i+0

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario

Bibliothéque nationale
du Canada

Direction des acquiisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)

K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for  microfilming.
Every effort has been made to
ensi : the highest quality of
repreduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

Your e Volre rolerence

Coar e NOlee rotorence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d’'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a P'aide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



University of Alberta

Jackknife Methods in Robust Regression

by

Zhiyi Du @

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfillment of the requirements for the degree of Master of Science
n
Statistics

Department of Mathematical Science

Edmonton, Alberta

Spring 1995



Bibliothéque nationale

I*I Nationali Library
of Canada du Canada
Acquisitions and Direction des acquisitions et
Bibliographic Services Branch  des services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa, Ontario Ottawa (Ontario)
K1A ON4 K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITIOUT HIS/HER
PERMISSION.

ISBN 0-612-01599-8

Canadi

Your file  Votre rélérence

Our e Nolre 1élérence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.



Universiiy of Alberta

Librar; F ‘lease Form

Name of Author: Zhiyi Du
Title of Thesis: Jackknife Methods in Robust Regression

Degree: Master of Science
Year this Degree Granted: 1995

Permission is Y-seby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly, or scientific

rescarch purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material

form wha:: ver without the author’s prior written permission.

\c’//ﬂ;’ » \§<A_‘
11009 89 Avenue
Edmonton, Alberta

T6G 027

Date: 2= 75 s




University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled Jackknife Methods in Robust
Regression submitted by Zhiyi Du in partial fulfillment of the requirements for the
degree of Master of Science in Statistics.

-~ e
ﬁ:)uglas P. Wiens (Supervisor)

A Y

N

T ——-

N.G.N. Prast-—"" 7~

) v
~~~~ e BTN

Francis Yeh

Date:




TO MY PARENTS



ABSTRACT

Jackknife is a resample replication technique which can be used to reduce the
bias of the estimator as well as to estimate the variance of the estimator. The applica-
tion of jackknife procedure in the classical regression problem have been investigated
since this technique was introduced by Quenouille in 1949. It has been proven that
jackknife method is a useful procedure which can be used in classical regression prob-
lem when a proper type of jackknife method is applied. The objective of this thesis
is to study the performance of the jackknife method in robust regression problem. A
delete-one jackknife procedure is applied in obtaining the jackknife robust estimates.
In consideration of the fact that the calculation of jackknife robust estimates is a
time consuming procedure, a computationally efficient approximate procedure is pro-
posed. Based on jackknife robust estimates which are discussed, a simulation study
is conducted. In the later part of this thesis, + vcra' diagnostic statistics which are

based on robust regression are discussed and a case study is conducled.
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Introduction

This thesis has four parts. In the first part, we discuss robust M and GM
regression estimates. Since the jackknife procedure can be used to reduce the bias of
an estimate as well as estimate the variance of the estimate, we combine the jackknife
procedure and the robust procedure in our estimations. A delete-one jackknife proce-
dure is applied in oblaining the robust estimates. Three types of jackknife estimates
are considered, namely, the ordinary jackknife robust estimate, the weighted jack-
knife robust estimate and the general weighted robust estimate. The corresponding
variance estim=tos are given as well. Furthermore, in consideration of the fact that
the calculatior ~f jackknife robust estimates is a time consuming procedure, a com-

putationally efficient approximation procedure is proposed.

In the second part, we give some simulation results which are obtained based
on the procedures we proposed in part cne. A discussion on the further work on the

inference of robust estimates is presented.

The third part deals with robust diagnostics. In this part, several diagnostic
statistics are presented. Those diagnostic statistics are analogous to the diagnostic
statistics in the ordinary least squares case but can be applied in robust procedures

to detect influential observations and outliers.

In the fourth part, a case study based on the diagnostic statistics which are

proposed in part three is conducted.



1 Robust Jackknife Estimate

1.1 A Brief Review of Classical Regression and Robust Pro-
cedures
1.1.1 The Classical Regression Procedure

Consider a regression problem with n cases (y;,x}). In matrix form, it can be

expressed as

y=Xp+e (1.1)

Y B (]

where

x; are non-random design points

B is a vector of parameters

¢ is a vector of irdependent random variables with marginal distribution function
F |, and its expectation and variance are E[e] = 0, and Var(e) = o*/

Classically, the problem of estimating A is solved by minimizing the sum of squares:

n

Y (i — xIB)? = man. (1.2)

=1
By taking partial derivatives, we see that the least squares etimator ﬂ,,g satisfies
n

> (yi - xTBLs)xi =0, (1.3)

1=1



so, the least squares estimator is
BLs = (XTX) XTy.
The variance of the least squares estimator is
Var(Brs) = eH(XTX)".

The value of a2 can be estimated by the MSE (MSE stands for error mean

square or residual mean square ) which is defined by

1 i(yi *X?ﬂy .

n—pizl

MSE =

The estimate of the variance of the LS estimator is

—
A

v(BLs) = Var(Brs) = MSE(XTX)™
1.1.2 Robust Procedures for Regression Problems

1.1.2.1 Ordinary M-estimation

The classical equations (1.2) and (1.3) can be robustified in the following way.
Instead of minimizing the sum of squares of residuals, we minimize a sum of less

rapidly increasing functions of the residuals:

n

3 ply: — x7 B) = min. (1.4)

1=1
After taking partial derivatives, we find that the robust M-estimator B should satisfy

n

Y b(yi— xT Bu)x; =0 (1.5)

=1

where ¥(-) = p'(+) .



Assume that p is an even, convex function, so ¢ is an odd, increasing function.
To solve 7, ¥(y: — xI B)x; = 0, we do weighted least squares regression iteratively

to obtain the estimate. To solve this problem, we can write the above equation as

-~

i _ Tﬂﬁ)(% - x?ﬁ)x,- =0.

1

Put
h(yi — xTB)

wy = —_ ,
yi — X7

and solve

n
E w,'(y,' - xiTﬁ)x,- =0.

i=1

In matrix form, this can be written as
XTwy = XTWX§3

where W = diag(wy,...,wn).

For non-singular matrix X7 WX, we can obtain the estimator 4 s the solution to
B=(XTWX)'XTWy .

This is a weighted least squares problem but the weights depend on the parameters
being estimated.

The algorithm is:

e Choose an initial estimate B(o). Usually, we can choose the estimator A1, which
is obtained by using ieast absolute value method or the estimator /31,5- which is

obtained by ordinary least squares method.



o Calculate the weights
¥y — x! Bo))

Wrio) = =
Yi — X;Tﬂ(o)

and solve the equation
- . . xT] . =0
> wi)(¥i — Xi By)xi =
=1

to obtain the weighted least squares estimator [§(1).

e Replace B(o) by B(l) and iterate to convergence.

Note: In most cases we need to consider the scale o. This case will be mentioned

later. We can use the same ideas to deal with such a problem.

For the simple form of M-estimate (i.e. the case in which we do not consider

the scale), the asymptotic variance of the estimator is

E(¢(€)2) (‘YTX)_I )

Var(w) = (e

This can be estimated by

sy 1/ (n=p)Tha (1) T yy1
v(fm) = () S # P (XTx)™,

where r; = yi — x7 fm.

Let the hat matrix H = X(XTX)™2XT have the diagonal {h;},. For the
balanced case (i.e. h; = h = p/n ), with symmetric error distributions and skew

symmetric ¥ function, assuming that 1 < p < n, and if we neglect terms of the
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orders h? = (p/n)? or 1/n, Huber (1981) gives three expressions which are unbiased

estimators of Var(8y). The expressions are

L1/ =PI ¥

xXTx)!
[(1/n) T o'(r))? ( )

/=PI gy

(1/n) 2 '(ri)
1 YT vy-1( vT vy vT W ¥\ -
Ty YT KT TW )
where
_ ., par(y)
fa‘,—1+;(E¢,)2 ,
and

W= diag("»bl(rl)a e a"/)l(rn)) .

The values of E%' and var(y’) can be estimated by
"o L '
E@) ~ ;{Zd’(r.‘) =:m

, 1
var(y') = ;Z[’/"(?‘i) —m]?.
For the special case of Huber’s 3 function
-k z< -k
Yr)=<z |z|<k

k z>k

%t becomes



where m is the relative frequency of the residuals which satisfy —k < < k.

1.1.2.2 Ordinary M-estimation of Regression and Scale

As mentioned before, for M-estimation we usually need to consider scale as well.

In this case, formulas (i.4) and (1.5) become

n . T
}:p(y‘—f’—@) = min. (1.6)
1=1

and

i=1

The scale = = o(F) can be estimated by
6 =o(F,) = MAD/®'(3/4) (1.8)

where MAD is the median absolute deviation (centred at 0) based on the full data

set, and ®(-) represents the standard normal distribution function.

Note: If the errors are symmetrically distributed with standard deviation o, then

o(F)=oF~Y(3/4)/®71(3/4) (=cif F=@).

1.1.2.3 The Generalized M-estimate

It is well known that the solutions (the estimators) which satisfy formula (1.7)
are only robust against outlying y values but not robust against highly influential x

values. In order to improve our estimators, we czn apply the Generalized M-estimate
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which is robust against both types of deviations. The Generalized M-estimate Bam

is obtained by solving

S i y‘—%’i‘r—ﬁ)x.- =0 (1.9)

=1

where the function 7(x,¢) is an even function of x and an odd non-decreasing

function of €.

1.1.3 The General Form of Variance of Robust Estimate

For the M-estimate and Generalized M-estimate cases, we can summarize the

expressions in a simple form ¢(z;, §). For the M-estimate case, we have

-x{p

Bz, ) = b(F—)xi
while for the GM-estimate case we have

¢(zi1 :B) = ﬂ(xi, E;)E}T_ﬂ)xi ’

where z = (xT, y:)7 .

To obtain the variance of the robust estimate, we can use the idea of the influence
function which was introduced by Hampel (1968), (1974), Hampel et al (1986). The

influence function of a statistic T(F) at a point Z can be obtained by

d
IF(Z;T,F)= EET(F.,)le:o,(;:Az (1.10)

where

T(Fe) =T((1 - €)F +¢G) (0<e<t),



and the derivative of T(F.) has the form:

d . TI(1—¢e)F +eAZ
L 1P, mopmas = lig =TI

Here T(-) is a vector-valued statistic based on a random sample from the cdf F' and

AZ s the distribution function of a random varible which equals Z with probability

one.

Now we consider the influence function of the robust estimate. Let B = T(Fy,)
be the robust estimator based on sample size n which satisfies the general form of the

robust esimate formula

n

> #(z:, T(F.)) =0 (1.11)
=1
where 2y,...,2, are the values of the random variables Zj,..., Z, which have the

distribution function F', and F;, = % ", Az; is the empirical distribution function.
Put T(F.) = T((1 — €)F +&G), 0 < e < 1. The influence function for robust
estimator T on distribution function F at point z; can be written as

d

]F(z,-; T, F) = ;ET(FE)Ie:O.G:AZ.' .
After some calculation, we have
VA(T(F,) = T(F)) = % S IF(2;T, F) + /a - Rem .
1=1

If, as is generally the case, the remainder in the above equation is op(n'/?), then by

the Central Limit theorem, we have following expression,

Va(T(F,) - T(F)) X5 N(0, Ep(IF - IFT)) .
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A calculation yields
IF(Z;T,F) = —(Ep[¢'(Z, T(F))) ' (2. T(F)) . (1.12)

where

¢'(Z,T(F)) = —¢ (2, T(F)).

So the asymptotic variance of the estimator B can be obtained by

nll‘rg3 Var(v/nB) = Ep(IF-I1FT)
= (Epld(Z, T(F))'Er(¢(Z,T(F))- $(Z, T(F)NEF[$(Z, T(F)])™
Write

My = —04Ep(¢'(Z,T(F))],
where o4 = o(F) and write
Qs = Er[¢(Z, T(F))- $(Z,T(F))"] ,
Then the asymptoiic variance of the estimate can be written as
lim Var(vnB) = o3M;'QsM;! (1.13)

From the general form of function ¢(-,-), we consider the variance estimate for robust

M-estimate and GM-estimate respectively.
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1.1.3.1 The Variance of M-estimate

In the case of M-estimate, the ¢ function is:

(2, T(F)) = p(L= ST
oM

and
9 y=x"Bu, oy — X Bu xxT
= aﬂMW)( py )x] = —¢'( py )aM

¢'(2, T(F))

so the variance of estimator can be obtained by

lim Var(vnBu) = o3 Mif QuMsf (1.14)
where
. xxT ¢
My = oa Bl (M) (<))
oM oM oM
and

Onr = Erfir (M ™) = Bl yxx]
oM oM

1.1.3.2 The Variance of GM-estimate

In the case of GM-estimate, the ¢ function is:

—xTa...
y Xﬂc;g)x

$(2, T(F)) = n(x,—
GM

and

T

[ (X, Y- xTﬁGM )x] — _nl(x, y-— xTﬂGM ) XX

¢(2,T(F) = 0Bem oGM oeM 'oGM



The variance of GM-estimate can be written as

lim Var(v/nfom) = 0gn Mar Qom MGy (1.15)

where

, €
Meum = Erly'(x,—)xx"]
oGM

and

Qam = Erln?(x, — )xxT] .
oGM

For above expressions of variance of M and GM-estimate, we can apply the

method of moments to estimate M, Quar, Mgum, and Qaar and thus get estimates of

Var(Bu) and Var(Bem)-

1.2 A Brief Review of Jackknife Procedure for Ordinary

Regression

1.2.1 About Jackknife Procedure

When we concern the nonparametric estimation of bias and the varaince, we
can apply resample methods such as Jackknife, Bootstrap and Fisher’s information
theory (See Efron (1982)). In this paper, we consider applying Jackknife method
in regression problem. Jackknife is a subsample replication technique. Quenouille

(1949) originally introduced this procedure as a method of reducing the bias of an
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estimator of a serial correlation coefficient. Later, in his paper (1956), Quenouille
generalized the technique and explored its general bias reduction properties in an
infinite population context. Research on the jackknife method divides basically along

two distinct lines: 1). bias reduction and 2). variance estimation.

1.2.2 The Property of Jackknife

Suppose T, is a biased estimator of the parameter 6 in which we are interested.
The jackknife estimator has the property ( under certain conditions ) that it removes
the order 1/n term from the bias of the estimator (See Miller (1974a), Huber (1981)).
Suppose the estimator T, is computed from n i.i.d. observations so that T,_; 1>
computed in the same way from n — 1 i.2.d. observations. The 7th jackknifed pseudo-

value is, by definition,

T;:i = nT,, - (n - 1)Tn_1(x1, A SIR TS CEN PRI ,Xn).

If T, is a consistent estimate of 8, whose bias has the asymptotic expression

AT —0) =B 4 %2 o
2(Tn—0) = ~ + — + O(n3) , (1.16)
then Tp=2L1%,Ty lLisabias:
. a 1
E(T:-0)= _n_; +0(=5) - (1.17)

From the ab¢sv expression, we know that the jackknife procedure can be used to

reduce the bias of the estimator and improve the estimate.
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1.2.3 The Application In Least Squares Regression

Let B be an estimator of the parameter 3 from the full sample. Let [§(;) be the
estimator of the same functional form as B, but computed from the reduced sample

of size n — 1 which is obtained by omitting the ith case.

1.2.3.1 Ordinary Jackknife In Classical Regression

When we neglect the unbalanced nature of the regression data, we can use the
ordinary jackknife procedure to obtain the estimator for regression problem.

Define:

ﬁi=7zﬁ—(n~l)ﬁ(,~) (:=1,2,...,n) (1.18)

The Bi are called ordinary pseudovalues. The delete-one jackknife estimator is the

mean of the pseudovalues ,@i
A ]_ n A
Bi==3Y8". (1.19)
n iz
For the ordinary jackknife estimator, by Tukey’s suggesti.» {1953), its variance can

be estimated by

(o) = =gy S = Bo) B~ )" (1.20)

i=1

The asymptotic properties of ,BJ and v(,@,;) were studied by Miller (1974b) under

strong conditions that excluded cases with very unbalanced design matrix X.
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1.2.3.2 Weighted Jackknife In Classical Regression

If we consider the unbalanced nature of the regression data, we can use a mod-
ification of the pseudovalues.
Define
Bi = B +n(l - k)(B - Bw) (i=1,2,...,n) (1.21)
where h; = zT(XTX) 'z; is the diagonal elements of hat matrix. The Bt are called
weighted pseudovalues, and were proposed by Hinkley (1977). The weighted jackknife

estimator can be obtained by

b= 2B = B+ L1 = h)(B B

=1

and the variance of weighted jackknife estimator can be obtained by

:BJ w) ﬂ ﬂJw)

v(BJw =
For the least squares estimate, we know that
s A XTx 1y
B- By = CX) i 1_)h_ (1.22)

The jackknife estimator becomes

Biw= B+ (XTX)" szr,— : (1.23)

Thus the v 'ted :uckknife estimator ﬁ,,,w is identical to the original estimator ﬁ
and the we " -ife variance becomes
v(Biw) = ﬁw )( ﬂ)T XX —I(ZT XiX T)(XTX)

;l'—(—’ P 1 —-p i=1
(1.24)
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Where v(f,,,) is biased but is robust against error variance heterogeneity.

1.2.3.3 General Weighted Jackknife In Classical Regression

Wu (1986) proposed a more general jackknife method to improve the estimate.
Let § = ( 4,...,¢ j be a subset of (1,2,...,n), Bs be the least square estimators of

(yi xT) for i ¢ S. t'nen we have
Bs = (X3Xs) ' X3ys .
Let B be t):~ st squares estimator for the full data set. . >tween Bs and f3, we have

Er IXTX |/j !

_ T yvy\-1+vT,,

where Y, denote the summation over all the subsets S of size 7.

The general weighted pseudovalues are proposed to be obtained by

5 =+ (=2t Ly py

n—r

The general weighted jackknife estimator can be obtained by
BJ,gw = Z aSﬁS )

where as satisfy as o« |XZ Xs|, and ¥,as =1.

The variance of above estimator is obtained by

v(Brgw) = S as(B5 = B)(BS - B)T .
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Substituting the general weighted pseudovalues Bs in the above formula, the varia- e

of the estimator becomes
+1 Al s P
v(Brgu) = p Z as(Bs — B)(Bs — B)T

When 7 = n — ', this is the delete-one case. In this case, the general weighted

pscudovaiues are

Fi=B+m—-p)"By- B (6=1,2,...,n) (1.25)
The general weighted jackknife estimator is then

BJ,gw = iaiﬁi . (126)

=1
The corresponding variance estimate is
v(Bagw) = (n = ) Y cilBiy — BBy — B) (1.27)
i=1

where o & |X(7;)X,';)|, and Y,oi=1
Since we have ( see Wu (1986) )

Z IXHX@wl = IXTX| = (n - p)|XTX|

1=1 1
we can take

-1 IX(T;)X(‘)l

a: = (n—p) |IXTX]|

A standard result is that if a matrix A is invertible, then we have

|A— BC| = |A||I - CA™'B]| . (1.28)
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From this formula, we can obtain the following relation between IX(T) Xl and [XTX]
IXT X! = 1XTX —xax] | = [ XTX|(1 = x] (XTX) %) = I XTX|(1 = k)
So the weights can be written as

ai=(mn—p)~'(1-h)

The general weighted jackknife estimator is then

Brgw = Z(n— 1=h)F=8—(n—-p) HXTX) Zx r=p (1.29)

i=1
This shows that the general weighted jackknife estimator BJ.yw is also cqual to the
original estimator B. The estimated variance of the general weighted jackknife esti-

mator is

- n ~ A A A e , _ n 7‘12 2T vy —
v(Baguw) = D_(1 = h:)(By — BBy — A = (XTX)' (X “f_—,;xa‘x.-T)(/\ "x)!
i=1 =1 "
(1.30)
Where v(3; 4w is unbiased if the classical conditions are satisfied and is robust against

error variance hetercscedasticity.

1.3 Jackknife Robust Estimate

The robust M and GM-estimates are biased in finite samples. In order to reduce
the bias of the estimates and improve the estimates of the variances of the estimators,
we propose to combine jackknife procedures with robust procedures. As we did in the

previous section, we use the simplified expressions i.e. the general functional form
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of &(z, B,&) which can be used in both robust M and GM-estimate estimate cases.
The problem of robust estimation becomes to solve the equations Y; ¢(2;, 8,0) = 0.

Let B3, be the estimator which satisfies

n

Y #(z25,B4,64) =0 (1.31)

=t
and qu(;) (i=1,...,n) be the estimators which satisfy
f:¢(z,-,é¢(,-),a—¢(,-)) =0 (i=1,...,n). (1.32)
i#i
In other words, ,[3¢(,-) are the estimators of the same functional form as ﬁ¢ but
computed from the reduced sample of size n — 1 obtained by omitting the sth case.
For above formulas, &, can be obtained by (1.8), and ;) equal to M AD(;)/®71(3/4).

Since the MAD is insencitive to single deletions, we continue to use &y, rather than

&4(i). Formula (1.32) becomes

n

Z¢(zj,ﬁ¢(i),&¢) =0 (i=1,...,n). (1.33)
JFE

1.3.1 The Exact Delete-one Jackknife Robust Estimate

For the above equations, we can use the algorithm mentioned before to obtain
the estimators [:34, and ,34,(,-) (i = 1,...,n). When we calculate these estimators, we
need to go through the reweighted least squares method (n+1) times. Each estimator
will satisfy the corresponding equation exactly. We name those jackknife estimators
which are obtained based on the ,B,,, and 3¢(;) (i = 1,...,n) the exact delete-one

jackknife robust estimators.



1.3.1.1 The Ordinary Jackknife for Robust Estimation

From B¢ and ﬁqs(,-) (¢ = 1,...,n), we define the ordinary pseudovalues as
ﬂ‘\:ﬁ = nB¢ - (n - 1)B¢({) . (1.34)

The delete-one jackknife estimator is the mean of BQ, :

Using Tukey’s suggestion (1958), the variance of 3 can be estimated by

o(B) = ———— B - BB ~ BT (1.36)

T n(n—-1) &

Note: As mentioned by Tukey, it can also be used as an estimate of the variance

of,[g’?.

For the M-estimate, we have the ordinary pseudovalues
Big = nbBu — (n = 1)Bug) - (1.37)
In the above formula, the values ﬁM(,-) satisfy

Y p(riy/om)x; =0, (1.38)
J#i

where

7‘%’) =Y — X]TﬁM(i) . (1.39)
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The corresponding variance is

Y 2;% BBy — BT . (1.40)

Similar to the case of M-estimate, we can obtained the ordinary pseudovalues for

v(Bu) =

GM-estimate which are
Bim = nPam — (n = 1)Bomg) - (1.41)

The values ,BGM(i) in above formula are satisfy

n

S on(x, 5y /6aM)x; =0, (1.42)
J#i

where

GM T4
e = Yi — X; Bmg) -

The estimation of the variance is

A

v(Bem) = Z(ﬂcm BSMY(Bins — BSM)T . (1.43)

n(n - ]‘ t—l

1.3.1.2 The Weighted Delete-one Jackknife Robust Estimate

Similar to the weights which Hinkley proposed (1977) for ordinary least squares

regression, we propose to use the weights

wf = tr{[- =26 (z, Bor 666675} (1.44)
0By
where
M, = —%Z 9 $(2is Bo:64) -
=1 aﬂ¢

We call the w? robust leverages for the robust estimates.



g
t

We can see that the w? are analogous to the weights for the ordinary least
squares case, and are identical to these weights when least squares is used. In the

ordinary least squares case, we have

For w?, we also have

Sowf = 3 tr{l= b3, B 60T}
1=1 aﬂd’
"9 . —
= tr{[~6¢z5=—¢(2i,ﬂ¢,5¢)]MJ‘}
i=1 ﬁd’

= tr[l,) = p.
For the OLS case, we have

B(2ir By 54) = xiyi — %] By) ,
2]

a o a _ . T
aB¢¢(z”ﬂ¢,a¢)_ XiX;

ﬁ¢ can be expressed as

and w? becomes

w? = tr{xx7)(XTX) '} = hi .

The weighted pseudovalues for robust estimation are defined by

By = B+ (1l = wf)(Bs — Bori) - (1.45)
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The weighted delete-one jackknife robust estimate is then

R 13 .
B = =2 Bo - (1.46)
=1
The estimated variance of the estimator is
R 1 noL . .. )
¢ i ¢ i o \T
v(B85,)=—7"— ﬁw—ﬂwﬂw—ﬂw . 1.47
( J, ) n('n _p) ;( @, J, )( @, J, ) ( )

In the case of M-estimation, the weights (robust leverages) become

. xTR —_
w,M = tr{- (? [d)(y' Ax' Bm )x,-]é’MAI;,,l} (1.48)
IBm oM
rM —
= P )xI My'x; (1.49)
M
where
My = iz/)'(ﬁh—l-)x-x:r (1.50)
M= =1 &M e .
and
T:M =Yi— x:TBM
Note: If we let
rM
w = /() x: (im0 )
oM

then we have

My = fn_:u;u,-T =UTU .

i=1

Define
wM = ywTu) ot .
Then diag(WM) = (w¥,...,wM) and WM is an idempotent matrix which plays the

same role in robust estimation as the hat matrix H in ordinary regression.
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Now we consider the weighted jackknife M-estimate. From (1.45), the weighted

pseudovalues are
Bitw = By +n(1 — w]M)(Bm - Buey) -
The weighted delete-one jackknife M-estimator is

_1
n;

hid .
Z hfw >

The estimate of the variance of the jackknife estimator is

U(B.I]t,{u) = + Z(B;Vl,w :B.Iw)(ﬂM w Jur)T .
n(n —p) i

Similar to the M-estimate, in the case of GM-estimate, the weights are

oM

GM ' T T5-1
wy =n (X,‘, - )X,- MGMxi ’
oGM
where
I
Mgy = Zn(an X! ,
=1
and
GM T4
T =¥ —X; ﬂGM .

The weighted pseudovalues are

B&M,w = BGM +n(l — w?“’)(ﬁam' - BGM{:;) .

The weighted delete-one jackknife GM-estimator can be obtained by

GI\I__ZﬂGMw .

1—1

(1.51)

(1.54)

(1.56)

(1.57)
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The variance of the delete-one GM-estimate is

E(ﬂGMw BSM Y (Biops. — BTINT - (1.58)

n(n -

1.3.1.3 The General Weighted Delete-one Jackknife Robust Estimate

For the general weighted delete-one jackknife robust estimate, we use the pseu-

dovalues as
B;,yw = B¢ +(n— P)l/z(.édz(i) - féqb) (1.59)
The general weighted jackknife estimator can be obtained by
Brgw =B gu » (1.60)
=1
where

ot =(n-p) (1-uf).

The variance of the jackknife estimator is

ﬂ.l,gw Zad,(ﬂé gw ﬂ‘.q;,gw)(B;,gw - lé\?,gw)T . (161)

1=21

From above formulas, we can get the general weighted jackknife estimators and
the corresponding variance for the cases of M and GM-estimate. For the M-estimate,

the pseudovalues are

Biggw=Pu+(n - p)Y*(Brgiy — Bm) (1.62)



The generai weighted jackknite £5-1-ator for M-estimate is

n
Y% =

NN M
e .Z-J(" ;Jnl'gw 4

LY

where
=(n—p)7'(1 - wM).

The variaiice of the jackknife estimator is

n

“\ M gM 3T
w(BY) = 30 @M (Bl g — BYoL) Birgw — BT -

t=1
For GM-estimate case, the pseudovalues are
Bert.gw = Bam + (n = p)*(Bam) — Bam) -
The general weighted jackknife estimator for GM-estimate is
- GM ;i
ﬁng Zai ﬂtGM,yw ’
=1

where

aGM=(

—
¢ (JM)-

n—p)" (1 - w

The variance of the estimator is

GM ¢ pi AGMA\T
v(ﬂJ,gw —'Zai (ﬂ'GM,gw— J,gw)(ﬁGM,gw_ J,gw)

=1

(1.63)

(1.64)

(1.65)

(1.66)

(1.67)



1.3.2 The Approximate Delete-one Jackknife Robust Estimate

1.3.2.1 Motivation

A common way to calculate the robust M or GM-estimate is to do weighted least
squares regression iteratively. This is a time consuming procedure if we calculate the
exact jackknife robust estimators, especially when the number of cases is large. In
order to reduce the computing time, we can use an approximate process to calculate
the delete-one jackknife robust estimators. Under this procedure, we only need to
calculate one estimator which is obtained based on the full data set. From this
estimator, we can get the the other estimators which are considered as the estimators
of delete ith case (i = 1,...,n). By using this approximate procedure, the computing

time is substantially reduced.

1.3.2.2 Approach

Suppose ,34, and B¢(;) (i = 1,...,n) are the robust estimators which satisfy

formulas (1.31) and (1.33) respectively. Let é4;) = Bo — ,34,(,-) . Then we can write
Boty = Bs — St - (1.68)
Put (1.68) in (1.33), then by Taylor’s expansion we have

N U I
0= 5" 6(zj, Bs — b3y, 66) © D, (25, P41 64) = > 5’?‘[‘4”(21‘,,34»,%)]%(0 . (1.69)
i i i#i 0B



o
o 7]

From (1.31), we have

Z¢(Zj, /éd”&d’) = “¢(Z.‘, B#’a &dj) . (170)

J#i
Combining (1.69) and (1.70), we obtain

Sotiy = —(3_ (212 Por 54)) 7 8201 Bar 59) (1.71)
J#i

where

8 (252 Bon58) = —2-0(z3, Bor 59)

jyHés Vo 5,[34, Jr Py Co)

From above formulas, we can get the general form of approximate robust estimators

Bd,(;) , (1,...,n). The expressions are

Bosiy = B+ (3 820> Bs,56)7 820 Bgr 64)
i
A ﬂ ” ~

= Py— (—&'f + ¢'(2i, B4, 64)) 7' $(2i, By, G4) -

We denote B;(i) as the approximation of Bd,(;) which has the expression

-

ﬁ;(:’) = ﬁd’ - (% + ¢,(zi7B¢,6¢))_l ¢(zia bea&ll’) . (]72)

It will be seen that this approximation makes the process of calculation much easier

in solving the robust jackknife estimate.

Note: If we consider the one step Newton method to solve for /§4,(,-) in the equation

> #(zj, Botiyy&4) = 0
i
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starting with B, , we have that

0= i &(2i, Batiy, 8) = 3 $(2;, B, 54) + E¢(ZJ, Bs,56) Y (Bacy — Bo) -
i i ﬂ¢ i

Thus

{Z¢ ZJ’IB¢’U¢)}] é(zn IB¢1J¢) B;(;) .
aﬂtﬁ J#i

Comparing this result with formula (1.72), we see that the a»z. iximate procedure

By = By + ==

we used here is essentially obtained by doing one step of Newton's method, starting

with ,[;¢ .

From formula (1.72), we can get the delete-one estimators of M-estimate and
GM-estimate cases for using‘approximate procedure. For the M-estimate case, the

approximute estimators for delete ith case are

a M 1 M
B = B~ B L ey u G

oM

After some algebra, we can obtain

. . M
By =B — 0 MMM (1.73)

Similar to M-estimate case, we can obtain the f 'n= la for approximate delcte-one
GM-estimate. The approximate estimators of delete ith BgM(,.) can be gotten by

GM
Ja % - Xi, Ty [OGM
Bemy = Bam — O'GMn( 1’ C/?M )MGMx, . (1.74)
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From formulas (1.73) and (1.74), we sec that we need only obtain one robust
estimate, then we can simply do some matrix calculation to get the rest of the ap-
proximate delete-one robust estimators. Using the above procedure, we can save a

lot of computing time.

1.3.2.3 The Approximate Jackknife Estimate

Similar to the jackknife estimate which is mentioned in the previous section (the
exact delete-one jackknife robust estimate), we can consider the jackknife estimate
based on estimators B¢ and HA;(“ (z = 1,...,n) whicl are obtained by using the
approximate procedure. We name the jackknife estimate which is obtained by /},,,
and ﬁ;(i) (: = 1,...,n) as approximate delete-one jackknife robust estimate. For
the ordinary, weighted and general weighted jackknife estimate, we can use following

formulas.

(1). Ordinary Approximate Jackknife Estimate

For the ordinary approximate jackknife estimate, the ordinary pseudovalues are
Byt =nfy— (n— 1)Biy = Bs + (n = 1)(Bs — Fiy) - (1.75)
The approximate jackknife robust estimator is

sba & n—1T<, - ta -
7" = Bo+ == 2By — i) - (1.76)
i=1
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The estimate of variance of jackknife estimator is
A n A¢
B5") = gy LB~ BB 85T (177)

From above formulas, we can get the ordinary jackknife estimators for M and
(:M-estimation cases when we use corresponding % or n function to replace the ¢

function.

For the M-estimate, the ordinary pseudovalues of the approximate jackknife

estimator are
it = B + (n = 1)(Brt — B - (1.78)

The approximate jackknife M-estimator is

(1.79)
The corresponding estimate of variance is
v(B"?) = o) ‘éj “)Bir - BT )T (1.80)
For the GM-estimate, the ordinary pseudovalues are
[38‘,1\/ = BGM +(n— 1)(BGM - BE;M(.')) . (1.81)
the approximate jackknife GM-estimator is
B§Me = fg ) (Bonr = Bemsy) - (1.82)

i=1



The corresponding estimate of variance is

1
Z(BGM 3FM By — BT (1.83)

AGM.,ay __
U( ) - Tl(Tl _ ) e

J

(2). Weighted Approximate Jackknife Estimate

In this case, the weighted pseudovalues of approximate procedure /?i:,,‘" can be

obtained by

= By + n(i — w! )([3 ﬂd,(,)) (1.84)

The weighted jackknife robust estimator is

= LS = e 300wt~ ) (18%)
i=1

i=1

The variance of the estimator is

S By - BBy - Aoy (1.86)

v(B%2) = ———
( J.w) TL(TL _ p) poe

For the M-estimate, we have the weighted pseudovalues
Bit = B+ (1 — wM)(Br = Bisy) - (1.87)
The weighted jackknife M-estimator of approximate procedure can be written as
yf——-BM“"i(l —w.M)(BM—B?wU)) : (1.88)
Since
M7} iy rM

’Md)(;}‘;)x,- = &MM\M z;?/)(—-')x, = 0

D)= Biay) = L1 -0 ow

i=1 w
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we have that the weighted approximate jackknife estimator Byu',a is identical to the

original robust estimator fy. The variance of the estimator can be written as

WB) = s DB — BB~ BT
- n" (1 = w2 (Bus — By Bra = Biaeo)”

TP =1

= En: MMxxTMM .

We can write the above formula in the form

ot @ n N = g =_
v(Biu) = — pa?wMM‘QuMM‘ : (1.89)
where
Q Enjz/)?(r'M T (1.90)
= — )IXiX; . .
M i=1 UM)

For the case of GM-estimate, we have the weighted pseudovalues
Bt = Bont +n(1 — wfM)(Bam — Bamq) - (1.91)

Similarly, we can get that the weighted approximate jackknife estimator ,BGM ‘e is
identical to the original robust estimator BGM also. The corresponding variance of

the jackknife estimator is

a 71 A A_ ~ A_
1(ﬁGM' )= o pUéMMG}wQGMMG}w ) (1.92)
where
Qem = Y nP(xi, 2—)xix] . (1.93)
=1 ocM



(3). General Weighted Appreoximate Jackknife Estimate

3

Applying the general weighted jackknife method to the approximate procedure,

we define the pseudovalues as
ﬂdngw = Bd’ +(n - P)l’u(B;(i) - /;’4») ‘

The general weighted jackknife estimator can be obtained by

B3 gw Za¢ﬂ¢,gu :

1=1

The variasnice of the general weighted jackknife estimator 1s

A ! 4 3 d’v T
U(IBJ, Z Qy ﬂ:ﬁ,gw BJ,;w)(ﬂd:,gw IBJ «;Luy)
where

=(m-p)(1-wf).

In the case of M-estimate, the general weighted pseudovalues are

A

vgw = Bt + (0 — ) 2By — Bm) -

The general weighted jackknife for approximate procedure is

3y = Za” it o= Bu+(n—p)” ‘“Z(l—w ) Birgy — Bm)

1=1 =1

(1.94)

(1.56)

(1.97)

= P .

That means the general weighted jackknife estimator ﬁﬁ; is identical to the original

robust estimator BM . The variance of the estimator is
n M A A A ~ T
1,a t,a
v(/BJ,gw) = Y. o (Bigw — Brt) (BNt g — BM)
i=1

= S = ) By — o) Biny — )

=1
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which can be simplified as

v(B¥e) = 63, M QmguMif (1.98)
where
= i ‘(/)2 'I‘ﬁw &M
QMgw = Z '_l(:{)ﬁlxixir . (1.99)
i=1 1

In the GM-estimate case, the general weighted pseudovalues are

‘3‘,’\,,9.“ = Bem + (n - P)l/2(35M(i) — Bom) - (1.100)

In the similar manner, we can see that the estimator ﬂfﬁ,a is also identical to the

original robust estimator ﬁGM . The variance of the estimator can be written as

v(B5M2) = 6%p MarQomgwMaiy - (1.101)
where

~ n p?(x. M /6

QcMgw =Y 7 ] — wG/MGM)x;xiT . (1.102)

=1 i



1.3.3 Formulas summary for chapter one
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The ordinary least squares estimate

Formula for, or Formula for Formula for
Name description of /5(,-) pseudovalues 8 variance of 3
ordinary jackknife § - CTXIXen  nj (n= 1) i S8 - A - AT
§1.2.3.1 (1.22) (1.18) (1.20)
weighted jackknife ~ same as al ove B+ n(1 — k)8 - Biy) A2 (XTX) (22X XTHXTX)!
§1.2.3.2 (1.21) (1.24)
general weighted sameas above A+ (n-p) 23 -8  (XTX)" (O ,—:f,:x.x;")(,\“‘.\')—'
jackknife §1.2.3.3 (1.25) (1.30)

The robust estimate in the general function form

Formula for, or

Formula for

Formula for

Name description of [3«.’) pseudovalues ‘év't variance of 3
OR ¥ #(25,Bg(i154) = 0 n8s — (n — 1)By) ety (B - A8 - AT
§1.3.1.1 (1.33) (1.34) (1.36)
WIR same as above ﬁ,;, +n(1 - w?)(ﬁ.,, - ﬂ.d,)) m:‘-:;; E(fj""w - [3'_7"u)(/§;.", - /'.lff’ y
§1.3.1.2 (1.45) (1.47)
GWJR same as above Bo+(n - p)llz(ﬁas) ;) Z a?(ﬁ.:p,g.“ - ﬁjg,,,)(ﬁ;.,,,u - ﬂj'.,,,,,)7'
§1.3.1.3 (1.59) (1.61)
The M-estimate (For the exact procedure)
Formula for, or Formula for Formula for
Name description of 8 M(i) pseudovalues fi;u variance of fi
OIM ¥ v}y /om)x; =0 B = (n = 1)Bumgi) Tty (B = BY By - AT
§1.3.1.1 (1.38) (1.37) (1.40)
WIM same as above [;‘M +n(1 - wy)(ﬁM - BM(-‘)) m:l_—,,j Z(ﬁ-;u,w - ﬁxu)(ﬁh,." - /"9'4‘”)"'
§1.3.1.2 (1.51) (1.53)
GWIM same as above B+ (=) 2Bragy = ) L M Biy g = A0 Bt g = B3)"
§1.3.1.3 (1.62) (1.64)
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The GM-estimate (For the exact procedure)

Formula for, or Formula for Formula for
Name description of fiG M(i) pseudovalues fJ'G M variance of
P . . .. N .. o

OIGM  Yon(x, g2l )x, =0 nBam = (n = 1)Beme) iy S Baa — BFMN B p - BT
§1.3.1.1 (1.42) (1.41) (1.43)

WIGM same as above Bom +n{l - w?M)(ﬁGM - ﬁGM(i)) ‘,R?l:’ﬂ E(BiGM,w - ﬂ?y)(ébM.w - ﬂ?.a’)T
§1.3.1.2 (1.56) (1.58)
GWIGM same as above fom + (n= P2 (Bomiy - Banm) L oFM(Bhaggu — BEMBE M gw ~ BeM)T
§1.3.1.3 (1.65) (1.67)

The M-estimate (For the approximate procedure)

Formula for, or Formula for Formula for

Name description of ﬁg,(i) pseudovalues [‘i;’; variance of 8

oM
A .o i — A A A at,a AM.aye ah,0 AM,a
OIMA  faa - o SRR X Baa+ (- DB = Blye) e SRS - BYNNBRT - BT

§1.3.2.3 (1) (1.73) (1.78) (1.80)
WIMA same as above Bag + (1 ~ wM)(Bum - B3y w2503, M Qn My

§1.3.2.3 (2) (1.87) (1.89)
GWIMA same as above Bat + (n = )M2(By i) — Bm) 6%, My Qs gy

§1.3.2.3 (3) (1.97) (1.98)

The GM-estimate (For the approximate procedure)

Formula for, or Formula for Formula for
Name description of Bé MG) pseudovalues 5'6‘;4 variance of
- OM :
0JGMA  fga — oM —zﬁa‘—n(:‘_':f_-) ﬁg,‘"x.' Bom +(n - )(Bem ~ 52‘;M(,-)) > B _ﬁgM:(),E%';" Ll
§1.3.2.3 (1) (1.74) (1.81) (1.83)
WIGMA same as above B + n(1 = wEMYBam — By 2ohp Mg aQemMahy
§1.3.2.3 (2) (1.91) (1.92)
GWIGMA same as above Bom + (n = PP2(BY pg iy — Bom) 62, M3}, QcmgwMz )

§1.3.2.3 (3) (1.100) (1.101)




2 Simulation Study

2.1 The Model and The Data

In doing our simulation, we consider the following regression model
yi = Bo+ Bixi + € t=1,2,...,n (2.1)

where f, and (3; are parameters. In our simulation, we set By =1 and 3 = 1.

We choose the error terms ¢; (2 = 1,2,...,n) such that some of ¢&; are
distributed according to the normal distribution with mean zero and variance cqual
to one, and the rest of the ¢; follow a more heavy tailed distribution. The ratio of

these two parts are (1 — v)/v, where v satisfies 0 <v < 1.

Based on the above idea, the random variable ¢; can be generated by the

formula

gi~(1—6) )+ 6 - F(t), (2.2)

where @(¢) is the standard normal distribution function N(0,1) and F(s) is
the t-distribution on four degrees of freedom, and the variable 6é; (: = 1,2,...,n)

satisfies

0 with probability 1 — »,
o = (2.3)

1 with probability v.

It is easy to see that the error terms ¢; , do not satisfy the classical regression

assumptions when v #0 .
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Now we consider constructing the design matrix X in our simulation study.
The form of design matrix is X = (1,x), where 1 is a vector with all elements equal
to 1. Similar to the way we generate the error terms ¢;, we define the elements of

the vector x by
6; 6; .
X,=(1—§')1V(—1,1)+—2-|t2|, z=1,...,n (24)

where N(—1,1) is normal distribution with mean equals to —1 and the variance

equals to 1. The value of t, represents a t-distribution on two degree nf freedom.

The response variable y is generated in such a way that (1 —»/2) - 100 percent
of the data are formed by

yi=Po+ Pr-xit+ei, (2.5)

and the rest of y; values are formed by

yi=PBo+018-xi +¢&i . (2.6)

The way to generate the paired data (yi,x;) is as follow : (1 — ») - 100 percent
of the (yi,x;) follow the model y; = fBo + B: - x; + &;, where &; ~ N(0,1) and x;~
N(=1,1). v/2 100 percent of the (yi, ;) follow the same model but &; ~ N(0,1)
and x; ~ |t2]. The rest of v/2-100 percent of the (yi,X;) follow the model y; =
Bo+0.18; -x; +¢; , where €; ~t; and x; ~ |t2] . The random variables &,...,€n

and xi,...,X, areindependent.



40

5 0 o -
Ll
Q -._ e, »
. ore .
- - - K
o .
< 4 N .
3 2 1 0 1 2
x
~
o P *
> > .. h
q 4 ‘e .
.
R e e
3 2 -1 L] 1
X
o -
o o
- 9 -
- - ™ . --
o A _"- p ‘.- - -
l"‘ 3 (RS
[
+4.°
4 2 a4 0 1 2 2 0 2 4 6 2 0 2 4
x x x

Figure 1: Scatterplot of sample data generated by taking v = 0.2, with lcast squares

regression lines
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Figure 2: Scatterplot of sample data generated by taking v =0, with least squares

regression lines
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Based on how we generate the design matrix and the response variable, we know
that when v # 0 there are outliers or possible influential points in the design matrix
X and the response variable y. From Figure 1 and Figure 2, we can have a general

idea about the structure of those variables.

2.2 Procedures

We consider the casesof v =0,0.2 and n =20, 40 in our simulation study.

The procedures we used in our the simulation run are:
e Ordinary least squares estimate (LS)
¢ Huber’s M-estimate (M.H)
e Mallows’ generalized M-estimate (GM.M)

e Schweppe’s generalized M-estimate (GM.S)

When doing M-estimation, we choose Huber’s 1 function with k= 1. For the

GM-estimate, we use Mallows’ type 7 function. i.e.

n(z, =) = w(z) $(-) (2.7)

T
o o
and Schweppe’s type 7 function. i.e.

n(z, ) = w(a) - $( - v()) (2.8)
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where w(z) = /1 = k; , and v(z) = t/w(z) , h; are the diagonal elements of hat
matrix H and the 3 function is the same function as is being used in the M-estimate

case.

More covariance estimations have been introduced when we conduct the simu-
lation study. Those estimates are basically obtained by different combinations of M

and ) matrices which are defined as following.

(1). Exchangeable M

The exchangeable M are only have values for Huber and Mallows cases.
(The exchangeable implies that x and ¢ are independent, e. Bly'(e)xxT] =

E{4'(¢)}E[xxT]). For Huber’s M-estimate, the exchangeable A nats xis

Mh=—z¢( sz i (2.9)

and for Mallows’ GM-estimate, we have
GM m n

Mgy == Z )+ > wxi)xix] (2.10)

nia GGM mo =t

(2). Non-exchangeable M

For Huber’s M-estimate , non-exchangeable M is the same as formula (1.50).
For Mallows’ and Schweppe’s GM-estimate, we can get the corresponding formulas

{rom formula (1.55). For Mallows’ GM-estimate, we have

n GM ,m

""" Z w(x W' (22— )xix] , (2.11)

i=1 GM m
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and for Schweppe’s GM-estimate, the expression is

GM,s

n
non Ty T . .
= — 1 )XiX; . 2.12
Mg s ; Gonta - w0(x; )) (2.12)

(8). Markatou, Stahel and Ronchetti’s type M

Markatou, Stahel and Ronchetti (1991) gave following form of M,

a0 (xi,rifo)/n "
MMSR — ,,-— DAL x: . 2.13
gfi G j=1 712(xi,7‘j/&)/(n—P))xx' (219)

For Huber’s M-estimate case, it can be simplified as

n l\lh
FTMSR _ i=1 %b( /UMh /n ¢ Mo x| (2.14)

and for Mallows’” GM-estimate case, it has the simplification form

aggn, = T a5 59 i (2.15)
GM,m — n m 1 i GMm R X . oA
= Y3(r :'GM /UGM.m)/(n -p)ia

(4). Exchangeable Q

We have the exchangeable @ matrix for Huber’s and Mallows’ estitnates. For

Huber’s M-estimate case, it is

Mh— P& )Lxx‘ y (2]6)
for Mallows’ type GM-estimate case, we have
GM m n
GMm=‘_"Z¢2 Ew Xi)XiX; . (2.17)

C"GMm i=1



(5). Non-exchangeable 9,

We can find that the formula (1.90) is the non-exchangeable Q for Huber's
M-estimate case. Also, we can get the expressions for Mallows™ and Schweppe's GM-

estimate cases by using formula (1.93). They are

er\f.m
Jrp w u2 x;x7 2.18
QG.M. Z (O'G}\lm) 19 ( )
and
rGh!,s
?J",{‘,, Zw : )xixT . (2.19)

UGM.s - w(x;)

(6). Jackknife non-exchangeable )

We define the covariance estimate for the general weighted approximate jack-
knife as jackknife non-exchangeable Q which have the expression as (1.99) for Huber’s
M-estimate case. For Mallows’ and Schweppe’s GM-estimates. we can get correspond-
ing expressions from formula (1.102). For Mallows’ type GM-estimate, the jackknife

non-exchangeable @ is

n 2 2 Mm T
2, (x; 1/) [FGMm)XiX;
GMom = Z w,M,m -, (2.20)

=1 1

and for Schweppe's type GM-estimate, the jackknife non-exchangeable @ is

GAf,s
2 2 T ~T
Adnon _ = W (X ) / (GGA‘ J'w(x'))x,xi 2.21
GM,s — Z 1 GM,s : ( : )
i=1 - Wy




(7). Jackknife exchangeable §

46

For jackknife exchangeable @ , we have expressions for Huber's and Mallows

estimates. The Huber’s jackknife exchangeable Q is

n M.h n T
QJ.e.r _ 1 Z '¢’2( L Z XiX;
Mh— g . h Y
n—=pi= oMb = 1 'LU:-” "
and the Mallows’ jackknife exchangeable @ is
(‘\I m T
Aez Z w2 T i w?(x;)x:X;
G‘f - M,
m UC,\lm p 1 — ule f.m

(8). Ordinary jackknife Q

We define the ordinary jackknife Q as

QJord Zr] X‘,T/U)

i=1 wl) i=l 1 - w I —wy

n(ri/a)x; )T .

—
t
o
[ 3]
~

From above formula, we can obtain the ordinary jackknife O for Huber, Mal-

lows and Schweppe's cases.

Based on above M and @ matrices, we can form our covariance estimates for

Huber’s, Mallows’ and Schweppe’s type robust estimation. Those estimates are :

Huber’s case
. -] non—1 non-1
(1). Vina =034 - MMh Qwh MMh
1 -—
(2). Vhas =63 M” Qwh MPI

(3). Vhic=4% Vias



(9).

(10).

(11).

(17).
(18).
(19).
(20).

— &2
 Vo2e = OMhu "

non—l A non—l
-Vhld'—UMh M ﬁh M

2 -1
Viie =k - Viaa

MSR 1 Qnon MSR—]

. Vise = exact ordinary jackknife estimate for Huber’s case

. V2 = exact weighted jackknife estimate for Huber’s case

Vs = exact general weighted jackknife estimate for Huber’s case

__n=1~2 non— Jord on—1
‘/h.d a IIT—O'M,}; Q 7 M,k

(approximate ordinary jackknife estimate for Huber’s case)

approximate weighted jackknife estimate for Huber’s case
(app ghted j

 Vhse = 3255 Vaas
« Vise = ;'l%p' * Vit
- Visd = 3% Vhau
. Vhse= _n_'n__p *Vhte
) Vh.G.a = 6_12\4"1 non— QJnon 11‘1;1;1—1
(approximate general weighted jackknife estimate for Huber’s case)
Vies = dhon- Mgz Qui - M3
Vh.6.c — &lzl'l.h non IQJez: non-—l
Vth—GMh A,ex— QJex e:z: l
Vi = &- ax,hzggiif/:;;;’ﬁ’;:"’ Mg

Mallows’ case

(1).

o
Ffnon—1 Lo non-—

— A2 [mon
Vinla = 0GMm* MoMm 7 ftm M
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- -1 A -
(2). Vimab = 6Zpm - Ménxm Q&M m Mce:rM m
(3) Vm.l.c = k2 . Vm.l.b

non-— non—

(4)~ Vm-l.d=5g:M.m MGMm QGMm MGMm
(5) lee =K -1, Vm.l.d

—_ A2 FFMSR-1 Anon ATMSR—-1
(6). Vin2a = oGMm ° MC‘M,m YeMm MGMm

(7). Vina.a = exact ordinary jackknife estimate for Mallows’ case
(8). Vinap = exact weighted jackknife estimate for Mallows’ case
(9). Vina.c = exact general weighted jackknife estimate for Mallows’ case
(10). Vinsa = 252 6801,n - MET - Qi - Miiin
(approximate ordinary jackknife estimate for Mallows’ casc)

(11). Vm.5.a = I ‘mla

n-p

{approximate weighted jackknife estimate for Mallows’ case)
(12) Vm.5.b = L. Vm.l.b
(13) ‘/m.5.c = L. Vm.l.c

(14). Vinsa= 3% - Vi

n—-p

(15) Vm.5.e = L. Vm.l.e

n-p

Mnon—l AJynon Mnon_

" _ A2
(16). Vine.e = 0Gmm * MGMm QM m

(approximate general weighted jackknife estimate for Mallows’ case)
rfex—~1 AJnon ex—
(17). Vines = Geprm * MEMmQchm MGMm
22 A snon—1 AJex non-
(18). Vi = G&Mm * MoMm QiMm - Mz

— A2 Fex—1 AJex ex—
(19). Vin6.d = 6&mm * MiEMmQEMm MGM,m
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Schweppe’s case
(l) ‘/3~1-ﬂ = &%Af,s goMn—a Qg‘;{}ls non.':l
. TFMSR-1 _ A ¥7MSR-
(2) ‘/0.2.11 = U?}M.a ' MGM,a ' nG%a MGMa -
(3). V3.0 = exact ordinary jackknife estimate for Schweppe’s case
4). V, .4 = exact weighted jackknife estimate for Schweppe’s case
g
5). V.. = exact general weighted jackknife estimate for Schweppe’s case
24 g J

(6) V. = n=152 c:r— QJard e:c-l

« Vsdae = " VGM,s GM,s M,s

(approximate ordinary jackknife estimate for Schweppe’s case)

(7). Vosa =

.
n—p s.l.a

(approximate weighted jackknife estimate for Schweppe’s case)

non— AJnon n on—1

(8). Viga = 6%m,s - M, oM, " MGt

(approximate general weighted jackknife estimate for Schweppe’s case)

Note:

In above formulas, the value of £ is an estimate of

pVar(¥)

R=lt e

2.3 The Meésurement

In our simulation study, we considered several statistics in measuring our proce-

dures. The bias of the estimate was applied to measure the accuracy of the estimates.

bias = fB; — B; i=0,1 (2.25)



The relative bias of the variance estimation is applied to measure the efficiency

of those covariance estimates. The relative bias of the variance estimation is defined

as
“E _ =S
Vit — DY
¥ = —=sr - 100, (2.26)
LX)
where
65 and 17,.5]- are the ith row and jth column element of matrices V' and V¥
respectively;

VE = average of the covariance estimate for total simulation run;

VS = variance of the estimator of parameter for total simulation run.

2.4 The Simulation Results

All of the following simulation results are obtained based on 1000 runs.

2.4.1 The Bias of the Estimates

The bias of the estimates can be found in Table 1. From the results, we can sce
that for both n equals 20 and 40, when the contamination ratio v = 0, the lcast squares
estimates (the original LS, and the three types of jackknife estimates) performed well.
Generally, they have smaller biases than the robust procedures. But when the data
is contaminated (in our case the contamination ratio v = 0.2), those three types of
robust procedures have smaller biases than the least squares procedures. Within each
robust procedure, we can find that the Mallows’ and Schweppe’s type GM-estimates

have smaller biases than Huber’s M-estimate for both n = 20 and n = 40 cases. We
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Type n=20 n=40

of v=20 v=0.2 v=_0 v=02

estimate | bias fBo bias §) bias 8o bias 3 bias fp | bias 5 bias Go bias %

LS 0.00425 | ~0.00290 | —0.17985 | —0.16532 | 0.01084 | ¢ 00448 | ~.21136 -0.19414
LSOJ 0.00531 | —0.00275 | —0.21295 | —0.20415 | 0.01064 | 0.00420 | —0.25U14 —0.23777
LSWIJ 0.00425 | —0.00290 | ~0.17985 | —0.16532 | 0.01084 | 0.00448 | -0.21136 —-0.19414

LSGWJ | 0.00425 | —0.00290 | —0.17985 | —0.16532 | 0.01084 | 0.00448 —0.21136 | -0.19414
H 0.00527 | —0.00245 | —0.15709 | —0.14481 | 0.01274 | 0.00618 | —0.16928 —0.15042
HOJ 0.00165 | —0.00132 | ~0.16518 | —0.15176 | 0.01450 | 0.00741 | —0.17339 ~0.15427
HWJ 0.00246 | —0.00064 | -0.15091 | -0.13715 | 0.01325 | 0.00680 | —0.16616 -0.14645
HGWJ] 0.00594 | —0.00288 | —0.15855 | —0.14661 | 0.01266 { 0.00608 | —0.16978 -0.15106
HOJA 0.00582 | —0.00176 | —0.17906 | —0.16972 | 0.01374 | 0.0067 —0.18063 | —0.16364
HWJA 0.00531 | —0.00243 | —0.15717 | —0.14486 | 0.01268 | 0.00617 | —0.16944 —0.15058
HGWJA | 0.00527 | —0.00245 | —0.15708 | —0.14479 | 0.01275 | 0.00618 —-0.16925 | -0.15039

M 0.00514 | —0.00214 | —0.13542 | —0.12307 | 0.01286 | 0.00630 | —0.14994 -0.12829
MOJ 0.00372 0.00072 | —0.14935 | —0.13412 | 0.01369 | 0.00662 | —0.16127 | —0.13715
MWJ 0.00422 0.00097 | —0.14528 | —0.13254 | 0.01247 | 0.00598 | —0.16015 | —0.13767

MGWJ] 0.00535 | —0.00287 | —0.13309 | —0.12084 | 0.01293 | 0.00635 | —0.14828 -0.12677
MOJA 0.00518 | —0.00190 | —0.13735 | —0.12240 | 0.01388 | 0.00698 { -0.15056 -0.12739
MWJA 0.00519 | —0.00212 | —0.13536 { —0.12298 | 0.01281 | 0.00630 | —0.14993 | —0.12826
MGWJA | 0.00512 | —0.00215 | ~0.13543 | —0.12309 | 0.01287 | 0.00630 —0.14994 | ~0.12830
S 0.00528 | —0.00217 | —0.13572 | —0.12261 | 0.01316 | 0.00641 | —0.15017 | -0.12803
S0J 0.00246 0.00291 | ~0.15056 | —0.13087 | 0.01682 | 0.00864 | —0.16366 | —0.13859
SWJ 0.00106 0.00256 | —0.14768 | —0.13119 | 0.01592 | 0.00838 | —0.16259 | -—0.13916
SGWJ 0.00628 | —0.00328 | ~0.13201 | —0.12059 | 0.01272 | 0.00610 | —0.14815 | -0.12623
SOIJA 0.00746 | —0.00155 | ~0.13637 | -0.12007 | 0.01390 | 0.00674 | —0.15089 | —0.12719
SWIA 0.00534 | —0.00214 | —0.13563 | —~0.12249 | 0.01312 | 0.00642 | -0.15013 ~0.12797

SGWIA | 0.00526 | —0.00217 | —0.13575 | -0.12264 | 0.01317 | 0.00641 | —0.15017 -0.12804

Table 1: The bias of the estimates. (LS: least squares estimate, H: Huber’s M-estimate,
M: Mallows’ GM-estimate, S: Schweppe's GM-estimate, OJ: ordinary jackknife esti-
mate, WJ: weighted jackknife estimate, GWJ: general weighted jackknife estimate,

A: approxitate procedure)



also can find that it is hard to judge between Mallows’ and Schweppe’s GM-estimate
in comparing the biases of estimates. When we check the biases of the exact jackknife
robust estimates and the approximate jackknife robust cstimates, we can see that the

biases are similar for those two types procedures.

2.4.2 The Relative Biases of Variance-Covariance Estimates

The relative biases of covariance estimates are presented through Table 2 to
Table 4. From the simulation results, generally, it is hard to make decision on those
estimates. But we can find that the results suggested that the approximate jackknife
procedures worked well. Compare the relative bias of exact procedure and approx-
imate procedure, we can see that for the case of v = 0.2 and n =40, all the
corresponding results show that the approximate procedures have small bias. It sug-
gests that when we do robust jackknife estimate, it is not necessary to run delete-one
case robust M or GM-estimate, then calculate the corresponding jackknife estimate.
We only need apply the approximate formulas to get the jackknife robust estimate.

In comparing two procedures, it is really important for saving computation time.
paring p p g

As the results show us that it is hard to consider three values «f s «l same
time. Since the slope parameter seems more impnrtant in the reality, we put vy
under our consideration. We set the critical values as: for the case of v = 0, we take
[722] < 10 and for v = 0.2, we take |722] < 20. From such critice( values, we have

following summary results.
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n =20 n = 40

Type v=20 v=0.2 v=0 v=0.2

11 "2 Y22 m1 Y12 Y22 "1 "2 Y22 i8] M2 Y22
H.l.a | —-194 ~—~16.2 -8.6 ~0.5 0.8 1.0} ~1.2 0.6 0.5 14.7 18.1 4.7
Hab | -186 -169 -119| —-326 -587 -43.3} —1.9 0.4 0.8 | —29.7 —-64.6 —54.5
Hlc | —-i1.4 -9.5 ~4.1 | -266 -55.0 -—-38.2 2.5 4.9 54 | —26.5 —-63.0 524
H.1d | -14.1 ~11.5 -4.3 -74 =175 -10.9 1.2 3.1 34 04 -114 ~-16.1
Hie | -17.7 =152 -83 | -11.3 -210 -146 ] —1.0 0.8 1.1 -2.0 -135 -18.1
H.2.a 2.2 10.1 153 | ~24.2 -54.0 -30.0 91 157 165 | —286 —-693 -53.5
H.3.a 6.5 15.9 27.3 32.6 44.8 43.5 | 143 180 17.0 33.9 47.7 4.9
H.3.b ~0.9 1.5 11.8 21.3 16.8 150 119 123 115 24.9 25.7 13.0
H.3.c oy 3.6 14.0 18.4 16.7 153 | 11.3 13.2 123 23.2 25.1 12.6
Ha4.a -3.5 6.8 16.5 37.1 78.2 87.9 63 114 111 43.5 76.6 62.1
H.5.a | ~10.5 —6.9 1.6 10.6 12.0 12.2 4.0 5.9 5.8 20.8 24.3 10.2
H.5.b -9.6 -7.6 -2.11] -25.2 -541 =369 3.2 5.6 6.1 —-260 ~-62.7 -52.1
H.5.c ~1.5 0.6 6.6} -185 -50.0 -313 79 105 110| -226 -61.0 -49.9
H.5.d -4.6 -1.7 6.4 2.9 -8.3 -1.0 6.6 8.5 8.8 5.7 -6.7 ~11.7
H.5.e -8.6 ~5.8 1.9 -1.5 =122 -5.2 4.2 6.1 6.4 3.2 -89 -13.7
H.6.a | —10.9 —-4.9 3.6 8.3 124 13.0 3.5 6.7 6.5 19.2 23.9 10.1
H6b | —21.5 —-190 -132| -28.7 -470 -360| -39 -21 -21| -24.7 —523 -47.2
H.6.c 2.6 10.7 19.6 8.0 2.5 10.9 98 146 148 7.7 ~2.1 -7.1
H.6.d -1.2 6.7 130 | ~186 -39.6 -20.6 68 124 127 -233 -56.6 —45.7
H.7a | ~151 -13.8 -7.7 | -223 -45.0 -32.9 0.6 2.1 2.5} -189 —473 -428

Table 2: The relative bias of variance-covariance for Huber’s M-estimate case
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(1)

n =20 n = 40

Type v=0 _ v=0.2 v=0 v=0.2

M M2 722 Tt Y12 22 "1 N2 Y22 m "2 Y22
M.l.a | -189 —15.7 —8.7j » 0.4 7.8 931 -13 0.5 0.4 14.1 26.8 16.0
M.1b} -189 -171 -120| -282 -50.7 -32.1 | —-2.0 0.2 0.5 ] —-21.7 ~524 -38.0
M.i.c ‘ -11.6 -9.8 —-4.1 | -21.8 -463 -26.1 2.5 4.8 51| ~18.1 -50.2 -35.1
M.1d ‘ -136 -10.9 -4.0 -~3.8 -6.8 i.5 1.2 3.0 33 4.5 2.1 0.3
M.le | -17.2 =146 -8.1 -79 -108 -29 1| -1.1 0.7 1.0 2.1 -0.2 -2.0
M.2.a 1.0 8.3 138 { -196 —46.5 -179 8.8 15.2 159 | -20.7 =592 -37.
M.3.a 5.4 14.3 25.8 25.3 36.6 38.2 13.8 17.3 16.2 29.8 47.2 34.9
M.3.b 0.3 34 13.9 229 27.5 28.4 11.9 12.4 11.5 29.3 43.4 31.1
M.3.c -1.0 4.3 14.8 19.3 26.0 27.4 11.1 12.9 12.0 27.3 42.3 30.3
M.4.a -4.9 4.4 13.4 13.1 26.8 29.7 5.7 10.4 10.1 20.5 36.9 25.56
M.5.a -9.9 —-6.4 1.5 11.5 19.8 21.4 3.9 5.8 5.6 20.1 33.5 22.1
M.5.b -9.8 =79 -2.2 | —20.2 -45.2 -246 3.2 5.5 58 | -17.7 ~49.9 =347
M.s.c -1.8 0.3 6.5 | —-13.1 -404 -17.9 7.9 10.3 107 | —-13.8 ~476 -=-31.7
M.5.d -4.0 -0.9 6.7 6.9 3.6 12.8 6.5 8.4 8.7 10.0 7.5 5.6
M.5.e ~8.0 =5.1 2.2 24 -0.9 7.9 4.1 6.0 6.3 7.5 5.1 3.2
M.6.a | -11.0 -~5.4 2.6 7.8 17.5 19.8 3.1 6.2 6.1 18.2 324 19.0
M.6b | -21.7 -194 -135| —266 -43.2 -29.7| -40 -23 -23| -18.0 405 -324
M.6.c 1.8 9.3 17.5 10.3 11.5 21.8 9.3 13.7 14.0 11.4 11.3 9.5
M.6.d -3.5 3.2 96 | -17.3 -381 -15.9 6.2 11.8 113 | -165 -468 =313

Table 3: The relative bias of variance-covariance for Mallows’ GM-estimate case
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Number Type of symbol v=0 v=0.2
of cases estimate M1 | 72 (1) Y22 i | 2 (va) 22
O -13.537 —14.051 -9.226 | —27.912 -59.319 | —-41.301
least squares ol —~5.498 -1.715 5.614 4,194 ~17.787 | —20.465
Wi -19.829 —23.880 | —17.901 | —10.677 ~29.572 | —29.651
GwWIJ ~15.299 —15.559 —~8.946 -1.892 -13.055 | —13.742
S.1.a —18.903 -15.471 —7.704 1.484 9.190 10.266
n =20 S.2.a 16.808 25.223 31.044 -~7.105 -36.288 -4.425
S.3.a 8.764 18.603 29.771 27.677 39.447 39.846
Schweppe's GM | S.3.b 3.275 7.074 17.119 25.391 30.532 30.112
S.3.c 1.726 7.602 17.666 21.382 28.378 28.511
S.4.a ~4.104 5.888 15.657 14.818 29.357 31.733
S.5.a —9.893 -6.079 2.552 12.759 21.322 22.517
S6.a -10.907 -5.011 3.620 8.947 18.858 20.670
(o] 1.279 3.021 5.862 | —27.872 ~-67.963 | -58.057
least squares 0oJ 5.824 9.886 13.215 ~6.265 ~23.828 | -32.624
wJi ~1.904 -2.966 -0.180 —5.053 -28.137 | —36.736
GwWIJ 0.632 2.009 4.920 5.286 -9.492 | -20.212
S.1.a —1.567 -0.115 —0.347 15.682 30.011 18.287
n =40 S.2.a 16.971 23.713 24.346 | —14.979 —54.562 | —31.466
S3.a 14.435 18.216 16.901 30.849 48.619 35.765
Schweppe's GM | §.3.b 12.375 13.058 11.925 30.900 46.039 32.918
S.3.c 11.619 13.662 12.460 28.642 14.395 31.715
S4.a 5.486 9.960 9.551 21.67% 39.216 27.101
S.5.a 3.616 5.142 4.898 21,771 36.853 24.513
S.6.a 2.883 5.686 5.376 19.635 35.265 23.336

Table 4: The relative bias of variance-covariance for least squares and Schweppe’s

GM-estimate case
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y=0 (lmal<10) v=02 (|ml<20)

n=20 n = 40 n=20 n = 40
LS LSOJ | LY L3WJ | LSGWIJ LSGWIJ
LSGWIJ LSGWI
H.l.a Hi.c | Hla Hab | Haa H.id | H.la H.1.d
H.l.d Hale | Hilc H.ld | H.le H.3b | H.le H.3.b
H.5.a H.5.b | H.l.e H.5.a | H.3.c H.5.a | H.3.c Hb5.a
H.5.c H.s.d | H5.b H.5.d | H.5.d H.5.e | H5.d H.5.¢
H.5.e H.6.a | H.5.e H6.a | Hé6.a H.6.c | H6.a H.6.c
H.7.a H.6.b H.7.a
M.l.a M.l.c | Ml.a M.1b | M.la M.1d | M.1.a M.1d
M.i.d M.le | M.l M.1d | M.le M.2.a | M.l.e M.5.d
M.5.a M.5b | M.1l.e Md.a | M5ec M.5.d | Msee M.6.a
M.5.c M.5.d | M.5a M.s5b | Mse M.6d | M.6.c
M.5.e M.6.a { M.5.c M.5.d
M.6.d Mie M.6.a

M.6.b

S.l.a S.5.a | S.l.a Sd.a S.1.a S.2a | S.l.a
S.6.a S.5.a S.6.a S.6.a

of slope parameter

Table 5: The recommended procedures based on the results of relative bias of variance
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From the summaries of the relative bias of variance estimates, we can see that
the values of H.l.a, M.1.a, S.1.a, H.5.a, H.6.a, M.5.a, M.6.a, 5.5.2 and S.6.a appeare
more often than other values. After checking those symbols, we find that the last
six values represent the weighted jackknife and general weighted jackknife estimates
in the approximate procedure. This supports our prcposal. If we check the results
carefully, we also can find that the estimators H.2.a, M.2.a and S.2.a seem to have

more stable values although they do not have outstanding performance.

2.5 Further Study

In the classical linear regression case, if the normal assumptions hold, then for

the estimate ﬁ we have F-statistic

F = (ﬂ — ﬂ)TCOZ(,B)(ﬂ - /B) , (2.27)

where
cov(B) = S*(XTX),
which is distributed as F distribution with degree of freedom p and n—p (i.e. Fpn—p).

We can obtain the confidence region of the estimate and make inference about the

estimate based on this property.

This nice property is based on the data satisfying the normality assumption.
If the data are contaminated, we can not apply this property to make inference. In

reality, we will encounter lots of cases when the classical assumptions are not satisfied.



This is the reason why we need to use robust procedures to estimate the parameters.
As we know, it is hard to make inferences on the robust estimate even we can use the
robust procedure to find the estimators. In our simulation study, we try to figure out

a reasonable value of ¢ which will lead to the statistic

)
p

: (2.28)

having an approximate F distribution with degree of freedoms equal to p and ¢ (2.c.
F,,). If we can find the ¢ value for different robust estimate, we can make inference

on our rcbust estimates.

The method which we applied to find the reasonable value of ¢ as following,.
First we calculate the values of I%,Ie’z,...,1:“,“,-5,,-,,1 based on above formula, then
sorting those value such that Fy < <. < r those values form the

no.sim?

A

empirital quantiles which can be written as F

> vies - O€cONd, we get the theoretical

F2

: 1
quantiles values F, R

g ., Fpe-=™ which can be written as F7 (where p s

the number of parameters which is fixed in our case and 1 < ¢ <n ).

We define the correlation between the empirical quantiles and the theoretical

quantiles as a function of ¢ which is

h(q) = c(»rr(ﬁ" Feeriesy (2.29)

seriesy L pg

The estimated value § is obtained by condition A(§) = mazi<4<nh(q)



Type of n=20 n =40
estimate | INIT oJ Wl GWJ OJA | INIT 0l Wl GWJ 0JA
H.l.a 7(2) 8(2) A{2) 7@ T(1)|18(2) 22(2) 22(2) 18(2) 18(2)
b | 12(3) 11(3) 13(3) 13(3) 13(1) [ 20(3) 24(2) 24(3) 20(3) 21(2)
Hie |13(3) 12(3) 14(3) 13(3) 14(1)|21(3) 25(2) 25(3) 21(3) 22(2)
H.1.d 8(3) 10(3) 9(3) 9(3) 9(1)|24(2) 34(2) 34(2) 24(2) 25(2)
Hol.e 8(3) 10(3 9(3) 9(3) 9(1)]2a(2) 33(2) 33(2) 23(2) 2(2)
H2a | 13(5) 9(4) 14(s) 14(5) 13(3)|20(9) 22(3) 23(4) 20(4) 20(3)
H3.a 8(5) 9(6) 9(6) 8(5) 8(6)|14(4) 14(4) 13(4) 15(4) 14(4)
H.3.b 7(2) 8(2) 8(2) 7(2) 7Q)[15() 15(1) 14(1) 16(1) 15(1)
H.3.c 8(2) 8(3) 8(2) 8(2 8(1)|14(3) 14(2) 13(3) 15(3) 15(2)
il4.a 8(6) 9(6) 9(6) 8(6) 8(6) | 18(a) 21(5) 20(4) 19(4) 18(4)
H.5.a 7(2) 8(2) 8(2) 7(2) T()|18(2) 22(2) 22(2) 18(2) 18(1)
Hsb | 12(3) 11(3) 13(3) 13(3) 13(1) | 20(3) 24(2) 24(3) 20(3) 21(2)
Hse | 13(3) 12(3) 14(3) 13(3) 14(1) | 21(3) 25(2) 25(3) 21(3) 22(2)
H.5.d 8(3) 10(3) 9(3) 9(3) 9(1)|24(2) 34(2) 34(2) 24(2) 25(2)
H.5.e 8(3) 10(3) 9(3) 9(3) 9(1)|24(2) 33(2) 33(2) 23(2) 24(2)
H.6.a 8(2) 9(2) 8(2) 8(2) 8(2)|18(4) 22(3) 22(5) 19(4) 18(2)
Heb | 11(3) 12(3) 12(3) 12(3) 12(3) [ 17(4) 19(4) 19(5) 18(4) 17(3)
H.6.c 8(7) 10(8) 9(7) 9(7) 9(6) | 27(9) 40(6) 40(10) 27(9) 29(5)
Hed | 12(8) 11(5) 13(5) 13(8) 13(10) | 21(4) 26(4) 26(4) 22(3) 22(4)
H7a | 10(3) 12(3) 11(3) 11(3) 11(1) | 23(3) 30(2) 30(3) 23(3) 24(2)

"able 6: Estimators of § for Huber’s type M-estimate case, the values in parentheses

are the estimators of ¢ based on the contamination ratio v = 0.2, the values outside

of the parentheses are the estimators of ¢ based on the contamination ratio v = 0.
(INIT: original estimator; OJ: ordinary jackknife estimator; WJ: weighted jackknife

estimator; GWJ: general weighted jackknife estimator; OJA: ordinary jackknife esti-

mator using approximate procedure)
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Type of n=20 n = 40

estimate INIT 0J Wl GWJ 0JA INIT (O} Wl  GWJ 0QJA

M.l.a T(2) 8(2) 8(2) T(2) T(2)|10(5) 19(6) 20(6) 20(5) 20(5)
M.Lb 12(3) 10(4) 12(4) 13(3) 13(3) | 19(4) 14(4) 16(4) 19(5) 19(4)
M.i.c 13(4) 11(4) 13(4) 13(3) 13(3) | 20 (4) 15(4) 17(4) 20(5) 20(4)
M.1.d 8(2) 10(2) 9(2) 9(2) 9(2)|24(6) 19(5) 22(6) 24(6) 25(6)
M.le 8(2) 9(2) 9(2) 9(2) 9(2)|24(6) 18(5) 21{5) 23(6) 24(86)

M.2.a 13(3) 8(3) 12(3) 14(3) 12(4) | 18(4) 13(4) 15(4) 18(4) 18(4)

M.3.a §(6) 9(6) 8(6) 8(6) 8(6)|15(4) 15(5) 14(5) 16(4) 15(5)
M.3.b 7(2) 8(2) 8(2) 7T(2) 7(2)]|15(5) 16(5) 15(5) 16(5) 16(5)
M3.c 8(3) 8(3) 8(3) 8(3) 8(3)[15(3) 15(3) 14(3) 16(3) 16(3)
M.4.a 8(6) 9(6) 8(6) 8(6) 8{(6)|19(5) 17(6) 18(5) 20{5) 20(5)
M.5.a 7(2) 8(2) 8() T(2) 7{2)]|19(5) 19(6) 20(8) 20ty 20(5)

M.5.b 12(3) 10(4) 12(4) 13(3) 13(3) | 19(4) 14(4) 16(4) 15{5) 19(4)

M5.c | 13((4) 11(4) 13(4) 13(3) 13({2) | 20(4) 15(1) 17(4) 20(5) 20(4)

M.5.d 8(2) 10(2) 9(2) 9(2) 9(2)[24(6) 19(5) 22(6) 24(6) 25(6)
M.5.e 8(2) 9(2) 9(2) 9(2) 9(2)|24(6) 18(5) 21(6) 23(6) 24(6)
M6.a 8(4) 8(3) 8(4) 8(3) 8(3)[19(5) 18(6) 19(6) 20(5) 20(5)

M.6.b 11(4) 11(4) 11(4) 12(5) 11(5) | 17(5) 14(4) 15(5) 18(5) 18(5)

M.6.c 9(4) 10(5) 9(5) 9(4) 9(4)[27(8) 19(8) 23(9) 27(8) 28(8)

M.6.d 12(4) 10{4) 12(3) 13(4) 13(4) | 20(5) 15(4) 17(5) 21(5) 21{4)

Table 7: Estimators of § for Mallows’ type GM-estimate case, the values in paren-
theses are the estimators of § based on the contamination ratio v = 0.2, th(.: values
outside of parentheses are the estimators of § based on the contamination ratio v = 0.
(INIT: original estimator; OJ: ordinary jackknife estimator; WJ: weighted jackknife
estimator; GWJ: general weighted jackknife estimator; OJA: ordinary jackknife esti-

mator using approximate procedure)



Number | Type of v=0 v =0.2

of cases | estimate | INIT OJ Wi GWJ OJA | INIT OJ Wi GWJ O0JA
S.l1.a 7 8 8 7 7 1 1 1 1
S.2.a 12 4 12 13 2 2 2 2 2
S.3.a 8 9 8 8 8 5 6 [t} 5 5

n=20 S.3.b 7 8 7 7 7 1 1 1 1 1
S3.c 8 8 8 8 8 1 1 1 1 1
S..a 8 8 8 8 8 6 6 6 6 6
S.5.a 7 8 8 7 7 1 1 1 1 1
S.6.a 8 8 8 7 8 2 2 2 2 2
S.l.a 17 18 19 17 17 4 4 4 4 4
S.2.a 15 13 16 15 14 3 3 3 3 3
S3.a 13 14 13 13 13 3 4 3 3 4

n =40 S.3.b 13 15 14 14 14 4 4 4 4 4
S3.¢c 13 15 14 14 14 4 4 4 4 4
S4.a 16 18 19 17 17 4 4 4 4 4
S.5.a 17 18 19 17 17 4 4 4 4 4
S.6.a 17 18 19 17 17 4 4 4 4 4

Table 8: Estimators of § for Schweppe’s type GM-estimate
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The simulation results of § are shown on Table 6 to Table 8. From those results,

we can see that when the data are contaminated, the ¢ values tend to be small. The

majority vi lues are between 3 to 6 for the case of v = 0.2. For the case of v = 0,

the § values are larger than those obtained from v = 0.2. We also can see that the

variation of § values is large in the case of v = 0.
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3 Diagnostic Statistics for Robust Estimate

3.1 A Bri! fieview of Diagnostic Statiztics for Ordinary
Least Squares Estimates

3.1.1 Leverage and Residuals

In diagnostic procedures, the hat matrix H plays an important role. The
diagonal elements of the hat matrix also are called leverages. We mentioned bcfore
that the hat matrix has several properties, i.e. it is an idempotent matrix and the
diagonal elements of H have Y%, h; = p, the average size of a diagonal clement is
p/n , we also can see that the leverages have 0 < h; < 1. (Actually, the h; satisfy

1/n < h; < 1, See Belsley et al (1980)).

C. R. Rao (1973) gave the following result. If the rows of X (which is the
centeed matrix of X) are assumed to be i.i.d. from 2 (p — 1) dimensional normal

distribution, then

p—1" A(x:)

] ~ Fp—l,n-—pa

where %; are centred vector of x; and A(%;) is the Wilks’ statistic which has the
expression

|);'TX —(n— 1)):{(,')):((1;-) — 5{,5(,T|
- IXTX|

A(x:)

where X(;) is the mean value of centered vector X; when X; is deleted, i.c.

= 1 &
X(,') = g X
JF

n—1<
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It can be simplified as :

(1-"h), (3.1)

so, we have that

(n=p)hi=1)
R "7

This result is useful for us to choose cutoff value to detect the leverage point.
For p > 10 and n — p > 50 the 95% value for F'is less than 2 and hence 2p/n (twice
the balanced average h; ) is a good rough cutoff. When p/n > 0.4 , there are so few
degree of freedom per parameter that all observations become suspect. For small p ,
2p/n tends to cail a few too many points to our attention. Since it is simple to use
and easy to remember, it is suggested that 2p/n as a cutoff. When h; exceeds 2p/n ,

we call the ith observation a leverage point.

Same as the leverage h; , the residuals r; also play an important role in statistical
"diagnostic. For the residuals, there are two kinds of modification. One is standardized

residuals, which can be expressed as

T
| = ———— 3.
K s /1 —h; (32)

where 62 = MSE. The other one is studentized residuals, which have the expression

r.
e —— 3.3
R = (3.3)

where 67y = MSE;). It is the error mean square calculated when the ith observation

is omitted.
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The studentized residual, in a number of practical situations, is distributed
closely to the t-distribution with n — p — 1 degree of freedom. From this point of
view, we can readily assess the significance of any single studentized residual. The
studentized residuals thus provide a better way to examine the information in the
residuals. But it is important to note that some influential points can have relatively
small studentized residuals. Indeed, this point is central to the notion of Bounded
Influence M-estimation, i.e. Generalized M-estimate or writein short as GM-estimate,

in which the more influential points are automatically down-weiguted.

From the leverage and the scaled residuals, we can form several diagnostic
statistics. It is easy to see that the diagnostic statistics we will mention later are
basically formed by different combinations of functions of leverages h; and scaled
residuals although they are obtained under the approach of the influence function

and a class of norms which are location and scale invariant.

3.1.2 The Empirical Influence Curve and the Sample Influence Curve

To measure the influence of each observation in a data set, we can also use the
idea of the influence function. The influence function of a statistic 7'(f') at a point
2z, IF(z;; T, F), measures the influence on the statistic of adding one observation
z; = (X;,¥;) to a large sample. For ordinary least squares regression, the empirical
influence curve and the sample influence curve can be obtained in the following way

(See Chatterjee and Hadi (1986)).
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(1). Let [%, be the empirical distribution function based on the full sample and
IA"(,-) be the empirical distribution function when the ¢-th observation is omitted. When
we replace F' by 17"(,-) and T(f?(,-)) by B(;) , we can obtain the empirical influence curve

which is

EIC, = (n - 1)(X(7;)X(,)) X,( - X; ,B(, ) . (34)
Since in the ordinary least square, case, we have following formula

Ty \- (XTX)'x;
(X X@) % = TR

and

-xIg
sl gy (3.5)

!

ri) = % — X} By = =5
the value of EIC; in the ordinary least squares case can be expressed as

ri

EIC; = (n — 1)(XTX)™!

(2). When we omit the limit in the expression of the influence function and take
F=FR, T, = B and € = —1/(n — 1), we obtain the sample influence curve (SIC)
which is:

SIC: = (n~1)(XTX) "%y — %] Ba))

T'i

x'(l — h;)

(n = (XTX)?

= (n—=1)(8 - Bw)

The last equation is obtained by the formula (1.22).
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From above formulas of EIC; and SIC;, we can see that £ [(; is more sensitive

to h; while SIC; is proportional to the distance between B and [1(,-).

Since the influence function IF(x;,y:; F,T) is a vector, it has to be normalized
so that observations can be ordered in a meaningful way (See Chatterjee and Hadi

(1986)). The class of norms which are location and scale invariant is given by

T n
D;(A;¢) = M—'Z . (3.7)

C

For any appropriate choice of matrix A and scalar ¢, a large value of Di(4;¢)
indicates that the ith observation has strong influence on the estimated coeflicients
relative to A and c. Following are some commonly suggested choices of A, ¢ and their

corresponding diagnostic statistics.

3.1.3 Cook’s Distance

If we use the sample influence curve to approximate the influence function and

substitute A = XTX and ¢ = (n — 1)®p6?, we can get

o YT Y 1\2na2) — (B—B(i))TXT‘\'([}—B(.'))
C; Di(X" X;(n—1)°pc®) = S TMSE

(G - 96@)T (G — diqy)
p- MSE '

It can be written in short form

(3.8)
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Note that g is the vector of predicted values when yj; is regressed on X;).
Thus C; can be interpreted as the scaled Euclidean distance between the two vectors
of fitted values when the fitting is done by including or excluding the ith observation.
This measure was proposed by Cook (1977). It is called Cook’s distance. Cook
suggested that each Ci be compared with the quantiles of the central F' distribution
with p and (n — p) degree of freedom. If the percentile value is near 50 percent or
more, the distance between the vector ﬁ and B(;) should be considered large, implying

that the i-th case has a substantial influence on the fit of the regression function.

3.1.4 Welsch-Kuh Distance (DFFITS)

We can use |§i—§()|/vVV/MSE - h: to measure the impact of the 7th observation
on the ith predicted value. Welsch and Kuh (1977), Welsch and Peters (1978), and
Belsley, Kuh and Welsch (1980) suggested using 6¢;) as an estimate of o2. This statistic
is called as Welsch-Kuh distance. It is also called DFFITS (DFFITS stands for

scaled difference of fits) which can be expressed as

|3 — gl _ %:(8 — Biay)|
\/ﬁ’ISE(,-) - h; \/7MSE(,') - h; ’

WK; = DFFITS; =

We have following simple expression for MSE; :

(n—p) - MSE r?

MSEo =" 20T om0 (-

After squaring, DF FITS; is equivalent to the value of D;(4; ¢) when the sample

influence curve is used to approximate the influence function and take A = X TX,
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c=(n—1)*- MSE, i.e.

h,

WK; = DFFITS; = \[Di{XTX; (o~ 1)?- MSE(;)) = |r}| 1 (3.9)

1-hi

For a perfectly balanced design matrix " { h; = p/n for all ¢ ), we have

WK; = DFFITS; = (,—f—-p)ll%; .
-

Belsley, Kuh and Welsch (1980) suggested using 2-4/p/n as a calibration point
for DFFITS;. Velleman and Welsch (1981) recommended that if the DF F'IT S; value
is greater than 1 or 2, then the correspondence observations are worthy of special

attention.

3.1.5 Welsch’s Distance

When we use the empirical influence curve (EIC) to approximate the influence

function and set A = XZ)X(,-), c=(n~1)- MSE), we can get

2 ki
W2 = (n l)r,2(1 ) (3.10)
Comparing (3.9) with (3.10), we have that
W; = DFFITS; \/-——- = W[ 7= .

W; is called Welsch’s distance. This measure was suggested by Welsch (1982). It also
can be used as a diagnostic tool. For the sample size n > 15, we can use 3,/p as a

calibration point for W;.
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3.2 The Diagnostic Statistics of Robust Estimate

Analogous to the case of ordinary least squares, we propose several measures
which can be used to detect possible outliers and influential points in robust regression
problems. As in section one, we conader the robust estimators By = T(F,) and
B¢(;) = T(ﬁ’(,-)) which satisfy the general functional forms }7_; ¢(z;; By, 6, ; = 0 and

s d(255 Botiys Ga(iy) = O

3.2.1 Robust Leverage and Robust Mahalanobis Distance

We name the w? which has the expression in formula (1.44) robust leverages in
analogy to the leverages in the case of ordinary least squares. For the robust leverages,
if ordinary least squares is applied, we have w? = h; (which we mentioned before).

Robust leverages can be used as one of the diagnostics.

When measuring the distance between two observations x and y in a space,

we can use Mahalanobis distance. By the definition, the square root of
A¥(x,y) = (x—y)E (x~Y), (3.11)

is called the Mahalanobis distance between x and y, under matrix X .

Similar to the Mahalanobis distance defined above, we define the square root of
x,TM\J,' 1x; as the robust Mahalanobis distance. Using the robust Mahalanobis distance,
we can check the distances between observation x; (¢ = 1,...,n ) and the rest of

observations in a more robust way.
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3.2.2 Robustly Standardized Residuals and Deleted Residuals

For the robust estimate case, we define robustly standardized residuals 1% by
o . (3.12)

In the ordinary least squa  case, the robustly standardized residuals 1'?,- becomes
the standardized residuals 7 as we take w{ = h; for the ordinary least squares case.
Here we need to mention that for ordinary M-estimates, this statistic may not provide

sufficient evidence to detect the unusual point of design inatrix since the M-estimate

is not robust against outliers in the regressors (i.e. the X).

We also can use the robust delete-one residuals 7'?,-) as our diagnostic statistics.

We define robust deleted residuals as

¢ A
Wb T _YiT x! Ba(i) (3.13)
d(l) - —&¢ —_ —“__-_&d’ -— . (3 9 I}

Using this statistic, we can check the influence of each observation on the residuals.

When ,34,(,-) is approximated by ﬁ;(i), we have the expressions of deleted residuals.

For the M-estimate, the deleted residuals are

A T Aa
Mo yi — X,T,BM(.') _YiT X ﬂM(.-)
W= "5y oM

which can be simplified as

M MT 7t}
M ~ri wt,- x,-MMx,- .
rd(i) ~ m[l + —:—JM——] 9 (-314)

L)
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where
wiM z/)(7'|M/<A7M)

FToMiem
“or the GM-estimate, we have the expression for r%”)' which are
oy Tl sk -
Td() ~ oM [1 1 — wlM d ( . )
1

where

wiSM — (%, €M [G6m)
t - GM /A :
réM [Gam

Note: If the ordinary least squares estimate is used, the deleted residuals are the

exacl values of deleted residuals, i.e.

h; ] =
1—-h;  1-0h"

1‘,';(% =rl +

The above result is obtained since in the ordinary least squares case wt? = 1,

-——

My = XTX and w? = 1.

3.2.3 The Standardized Change in Fit

We define the standardized change in fit which measures the difference of the
fits, i.e. the difference between the fit when the i-th observation is present and the
fit when the i-th observation is deleted. We use SCF; to represent it. SCF; can be

written as

A¢ A¢ A et
Yi — y(;)l _ IX?(ﬂqb - ﬂos(i))l
g 04 ’

P

SCF? =|
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I ﬁ¢(i) is replaced by B;(,.), we can get the SCF; values in the simple form.

For the M-estimate case, the expression is

Taf—1
M 1 My Xi Mag X o 1
SCF‘ = wt? . |7‘si . ‘—17 . (31())

i
Similarly, we have the standardized change in fit for GM-estimate which is
X,-THE;WX,‘

V1 — wfM

Note: Compare the formula of standardized change of fit ( SCF; ) to the Welsch-

SCFEM = wttM . |rGM| . (3.17)

Kuh distance, we can see that if we divided SC F; by the square root of robust leverage
w?, the statistic we obtained is an analogue to the Wr: . "= Kuh distance. Since some
of w? might be equal to zerc, we prefer to choose 57, i~ .l to define a statistic

which is an analogue of Welsch-Kuh distance.

3.2.4 The Empirical Influence Curve in the Robust Estimate Case

From the formula for the influence function, we can get the empirical influence
curve (EIC?) which is found by substituting 17“(,-) for F and [3,,,(,-) for T'(Fyp). The

general form of EJ C? can be expressed as

1 8
¢ _
EIC} = —(—= 2

i OBoiy

&(25; Batiys Oai))) "Bz, /34»(.'), Fuli))- (3.18)

As explained earlier, we replace G4(;) by 64 and the above formula becomes

EIC? = —(n - 1)} mﬂzﬁB¢(i),&«1)))—1¢(Z:‘,/;4»(i)a&4:) :
J#t b1
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In the case of M-estimate, the empirical influence curve EICM is
T3

xT Bas “1 Y5 — X5 B

Y — (')) ) l‘lL’( J ] (1)

EICH = (n = 1)(3 %% &A1 oM oM

J#i

Write in short, the empirical influence curve EICM can be written as

1\1
Cu (n— 1)O'MAIM( )d’( 1:1) )% (3.19)
where
)\'I
A[M( y = Z l,) J(') )X_,XJ s (3.20)
oM

J#

Similar to the M-cstimate case, we can get the empirical influence curve for

GM-estimate (EICEM) which can be written as

GM
PAI 1)
oGM
where
TGA)I .
Maney = D' (%5, 52 Gont )X;X; (3.22)

J#

“When we calonlate the EITM or EICEM values, we can use [y, and

:";’,(.;Al(i) 1. =pproximate BM(,) and ﬂGM(, It will alsc save a lot of computing time.

3.2.5 ‘Llie Sample Influence Curve in the Robusy Estimate Case

If we omit the limit in the expressien for the influence function and take F = ﬁ'n,
T(F,) = 3. and ¢ = —=1/(n — 1), we can get the sample influence curve (SICY)

which is

SIC? = (n-D)(T(F)-T(Fy)



= (n-— I)(Brb - Bﬁb(l’))

= (n - ])6,;5(“) .

Compare it with (1.68), SIC? can be written as

SIC? ~ —(n = 1)(3. ¢'(2): B8, 56)) " b( 265 Ba &a) -

J#1
In the case of M-estimate, SICM becomes

V(M /oy

c T . T-1
SICM = (n—1)oar >y My'x; .
t

In the GM-estimate case, SICEM can be obtained by

GM |4
. Xi, 7" [6am) -
SICM ~ (n - 1)0(,'1;17’( '1’ - wc/;M MGpei -

t

3.2.6 The Diagnostic Statistics Based on The Influence Function

For rebust M and GM-estimate, we already have the expressions for /\‘fM., Mg,

Masiiyr Margsy, Qum and Jour before (see (1.50), (1.55), (3.20), (3.22), (1.90), and

(1.93)). Now we give the exprssions for Qi and Qe -

2 7";'\(Ii) T
Z¢ ('A__)xej )

g M

@GM(:’) = Z 712(

J#i TGAL

Q1)

. .GM
X5 T56) \o T
——)X;X; .

Considering the class of norms

HT n?

(3.26)

(3.27)

(3.28)
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when we use cither the empirical influence curve (EJCH, EICSEM) or sample influ-
ence curve (SICM, SICSM) to approximate the influence function IF? and use one
of M¢,, M,,,uh Q,,:,, or @45(,-) to replace matrix A and choose the appropriate scale value
¢, we can form some diagnostic statistice for robust estimate. We can see that those
statistics are the analogue to the diagnostic statistics in the ordirary least squares

case.

3.2.6.1 Robust Analogue of Cook’s Distance

If we choose sample influence curve (ST C?) to approximate the influence func-
tion IF? and take ¢ = (n — 1)*p63 and use M, or M}Qd’,liﬁ(b to replace matrix A

respectively, we have following statistics.

(1). When A = My and ¢ = (n ~ 1)?pé3, the diagnostic statistic becomes

(SICHT - M, - SIC?
(n—-1)%p53

D}(My; (n—1p63) = (3.29)

We name this diagnostic statistic Cook’s distances for robust estimate and use

C? 1o represent it. In the case of M-estimate, the diagnostic statistic is

(SICMT . My - SICH

CM = DY (My; (n —1)%piy) = -
o (n ~ 1)2p}

Using formulas (1.50) and (3.24), the above expression can be written as

oM A, L [om) x{ My
' p (—wM)y

(3.30)



Similarly, we can get the statistic for the case of (' M-estimate, which is

2 GM /A Tr{~1
2 (xi, 7Y [Gam) X{ Mgpx;

P (1= wih)

CEM

Note: We can see that there is a relationship between SCF? and €} .

SCF? = Vll)' Cf - xT Mg xi .

(2). A= ﬁ¢Q;lﬁ¢ and ¢ = (n — 1)?p5}, the diagnostic statistic becomes

(SICHT - MyQ5' M, - SICY

D?(M¢@£1M¢; (n - 1)21’&;) = (n _ 1)2735'2
¢
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(3.31)

We name this diagnostic statistic modified Cook’s distances for robust estimate

and write as C? . In the M-estimate case, above formula becomes

cM = D?’[(MM@X/IIMM; (n—1)%poy) =

(n = 2%,
Compare it with formulas (1.50), (3.24), it ~an be simplified as

OM M [5m) xTQptxi

~

‘ p (I—wM)

Vor the GM-estimate case, the corresponding diagnostic statistic is

FEM n(xi, 78 [Gom) X! Qg

SR e

(SICMYT . My Qs Mpg - SICH

(3.32)

(3.33)
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3.2.6.2 Robust Analogue to the Welsch’s Distance

If we use empirical influence curve (EIC?) to approximate the influence function
and choose A = ]\7,,,(,-) or A = M\¢(i)@;(li)ﬂ¢(i) and take ¢ = (n — 1)é3 , then the

diagnostic statistics have the following expressions.

(1). A= E’i¢(,‘) and ¢ = (n — 1)&3, the diagnostic statistic becomes

(BICE)" My EICY

D?(M\tf’("); (7? - 1)&;) = (Tl — 1)&3}

We name this diagnostic statistic Welsch’s distance for robust estimate and

.. 2 . et
write it as W', In the case of M-estimate, the statistic is

(EICMT My EICM
(i) _

W-M2=DM1T/ZA," ,—1‘2 =
i i ( M(i)» (Tl )UM) (n_l)&?w

Comparing it with formulas (3.19 and (3.20)), the abo e expression can be simplified

as

M
P Tils o~ -
WM = (n -1 ),p?(i)xg Myxi - (3.34)

In the case of GM-estimate, it has the expression

GM
U =_4

: ) 2 .
WgCM =(n - 1)7)2()(,‘, —5'—C(:—'1)VI‘)X‘T oM ()% -

(2). A= 1W¢(;)Q;(li)ﬁ¢(;) and ¢ = (n — 1)6%, the diagnostic statistic is

(EICHT - M@y Maiiy - EIC?
(n —1)63 '

Df’(ﬂf(ﬁ(.-;(?;(‘,-)@s(.-); (n—1)83) =



~J
2

We name the diagnostic statistic obtained based on above formula Modified
Welsch’s distance for robust estimate and express it as W¢. In M-estimate case, the
diagnostic statistic becomes

. — Al — EICMT . MOk Mary - EICM
WM = DM (Mm@ QafyMme; (n—1)63) _ ! ) Mar @iy Maves .

(n —1)5%;

Substituti:; fcrmula (3.19) in above formula, the diagnostic statistic can be

written as

oMo
WM = (n = D (2T QA i - (3.35)
oM

For GM-estimate case, the corresponding diagnostic statistic is

aM
—~ [TH ~
WEM = (n ~ 1)n*(xi, - )x] Qb (3.36)

~

oGM
3.2.7 Summary of Diagnostic Statistics

So far, we have discussed several diagnostic statistics. We can group them based

on residuals, leverages, distances and change in fit.

(1). The diagnostic statistics based on residuals

standardized residuals : Ty = 37?“’71’
1]
r;?‘ = Ty

&(,‘);l—'jh
%
. : Lo T
robustly standardized residuals : 7 —7—'—&4" -

studentized residuals :

—xTA
robust deleted residuals : 7‘3(;) = !'—’f.;:@ﬂﬂ
. . M wtMxTAMS X,
(for M-estimate) iy & g;[] + ﬂ'—lx-_lm'dh—x—]

wtGMxT M

. TGM f
(for GM-estimate) 7‘5'(%' ~ ;—;‘G—A;[l + _'T:",;.GMMX—]
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(2). The diagnostic statistics based on leverages

leverages : hi =xT(XTX)'x;

robust leverages : w}b = tT{[—g%; (Zi»/§d>, 5¢)]&¢ﬁ;1}
(for M-estimate) wM = ¢’(%)x?ﬁ;}x;

(for GM-estimate) wfM = o'(x;, %)X?ﬂ&}wx;

robust Mahalanobis distance : x?ﬁ;lx;

Note:

The robust leverages are the general form of the leverage obtained by the design
matrix X. Since some values of zb’(%'g—) and 7'(xi, ;:-‘Z%-) may be zero for large
residuals, the robust Mahalanobis distance can be used as an alternative statistic to
measure the influence of the observations. Also we can see that if the ordinary least
squares is applied, the robust Mahalanobis distances have the same values as the

leverages.

(3). The diagnostic statistics based on change in fit

Welsch-Kuh distance (DFFITS): DFFITS; = |r:‘|\/1—f'h—'

. . & ﬂ?—ﬂ¢
standardized change in fit : SCF} = |-—6—¢(—'-)-|
- M-esti : M _ M . | X
(for M-estimate) : SCFM = wt} - |r}] T
Tar=1
(for GM-estimate) : SCFFfM = wifM . |[rGM] . )‘(‘;MG%%

1—w;



(4).

The diagnostic statistics based on distances

Cook’s distance :
robust Cook’s distance :
(for M-estimate) :

(for GM-estimate) :

Welsch’s distance :

robust Welsch’s distance :

(for M-estimate)

(for GM-estimate)

2
Vo= D ki
G p (1-h))
C? = (SIC)T -Mgy-s1C?
: (r-.—l)')pég

M o, YA /o) XTRIE X,
Ol e S

p

CGM o n2(X,. 7OM o) XTMZE X,

P (‘—UI' V2

WE=(n— 1)l
w*? = (EIC"\TM%LEIC
¢ (n—l)a
= (n (112 ' I ) I IWM(:;X'

rGM
= 0 VT M=
= (n — )n?(xi, 6~M) Mm,( X

GM2
We
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4 Case Study

In this section, we apply several diagnostic statistics which were discussed in
previous part to two data sets. These two data sets have been well explored in the

literature.

4.1 The Land Use and Water Quality Data

The first data set we used is the Land use and water quality ata which was
collected by Haith (1976). Allen and Cady (1982) g.ve the details of this data,
Simpson, Ruppert and Carroll (1992) gave some diagnostic results. In this data set,

there are five variables :

N = total nitrogen; mean concentration, in milligrams per liter, based
on samples taken at regular intervals during the spring, summer,
and fall months,

AC = active agriculture; percentage of land area currently in agricultural

use (cropland, pasture, etc),

FR = forest; percentage of land area in forest, forest brushland, and
plantation,

RD = residential; percentage of land area in residential use

Cl = commercial and/or industrial; percentage of land area in either

commercial or manufacturing use.



4.1.1 The Model and The Estimates

There are 20 river basins (New York area) in which data had been collected.
The total nitrogen content is treated as a measure of water quality. To measure the
quantitative relationship between water quality and land use, initially, the following

linear model was suggested

N:=,31+,62AC+63FR+,84RD+ﬂ5CI+€, .

After checking the data, it is suggested that between variables RD and CI |
there is a strong positive association (p = 0.86). To alleviate the col'incarity, these
{wo variables are su::-:ned and form a new variable UR = RD + CI (See Simpson et

al (1992)). The line: + - ndel becomes

i'v,'=ﬂ1+ﬂ2AC+,B3FR+ﬂ4UR+E,' .

Based on the given data, the ordinary least squares estimate and several robust,
estimates (Huber’s M-estimate, Mallows’ GM-estimate and Schweppe’s GM-estimate)
are conducied. We use Huber’s function with k = 1 for Huber’s M-estimate. For
the Mallows’ and Schweppe’s GM-estimates, we ur ¥ same functional forms as as
formulas (2.7) and (2.8). The functions w(z) and wv(z) are defined the same way
as in part two. ( i.e. w(z) = /1= k; and v(z) = 1/w(z) ). Based on above settine
we can get estimates for this data set. The estimates results are shown on Table 9.

The values in parentheses are the standard deviation of the estimaters.
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OLS M (Huber) | GM(Mallows) | GM(Schweppe)

intercept 1.428598 2.423382 2.667217 2.700284
(1.292693) | (0.917724) | (0.663689) (0.576006)
AC 0.008503 —~0.002815{ —0.008152 -0.008371
(0.01581560) | (0.010264) | (0.008018) (0.007102)
FR —0.008449 | —0.019797 | —0.023581 ~0.024064
(0.01446809) | (0.010486) |  (0.008085) (0.007073)

UR 0.029401 0.005459 0.087582 0.088769
(0.027639) | (0.018866) | (0.065829) (0.057825)

Table 9: The estimators of Land data and their variance estimation

4.1.2 Outliers and Influence Point Detection

(1). The normal probability plot for scaled residuals

The Normal probability plots of OLS studentized residuals and three types of
scaled robust residuals are plotted (see Figure 3). (The scaled robust residual is de-
fined as r?/5,). From the OLS studentized residuals, we can see that two points have
large residuals. They are case 5 (the value is —5.582) an¢! <iase i (the value is 4.061).
The Huber’s M-estimate shows cases 7 and 19 have large values of scaled residuals
(the values are 5.167 and —3.805 respectively). Both of Mallows’ and Schweppe’s
type scaled robust residuais suggest that case 5 has extreme residul (the values are
—94.976 and —27.058 respectively). In both of those estimates, we also can find case

19 has large value, with values —4.986 for Mallows’ *ype GM-estimate and —5.301
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Figure 3: Normal ;robability plot for residuals ols: ordinary least squares, h: Huber's

M-estimate, m: Mallows’ GM-estimate, s: Schweppe’s GM-estimate
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for Schweppe’s type GM-estimate. But if we compare those values with the values

for case 5, we can see they are relatively small.

After checking the data set, we found that those cases which have large values

on the residuals are Hackensack (case 5), Oswegatchie (case 19) and Fishkill (case 7).

(2). Leverages, rolust leverages and robust Mahalanobis distance

For the leverages, the cutoff is 0.4 ( 2p/n ). After checking the results, we found
that case 5 has an extremely large leverage value ( hs = 0.957 ). Cases 3, 18, and 19
have their values close to 0.4 ( they have values 0.366, 0.335 and 0.315 respectively
). For the robust leverages, Huber’s M-estimate shows that case 5 has value 0.999,
case 3 and 18 have values exceed 0.4 (the values are 0.530 and 0.498 respectively).
For Mallows GH-estimate, we get the large values are cases 3, 4, 6 and 18 ( they have
values 0.537, 0.596 , 0.505 and 0.495 respectively ). Similarly, for Schweppe’s GM-
cstimate, we found same cases have large values (the values are 0.674, 0.654, 0.519
and 0.608 for case 3, 4, 6 and 18 respectively). From the data, case 5 is obviously
an unusual point. The reason we obtained a small value on case 5 is that robust
leverages are zero il the residuals are large. It indicates that robust leverage may
not be a good statistic. An alternative statistic which can be applied in diagnosis is

robust Mahalanobis distance.



N6

For Mallows and Schweppe’s GM-estimates, both of them have large values of
robust Mahalanobis distance {71.387 for Mallows type GM-estimate and 66.704 for
Schweppe’s type GM-estimate). Those values are extremely large comparing with the
values of other cases. It indicates case § is a possible influential point. The cases ( 3,
4, 6 and 18 ) which were detected by robust leverage are not likely to be influential

points in the robust regressions.

After taking a look, we can see that those cases which have large leverage
values and large robust Mahalanobis distance are Hackensack (case 5), Oatka (case

3), Raquette (case 18), Owegatchie (case 19).

(3). Welsch-Kuh distance (DFFITS) and Standardizea Change of fit (SCF)

By Belsley, Kuh and Welsch’s suggestion, we choose 2\/m 2

which equals 0.894. From the calculation result of OLS case, we

DFFITS values of cases 5, 19 and 7 exceed the criterion value (

1.648 and 1.057 respectively ). For the Standardized Change of fit «

estimate, we can see that cases 5 and 3 have large values (511.787 ane. w.ri) for
Huber’s M-estimate. (Considering the value of case 3, although it exceeds 0.894, the
reasonable conclusion is that we oniy think case § is an extreme case). If we check
the SCF for the GM-estimate cases, we can find that cases 5 and 7 have large values.

For Mallows’ GM-estimate, the SCF values are 14.867 and 1.963 respectively. For

Schweppe’s GM-estimate, the values are 13.892 and 1.835. (For case 5 and case 7,
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since the values for case 7 are relatively small in comparing with the values of case 5,

a reasonable conclusion is that the case 5 is a possible influential point).

After checking, we can find that those cases which have large values of DFFITS

and SCF are Hackensack (case 5), Owegatchie (case 19) and Fishkill (case 7) .

{4). Cook’s distance

The criterion value for Cook’s distance is F(0.5,4,16) which equals 0.8758.
The computation results show that case 5 has a extremey value in OLS and Huber’s
M-estimate. Their values are 59.557 and 65536.5 respectively. The Cook’s distance for
GM-estimates gives a similar result that case 5 has bigger value compare with other
cases, but it tends to be relatively small value in comparing with the values obtained
by OLS or M-estimate case. (0.774 for Mallows’ GM and 0.723 for Schweppe’s GM).
From Cook’s distance, we can see that case 5 (Hackensack) is an obviously influential

point in the data set.

(5). Welsch’s distance

The criterion value for Welsch’s distance is 3,/p , it equals 6 in this data
set. We found that case 5 has an extreme value (548.704 for OLS case, 20.850 for
Huber’s M-estimate, 35.990 for Mallows’ GM-estimate and 23.554 for Shweppe’s GM-
estimate). It also shows that case 19 has Welsch’s distance greater than 6 for OLS

case. But for the robust estimate, case 19 does not have large values. In Schweppe’s



88

(iM-estimate case, it also suggests that the case 7 requires us to pay attention (which
has value 9.833). The modified Welsch’s distance for robust estimztes gave the similar
results for case 5. ( 32.159 for Huber’s M-estimate, 22.469 for Mallows’ GM-estimate

and 23.429 for Schweppe’s GM-estimate).

4.1.3 Conclusion of the Diagnosis

From above results, we can see that casc ’ : an influential point. If check
Table 9, we can sce that the estimators of OLS and Huber’s M-estimate, Mallows’
{or Schweppe’s) GM-estimate are quite ditferent. Basically, this is caused by unusual

point case 5. We also conclude that case 7 (Fishkill) and case 19 (Owegatchie) are

possible outliers in this data set.

OLS M GM(Mallows) | GM/Shweppe)

intercept | 1.698556 2.625213 2.663357 2.715427
(0.762612) | (0.630076) | (0.608121) (€.542684)
AC 0.002077 | —0.008611 | —0.009037 —0.009516
(0.009382) | (0.006784) | (0.006529) (0.005967)

FR —0.013762 | —0.023870 | —0.024196 -0.024856
(0.008571) | (0.007239) | (0.007003) (0.006340)

UR 0.156235 | 0.132722 0.127248 0.126723
(0.027948) | (0.020670) | (0.021538) (0.036763)

Table 10: The estimators of Land data (case 5 is excluded) and their variance estimation
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Since in this data set case 5 is such a severe design outlier, we redo the regression
based on deleting case 5. Using the same model, we have the estimatc of parameters

show on Table 10.

Note: From this data set, we can have a clear look about the weakness of ordinary
M-estimate which is only robust against outliers of response y but not robust against
outliers in design point X; as we mentioned several times before. This data has case
5 which is an extreme point in the design matrix X. The M-estimate docs not give
us a satisfactory estimator. On the other hand, the two types GM-estimates gave us
robust estimates which fit the majority of the data. After case 5 has been deleted, the

estimated parameters values are much more close for the different types of estimates.

4.2 The Hertzsprung-Russell Star Data

Now we use another data set to conduct the diagnostic study. The data sct is

Hertzsprung-Russell stars data which was discussed by Rousseeuw and Leroy (1987)

and Hadi and Simonoff (1993).

This data set consists of 47 measurements of the logarithm of effective temper-
ature at the surface of a star and the logarithm of the light intensity of the stars.
Most of the cases have a direct relationship between the two variables, but there are
four red giants (case 11, 20, 30, 34) have low temperature with high light intensity.

From Figure 4, we can see that those cases are outliers.
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Figure 4: Scatterplot of Hertzsproung-Russell data

For this data set, the robust diagnostic statistics and the classical diagnostic
statistics are applied in detecting outliers and influential points. We found that it is
hard to detect those outliers if we use standardized residuals and deleted residuals.
Also the classical diagnostic statistics like DFFITS and Cook’s distance show us that
cases 11, 14, 20, 30 and 34 are possible outliers (See Figure 5). For DFFITS, it
gave values 0.3651, {1388, 0.5226, 0.6907 and 0.93533 respectively. We can see that
case 14 has larges DFFITS value than case 11. If we use DFFITS as our diagnostic

statistic, it will cavse misleading and obtain the not suitable conclusion.

Same as the classical Cook’s distance, it also shows that cases 11, 14, 20, 30

and 34 are possible outliers. The value at case 14 is larger than the value at case 10.
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Figure 5: Plot of diagnostic statistics for Hertzsproung-Russell data
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When we applied two robust diagnostic statistics, SCF (standardized change of fit
which is an snalogue to DFFITS) and robust Cook’s distance (which is an analogue
to classical Cook’s distance), we found that those two statistics give us good results.
Figure 5 shows that for Huber’s M-estimate and Mallows’ GM-estimate (from the
computation results, Schweppe’s GM-estimate has the similar results as well), the
SCF and robust Cook’s distance detect cases 10, 20, 30 and 40 are possible outliers

or influential points.

When we consider the leverage, robust leverage and robust Mahalanobis dis-
tance, we can see that cases 11, 20, 30 and 34 have large leverage values as well as
robust Mahalanobis distance. The robust leverage shows us cases 10 and 20 have
large values but case 30 and 34 do not (they have zero values). This is due to that
case 30 and 34 have large residuals. This result shows again that the robust leverage
may not be a good diagnostic statistic. We can use robust Mahalanobis distarce

instead of using robust leverage, in analogy to the leverage in the classical case.
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