteristics, wheel pressure level, and other unknown param-

eters related to the wheels. To determine the slip parameter vector Λ, we

propose a method that involves minimizing the normal distance between the

ground truth obtained through the BEV method described earlier and the

results derived solely from wheel odometry using encoder sensors. This opti-

mization process seeks to find the optimal parameter vector Λ∗ by minimizing

the following cost function:

J (Λ) =
1

T

T∑
i=1

|ζ∗i − ζ̂i| −→ Λ∗ = argmin
Λ

J (Λ) (2.32)

Where ζ∗i represents the ground truth state vector, ζ̂ the state vector ob-

tained by wheel odometry, and T is the total number of gathered data points

to optimize Λ = [xicr, yl, yr, αl, αr].

After finding the optimized Λ∗, equation 3.4 can be used to convert wheel

velocities to body frame velocity vector VBk
= [vx, vy, ω]. The last step of this

pipeline is to use this body velocity vector to obtain the velocity in the world

coordinate system {w}. This is done so by first constructing the body velocity
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twist ξb and then performing the matrix exponential operation to find vehicle

pose in the world coordinate system TwBk
.

ξb =


0
0
ωr
vx
vy
0

 =⇒ T
Bk+1

Bk
= exp(ξb) (2.33)

This leads us to find TwBk
by simply multiplying the odometry pose trans-

formation T
Bk+1

Bk
by the global pose of the robot at time step k. Finally, the

encoder sensor’s uncertainty covariance matrix is introduced, whose diagonals

increase if the distance traveled between the two consecutive time steps is

large. This is a simple representation of the fact that wheel odometry-based

localization suffers a loss of accuracy by the accumulation of errors.

Re
k = In×n{η1 tanh(η2 ∆D)} (2.34)

Where Re
k is the encoder uncertainty matrix, η{.} is a tunable parameter

representing the properties of the covariance matrix, and ∆D is the distance

traveled since the last time step. In the next section, incorporating the mea-

surement noise covariance matrices Rc and Re is discussed to update the

predictions from the general motion model with corrections made in the linear

state observer.

2.8.4 Uncertainty-aware sensor fusion

In this section, the mathematical tools to incorporate the main sources of in-

formation for the visual sensory fusion framework are discussed. As previously

explained, the Kalman filter methodology involves two main steps in each time

step. The first step is the prediction step, where the system’s mean state and

covariance matrices are forecasted for the next step using the motion model

detailed in previous chapters. The next step is the update step, where the

physical motion model’s prediction is corrected using measurements from on

and off-board sensors, including the camera and wheel encoders. This update
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occurs whenever a new measurement from the environment is available. By

incorporating information from the real world, the accuracy and consistency

of our physical understanding are enhanced. However, it should be noted that

this information is uncertain and comes with its own sources of noise and un-

certainty. Hence, the Kalman gain is employed to facilitate a smooth ”shift

of trust” between our sources of information (i.e., motion model, camera, en-

coder) in case our reliance on each of the sensors is compromised. The first

and foremost equation used to accomplish this step is the computation of the

Kalman gain for the sensor ”i” in time step k, for which a measurement is

available.

Lik = Pk|k−1 H
T (HPk|k−1H

T +Ri
k)

−1 (2.35)

Where Lik is the Kalman gain for the i’th sensor in time step k and the rest

of the parameters are already defined. There are 3 notable points regarding

this equation. First, the Kalman gain for sensor i is directly dependent on the

sensory covariance matrix for the same sensor, which allows for the Kalman

gain to be adjusted accordingly. Second, it could be easily shown that if Ri
k is

zero, the Kalman gain will be 1, and if Ri
k is a large number then, Lik will be

close to 0. Finally, computing the Kalman gain is a computationally expensive

process as one has to compute the inverse of a large matrix. However, with

the advent of high-end processors, this issue can be resolved as well.

The next step would be to correct state measurements to obtain Xk|k. This

process is the heart of the recursive Kalman filter and is performed via the

following equation:

Xk|k = Xk|k−1 + Lik(zk −HXk|k−1) (2.36)

The term multiplied by the Kalman filter is called innovation. The reason

for this name is that it is due to this term that the discrepancy between the

measurement and previous prediction of state is measured and based on the

level of trust in the innovation (i.e. the magnitude of L), this change is applied

to the prediction Xk|k−1 to obtain Xk|k. This explains how the Kalman gain
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governs the update in the prediction. If the Kalman gain is 0, there is no

change of state in the update step. However, if the Kalman gain is 1, the

previous prediction of the states is simply forgotten and Xk|k will be directly

equal to the measurement zk. The final step would be to correct the covariance

matrix, predicted in the last step. This is done through the following equation.

Pk|k = (I − LikH)Pk|k−1(I − LikH)T + LikRi
kLik

T (2.37)

Moving to the next step, the Kalman filtering process is repeated. This

involves obtaining the prediction of state and covariance matrices, calculating

the Kalman gain, and finally, updating the states and uncertainty matrices.

This iterative process ensures that the estimation continuously incorporates

new measurements and refines the state estimates as new data becomes avail-

able. By doing so, the Kalman filter adapts to changes in the environment and

the reliability of different sensors, providing a more accurate and consistent

estimation of the system’s state over time.

2.9 Summary

In this chapter, a visual-based physically informed state estimation framework

was proposed. This method addresses the problem of degraded visual con-

ditions in the context of thermal spray, a problem that is prevalent in state

estimation frameworks in which the camera is not fixed in the environment

and also it highly reduces the sensory setup cost for mobile and fixed material

deposition systems.

In our framework, depth estimation with object instance segmentation is

incorporated to generate a dense 3D representation of the object using a stereo

camera sensor. The quality of this representation is improved by performing

3D point cloud filtering. By utilizing prior knowledge of the dimensions of

the target object, an optimal bounding box is estimated based on the normal

distance of the points from the surfaces of the bounding box. Furthermore,

physical kinematic constraints of the target object are taken into account in

the optimization process to minimize pose estimation errors caused by inaccu-
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racies in the depth estimation step. In addition, a motion model of the system

is developed based on the piecewise constant acceleration assumption. Uncer-

tainty in the motion model and the visual estimation is characterized through

empirical expressions, resulting in an algorithm that is more tolerant of errors

in the face of visual estimation errors. In the next chapter, the methodology

for using the currently available estimated state of the robot to calculate the

control inputs is discussed, which is needed to drive the mobile robot on a

predesigned trajectory.
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Chapter 3

Controller design

In the previous chapter, the methodologies for designing a visual state ob-

server were explained, enabling the estimation of the position, velocity, and

acceleration of the mobile robot within its operating environment. However,

after obtaining an accurate estimate of the robot’s state, the next challenge

is how to control it along a desired path to enable visual navigation. This

is crucial for mobile robots, as it allows them to operate independently and

autonomously in the target environments.

The controller determines the robot’s behavior and motion to respond to

changing conditions and accomplish its tasks. In this chapter, we will delve into

the design of the mobile robot’s controller, addressing the potential challenges

and complexities involved in developing a well-designed controller to enable

autonomous robot operation.

It is imperative to understand that the control module is intrinsically sus-

ceptible to diverse sources of noise. Initially, the estimated state of the robot

may deviate from absolute accuracy. Moreover, the predictive law might not

completely capture the forthcoming states and behaviors of the robot. Lastly,

the execution of actuation commands on the robot’s wheels may not be per-

fectly precise. Through the establishment of a comprehensive cost function

pertaining to desired path tracking within the controller framework, a certain

level of noise mitigation is attainable. However, for more severe disturbances,

we suggest performing extensive robustness analysis in future endeavors.

One of the primary challenges in autonomous robotic navigation is dealing

55



with uncertainties in the system’s model and states. A carefully designed con-

troller ensures the robot operates safely and efficiently. This chapter builds

on the previous discussions on state estimation using off-board cameras and

focuses on the mathematical aspects and formulations of two types of con-

trollers. It also considers the various factors and considerations involved in

this crucial aspect of our mobile robotic system.

3.1 The feedback control structure

This section addresses the problem of feedback control and outlines the de-

sign and implementation of the controller, plant, and observer to enable au-

tonomous operation of our system. The general outlook of our feedback control

structure is depicted in Figure 3.1.

The first and foremost part which is worth mentioning here is the con-

troller. The controller is the main component responsible for calculating and

generating the control signals required to operate the system and keep it on the

designed trajectory. It utilizes information such as the states of the system,

previous control inputs, and kinematic constraints of the mobile robotic sys-

tem and applies the appropriate control command based on previously imple-

mented algorithms to regulate the robot’s motion. The controller incorporates

an objective function to minimize the error between the actual (observed) and

desired outputs of the system to ensure precise control. The general control

law regardless of the controller structure is defined by the following abstract

equation.

U∗
k = F(X̂k+N,k+N−1, ...,k|k,U k+N,k+N−1, ...,k−1|k, Yk, ...) (3.1)

Equation 3.1 defines the structure of the control law that will be imple-

mented to govern the movement of the mobile robot along a desired trajectory.

The general control law F(.) encompasses the function that relates the pre-

dicted observed states, inputs, and outputs of the system over a future time

horizon N , thereby determining the optimal input U∗
k at the current time step
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Figure 3.1: The general feedback control structure, involving the controller,
plant, and the visual state observer.

k. This function may also consider the time derivatives and integrals of the

mentioned components to minimize accumulated error and steady-state error.

In the following sections, we will explore two potential approaches for designing

these functions.

The next crucial element of the overall feedback control structure is the

plant, which refers to the physical system of the mobile robot, including its

kinematic constraints, mechanical structure, and actuators. It captures the

dynamics and behavior of the robot, which may vary based on the control

inputs provided to it. The physical representation of the plant, relating the

control inputs (acceleration) and current states (position and orientation) to

the states in the next time step, has been discussed in the previous chapter.

This representation involves two linear equations that link the control inputs

and current states to the states in the subsequent time step.
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Xk+1|k = AXk|k +BUk + w (3.2a)

Yk = HXk|k + v (3.2b)

Where w ∼ N (0, σ2
w) and v ∼ N (0, σ2

v) represent the random normally

distributed noise in state prediction. Matrices A and B state transition and

input matrices and H represents the measurement matrix, which allows us to

choose the first 6 elements of the state matrix as our outputs.

Finally comes the visual state observer. This component was the primary

focus of the previous chapter and is an integral part of the feedback control

structure. It estimates the unmeasured states of the mobile robot (such as

velocities) through the available sensory data. This sensory data includes the

visual measurements (camera images in the image frame) as well as the encoder

inputs. The observer leverages the system’s kinematic model as well as the

constraints to provide an approximation of the current state by minimizing

estimation errors through the Kalman filter framework. By incorporating the

state observer, the control system can operate using an enhanced estimation

of the states which allows for control accuracy.

The presence of each of the previously discussed components is essential. The

controller generates the appropriate control signals to minimize the state error

while the plant embodies the physical understanding of the system. Finally,

the state observer enables estimation of the robot’s states which in turn helps

the control to make informed decisions based on observed and estimated states.

Altogether, these components form a feedback control structure that is critical

for achieving accurate control of the mobile robot.

3.2 Model description

Illustrated in the previous section, the plant consists of a mobile robot with

a skid-steering locomotion mechanism. Skid-steering locomotion necessitates

that the left and right wheel pairs are linked mechanically using a belt, re-

stricting their respective speeds to be the same. The difference between the
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wheel speeds allows the robot to rotate along a vertical axis going through its

center.

Xw

Yw
(𝑥𝑟 , 𝑦𝑟)

𝛾

𝑋𝑟
𝑌𝑟

𝜔𝑙

𝜔𝑟

Figure 3.2: The skid-steering robot. Our plant’s inputs and outputs are il-
lustrated. Any given wheel velocity may cause a change in the position and
orientation of the mobile robot in 3D space.

Understanding the concept of inputs and outputs to the system is a fun-

damental element of designing a control strategy that controls the robot au-

tonomously on a given path. In the formulation used in this work, the inputs

correspond to the velocity of the wheels and the outputs represent the posi-

tion and orientation of the robot. In a skid-steering motion model, the robot’s

motion is primarily governed by adjusting the velocity of the wheels. The

controller, by choosing appropriate values for ωl and ωr (the left and right

rotational wheel velocities) can maneuver the robot to make rotations or move

forward. Thus the robot’s inputs will be:

Uk =

[
ωl
ωr

]
(3.3)

Please note that the input wheel rotational velocities ωl and ωr can readily

be converted to the speed of the robot in the body frame Br. This speed vector
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is denoted as VBr and can be found using the following equation, previously

explored in depth in the previous chapter.

VBr =

vx

vy

ω

 = G
[
ωl
ωr

]
(3.4)

Furthermore, please note that the robot’s acceleration in the world frame

can be found through the following equation, enabling us to predict the motion

of the robot in the upcoming time steps.

Aw
k =

1

∆T

[
Cos(γ) −Sin(γ)
Sin(γ) Cos(γ)

]
(VBr

k+1 − VBr
k ) (3.5)

Where Aw
k is the acceleration of the robot in the world frame.

As previously elaborated, the outputs of the system Yk are the position and

orientation of the robot with respect to the world frame W{.} The relationship

between the inputs and outputs can be represented through the kinematic

equations which capture the nature of the movement of the robot, meaning

that:

Yk =

xryr
γ

 (3.6)

The states can, in turn, be related to the states of the system, through the

linear state-output equations.

Yk = HXk|k + v (3.7)

In the next section, the meaning of trajectory errors and their definition

are discussed.

3.3 Trajectory (path) and error definition

This section concerns the problem of defining a reference path for our mo-

bile robot to follow. In the context of mobile robot control, defining a path

comprised of consecutive waypoints is essential, as it allows us to quantify the

tracking errors for our controller which completes the feedback control loop.
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Moreover, it can provide us with the necessary tools to evaluate the perfor-

mance of our trajectory-tracking controller.

A trajectory fully defines the desired motion of the mobile robot by spec-

ifying the positions and orientations that must be achieved by the controlled

system at different points in time and space. There are several choices to

define the trajectory to be followed by the robot. The first possible choice is

explicitly defining the mathematical equation of the line which must be fol-

lowed by the robot. There is no necessary rule for this line to be straight,

thus characterizing a general path using this method may involve the complex

formulation of an abstract path which is not possible for all plausibly desired

paths.

To address this issue, the desired trajectory is defined as tightly sampled

points of the originally desired path, connected by straight lines. The following

figure represents the defined trajectory.

𝐏𝟏 = [x1, y1]

𝐏𝟐 = [x2, y2]

𝐏𝟑 = [x3, y3]

𝐏𝟒 = [x4, y4]

𝐏𝟓 = [x5, y5]

𝐏𝟔 = [x6, y6]

V1

V2
V3

V4
V5

[xr, yr]

Ԧ𝛿𝑘−1
Ԧ𝛿𝑘

𝑞

Figure 3.3: Defining the trajectory and error calculation process.

Mathematically, the trajectory is defined as the ordered point set Pr in

the world frame, as well as the respective desired velocity profiles Vr (vectors)
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connecting each consecutive point pair. Specifically:

Pr =
[
P1 P2 · · · Pn

]
(3.8a)

Vr =
[
V1 V2 · · · Vn−1

]
(3.8b)

After defining the trajectory profiles, our next goal is to compute the error

vector Ek at time step k. This vector is comprised of two fundamental parts.

The first part of the trajectory error vector encodes the minimum distance

elements. The first part is the minimum distance between the robot and the

trajectory and the second part is the relative orientation error of the robot

with respect to the trajectory. These two error parts are denoted by ek and

ψk and are illustrated in the following figure.

Reference Path

Robot’s Path

𝑒1 𝑒2

𝑒4

𝑒5

𝜓𝑘

Figure 3.4: Defining the trajectory errors. The error vector Ek must be cal-
culated by finding the minimum distance between the robot and the reference
path. Also, relative orientation error should be calculated as well.

To define the trajectory tracking error, the two elements of tracking error

ek and ψk are aggregated in Ek:

Ek =

[
ek
ψk

]
(3.9)

In order to calculate ek namely the shortest distance between the robot

and the desired trajectory, one must find the minimum distance of the robot

with the line segments consisting of two consecutive way points. This vector is
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denoted by
−−−−→
Pk−1Pk. This distance is found by projecting the vector

−−→
δk−1 onto

−−−−→
Pk−1Pk, arriving at point q. There are two cases for the position of point q:

• Case 1: If the position of point q is between points Pk−1 and Pk, then

the minimum distance ek is found by calculating the distance of the per-

pendicular projection element connecting point q and the robot. (Shown

in dashed line in figure 3.3.

• Case 2: If point q is located after Pk (length of
−−−→
Pk−1q is less than length

of
−−−−→
Pk−1Pk) then minimum distance ek is found by calculating the distance

of the robot with respect to point Pk.

Having computed ek the next step of computing the error vector is to find

ψk, namely the error in the orientation of the mobile robot. This is found

through the simple equation below:

ψk = γk ⊖ γrk (3.10)

Where ⊖ operator is defined as the difference between two angles that

lies in the [−π, π) interval and γr is the reference orientation angle found by

calculating the slope of the line on which the point q lies. In the next section,

the definitions given so far to derive a proportional-integral-derivative (PID)

controller are used for the trajectory tracking of our mobile robot.

3.4 Proportional-integral-derivative controller

A Proportional-Integral-Derivative controller widely known as ”PID” is per-

haps the most widely used family of controllers in industrial and research ap-

plications. The vital role of the controller is to choose the appropriate steering

(orientation) yaw rate for our mobile robot, such that it follows the designated

path as closely as possible.

The PID controller consists of three main terms each responsible for a

certain aspect of feedback control performance. In the following, we will go

through each term and explain why it must exist to enable accurate path-

following capability in our mobile robot.
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• Proportional(P): The proportional term in a PID controller is set to

respond to the magnitude of existing error between the robot’s observed

position and the desired trajectory. It generates the element in the con-

trol signal which is ”proportional” to the error Ek to reduce the error

and bring the robot back on track. This real-time corrective action is

based on the current (immediate) error which allows the robot to quickly

respond to deviations from the path. If the proportional term is large,

the robot may experience harsh steering commands resulting in over-

shoots in path following and an increased steady-state error. Therefore,

we may need other terms in our controllers to account for this effect.

• Integral (I): The integral term in a PID controller addresses steady-

state errors resulting from the proportional term’s action. By aggregat-

ing past errors through time, it applies corrective action to eliminate

steady-state errors in the long run. This is crucial for robots with skid-

steering motion as it helps to mitigate the resulting aggregated errors

from wheel slippage, uneven terrain and wheel pressure, and imprecise

kinematic formulation of robot constraints.

• Derivative (D): The role of the derivative term in a PID controller is to

”predict” future errors by measuring the rate of change in the error. It

provides a damping effect, stabilizing the control signal and countering

the effect of rapid proportional changes in the control signal. This results

in a decrease in overshoots and oscillatory behavior and enables a smooth

tracking of the desired path.

Having elaborated on the importance and meaning of each term in the PID

controller, we can see the general form of the correcting action signal in the

following equation.

Uk = KpEk +KI

k∑
i = 1

Ei∆T +KD
(Ek − Ek−1)

∆T
(3.11)

Where K{.} represents the respective proportional, integral, and derivative

coefficients. Such coefficients could be hand-tuned, however, it is possible to
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geometrically determine them such that the tuning process is easier to address.

The following figure is used to describe the process of deriving the controller

gains using a look-ahead distance.

Pn−1

Pn

𝜓
𝛾

𝑒𝑙𝑎𝑡 𝛼

2𝛼

Figure 3.5: Deriving a PID controller for trajectory tracking.

Figure 3.5 shows the mobile robot along with two consecutive path way

points Pk−1 and Pk. Furthuremore, a look-ahead distance ld is defined and the

point on the path that has ld distance from the robot is shown. The lateral

distance error from the path elat is to be minimized through our control action.

Moreover, the vehicle’s body ICR is shown on the figure, having a radius of

turn R at this moment. To find the rate of change of elat, namely ėlat we use

the longitudinal speed of the robot and the orientation error ψ as the following:

ėlat = vxSin(ψ) (3.12)

By inspecting figure 3.5, it can be seen that sin(α) = elat
ld
. In order to find

the radius of turning, the sin rule is written in the triangle forming from the

ICR, the robot and the look-ahead point. Concretely:
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ld
Sin(2α)

=
R

Sin(π/2− α)
−→ R =

ld
2 Cos(α)

(3.13)

The definition of the instantaneous center of rotation can be used as the

only stationary point on the robot when performing maneuvers. This means

that:

R =
Vx Cos(ψ)

ω
(3.14)

Combining equation 3.13 and 3.14, ω can be found(i.e. the rotational yaw

rate) as:

ω =
2 VxCos(ψ)Sin(α)

ld
=

2 VxCos(ψ)

l2d
elat (3.15)

Where the adaptive coefficient 2 VxCos(ψ)

l2d
is the Kp we were striving to

find. Having calculated the proportional and derivative coefficients through

equations 3.15 and 3.12, the PID control is formulated law as:

ωk =
2 VxCos(ψ)

l2d
Ek +KI

k∑
i = 1

Ei∆T + vxSin(ψ)
(Ek − Ek−1)

∆T
(3.16)

And Vx is chosen to be the same as the reference speed available from the

designed reference path (figure fig:trajectory-definition).

While PID controllers are one of the most widely used controllers in indus-

trial applications, there are certain shortcomings that inhibit us from imple-

menting them for real-world scenarios and many safety-critical use cases. The

first and foremost implementation detail of PID controllers is the number of

adjustable parameters. Tuning each gain may be time-consuming and in many

cases, may need long sessions of trial and error. Furthermore, PID is agnostic

to systems kinematics constraints, choosing a possibly infeasible control com-

mand for the plant to execute. Such constraints may involve the bounds of

control inputs, the constraints of smoothness and control effort of the control

signals, and even the dynamics of the system. In addition to the aforemen-

tioned reasons, PID lacks the capability to adapt to changes in the plant under
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different operational conditions, hindering its ability to handle complex con-

trol scenarios that require the needed control performance. Lastly, the PID is

unable to handle path constraints such as existing obstacles in the way of the

robot, reducing its reliability and safety.

To address the above limitations, a more sophisticated control law called

”model predictive control” is developed. This advanced family of controllers

has the capability of taking into account physical and kinematic constraints,

enabling us to incorporate a desired behavior from the robot in an objective

function to be optimized in each time step. Increasing the flexibility and reli-

ability of our control comes with the cost of higher computation times, which

is one limitation of model predictive controllers. In the next section, we will

delve deep into the formulation of MPC and expand on our controller design

for the mobile robot path following.

3.5 Model predictive controller

Model predictive controllers have proven to be a valuable tool in controlling

material deposition systems [74, 75]. In this section of the controls chapter,

the optimal control problem is introduced in a general format and elaborates

on the basic definitions and concepts to control a general plant using a family

of optimal controllers called the ”model predictive controller”. By considering

the kinematic constraints of the system, the MPC has proven to be a valuable

tool in addressing the challenges of trajectory tracking and control in complex

environments [65–67]. The formulation of the MPC is investigated, where the

performance metrics of the system are characterized through the cost function

of the MPC.

The model predictive controller (MPC) has a predictive approach toward solv-

ing a control problem. Specifically, it defines a prediction horizon and calcu-

lates the aggregate sum of a cost function over this prediction horizon into

the future. By optimizing the control inputs, it will be able to find the best

immediate control action for the system at the current time step and applies

it to the system [76].
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3.5.1 The nonlinear programming problem of MPC

In the preceding chapter, we detailed how formulating the kinematics of the

system enables us to predict the system’s state for the next N time samples.

This predictive window is referred to as the ”horizon” of prediction, and it

serves as the basis for defining the cost function of the control problem (see

equation 3.2a). The performance objective function of the system, spanning

from time step 0 to N, is defined as follows [76]:

J0−→N(x0, U0−→N) = p(xN) +
N−1∑
i = 1

q(xk, uk) (3.17)

Where N represents the prediction horizon, and xk denotes the state vector

at time k obtained by starting from the initial state x0. Additionally, we define

the ”vector of future inputs” U0−→N = [uT0 , ..., u
T
N−1]

T . Lastly, the stage cost

and terminal cost, denoted by q(xk, uk) and p(xN) respectively, are defined to

be positive definite.

p(x, u) > 0 ∀x ̸= 0 u ̸= 0 (3.18a)

q(x, u) > 0 ∀x ̸= 0 u ̸= 0 (3.18b)

Let us consider that the form of equation 3.19 is quite general and can be

applied to a variety of control problems. To adapt it for the robot trajectory

tracking problem, we need to further define the stage cost, terminal cost,

and specify the constraints of the control problem. In this context, our control

actions involve finding the optimal future control vector U0−→N by determining

the optimal value of J ∗
0−→N .

J ∗
0−→N(x0) =Min U0−→N

J0−→N(x0, U0−→N)

subj. to xk+1 = F(xk, uk)

hi(xk, uk) ≤ 0 k = 0, ..., N − 1

(3.19)
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Where hi denotes the i’th constraint of the system as a function of in-

puts and state (such as input bounds, inappropriate states, ...), and F is the

physical kinematic constraints of the system.

3.5.2 The stage cost

In this section, the stage cost for the problem of mobile robot trajectory track-

ing will be defined. The stage cost encodes the feedback performance of the

system in following a desired path, using the same definition of error as the

PID controller in each time step.

Remark : The actuators in a real-world robotic systems are designed to

take smooth control inputs with minimal necessary changes. That is why the

in the stage cost, we incorporate 2 terms to encode control effort (term 2) and

control smoothness (term 3). The details of these terms are explained shortly.

q(xk, uk) = ET
k QE Ek + uTk Ru uk + (uk − uk−1)

Tρ(uk − uk−1) (3.20)

The stage cost term is calculated for time steps 0 through N-1 for each

optimization step. The coefficient matrices QE, Ru and ρ encode the level

of importance of each performance metric for the optimization process. The

first term in the stage cost characterizes how close the desired trajectory

and orientation is being followed. If the lateral error and orientational error

are large, this term will increase in magnitude. The second term, namely

the control effort for the input uk = [vx, ω]k, is designed so that the controller

chooses the most ”energy efficient” inputs for the system, allowing it to comply

with the efficiency requirements of a real-world system. Lastly, the third

term of the stage cost is called the ”proximity term”. Since smooth control

signals with minimized necessary changes are feasible in the context of physical

actuators, it is intended to minimize the difference between two consecutive

control signals such that sudden changes in the control signals are eliminated.

If the difference between the two consecutive control signals is too large, this

term also increases in magnitude and therefore the controller has a tendency

to choose control signals that are close to the last time steps control signal.
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This allows the controller to accommodate smoother trajectories and reduces

sudden changes in control signals that can potentially damage the actuation

system of the robot.

3.5.3 The terminal cost

The main reason to include a terminal cost term in the cost function is for the

controller to choose control signals that cause the final state of the system to

be closer to the desired state, at the end of the prediction horizon. Here, the

intuition behind dedicating a terminal cost p(xN) is further expanded to the

objective function of the model predictive controller. Let us assume a special

case in which the mobile robot is placed exactly on the path it is supposed to

follow like the following figure.

𝐷

𝑿𝒘

𝒀𝒘

𝑨

𝑩

𝑪
𝑫

Figure 3.6: The intuition behind the terminal cost. The robot is incentivized
to follow the path and reach the final goal.

The desired behavior from the robot is that in case it is precisely placed

on the blue line (reference trajectory) shown in figure 3.6, it still follows the

desired path and reaches the final goal, shown with a star. Now assuming that

the terminal cost does not exist, the objective function of the equation 3.19,

will always be zero. This is due to the fact that the lateral and orientational

errors are zero and since the proximity term promotes input signals close to

one another, an input signal of zero will be chosen as it has the least control

effort. However, it is evident that such behavior is not desired, and our goal is

to have the robot reach the endpoint of the desired trajectory. To achieve this,

we include a terminal cost p(xN), which encodes the distance of the mobile

robot from the final goal’s location, using the following equation:
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p(xN)k = DT
kQfDk (3.21)

By incorporating the final term in the definition of the cost function, the

optimal control input signal Uk is chosen at each time step and is fed to the

control plant.

3.6 Summary

In this section, the problem of controlling a mobile material deposition robot

with a skid-steering locomotion mechanism to follow a desired trajectory for

thermal spray operation is investigated. Precise control of the mobile unit is

essential to achieve uniform and controlled deposition thickness during mate-

rial deposition, making trajectory-following accuracy a critical task.

Two control laws are discussed, and their mathematical equations are de-

veloped. The first control law, the proportional-integral-derivative (PID) con-

troller, utilizes lateral and orientational errors as the primary feedback to keep

the robot on track. Despite its simplicity, the PID controller lacks awareness of

the robot’s kinematic constraints and may require extensive tuning in practical

scenarios.

To address these limitations, the model predictive controller (MPC) is in-

troduced as an advanced optimization-based controller. The MPC incorpo-

rates system feedback errors, control effort, smoothness, and kinematic con-

straints into a single cost function, enabling it to characterize essential perfor-

mance metrics for material deposition tasks. While the MPC is widely used

in industry due to its capabilities, it comes with higher computational costs

and complex implementation compared to the PID controller. However, its

ability to handle system constraints makes it a suitable choice for autonomous

material deposition applications.
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Chapter 4

Experimental studies and
discussion

In this chapter, the results of implementing the visual navigation framework,

thoroughly explained in the preceding two chapters, are presented. These

results encompass the evaluation of the framework’s performance in two mod-

ules. The first module focuses on the state estimation, where the accuracy of

localization and orientation estimation for both a mobile and a fixed robotic

manipulator, designed for automated material deposition tasks, is assessed.

Additionally, the performance of the controllers in tracking a predetermined

trajectory using the mobile robotic platform is analyzed.

The results obtained from both simulation and real-world experiments pro-

vide evidence of the algorithm’s reliable performance. The outcomes of these

experiments quantitatively demonstrate the performance of the visual navi-

gation framework. Furthermore, discussions on the controllers are conducted,

and the experimental results are summarized, providing conclusive remarks on

the overall system performance.

4.1 The visual state estimation algorithm

In this section, the performance of the visual state estimation algorithm, de-

tailed in chapter 3, will be evaluated. The evaluation comprises assessing the

accuracy of state estimation for both the fixed and mobile robots designed

for autonomous material deposition. To begin, the results showcase the state
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estimation framework’s performance in the fixed robot under various spraying

scenarios. Subsequently, a similar analysis will be conducted for the mobile

robotic system.

4.1.1 Fixed manipulator state estimation

In this section, the performance of the localization framework is evaluated on

the fixed manipulator. Our goal is to estimate the state of the end-effector

of this robot. In this case, the camera sensor is placed on a tripod 2.7 m

above ground level. The camera sensor’s pitch angle is 45o and the tripod is

placed 1.2 m away from the robot’s base. The performance of the algorithm

is investigated in 3 different scenarios, in the following.

• Investigating Position of End-Effector: In this scenario, a rectan-

gular movement of the end effector on a flat substrate is assumed for

our application. In this case, all states of the end effector, except 2 po-

sitional states, remain constant and equal to zero. Figure 4.1 displays

the trajectory of the end effector along with the estimated 2D position

by the visual state estimator, and the filtered trajectory obtained after

employing the state observer.

Figure 4.1: End-effector trajectory on the plate (Green), Noisy visual mea-
surements (red), improved estimation by the motion model(blue).

It is evident from figure 4.1 that at the start of the movement (bottom
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left), the visual state estimation is quite close to the actual trajectory.

After a few centimeters of movement as the direction of the motion

changes, there is a noticeable gap between the visual measurements and

the actual trajectory due to errors in localization. However, the mo-

tion model is able to predict a different path from that of the visual

observer, which results in an improvement of estimation, visible in the

top horizontal part of the rectangle.

• Investigating the yaw angle: In this scenario, the application requires

a cold spray operation on the interior surface of a cylindrical substrate,

such as a pipe. The robot’s control involves following a circular path in

each pass, while other states, like the positional states, remain constant.

The focus of this evaluation is on assessing the algorithm’s performance

in estimating the yaw angle of the robot’s end-effector. The yaw angle is

defined as the angle of rotation around the vertically perpendicular axis

to the line of fire of the cold-spray nozzle.

Figure 4.2: Yaw angle evaluation in the second scenario. The visual-based
estimations (red dots) increase in variance between 4 and 6 seconds, compen-
sated by the observer

It can be noticed from figure 4.2 that when the rate of change in yaw

angle increases (after 4 seconds), the variance in localization increases

for the visual-based estimator due to motion blur. However, the mo-

tion model fusion process is able to correct the loss of accuracy due to
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perceptually degraded conditions.

• Investigating the pitch angle:

The application requires that the end-effector of the robot is controlled

to perform the cold-spray process on the exterior surface of a horizontally

laid pipe. In this case, the end-effector is controlled such that the pitch

angle, defined as the angle of rotation of the end-effector around the axis

horizontally perpendicular to the line of fire, covers the angles in the

range [0,−π/2]. Figure 4.3 demonstrates the actual pitch angle alongside

the visually estimated pitch angle and the output of the optimal variance

state observer.

Figure 4.3: Pitch angle evaluation in the third scenario. Due to erroneous
initialization, the initial error is larger compared to the error after KF-filter
convergence.

As can be observed from 4.3, due to existing errors in initialization, the

algorithm starts with considerable error with respect to the actual value.

However, it is able to compensate for this error as the values of the visual

state estimation grow large in disparity around 4 seconds after the start

of the test. In this phase, the algorithm pays more attention to the

predictions of the motion model, which increases the accuracy of the
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prediction. Finally, figure 4.4 provides a few examples of 3D bounding

boxes estimated for the case of the fixed manipulator.

Figure 4.4: Dense point cloud representation of the fixed manipulator along
with the estimated bounding box shown in red .

4.1.2 Mobile robot state estimation

In this section, the performance of the localization framework on the mobile

cold-spray unit will be evaluated. The primary objective is to estimate the

position and heading angle of the robot and the cold-spray unit, which is

fixed on a mounting to the robot. For this evaluation, the camera sensor is

positioned on a tripod at a height of 2.8 m above the ground level, with a pitch

angle of 45o. The algorithm’s performance will be assessed as the robot moves

along a straight and circular path. In both cases, the pitch and roll angles of

the mobile unit are assumed to be zero.
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• Moving on a straight path:

In this scenario, the mobile robot moves in a straight line away from

the camera. This experiment can be particularly useful when the mobile

unit intends to spray along the length of a horizontal pipe. The camera

is located above the origin of the coordinate system and the heading of

the robot is constant.

Figure 4.5: Mobile robot Trajectory in linear movement case. A larger variance
at the start of motion can be observed. This is improved further on as the
motion model fusion takes place.

As can be observed from figure 4.5, the state observer uses the visual

measurements at the start of motion as the main element in position es-

timation. However, as the mobile unit moves away from the camera, the

uncertainty in depth estimation increases and this affects the impact of

visual measurements in the final filtered results by increasing the second

term in the visual covariance matrix.

In the next case, the impact of occlusion on the mobile robot’s state

estimation performance will be investigated. The scenario involves the

robot moving in a straight line while encountering an occluding object

that blocks the camera’s field of view. Consequently, the visual estima-

tion is unable to contribute to the state estimation performance during

this occluded period.

As can be seen from figure 4.6, there is an increase in visual state esti-
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Occlusion

Figure 4.6: Mobile robot Trajectory in linear movement case. A larger variance
at the start of motion can be observed. This is improved further on as the
motion model fusion takes place.

mation variance around the area where the occlusion happens; leading

to a loss of visual estimation and a shift of trust in the wheel odometry.

This provides proof of accurate estimation of states in occluded cases.

• Moving on a Circular Path:

In this scenario, the mobile unit performs a half-circle maneuver around

the camera. The performance of position and heading angle estimation

is investigated. From figure 4.7, an area in which the accuracy of the

visual measurements (red dots) decreases is noticeable. This results in

increased variance in localization and orientation estimation and a higher

spread in visual-based estimations (red dots). Furthermore, from the

position plot, a radial bias towards the center of the circle where the

camera is fixed can be noticed. This offset is attributed to the fact that

as the distance between the camera and the robot increases, the pixels

whose depth is measured in each frame belong to one of the sides of

the mobile robot. However, it can be noticed that this offset is also

partially compensated by the motion model (blue line). The offset can
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also be addressed by installing the camera at a greater height or by

compensating for the error by adding an adaptive radial offset vector to

the localization results. Finally, figure 4.4 provides a few examples of 3D

bounding boxes estimated for the case of the mobile robot.

Increased 
Uncertainty Area

Figure 4.7: Mobile robot Trajectory in a circular movement.

4.1.3 Statistical error analysis

Error analysis in localization and orientation estimation for the case of the fixed

manipulator was developed. This is done by considering the above-mentioned

scenarios and by calculating the Mean absolute error (MAE), maximum error

(ME), and root mean squared error (RMSE). The results of this analysis can

be found in table 4.1.

Table of Errors
Scenario MAE ME RMSE
Flat Plate (x-y) 3.83 cm 4.37 cm 4.56 cm
Vertical Cylindrical Pipe
(Yaw angle ψ)

0.18 rad 0.36 rad 0.23 rad

Horizontal Cylindrical Pipe
(Pitch angle θ)

0.15 rad 0.27 rad 0.21 rad

Table 4.1: Fixed manipulator error analysis

From the above table, it can be noticed that the algorithm achieves less

than 5 cm mean average error in localization of the target object and less than
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Figure 4.8: Mobile robot orientation estimation in a circular movement.

0.2 rad mean average error in orientation estimation. The roll angle is not

investigated as it is not a principal state when performing material deposition

using the fixed manipulator.

Next, the statistical error analysis for the mobile robot case will be dis-

cussed. Similar to the fixed robot case, the errors in each scenario will be

presented and compared to the fixed robot case. The following table provides

the statistical errors for each mentioned case in the mobile robot use case.

Table of Errors
Scenario MAE ME RMSE
Straight path 2D Position 8.05 cm 12.79 cm 9.13 cm
Circular path 2D Position 9.18 cm 11.49 cm 10.39 cm
Circular path Heading Esti-
mation

0.37 rad 0.51 rad 0.44 rad

Table 4.2: Fixed manipulator error analysis

By comparing the results from table 4.1 and 4.2 for errors in position and

heading angle estimation, it can be noticed that the errors for the mobile robot

case are greater than those for the fixed manipulator case. This observation is

due to the fact that the mobile robot operates in a larger workspace, making it

possible for it to operate at greater distances from the camera, which in turn
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Figure 4.9: Mobile robot point cloud representation and estimated bounding
boxes.

leads to an increase in depth estimation error. The depth estimation error

could be significantly reduced if a camera with a larger baseline or better pixel

resolution is used. Additionally, in future work, the effect of fusing localization

results from multiple cameras installed in the environment could be studied

to improve localization accuracy.

4.2 Controller results

This section aims to examine the efficacy of the developed proportional-Integral-

Derivative (PID) and model predictive controllers (MPC), as elucidated in the

preceding chapter, within the context of robot trajectory control. Our inves-

tigation encompasses an evaluation of controller performance through both

simulation and real-life scenarios. The Gazebo Simulator is employed as the
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simulation environment, while the real-life experimentation is constrained to

the mobile robot configuration. The structure of this section commences with

a comprehensive exposition of the MPC and PID controller performance in

simulation, alongside a comparative analysis of their respective merits. Sub-

sequently, quantitative and qualitative outcomes obtained from the real-life

implementation using the Husky robot are presented.

4.2.1 Simulation results

The simulation results play a fundamental role in evaluating the performance

of the designed PID and MPC controllers for the mobile robot trajectory

control application. The ”Gazebo Simulator,” a widely adopted tool, is uti-

lized to subject the controllers to diverse simulated scenarios, enabling the

understanding of their capabilities, strengths, and limitations in handling var-

ious trajectory-tracking tasks. A comprehensive examination of key metrics,

such as tracking accuracy, response time, and stability, provides valuable in-

sights into the implementation of these two widely used controllers. Moreover,

a comparative analysis between the two controllers is conducted to identify

their respective areas of improvement. The simulation serves as a crucial step,

establishing a solid foundation for further exploration and verification of the

controllers in real-life setups. Figure 4.10 showcases the simulated husky robot

in the gazebo environment.

The first test case involves instructing the controllers to follow a linear.

The resulting position plots for the MPC and PID controller are as shown in

Figure 4.11.

In this experiment, both controllers are initialized with a 20 (cm) lateral

error and 1 (rad) orientation error. Analyzing the top figure, which represents

the performance of the model predictive controller, it becomes evident that

after 1 m of operation, the controller converges within close proximity of 2

cm to the desired trajectory. In contrast, the PID controller requires a signifi-

cantly longer duration of operation, specifically 2.5 m, to attain a similar level

of convergence within the designated trajectory. Moreover, the model predic-

tive controller exhibits a remarkable attribute of smooth trajectory tracking,
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Start

Stop

Figure 4.10: The husky mobile robot spawned in the Gazebo simulator for a
simple line tracking case.

characterized by the absence of discernible overshoots and undershoots. Con-

versely, the PID controller displays two instances of overshoot, measuring 35

cm and 5 cm, respectively, along with an undershoot of 15 cm. The supe-

rior trajectory tracking performance of the model predictive controller can be

attributed to its inherent ability to compute the most optimal linear and an-

gular velocity solutions, coupled with the integration of a proximity term for

enforcing soft constraints on the inputs. These factors collectively contribute

to the enhanced precision and stability exhibited by the MPC controller in

comparison to its PID counterpart.

The next plot worth discussing at this stage is the orientation plot of the

MPC and PID controllers for this case. Figure ?? and figure ?? demonstrate

the orientation plots of the PID and MPC controllers respectively.

The two depicted plots exhibit intriguing characteristics and notable dis-

tinctions in control performance. Upon close examination of figure 4.12, it

becomes evident once again that the MPC controller demonstrates an ability

to smoothly align the robot’s orientation with the designated trajectory. No-
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MPC

PID

Figure 4.11: Simulated position plot of the MPC and the PID controllers.
Optimal response time and smoother trajectory can be observed from the
MPC plot in contrast to the PID plot.

tably, both plots commence with an initial orientation error of 1 rad. In the

case of the PID controller, a rapid reduction in orientation error towards the

target orientation of 0 rad is observed. However, due to the abrupt steering

input, the PID controller fails to precisely attain the target orientation and

exhibits an undershoot of 0.6 rad. Conversely, the model predictive controller

showcases a superior performance, characterized by a significantly reduced

undershoot and rapid convergence to the orientation goal of 0 rad within 7

seconds, in contrast to the 10 seconds required by the PID controller. Never-

theless, a momentary decrease in the yaw angle is observed in the trajectory

of the MPC controller subsequent to the initial convergence. This behavior

can be attributed to the intrinsic nature of the MPC controller, which relies

on numerical optimization of the object cost function within the optimal con-

trol problem. Such transient instabilities are not uncommon and are typically

followed by a period of stability, which, in our case, spans approximately 2

seconds and is accompanied by an increase in the trajectory tracking error

term. However, in real-life scenarios involving safety-critical systems driven

by such controllers, it is crucial to address and mitigate these instabilities by

employing more complex cost functions.
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Figure 4.12: Model Predictive Controller’s orientation plot for the simulated
linear path following

Another significant aspect that requires discussion at this stage pertains

to the stability characteristics of the two controllers. Interestingly, the MPC

controller demonstrates the ability to maintain a steady state error near 0 rad

once it has converged to the final orientation goal. In contrast, the PID con-

troller fails to sustain this steady state error and directs the robot to initiate

rotational motion, causing it to rotate around itself upon reaching the goal

orientation. This behavior stems from the presence of the integral term in the

PID controller, which accounts for the accumulation of errors over time. To

circumvent such behaviors in real-world scenarios, it is imperative to adopt

adaptive strategies for determining the PID controller’s terms, thereby ensur-

ing more stable performance.

Next, the input commands generated by the two controllers through the

following pair of plots are demonstrated for the angular velocity.

The plot presented in Figure 4.14 provides valuable insights into the com-

parative performance of the Proportional-Integral-Derivative (PID) controller

and the Model Predictive Controller (MPC), emphasizing distinctive charac-
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Figure 4.13: Proportional-Integral-Derivative controller’s orientation plot for
the simulated linear path following

teristics and notable advantages of the latter, particularly in generating angu-

lar velocity inputs. In the first plot, a series of abrupt changes in the input

generated by the PID controller is observed, while the MPC controller ex-

hibits superior performance. The PID controller demonstrates a sequence of

undershoots and overshoots before eventually converging to a near-zero angu-

lar velocity control command. It is important to note that the steady-state

value attained by the PID controller is not precisely zero, resulting in a minor

rotational movement for the robot following the achievement of the goal.

Conversely, the MPC controller shows a significantly faster convergence

to the desired input command of 0 rad/sec, achieving this milestone approxi-

mately 10 seconds after the operation’s commencement. On the other hand,

the PID controller requires approximately 30 seconds to achieve comparable

results, highlighting the MPC’s capacity for expedient convergence.

The last part of this comparative study involves the linear velocity plots

generated by the two controllers.

In the present scenario, both controllers exhibit satisfactory efficacy in
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Figure 4.14: Model predictive controller’s angular velocity command for the
simulated linear path

attaining the desired controller input velocity of 0. Consistent with the ear-

lier analysis of controller performance, the absence of abrupt overshoots and

the presence of a smooth input velocity command in the control signal gen-

erated by the model predictive controller (MPC) is observed. Notably, the

MPC demonstrates a convergence time of approximately 11 seconds, while the

PID controller requires approximately 55 seconds to achieve the same out-

come. This discrepancy in convergence time provides compelling evidence of

the superior efficiency of the model predictive controller in propelling the robot

toward its designated trajectory.

The table below summarizes our findings in controlling the robot on a linear

path in simulation through the utilization of the MPC and PID controllers.

The analysis of the data presented in Table 4.3 sheds light on the compara-

tive performance of the model predictive controller (MPC) and the proportional-

Integral-Derivative (PID) controller. A careful examination reveals that the

MPC exhibits a greater degree of stability in generating control commands,

characterized by significantly reduced overshoots and undershoots. Moreover,

87



0 10 20 30 40 50 60
Time [s]

0.6

0.4

0.2

0.0

0.2

0.4
O

m
eg

a[
ra

d/
se

c]

Figure 4.15: PID’s angular velocity command for the simulated linear path

the MPC showcases faster settling times when compared to its PID coun-

terpart. However, the PID controller holds a notable advantage in terms of

control command calculation time, as it can compute the control command 20

times faster than the MPC. This attribute can prove advantageous in scenarios

where the onboard computation device is constrained and unable to handle the

computational demands typically required by the model predictive controller.

To conclude our comparative analysis in simulation, the designed controller

is subjected to a more intricate testing scenario, involving the robot’s navi-

gation along a square-shaped path with two corner turns. At the onset, the

robot was positioned 20 cm away from the desired trajectory, accompanied

by a 45-degree orientation error angle. The outcomes of this rigorous test are

illustrated in figure 4.18.

A thorough examination of figure 4.18 provides valuable insights into the

performance of both the model predictive controller (MPC) and the proportional-

Integral-Derivative (PID) controller in a challenging square path scenario.

Specifically, in the case of the PID controller, a sharper initial steering com-

88



0 10 20 30 40 50 60
Time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

V
[m

/s
]

Figure 4.16: Model predictive controller’s linear velocity command for the
simulated linear path

mand is observed, resulting in an overshoot at the outset. Conversely, the

model predictive controller demonstrates a more precise control strategy, avoid-

ing any significant overshoot during the trajectory initialization. As the robot

progresses along the path, the MPC exhibits an ability to closely follow the de-

sired trajectory and execute turns with a high degree of accuracy. In contrast,

the PID controller proves to be less efficient in turning scenarios, leading to an

increase in lateral error when encountering the right turn. The accumulated

error becomes apparent as the robot completes the second right turn in the

case of the PID controller, where the lateral error persists as the robot moves

vertically downwards towards the final position. This discrepancy highlights

the superior performance of the MPC in maintaining trajectory precision and

mitigating error accumulation during complex turning maneuvers. The table

below summarizes the comparative performance test of the controllers in the

square-shaped path following scenario:

Upon careful examination of Table 4.4, which provides a quantified sum-

mary of the comparative analysis between the PID and MPC controllers in
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Figure 4.17: PID’s angular velocity command for the simulated linear path

square-shaped path tracking, it becomes evident that the MPC controller ex-

hibits superior tracking performance. Concretely, the results highlight the

absence of visible overshoots in the MPC’s trajectory, while the PID con-

troller demonstrates a maximum overshoot of 26 cm, indicating a significant

deviation from the desired path. This observation raises concerns about the

suitability of the PID controller for applications that demand precise track-

ing, such as automated material deposition, where deviations can have adverse

consequences on deposition performance and quality.

Given the aforementioned considerations, a decision was made to focus the

real-life experimentation solely on the Model Predictive Controller (MPC),

which has consistently exhibited efficient performance in both simulation and

comparative studies. In the upcoming section, a comprehensive investigation

of the MPC controller’s capabilities will be conducted, subjecting the real

Husky robot to various tracking scenarios. Through this in-depth examination,

a deeper understanding of the controller’s performance and its applicability in

real-world settings is sought.
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Table of comparative study in linear path tracking (Simulation)
Metric MPC PID
Path Tracking Overshoot Count 0 2
Path Tracking Maximum Overshoot 0 34cm
Path Tracking Undershoot Count 0 1
Path Tracking Maximum Undershoot 0 17cm
Orientation response time 4.2sec 10sec
Orientation steady state Error ≊ 0 Unstable
Orientation Undershoot 0.2rad 0.55rad
Linear Velocity Settling time 11sec 55sec
Angular Velocity Settling time 11sec 30sec
Control Command Calculation Time ≊ 20ms 1ms

Table 4.3: Performance analysis table of MPC and PID controllers in linear
path following

Table of comparative study in square-shaped path tracking (Simulation)
Metric MPC PID
Mean lateral Error ≤ 1cm 15.2cm
Mean Orientation Error ≤ 0.05rad 0.27rad
Max Lateral Overshoot Magnitude 0 26cm
Time to Reach Goal 34sec 19sec

Table 4.4: Performance analysis table of MPC and PID controllers in square-
shaped path following

4.3 Real setup results

The primary objective of this section is to conduct a real-life evaluation of

the model predictive controller (MPC) using a mobile robot platform. To

achieve this goal, a series of tests will be conducted wherein the robot will be

exposed to diverse desired trajectories, and the corresponding estimated states

and control inputs will be recorded. The performance of the MPC will be

thoroughly assessed based on key metrics, including lateral and orientational

tracking accuracy, control effort, and trajectory execution time. The obtained

results will be analyzed, quantified, and summarized, leading us to draw final

conclusions regarding the performance and suitability of the MPC in practical

real-life scenarios.
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Figure 4.18: The square-shaped desired trajectory test case. The MPC out-
performs PID in closely following the path and reaching the final goal.

4.3.1 Moving on a straight path

The initial scenario chosen to assess the performance of the model predictive

controller (MPC) using the real setup involves the robot’s motion along a

linear, straight path. While this scenario may appear straightforward, it is

essential to note that in practice, autonomous material deposition agents often

traverse straight lines in a back-and-forth manner to achieve complete coverage

of a designated deposition area. Moreover, despite its apparent simplicity,

this fundamental test offers valuable insights into the controller’s performance

and stability in various real-life use cases. By evaluating the MPC’s ability
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to navigate the robot along a straight path with precision and stability, a

deeper understanding of its suitability in practical applications can be gained.

The following figure illustrates the husky mobile robot while undertaking the

straight path maneuver.

Figure 4.19: The husky mobile robot, being controlled on a linear path. The
robotic platform is able to execute this task proficiently while following a
defined linear path.

Figure 4.20 demonstrates the angular velocity signal generated by the con-

troller to drive the mobile robot on a straight path.
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Figure 4.20: Angular velocity of the husky robot moving on a straight path.
As expected, the generated control signal is close to zero for most moments of
operation.

As can be observed from figure 4.20, it becomes evident that the controller

executes angular velocities that are mostly close to zero for most moments of

making the straight line maneuver. This matches our expectation as the most

optimal control command sequence for angular velocity to move on a straight

path is a command sequence that is close to zero. In spite of this fact, there
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are moments in which the angular velocity has sudden changes in magnitude,

which may be attributed to common local minimums in the task execution

cost function of the optimal control problem which may lead to suboptimal

solutions for the control signal in real-life scenarios. These sudden jumps are

amplified as there are noises and inaccuracies in the state estimation module

as well. In order to mitigate this issue, one can impose hard constraints on

the optimization program in order to avoid generating control signals that do

not match the real-life actuation capabilities of the mobile robot.

In addition to the above-described diagram, the linear velocity plot which

will expose interesting characteristics of the MPC.
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Figure 4.21: Linear velocity of the husky robot moving on a straight path. As
expected, the generated control signal involves an area of initial increase, an
area where it is mostly constant, and an area that lead to a complete stop.

Figure 4.21 reveals the occasional moments where there are sudden changes

in the linear velocity. The plot exhibits three distinct areas: an initial 4-second-

long increase in linear velocity, followed by a 2-second-long region of constant

velocity, and finally, an area of decreased linear velocity. Consequently, the

robot gains speed in the first few seconds, maintains that speed for a period,

and eventually comes to a stop at the end of the path. Similarly observed

jumps are present in the linear velocity, although their impact on control

performance is not substantial, as the optimizer is constrained by hard limits

on the generated control signals.
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4.3.2 Making a right turn

The next test scenario employed to evaluate the performance of the model

predictive controller (MPC) in a real-life setting involves the execution of a

right turn. Figure 4.22 depicts four key steps of the robot undertaking this

maneuver. The right turn represents a frequently encountered and extensively

performed action in various applications, such as automated material depo-

sition. For instance, in the context of cold spraying the outer surface of a

curved pipe, an automated system may necessitate precise control during this

particular maneuver. Therefore, this test scenario serves as a pertinent case

study within our comprehensive analysis, enabling us to thoroughly assess the

efficacy and suitability of the MPC controller in real-life applications.

Figure 4.22: The Husky mobile robot making a right turn using the model
predictive controller.

This test case involves the robot navigating through an elbow-shaped path,

comprising a vertical segment followed by a sharp right turn that leads to the

final segment of the path. The robotic platform executes this operation, as

demonstrated in Figure 4.22. This particular test case serves as a crucial

assessment of the robot’s ability to maneuver through complex trajectories

involving both linear and angular movements.

To assess the performance of the automated navigation framework, the

state estimation figure is investigated, involving the visual state estimation as

well as the Kalman filter’s output.

By investigating figure 4.23 it is possible to observe that the 2 main sen-

sory sources (i.e. wheel odometry and stationary camera) work in tandem to

estimate the state of the robotic platform in this maneuver. Specifically, while

the robot is moving vertically toward the right turn, a drift in localization can
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Figure 4.23: The 2D state estimation plot of the right turn executed by the
model predictive controller.

be seen in both the odometry and the stationary camera. However, since the

information from these two sensors is fused in the optimal variance observer,

the resulting estimated position has a higher degree of accuracy compared to

each individual sensory unit.

Additionally, the linear and angular velocity plots reveal further informa-

tion regarding the real-life performance of the MPC controller.

In Figure 4.24, the log of the linear velocity command generated by the

model predictive controller (MPC) during the right-turn scenario is plotted.

A detailed analysis of the plot reveals two distinct flat peaks, corresponding
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Figure 4.24: The linear velocity command log generated by the model predic-
tive controller during the right turn.

to the vertical and horizontal sections of the desired trajectory, respectively.

Furthermore, the middle segment of the plot corresponds to the execution

of the right turn maneuver, characterized by a 2-second pause in the robot’s

linear velocity. To gain further insight into the controller’s behavior during

this critical phase, it is imperative to examine the log of the angular velocity

command as well.

One notable characteristic of the two command log plots is the existing

random noise across their span. This is attributed to the nature of the state

estimation algorithm, where existing noises in the sensing modules such as

depth estimation error or wheel drift can cause oscillations in the estimated

state of the mobile platform. However, this is not significant enough to hinder

the performance of the model predictive controller as it is able to withstand

the existing noise.

The table below summarizes the performance metrics of the model predic-

tive controller in the testing scenarios.

Table 4.5 summarizes the real-life experimentation of the model predictive

controller. The quantitative error analysis suggests that since both scenarios
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Figure 4.25: The angular velocity command log generated by the model pre-
dictive controller during the right turn.

are subject to the same lateral and orientation errors, their settling times are

equal and close to 2-3 seconds. However, Since the right turn poses a greater

challenge in path following for the robot, we observe that the average and

maximum errors in orientation and position are generally higher.

4.4 Discussion on the controllers

In the preceding sections, extensive experimental tests were conducted to com-

prehensively evaluate the performance of the controllers designed in the pre-

vious chapters. The findings highlight the limitations of the proportional-

Integral-Derivative (PID) controller, which exhibited several deficiencies. Specif-

ically, the PID controller displayed a lack of awareness of the state and input

constraints inherent in the system. Moreover, occasional overshoots and un-

dershoots in the generation of control commands were observed. These fluc-

tuations not only compromised the controller’s ability to precisely follow the

desired trajectory but also raised concerns regarding its practical implemen-

tation in real-life scenarios.
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Table of quantitative error analysis of MPC in real setup
Metric Straight Path Right Turn
Initial Lateral Error 10 cm 10 cm
Initial Orientation Error 0 rad 0 rad
Mean lateral Error 3.9 cm 8.1 cm
Mean Orientation Error 0.17 rad 0.41 rad
Max Lateral Error 9.7 cm 15.2 cm
Max Orientation Error 0.33 rad 0.57 rad
Settling time 2.1 sec 2.9 sec

Table 4.5: Performance analysis table of MPC in the real-life experimentation
setup

In contrast, the model predictive controller (MPC) demonstrated a higher

level of flexibility in its design, incorporating performance metrics and ac-

commodating necessary hard constraints on the control inputs through the

integration of a comprehensive and tunable cost function. This feature ren-

ders the MPC a safer choice in safety-critical systems. The MPC’s ability

to calculate the optimal control input for each time step addresses a crucial

shortcoming in the derivation of the PID controller.

Furthermore, the control signals generated by the MPC exhibited superior

stability, absence of over/undershoots, and seamless integration with the de-

sired path. These desirable characteristics make the MPC the controller of

choice in numerous real-life applications where a comfortable user experience

is paramount, such as manned or unmanned autonomous agents.

An additional advantage of the MPC lies in its adaptability to various op-

erating conditions and environmental factors. The ability to consider dynamic

constraints and update control inputs based on real-time feedback enables the

MPC to respond to changing scenarios, ensuring satisfactory performance in

tracking challenging paths. Such dynamic features of the environment include

the presence of obstacles, tools in the workspace, or even human beings. Col-

lision with such dynamic entities of the environment can be easily avoided by

adding soft or hard constraints to the optimization program.

Moreover, the MPC’s ability to handle complex trajectories, such as sharp

turns and intricate path patterns, with precision and stability further high-
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lights its suitability for demanding tasks. The comprehensive analysis of the

MPC’s performance across various test scenarios demonstrated its remark-

able capability to maintain accurate trajectory tracking, even in challenging

situations.

It is also worth mentioning that the computational efficiency of the MPC

can be a significant factor to consider in certain applications. While the MPC

may require more computational resources compared to the PID controller,

advancements in hardware technology and algorithm optimizations can allevi-

ate potential concerns related to the computational burden, making the MPC

an increasingly viable choice for real-time control tasks.

To further enhance the performance of the MPC in real-life scenarios, on-

going research and development efforts focus on refining the cost function

design, incorporating more advanced optimization techniques, and exploring

the integration of machine learning and adaptive control methods. These en-

deavors aim to improve the MPC’s overall performance, ensuring its continued

relevance in diverse applications.

In conclusion, the experimental evaluation of the designed controllers un-

derscored the distinct advantages of the model predictive controller over the

proportional-Integral-Derivative controller. The MPC’s ability to consider per-

formance metrics, account for input constraints, and generate optimal control

inputs in a computationally efficient manner positions it as the superior choice

for trajectory control in safety-critical systems and applications that prioritize

stability, accuracy, and user comfort. Continued research in this field promises

to further enhance the capabilities of the MPC, opening up new avenues for

its utilization in real-world scenarios.

4.5 Summary

The results chapter of this thesis has provided a comprehensive evaluation of

the designed state estimation and controllers algorithm for the task of au-

tonomous mobile material deposition. Through extensive experimentation

and analysis in common deposition scenarios such as straight and L-shaped
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path tracking, valuable insights have been gained into the performance of

the proportional-integral-derivative (PID) controller and the model predictive

controller (MPC).

Specifically, the model predictive controller achieves an average tracking

error of 8 cm in the real scenario while following a right-turn path, with an av-

erage orientation error of 0.4 rad in the same scenario. Furthermore, the model

predictive controller outperforms the PID controller in tracking a rectangular

path, exhibiting an error that is 20 times less in the simulation environment

for both lateral and orientation errors. In terms of critical control errors, such

as over/undershoots, it is observed that the model predictive controller makes

no such errors in the simulation environment, while the PID controller exhibits

2 overshoots and 1 undershoot.

The PID controller demonstrates a fast computation time, less than 1 ms

for each iteration, outperforming the MPC counterpart, which takes 20 ms or

more to find optimal solutions to the nonlinear programming problem.

The state estimation algorithm proves its capability to cope with inherent

uncertainties and environmental noise, significantly contributing to the overall

performance of the controllers. Its accurate estimation of the robot’s pose

plays a crucial role in achieving precise trajectory tracking.

Moreover, limitations of the PID controller are identified, including its ag-

nostic nature towards system constraints and occasional deviations from the

desired trajectory due to overshoots and undershoots. Conversely, the MPC

controller demonstrates remarkable flexibility in its design, considering perfor-

mance metrics and accommodating hard constraints on control inputs. This

adaptability makes the MPC the preferred choice for safety-critical systems,

showcasing optimal control input calculations for each time step and ensuring

superior stability and smooth trajectory tracking.
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Chapter 5

Conclusion and future work

In this work, a visual-based physically informed state estimation framework

is proposed, in which depth estimation with object instance segmentation is

incorporated to generate a dense 3D representation of the object using a stereo

camera sensor. The quality of this representation is improved by performing

3D point cloud filtering. By utilizing prior knowledge of the dimensions of

the target object, an optimal bounding box is estimated based on the normal

distance of the points from the surfaces of the bounding box. Furthermore,

physical kinematic constraints of the target object are taken into account in the

optimization process to minimize pose estimation errors caused by inaccuracies

in the depth estimation.

In addition, a motion model of the system is developed based on the piece-

wise constant acceleration assumption. Uncertainty in the motion model and

the visual estimation is characterized through empirical expressions, resulting

in an algorithm that has a higher estimation accuracy. The state estimation

algorithm is tested and quantitatively evaluated on fixed and mobile cold spray

systems in a variety of scenarios.

As part of the work on visual navigation, a model predictive controller was

developed to account for the physical kinematic constraints of the autonomous

mobile material deposition agent during trajectory tracking. This controller

utilized an objective function incorporating position and orientation error,

control effort, terminal cost term, and the proximity term as the main tool for

generating a smooth and feasible control signal, effectively driving the robot
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on a desired path visually both in simulation and in real setups.

In future work, the focus will be on addressing challenges arising from

occlusion and inaccuracies in depth estimation by incorporating onboard sen-

sors such as onboard cameras and LiDARs, thus improving the accuracy of

localization. The model predictive controller’s efficiency can be enhanced by

exploring novel optimization techniques or adaptive control strategies in the

context of trajectory tracking. Implementing advanced methods for handling

uncertainties and disturbances can boost the controller’s ability to cope with

real-world environmental complexities.

Lastly, exploring real-time optimization and control strategies could lead

to improved visual navigation performance in dynamic and changing environ-

ments. The ability to make real-time adaptations to environmental variations

and dynamic obstacles would be valuable in achieving efficient autonomous ma-

terial deposition operations and could include the usage of intelligent collision

avoidance modules in the framework, leading to a higher degree of robustness

in the future.
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2014, 96, 1–9.

(26) Ramer, C.; Sessner, J.; Scholz, M.; Zhang, X.; Franke, J. In 2015 IEEE
International Conference on Multisensor Fusion and Integration for In-
telligent Systems (MFI), 2015, pp 65–70.

(27) Guo, F.; He, Y.; Guan, L. In 2017 IEEE global conference on signal and
information processing (GlobalSIP), 2017, pp 408–412.

(28) Song, K.-T.; Chang, Y. C. In 2018 International Automatic Control
Conference (CACS), 2018, pp 1–6.

(29) Hoyer, L.; Steup, C.; Mostaghim, S. In 2018 IEEE Symposium Series
on Computational Intelligence (SSCI), 2018, pp 1388–1395.

(30) Feng, S.; Shen, S.; Huang, L.; Champion, A. C.; Yu, S.; Wu, C.; Zhang,
Y. Journal of Network and Computer Applications 2019, 146, 102425.
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(48) Kaliński, K. J.; Mazur, M. Mechatronics 2016, 37, 79–88.

(49) Poonawala, H. A.; Spong, M. W. In 2015 10th international workshop
on robot motion and Control (RoMoCo), 2015, pp 97–102.
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