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Abstract

To improve the confidence of subsurface storage of fluids such as carbon-dioxide, acid-

gas and hydrogen at various geological sites, a proper fluid dynamic understanding

of flow phenomena occurring because of injecting these source fluids into a porous

medium is necessary. While many advancements have been made in predicting the

fluid flows in a uniform porous medium, the flow dynamics inside a non-uniform

porous media remains less well understood. In this Thesis, we use theory, numerical

simulations and experiments to clarify the fluid mechanics of injecting a source fluid

into a saturated, multi-layered porous media in which each of the adjacent layers are

separated by a sharp permeability jump. Throughout this study, we have consid-

ered small density differences between the source and ambient fluids (satisfying the

Boussinesq approximation) and both these fluids are completely miscible with each

other. The goal of the study is to inform three practical questions.

The first research component is to predict the early-time spreading dynamics

of plume fluid striking an inclined permeability jump, within porous media having

upper- and lower-layers of comparable thicknesses. The plume fluid, upon striking a

permeability jump, results in a pair of oppositely directed gravity currents propagat-

ing along slope in the up- and downdip directions. To address the flow dynamics along

an inclined permeable boundary, we develop a theoretical model in which we derive

coupled non-linear partial differential equations describing gravity currents propa-

gating along slope and their draining into the lower layer. The model predicts flow

dynamics at both transient- and steady-state conditions. We further validate this

model with similitude laboratory experiments. Experimental images show that the
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interface of the flow front is blurred due to hydrodynamics dispersion, and hence is

not especially sharp. The implications of this observation vis-à-vis theoretical model

assumptions are discussed.

The second research component is to study the effect of impermeable bottom and

sidewall boundaries on the dynamics of the injected fluid. For this, we construct a

two-layered porous medium inside a rectangular box and conduct experiments for var-

ious combinations of the source condition, permeability jump angle and layer depth.

The experiments reveal the formation of two pairs of gravity currents, one in the upper

layer (propagating along the permeability jump), and the second in the lower layer

(propagating along the bottom boundary of the box). The dynamical influence of one

gravity current upon the other, such as the occurrence of runout-override and remo-

bilization from a state of runout, is investigated. At later instants in time, the gravity

current flows are impeded due to the vertical sidewall boundaries which allows us to

distinguish between two qualitatively different filling regimes, i.e. sequential vs. simul-

taneous filling of the upper- and lower-layers. Furthermore, parameter combinations

conducive to one or the other filling regime are also identified.

The third research component regards to the flow pattern inside a more compli-

cated multi-layered porous medium, i.e. consisting of up to five layers. For this we

derive steady analytical solutions for the gravity currents formed along each of the

permeability jump boundaries. The model predicts the outer envelope of the flow

pattern corresponding to steady flow conditions. Finite-element based COMSOL

simulations are also performed for different combinations of layer permeabilities and

also by changing the permeability jump angles. The comparison of outer envelope

with the theory shows good agreement. Also, the impact of adding intermediate lay-

ers of different permeabilities on the maximum span of runout and storage areas are

investigated.
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Chapter 1

Introduction and overview

1.1 Fundamental forces for porous media flow

The two-phase flow in porous media is primarily influenced by a combination of

viscous, gravitational, and capillary forces. The importance of the capillary force

relative to the other two forces, i.e. viscous and gravity, is realised by comparing their

magnitudes. The dimensionless numbers used to quantify these forces are

Capillary number, Ca =
µUd2o
γk

(1.1a)

Bond number, Bo =
∆ρgd2o
γ

(1.1b)

where µ is the absolute dynamic viscosity of the wetting fluid, U is a characteristic

velocity, do is the mean grain diameter or the pore size, γ is the surface tension, k

is the permeability, ∆ρ is the density difference between the two fluids and g is the

acceleration due to gravity. The magnitudes of capillary and Bond numbers leads

to various interfacial effects. When Ca ≪ 1, capillary forces dominate and local

variations in the pore throat size dictate the flow path, whereas, for Ca ≫ 1, viscous

forces dominate the capillary force leading to viscous fingering effects, also termed

as Saffman-Taylor instability (Saffman & Taylor, 1958). Similarly, when Bo ≪ 1,

capillary forces dominate relative to the gravity force, whereas, for Bo ≫ 1, the gravity

dominates and acts as a mechanism to stabilize the viscous instability or capillary

fluctuations at the flow front. For fluids forming a miscible interface, the viscous
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Figure 1.1: (a) Plume, and (b) Gravity current

fingers are dictated largely by mixing, such as by diffusion and/or hydrodynamic

dispersion (Perkins & Johnston, 1963; Perkins et al., 1965).

1.2 Primary flows in a porous medium

When a denser or lighter fluid is injected into a porous medium previously saturated

with ambient fluid, a variety of flow patterns are possible up to and including the two

end members of buoyancy induced or density driven flows, namely, plume vs. gravity

current flow, as shown in figures 1.1 a and b, respectively. In the case of plumes, the

flow occurs parallel to the acceleration due to gravity, whereas the gravity current

flow is primarily horizontal and propagates along an impermeable or semi-permeable

boundary. For a miscible system, be the flow more plume like or gravity current like,

it can be categorized based on two dimensionless numbers, namely

Reynolds number, Re =
Udo
ν

(1.2a)

Péclet number, Pe =
Udo
Dm

(1.2b)

where ν is the kinematic viscosity, Dm is the molecular diffusion coefficient and τ

is the tortuosity constant1. When Re ≲ O(10), viscous forces dominate the inertial

force and the flow is Darcy, whereas for Re > O(10), inertial force remains dominant,

1The equation for tortuosity as a function of porosity, τ = 1−A ln(ϕ), was proposed by Comiti &
Renaud (1989), where A depends on the shape of particles and their mean orientation in the porous
media.
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such flows are categorized as non-Darcy. The Péclet number determines whether the

flows are dominated by diffusion or dispersion. When Pe ≲ O(1) dispersion plays a

subordinate role compared to the diffusion, whereas, for Pe ≫ O(1) dispersion plays

a non-subordinate role.

1.3 Literature survey

1.3.1 Plume

For Darcy flows, as described earlier, the relative importance of dispersion to diffusion

is characterized by the Péclet number, Pe. Using the boundary layer approximation,

the quantitative details of the plume flow were derived for Péclet numbers of different

orders. For diffusion dominant flows characterized by Pe ≲ O(1), Wooding (1963) de-

rived the equation for the plume volume flux considering a rectilinear two-dimensional

geometry, which reads

Volume flux, Q =

(︄
36DmϕF0kΛ

2Z

ν

)︄1/3

(1.3)

Here, ϕ is the porosity, F0 is the source buoyancy flux, k is the permeability and Λ is

the source width normal to this paper. Z points vertically downwards to the virtual

origin.

In a similar spirit and again considering a rectilinear two-dimensional geometry,

Sahu & Flynn (2015) derived the equations for volume flux and mean reduced gravity

by considering Pe ≫ O(1), implying that the flow remains dispersion dominant, and

the relations for plume volume flux and reduced gravity respectively read as

Volume flux, Q =

[︄(︄
16F0kΛ

πν

)︄2

ϕαZ

]︄1/4
(1.4a)

Reduced gravity, g′ =

[︄(︄
πF0ν

16kΛ

)︄2
1

ϕαZ

]︄1/4
(1.4b)

Here, α is the transverse dispersivity.
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1.3.2 Gravity current

1.3.2.1 Flow along an impermeable base

The earliest investigation of gravity current flow in porous media was conducted by

Huppert & Woods (1995) for a two-dimensional rectilinear geometry. These authors

examined from first principles the early-time spreading behaviour of a gravity current

along an impermeable boundary having an arbitrary slope angle, θ. Assuming the

pressure distribution within the gravity current is hydrostatic, Huppert & Woods

(1995) derived a non-linear advection equation describing the time evolution of gravity

current height, h, which reads

ϕ
∂h

∂t
=
kg′

ν

[︄
∂

∂x

(︂
h
∂h

∂x

)︂
cos θ − ∂h

∂x
sin θ

]︄
(1.5)

where g′ = g∆ρ/ρ is the reduced gravity, x is the length measured in the direction of

flow and t is time. In this model, Huppert & Woods (1995) considered the boundary

separating the source fluid and its ambient as sharp and well-defined, compared to

the overall scale of the flow. Later, Lyle et al. (2005) extended the analysis for an

axisymmetric gravity current. In their respective studies, they showed that for a

constant volume influx condition the length of the gravity current varies as t2/3 for a

rectilinear geometry and as t1/2 for an axisymmetric case.

1.3.2.2 Flow along a permeable base

In contrast to an impermeable boundary, making the bottom boundary permeable

introduces leakage or draining. The volume influx to the gravity current is now

balanced between the along slope flow and the draining across the base of the gravity

current. Previously, leakages were modeled as a sink or fissure (Neufeld et al., 2009,

2011; Vella et al., 2011), fracture (Farcas & Woods, 2013), edge drainage (Hesse &

Woods, 2010; Rayward-Smith & Woods, 2011; Zheng et al., 2013) and distributed

leakage (Pritchard et al., 2001; Neufeld & Huppert, 2009; Woods & Farcas, 2009;
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Farcas & Woods, 2009; Yu et al., 2017). In such case, (1.5) modifies to

ϕ
∂h

∂t
=
kg′

ν

[︄
∂

∂x

(︂
h
∂h

∂x

)︂
cos θ − ∂h

∂x
sin θ

]︄
− wdrain (1.6)

where wdrain is draining flux term across the bottom boundary. Although various au-

thors have modeled the draining term based on the type of leakage across the draining

boundary, in the interest of the current study, we limit our focus to distributed leak-

age. Earlier, Pritchard et al. (2001) modeled the draining term considering distributed

leakage along a horizontal permeable boundary (also referred to as the permeability

jump), i.e. when θ = 0◦ where θ is measured with the horizontal. They also considered

the permeability of the draining layer to be very small compared to the host layer,

i.e. k2/k1 ≪ 1 where k1 and k2 are the permeabilities of the host and draining layers,

respectively, and the thickness of the draining layer is considered to be small. Then

the vertical draining flux term was expressed as

wdrain =
k2g

′

ν

(︂h
b

)︂
(1.7)

where b is the thickness of the draining layer. Their results indicate that the gravity

current reaches a steady-state by traveling a finite distance along slope in a finite

time, which they termed as the runout distance. At runout, the influx to the gravity

current matches the basal draining occurring from underneath the gravity current.

Later, Goda & Sato (2011) extend this draining model to a deep draining layer (of

semi-infinite thickness) and derived the equation for draining flux, expressed as

wdrain =
k2g

′

ν

(︂
1 +

h

l

)︂
(1.8)

where l is the time dependent length of the draining fluid. Goda & Sato (2011)

also considered a horizontal permeability jump (θ = 0◦) in their study. Similar to

the prediction made by Pritchard et al. (2001), results of Goda & Sato (2011) also

predicted that the gravity current propagating along slope reaches a runout and

thereby attains a steady-state. In studies conducted by Pritchard et al. (2001) and
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Goda & Sato (2011), they considered no entrainment of ambient fluid into the draining

fluid, and therefore assumed the value of g′ in (1.7) and (1.8) is the same as that

within the gravity current. Later, Sahu & Flynn (2017) through their experiments

investigated the effect of ambient fluid entrainment on the density of the draining

fluid.

Table 1.1 shows the summary of the gravity current analysis performed under

different settings of the bottom boundary.

Table 1.1: Summary of gravity current analysis

Orientation of
bottom bound-
ary

Type Depth of draining
layer

Key citations

Horizontal Impermeable - Huppert & Woods (1995);
Lyle et al. (2005)

Horizontal Permeable Thin Pritchard et al. (2001);
Neufeld et al. (2009); Hesse
& Woods (2010); Farcas &
Woods (2013)

Horizontal Permeable Deep (semi-infinte
thickness)

Goda & Sato (2011)

Horizontal Permeable Deep (intermediate
thickness)

Sahu & Flynn (2017)

Inclined Impermeable - Huppert & Woods (1995);
Vella & Huppert (2006a);
De Loubens & Ramakrish-
nan (2011)

Inclined Permeable Thin Woods & Farcas (2009);
Farcas & Woods (2009)

Inclined Permeable Deep (semi-infinte
thickness)

Bharath et al. (2020) [re-
ported here]

Horizontal /
Inclined

Permeable Deep (intermediate
thickness)

Bharath & Flynn (2021) [re-
ported here]
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1.3.3 Porous media settings

1.3.3.1 Layering in porous media

Buoyancy-driven flow, leading to gravity current(s), within a porous medium of uni-

form permeability has been studied previously by a number of authors (Lyle et al.,

2005; Vella & Huppert, 2006b; Sahu & Neufeld, 2020). However, adding either thin

or thick layers of different permeabilities provides a generic form of large-scale het-

erogeneities, which, in the real geological context typically extend a vertical distance

of 1 to 10m (Cowton et al., 2016). Indeed layers are particularly widespread feature

of sedimentary formations (examples are cited below in section 1.4). Already, we

have described the study by Pritchard et al. (2001) who investigated the dynamical

influence of a thin, low permeability horizontal layer added below the layer through

which the gravity current primarily flows. Since the publication of Pritchard et al.

(2001)’s work numerous studies have been performed by introducing only a thin layer

to create heterogeneity within the porous medium (Woods & Farcas, 2009; Neufeld &

Huppert, 2009; Hewitt et al., 2014; Yu et al., 2017; Hewitt et al., 2020). An alterna-

tive form of layering was envisioned by Hesse & Woods (2010) and Rayward-Smith &

Woods (2011), who analysed the spreading of buoyant fluid rising through a series of

layers. Woods and his colleagues characterized the resulting dynamics in terms of an

effective dispersion, which accounts for spreading owing to flow past the thin-layered

structures or baffles. In contrast to thin layering induced heterogeneity, the effect

of adding layers of deep or intermediate thickness on the spreading dynamics is far

less explored. In the studies carried out to date, Goda & Sato (2011) and Sahu &

Flynn (2017) investigated the gravity current(s) dynamics along a permeability jump

by introducing a thick, low permeability region as a secondary (i.e. draining) layer.

In all these various cases explored so far and depending on the type of heterogeneities

considered, the flow patterns were predicted or observed to be unique in each of the

cases.
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Figure 1.2: Filling box flows: (a) plume and gravity currents, and (b) advection of
first front towards the source.

1.3.3.2 Convection in a confined porous medium

Examples of porous media buoyancy-driven flows, namely that of a plume and gravity

current, have been investigated independently by various authors. However, in real-

world situations both these end members can co-exist. For example, a gravity current

may be fed by a vertically ascending or descending plume during carbon-dioxide

sequestration (discussed below). At later times, the injected fluid propagating along

horizontal or vertical directions reach their dead-end, which impedes their motion,

such as those encountered during the acid-gas injection process (discussed below).

Therefore, it is equally important to consider these flow impediments in our study

and to predict their influence on the flow dynamics of the injected fluid.

In the light of the above details, investigations involving the two end members

of buoyancy-driven flows, have closely followed the analysis within a “filling box”

environment. A “filling box” can be defined as the buoyant convection that arises in a

closed or ventilated control volume where the convection is driven by a localized source

situated on the boundary that produces an ascending or descending plume. Filling

box flows were originally studied in the context of free turbulent plumes by Baines

& Turner (1969), Sahu & Flynn (2015) adopted this methodology to an ambient

consisting of a homogeneous porous medium. They later extended their study to

a two-layered porous medium where the upper layer was alternatively more or less
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permeable than the lower layer (Sahu & Flynn, 2017). However, their investigation

focused only on horizontal permeability jump interface. Figure 1.2 shows filling box

flows for the case of a two-layer rectilinear porous medium where k2/k1 ≪ 1. Filling

box flows primarily consist of three flow components: (i) a negatively-buoyant plume

originating from a discrete source, (ii) gravity currents consisting of discharged plume

fluid that form in the upper and lower layers and move horizontally towards the

sidewalls, and (iii) a first front that moves vertically upwards towards the plume

source. All three flow components were identified in the experimental study by Sahu

& Flynn (2017).

1.4 Applications

The model predictions and laboratory observations summarized in the previous sec-

tions attempt to mimic the occurrence of buoyant convection in several industrial and

environmental scenarios. Some of the notable examples discussed below are during

underground hydrogen storage (UHS), carbon-dioxide sequestration, acid-gas seques-

tration, groundwater contamination and aquifer thermal energy storage.

1.4.1 Underground hydrogen storage

In order to balance the fluctuating energy demand from renewable sources, it be-

comes necessary to develop pragmatic strategies for energy storage, whether storage

timescales are measured in days, weeks or months. One promising solution is to use

electrolysis to convert electricity into hydrogen (H2), which is later injected into un-

derground formations, referred to as underground hydrogen storage (UHS). Hydrogen

can be stored using either salt caverns, depleted hydrocarbon reservoir and/or deep

saline aquifers (European Commission, 2015). The key parameters to consider in the

context of UHS are the volume of cushion gas (typically carbon-dioxide or methane),

the volume of working gas (hydrogen), injection rates and withdrawal rates. The

cushion gas refers to the gas permanently stored in the underground structure dur-
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ing the lifetime of the site. Its main function is to maintain the conditions required

for adequate storage operation, such as pressure range, flow rate and avoidance of

withdrawal contamination. In this regard, the interface formed between the cushion

gas and hydrogen is free from surface-tension, i.e. Ca, Bo → ∞, and therefore, the

phenomenon of viscous fingering is dominated by hydrodynamic dispersion (Paterson,

1983). During the storage operation, hydrogen is injected into a cushion gas ambient

contained within anticline layers of sandstone which are highly porous and perme-

able. The sandstone layers are separated by tight clay layers, as indicated in figure 3

of Feldmann et al. (2016). The low permeability clay layers, and their associated

high interfacial forces, may in theory prevent upward migration of hydrogen. How-

ever, the buoyancy forces of hydrogen is approximately three times greater than those

associated with carbon dioxide, another gas that is often injected into the subsurface

(Heinemann et al., 2021). Therefore, even hydrogen columns of relatively moderate

height could lead to very high buoyancy force which in turn can open pathways for

migration through the clay layers.

1.4.2 Geological sequestration of carbon-dioxide

Carbon-dioxide (CO2) is a greenhouse gas which gets released from a variety of phys-

ical and chemical processes. It is identified as the primary contributor to global

warming. To mitigate CO2 emission, CO2 is captured from the flue gas emitted by

power plants and factories, compressed into supercritical fluid (sc-CO2) and injected

underground into deep saline formations (aquifers) or oil reservoirs, for long-time

storage (Metz et al., 2005; Lackner, 2003). This method is well known as Carbon

Capture and Storage (CCS). The storage facilities selected are typically one to three

kilometers deep, ten to five hundred meters thick, and hundreds of kilometers long.

They usually consist of a layer of cemented sediments covered by a low-permeability

layer, called the caprock, that retards the upward flow of CO2 back to the surface,

as shown in the figure 1.3 a. As depicted in the same figure, to reduce the risk of
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Figure 1.3: (a)The gravity currents are fed by vertically ascending plumes during ge-
ological storage of carbon-dioxide (image is inspired from Huppert & Neufeld (2014)),
and (b) Shows the dip cross-section in western Canada where acid-gas injection takes
place along the various injection points (image is inspired from Bachu et al. (2008a)).
The red circles indicate the regions where the aquifers are laterally confined.

leakage from the storage facilities, the injection source is situated at the bottom of

the storage horizon. This is strategy is termed as “Inject-low-and-let-rise” (Bryant

et al., 2008). In such a case, the gravity current formed beneath the low-permeability

barriers is fed by a vertically rising plume. Furthermore, the total volume of sc-CO2

that can be injected into the storage space is dependent on the storage capacity of
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the aquifer/reservoir. The storage capacity as defined by Szulczewski (2013), is the

maximum amount of CO2 that could be safely injected and securely stored under ge-

ological constraints, such as the aquifer/reservoir size and the integrity of its caprock.

The role of CCS to mitigate global warming remains unclear partly due to the fact

that there exists uncertainty in predicting the storage capacity. This uncertainty is

again attributed to difficulty and total cost to map out geological structures (National

Energy Technology Laboratory, 2010).

1.4.3 Geological sequestration of acid-gas

Acid-gas, consisting primarily of hydrogen-sulphide (H2S) and carbon-dioxide (CO2),

are generated as a by-product of the gas sweetening process used to bring producer

gases and solution gases up to market specifications for sales and transport. As an

alternative to conventional methods for disposing of acid-gas, such as flaring (Emam,

2015) or the Claus process (Kohl & Nielsen, 1997), both of which carry environ-

mental concerns, geological sequestration is being adopted. The potential geological

injection sites include depleted hydrocarbon reservoirs and deep saline aquifers. For

example, the injection takes places within the land-locked regions located on sedi-

mentary basins, such the Beaverhill Lake - Mannville sedimentary succession in the

Edmonton area (Bachu et al., 2008a). As a matter of fact, the world’s first acid-gas

injection facility was started in Western Canada in 1989 on the outskirts of Edmonton,

Alberta (Bachu & Gunter, 2004). Although the main purpose of acid-gas injection

operations is to dispose of H2S, significant fractions of CO2 are being injected at the

same time, because it is costly to separate the two gases (Bachu & Gunter, 2004).

Therefore, acid-gas injection represents an analogue to the geo-storage of sc-CO2.

When the acid-gas mixture is injected into an aquifer, the degree to which it forms

a plume and migrates from the injection point depends on various factors, including

pressure and temperature, solubility, interplay between driving forces like buoyancy

and aquifer hydrodynamics, and aquifer heterogeneity, which controls gravity over-
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ride and viscous fingering. In the instance when the plume fluid strikes an inclined

bedding plane having a dip angle, as shown in figure 1.3 b, buoyancy will distort the

plume, which will advance faster updip and slower downdip. As a result, the plume

will become elongated asymmetrically along up- and downdip sides. Furthermore, in

the presence of lateral and vertical confinements (e.g. see the aquifers circled in red

in figure 1.3 b), the trajectory of the along slope plume fluid is altered, which has a

consequence of filling up the aquifer space. Predicting the filling time within aquifers

or reservoirs having a complicated geometry remains a challenge, partly due to the

lack of numerical models (Bachu et al., 2008b).

1.4.4 DNAPL leakages contaminating groundwater

Dense non-aqueous-phase liquids (DNAPL), such as mercury, coal tar and creosote,

are denser than water, and therefore, termed as “sinkers” (Fitts, 2013). DNAPL

migrates through the granular aquifer and forms a pool over the bedrock surface.

Later, they migrate further downward through the fractures in the rock and mix

with water beneath, rendering this previously potable water unfit for our use. This

was evident when large quantities of organic chemical wastes were buried in the site

located in Niagara Falls, New York, between 1953 and 1975 (Cohen & Mercer, 1993).

The wastes were observed to migrate to a depth of at least 30m into the porous

bed and spread horizontal distance of approximately 450m from the source. Since

DNAPLs are generally immiscible in water (Huling & Weaver, 1991), their downward

migration through the pore structure is a function of pore size. In general, for high

capillary numbers, DNAPL saturation also increases and therefore the large pores fill

before their smaller counterparts. Further to the capillarity barrier, the bedrock also

exhibits hydraulic conductivity contrasts in the form of layers of different permeability,

and the permeability jumps across each layers dictates the distance that the liquid

propagates along slope (Huling & Weaver, 1991; Steelman et al., 2020).
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1.4.5 Aquifer thermal energy storage

For larger scale seasonal underground thermal energy storage, Aquifer Thermal En-

ergy Storage (ATES) offers the highest storage capacity (Lee, 2013). Deep and con-

fined aquifers are used as storage facilities, such as those deployed in the Pacific

Agricultural Research Center (PARC), situated in Agassiz, B.C. in Canada (Bridger

& Allen, 2010). In general, a simple storage system consists of two sperate aquifers

which are separated by an aquitard (very low permeability barrier). During sum-

mer months, cool groundwater from one aquifer is extracted and supplied to cool the

building, and later the resulting high temperature water is pumped back into the

second aquifer. This flow is reversed during the winter months to heat the building

(Ibrahim & Rosen, 2010). The geothermal heating system used in PARC contains

four such aquifers, which are located 60m deep and spaced 90m apart. The average

storage temperature varied in the range of 2.5◦C to 18.4◦C. The thermal recovery

efficiency of such systems depends on the properties of the fluid and solid phases. In

addition, each of the aquifers can have heterogeneity that can have impact of the rate

of filling and time taken to fill the complete volume.

1.5 Knowledge gaps

The nature of porous media in most of the geological formations is normally unknown

and monitoring the flow is very expensive. Therefore, scientists and engineers rely

heavily on mathematical and statistical methods to understand and predicts the flow

behaviour inside these formations. Despite the advances made by various researchers,

some of which are summarized in section 1.3, there still remains tremendous potential

for improving our ability to predict the patterns in buoyancy-driven flows in relation to

various applications described in section 1.4. In particular, as compared to numerous

studies carried out in a homogeneous porous medium, the fluid dynamics inside a

heterogeneous porous medium is far less explored. Therefore, we aim to investigate
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some of the non-trivial flow dynamics (both short- and long-term) that can occur in a

porous media having layered heterogeneities. In this regard we identify the following

knowledge gaps:

i. Most previous studies related to gravity current flows (Huppert & Woods, 1995;

Pritchard et al., 2001; Lyle et al., 2005; Goda & Sato, 2011; Sahu & Neufeld,

2020) were analysed by considering the volume source located at the bottom

boundary. However, in practical applications and as depicted in figure 1.3 a,

the injection point is at a certain vertical distance from the boundary. In other

words, the source is not always located at the boundary, and in such cases,

the gravity currents are fed by a vertically ascending or descending plumes.

Therefore, to predict the flow behaviour within a given porous medium accu-

rately, it is necessary to consider the spatial evolution of the plume fluid and

the subsequent formation, from discharged plume fluid, of along-dip gravity

currents. This is because the plume during its ascent or descent experience

entrainment from its ambient fluid due to which the volume flux and density

within the plume fluid changes with vertical distance, as described by the plume

equations in section 1.3.1, which in turn changes the volume and density influx

to the gravity current at the inlet. This consequently affects the size and the

rate at which the gravity current propagates along-dip and also its steady-state

solutions, such as the runout length.

ii. The equation for the gravity current is derived based on the fundamental as-

sumption that a sharp interface exists between the source and ambient. How-

ever, there exist numerous cases in real-world flows where the interface is strongly

influenced by hydrodynamic dispersion, both in the transverse and longitudinal

directions, which tend to make the theory predictions to become less versatile

and less robust. Therefore, further investigation is needed to determine the

source conditions and porous media settings under which dispersion plays a
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non-subordinate role.

iii. In geological settings, the orientation of the layers of sediment are largely de-

cided by the topography of the landscape and may be inclined at an angle, as

seen in figure 1.3 b. In the limiting case studies, Goda & Sato (2011) and Sahu

& Flynn (2017) considered the orientation of the permeability jump separat-

ing the two layers as horizontal. This preserves the flow symmetry on the left

and right sides of the source. However, having an inclined permeability jump

boundary breaks this symmetry and the associated non-trivial dynamics has

not yet been explored.

iv. In the filling box experiments conducted by Sahu & Flynn (2017), the authors

considered the effect of a horizontal permeability jump on the dynamics of the

descending plume. The experimental images in figure 5 of their work shows

that the draining fluid upon striking the bottom impermeable boundary give

rise to the formation of a pair of secondary gravity currents in the lower layer.

However, no further detailed investigation was made to understand the dynamic

influence of these secondary gravity currents on the primary gravity currents

in the upper layer. Furthermore, each of these gravity currents upon reaching

the sidewall, starts to fill the two layers independently. The details of the

filling box dynamics, such as the impact of source conditions and porous media

configurations on the sequence of filling of the layers, which may in turn, impact

the filling box time, is left unexplored.

v. In the context of multi-layered porous media configuration, in real-world cases

there exists numerous settings, wherein, distributed draining occurs across sed-

imentary layers. To the best of our knowledge, in the existing literature avail-

able to date, there has been no analytical study made to predict the pattern

of buoyancy-driven flow in a porous media having multi-layers with different

permeability jumps.
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1.6 Thesis scope and outline

In this Thesis, we use theory, CFD simulations and experiments to clarify the knowl-

edge gaps identified in section 1.5. The objectives of this thesis are threefold: (i) to

predict the early-time dynamics of the gravity currents, travelling up- and downdip,

along an inclined permeability jump boundary, (ii) to investigate the late-time dynam-

ics of the plume fluid inside a two-layered porous media confined within impermeable

boundaries, and (iii) to predict the flow patterns in a multi-layered porous media

having layers of different permeabilities. In the spirit of addressing these objectives,

each of these goals is framed as a separate chapter, i.e. Chapter 2, Chapter 3 and

Chapter 4, which are further outlined below.

In Chapter 2, we derive an integrated theoretical model, by considering the volume

influx to the gravity current(s) fed from a vertically descending plume, and predict

both transient- and steady-state responses as the gravity current(s) propagate along

an inclined permeability jump boundary. In the spirit of corroborating theory with

experiments, we perform laboratory experiments and compare the flow patterns. In

the process, we also emphasize the importance of flow dispersions, that are being

neglected as a results of making sharp interface assumption in our theoretical model,

as-well-as, by many other authors (Huppert & Woods, 1995; Pritchard et al., 2001;

Lyle et al., 2005; Goda & Sato, 2011). We also quantify the dispersion as a function of

source conditions and porous media configuration from our experiments. This chapter

addresses the open questions raised in (i) and (ii) of section 1.5.

In Chapter 3, by making use of the “filling box” model, a comprehensive study is

performed on the long-term fate of injecting the source fluid in a two-layered porous

media confined between the bottom and sidewall boundaries. The key aspects such

as (i) the influence of intermediate depth of the lower layer on the “primary” gravity

current in the upper layer, (ii) priority of filling between the upper and lower layers,

and the filling box time(s) as a function of source conditions and permeability jump
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angle, and (iii) deflection in plume trajectory caused due to asymmetric filling of

the box on either side of the source position (which has not been observed before

in context to porous media flows), are the highlights of this chapter. This chapter

addresses (iii) of section 1.5.

We extend our study beyond two-layers and predict the flow patterns formed in

a multi-layered porous media configuration in Chapter 4. For this we seek steady-

state form of equations from the theory derived in Chapter 2, and later extend it to

multiple layers. Further to compare theory predictions, we perform simulation using

finite-element based multiphysics simulator COMSOL, and later compare the results

obtained at steady-state. Through this study, we investigate the impact of adding

multiple layers of intermediate permeabilities between the upper and lower layers on

the extent of lateral spreading of the source fluid and the storage area. The flow

patterns observed in multi-layered porous media form a key observation of this study

and provides answers to (iv) of section 1.5.

As a final chapter, key conclusion (future topics) obtained from (related to) the

present analyses are summarized in Chapter 5.

Several parts of this thesis have published or presented in conferences/symposia,

as summarized below in tables 1.2 and 1.3, respectively.
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Table 1.2: Scientific contribution arising from the present thesis.

Chapter Journals Status Co-author(s)

2 J. Fluid Mech. Published M. R. Flynn, C. K. Sahu

3 J. Fluid Mech. Published M. R. Flynn

Table 1.3: List of scientific meetings where parts of this thesis work have been pre-
sented by the author. Abbreviations are as follows: APS - DFD: American Physical
Society - Division of Fluid Dynamics, IGR: Institute of Geophysical Research, CAWQ:
Canadian Association on Water Quality. Moreover, Interpore is an annual conference
organized by the International Society of Porous Media.

Chapter(s) Conference/Symposium Location Month and Year

2 APS - DFD Atlanta, USA Nov. 2018

2 APS - DFD Seattle, USA Nov. 2019

2, 3 APS - DFD Chicago,USA
(Virtual event)

Nov. 2020

4 APS - DFD Phoenix,USA Nov. 2021

2 12th Interpore (Virtual event) Aug - Sept. 2020

3 13th Interpore (Virtual event) May - June. 2020

2 11th Western CAWQ
Symposia

Univ. ofAlberta May. 2019

2,3,4 IGR Symposia Univ. ofAlberta Oct. 2017,Oct. 2018,
April &Nov. 2019,
Nov. 2020,April. 2021
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Chapter 2

Isolated buoyant convection in a
two-layered porous medium with
an inclined permeability jump1

2.1 Abstract

The migration of dense fluid through a saturated, layered porous medium leads to

two end-member examples of buoyancy-driven flow, namely plumes and gravity cur-

rents. Herein we develop an integrated theoretical model to study this scenario for

the special case where the boundary between the permeable layers, in a two-layered

porous medium, is inclined at an angle to the horizontal. Far from being a routine

detail, the inclination of the permeability jump leads to a symmetry-breaking: up-

and downdip flows have different volume fluxes and travel (possibly substantially) dif-

ferent distances, before becoming arrested at the point where plume inflow balances

basal draining. Our model predicts these associated runout lengths and the tran-

sient approach thereto. Predictions are validated with measurements from similitude

laboratory experiments, in which the upper and lower layers are comprised of glass

beads of different diameters. Experiments are conducted for a range of inclination

angles and also a range of plume source conditions. The experimental data suggest

a complicated structure for the gravity currents, whose boundaries are blurred by

1Bharath, K. S., Sahu, C. K. & Flynn, M. R. 2020 Isolated buoyant convection in a two-layered
porous medium with an inclined permeability jump. J. Fluid Mech. 902, 1–31.
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dispersion in a manner not captured by our (sharp interface) model. This observa-

tion has particular significance in predicting the lateral spread of contaminated fluid

through real geological formations, particularly in instances where e.g. groundwater

contamination is of particular concern.

2.2 Introduction

Geological strata represent a valuable resource, not only in terms of the mineral

wealth that they may contain, but also in terms of their ability to (seasonally) store

internal energy (MacKay, 2009) and to (permanently) store anthropogenic pollu-

tants. In this latter capacity, much attention has been paid to the sequestration of

supercritical carbon-dioxide (CO2) in various locales e.g. China, Canada, Norway,

Australia, the United States and the United Kingdom (Tang et al., 2014). Less thor-

oughly studied in the academic literature, though still important, is the disposal of

acid-gas in depleted oil and gas reservoirs or deep saline aquifers. Acid-gas injection

often occurs in land-locked regions located on sedimentary basins, such as Labarge,

Wyoming, USA (Parker et al., 2011) and in the Alberta Basin in Western Canada

(Bachu et al., 2008a). In either case, acid-gas injection operations are often thought

to represent a small-scale analogue of CO2 sequestration. To this end, and for both

acid-gas and CO2 sequestration, concerns persist related to the long-term confinement

of fluid injected deep underground. Such concerns are exacerbated by the difficulty

and expense of monitoring injectate migration and the uncertainties inherent with

forward-simulating numerical models (Bachu et al., 2008b). Thus, there is an on-

going need for comparatively simple analytical models that provide qualitative and

quantitative insights into the nature of buoyancy-driven flow in porous media. When

a light or dense fluid is injected into a porous medium, its subsequent migration de-

pends on various factors, such as pressure and temperature, solubility, the interplay

between hydrodynamic and buoyancy forces and the heterogeneity of the medium.

When, as is typical, density differences arise, the injectate may migrate in the form

21



Figure 2.1: [Color] Schematic of discharged plume fluid propagating as a pair of
leaky gravity currents along an inclined permeability jump. The colorbar on the
right indicates the variation in density as the source fluid migrates within the porous
medium.

of a vertical plume or in the form of horizontal or sloping gravity current(s). Indeed,

one may feed the other as when a plume strikes a impermeable boundary (Sahu &

Flynn, 2015) or permeability jump (Sahu & Flynn, 2017) or when a gravity current

drains from the edge of an impermeable lens (Hesse & Woods, 2010, and see also

figures 10.10 and 10.11 of Woods (2014)).

Gravity currents in porous media have been studied widely in the past decades both

experimentally and theoretically. One of the earliest investigations was conducted by

Huppert & Woods (1995), who examined the short- and long-term spreading behavior

of gravity currents along both horizontal and inclined impermeable boundaries. Since

the publication of this pioneering work, numerous follow-up studies have been con-

ducted to explore the effect of e.g. a time-varying source (Vella & Huppert, 2006a),

density stratification within the gravity current (Pegler et al., 2016), and vertical

confinement (Nordbotten & Celia, 2006; Zheng et al., 2015). Also, and although it

is theoretically and experimentally expedient to assume the boundaries confining the

gravity current to be impermeable, there are numerous practical situations wherein

leakage may occur through large faults or high-permeability zones in caprock (Fitts &

Peters, 2013; Espinoza & Santamarina, 2017); in such cases drainage must be consid-
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ered. To this end, studies have focused on the case of an isolated (Vella et al., 2011)

vs. a distributed sink. In the latter case, Pritchard et al. (2001), Neufeld & Huppert

(2009) and Farcas & Woods (2009) studied the flow of a gravity current over a thin

permeable layer. The extension to the thick lower layer case has been explored by

Goda & Sato (2011) and Sahu & Flynn (2017) among others. Whatever the lower

layer thickness, the draining flow from the underside of the gravity current has been

modeled by considering the flow to be driven by the hydrostatic head of the overlying

gravity current (Acton et al., 2001; Pritchard et al., 2001; Goda & Sato, 2011). In case

of a thick lower layer, the source fluid is pulled both along and across the interface

between the two layers, which we call the permeability jump, and the gravity current

ultimately reaches a terminal or runout length. As suggested by the name, the runout

length is the horizontal distance at which the volume of fluid supplied to the gravity

current is just balanced by that draining from underneath. Whereas the case of a

horizontal permeability jump has been studied by Goda & Sato (2011) and Sahu &

Flynn (2017), there are numerous geological examples where the permeability jump

makes a non-trivial angle to the horizontal. These examples include the Wabamun

groups (Bachu et al., 2008b) in Western Canada, which are used as repositories for

acid-gas, the Entrada and Weber formations in the United States Rocky Mountain

region (McPherson & Matthews, 2013) and China’s Shiqianfeng group in the Ordos

Basin (Jing et al., 2019) all of which are used as repositories for supercritical CO2.

For the examples just cited, the regional dip angles vary from as little as 0.4◦ to as

much as 20◦.

In light of the above examples, it is surprising that more attention has not been

paid to the (asymmetric) problem of gravity current propagation along a sloping,

permeable boundary. Adding to the flow complexity is the possibility that the up-

and downdip gravity currents are fed by a plume rather than by an isolated source

located along the permeability jump itself. A schematic of this flow is illustrated in

figure 2.1. Here, and consistent with the laboratory experiments to be described later,
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we consider a source of dense fluid located significantly above the permeability jump

that leads to the formation of a descending plume in the upper layer. On the other

hand, such details of orientation (uprising or downmoving) are irrelevant provided

that density differences are modest so that the flow is Boussinesq. Note also from

figure 2.1 that the plume and gravity currents feed back upon each other, and the

composite problem is therefore more nuanced than either constituent part.

Addressing the above described open problem is the primary objective of the

present study. Precise goals include (i) characterizing the relative up- vs. downdip flow

as a function of θ, the permeability jump angle, and, (ii) resolving the time-dependent

advance of the up- and downdip gravity currents until the respective runout lengths

are reached. As part of the analysis, key differences with the horizontal permeability

jump case will be highlighted. Complementing the above analysis, our study also

includes similitude laboratory experiments. Although their ostensible purpose is to

provide data to corroborate the theoretical model, we shall see that the experimental

images reveal behaviour that highlights the limitations of considering a sharp interface

in the gravity current model.

The rest of the manuscript is organized as follows. In section 2.3, we derive a the-

oretical model for the flow in question and discuss some of the key model predictions

in section 2.4. section 2.5 describes the laboratory experiments and the techniques

used to analyze experimental images along with a qualitative comparison with the

theory. Quantitative comparisons are reserved for section 2.6. section 2.7 presents an

overarching summary in which ideas for future study are briefly outlined.

2.3 Theoretical modeling

2.3.1 Problem description

To model the flow described in figure 2.1, we consider a two-layer porous medium usual

notations as illustrated schematically in figure 2.2. The permeability and porosity in
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Figure 2.2: Definition schematic showing the propagation of discharged plume fluid
in the up- and downdip directions along the inclined permeability jump. Draining
into the lower layer is also indicated.

the upper layer are, respectively, k1 and ϕ1, while the corresponding values in the lower

layer are, respectively, k2 and ϕ2. The permeability jump makes a constant angle θ

with the horizontal. The natural coordinate system in 2D space is represented by

(X,Z ), where the vertical Z -axis is aligned anti-parallel to gravitational acceleration

g. For reference, note that the coordinate system (x,z ) associated with the along-

and cross-jump directions is obtained from (X,Z ) by a clockwise rotation of θ about

the Y -axis, Y being the direction normal to the page. Coordinate rotation can be

expressed mathematically using a transformation matrix, i.e.⎡⎣x
z

⎤⎦ =

⎡⎣ cos θ sin θ

−sin θ cos θ

⎤⎦⎡⎣X
Z

⎤⎦ (2.1)

We position the origin of both coordinate systems on the permeability jump, directly

below the dense line source, which is itself is positioned at (X = 0, Z = H) – see

figure 2.2.

Our theoretical model is predicated on the following simplifying assumptions; (i)

Although the upper and lower layers are assumed to support different permeabilities,

the porosities are assumed equal, i.e. ϕ1 = ϕ2 ≡ ϕ. (ii) The upper and lower layers are

assumed to be very deep in vertical extent (Goda & Sato, 2011); the consequences of
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assuming otherwise will be briefly highlighted in section 2.5. (iii) Initially, the entire

porous medium is assumed to be uniformly saturated with ambient fluid of density ρo.

(iv) The source and ambient fluids have equal dynamic viscosities and are assumed

to be fully miscible so that effects due to capillarity can be ignored. (v) When the

plume strikes the permeability jump at x = 0, all of its fluid is then discharged in the

form of flows propagating up- and down-dip; this assumption is defensible provided

k2/k1 ≪ 1 – see e.g. figure 3 of Sahu & Flynn (2017). (vi) The so-produced up- and

downdip gravity currents remain long and thin. (vii) Consistent with Bear (1972);

Woods & Mason (2000); Pritchard et al. (2001); De Loubens & Ramakrishnan (2011),

gravity current fluid is at all times separated from overlying ambient fluid by a sharp

interface. (viii) The density difference between the source fluid and the ambient fluid

is moderate and the flow remains Boussinesq everywhere in the domain. (ix) Spatial

variations in the density within the up- and downdip gravity currents and within

the contaminated fluid consisting of discharged plume fluid that has drained into the

lower layer are modest and can be ignored to leading order.

The plume line source discharges fluid of density ρs > ρo at a constant volume

flux per unit width, qs. The source buoyancy flux per unit source width is Fs = qsg
′
s,

where g′s = g(ρs − ρo)/ρo ≪ g is the source reduced gravity. As the dense fluid falls

downwards, entrainment occurs as a result of which the volume flux of the resulting

plume increases with the vertical distance from the source. Using a boundary layer

approximation, Wooding (1963) derived an expression to predict this variation in the

limit of small Péclet number, i.e. Pe = Udoτ/Dm ≪ O(1), where U is a characteristic

velocity, do is the mean grain diameter, Dm is the molecular diffusivity. Further, τ > 1

is the (hydraulic) tortuosity, which is defined as the square of the hydraulic flow path

length to the corresponding straight-line length (Carman, 1937) or as the product

of porosity and a formation factor (Clennell, 1997; Ghanbarian et al., 2013)2. Later,

2The equation for tortuosity as a function of porosity, τ = 1−A ln(ϕ), was proposed by Comiti &
Renaud (1989), where A depends on the shape of particles and their mean orientation in the porous
medium. For randomly packed spheres with ϕ = 0.35, A has a value of 0.49 (Mauret & Renaud,
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Sahu & Flynn (2015) derived a similar relation for Pe ≫ O(1) and also proposed a

relation for the variation of the plume reduced gravity with Z. Herein, we model the

flow assuming Pe ≫ O(1) – see section 2.3.4.

When the plume strikes the permeability jump, discharged plume fluid is divided

into equal (θ = 0°) or unequal (θ ̸= 0°) flows to the right and left. The discharged

plume fluid propagates as a pair of leaky gravity currents under a balance of buoy-

ancy and viscosity with simultaneous draining into the lower layer. The pressure is

continuous along z = h(x, t) where h denotes the gravity current height, measured

perpendicular to the permeability jump – see figure 2.2. Because of the continual

addition of fluid from above, h steadily increases with time, t. Consequently, and

because the density, ρp, and plume volume flux per unit width, qp, vary with the

vertical coordinate due to entrainment, the fluid feeding the gravity current has a

density that slowly increases with time and a volume flux that slowly decreases with

time. The influx density is denoted by ρp(h0) with a corresponding volume flux per

unit width denoted by qp(h0) where h0 ≡ h(x = 0, t) ≡ h0(t) is the time-dependent

gravity current height measured directly below the plume source. The volume influx

qp(h0) is obviously the same qc. In a similar spirit, and neglecting spatial variations of

the gravity current density, we have that ρc̄ = ρp(h0) where ρo < ρc̄ < ρs. Although

the spatially-uniform approximation is clearly a theoretical simplification relative to

the real flow, we expect internal stratification effects to be relatively minor provided

H is not small. With this assumption, the average density difference between the

up- and downdip gravity currents and the ambient fluid is ∆ρc̄ = ρc̄ − ρo and the

corresponding reduced gravity is g′c
¯ = g(∆ρc̄/ρo).

Below the permeability jump, there is a draining of discharged plume fluid into the

lower layer. The draining flow displaces less dense ambient fluid thereby creating an

unstable interface leading to Rayleigh–Taylor type fingering (Saffman & Taylor, 1958;

Homsy, 1987) – see figure 2.1. The occurrence of similar fingering phenomena has been

1997), and the tortuosity according to the equation can be estimated to be 1.51.
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observed previously for gravity currents propagating along a horizontal permeability

jump (Sahu & Flynn, 2017) or along the underside of a sloping, impermeable boundary

(MacMinn & Juanes, 2013). A consequence of the fingers is that some mixing of

draining discharged plume fluid and ambient fluid must occur. To distinguish the less

dense discharged plume fluid in the lower layer from that more dense discharged plume

fluid in the upper layer, we shall, in the lower layer, make reference to contaminated

fluid, which in figure 2.2 is characterized by a depth l. By contrast, when we refer to

discharged plume fluid, it should hereafter be understood that we refer specifically to

the upper layer.

As a further consequence of the mixing described above, we cannot, strictly speak-

ing, assume a sharp interface in the lower layer c.f. figure 2.1. Nonetheless, and for

theoretical expediency, we assume a spatially-uniform mixing process in the lower

layer and thereby define an average interface location for the contaminated fluid

relative to the ambient – see figure 2.2. The average density of the contaminated

fluid is ρd̄ < ρc̄ and the corresponding density difference with the ambient fluid is

∆ρd̄ = ρd̄ − ρo. Thus the mean reduced gravity of the draining fluid is expressed as

g′d
¯ = g(∆ρd̄/ρo) < g′c

¯ . Determination of ρd̄ and g′d
¯ will be discussed below.

2.3.2 Gravity currents

Consider, as in figure 2.2, a two-dimensional flow of the gravity currents propagating

along the permeability jump in the upper layer along the up- and downdip directions.

Let the Darcy velocity of the gravity currents be u c ≡ (uc,wc), with components uc

and wc in the along and cross jump directions, respectively. As noted above, the

gravity currents are assumed long and thin (small aspect ratio, ε = height/length

≪ 1). As a consequence, and consistent with the Dupuit approximation3(see Bear,

3The Dupuit assumption is similar to the shallow water assumption in that both suppose the
following: (i) small aspect ratio and hence the pressure is hydrostatic, (ii) Negligible vertical com-
ponent of the flow. We retain the terminology “Dupuit approximation” because this is consistent
with the existing groundwater flow literature (Bear, 1972; Cushman et al., 2016).
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1972, and appendix A.3) wc can be considered small compared to uc and the cross

layer pressure gradient within each gravity current can be considered approximately

hydrostatic (Huppert & Woods, 1995). Considering the along jump flows in a rotated

coordinate system for θ > 0°, we define the hydrostatic pressure in the cross flow

direction as

Pc(x, z, t) = pc(x, t)− ρc̄gz cos θ (2.2)

Here, pc(x, t) is given by

pc(x, t) = Po + (ρc̄ −∆ρc̄)gx sin θ +∆ρc̄gh cos θ (2.3)

where Po is the pressure measured at the origin. Using Darcy’s law, it can be shown

that the along jump flow velocities with the up- and downdip gravity currents are

uc = −k1∆ρc̄g
µ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂h

∂x
cos θ + sin θ, [Updip, −xNu < x < 0]

∂h

∂x
cos θ − sin θ, [Downdip, 0 < x < xNd

]

(2.4)

where µ is dynamic viscosity and xNu and xNd
are the nose locations in the up- and

downdip directions, respectively – see figure 2.2. The velocities prescribed by (2.4)

apply for z < h. Because the upper layer is assumed semi-infinite, the velocity within

the ambient is considered negligible (c.f. De Loubens & Ramakrishnan (2011)). To

derive an evolution equation for h, we take the depth-average of the mass conservation

equation, similar to (2.6) of Huppert & Woods (1995), and consider mass loss due

to draining from the gravity current undersides. Upon substituting (2.4) into the

resulting depth-averaged equation, we obtain

ϕ
∂h

∂t
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k1g

′
c
¯

ν

∂

∂x

(︂
h
∂h

∂x
cos θ + h sin θ

)︂
+ wdrain, [Updip, −xNu < x < 0]

k1g
′
c
¯

ν

∂

∂x

(︂
h
∂h

∂x
cos θ − h sin θ

)︂
+ wdrain, [Downdip, 0 < x < xNd

]

(2.5)

where ν = µ/ρo denotes the kinematic viscosity and wdrain is the draining velocity, an

expression for which is provided in the following subsection.
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2.3.3 Draining flow in the lower layer

Here, we evaluate the time evolution of the average position of the interface between

the contaminated and the ambient fluids in the lower layer. The Darcy velocity of

the contaminated fluid in the lower layer is ud ≡ (ud,wd), having components ud and

wd in the along and cross jump directions, respectively. For θ = 0°, the along jump

velocity in the lower layer ud is considered by Acton et al. (2001) to depend only on

the horizontal gradient of the hydrostatic pressure exerted by the gravity current, i.e.

∂h/∂x. Meanwhile, the cross-jump component of velocity, wd, depends not on ∂h/∂x

but rather on h. Because ∂h/∂x can be shown to be both approximately constant

and small compared to unity, |ud| ≪
⃓⃓
wd

⃓⃓
. Consequently, the influence of ud on the

draining velocity has typically been ignored in previous works. However, for inclined

permeability jumps (θ ̸= 0°), the along jump velocities may be significant because

they include gravitational acceleration projected into the along jump direction. Using

Darcy’s law, the along jump velocities just below the jump boundary are given by

ud = −k2∆ρd̄g
µ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂h

∂x
cos θ + sin θ, [Updip, −xNu < x < 0]

∂h

∂x
cos θ − sin θ, [Downdip, 0 < x < xNd

]

(2.6)

Meanwhile, the cross jump component is given by

wd = −k2∆ρd̄g
µ

(︂
1 +

h

l′

)︂
cos θ (2.7)

where l′ is the depth of the contaminated fluid as measured below and perpendicular

to the permeability jump – see figure 2.2. In contrast to the case of a horizontal

permeability jump, |ud| ≈
⃓⃓
wd

⃓⃓
tan θ, so that |ud| can be neglected only for relatively

modest θ. For larger θ, ud becomes significant and needs to be considered when

modelling the draining flow. In such cases, the net draining flow velocity wdrain is

influenced by both the along jump velocity and the hydrostatic head in the cross-

jump direction. To evaluate wdrain, we take the resultant of these two velocities, i.e.√︁
u2d + w2

d. Consistent with figure 2.2, it can be shown that for draining lengths
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significantly greater than the gravity current height, the direction of wdrain remains

vertical and its length is given as l = l′/cos θ. Taking these factors into consideration,

the draining velocity can be written as

wdrain = −k2∆ρd̄g
µ

(︂
1 +

h

l
cos θ

)︂
(2.8)

In the limiting case when θ = 0°, (2.8) reverts back to the expression used in previous

works (Goda & Sato, 2011; Sahu & Flynn, 2017).

At the contaminated-ambient fluid interface, the volume flow rate per unit width,

qentr, of the ambient fluid that mixes into the draining gravity current fluid can be

expressed in terms of wdrain as

qentr =
∆ρc̄ −∆ρd̄

∆ρd̄

∫︂ xNd

−xNu

wdraindx (2.9)

see Appendix A.1. The entrainment prescribed by qentr is important because it, along

with wdrain, dictates the time rate of increase of the draining fluid length, l. Following

the derivation of Appendix A.1 and incorporating (2.8), it can ultimately be shown

that l satisfies the following evolution equation:

ϕ
∂l

∂t
= −g

′
c
¯

g′d
¯ wdrain =

k1g
′
c
¯

ν

k2
k1

(︂
1 +

h

l
cos θ

)︂
(2.10)

As with (2.5), (2.10) is valid in the range −xNu < x < xNd
.

2.3.4 Gravity currents and draining flows fed by a descending
plume

Recall that the density of the fluid supplied to the gravity currents slowly increases

with time as a result of the gradual increase of h. Wishing to account for this fact

in the governing equations (2.5) and (2.10) we adopt (2.25) of Sahu & Flynn (2015),

and write

g′c =

[︄(︂πFsν

16k1

)︂2 1

ϕα(H + Zs − h0 cos θ)

]︄ 1
4

(2.11)

Here, the source correction term Zs =
1

ϕα

(︂ πν

16Fsk1

)︂2
q4s is evaluated considering the

volumetric flow rate qs at the plume source. Also, α is the transverse dispersivity,
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whose connection to the porous medium grain size is discussed below in section 2.6.1.

Substituting (2.11) into (2.5) and (2.10) yields, after some simplification,

∂h

∂t
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

β(1− χh0− cos θ)−
1
4

[︂ ∂
∂x

(︂
h
∂h

∂x
cos θ + h sin θ

)︂
−KG′

(︂
1 +

h

l
cos θ

)︂]︂
,

[Updip, −xNu < x < 0]

β(1− χh0+ cos θ)−
1
4

[︂ ∂
∂x

(︂
h
∂h

∂x
cos θ − h sin θ

)︂
−KG′

(︂
1 +

h

l
cos θ

)︂]︂
,

[Downdip, 0 < x < xNd
]

(2.12)

and

∂l

∂t
= βK

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1− χh0− cos θ)−

1
4

(︂
1 +

h

l
cos θ

)︂
, [Updip, −xNu < x < 0]

(1− χh0+ cos θ)−
1
4

(︂
1 +

h

l
cos θ

)︂
, [Downdip, 0 < x < xNd

]

(2.13)

Here β is a velocity parameter, χ is a source parameter, K is the ratio of the lower

to upper layer permeabilities and G′ is the ratio of the lower to upper layer reduced

gravities within the draining fluid and gravity currents, respectively. More precisely,

and in symbols,

β =
k1
ϕν

[︂(︂πFsν

16k1

)︂2 1

ϕα(H + Zs)

]︂ 1
4
, χ =

1

H + Zs

, K =
k2
k1
, G′ =

g′d
¯

g′c
¯ (2.14)

Regarding the permeability jump angle θ as a further independent parameter, there

are a total of five variables in the governing equations (2.12) and (2.13).

2.3.5 Initial and boundary conditions

Recalling the initial condition of the porous medium to be uniformly saturated by

ambient fluid, we initialize the gravity current height and draining length to zero, i.e.

h = l = 0 at t = 0. For t > 0, (2.12) and (2.13) are solved using an influx boundary

condition, which requires the time rate of volume increase of the up- and downdip

gravity currents to balance the volume of fluid supplied by the descending plume.

The plume volume flux per unit width, qc, supplied at x = 0 increases with distance

from the source. Analogous to (2.11), qc can be expressed in terms of h0 using

qc =
[︂(︂16Fsk1

πν

)︂2
ϕα(H + Zs − h0 cos θ)

]︂ 1
4

(2.15)
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– see (2.24) of Sahu & Flynn (2015). The qc in (2.15) is divided into unequal up-

and downdip components for θ ̸= 0°. To this end, and borrowing the notation of

Rayward-Smith & Woods (2011), we consider that the dimensionless fraction of the

flow propagating downdip is fa, while the remaining fraction traveling updip is 1−fa.

The influx boundary conditions are then represented as

β2
(︂
h
∂h

∂x
cos θ + h sin θ

)︂⃓⃓⃓
0−

= −(1− fa)Γ(1− χh0− cos θ)
1
2 , [Updip, −xNu < x < 0]

β2
(︂
h
∂h

∂x
cos θ − h sin θ

)︂⃓⃓⃓
0+

= −faΓ(1− χh0+ cos θ)
1
2 , [Downdip, 0 < x < xNd

]

(2.16)

where Γ = (k1Fs)/(ϕ
2ν) is a buoyancy flux factor. The two components of (2.12) are

coupled by insisting that the gravity current height remains continuous at x = 0, i.e.

h0− = h0+ (2.17)

By enforcing this condition at each time step, fa can be determined as a function of

time t. A final boundary condition is applied at the noses of the up- and downdip

gravity currents, such that

h−xNu
= l−xNu

= 0 and hxNd
= lxNd

= 0 (2.18)

Finally, the global mass balance equation can be written symbolically as∫︂ xNd

−xNu

(h+ |l|)dx =

∫︂ t

0

[︂Γ
β
(1− χh0 cos θ)

1
4 + βK(1−G′)

∫︂ xNd

−xNu

(︂
1 +

h

l
cos θ

)︂
dx
]︂
dt

(2.19)

The former term on the right-hand side represents the volume of fluid discharged by

the plume while the latter term corresponds to the volume of lower layer ambient

fluid entrained into the contaminated fluid.
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2.3.6 Dimensionless governing equations

Following Goda & Sato (2011), we define characteristic spatial and temporal variables,

Πx and Πt, as follows:

Πx =
qc|h=0

ϕβ
and Πt =

qc|h=0

(1− δ cos θ)−
1
4ϕβ2

(2.20)

where

δ =
16

π

(︂ ϕα

H + Zs

)︂ 1
2

(2.21)

Note that Πx characterizes the distance measured along the permeability jump,

whereas Πt characterizes the speed of draining into the lower layer. Using the above

characteristic variables, we non-dimensionalize other variables as follows:

x∗ =
x

Πx

, h∗ =
h

Πx

, l∗ =
l

Πx

, t∗ =
t

Πt
(2.22)

Thus (2.12) and (2.13) may be respectively rewritten as

∂h∗

∂t∗
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(︂1− δh∗0− cos θ

1− δ cos θ

)︂− 1
4
[︂ ∂

∂x∗

(︂
h∗
∂h∗

∂x∗
cos θ + h∗ sin θ

)︂
−KG′

(︂
1 +

h∗

l∗
cos θ

)︂]︂
,

[Updip, −x∗Nu
< x∗ < 0](︂1− δh∗0+ cos θ

1− δ cos θ

)︂− 1
4
[︂ ∂

∂x∗

(︂
h∗
∂h∗

∂x∗
cos θ − h∗ sin θ

)︂
−KG′

(︂
1 +

h∗

l∗
cos θ

)︂]︂
,

[Downdip, 0 < x∗ < x∗Nd
]

(2.23)

and

∂l∗

∂t∗
= K

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(︂1− δh∗0− cos θ

1− δ cos θ

)︂− 1
4
(︂
1 +

h∗

l∗
cos θ

)︂
, [Updip, −x∗Nu

< x∗ < 0]

(︂1− δh∗0+ cos θ

1− δ cos θ

)︂− 1
4
(︂
1 +

h∗

l∗
cos θ

)︂
, [Downdip, 0 < x∗ < x∗Nd

]

(2.24)

The initial condition reads h∗ = l∗ = 0. Meanwhile, the boundary conditions (2.16)

become(︂
h∗
∂h∗

∂x∗
cos θ + h∗ sin θ

)︂⃓⃓⃓
0−

= −(1− fa)(1− δh∗0− cos θ)
1
2 , [Updip, −x∗Nu

< x∗ < 0]

(︂
h∗
∂h∗

∂x∗
cos θ − h∗ sin θ

)︂⃓⃓⃓
0+

= −fa(1− δh∗0+ cos θ)
1
2 , [Downdip, 0 < x∗ < x∗Nd

]

(2.25)
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Note that the choice of scalings associated with (2.20) eliminates the factor of Γ

present in (2.16) but absent in (2.25). The height continuity and nose conditions

respectively read as

h∗0− = h∗0+ (2.26)

and

h∗−x∗
Nu

= l∗−x∗
Nu

= 0 and h∗x∗
Nd

= l∗x∗
Nd

= 0 (2.27)

Also, the global mass conservation equation (2.19) now reads∫︂ x∗
Nd

−x∗
Nu

(h∗ + |l∗|)dx∗ = 1

(1− δ cos θ)−
1
4

∫︂ t

0

[︂
(1− δh∗0 cos θ)

1
4

+K(1−G′)

∫︂ x∗
Nd

−x∗
Nu

(︂
1 +

h∗

l∗
cos θ

)︂
dx∗
]︂
dt∗ (2.28)

Equations (2.23)-(2.28) contain four dimensionless variables, namely θ, δ, K and G′.

Here, θ defines the left to right asymmetry of the flow; δ defines the influence of

the plume source; K defines the cross flow resistance at the permeability jump; and

G′ defines the degree of entrainment experienced by the draining fluid. The first

three of these variables are easily estimated for a given porous medium and plume

source location. However, G′, defined as the ratio of the reduced gravity in the lower

vs. upper layers, remains to be determined. We adopt an empirical approach in

estimating G′ as described in section 2.6.14. With this value (plus θ, δ and K) to

hand, (2.23)-(2.28) may be solved numerically e.g. using the explicit finite-difference

scheme descried in appendix A.2.

2.4 Theoretical predictions

Sample model output is illustrated in figure 2.3a, which shows the evolution of the

discharged plume fluid for a permeability jump angle θ = 15◦. In the large time

4In section 2.6.1, it will be shown that G′ depends on the plume source conditions and θ. The
ramifications of this observation are deferred to section 2.6.3 where we draw comparisons between
theory and experiment.
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Figure 2.3: (a) Spatial-temporal evolution of the discharged plume fluid for θ =
15◦ (left panel). Contour lines of the flow front correspond to equally-spaced time
intervals, (b) Nose positions, both up- (x∗N < 0) and downdip (x∗N > 0), compared
for various θ (left panel). Results are shown assuming δ = 0.1, K = 0.1 and G′ = 0.4.

Figure 2.4: Variation of the downdip flow fraction fa as a function of (a) time t∗,
compared for various θ (left panel), and (b) permeability jump angle θ, at steady
state (right panel). Results are shown assuming δ = 0.1, K = 0.1 and G′ = 0.4.

limit, the up- and downdip gravity currents reach their respective runout lengths.

Similar behaviour was predicted by Goda & Sato (2011) and was also observed in

laboratory experiments by Sahu & Flynn (2017), but both of these previous studies
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Figure 2.5: Variation of gravity current runout lengths as a function of permeability
jump angle θ compared for various dimensionless parameters , i.e. (a) δ for constant
K = 0.1 and G′ = 0.4 (top-left panel); (b) K for constant δ = 0.1 and G′ = 0.4 (top-
right panel); and (c) G′ for constant δ = 0.1 and K = 0.1 (bottom-center panel). Up-
and downdip runout lengths are shown with the dashed and solid lines, respectively.

focused on the case of a horizontal permeability jump. The asymmetry that follows

from setting θ > 0◦ is evident not only in figure 2.3a, but also in figure 2.3b which

tracks nose positions for both the up- (x∗N < 0) and downdip (x∗N > 0) currents

for 0◦ ≤ θ ≤ 20◦. As this latter panel makes clear, runout lengths are achieved

when t∗ ≳ 102. Meanwhile, and as is true for other permeability jump angles, the

former panel confirms that the gravity current aspect ratio remains relatively modest.

The implications of this observation vis-á-vis Dupuit’s approximation are outlined in

appendix A.3.
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The asymmetry between the up- and downdip flows may be further understood by

plotting the downdip flow fraction fa as a function of time, shown in figure 2.4a. As

expected, when θ = 0°, fa has fixed value of 0.5 and remains time invariant; however,

for θ > 0°, fa is a monotone increasing function of time that plateaus only as runout

is approached. Steady state values of fa are plotted versus θ in figure 2.4b where a

monotone increasing trend is seen.

The magnitude of the steady state runout lengths, L∗
N , for both up- and downdip

flows are plotted as a function of θ in the panels of figure 2.5. When θ = 0°, up- and

downdip runout lengths are equal, but the disparity grows with θ. Furthermore, the

influence of the other three dimensionless variables, i.e. δ, K and G′, on the runout

lengths are illustrated in each of the panels. Regarding figure 2.5a and the influence

of δ, smaller δ is associated with larger H, smaller ρc̄ and therefore (moderately)

larger L∗
N . In like fashion, L∗

N increases as K decreases and the resistance to drainage

increases (figure 2.5b). Finally, figure 2.5c shows that large L∗
N is also associated with

small G′ whereby draining is retarded and discharged plume fluid therefore propagates

greater distances along the permeability jump before crossing into the lower layer.

The retention of discharged plume fluid in the upper layer is analysed by defin-

ing, as with Goda & Sato (2011) and for arbitrary time t∗, a storage efficiency E∗
h.

This storage efficiency is defined as the ratio of the volume (per unit width) of the

discharged plume fluid retained in the upper layer, i.e within the up- and downdip

gravity currents to the total volume (per unit width) that has been discharged by the

plume to the gravity currents over this same time interval. Figure 2.6 shows E∗
h for

different K and G′. At early times, little of the discharged plume fluid has drained

contributing to a rapid initial increase in length of the gravity currents. However,

as the gravity currents approach their respective runout lengths, more of the fluid

discharged by the plume drains into the lower layer and E∗
h falls more steeply. At

later times, E∗
h asymptotically approaches zero.
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Figure 2.6: Time variation of the storage efficiency, E∗
h. The comparisons in (a) are

for various K and constant values of θ = 15◦, δ = 0.1 and G′ = 0.4 (left panel); those
in (b) are for various G′ and constant values of θ = 15◦, δ = 0.1 and K = 0.1 (right
panel).

Figure 2.7: Schematic of the setup for the laboratory experiments.

2.5 Experiments

2.5.1 Experimental setup

A transparent acrylic box 118 cm long × 7.6 cm wide × 60 cm deep filled with spher-

ical glass beads (Potters Industries A Series Premium) and tap water served as the

experimental tank. Glass beads were d1 = 3.0 ± 0.2mm and d2 = 1.0 ± 0.2mm

in diameter and were used to construct the two layer porous medium in the man-
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Table 2.1: Porous media dimensions. (Notations are described in figure 2.7)

θ Height, cm

(degree) HLupper HLlower
HRupper HRlower

0 26.0 22.0 26.0 22.0

5 21.3 26.7 31.5 16.5

10 16.0 32.0 36.6 11.4

15 8.6 39.4 40.0 8.0

Table 2.2: Conditions at the plume source.

Flow combination Qs g′s Fs

(cm3/s) (cm/s2) (cm3/s3)

1 0.51± 0.02 20.1± 1.0 1.3± 0.2

2 0.51± 0.02 80.2± 1.0 5.3± 0.2

3 1.02± 0.02 20.1± 1.0 2.6± 0.2

4 1.02± 0.02 80.2± 1.0 10.6± 0.2

ner depicted in figure 2.7, with the larger beads in the upper layer and the smaller

beads in the lower layer. The beads had a density of 1.54 g/cm3 as compared to

ρo = 0.998 g/cm3 for the tap water. The porosity of the tank was measured and

found to be ϕ = 0.38± 0.05. Permeabilities were determined based on the empirical

relationship proposed by Kozeny and Carman, which is discussed in Dullien (1979),

i.e.

ki =
d2iϕ

3

180(1− ϕ)2

where d is the diameter of beads with index i = 1, 2. For all experiments conducted

here, the value of the permeability ratio, K = k2/k1 ∝ d22/d
2
1 was kept fixed at 0.11.

As depicted in figure 2.7, source fluid was supplied at the top of the upper layer

using a line nozzle that spanned the tank width. The nozzle was designed in such

a manner that it produced a uniform flow along its length even at small flow rates

(Roes, 2014). For all of the experiments to be reported upon below, the nozzle was
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located at the center of the tank and at a vertical height of H = 18.3 cm from the

permeability jump. Shown in table 3.1 are the different values of θ used and the

corresponding maximum and minimum layer heights of the upper and lower layers.

Dense source fluid supplied through the nozzle was prepared by mixing a precalcu-

lated mass of salt into tap water in a 100L reservoir, whose density was measured to

an accuracy of 0.00005 g/cm3 using an Anton Paar DMA 4500 density meter. More-

over, for the purpose of flow visualization, a small amount of cold-water dye (Procion

MX) was added to the salt-water in the reservoir. The dye concentration (determined

from the calibration curves of Appendix A.4.1) was small enough that it did not sig-

nificantly alter the plume source density. The dyed, salt-water was then pumped into

an overhead bucket using a hydraulic pump (Little Gaint Pump Co.). The bucket

contained a cylindrical weir that helped to maintain a constant hydrostatic pressure.

Moreover, a manual flow control valve and a flow-meter (Gilmont GV-2119-S-P) were

used to ensure a constant flow rate through the nozzle.

2.5.2 Experimental parameters and flow visualization

Experiments were conducted for four permeability jump angles as listed in table 3.1

and four source conditions as listed in table 2.2. For each jump angle, all four source

conditions were considered such that we performed 16 experiments in total. It took

approximately 1 hour for each experiment to complete.

For flow visualization, experimental images were captured using a Canon Rebel

EOST2i 18.0PM with an 18-55mm IS II zoom lens, which collected images every 30 s.

Uniform intensity back-lighting was achieved using a 3M1880 overhead projector and

by covering the backside of the acrylic box with tracing paper, which served to diffuse

the incoming light. The images captured were standard RGB, 720×400 pixels in size

and had a resolution of 72 dpi. They were post-processed in Matlab where all of the

images corresponding to a particular experimental set were first cropped to remove

unwanted regions outside of the flow domain. The images were then corrected by
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Figure 2.8: [Color] False-color experimental images showing discharge along, and
draining through, the permeability jump, which here makes an angle θ = 15◦ to the
horizontal. Panels (a-c) corresponds to flow combination 3 and panels (d-f) corre-
spond to flow combination 4 – see table 2.2. Red, blue and yellow contours are as
described in the text. The significance of the dotted lines drawn along the perme-
ability jump in each of panels (a-c) is explained in relation to the ITS plot of figure
2.9 below.

subtracting away the reference image (collected before the initiation of flow) to remove

any systematic spatial variations in the light intensity. Finally, the images were

converted to false-color and the pixel intensities were normalized and so ranged from

0 to 1. Images so processed were then compared to categorize various experimental

phenomena.

2.5.3 Experimental observations and interface detection

For qualitatively analyzing the experimental results, comparison is made between

results obtained with θ = 15° and a source flow rate of Qs = 1 cm3/s, but exhibiting

two different source reduced gravities – g′s = 20 cm/s2 and 80 cm/s2 – corresponding

to flow combinations 3 and 4, respectively from table 2.2. Representative snapshot

images are presented in figure 2.8a-c for g′s = 20 cm/s2 and figure 2.8d-f for g′s =

80 cm/s2. As expected, the plume, after striking the permeability jump, propagated
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Figure 2.9: [Color] Inclined time series (ITS) image for the experiment considered in
figure 2.8a-c. The red contour shows the nose position of the bulk interface whereas
the yellow contour shows the nose position of the dispersed interface. The normalized
intensity bar indicated at right shows the transition from pure discharged plume fluid
(intensity of 1) to pure ambient fluid (intensity of 0). Time intervals are marked by
the horizontal dashed lines to identify different stages of the flow dynamics, which
are described in text. The analogue theoretical prediction is indicated by the blue
contour.

as an asymmetric pair of gravity currents while simultaneously draining into the

lower layer. From our previous discussion, we anticipate that the discharged plume

fluid, as it crosses the permeability jump and mixes with lower ambient fluid, will

lose its sharp interface. Interestingly, figure 2.8 suggests that a similar behavior

arises even in the upper layer where dispersion, not accounted for in the model of

section 2.3, results in a blurring of the boundary between discharged plume fluid and

ambient fluid. Motivated by this observation, two distinct interfaces were identified

in all our experimental images. These are indicated by the red and yellow contours

and are defined as the bulk and dispersed interfaces, respectively. (Our method

for determining the precise shape of the bulk and dispersed interface is described

below.) Within the bulk interface, the pixel intensity is both high and very nearly

uniform in space and time. Because pixel intensity is a surrogate for fluid density,

we surmise that the density (or reduced gravity) of the fluid within the red contour,

which we shall refer to as the bulk fluid, is also approximately uniform. Conversely,

the dispersed interface separates the ambient fluid from either discharged plume fluid
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or from contaminated fluid that has been more substantially diluted through process

of dispersion5. The region in between the bulk and dispersed interfaces shows a

non-trivial variation of pixel intensity, suggesting a reduced gravity that varies, not

always monotonically, in space. In turn, the fluid located between the red and yellow

contours is referred to as the dispersed fluid. Note finally that the bulk interface or

red contour was defined by considering pixels having an intensity of 0.85. Meanwhile,

the dispersed interface or yellow contour was defined by considering pixels having an

intensity of 0.005. These threshold values were chosen such that they gave consistent

results while processing all our experimental images6.

In order to analyze the bulk and dispersed interfaces in greater detail, we plot an

inclined time series (ITS) image, which is, in turn, derived from snapshot images.

An example appears in figure 2.9, which is constructed from 390 snapshot images

collected from the experiment depicted in figure 2.8a-c. ITS images are produced by

considering the time evolution of the flow along a sloping line located two to three

pixels above the permeability jump. Pixel intensities along this sloping line (shown as

dotted lines in figure 2.8a-c) are extracted as a function of t from the start to the end

of the experiment. In figure 2.9, the abscissa, x′′, is normalized by the along-jump

length where x′′ = 0 coincides with the origin indicated schematically in figure 2.2.

Thus x′′ < 0 corresponds to the updip flow while x′′ > 0 to the downdip flow. In

figure 2.9, and consistent with figure 2.8, the red and yellow contours respectively

5In miscible fluids, diffusion and dispersion are two mechanisms that lead to mixing. Diffusion
arises due to the random motion of molecules and the diffusive flux acts in the direction of concentra-
tion gradient which is governed by Fick’s law. By contrast, dispersion (also known as hydrodynamic
dispersion) arises due to the multiplicity of possible flow trajectories within a given averaging volume
and is primarily a function of flow and geometrical properties, i.e. velocity and pore size. The relative
importance of dispersion and diffusion can therefore be assessed with reference to a Péclet number,
defined as Pe = Udo/Dm, where U is a characteristic velocity, do is the mean grain diameter, Dm is
the molecular diffusivity (Wooding, 1963; Sahu & Flynn, 2015).

6Choosing threshold values below 0.005 (for dispersed interface) included too much background
noise in the image due to light fluctuations, as was evident upon image subtraction. The high-level
threshold of 0.85 was chosen to capture the most robust interface profile for the bulk interface. On
the other hand, our results are not especially sensitive to the choice of 0.85. For example, less than a
5% difference in average densities within the contour, both in the upper and lower layer, was noted
when a threshold value of 0.9 was selected.
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show the nose positions of the bulk and dispersed interfaces.

The flow dynamics of the up- and downdip gravity currents are analyzed by track-

ing in time the position of the noses corresponding to the bulk and dispersed interfaces

represented in ITS plots such as figure 2.8. Accordingly, we can describe the evolution

of the flow as follows: at t∗ ≡ t/Πt = 0, plume fluid first reaches the permeability

jump. For t∗ > 0, gravity currents consisting of discharged plume fluid propagate up-

and downdip and simultaneously drain into the lower layer. The nose corresponding

to the bulk interface of the downdip gravity current becomes arrested at t∗ = t∗1 at

which point the downdip runout length LNd
is reached. By contrast, the updip runout

length LNu is reached at an earlier point in time because LNu is often substantially

less than LNd
– see figures 2.3 and 2.5. For t∗ > t∗1 discharged plume fluid contin-

ues to drain into the lower layer during which time the noses of the bulk interface,

both up- and downdip, remain fixed. Eventually, given the finite height of our ex-

perimental box, contaminated fluid makes contact with the bottom (impermeable)

boundary. We designate this point in time as t∗2. For t∗ > t∗2, there form a pair of

secondary (horizontal) gravity currents at the base of the lower layer. The left and

right propagation of these secondary-gravity currents has the effect of re-mobilizing

the previously arrested gravity currents in the upper layer. In figure 2.9, for instance,

such a remobilization occurs at a non-dimensional time just larger than 103. The

associated details and dynamics of the flow post-runout are beyond the scope of the

present inquiry and shall be explored in a forthcoming study. In the present analysis,

all the results discussed below correspond to dimensionless times strictly below t∗2, to

ensure the contaminated fluid has not made contact with the bottom boundary.

2.5.4 Qualitative comparison between theory and experiment
for the gravity current shapes

Figure 2.8 suggests that non-trivially considers different flow behaviour may be ob-

served depending on g′s. For g′s = 20 cm/s2, a larger volume of discharged plume
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fluid propagates along the permeability jump, whereas for g′s = 80 cm/s2, a larger

fraction drains into the lower layer. These observations are consistent with the ef-

ficiency curves presented in section 2.4 – see figure 2.6b. This leads to longer up-

and, more especially, downdip gravity currents in the former case vs. the latter. Also

shown in each of the images in figure 2.8 are complementary theoretical results pre-

dicted using the (sharp interface) model of section 2.3. These are plotted as the blue

contours where, consistent with the experimental measurements to be summarized

in section 2.6.3, we have considered G′ values of 0.43 and 0.66 in panels (a-c) and

(d-f), respectively. In general, we find good correspondence with the red contours,

particularly in the upper layer. However, and as we will explore in further detail in

section 2.6.3, theory slightly over-predicts the length of the gravity currents, both

up- and downdip. In the lower layer, the agreement is typically less robust. At least

part of the reason for this discrepancy comes from the general neglect of dispersion

by the analytical model which is more prominent in the lower layer because of flow

instabilities. With this being the case, we cannot everywhere expect good overlap

of the blue and red contours because, in practice, some non-trivial fraction of the

dense fluid that drains into the lower layer is mixed into the ambient and so appears

between the red and yellow contours. This is especially true in figures 2.8d-f.

2.6 Results and discussion

2.6.1 Determination of G′ and α

To make quantitative predictions with the theory of section 2.3, we first need to

specify the values for the reduced gravity ratio G′ and the transverse dispersivity α.

Finding the value ofG′ theoretically is challenging and we therefore adopt an empirical

approach. The reduced gravity ratio was previously determined experimentally by

Sahu & Flynn (2017) for the case of a horizontal permeability jump, and an average

value of 0.6 ± 0.1 was reported. However, no exhaustive estimate has ever been made
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regarding the dependence of G′ on either the source conditions or on the details of the

porous medium, e.g. the magnitude of the permeability jump angle. Herein, we seek to

address this shortcoming and thereby categorize the variation of G′ with θ, the source

volume flux, Qs and the source reduced gravity, g′s
7. The value of G′ is computed

by taking the ratio of the reduced gravities in the lower and upper layers. The non-

intrusive procedure for estimating these reduced gravities is outlined in Appendix

A.4.2. On the basis of this approach, we find that G′ is basically independent of time,

at least for t∗ < t∗2. Figure 2.10 shows the variation of G′ with g′s for θ = 0◦, 5◦

and 15◦ and for two different Qs, i.e. 0.5 and 1 cm3/s. For prescribed Qs, G
′ exhibits

a monotone increasing dependence on g′s. Meanwhile, G′ values corresponding to

the lower source flow rate of 0.5 cm3/s were found to exceed those corresponding to

1 cm3/s. Considering separately these two source volume flow rates, we determine

empirical relations of the following form:

G′
0.5 = 4.51× 10−3g′s − 6.03× 10−4θ + 0.546

G′
1 = 3.82× 10−3g′s − 6.08× 10−4θ + 0.386

(2.29)

In both the above relations, it can be seen that G′ depends much more sensitively on

g′s than it does on θ. Hence, for all practical purposes and for the range of θ values

defined in table 3.1, we can, in the comparisons to follow, eliminate the θ dependence

and consider G′ only as a function of g′s and Qs.

Fortunately, it is more straightforward to estimate the value of the transverse

dispersivity, α, which appears in the definition of β in (2.14), of qc in (2.15) and of

δ in (2.21), i.e. α is set by the upper layer bead diameter, d1. From (4b) of Delgado

(2007) and consistent with the range prescribed by Freeze & Cherry (1979), we take

α ≈ 0.025 d1.

7Throughout this study, we leave the source reduced gravity, g′s in its dimensional form. However,
in the interest of non-dimensionalizing g′s, we have demonstrated the scaling of this term in Appendix
A.5.
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Figure 2.10: Reduced gravity ratio G′ vs. the source reduced gravity g′s. The open
symbols correspond to a source flow rate of 0.5 cm3/s while the solid symbols consider
1 cm3/s. The square, circle and diamond symbols show θ = 0◦, 5◦ and 15◦, respec-
tively. A representative error bar is shown in the bottom-right corner.

2.6.2 Dispersion effects

To quantify the degree of dispersion from experimental snapshot images such as those

of figure 2.8, and to simultaneously confirm that our methods for flow visualization

account for all of the dense fluid supplied by the source, we proceed by separately

calculating the buoyancy (evaluated per unit tank width) B and the area (volume per

unit width) A within the bulk and dispersed phases. Suppose, for instance, that we

were to evaluate the buoyancy within the bulk phase. First we would determine the

area enclosed by the red contour above and also below the permeability jump. We

would then multiply the two areas in question by their respective averaged reduced

gravities, i.e. (g′c
¯ )bulk for the upper layer and (g′d

¯ )bulk for the lower layer. Symbolically,

Bupper,bulk = (A× g′c
¯ )upper,bulk and Blower,bulk = (A× g′d

¯ )lower,bulk (2.30)

Adding these estimates of the layer specific buoyancy allows us to estimate, from

the experimental images, the total buoyancy within the bulk phase, i.e.Bbulk =
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Figure 2.11: Time series of the buoyancy for flow combination 3 (panel a on the left)
and 4 (panel b on the left), both for θ = 15◦. Thin open symbols: buoyancy within
the dispersed phase (B∗

disp). Solid symbols: buoyancy within the bulk phase (B∗
bulk).

Thick open symbols: total buoyancy (B∗ = Bbulk +Bdisp). For comparison, the total
buoyancy as estimated from the (steady) plume source conditions is indicated by the
solid line. Meanwhile the vertical dashed lines show the time when the runout length
of the downdip gravity current is reached. Representative error bars are shown on
the symbols for the total buoyancy.

Bupper,bulk +Blower,bulk. The analogous equations for the dispersed phase read

Bupper,disp = (A× g′c
¯ )upper,disp and Blower,disp = (A× g′d

¯ )lower,disp (2.31)

The total buoyancy within dispersed phase is obtained from, Bdisp = Bupper,disp +

Blower,disp. It is understood that, while evaluating the buoyancy within the dispersed

phase, we consider only the region enclosed between the yellow and red contours. The

total buoyancy is obtained by summing the constituent parts, i.e.B = Bbulk + Bdisp.

Further, we non-dimensionalize the individual buoyancies using the variables defined

in (2.20) and thereby multiply by Π2
t/Π

3
x. In figure 2.11, and considering both g′s =

20 cm/s2 (panel a) and g′s = 80 cm/s2 (panel b), B∗ matches well the analogue value

obtained directly from the conditions at the plume source, i.e. by evaluating F ∗
s × t∗.

Figure 2.11 shows that, as expected, B∗
bulk, B

∗
disp and their sum, B∗

bulk +B∗
disp, are all

monotone increasing functions of time. Nonetheless, it is clear that the bulk phase
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Figure 2.12: Fractions of buoyancy, <B∗> (in squares), and area, <A∗> (in circles),
plotted as functions of time. Solid and open symbols correspond, respectively, to
the bulk and dispersed phases. Panel (a) corresponds to flow combination 3 (left
panel), while (b) corresponds to flow combination 4, both for θ = 15◦ (right panel).
Meanwhile, the vertical dashed lines show the time when the runout length of the
downdip gravity current is reached. A representative error bar is shown in the bottom-
right corner in each of the panel.

retains a disproportionate share of the dense fluid within the box. To quantify matters

more precisely, we make the following definitions for the buoyancy fractions:

<B∗
bulk>=

B∗
bulk

B∗
bulk +B∗

disp

and <B∗
disp>=

B∗
disp

B∗
bulk +B∗

disp

(2.32)

Time-series of <B∗
bulk> and <B∗

disp> are shown as squares in figure 2.12. Results are

presented for both g′s = 20 cm/s2 (panel a) and g′s = 80 cm/s2 (panel b). It can be

seen that, except at very early times, <B∗
s,bulk> always exceeds <B∗

s,disp> and that

the difference grows with time, particularly for larger g′s. Analogous to (2.32), we

also quantify the fractions corresponding to the non-dimensional area, A∗, occupied

by either of the bulk or dispersed phases, i.e.

<A∗
bulk>=

A∗
bulk

A∗
bulk + A∗

disp

and <A∗
disp>=

A∗
disp

A∗
bulk + A∗

disp

(2.33)

which have their terms defined implicitly in (2.30) and (2.31). Representative data

appear as circles in figure 2.12. As with buoyancy, the area fractions also evolve in
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Figure 2.13: Bulk fluid buoyancy fraction <B∗
bulk> (in squares) and area fraction

<A∗
bulk> (in circles), measured at t∗ = t∗1 and plotted versus the permeability jump

angle θ. Solid symbols correspond to flow combination 3; open symbols correspond to
flow combination 4. A representative error bar is shown in the bottom-right corner.

time. For low source reduced gravity (figure 2.12a), an asymptotic state is reached at

about t∗ = t∗1 wherein <A∗
disp> exceeds <A∗

bulk>. For g′s = 80 cm/s2, no asymptotic

state is achieved before t∗2 and so the long term behaviour is less clear. Even so, and

as with figure 2.12a, figure 2.12b confirms that <A∗
disp> exceeds <A∗

bulk> at least over

the time interval of interest.

Complementing the data of figure 2.12, figure 2.13 shows the variation of the buoy-

ancy and area fractions for the bulk phase as functions of θ. The data (and others

like them, not shown) confirm that <B∗
bulk> and <A∗

bulk>, though dependent on the

source conditions, are effectively independent of θ. For all considered values of θ, it

is observed that <B∗
bulk>≳ 0.7, suggesting that most of the source fluid injected

into the porous medium remains within the bulk phase. Figure 2.13 also suggests,

however, that typical values for <A∗
bulk> are significantly smaller, i.e. less than 0.5.

This suggests that the boundary of the discharged plume fluid/contaminated fluid

may extend well beyond the predictions of the sharp interface model derived in sec-

tion 2.3. The implications of this observation are discussed in conjunction with figure
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Figure 2.14: Nose propagation for up- (x∗N < 0, diamonds) and downdip (x∗N > 0,
squares) gravity currents as functions of time. The solid symbols correspond to the
bulk interface, while the open symbols correspond to the dispersed interface. Ana-
logue theoretical results are shown by the dashed (for updip) and solid (for downdip)
curves. The source conditions and permeability jump angles are as specified in each
of the panels. Meanwhile, the vertical dashed lines show the time when the runout
length of the downdip gravity current is reached. A representative error bar is shown
in the bottom-right corner of each panel.

2.14 below.
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2.6.3 Up- and downdip gravity currents: Transient and steady
state analysis of the nose position

The transient nose positions corresponding to the up- and downdip gravity currents

are shown in figure 2.14. Comparisons are made between two different values of θ.

The panel pairs a,b and c,d respectively consider flow combinations 3 and 4. At

early times, solid symbols (indicating the bulk interface) nearly coincide with the

open symbols (indicating the dispersed interface). However, at later times and more

especially when t∗ > t∗1, substantial deviations are observed as more of the dispersed

fluid propagates ahead of the arrested (bulk interface) front. It is observed that the

dispersion intensity and, correspondingly, the degree of spread between the solid and

open symbols depends on g′s and θ. Not surprisingly, greater spreads are observed

downdip than they are updip.

Theoretical predictions of nose propagation for both up- and downdip gravity cur-

rents are also plotted in figure 2.14. In all cases, the theoretical curves typically lie

between the solid and open symbols. It is evident that the theoretical predictions

align better with the bulk interface. Further to figure 2.8, these observations confirm

that the model of section 2.3 is generally reliable when considering the advance of the

bulk interface, less so for the dispersed interface.

Comparisons between theory and experiment may also be made when the gravity

currents reach their runout lengths. Figure 2.15 shows experimentally determined

runout lengths attained by the bulk phase on the downdip side (solid squares) and

on the updip side (solid diamonds) for a range of θ. Meanwhile the open symbols

indicate the progression of the dispersed phase. Because the nose of the dispersed

phase does not become arrested in the manner of the bulk phase, the open symbols

specifically consider nose positions measured at t∗ = t∗1. The region between the bulk

and dispersed noses is shaded in red on the downdip side, and in green on the updip

side. The breadth of these shaded regions is a measure of the thickness of the dispersed

phase at t∗1. The panels in figure 2.15 also include analogue theoretical predictions.
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Figure 2.15: [Color] Gravity current runout lengths, L∗
N , plotted vs. θ. Up- and

downdip results are respectively indicated by solid symbols in diamonds and squares.
Also shown (by open symbols) are the positions of the nose of the dispersed phase,
measured at t∗ = t∗1. The region between the solid and open symbols are filled
with green and red, respectively, for the up- and downdip directions. Theoretical
predictions are shown with the dashed (for updip) and solid (for downdip) curves.
Source conditions are as specified, and a representative error bar is drawn in the
bottom-right corner in each of the panels.

As expected, the up- (L∗
Nu

) and downdip (L∗
Nd
) runout lengths respectively show a

monotone decrease and increase with θ. In all cases, the theoretical predictions lie

within the (admittedly broad) shaded bands. Especially when g′s = 20 cm/s2 (panels

a and b), model predictions are closer to measurements of the bulk interface. Also,

54



and whether considering up- or downdip flow, measured runout lengths are longer

when Qs is large and g
′
s is small. Theoretical predictions are in good agreement with

this experimental finding.

2.7 Summary and conclusions

We have developed a mathematical model describing the propagation of gravity cur-

rent flow along an inclined permeability jump in a heterogeneous porous medium

consisting of two layers of different permeabilities – see figure 2.2. Convection orig-

inates from a source located at the top of the upper layer from where the dense

fluid first falls vertically in the form of a plume and then, upon reaching the ad-

verse permeability jump, divides into an unequal pair of up- and downdip gravity

currents. The volume influx supplied to the gravity currents is modeled as a time

dependent parameter that decreases as the up- and downdip gravity currents grow in

height. The parameter fa quantifies the fraction of discharged plume fluid going up-

vs. downdip. We solve the dimensionless governing equations by defining four dimen-

sionless parameters namely the permeability jump angle, θ, plume source factor, δ,

permeability ratio, K, and reduced gravity ratio, G′ – the dynamical significance of

each of these parameters is emphasised in section 2.3. Note that G′ is unique in that

it depends on the plume source conditions and (very weakly) on θ – see (2.29). Key

theoretical conclusions derived from the model predictions are as follows: (i) fa is a

monotone increasing function of time that attains a constant value when the up- and

downdip gravity currents reach their runout lengths. (ii) Runout lengths depend on

all four dimensionless parameters, and their relative importance in determining the

magnitude of the runout length is discussed in section 2.4. For 0◦ ≤ θ ≤ 20◦, runout

lengths were predicted to occur when t∗ ≳ 102.

To validate our theoretical model, laboratory experiments were conducted in a two-

layer porous medium created using spherical beads of two different sizes. Experiments

were performed for four different combinations of plume source volume flow rate
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and source reduced gravity (see table 2.2); also, we considered the following four

different permeability jump slope angles: θ = 0◦, 5◦, 10◦ and 15◦. In contrast with

theory which, consistent with Bear (1972); Huppert & Woods (1995); Pritchard et al.

(2001); Goda & Sato (2011); Sahu & Flynn (2015) and many others, assumes a sharp

interface, our experimental images reveal the appearance of two distinct interfaces,

categorized as bulk and dispersed interfaces – see the red and yellow contours of figures

2.8 and 2.9. A careful analysis of laboratory images shows that the volume occupied

by the dispersed phase may match or exceed the volume occupied by the bulk phase

(figure 2.12). However, because the concentration of discharged plume fluid within

the dispersed phase is often small, most (≳ 0.7) of the fluid that originated in the

plume remains behind the bulk interface (figure 2.13).

As in previous works (Huppert & Woods, 1995; Sahu & Flynn, 2015; Pegler et al.,

2016), the dynamics of the gravity currents were characterized by measuring their

speed of advance. Here, measurements were made in both the up- and downdip di-

rections and with reference to both the bulk and dispersed interfaces – see figure 2.14.

Not surprisingly, downdip gravity currents propagated a greater distance compared

to their updip counterparts anytime that θ > 0°. The runout lengths are plotted as

a function of θ in figure 2.15. Our theoretical model predicts runout lengths that lie

between measured nose positions for the bulk and dispersed interfaces for all the ex-

periments performed in this study. In general, theoretical predictions are closer to the

bulk interface measurements than they are to the dispersed interface measurements.

Through this work we indirectly attempt to address some of the key uncertainties in

the field of groundwater contamination (Khondaker et al., 1990) and acid-gas injection

(Bachu et al., 2008a). These uncertainties include predicting the short- and longer-

term dynamics, i.e. the transient and steady-state behaviour of a plume impinging on

a leaky and sloping boundary. Equally important is to classify the respective volumes

of discharged plume fluid that (i) propagate up- vs. downdip (c.f. fa in figure 2.4),

and, (ii) later experience dilution by Rayleigh-Taylor-type mixing (c.f. G′ in figure
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2.10) vs. dispersion (c.f. figures 2.11–2.13).

Our theoretical model is obviously constrained by a number of limiting assump-

tions, the relaxation of which is a topic of on-going/future study. For instance, we

have assumed that the reduced gravity, g′c, within the gravity currents evolves with

plume length. However, our sharp interface model neglects the effect of mixing/dis-

persion across the gravity current-ambient interface (c.f. a recent work by Sahu &

Neufeld (2020), who consider the dispersive interface in porous media gravity cur-

rents). Dispersion, in particular, is significant in that it allows discharged plume fluid

to appear further downstream than is properly accounted for by a sharp interface

model – compare e.g. the blue and yellow contours of figure 2.8. Our theoretical

model furthermore assumes that the lower layer is infinitely deep. However, in the

geophysical scenarios cited above, finite depth effects will be important e.g. in remo-

bilizing a gravity current arrested at its runout length. Experiments confirming this

behavior are already underway and will be reported upon in Chapter 3.
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Chapter 3

Buoyant convection in
heterogeneous porous media with
an inclined permeability jump: An
experimental investigation of filling
box-type flows1

3.1 Abstract

We investigate experimentally the outflow that occurs when a plume of dense fluid

strikes a sloping permeability jump in a saturated two-layered porous medium of fi-

nite extent. Contact of the plume with the jump results in a pair of leaky (primary)

gravity currents that propagate up- and downdip. Previous studies have considered

a thin or thick lower layer; here, we identify these nontrivial dynamics that arise for

the intermediate thickness case. For instance, the primary gravity currents become

arrested when the volume supplied by the plume matches that lost by basal drain-

ing. However, fluid draining into the lower layer will eventually contact the bottom

boundary leading to the formation of secondary gravity currents. As these secondary

gravity currents propagate left and right, they “tug” along the primary gravity cur-

rents causing remobilization. Of course, the motion of the primary and secondary

1Bharath, K. S. & Flynn, M. R. 2021 Buoyant convection in heterogeneous porous media with an
inclined permeability jump: an experimental investigation of filling box-type flows. J. Fluid Mech.
924, 1–31.
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gravity currents must eventually become impeded by the sidewall boundaries lead-

ing, thereafter, to layer filling. We categorize the overall filling process as either

simultaneous (upper and lower layers fill concurrently) or sequential (lower layer fills

first). Factors influencing the filling mode include the permeability jump angle and

the plume source conditions/location. Due to the asymmetric manner in which the

upper layer fills, the plume, originally vertical, must become deflected. We categorize

this deflection and identify scenarios where, somewhat counterintuitively, the plume

bends towards the lower (lower permeability) layer. The significance of our measure-

ments relative to real geophysical flows is highlighted with particular attention paid

to geological sequestration and storage.

3.2 Introduction

There exist numerous geological scenarios where a dense or light source fluid is in-

jected into a saturated, sedimentary porous medium that is, in lateral extent, either

confined or effectively unconfined. In the former case, lateral boundaries may be

associated with an anticlinal concave-down geometry or with sealing faults. Such

boundaries are expected to exert a nontrivial influence on the evolution of the injec-

tate be this associated with geothermal storage (MacKay, 2009; Paksoy & Beyhan,

2014), hydrogen storage (Feldmann et al., 2016; Sainz-Garcia, 2017; Tarkowski, 2019),

the sequestration of acid-gas in abandoned oil wells (Bachu & Gunter, 2004; Wu &

Carroll, 2011) or the sequestration of supercritical CO2 in deep saline aquifers (Torp

& Gale, 2004; Ajayi et al., 2019; Michael et al., 2010).

For each of the above examples, a critical consideration is that of storage security,

which requires, in turn, an assessment of the likelihood of injectate leakage. Such leak-

age may be due to inadequate seals (i.e. a geological boundary that is semi-permeable),

filling a formation to capacity or leakage faults along the spreading boundary (Flett

et al., 2005). Our present focus is on the former instance, i.e. we consider that the

bounding layer along which the injectate spreads does not altogether arrest verti-
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cal migration. Such a scenario, arises, for example, with the (albeit thin) layers of

mudstone that are present within the Utsira Sand, the otherwise sandstone layer of

thickness 200m to 300m into which supercritical CO2 from the Sleipner project is

injected (Boait et al., 2012; Mouche et al., 2010). The scenario in question is relevant

to other examples of heterogeneous porous media e.g. the sandstone layers separated

by tight inter-layers of comparable thickness considered in figure 5 of the hydrogen

storage study of Feldmann et al. (2016). To predict the long-term fate of the injectate,

it is important to predict the flow behavior along such leaky boundaries. Previous

work (cited below) has emphasized the prediction of early-time dynamics such that

the depth of the low permeable bounding layer is immaterial. Here, we relax this lim-

itation and consider longer time horizons assuming bounding layers of intermediate

thickness. In so doing, we demonstrate that the bounding layer depth (plus additional

details such as the source conditions and inclination angle of the permeability jump)

dictate the manner in which the (multi-layer) porous medium fills with injected fluid.

Common also to most of the examples cited above is that they combine the end-

member states of buoyancy-driven flow, i.e. a vertical plume that, upon striking an

impermeable or semi-impermeable boundary, feeds a horizontal (or nearly horizontal)

gravity current. Although the plume may traverse only a modest vertical length

compared to the long horizontal distances traveled by the gravity current, significant

entrainment of external ambient fluid may nonetheless occur. This is especially true

when the injectate and ambient fluid are miscible, e.g. a plume of H2 rising through

a cushion gas layer of CH4 or N2 (Feldmann et al., 2016) or when the plume is

deflected e.g. as a result of a background mean flow (Weaver & Wilson, 2000; Van

Stempvoort et al., 2013) and/or stratigraphic steering (Morgan et al., 2008; Kamath

et al., 2012). In the idealized case where viscosity contrasts are small, the equations

describing entrainment into a vertical plume are derived by Wooding (1963), this for

the scenario of a deep, uniform porous medium and a diffusion-dominated Darcy flow

characterized by low Péclét number, i.e. Pe ≲ O(1). Sahu & Flynn (2015) present

60



equations analogous to Wooding’s but for the case Pe ≫ O(1) in which circumstance

dispersion dominates over diffusion.

In contrast to porous media plumes, more attention has been devoted to porous

media gravity currents, whether these flow along boundaries categorized as imper-

meable (Huppert & Woods, 1995; Vella & Huppert, 2006a), semi-impermeable (Vella

et al., 2011; Farcas & Woods, 2013) or permeable (Pritchard et al., 2001; Farcas &

Woods, 2009; Goda & Sato, 2011). As regards the latter two scenarios, and assuming

a gravity current of dense fluid, studies have sought to characterize the dynamical

impact of basal draining whether due to a point sink or fissure (Neufeld et al., 2009,

2011; Vella et al., 2011; Farcas & Woods, 2013), edge drainage (Hesse & Woods,

2010; Rayward-Smith & Woods, 2011; Zheng et al., 2013; Hagemann et al., 2016)

or distributed leakage (Pritchard et al., 2001; Neufeld & Huppert, 2009; Woods &

Farcas, 2009; Farcas & Woods, 2009; Yu et al., 2017). Consistent with the preceding

discussion, detailed characterizations should consider the depth of the lower layer,

i.e. the layer into which fluid discharged by the gravity current drains. Arguably the

simplest configuration assumes a lower layer that is infinitely deep, a case studied in

precise analytical detail by Goda & Sato (2011). They examined a sharp permeabil-

ity jump separating layers of comparatively large vs. small permeability. In adapting

the analysis of Huppert & Woods (1995) and Pritchard et al. (2001), Goda & Sato

(2011) derived coupled nonlinear advection equations describing the gravity current

and draining flows. By solving these equations numerically, they demonstrated that

gravity currents propagating along a permeability jump will eventually reach a termi-

nal, or runout, length. Runout occurs when the influx to the gravity current matches

the rate of basal draining into the lower layer (Consistent with the orientation relevant

to geological sequestration, Goda & Sato (2011) assumed a buoyant gravity current

traveling along the underside of a permeability jump. As such, fluid drained from the

gravity current into the upper, not the lower, layer. We prefer to consider a dense

gravity current so as to be consistent with numerous other studies e.g. Pritchard et al.
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(2001); Lyle et al. (2005); Vella & Huppert (2006a); De Loubens & Ramakrishnan

(2011); Sahu & Flynn (2015, 2016, 2017) and also the experiments to be reported

upon in sections 3.3 to 3.5. The experiments performed in this study consider small

density differences between the source and ambient fluids and, therefore, the flow

remains Boussinesq everywhere in the domain. In such cases, the flow orientation,

i.e. upward vs. downward, is immaterial.).

The theoretical study of Goda & Sato (2011) was broadened by later theoretical

and experimental work conducted by Sahu & Flynn (2017). Sahu & Flynn (2017)

made their upper and lower layers finite in horizontal and vertical extent and thereby

additionally studied the timescales for layer filling by contaminated fluid. In this

respect, Sahu & Flynn (2017)’s study was motivated by a desire to characterize the

geological utility of “filling box” models. Originally studied in the non-porous media

context (i.e. “a plume in a room”), filling box models describe the spatio-temporal

evolution of buoyancy within a closed (Baines & Turner, 1969) or ventilated (Caulfield

& Woods, 2002) control volume subject to localized heating or cooling. Although

filling box models have been applied to problems of ocean circulation (Manins, 1979;

Speer & Tziperman, 1990; Hughes & Griffiths, 2006), they have received less attention

in the context of porous media flows in general and sequestration/storage flows in

particular. This lack of attention is surprising given the natural ability of filling

box models to describe the dynamical importance of boundaries in the context of

reservoirs/aquifers.

Expanding on the study by Sahu & Flynn (2017) on porous media filling box

models, we herein extend the analysis to situations of greater geological realism. For

instance, a key characteristic of the experiments of Sahu & Flynn (2017) is that

the permeability jump is horizontal. On the other hand, there are many instances

where, in modeling real geological flows, it would be more appropriate to consider

a permeability jump that is either sloping (Bachu et al., 2008a,b; MacMinn et al.,

2010) or curved (Ajayi et al., 2019). The former complication was incorporated into

62



the recent theoretical study of Bharath et al. (2020). They consider up- and downdip

gravity currents fed by a descending plume rather than by a source located along the

permeability jump. In turn, their model captures the early time spreading dynamics

by predicting the flow evolution up to the point of runout. On the other hand, the

theory and laboratory experiments reported in Bharath et al. (2020) do not provide

meaningful insights into the longer term dynamics and how these are influenced by

(i) the depth of the lower layer, and, (ii) the presence of sidewall boundaries. To this

end, the experiments described in this study provide an especially interesting vantage

point from which to study filling box dynamics because of the appearance of primary

and secondary gravity currents. These arise, respectively, along the permeability

jump and along the bottom (impermeable) boundary. The relative motion of the

primary vs. secondary gravity currents was ignored by Sahu & Flynn (2017) but has,

as we shall see, a crucial influence on the manner in which the heterogeneous porous

medium becomes filled with contaminated fluid. Because medium filling is closely

related to medium storage efficiencies and the long-term fate of the injectate, it is

important to be able to characterize the manner and speed with which the lower

vs. upper layers are filled. Addressing such topics is a further objective of this study.

Throughout, we pursue an experimental approach and examine the evolution of

the flow exhibited schematically in figure 3.1 a. Dense fluid, dyed for ease of visualiza-

tion, is discharged by a line source and then propagates downward through the upper

layer until it strikes the permeability jump. There follows drainage of discharged

plume fluid into the lower layer and the formation and propagation of the primary

and secondary gravity currents. Because the box in which experiments are performed

is relatively thin in the spanwise direction, the flow is largely 2D, i.e. there is limited

opportunity for spanwise flow instabilities to develop. In addition, the dynamic vis-

cosities of the injected and ambient fluids are considered identical. These fluids being

additionally fully-miscible, we neglect surface tension effects and assume infinitely
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Figure 3.1: [Color] (a) Schematic showing discharged plume fluid propagating as pair
of primary and secondary currents in the upper and lower layers, respectively. The
colorbar indicates the variation of fluid density as the source fluid propagates through
the heterogeneous porous medium. (b) Analogue snapshot image from our laboratory
experiments. Xs on the horizontal axis indicate the position of the nozzle.

large values for the Bond number, which characterizes the ratio of buoyancy to cap-

illarity. In this respect, our approach is consistent with numerous previous studies

(Huppert & Woods, 1995; Rayward-Smith & Woods, 2011; Szulczewski & Juanes,

2013; Pegler et al., 2016).

The rest of our manuscript is outlined as follows: in section 3.3, the experimental

procedure is outlined as is our method for post-processing experimental images and

analyzing the resulting measured data. In section 3.4, qualitative and quantitative

analyses of the primarily horizontal flows in the upper and lower layers are made. The

counterpart vertical and filling box flows are examined in section 3.5. The mutual

dependence of horizontal and vertical flows during the filling process is discussed in
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Figure 3.2: [Color] Schematic of the experimental setup.

Table 3.1: Porous media dimensions. Heights are considered accurate to within
±0.5 cm and angles are considered accurate to within ±0.2◦.

θ Height, cm

(deg) HL,upper HLlower
HR,upper HR,lower

0 26.0 22.0 26.0 22.0

5 21.3 26.7 31.5 16.5

10 16.0 32.0 36.6 11.4

15 8.6 39.4 40.0 8.0

section 3.6. Finally, in section 3.7 we summarize and discuss the key findings and

applications of this study.

3.3 Experimental procedure

3.3.1 Experimental setup

Experiments were performed using a transparent rectangular box of dimensions 118 cm

long × 7.6 cm wide × 60 cm deep filled with spherical beads (Potters Industries

A Series Premium) as shown in figure 3.2. The beads in the upper layer were

d1 = 3.0± 0.2mm in diameter and those in the lower layer were d2 = 1.0± 0.2mm in

diameter. The bead density, as specified by the manufacturer, was 1.54 g/cm3. The
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entire porous medium was saturated with tap water having a density of approximately

ρo = 0.998 g/cm3. The layers were separated by a distinct interface, which we refer

to as the permeability jump. Upper and lower layer permeabilities were determined

based on the empirical relationship proposed by Kozeny and Carman, and discussed

in Dullien (1979), i.e.

ki =
d2iϕ

3

180(1− ϕ)2

where i = 1, 2 corresponds to the upper and lower layer, respectively. For all exper-

iments conducted here, the value of the permeability ratio, K = k2/k1 ∝ d22/d
2
1 was

kept fixed at 0.11. The heterogeneous medium was varied by changing the angle, θ, of

the permeability jump, which, in turn, had the effect of changing the vertical distances

HL,upper, HL,lower, HR,upper, HR,lower defined schematically in figure 3.1 a and quantita-

tively in table 3.1. In all cases, HL,lower +HL,upper = HR,lower +HR,upper = H = 47 cm

where H represents the combined depth of the upper and lower layers.

As depicted in figure 3.2, dense source fluid was supplied at the top of the upper

layer using a line source nozzle that spanned the tank width of 6.45 cm. The nozzle

was designed in such a manner that it produced a uniform flow along its length

even at small flow rates (Roes, 2014). For each of the permeability jump angles

prescribed in table 3.1, experiments were performed by positioning the nozzle (source)

at various horizontal locations. Using non-dimensional variables, the source location

is characterized by X∗
s = Xs/L, where L = 118 cm is the inside box length and Xs is

the corresponding horizontal position of the nozzle midplane measured relative to the

updip end wall. Adjusting the nozzle location allowed us to perform experiments for

various effective lower layer depths and to study the influence of sidewall boundaries

on the flow behavior.

Dense source fluid was prepared by mixing a precalculated mass of salt into tap

water in a 100L reservoir. The density of the resulting solution, ρs, was measured to

an accuracy of 0.00005 g/cm3 using an Anton Paar DMA 4500 densitometer. More-

over, and for purposes of flow visualization, a small amount of cold-water dye (Pro-
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cion MX) was added to the salt-water solution. The dye concentration (determined

with reference to the calibration curves of Appendix B.2) was small enough that it

did not significantly alter the plume source density. The dyed, salt-water was then

pumped into an overhead bucket using a centrifugal pump (Little Gaint Pump Co.,

Model 3-MD). Inside of the bucket was placed a cylindrical weir whose purpose was

to maintain a constant elevation of fluid inside the bucket. Fluid flowing over the

weir was returned to the reservoir thereby assuring well-mixed conditions over the

3 to 5 hours of duration of each experiment. Fluid not flowing over the weir was

discharged through 12.7mm inner diameter tubing to the plume nozzle after first

passing through a flow-control needle valve (0.5 inch, Swagelok SS-8GUF8), a flow

meter (Gilmont GV-2119-S-P) and an on/off ball valve (0.5 inch, Kebechem). The

flow parameters of interest are the source volume flux, Qs, and the source reduced

gravity, g′s = g(ρs − ρo)/ρo ≪ g, where g is gravitational acceleration. A detailed list

of experimental parameters for different source conditions and porous media config-

urations is described in table B.1 of Appendix B.1.

3.3.2 Image capture

Experimental snapshots were captured using a Canon Rebel EOST2i 18.0PM with an

18-55mm IS II zoom lens, which collected images every 30 s. Uniform intensity back-

lighting was achieved using a 3M1880 overhead projector, whose head was situated at

the box center, i.e. at respective horizontal and vertical distances of 60 cm and 25 cm

from the box lower left hand corner. The projector was located 150 cm behind the

box. The backside of the box was covered with tracing paper, which served to diffuse

the incoming light. Images captured using the Canon Rebel camera were standard

RGB, 720×400 pixels in size and had a resolution of 72 dpi. They were post-processed

in Matlab where all of the images corresponding to a particular experimental set

were first cropped to remove unwanted regions outside of the flow domain. The

images were then corrected by subtracting away a reference image (collected before
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Figure 3.3: [Color] Snapshot images (false-color) for θ = 15◦ with source conditions
Qs = 1.01 ± 0.02 cm3/s and g′s = 20.1 ± 0.9 cm/s2 illustrating the time evolution of
a canonical experiment. (a) Fluid discharged by the plume propagates as a pair of
up- and downdip primary gravity currents and also drains into the lower layer. (b)
A greater fraction of the discharged plume fluid drains into the lower layer as the
primary gravity currents approach their respective runout lengths. (c) Formation of
secondary gravity currents following contact by the draining fluid with the bottom
(impermeable) boundary. The remobilization of the primary gravity currents occurs
thereafter. (d) Vertical advection of discharged plume fluid towards the source, which
occurs after the primary and secondary gravity currents reach the box sidewalls. The
filling process is characterized by a “first front” that separates contaminated fluid
(below) from uncontaminated ambient fluid (above). In all panels, arrows show the
dominant flow directions. The dashed line of (a) and the dotted line of (c) respectively
indicate the lines along which ITS (e.g. figure 3.4 a) and HTS (e.g. figure 3.4 b) images
are collected.

the initiation of flow). This step removed any systematic spatial variations in the

light intensity e.g. due to some localized “dark spot” within the bead pack. Finally,

images were converted to false-color and the pixel intensities were normalized so that

they ranged from 0 to 1.

3.3.3 Analysis of snapshot and time series images

A true color snapshot of an experiment with θ = 15◦ is shown in figure 3.1 b. The

source conditions measure Qs = 1.01±0.02 cm3/s and g′s = 20.1±0.9 cm/s2 – see E50

in table B.1. Figure 3.3 shows a sequence of false-color snapshot images for this case.

The source fluid from the nozzle descends as a negatively buoyant plume from the
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Figure 3.4: [Color] (a) Inclined time series (ITS) image and (b) horizontal time series
(HTS) image, constructed from 390 snapshot images corresponding to the experiment
of figure 3.3 and used to analyze the up- and downdip propagation of the primary and
secondary gravity currents. The meaning of the red and yellow contours in (a) and
of the green contour in (b) is explained in the text. The inset figure in (a) illustrates
the flow behavior at early times.
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nozzle. The plume fluid, upon striking the permeability jump, propagates either up-

or downdip as a leaky gravity current or else drains directly into the lower layer, as

shown in figure 3.3 a. The along-slope flow dynamics of the primary gravity currents

are studied by plotting the nose positions, both up- and downdip, as functions of

time. Facilitating this process, we construct inclined time series (ITS) images using

the methodology summarized in Bharath et al. (2020). In brief, a diagonal line of

slope tan θ is drawn two or three pixels above the permeability jump. From the

sequence of snapshot images, we then track the change of pixel intensity along this

diagonal line, a process that results in ITS images such as that of figure 3.4 a. In

contrast to the snapshot images of figure 3.3, which make reference to horizontal (X)

and vertical (Z) coordinates, ITS images measure the flow evolution with reference

to an along-slope coordinate, x = X/cos θ. Note that, in figure 3.4 a, xs = 25.9 cm

is defined to coincide with the location of the nozzle (located at Xs = 25.0 cm) so

that xs < 25.9 cm and xs > 25.9 cm correspond, respectively, to the up- and downdip

directions.

Figure 3.4 a is derived from figure 3.3 and includes two contour lines. The red con-

tour corresponds to the primary gravity current “bulk interface”, and indicates the

boundary above which the pixel intensity is both large and nearly uniform in space

and time. As described in quantitative detail in Appendix B.2, we consider the solute

concentration to be a direct function of the dye concentration. Because the solute

concentration is a surrogate for the fluid density, we surmise that the density (or re-

duced gravity) of the fluid above the red contour is approximately uniform. We refer

to the fluid appearing above the red contour as the bulk fluid. Conversely, the yellow

contour of figure 3.4 a is referred to as the “dispersed interface”; it separates uncon-

taminated ambient fluid (having a pixel intensity at or near zero), from contaminated

fluid consisting of discharged plume fluid that has been substantially diluted through

process of dispersion – c.f. Sahu & Neufeld (2020). The red and yellow contours of

figure 3.4 a were defined by considering pixel intensity thresholds of 0.85 and 0.005,
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respectively. These threshold values give consistent results when considering the en-

tirety of our experimental data set. The region between the red and yellow contours

shows a non-trivial variation of pixel intensity, suggesting that the density variation is

non-monotone in both space and time. The associated mixing is due to the fact that

the interface is not, as is often assumed in theory (Goda & Sato, 2011), sharp but

rather miscible. As such, molecular diffusion and, more importantly, hydrodynamic

dispersion causes a “smearing” of the solute concentration in the vicinity of the inter-

face. In particular, longitudinal dispersion is especially important as the (downdip)

gravity current speed increases. We refer to the fluid impacted by dispersion, i.e. the

fluid located between the red and yellow contours, as dispersed fluid.

For sufficiently large lower layer depths, the noses of the up- and downdip primary

gravity currents reach their respective runout lengths, as indicated by the snapshot

image of figure 3.3 b. In the interest of quantifying the runout lengths corresponding

to each of the interfaces identified above we refer to the ITS image in figure 3.4 a. The

red contour becomes vertical at the point where the bulk interface reaches runout.

A similar trend is observed for the dispersed interface except that here, runout is

achieved only on the updip side. Not surprisingly, the gravity current nose corre-

sponding to the bulk interface on the downdip side travels a greater distance than

does its updip counterpart as illustrated in the inset of figure 3.4 a. By contrast, the

updip flow achieves runout in less time.

The phenomenon of runout, whereby the volume of fluid supplied to the (primary)

gravity current(s) is balanced by basal draining has been previously reported by

numerous other researchers (Pritchard et al., 2001; Goda & Sato, 2011; Sahu & Flynn,

2017; Bharath et al., 2020). Notable in this study is that the draining fluid does

not fall indefinitely. Rather, and as illustrated in figure 3.3 c, it eventually strikes

the lower (impermeable) boundary leading to the formation of a pair of secondary

gravity currents. To analyze the flow dynamics of these secondary gravity currents,

we construct horizontal time series (HTS) images, as shown in figure 3.4 b. HTS
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images are constructed by considering the temporal variation of pixel intensity along a

horizontal line located two or three pixels above the bottom boundary (see the dotted

lines in figure 3.3 c). In contrast to the (dispersive) primary gravity currents, the noses

of the secondary gravity currents are tracked using a single interface, considering a

pixel intensity threshold of 0.85 which is indicated as the green contour in figure 3.4 b.

Also apparent in figure 3.4 b is evidence of basal draining, which presents as the

patch of relatively bright pixels below the green contour for X ≳ 90 cm. The relative

importance to lower layer filling of basal draining vs. secondary gravity current advec-

tion depends on the experimental parameters, most especially θ, g′s and Xs. To this

end, note that basal draining is often slow but the vertical distances involved may

be relatively short. The horizontal advection speed may be larger by comparison but

secondary gravity currents often travel long distances depending on the horizontal

location of the plume source. When, as in figure 3.3, θ is relatively large and g′s is

small, the (downdip) primary gravity current experiences nontrivial dispersion. The

resulting dispersed fluid likewise flows downdip and reaches the (right) sidewall well

ahead of the secondary gravity current leading to the draining pattern evident in

figure 3.4 b. The dispersed fluid in question can also move upwards, i.e. from figure

3.3 d we note the formation in the upper layer of a vertically ascending “first front”.

The formation of this first front represents the beginning of the filling process for the

upper layer. Because upper layer filling initiates before the filling of the lower layer is

complete, we categorize the experiment of figures 3.3 and 3.4 as an example of simul-

taneous filling. By contrast, sequential filling arises when the nose of the secondary

gravity current reaches the sidewall boundary well before the nose of the primary

gravity current. A precise method for distinguishing between cases of simultaneous

vs. sequential filling is discussed in Appendix B.4.
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3.3.4 Length and time scales

Whereas the discussion thus far has emphasized dimensional variables, it is advanta-

geous to define characteristic spatial and temporal scales to non-dimensionalize the

parameters of interest. For the primary and secondary gravity currents, characteristic

length and time2 scales are respectively defined as

SX = L and TX =
qc
ϕβ2

(3.1)

where L is the box length. In (3.1), the plume volume flux, qc, evaluated at the

permeability jump is given by (2.24) of Sahu & Flynn (2015), i.e.

qc =
[︂(︂16Fsk1

πν

)︂2
ϕα(Ĥ + Zs)

]︂1/4
(3.2)

and for along-slope flows, the velocity factor is given by β = (k1g
′
c)/ν (Huppert &

Woods, 1995). The reduced gravity, g′c, evaluated at the permeability jump is given

by (2.25) of Sahu & Flynn (2015). More formally, therefore, β is given by

β =
k1
ϕν

[︂(︂πFsν

16k1

)︂2 1

ϕα(Ĥ + Zs)

]︂1/4
(3.3)

In the above equations, Ĥ = HL,upper +Xs tan θ is the vertical distance between the

plume source and the permeability jump. Also, the source buoyancy flux per unit

width is Fs = qsg
′
s, where qs is the source volume flux per unit nozzle width. Moreover,

the finite source correction term,

Zs =
1

ϕα

(︂ πν

16Fsk1

)︂2
q4s

is evaluated with reference to qs and the kinematic viscosity, ν. From (4b) of Delgado

(2007), and accounting for the fact that the plume is dispersion-dominant for all the

experiments in this study, we take the transverse dispersivity to be α ≈ 0.025d1 in

2The time scales processes occuring post-remobilization are different from that corresponding to
early-time spreading. On the other hand, and for the sake of plotting and comparing the results
related to both early- and late-time dynamics in the same plot, we adopt the early-time time scale
for non-dimensionalizng parameters related to the motion of the gravity currents (both in the upper-
and lower-layers) and the draining flows.
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which d1 is the mean diameter of the beads in the upper layer. Finally, a porosity of

ϕ = 0.38 is assumed corresponding to beads that are randomly distributed (Happel

& Brenner, 1983).

For the filling box analysis, a different pair of characteristic length and time scales

must be considered. These are

SZ = H and TZ =
ϕLH

qs
(3.4)

respectively, where H is the total height of the porous media. Note that, TZ corre-

sponds to the residence time based on the plume source volume flux and the porous

medium void volume.

In the discussion to follow, a separate notation will be employed when non-dimensionalizing

time (t) with TX vs. TZ . More specifically, we shall write t∗ = t/TX and t̂ = t/TZ .

3.4 Gravity current analysis

3.4.1 Primary vs. secondary gravity currents, qualitative com-
parison

In order to characterize the behaviour of the gravity currents in the upper and lower

layers, it is helpful to contrast the evolution of nose position as shown in figure 3.5.

Figures 3.5 a,b correspond to g′s = 20.1 ± 0.9 cm/s2 (the same experiment shown in

figure 3.3) and figures 3.5 c,d correspond to g′s = 80.1 ± 0.9 cm/s2. In both cases,

θ = 15◦ and Qs = 1.01 ± 0.02 cm3/s – see E50 and E58 of table B.1. Although

the primary gravity currents propagate along the sloping permeability jump, for the

purposes of drawing an even dynamical comparison figure 3.5 resolves the flow of the

primary (and secondary) gravity currents relative to the horizontal coordinate, X. In

turn, the horizontal and vertical axes of figure 3.5 are respectively non-dimensionalized

using the characteristic length and time scales defined in (3.1). In the former case, we

set X∗ = (X −Xs)/L, such that X∗ = 0 indicates the plume source location. Thus

X∗ < 0 corresponds to the updip side (figures 3.5 a,c) and X∗ > 0 corresponds to the
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Figure 3.5: Time variation of the nose positions of the primary (squares) and sec-
ondary (diamonds) gravity currents for θ = 15◦ and Qs = 1.01± 0.02 cm3/s. Closed
and open squares correspond, respectively, to the bulk and dispersed interfaces.
(a) Updip, g′s = 20.1 ± 0.9 cm/s2, (b) downdip, g′s = 20.1 ± 0.9 cm/s2, (c) updip,
g′s = 80.1 ± 0.9 cm/s2 and (d) downdip, g′s = 80.1 ± 0.9 cm/s2. The variables t∗ro,u,
t∗ro,d, t

∗
rm,u, t

∗
rm,d and t∗dr are defined in text. The inset figure in panel (b) shows a

close-up view of the early time dynamics.

downdip side (figures 3.5 c,d). In all cases, t∗ = 0 indicates the time instant when the

plume first strikes the permeability jump.

In addition to differentiating between the primary (squares) and secondary (dia-

monds) gravity currents, figure 3.5 also distinguishes between the noses associated
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with interfaces classified as bulk (solid squares) vs. dispersed (open squares). The

bulk interface noses of the primary gravity current reach their runout lengths at

nondimensional times t∗ro. Consistent with the above remarks, t∗ro,d > t∗ro,u, where ‘u’

and ‘d’ correspond, respectively, to updip and downdip. Along the downdip side, and

for t∗ > t∗ro,d, the bulk interface nose of the primary gravity current remains fixed until

such time as it gets remobilized by the secondary gravity current, a process described

in more detail below. In contrast, and as observed for g′s = 20.1± 0.9 cm/s2, the nose

corresponding to the downdip dispersed interface continues to propagate with only a

moderate deceleration until it reaches the sidewall boundary (figure 3.5 b). Indeed,

runout is realized with the dispersed interface only when (i) we examine the counter-

part updip flow (figure 3.5 a), or, (ii) we increase the source reduced gravity e.g. from

g′s = 20.1± 0.9 cm/s2 (figures 3.5 a,b) to g′s = 80.1± 0.9 cm/s2 (figures 3.5 c,d).

In the lower layer, meanwhile, the draining fluid makes contact with the bottom

boundary at t∗ = t∗dr, and thereafter, propagates as a pair of oppositely-directed

secondary gravity currents. At t∗rm,d (> t∗dr), the secondary gravity current arising

on the downdip side remobilizes the previously arrested primary gravity current. At

the point of remobilization, figures 3.5 b and d indicate that the secondary gravity

current leads the primary gravity current by a horizontal distance that we shall refer

to as the lead length. Corresponding to this lead length, we define a lead angle, Φ, in

the manner suggested by figure 3.1 a. (Note that Φ does not, in general, correspond

to the angle made by the fluid draining into the lower layer.) On the updip side, and

owing to the horizontal position of the nozzle, the secondary gravity current travels

a shorter distance in X∗. Consequently, remobilization is delayed and arises only

after the secondary gravity current has collided with the sidewall boundary leading

to a steady accumulation of draining fluid and the vertical ascent of the first front

through the lower layer. Note finally that the methodology for determining precisely

the runout and remobilization times is summarized in Appendix B.3.
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Figure 3.6: (a) Nose positions for the bulk interface of the primary gravity current.
Timeseries corresponding to various lower layer depths, H∗

lower, are compared. (b)
t∗dr/t

∗
ro,d vs. H

∗
lower. The shaded region indicates the parametric range where we expect

runout to be bypassed. The experiments correspond to θ = 15◦ and cases E49 – E53
from table B.1.

3.4.2 Primary vs. secondary gravity currents, quantitative
comparison

The lower layer depth, H∗
lower, as characterized by its value measured directly be-

low the nozzle and further non-dimensionalized by the total height, H, has a sig-

nificant influence on the early time flow dynamics of the primary gravity current,

i.e. for t∗ ≤ t∗ro,d. Consider, for example, figure 3.6 a, which considers five different

values for the lower layer depth spanning the range 0.45 ≤ H∗
lower ≤ 0.70. Runout is

achieved for sufficiently large H∗
lower. Moreover, the time required for remobilization,

t∗rm,d, increases with the lower layer depth. When H∗
lower is small, however, runout is

bypassed, a process we refer to as runout override. Thus when H∗
lower = 0.51 or 0.45,

the nose of the primary gravity current propagates, albeit unsteadily, without ever

becoming arrested. In assessing whether runout will or will not occur, a comparison

must be made between t∗ro,d and t∗dr, only the latter of which depends (approximately

linearly) on H∗
lower. The comparison in question appears in figure 3.6 b where, for

those experiments experiencing runout override, we suppose a value for t∗ro,d that is
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Figure 3.7: Variation of Φ, as defined in figure 3.1 a, with g′s for different θ. Open
and closed symbols correspond to Qs = 0.51 ± 0.02 cm3/s and 1.01 ± 0.02 cm3/s,
respectively. A representative error bar is shown in the lower right-hand corner.

consistent with the companion data sets of figure 3.6 a. When t∗dr/t
∗
ro,d ≲ 1 runout

override is expected as indicated by the gray-shaded region in figure 3.6 b.

The lead angle, Φ, is plotted vs. g′s for various permeability jump angles, θ, in

figure 3.7. The trend of the data is roughly linear with larger values of the lead angle

occurring for smaller values of Qs. Figure 3.7 suggests that the lead angle varies

most strongly with g′s followed by Qs and followed finally by θ, the permeability

jump angle exerting only a minor influence. Note also that the importance of the

source volume flux is modulated by the source reduced gravity: whereas there is a

significant disparity between the small vs. large Qs data when g′s = 20.1± 0.9 cm/s2,

this difference largely disappears for larger g′s.

For t∗ > t∗rm,d, the front speed of the bulk fluid from the downdip primary gravity

current is compared against the speed of the secondary gravity current in figure 3.8.

The velocities of the primary and secondary gravity currents are both measured with

respect to the horizontal and are both non-dimensionalized by the velocity factor β

defined in (3.3). When the lead angle is relatively small, e.g. when Qs = 1.01 ±

0.02 cm3/s and g′s = 20.1 ± 0.9 cm/s2, the primary and secondary gravity currents
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Figure 3.8: [Color] Non-dimensional downdip front velocity, v∗, vs. θ for different
source conditions. The closed symbols denote the primary gravity current, and the
open symbols denote the secondary gravity current. When the two gravity currents do
not coexist, the marker symbols of both the primary and secondary gravity currents
include a superimposed red cross. A representative error bar is shown in the bottom
right-hand side corner.

coexist and therefore exhibit approximately equal propagation speeds. When the lead

angle is large, by contrast, the primary gravity current will, in general, only remobilize

when the nose of the secondary gravity current is very close to, or has already collided

with, the sidewall boundary. In such instances of non-coexistence, figure 3.8 exhibits a

comparatively large range of primary gravity current speeds even as the (normalized)

speeds of the secondary gravity currents remain nearly constant. In particular, there

are situations (inset, downward-facing triangles) where the speeds of the primary and

secondary gravity currents are approximately equal even though the gravity current

pair is classified as being of non-coexistence type. Note also that the primary gravity

current speed increases roughly linearly with θ, an obvious reflection of the fact that

larger permeability jump angles admit a more ready conversion of potential to kinetic

energy. Also, and because the total height of our porous medium is fixed, large

θ is associated with small HR,lower – see table 3.1. Correspondingly, fluid from the

secondary gravity current has a relatively small vertical distance over which to advect

79



Figure 3.9: Evolution of the average draining length, l̄
∗
, with t∗ for various g′s with

θ = 0◦ and Qs = 1.01± 0.02 cm3/s. The average slope of the data (as measured over
the interval 0.5 ≤ t∗(×102) ≤ 2) is reported. The adjoining table indicates the slope
values measured for other combinations of θ and Qs.

before striking the permeability jump. As the fluid in question nears the permeability

jump, it has a correspondingly larger influence on the bulk fluid of the primary gravity

current for two reasons. Firstly, the streamlines describing draining from the primary

gravity current become deflected downdip. Secondly, with relatively less ambient fluid

to displace from the lower layer, a greater fraction of the discharged plume fluid flows

into the primary gravity current rather than into the lower layer. By both of these

effects, we expect (and observe) the speed of the primary gravity current to increase

with θ.

3.5 Draining phenomenon and filling box flow

3.5.1 Characterization of the draining flow

To predict the speed of descent of the fluid draining through the lower layer, it is

necessary to define an average draining length as

l̄(t) =
1

xNd
(t)− xNu(t)

∫︂ xNd
(t)

−xNu (t)

l(x̃, t) dx̃ (3.5)
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Figure 3.10: [Color] Downdip filling mode as a function of nozzle position, source
reduced gravity and permeability jump angle. The red symbols indicate simultaneous
filling, while the blue symbols indicate sequential filling. The gray region separating
the red and blue symbols signifies a transition region.

where xNu and xNd
are, respectively, the up- and downdip nose positions of the bulk

interface and l is the vertical distance traversed by the draining fluid as measured

relative to the permeability jump. The time variation of the non-dimensional average

drain length, l̄
∗ ≡ l̄/H, is shown in figure 3.9 for a variety of source conditions.

Consistent with figure 3.6 b and the study by Acton et al. (2001), l̄
∗
shows a linear

increase with time, except at very early times (not shown in figure 3.9).

3.5.2 Simultaneous vs. sequential filling

In section 3.3.3, we suggested that the filling of the two-layer porous medium could be

classified as simultaneous or sequential depending on whether or not the upper and

lower layers fill concurrently. Drawing such a distinction is important for the following

reason: our analysis has assumed as the dominant dynamical balance buoyancy and

viscosity, however, there are other scenarios (Golding et al., 2011; Burnside & Naylor,

2014; Krevor et al., 2015) where capillarity is expected to play a non-subordinate

role. In such cases, residual trapping of the injectate is expected to be important.

The amount of trapping is found to vary according to whether the intruding flow
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Figure 3.11: [Color] Lower- (a) and upper- (b) bound estimates of the non-dimensional
filling box time plotted as a function of the permeability jump angle, θ, and the source
position, X∗

s . Two values for the source reduced gravity, g′s, are considered where,
in either case, Qs = 1.01 ± 0.02 cm3/s. To show the lower surface more clearly, the
upper surface is purposely made semi-transparent in both plots.

is primarily horizontal vs. vertical (Adebayo et al., 2017). Because sequential and

simultaneous filling are associated with different proportions of horizontal vs. vertical

flow, the details of the filling mode will, for this more general case of intermediate

Bond number, influence the degree of residual trapping.

A rigorous way of distinguishing sequential vs. simultaneous filling is discussed

in Appendix B.4. On this basis, an assessment can be made of the filling mode

for each of the experiments performed. A summary of results, pertinent to Qs =

1.01 ± 0.02 cm3/s, is presented in figure 3.10 (see also table B.1 of Appendix B.1).

The horizontal axes of figure 3.10 indicate the nozzle position and source reduced

gravity, whereas the vertical axis indicates the permeability jump angle. The red and

blue symbols respectively indicate cases of simultaneous and sequential filling. The

gray region indicates a transition region from one filling mode to the other.

When the source reduced gravity is low or moderate, such as for g′s = 20.1 ±

0.9 cm/s2, the primary gravity current experiences significant dispersion and the nose

of the dispersed fluid collides with the sidewall boundary well before the nose of
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the secondary gravity current – c.f. figure 3.5 b. Thus the upper layer begins to fill

well before the secondary layer is filled with contaminated fluid. Generalizing, si-

multaneous filling is anticipated for small g′s irrespective of the nozzle position or

permeability jump angle. By contrast, the tendency for sequential filling is greater

when the source reduced gravity is comparatively large implying (i) shorter runout

lengths for the bulk fluid, and, (ii) the possibility of runout for the dispersed fluid –

see figure 3.5 d. Note, however, that sequential filing is realized in actual fact only

when the nozzle is shifted updip. Regarding the influence of θ, figure 3.10 indicates

that the filling mode changes as a result of adjusting θ only in the following instance:

θ = 0◦ to θ = 5◦ for g′s = 80 cm/s2 and the nozzle located at the center of the tank.

Figure 3.10 makes clear the fact that simultaneous filling occurs for small g′s, large

θ and downdip-shifted nozzles. By contrast, sequential filling is favored for large g′s,

small θ and a nozzle shifted updip.

The surface plots of figure 3.11 show the normalized filling box time, t̂fb, as a

function of θ and X∗
s where both large and small values of g′s are considered. We

define the filling box time as the time taken for the first front propagating through

the upper layer to reach a vertical height corresponding to the approximate upper

boundary of the porous medium, i.e. Z∗ = 0.99. Complications arise because the first

front is not always horizontal; rather, the upper layer may fill faster in the vicinity

of the sidewall boundaries and more slowly in the neighborhood of the plume. This

phenomenon is more prevalent for small g′s and persists even in the limit of large

first front elevations – see figures B3 a,c. For these reasons, we define in figure 3.11

the two following filling box times: (i) t̂fb↓ from figure 3.11 a represents a lower-bound

estimate to the filling box time that is defined as the time when any portion of the first

front (whether to the left or right of the descending plume) first reaches the elevation

Z∗ = 0.99; (ii) t̂fb↑ from figure 3.11 b represents an upper-bound estimate to the filling

box time that is defined as the time when the entirety of the first front first has reached

Z∗ = 0.99. The filling box times exhibited in figures 3.11 a,b exhibit minor variations
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with θ and X∗
s , however, a more interesting variety appears when considering the

influence of the source reduced gravity. To wit, t̂fb↓(g
′
s = 20.1±0.9 cm/s2) < t̂fb↓(g

′
s =

80.1± 0.9 cm/s2) but t̂fb↑(g
′
s = 20.1± 0.9 cm/s2) > t̂fb↑(g

′
s = 80.1± 0.9 cm/s2). When

g′s = 20.1± 0.9 cm/s2, the filling mode is always simultaneous and flows, particularly

of the primary gravity currents, are characterized by ample dispersion. As a result,

and although the upper layer fills relatively quickly with contaminated fluid, it does

so non-uniformly. In other words, an abundance of contaminated fluid accumulates

along the right sidewall boundary because the potential energy penalty associated

with a significantly-deflected first front is small. Thus, it takes relatively little time

for the first front to first reach Z∗ = 0.99 but appreciably more time for the entirety

of the first front to reach this elevation. The situation for g′s = 80.1 ± 0.9 cm/s2 is

rather different. Here, less dispersion arises and, according to figure 3.10, the filling

mode may be either simultaneous or sequential. In either case, the slope of the first

front is smaller than when g′s = 20.1± 0.9 cm/s2. Correspondingly, the gap between

t̂fb↓ and t̂fb↑ is smaller by comparison.

3.5.3 Plume deflection

In section 3.2, reference was made to plumes that become deflected as a result of a

background mean flow (Weaver & Wilson, 2000; Van Stempvoort et al., 2013) and/or

stratigraphic steering (Morgan et al., 2008; Kamath et al., 2012). Motivated by recent

observations of turbulent, non-porous media plumes made by Akhter & Kaye (2020),

we now explore a further possibility, namely that a plume becomes deflected as a

result of a hydrostatic pressure imbalance associated with fluid discharge from the

selfsame plume.

When θ = 0◦ and the nozzle is centrally located, there exists, not surprisingly, a

flow symmetry about X∗
s = 0.5 – c.f. figures 5 a - c of Sahu & Flynn (2017). This

symmetry can be broken by adjusting θ and/or the location of the plume nozzle.

Figures 3.12 a - c show experimental snapshot images where θ = 15◦ and the nozzle is
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Figure 3.12: [Color] False-color snapshot images showing the deflection of the plume
when the source is located (a) updip at X∗

s = 0.25, (b) centrally at X∗
s = 0.5 and

(c) downdip at X∗
s = 0.75. The red arrows indicate the magnitude of the plume

deflection. The deflection angle, ψ, is defined in (c). Experimental parameters are as
follows: θ = 15◦, g′s = 20.1± 0.9 cm/s2 and Qs = 1.01± 0.02 cm3/s.

situated at X∗
s = 0.25, 0.5 and 0.75, respectively.

In figures 3.12 a - c, the nozzle is, respectively, shifted up- to downdip, but there

is an opposite trend when considering the plume deflection. By contrast with the

case of a flat permeability jump, figure 3.12 b confirms that an (updip) deflection of

85



the plume is possible even when the nozzle is centrally located. When the plume

is not centrally located, figures 3.12 a,c confirm that the deflection direction is away

from the closer sidewall boundary. Interestingly, precisely the opposite trend was

noted in the recent filling box experiments of Akhter & Kaye (2020), who considered

turbulent non-porous media plumes and observed that the deflection direction was

towards, not away from, this adjacent sidewall boundary. In summarizing Akhter

& Kaye (2020)’s explanation of their observations, reference is made to the short

and long sides, which respectively indicate the sides of the experimental tank having

the shorter vs. longer horizontal distances from the descending plume to a sidewall

boundary. Regarding the discharged plume fluid that accumulated along the bottom

of their box, Akhter & Kaye (2020) noted that the depth of this layer was larger on

the short side vs. the long side. They surmised that the resulting hydrostatic pressure

imbalance led to a net circulation inside their filling box: at depth, dense fluid flowed

from the short to the long side resulting in an oppositely-directed return flow of

ambient fluid close to the plume source. Because our experiments are characterized by

upper and lower layers, they admit a greater variety in terms of return flow pathways.

Moreover, any overall circulation that develops within our filling box is expected to

be comparatively weaker than in Akhter & Kaye (2020)’s experiments owing to the

retarding influence of the porous medium. Correspondingly, and when the plume is

shifted off-centre, we observe a deflection only in the direction of the long side. In the

process, there arises the interesting scenario illustrated in figure 3.12 c (and also figure

3.12 b) whereby the plume bends towards, rather than away from, the (lower) layer

of smaller permeability. This observation runs contrary to the pattern of streamline

deflection that is associated with flow focusing whereby the flow is attracted to lenses

of higher permeability – see e.g. figure 3.11A of Phillips (1991).

Seeking to quantify the effects illustrated in figure 3.12, we define a plume deflection

angle, ψ, in the manner suggested by figure 3.12 c. When the plume deflects updip

(downdip), ψ assumes a negative (positive) value. The time variation of ψ for the
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Figure 3.13: (a) Variation of the plume deflection angle, ψ, as a function of time for the
experiment illustrated in figure 3.12 c. (b) The magnitude-maximum deflection angle,
ψmax, plotted as function of permeability jump angle and nozzle location. Closed and
open symbols respectively show g′s = 20.1 ± 0.9 cm/s2 and 80.1 ± 0.9 cm/s2. In (b),
symbols are connected by lines only for the sake identifying, more clearly, trends
within the data; the lines do not suggest a curve fit. Representative error bars are
shown in the lower right-hand corner of each plot.

experiment illustrated in figure 3.12 c, is exhibited in figure 3.13 a. Initially, the

plume shows no deflection; at t̂ = 0.04 the plume starts to deflect updip and there

is a corresponding increase in the magnitude of ψ. For t̂ ≳ 0.2, ψ approaches its

asymptotic value corresponding, in magnitude, to a maximum deflection angle, ψmax.

In figure 3.13 b, ψmax values are plotted vs. θ. In this same plot, comparisons are made

against two different source reduced gravities corresponding to g′s = 20.1±0.9 (closed

symbols) and 80.1± 0.9 cm/s2 (open symbols). It is observed that the magnitude of

ψmax typically increases with θ. Also, when the nozzle is shifted updip, the plume

deflects downdip such that ψmax > 0 ◦. By contrast, ψmax < 0◦ when the nozzle is

located at the center of the box or is shifted downdip. For fixed source conditions,

this latter case is associated with the largest values for |ψmax|. When the source

conditions are not fixed, ψmax depends strongly on the source reduced gravity: for

g′s = 80.1± 0.9 cm/s2, the magnitude of plume deflection is significantly less than in

the g′s = 20.1±0.9 cm/s2 case. Plumes containing comparatively dense fluid are more
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difficult to deflect and tend, therefore, to assume more of a vertical trajectory.

The deflection of the plume is expected to have a relatively minor impact on the

overall entrainment of ambient fluid. When the plume deflects, (i) the path length

increases, but, (ii) the plume centerline velocity decreases. Because the former and

latter effects respectively serve to increase and decrease the rate of entrainment, we

anticipate, by analogy with angled turbulent plumes (Lee & Chu, 2003), the net

contribution to be even. On the other hand, once the plume becomes deflected, the

balance of discharged plume fluid flowing up- vs. downdip must adjust, which may,

in turn, impact the subsequent rate of filling of the upper and lower layers. Such

considerations are especially relevant in the context of figures 3.12 a,c. In the former

figure, the plume deflects downdip suggesting a more rapid filling of the upper layer in

the neighborhood of the right sidewall boundary and a smaller value for t̂fb↓. Precisely

the opposite trend is expected in figure 3.12 c where the plume deflects updip, which

has the effect of (i) directing more dense fluid towards the left sidewall boundary,

(ii) reducing the left-to-right difference in the elevation of the first front, and, (iii)

increasing t̂fb↓.

3.6 Discussion

To this point, we have discussed three ostensibly distinct aspects of porous media

filling box flows namely (i) the runout and subsequent remobilization of the primary

gravity currents, (ii) the filling mode, be this simultaneous or sequential, and, (iii)

the deflection of the descending plume. In fact, (i), (ii) and (iii) are all tightly

interconnected. For example, the stasis characterizing runout is interrupted only

when sufficient dense fluid has drained into the lower layer and, for example, the

lead angle, Φ, defined by figure 3.7 is exceeded. Thus the initial filling of the lower

layer has a direct impact on the process of remobilization and, more generally, the

gravity current flows observed along the permeability jump. On the other hand, it

is the competition between the primary and secondary gravity currents that dictates
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whether the first contaminated fluid to reach the downdip sidewall boundary does so

along the permeability jump or along the bottom of the box. In this way, the motion

of the gravity currents (complicated by the process of dispersion in the upper layer)

determines whether or not the upper layer begins to fill before the filling process is

complete in the lower layer. Finally, and as highlighted most especially by figure 3.12,

plume deflection arises precisely because of left-to-right asymmetries in the manner

in which the upper layer fills with contaminated fluid. On the other hand, once the

plume is deflected, the proportion of discharged plume fluid directed up- vs. downdip

will adjust. In turn, such an adjustment increases the volume of dense fluid supplied to

the updip gravity current and impacts the subsequent evolution of the filling process.

As the above explanation makes clear, no single aspect of the filling box dynamics

can be categorized comprehensively without considering the impact of the other two.

Somewhat after-the-fact, this rationalizes why the present analysis is so much more

involved than that summarized in Bharath et al. (2020). In that study, the lower

layer was effectively considered infinitely deep such that the dynamical phenomena of

remobilization, layer filling and plume deflection became moot. On the other hand,

even the more involved analysis considered in the present work examines only two

layers whereas porous media of the type modeled numerically in the hydrogen storage

study of Feldmann et al. (2016) contain many more strata, each of different perme-

ability and thickness. Generalizing our results and the interconnections summarized

above to this more complicated geometrical description remains a challenge to be

conquered in future work.

3.7 Summary and conclusions

We have performed an experimental investigation of buoyancy-driven flows in a two-

layered porous medium where the layers are separated by an inclined permeability

jump. Throughout, the lower layer had a permeability that was 1
9

th
the permeability of

the upper layer. Experiments were conducted under ambient conditions and entailed
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the injection of dense salt water into the saturated porous medium leading to the

formation of a vertically-descending plume plus gravity currents that propagated

along the permeability jump and also along the bottom boundary of the experimental

domain. Flows were visualized by the addition of a small amount of dye to the source

fluid. In turn, we studied the impact of altering the permeability jump angle, the

plume source horizontal location, the source volume flow rate and the source reduced

gravity.

In contrast to previous studies (Goda & Sato, 2011; Bharath et al., 2020) that have

assumed upper and lower layers of great depth, a novel contribution of the present

work is to specifically consider the effect of impermeable boundaries, both lateral

and basal. As such, we focus on the processes of upper- and lower-layer filling. In

the former case, filling follows from the up- and downdip flow of the primary gravity

currents followed by the vertical advection of the first front. In the latter case, filling

is related to the advection of the secondary gravity currents that propagate along the

base of the lower layer. Added to this advection is the contribution of leakage through

the permeability jump, which leads to convection over a broad area. In quantifying the

dynamics of layer filling, time series images were constructed to analyse the evolution

of flow fronts in both the upper and lower layers – see figure 3.4. An additional benefit

of such figures lies in their revelation of primary gravity current dispersion (Sahu &

Neufeld, 2020). Correspondingly and when describing the primary gravity current,

we differentiate between the bulk vs. the dispersed phases. Except when the lower

layer was relatively shallow, the former phase achieved runout, a state of (temporary)

stasis wherein the plume inflow was balanced by basal draining. By contrast, runout

was only observed for the dispersed phase of the primary gravity current when the

plume source density was sufficiently large. Predictions of the runout distance have

been made in previous studies; they were characterized by a permeability jump that

is flat (Goda & Sato, 2011; Sahu & Flynn, 2017) or sloping (Bharath et al., 2020). A

fundamentally new component of our analysis is to characterize the remobilization of
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the primary gravity currents that arises some time after these primary gravity currents

are surpassed by their secondary gravity current counterparts. We characterize, at the

time of remobilization, the separation distance between the primary and secondary

gravity currents by making reference to a lead angle, Φ – see figure 3.1 a. From figure

3.7, we note that Φ varies approximately linearly with the source reduced gravity but

is uninfluenced by the permeability jump angle.

Whatever the particular details of runout and remobilization, comparisons can

be drawn between the motion of the primary and secondary gravity currents – see

e.g. figures 3.5 and 3.6. On the basis of this comparison, we find that when the primary

and secondary gravity currents coexist, they travel at nearly equal velocities that are,

in turn, nearly independent of the permeability jump angle – see figure 3.8. The jump

angle plays a more important dynamical role for the case of non-coexistence, i.e. it

exerts a significant influence on the speed of the remobilized primary gravity current.

In categorizing the nature of the filling in our layered porous medium, we dis-

tinguish between modes described as simultaneous vs. sequential. The differences

between one and the other filling regime are analyzed by considering an example of

each – see e.g. figure B3. From the analysis of figure 3.10, it is observed that simul-

taneous filling is favored when the source reduced gravity is relatively small and the

nozzle is located close to the downdip sidewall boundary. The question of whether

sequential vs. simultaneous filling occurs is important when considering the dynamics

of the lower layer in particular. In sequential filling, most of the filling of the lower

layer is by the horizontal advection of the secondary gravity current. By contrast,

and for simultaneous filling, proportionally more of the lower layer filling is by basal

draining from the overlying primary gravity current. In the abstract, and for real

geological flows, drawing a distinction between simultaneous vs. sequential filling is

important: as highlighted in section 3.5.2, either should be associated with a different

degree of residual trapping, this for the case (not studied here) where capillary effects

make a nontrivial contribution to the flow dynamics.
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Whichever the filling mode, the experimental domain must at some point become

effectively completely filled with contaminated fluid, defined as fluid having a density

larger than that of the ambient fluid that fills the box at the initial instant. The time

for this complete filling is defined as the filling box time, t̂fb i.e. the time required

for the first front rising through the upper layer to very nearly reach the level of the

plume source. In fact, and for the flows examined here, the inclination of the first

front makes defining t̂fb unambiguously somewhat challenging. Rather, we consider

in figure 3.11 lower (t̂fb↓) and upper (t̂fb↑) bound estimates to the filling box time.

Whereas t̂fb↓ and t̂fb↑ vary little with the permeability jump angle and the horizontal

position of the plume source, we find that dispersion causes the difference t̂fb↑ − t̂fb↓

to be much larger when the source reduced gravity is comparatively small.

In a final component of our analysis, we investigated the trajectory of the descend-

ing plume and the manner in which this varies with time due to the filling of the

upper layer. The plume may deflect either up- or downdip depending on the source

reduced gravity and the nozzle location relative to the sidewall boundary. In turn,

the time variation of the plume deflection angle, ψ, and the magnitude-maximum

deflection angle, ψmax, are characterized in figure 3.13.

The observations made in this experimental study help to address some of the

key uncertainties arising from leakage across a permeability jump. In contrast to

numerous previous studies for which the layer defined as our lower layer is either thin

(Pritchard et al., 2001; Farcas & Woods, 2009; Woods & Farcas, 2009) or inifnite

(Goda & Sato, 2011; Bharath et al., 2020), we consider instead a lower layer of

intermediate depth. To this end, we find that the depth of the lower layer is important

e.g. in dictating whether or not a state of intermediate runout is achieved – see figure

3.6. The lower layer depth also influences the manner in which the lower layer fills,

i.e. whether by the advection of the secondary gravity current or else by the process of

basal draining defined above. In studying the intermediate- and late-time dynamics,

we find also that the flow propagation is effected by the sidewall boundaries which
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ultimately impede up- and downdip flow propagation and thereby act as a localized

trap (Buschkuehle, 2005). The filling modes identified in this study help to predict

the time required to fill these traps and, by extension, the adjoining high vs. low

permeability layers.
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Chapter 4

Buoyant convection in a
multi-layered porous media with
permeability jumps

4.1 Introduction

Common to many geological storage/disposal applications, for e.g. during sequestra-

tion of sc-CO2 or acid-gas or else during underground storage of H2 gas, the respective

fluids are injected between two nearly impermeable sedimentary layers. However, due

to high buoyancy forces or applying high injection pressure may open up potential

leakage pathways and may raise doubts about the integrity of the seal (Rutqvist, 2012;

Feldmann et al., 2016; Espinoza & Santamarina, 2017). In the presence of these pref-

erential flow pathways, the so-called impermeable layers, in long duration, do not

altogether arrest the seepage/vertical migration, rather they allow the injected fluid

to enter the neighbouring storage space or to migrate through multiple-layers before

potentially escaping back to the environment. Such phenomena of drainage through

multiple sedimentary layers is also observed during groundwater contamination, when

a source of dense nonaqueous phase liquid (DNAPL) leaks through bedrock having

different permeabilities (Steelman et al., 2020).

In all of the above cases, based on the type of leakage mechanism, the flow patterns

within the porous media are expected to vary depending on the porous media set-
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Figure 4.1: Flow patterns (a) in the presence of thin layers of low permeability within
a uniform porous media, and (b) across impermeable multiple-flow barriers.

ting. In the theoretical study of Neufeld & Huppert (2009), they derived analytical

equations to predict the flow pattern of the“outer envelope” within a multi-layered

porous media created by introducing regularly spaced thin layers of low permeability

within a uniform porous media, as described in the schematic of figure 4.1 a. They

also predicted the maximum lateral extent (or degree of spreading) of the source fluid

along each of the thin (horizontal) layers. In another study by Hesse & Woods (2010),

the authors modeled the flow across impermeable multiple-flow barriers (positioned

horizontally), which obstructed the vertical migration of plume fluid, as depicted in

figure 4.1 b. They showed that a steadily rising buoyant fluid can be modeled as

a cascade of independent flux partitioning events. Later, Rayward-Smith & Woods

(2011) extended this study for the case of tilted impermeable flow barriers.

While investigating flows within a multi-layered porous media, most of the previous

studies for the sake of simplicity have considered the flow barriers as impermeable, or,

neglected to investigate the flow dynamics within these barriers by assuming them as

thin. However, Nordbotten et al. (2009) demonstrated the importance of modeling

the flow in all the barriers/layers, however small their permeabilities may be, which

has a direct impact on the storage characterization of the geological injection sites.
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Figure 4.2: [Color] Schematic of discharged plume fluid propagating in a multi-layered
porous medium.

In this spirit, considering a simple case of multi-layered porous media configuration,

i.e. having two-layers of semi-infinite thicknesses, in Chapter 2 we derived analyti-

cal equations that predicts the early-time dynamics of gravity currents propagating,

up- and downdip, along an inclined permeability jump. At later times, the grav-

ity currents, along both up- and downdip, reach their respective runout distances at

steady-state. However, fluid draining from underneath the respective gravity currents

continue to propagate vertically downwards, until it gets impeded by an impermeable

bottom boundary or another permeability jump. The flow dynamics related to the

former scenario is investigated in details in Chapter 3, wherein, all of the draining fluid

upon striking an impermeable boundary propagate along slope, in both left and right

directions, as secondary gravity currents. At later instant in time, these secondary

gravity currents tug along with it the previously arrested (primary) gravity currents

in the upper layer. In contrast, allowing the draining fluid to strike another perme-

ability jump, may change the dynamics of the secondary gravity currents. Analysing

the flow dynamics of a dense fluid falling through a porous media having multiple

permeability jumps is precisely the objective of this chapter.

In this study, we seek to predict the outer envelope formed inside a multi-layered

96



porous medium formed by layers of different permeabilities. For this, we analyse the

source fluid as it drains across multiple layers (not so thin), as shown in figure 4.2.

Each of the adjacent layers share a common permeability jump boundary. The rest of

the chapter is outlined as follows: in section 4.2, we establish steady-state equations

for the flow in question. In section 4.3, we select an appropriate numerical scheme and

describe the method of implementation of the problem in question. In section 4.4, we

discuss the simulation results along with the comparison to theoretical predictions.

Finally, in section 4.5 we summarize and discuss the key findings of this study.

4.2 Theoretical modeling

We consider the injection of a heavy source fluid of density, ρs, into a multi-layered

porous medium which is previously saturated with ambient fluid of density, ρo <

ρs, and adhere to Boussinesq approximation, as shown schematically in figure 4.2.

For a porous media configuration having n-layers, each of the layers are separated

from its adjacent layer by a single and sharp permeability jump, denoted as p =

1, 2, 3......(n− 1), which may be horizontal or inclined at an angle θ to the horizontal.

The injection of the source fluid is always made into the topmost layer (layer 1) and

directly above the first permeability jump boundary p = 1.

4.2.1 Steady-state equations for gravity currents

The equations of gravity currents propagating along a flat or inclined permeable

boundary, both up- and downdip, fed by a vertically descending plume were derived

in Chapter 2. Thus recalling (2.12)

∂h

∂t
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

β(1− χh0− cos θ)−
1
4

[︂ ∂
∂x

(︂
h
∂h

∂x
cos θ + h sin θ

)︂
−KG′

(︂
1 +

h

l
cos θ

)︂]︂
,

[Updip, −xNu < x < 0]

β(1− χh0+ cos θ)−
1
4

[︂ ∂
∂x

(︂
h
∂h

∂x
cos θ − h sin θ

)︂
−KG′

(︂
1 +

h

l
cos θ

)︂]︂
,

[Downdip, 0 < x < xNd
]

(4.1)
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The notations in the above equation carry their usual meaning as described in Chapter

2. The first two terms on the right-hand side are the advection terms, whereas the

third term corresponds to basal draining. Equation (4.1) has a steady-state solution

when the up- and downdip gravity currents reach their respective runout lengths. It

is expected that at runout, the length of the draining fluid continues to grow with

time and therefore at later times the gravity up- and downdip become very small

in comparison, i.e.h ≪ l. Furthermore, G′ is the ratio of the lower to upper layer

reduced gravities, i.e.G′ = g′d
¯ /g′c

¯ . It defines the degree of entrainment experienced

by the draining fluid as it falls through the layer below the permeability jump. At

later times, the volume of the draining fluid becomes sufficiently large compared to

the area of the interface exposed to lower layer ambient fluid; as such, we consider G′

as unity in the above equation. And K is the ratio of permeabilities of the lower to

upper layer and is a measure of cross flow resistance at the permeability jump. At

steady-state, (4.1) reduces to

0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂x

(︂
h
∂h

∂x
cos θ + h sin θ

)︂
−K, [Updip, −xNu,ro < x < 0]

∂

∂x

(︂
h
∂h

∂x
cos θ − h sin θ

)︂
−K, [Downdip, 0 < x < xNd,ro]

(4.2)

here, xNu,ro and xNd,ro are the nose positions evaluated at runout on the up- and

downdip sides, respectively. Since, the volume source is located above the permeabil-

ity jump boundary, the value of reduced gravity in the velocity term is equal to that

at the source itself, i.e.β = (k1g
′
s)/(ϕν). Furthermore, since β is a non-zero quan-

tity, we equate rest of the terms within the bracket to zero. The general form of the

steady-state gravity current equations along different permeability jump boundaries,

i.e. p = 1, 2, 3, 4, 5.........(n− 1) can be written as

0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂

∂x

(︂
h
∂h

∂x
cos θ + h sin θ

)︂
−K

]︂
p
, Updip

{︄
−(xNu,ro)p < x < 0 [p = 1]

−(xNu,ro)p < x < −(xNu,ro)p−1 [p > 1]

∂

∂x

(︂
h
∂h

∂x
cos θ − h sin θ

)︂
−K

]︂
p
, Downdip

{︄
0 < x < (xNd,ro)p [p = 1]

(xNd,ro)p−1 < x < (xNd,ro)p [p > 1]

(4.3)
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4.2.2 Initial and boundary conditions

4.2.2.1 Source volume influx (p = 1)

We consider the position of the source in the first layer and at the permeability jump

interface, i.e. at p = 1. The constant influx condition to the gravity currents reads

β
(︂
h
∂h

∂x
cos θ + h sin θ

)︂⃓⃓⃓
0−

]︂
p=1

= −(1− fa,1)qs, [Updip, −(xNu,ro)p=1 < x < 0]

β
(︂
h
∂h

∂x
cos θ − h sin θ

)︂⃓⃓⃓
0+

]︂
p=1

= −fa,1qs, [Downdip, 0 < x < (xNd,ro)p=1]

(4.4)

here qs is the source volume flux per unit width, the velocity factor β = (k1g
′
s)/(ϕν)

and fa is the volume fraction downdip measured at steady-state. The source reduced

gravity g′s = g(∆ρs/ρo).

4.2.2.2 Resolving volume flux in the bottom layers (p > 1)

First, let us resolve the along slope volume flux, qs,p=2, at the second permeability

jump, i.e. at p = 2. For this, first we need to evaluate the draining flow rate across

the permeability jump p = 1 given by

qdrain,p=1 =
(︂∫︂ xNd,ro

−xNu,ro

wdraindx
′
)︂
p=1

(4.5)

where, wdrain is the draining velocity across the permeability jump p = 1. In seeking

an expression for wdrain, we recall draining velocity from (2.9) derived in Chapter 2

and assuming h≪ l, we consider

wdrain,p=1 = −k2∆ρsg
µ

(4.6)

Substituting (4.6) in (4.5), we get

qdrain,p=1 = −k2∆ρsg
µ

(xNd,ro + xNu,ro)p=1 (4.7)

Now performing mass balance at p = 2, we get the expression of total volume flux

along slope as

qs,p=2 =
k2∆ρsg

µ
(1−K2)(xNd,ro + xNu,ro)p=1 (4.8)
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here K2 = k3/k2 is the ratio of permeability jump. Form (4.8) it becomes evident

that for an along slope flow to exist, K2 must be less than unity. Now, the constant

influx condition to the gravity currents at p = 2 reads(︂
h
∂h

∂x
cos θ + h sin θ

)︂⃓⃓⃓
0−

]︂
p=2

= −(1− fa,2)(1−K2)(xNd,ro + xNu,ro)p=1,

[Updip, −(xNu,ro)p=2 < x < −(xNu,ro)p=1](︂
h
∂h

∂x
cos θ − h sin θ

)︂⃓⃓⃓
0+

]︂
p=2

= −fa,2(1−K2)(xNd,ro + xNu,ro)p=1,

[Downdip, (xNd,ro)p=1 < x < (xNd,ro)p=2]

(4.9)

The general form of volume influx conditions in different layers and corresponding to

p > 1, can be written as(︂
h
∂h

∂x
cos θ + h sin θ

)︂⃓⃓⃓
0−

]︂
p
= −(1− fa,p)(1−Kp)(xNd,ro + xNu,ro)p−1,

[Updip, −(xNu,ro)p < x < −(xNu,ro)p−1](︂
h
∂h

∂x
cos θ − h sin θ

)︂⃓⃓⃓
0+

]︂
p
= −fa,p(1−Kp)(xNd,ro + xNu,ro)p−1,

[Downdip, (xNd,ro)p−1 < x < (xNd,ro)p]

(4.10)

A final boundary condition is applied at the noses of the up- and downdip gravity

currents at all values of p, such that

h−(xNu,ro)p=n = 0 and h(xNd,ro
)p=n = 0 (4.11)

4.2.3 Dimensionless governing equations

We define characteristic spatial and temporal variables, Πx and Πt, as follows:

Πx,s =
qs
ϕβ

and Πt,s =
qs
ϕβ2 (4.12)

Using the above characteristic variables, we non-dimensionalize other variables using

x∗ =
x

Πx,s

, h∗ =
h

Πx,s

, t∗ =
t

Πt,s
(4.13)
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Thus (4.3) may be respectively rewritten as

0 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂

∂x∗

(︂
h∗
∂h∗

∂x∗
cos θ + h∗ sin θ

)︂
−K

]︂
p
, Updip

{︄
−(x∗Nu,ro

)p < x∗ < 0 [p = 1]

−(x∗Nu,ro
)p < x∗ < −(x∗Nu,ro

)p−1 [p > 1]

∂

∂x∗

(︂
h∗
∂h∗

∂x∗
cos θ − h∗ sin θ

)︂
−K

]︂
p
, Downdip

{︄
0 < x∗ < (x∗Nd,ro

)p [p = 1]

(x∗Nd,ro
)p−1 < x∗ < (x∗Nd,ro

)p [p > 1]

(4.14)

Meanwhile, the boundary conditions (4.4) and (4.10) can, respectively, be written as(︂
h∗
∂h∗

∂x∗
cos θ + h∗ sin θ

)︂⃓⃓⃓
0−

]︂
p=1

= −(1− fa,p=1), [Updip, −(x∗Nu,ro)p=1 < x∗ < 0]

(︂
h∗
∂h∗

∂x∗
cos θ − h∗ sin θ

)︂⃓⃓⃓
0+

]︂
p=1

= −fa,p=1, [Downdip, 0 < x∗ < (x∗Nd,ro
)p=1]

(4.15)

and for p > 1(︂
h∗
∂h∗

∂x∗
cos θ + h∗ sin θ

)︂⃓⃓⃓
0−

]︂
p
= −(1− fa,p)(1−Kp)(x

∗
Nd,ro

+ x∗Nu,ro)p−1,

[Updip, −(x∗Nu,ro)p < x∗ < −(x∗Nu,ro)p−1](︂
h∗
∂h∗

∂x∗
cos θ − h∗ sin θ

)︂⃓⃓⃓
0+

]︂
p
= −fa,p(1−Kp)(x

∗
Nd,ro

+ x∗Nu,ro)p−1,

[Downdip, (x∗Nd,ro
)p−2 < x∗ < (x∗Nd,ro

)p]

(4.16)

The nose conditions in (4.11) read as

h∗−(x∗
Nu,ro)p=n

= 0 and h∗(x∗
Nd,ro

)p=n
= 0 (4.17)

We develop a numerical approach to solve the equations (4.14-4.11), similar to that

described in Appendix A.2. Model output predicts the steady-state flow pattern,

e.g. by describing the shape of the “outer envelope” (as described in Neufeld & Hup-

pert (2009)). As illustrated in figure 4.3, this outer envelope is defined as the boundary

corresponding to the interface separating the source and the ambient fluids (marked

in red on the plots). We further compare the model predictions with numerical sim-

ulations as described below.
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Figure 4.3: Analytical model predictions for porous media configuration having (a)
three-layers with horizontal permeability jumps, and (b) four-layers with inclined
permeability jumps.

4.3 Numerical modeling

4.3.1 Overview and selection of numerical scheme

In the past, many authors have explored various procedures to numerically discretize

and simulate multiphase flows in porous media with Darcy velocity, such as finite-

difference (FD), finite-element (FE) and finite-volume (FV) schemes. The key differ-

ence between FE methods and FD methods lies in the calculation of the fluid pressure

gradient. The FD method computes the gradient using a finite-difference approxi-

mation. This requires that the interface between two nodes is perpendicular to the

line connecting the nodes. FE methods, in general, do not suffer from this restriction

because the gradient is calculated based on element interpolation functions. On the

other hand, the FV approach enforces the conservation of quantities discrete levels,

i.e.mass, momentum and energy remain conserved at local scales. However, con-

serving these quantities are a major challenge because the constitutive relations for

multiphase flows are non-linear. FE methods commonly allow for a more flexible rep-

resentation of geological structures as suggested by other authors (Lewis & Roberts,
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1984; Morgan et al., 1984), and therefore, we adopt this scheme to investigate flows

in multi-layered geometry. In general, FE methods make use of the “weak form”

to solve the partial differential equations. The methods to transform the differential

equations to an integral form are generic and usually provide accurate predictions,

and also they can be applied to complex geometries (Liu & Quek, 2003).

4.3.2 Model implementation in COMSOL multiphysics

In this study, we make use of the FE based multiphysics COMSOL (ver. 5.5) sim-

ulator to numerically simulate the motion of a dense source fluid inside a two-

dimensional, multi-layered porous media. The porous layers are constructed using

spherical beads and the permeability is calculated using the empirical relationship

proposed by Kozeny and Carman, and discussed in Dullien (1979), i.e.

k =
d2ϕ3

180(1− ϕ)2

where d is the bead diameter and a constant porosity of ϕ = 0.38 is assumed. The

complexity of the porous medium is increased by progressively adding five layers of

distinct permeabilities as described in the table 4.1 a-d. The layers from 1 to 5 appear

in a decreasing order of their permeabilities. Furthermore, three different cases are

selected such that ratio of permeabilities in the bottommost (Layer 5) and topmost

(Layer 1) layers are varied. For Case 1, this ratio is 0.079; for Case 2, it is 0.063 and

for Case 3, it is 0.049. As part of our study, we compare the five-layers case with cases

having four-layers (Layer 4 eliminated), three-layers (Layers 4 and 3 eliminated) then

two-layers (Layers 4, 3 and 2 eliminated). To explain the method of implementation in

COMSOL, we demonstrate below the step-by-step process of setting up the problem,

this for the simpler scenario of two-layers related to Case 1 of table 4.1a.

4.3.2.1 Physics selection

As a first step in establishing the problem, we need to select the appropriate set of

equations in COMSOL that describes the flow in question. Since we are interested
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Table 4.1: Configurations of the porous media.

Layer Case 1 Case 2 Case 3

No. Depth (cm) d (mm) k (m2) d (mm) k (m2) d (mm) k (m2)

1 4 3.0 7.14× 10−9 3.0 7.14× 10−9 3.0 7.14× 10−9

5 16 0.84 5.63× 10−10 0.75 4.46× 10−10 0.66 3.48× 10−10

(a) Two-layers

Layer Case 1 Case 2 Case 3

No. Depth (cm) d (mm) k (m2) d (mm) k (m2) d (mm) k (m2)

1 4 3.0 7.14× 10−9 3.0 7.14× 10−9 3.0 7.14× 10−9

2 4 2.18 3.78× 10−9 2.12 3.57× 10−9 2.06 3.35× 10−9

5 12 0.84 5.63× 10−10 0.75 4.46× 10−10 0.66 3.48× 10−10

(b) Three-layers

Layer Case 1 Case 2 Case 3

No. Depth (cm) d (mm) k (m2) d (mm) k (m2) d (mm) k (m2)

1 4 3.0 7.14× 10−9 3.0 7.14× 10−9 3.0 7.14× 10−9

2 4 2.18 3.78× 10−9 2.12 3.57× 10−9 2.06 3.35× 10−9

3 4 1.59 2.0× 10−9 1.5 1.78× 10−9 1.41 1.58× 10−9

5 8 0.84 5.63× 10−10 0.75 4.46× 10−10 0.66 3.48× 10−10

(c) Four-layers

Layer Case 1 Case 2 Case 3

No. Depth (cm) d (mm) k (m2) d (mm) k (m2) d (mm) k (m2)

1 4 3.0 7.14× 10−9 3.0 7.14× 10−9 3.0 7.14× 10−9

2 4 2.18 3.78× 10−9 2.12 3.57× 10−9 2.06 3.35× 10−9

3 4 1.59 2.0× 10−9 1.5 1.78× 10−9 1.41 1.58× 10−9

4 4 1.16 1.06× 10−9 1.06 8.92× 10−10 0.97 7.41× 10−10

5 4 0.84 5.63× 10−10 0.75 4.46× 10−10 0.66 3.48× 10−10

(d) Five-layers
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in the low velocity flows, i.e. Re ≲ O(10), we first interface the Darcy’s law by se-

lecting: Fluid flow → Porous media in subsurface flow → Darcy’s law. The

equations for Darcy’s velocity and continuity equation used are

Darcy’s velocity: u =
k

µ
(∇p+ ρg) (4.18a)

Continuity equation:
∂

∂t
(ϕρ) +∇.(ρu) = 0 (4.18b)

where u is the Darcy velocity vector, k is the permeability of the porous medium, µ is

the average dynamic viscosity of the fluids, ϕ is the porosity, p is the fluid’s pressure,

and ρ is the average fluid density. The permeabilities of Layer 1 and Layer 5 are set

to k1 = 7.14 × 10−9 cm2 and k5 = 5.63 × 10−10 cm2, respectively, corresponding to

Case 1 of table 4.1a. We set the porosity of the material as 0.38 in both layers. The

properties of the ambient fluid, such as density and dynamic viscosity, are selected

assuming fresh water at 20◦C, i.e. µ = 1.002mPa.s and ρo = 998 kg/m3.

Then, in order to compute the species concentration and its transport we select:

Chemical species transport → Transport of diluted species in porous media.

The equation of molar concentration, ci, that describes transport of solute concen-

tration in a fully-saturated porous medium is given by the expression

∂

∂t
(ϕci) + u.∇ci = ∇.[(DD,i +De,i)∇ci] +Ri + Si (4.19)

On the left-hand side, the first term corresponds to the accumulation of the species,

while the second term corresponds to the convective transport due to a velocity u.

On the right-hand side, the first term introduces the spreading of species due to

mechanical mixing (dispersion), as well as from the diffusion. The dispersion tensor

is denote by DD and the effective diffusion by De. For a fully-saturated porous media,

De = (ϕ/τ)D, where, D is the molecular diffusion coefficient and τ is the tortuosity

and we set these to a constant values of 2.5×10−5 cm2/s and 2, respectively. However,

in our study we neglect the contribution of dispersion and therefore set DD to zero.
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The last two terms on the right, Ri and Si, describe the reaction rate and arbitrary

source terms, respectively, are also set to zeros.

4.3.2.2 Model geometry

Next, the geometry of the two-dimensional porous medium is implemented, as shown

in figure 4.4. The outer dimensions of the porous medium of height H = 20 cm and

length L = 40 cm is selected and is maintained constant for all the other cases to be

investigated in this study. The permeability jump boundary separating layers 1 and

5, located at a height of 16 cm from the base, is defined using a standard sigmoid

function of the form S(x) = 1/(1 + e−Ax), where the magnitude of the constant A

denotes the sharpness of the permeability jump. In our study, we select A = 3500.

The location of the source is modeled as a circular geometry of diameter 0.255 cm

and is positioned at the horizontal center and 1 cm above the permeability jump, as

indicated in figure 4.4.

Figure 4.4: Geometric model.

4.3.2.3 Initial and boundary conditions

At t = 0, we assume that a quiescent state such that the pressure distribution is

hydrostatic. Also, the solute concentration is set to Co = 0mol/m3 corresponding to
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a source density of ρo = 998 kg/m3. An inlet velocity of 1.6×10−3m/s is specified only

at the bottom half of the circular source. Also, the NaCl concentration at the source

is set to Cs = 350mol/m3 corresponding to a source density of ρs = 1018 kg/m3. The

density is related to concentration field, C, by making use of the relation,

ρ = ρo + [(ρs − ρo)/(Cs − Co)]C

The outer boundary of the box is set to no-flow conditions except at the bottom

boundary, where the ambient fluid when being displaced by the source/contaminated

fluid, as well as the source fluid itself at later times are allowed to exit perpendicular

to the surface, as indicated in figure 4.5.

Figure 4.5: Boundary conditions on the geometry.

4.3.2.4 Meshing

At the final stage, we apply a triangular meshing on the geometry, as shown in figure

4.6. The mesh element dimension was allowed to vary between 3× 10−5 cm (near the

source) to 0.26 cm elsewhere.

4.3.2.5 Solver and interpolation functions

We make use of the implicit Backward Differentiation Formula (BDF) of order 4 as the

choice of time-dependent solver with a manual time stepping of 0.5 s. In choosing the
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Figure 4.6: Meshed geometry.

interpolation functions defined at the nodal values of each element, we choose cubic

polynomial for the pressure and a quadratic polynomial for the species concentration.

4.4 Results and discussion

4.4.1 Qualitative comparison between theory and simulation

By choosing a specific case from table 4.1, we perform simulations by progressively

added layers. As an example, selecting the permeabilities of layers corresponding to

Case 2 and maintaining each of the permeability jump between the layers horizontal

(θ = 0◦), simulations are performed for two-, three-, four- and five-layers configura-

tions, as illustrated in figure 4.7 a-d. To start with, a simulation is performed for a

two-layered configuration, i.e. corresponding to Case 2 of table 4.1a – see figure 4.7 a.

Later on, Layers 2, 3 and 4 of constant thicknesses are added between Layers 1 and

5, i.e. corresponding to Case 2 table 4.1 b-d – see figures 4.7 b-d.

For each of the above layered configurations, the outer envelope predicted by our

theory (indicated as black profile) is also plotted and is observed to agree well with

the simulation results1. However, in simulations, partly due to the transient effects

1For the sake of simplicity, we perform all our numerical simulations in dimensional units. There-
fore, for qualitative comparisons, theoretical results were expressed and compared with numerical
outputs in dimensional form. However, for quantitative comparisons, we non-dimensionalize the
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Figure 4.7: [Color] Steady-state results of numerical simulation corresponding to
Case 2 for porous media configuration with (a) Two-layers, (b) Three-layers, (c)
Four-layers, and (d) Five-layers. Permeability jump angles in all the case are 0◦. The
density colorbar is indicated on the right side. Also, for comparison, the theoretical
prediction (in black contour) is plotted on each of the plots.

and partly due to the solute diffusion, the interface between the source and the am-

bient fluid is not sharp and a transition is seen as the color band varies gradually

from red (source fluid) to light-blue and finally to dark-blue color (ambient fluid)2.

Strictly speaking, the flow does not achieve steady state owing to diffusive effects

which cause a continual mixing of source and ambient fluids. On the other hand, we

find that, after some time, the envelope encompassing the bulk fluid stops expanding.

We wish to determine the dimensions and lateral extent of this envelope and do so

with reference to the average density between the source and ambient fluids. The

procedure adopted is discussed below in Appendix C.2 in relation to section 4.4.2.

Similar type comparison is also made by tilting the permeability jump by some fixed

amount (i.e. θ = 3◦ or 6◦), in each of the layers. The results corresponding to θ = 6◦

parameters of interest.
2During the transient phase and in the absence of dispersion, gravity induced fingering instabilities

were observed in each of the layers during the downward motion of the source fluid.
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Figure 4.8: [Color] Steady-state results of numerical simulation corresponding to
Case 2 for porous media configurations with (a) Two-layers, (b) Three-layers, (c)
Four-layers, and (d) Five-layers. Permeability jump angles in all the case are 6◦. The
density colorbar is indicated on the right side. Also, for comparison, the theoretical
prediction (in black contour) is plotted on each of the plots.

with five-layers for Case 2 is shown in figure 4.8. Even for inclined permeability

jumps our theoretical model shows a good agreement of the outer envelope with the

simulation result. In contrast to the above simulations which are performed for equal

permeability jump angles in each of the layers, simulations are also carried out for

Case 2 by selecting random inclination angles of the permeability jump in each of the

layers, as shown in the figure 4.9. Here too, the outer envelope comparison with the

theory is in good agreement.

In all the above comparative cases, the simulations results that are compared

with theoretical predictions are for layers with decreasing values of permeabilities,

i.e. k1 > k2 > k3 > k4 > k5. However, for a special case when the layers are inter-

changed, i.e. when low permeability layer is placed above the high permeability layer,

the simulation results are discussed in Appendix C.1.

110



Figure 4.9: [Color] Steady-state result of numerical simulation for porous media hav-
ing five-layers (corresponding to Case 2) with the permeability jump angles at the
bottom of Layer 2 and Layer 4 are inclined at an angle of 3◦ and −6◦, respectively.
Also, for comparison, the theoretical prediction (in black contour) is plotted.

4.4.2 Quantitative comparison between theory and simula-
tion

The lateral spreading distance of the source fluid is obtained by measuring the differ-

ence in up- and downdip runout lengths along a given permeability jump boundary.

The method of determining the runout distances from COMSOL simulations is dis-

cussed in Appendix C.2. The total (non-dimensional) expanse of each gravity current

is estimated from the relation ∆x∗N,ro = x∗Nd,ro
+ x∗Nu,ro

. In the interest of comparing

the maximum expanse of the runout, (∆x∗N,ro)max, (as indicated in figure 4.2) for all

the layer configurations presented in this study, is measured along the bottom most

permeability jump, which is clearly evident in figures 4.7-4.9.

We plot (∆x∗N,ro)max as predicted by the simulations (marked as open symbols)

as a function of layer configuration, i.e. two-layers (1/5), three-layers (1/2/5), four-

layers (1/2/3/5) and five-layers (1/2/3/4/5), in figure 4.10. The subplots a, b, c and

d correspond to permeability jump angles of θ = 0◦, 3◦, 6◦ and mixed-combination

of θ, respectively. In each of the subplots, comparisons are made between the cases

111



Figure 4.10: [Color] Maximum expanse of the runout, (∆x∗N,ro)max, as a function of
layer configurations, i.e. two-layers (1/5), three-layers (1/2/5), four-layers (1/2/3/5)
and five-layers (1/2/3/4/5). We consider permeability jump angles of (a) θ = 0◦,
(b) θ = 3◦, (c) θ = 6◦, and (d) mixed-combination of θ as selected in figure 4.9.
Comparisons are made between the theory (closed symbols) and simulation (open
symbols) predictions for all the three cases described in table 4.1.

described in table 4.1. Furthermore, (∆x∗N,ro)max as predicted by our theoretical

model (marked as closed symbols) is also plotted for each of the cases. In comparing

theoretical vs. numerical estimates of (∆x∗N,ro)max, we find that latter is always greater

than the former with a deviation ranging between 4% and 12%. It can be seen that
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Figure 4.11: Dimensionless area, A∗, as a function of layer configuration, i.e. two-
layers (1/5), three-layers (1/2/5), four-layers (1/2/3/5) and five-layers (1/2/3/4/5).
Comparison is made between three different angles, i.e. 0◦ (square), 3◦ (circle), 6◦ (di-
amond) and mixed-combination of θ (upper-triangle), for all the three cases described
in table 4.1.

for a particular case, (∆x∗N,ro)max varies weakly when additional layers are included

in between the layers of maximum and minimum permeabilities. Also, (∆x∗N,ro)max

remains nearly invariant with the inclination of the permeability jumps. However,

(∆x∗N,ro)max is a strong function of ratio of maximum and minimum permeabilities, as

evident in the comparison made between each of the three cases from any of figures

4.10 a,b,c or d.

Figure 4.10 gives the impression that the layer configuration has only a relatively

small impact on the dynamics of the flow. While this is true when considering the

maximum expanse of the contaminated fluid, figures 4.7–4.8 makes clear that the total

volume of contaminated fluid stored in the layered porous medium must decrease as

more intervening layers are added between Layer 1 and Layer 5. To characterize the

variation of this volume, we introduce a non-dimensional parameter, A∗, defined as

the total storage area occupied by the injected fluid and is measured when the flow
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reaches a steady-state. In other words, A∗ is an indicator of the storage efficiency of

the porous medium to store the fluid that is being injected into a porous space of

fixed outer dimensions. Figure 4.11 shows the non-dimensional area, A∗, as a function

of layer configurations. Since our theoretical model predictions are in reasonably

good agreement with numerical predictions, we calculate A∗ by estimating the area

under the outer envelope from the theory alone. In contrast to figure 4.10, figure 4.11

confirms that A∗ shows a strong variation with layer configuration. For a specific case,

A∗ decreases (almost linearly) with the addition of layers, however, the inclination

angles of the permeability jump essentially make no impact on the storage area. This

is because, for inclined permeability jump angles, reduced fraction of flow on the

updip side is compensated with an increased flow on the downdip side. Therefore,

and at steady-state, whatever runout length we lose on the updip side by increasing

θ we gain on the downdip side.

4.5 Discussion and conclusions

Recalling the transient equations of gravity currents derived in Chapter 2, we de-

veloped a steady-state mathematical model that predicts the flow pattern inside a

multi-layered porous media. The convection source is located at the first permeabil-

ity jump (in the topmost layer). The boundary conditions, i.e. volume flux, at the

other permeability jumps are resolved separately. In doing so, (4.8) suggest that

gravity currents are formed at any given permeability jump whenever the ratio of

the permeabilities between the lower and the upper layer is less than unity. There-

fore, in the limit of our model predictions the layers must exist in a decreasing order

of the permeabilities. Later, we employ finite-difference method in solving the final

dimensionless equations in (4.14)–(4.17).

We also carry out numerical simulations using an FE based multiphysics COM-

SOL simulator. To be consistent with our theoretical model, we performed all our

simulations for decreasing order of layer permeabilities, and therefore, selected three
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different cases with different ratios of permeabilities between the bottommost and

topmost layers, i.e. for Case 1, this ratio is 0.079; for Case 2, it is 0.063 and for Case

3, it is 0.049, and by adding up to a maximum of five in between distinct layers. In

general, the outer envelope comparisons made between our theory predictions and

simulation results were in reasonably good agreement for all multi-layered combina-

tions and sloping permeability jumps3 – see figures 4.7-4.9. The maximum expanse of

runout distances was measured and compared for 2-, 3-, 4- and 5-layer configurations

of the porous medium, for each of the cases and also by setting the permeability jumps

angles to 0◦, 3◦ and 6◦. The maximum runout expanse showed greater response to

permeability ratios (three cases) compared to that when layers where either added or

removed – see figures 4.7 and 4.8. The maximum runout expanse remained invariant

with permeability jump angle – see figure 4.10. The effect of adding or removing lay-

ers greatly affected the storage area, wherein, the area occupied by the source fluid

shows a near linear decrease as more layers are included – see figure 4.9. However, in-

clination angle of the permeability jumps showed essentially no impact on the storage

area.

The flow patterns predicted in this study can indirectly be compared to the simula-

tion carried out by Feldmann et al. (2016), who investigated the injection of hydrogen

in a multi-layered porous media configuration with layers of different permeabilities

– see their figure 5.

It is noteworthy to mention, the nature of this study is constrained by few assump-

tions. For instance, we have assumed that interface of the gravity current is always

sharp in our theoretical model, and also in the interest of validating our theory pre-

dictions we have turned-off dispersion in all our COMSOL simulations. However, this

3Comparisons between numerical simulation and experiments, for both one- and two-layered
porous media configurations, are being carried out by a current PhD student, in my research group.
As an extended study, dispersion effects are also being included in the simulations in question. The
comparisons made with the experimental cases show good agreement in the flow front profiles. More
detailed explanation on the comparisons will be provided in this student’s future publications or
thesis report.
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is not always true, because, the flow front significantly experiences the effects due to

hydrodynamic dispersion as evident from the snapshot images in figure 2.8 of Chapter

2. The occurrence of dispersion may alter the character of the flow patterns. Also, in

our theoretical model, we do not consider the dynamical effects of the gravity currents

formed in the lower layers on the gravity currents formed in the layers above.
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Chapter 5

Conclusions and future work

5.1 Summary and conclusions

A detailed and comprehensive study on buoyancy-driven flows in a multi-layered

porous media is carried out by making use the three different modeling approaches,

i.e. theory, CFD simulations and laboratory experiments. Our laboratory experi-

ments, adhering to the methodology of a filling box model, have provided considerable

insights and quantitative information about physical processes, which otherwise be

rather be difficult to predict independently using theory or numerical technique. By

suitably making use of the three approaches mentioned above, we have attempted to

address the knowledge gaps that are highlighted in Chapter 1 of this thesis. Our initial

investigation involved examining the early- and late-time dynamics of plume fluid be-

ing injected into a basic configuration of multi-layered porous media, i.e. having only

two-layers that are separated by a sloping permeability jump boundary. The analysis

in question constitutes Chapter 2 and Chapter 3 of the report. Later, the study was

extended to a general case of multi-layered porous media configuration, which forms

Chapter 4. To summarize:

In Chapter 2, we have predicted the early-time spreading dynamics of the gravity

currents propagating along an inclined permeability jump with simultaneous basal

draining into a deep lower layer. As a part of the theoretical model, we derive in an-

alytical form a pair of coupled non-linear advection equations to be solved with a set
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of boundary conditions. This model accounts for the gradual change in density and

volume influx at the inlet of the gravity current because we assume the source to be

located at a certain height from the permeability jump. In doing so, we made of use

of the plume equation derived by Sahu & Flynn (2015). In contrast to the horizontal

permeability jump previously investigated by Goda & Sato (2011), the difference in

the amount of discharged plume fluid flowing up- vs. downdip was resolved by in-

cluding in the boundary conditions a time-dependent variable, fa, that represents the

fraction of fluid flowing downdip. We find that fa is a monotone increasing function

of time that attains a constant value when the up- and downdip gravity currents

reach their runout lengths. This consequently led to the case of symmetry breaking

up- and downdip gravity current flows, with respect to the source center. We solve

the dimensionless governing equations by defining four key parameters namely the

permeability jump angle, θ, plume source factor, δ, permeability ratio, K, and re-

duced gravity ratio, G′. The steady-state condition attained by the up- and downdip

gravity currents, termed as the runout, is shown to be a function of these dimen-

sionless parameters. For 0◦ ≤ θ ≤ 20◦, runout lengths were predicted to occur when

t∗ ≳ 102. Furthermore, our experimental images reveal that a significant amount

of flow dispersion occurs at the interface of the flow front due to mixing by hydro-

dynamic dispersion, which is most prominent along the flow directions. Therefore,

we resolve and identify two phases of fluid, a part of the plume fluid least affected

by mixing as “bulk” fluid, and the other region significantly affected by mixing as

“dispersed” fluid, and the interface corresponding to each of these fluid phases as

bulk- and dispersed interfaces, respectively. Furthermore, the amount of dispersion

in the flow was quantified as a function of source conditions and permeability jump

angles. The dynamics of along slope propagation of the gravity currents were com-

pared between theory and experiments. Our theoretical model is based on the sharp

interface assumption, and therefore, predicts the flow front as a single interface. At

both transient- and steady-states, the nose positions of our theory always lie between
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the bulk and dispersed interface for all experiments, and in general, the predictions

are close to bulk interface measurements than they are to the dispersed interface.

In real geological scenarios, the motion of the gravity currents advecting along-dip,

as well as the basal draining fluid may get impeded by impermeable boundaries. In

Chapter 3, and again in the spirit of a filling box flow, the case of two-layered porous

media bounded by bottom and sidewall boundaries is considered. We built upon the

studies of early-time dynamics of the gravity currents from Chapter 2, naming along

permeability jump flows as “primary” gravity currents, and investigate the effects

of limiting the depth of the lower layer. We demonstrated that for a finite lower

layer depth, the draining fluid upon striking the bottom (impermeable) boundary

leads to the formation of a pair of “secondary” gravity currents. As a consequence,

there resulted in significant change in the dynamics of the primary gravity currents,

such as, the occurrence of runout-override and remobilization. We have also paid

utmost attention to details on the process by which the upper and lower layers fill

with contaminated fluid. In the upper layer, filling follows from the up- and downdip

propagation of the primary gravity currents, followed by vertical advection of the first

front in the upward direction. Whereas, in the lower layer, filling primarily happens

due to the advection of the secondary gravity currents that propagate along the bot-

tom boundary. In addition, there is a contribution of leakage across the permeability

jump, which leads to convection over a broader area. Furthermore, in categorizing

the nature of filling of the two-layers, we distinguished between two modes described

sequential and simultaneous. In sequential filling, most of the filling of the lower layer

follows from the horizontal advection of the secondary gravity current. By contrast,

and for simultaneous filling, proportionally more of the lower layer filling is by basal

draining from the overlying primary gravity current. The parameter combinations

conducive to one or the other filling regime were also identified. In the interest of

determining the filling box time, i.e. the time required for the first front rising through

the upper layer to very nearly reach the level of the plume source, we find that the
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inclination of the first front during the filling process makes it somewhat challenging

to define this quantity unambiguously. Therefore, we considered two time bounds,

one being the upper time bound and the other as the lower time bound, to estimate

the filling box time. Then we examined the variation of these times as a function of

the source conditions and permeability jump angles. It was observed that dispersion

causes the difference in upper- and lower-time bounds to be larger when the source

reduced gravity is comparatively smaller. During the filling process, we investigated

the trajectory of the descending plume and the manner in which this varies with time

due to the filling of the upper layer. It was observed that the plume deflected ei-

ther up- or downdip depending on the source reduced gravity and the nozzle location

relative to the sidewall boundary.

In the final component of this thesis, we have extended our investigation from a

two-layered configuration to a general multi-layered configuration (more than two lay-

ers) in Chapter 4. Here, we have reduced the transient equations derived in Chapter 2

to obtain steady-state equations to predict the shape of the outer envelop associated

with buoyant convection in the multi-layered geometry. The model solves for the

equations of gravity currents at each of the permeability jump boundaries. A CFD

simulation performed using COMSOL simulator was used to validate our theoreti-

cal predictions. Even though simulation results slightly overpredicted our theoretical

predictions with a deviation ranging between 4% and 12%, overall, there was a good

match to the outer envelope profile. However, our theoretical predictions are con-

strained by the fact that the porous layers starting from the point of source injection

have to be arranged in a decreasing order of permeabilities. Taking this into account,

we performed simulations for three different cases of lower to higher permeability

ratios, i.e. 0.079, 0.063, 0.049. Furthermore, each of these cases was tested for geome-

tries of two-, three-, four- and five-layers in configuration and for permeability jump

angles of θ = 0◦, 3◦ and 6◦. In general, the maximum along-dip distance traveled by

the contaminated (i.e. discharged plume) fluid was found to vary little with the num-
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ber of layers but by a lot with the permeability reduction ratio. In contrast, the area

occupied by the source fluid shows a linear decrease with layer addition. However,

inclination angle showed no influence on the maximum runout span as well as on the

storage area.

5.2 Primary contributions from the present work

The main findings and contributions of this thesis work can be summarized in the

following major points:

� For inclined permeability jumps, our experiments suggest that the gravity cur-

rents propagating, both up- and downdip, along a permeable boundary ex-

periences a greater amount of flow dispersion, especially on the downdip side

for inclined permeability jumps. In particular, longitudinal dispersion (in the

direction of the flow) was dominant compared to its transverse counterpart (per-

pendicular to the direction of the flow). Upon comparing our theoretical model,

derived based on the sharp interface assumption, the predictions of the profile

and nose position of the gravity currents, both up- and downdip, lies within

the band of bulk and dispersed interfaces of our experiments. By this we have

highlighted the limitation of the sharp interface assumption and emphasized

the importance of considering flow dispersion in theoretical model for better

predictions.

� We have investigated filling box flows, which serve as an analogue for study-

ing closed porous media in a non-uniform porous medium having a single and

sudden change in permeability. The associated flow study involves: (i) the rel-

ative dynamics between the primary and secondary gravity currents formed in

the upper and lower layers, (ii) the filling process between the upper and lower

layers, and (iii) estimating the filling box time(s), i.e. the time required for the
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first front rising through the upper layer to very nearly reach the level of the

plume source.

� The effects of including layers of intermediate permeabilities on the flow pattern,

maximum runout distance and the storage area were investigated. By including

multiple layers in between any two-layers of fixed permeabilities, we observed

that storage area decreases without significantly altering the maximum runout

distance. The inclination angles made by the permeability jumps did not have

any effect on either the maximum runout reached or the storage area.

5.3 Future Work

Primary topics for future studies are identified as follows:

� The gravity current flow is modeled, in this study and by several authors in the

past, based on the sharp interface assumption. The sharp interface assumption

means that the mixing is concentrated in a very narrow width at the interface

of the two fluids and this width is very small compared with the length scale of

the motion. However, making this assumption does not always yield accurate

prediction of the flow front, especially for miscible fluids whose interface expe-

riences a greater amount of hydrodynamic dispersion, in both transverse and

longitudinal direction. This observation has been one of key highlights of this

thesis. Therefore, it is very much important to consider dispersion effects while

modeling gravity current flows. In this regard, in a very recent study by Sahu &

Neufeld (2020), they modeled vertical entrainment into the gravity current by

including transverse dispersivity into the equation of solute concentration. But

they neglected the effects of horizontal entrainment. Our experimental images

reveal that gravity currents propagating along a sloping boundary, especially

downdip flows, are subjected to a greater amount of flow dispersion along the

flow direction compared to the direction perpendicular – see snapshots of figure
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2.8 in Chapter 2. Therefore, the effects of longitudinal dispersion also needs to

be considered while modeling the gravity current flows.

� One of the key variables in the equations describing the up- and downdip mo-

tion of gravity currents along a permeability jump that dictates the magnitude

of runout distances is the value of G′. It defines the degree of entrainment ex-

perienced by the draining fluid. Form experiments conducted by Sahu & Flynn

(2017), they proposed the value of G′ = 0.6 ± 0.1 for the case of horizontal

permeability jump and assuming k2/k1 ≪ 1. In this study, from various exper-

iments conducted for inclined permeability jumps, we established an empirical

relation which suggests that G′ is more a function of source conditions, i.e. the

flow rate and reduced gravity, and less a function of the permeability jump

angle. However, developing a theoretical relation to G′ still remains an open

challenge.

� In Chapter 3, filling box experiments were conducted considering an imper-

meable bottom boundary. Two pairs of gravity currents, the first pair is the

primary gravity currents in the upper layer and the other being the secondary

gravity currents in the lower layer, were observed. We analysed the eventual

appearance of secondary gravity currents serves to remobilize the previously

arrested primary gravity current. The theoretical approach to investigate this

phenomenon of remobilization is left for the future study.

� The two filling modes identified in Chapter 3, were studied for the flow cases

when buoyancy and viscosity were the dominant forces controlling fluid mo-

tion. However, there exist other scenarios where capillary trapping is expected

to play a non-subordinate role (Golding et al., 2011; Burnside & Naylor, 2014;

Krevor et al., 2015). In such cases, the degree of residual trapping was shown to

be dissimilar for vertical and horizontal flows (Adebayo et al., 2017). Because

sequential and simultaneous filling are associated with different proportions of
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horizontal versus vertical flow, the details of the filling mode will, for this more

general case of intermediate Bond number, influence the degree of residual trap-

ping. Filling box dynamics for the fluid combinations having low or intermediate

Bond numbers are yet to be investigated.
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Appendix A: Theory and
experimental details

A.1 Derivation of the evolution equation for l

The contaminated fluid region is continuously fed by the draining of gravity current

fluid along the permeability jump and also the ambient fluid entering across the

contaminated-ambient fluid interface – see figure 2.2. The time rate of change in the

mass of contaminated fluid is expressed mathematically as

d

dt

(︄
ρd̄

∫︂ xNd

−xNu

ϕ l dx

)︄
= −

(︂
ρc̄

∫︂ xNd

−xNu

wdrain dx+ ρo qentr

)︂
(A.1)

Expanding the time derivative term on the left-hand side of the above expression

gives

ρd̄
d

dt

∫︂ xNd

−xNu

ϕ l dx+
dρd̄
dt

∫︂ xNd

−xNu

ϕ l dx = −
(︂
ρc̄

∫︂ xNd

−xNu

wdrain dx+ ρo qentr

)︂
(A.2)

For the conditions relevant to our analysis, the latter term from the left-hand side

is three orders of magnitude smaller than the former term and can therefore be ne-

glected. Applying Leibniz’s rule in conjunction with the boundary conditions specified

by (2.18) allows us to write

ρd̄

∫︂ xNd

−xNu

ϕ
∂l

∂t
dx = −

(︂
ρc̄

∫︂ xNd

−xNu

wdrain dx+ ρo qentr

)︂
(A.3)

Meanwhile if (A.1) is integrated in time,

ρd̄
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−xNu

ϕ l dx = −
∫︂ t

0
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ρc̄
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−xNu
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dt−
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0

ρo qentr dt (A.4)
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Note, however that the left-hand side of (A.4) denotes the total volume of cont-

mainated fluid and can therefore be written as∫︂ xNd

−xNu

ϕ l dx = −
∫︂ t

0

(︂∫︂ xNd

−xNu

wdrain dx+ qentr

)︂
dt (A.5)

Substituting (A.5) in (A.4), we get

− ρd̄
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0

(︂∫︂ xNd

−xNu

wdrain dx+ qentr

)︂
dt = −
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−xNu

wdraindx
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dt−
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(A.6)

Consistent with the previous argument it is appropriate to regard the time variation

of ρd̄ as small whereby∫︂ t

0

[︂
− ρd̄

(︂∫︂ xNd

−xNu

wdrain dx+ qentr

)︂
+ ρc̄
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wdrain dx+ ρo qentr

]︂
dt = 0 (A.7)

Because this results is valid for arbitrary t,

ρd̄

(︂∫︂ xNd

−xNu

wdrain dx+ qentr

)︂
= ρc̄

∫︂ xNd

−xNu

wdrain dx+ ρo qentr (A.8)

Rearranging the terms in (A.8) and expressing qentr in terms of wdrain yields

qentr =
∆ρc̄ −∆ρd̄

∆ρd̄

∫︂ xNd

−xNu

wdrain dx (A.9)

Combining this result with (A.3), we obtain the desired result, namely

ϕ
∂l

∂t
= −∆ρc̄

∆ρd̄
wdrain (A.10)

This last equation is, of course, the same as (2.10).

A.2 Method of solution

An explicit finite-difference algorithm is used to discretize (2.23-2.27). The variables

corresponding to updip flow are denoted by a subscript u while those corresponding to

downdip flow downdip are denoted by d. Thus equations (2.23-2.27) may be rewritten

in discrete form as

h∗u
n+1
i = h∗u

n
i +

(︂1− δh∗u
n
1 cos θ

1− δ cos θ

)︂− 1
4
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1 +

h∗u
n
i

l∗u
n
i

cos θ
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]︂

(A.11a)
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where n and i are non-negative integers, denoting the number of time-steps and the

index of the discretized elements, respectively. Similarly, the discretized equations on

the downdip side read
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For pragmatic reasons, and to avoid the appearance of unphysical singularities, we

do not allow l∗u
n
i and l∗d

n
i to be identically zero, but rather initialize with some small

value.

The expressions in (A.11) and (A.12) apply for i ≥ 1. When i = 1, h∗u
n
0 and h∗d

n
0

are resolved with reference to the influx boundary condition in (2.25), such that

(h∗u
n
0 )

2 = (h∗u
n
2 )

2 + 4∆x∗h∗u
n
1 tan θ +

[︂4∆x∗(1− fd)

cos θ

]︂
(1− δh∗u

n
1 cos θ) (A.13a)

(h∗d
n
0 )

2 = (h∗d
n
2 )

2 − 4∆x∗h∗d
n
1 tan θ +

(︂4∆x∗fd
cos θ

)︂
(1− δh∗d

n
1 cos θ) (A.13b)

Analogously, (2.26) becomes

h∗u
n
1 = h∗d

n
1 (A.14)

Finally for i = Nu and Nd, the nose positions up- and downdip in (2.27), we require

that

h∗u
n
Nu

= h∗d
n
Nd

= 0 (A.15a)

l∗u
n
Nu

= l∗d
n
Nd

= 0 (A.15b)

Here, ∆x∗ and ∆t∗ denote the grid spacing and the time step, respectively. The

values of ∆x∗ and ∆t∗ were respectively chosen as 2.5 × 10−2 and 0.5 × 10−3. Grid

independence checks were performed to ensure that the solutions were insensitive to
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Figure A.1: Time variation of the gravity current aspect ratio on the (a) Updip side
(left panel), and (b) Downdip side (right panel). Results are derived using (2.23) and
assume δ = 0.1, K = 0.1 and G′ = 0.4.

the magnitude of ∆x∗. For purposes of validating our numerical code, we confirmed

that, in all cases, the prediction for up- and downdip runout lengths match those

anticipated from (2.23) and (2.24) with ∂h∗/∂t∗ = 0. Results were also compared

with those of Sahu & Flynn (2017) for the special case θ = 0°.

A.3 Validation of Dupuit’s approximation

Measured in the x − z coordinate system of figure 2.2, the slopes of the up- and

downdip gravity currents are found to be spatially uniform – see e.g. figure 2.3a. The

gravity current slopes therefore prescribe the aspect ratios; symbolically, ε = ∂h∗/∂x∗.

In figure A.1, we plot these aspect ratios vs. time for various permeability jump angles,

θ. The values of ε are found to be smaller than unity, i.e. they vary, in the long-time

limit, between 0.22 and 0.46 on the updip side, and between 0.11 and 0.22 on the

downdip side. Note that larger values for ε are realized at early times; however, this

limit is of comparatively lesser significance of the context of self-similar models of the

type described by our (2.23). Note also that for θ > 0◦, aspect ratios are larger updip

because the nose travels a comparatively shorter distance before becoming arrested
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at runout.

The results of figure A.1 suggest that, in general, it is appropriate to consider

the gravity currents as long and thin such that the along-jump component of velocity

remains notably smaller than its across-jump counterpart. Under these circumstances,

Dupuit’s approximation can be considered to be valid such that pressure gradients

can be considered hydrostatic as in (2.2).

A.4 Dye calibration and estimation of reduced grav-

ities

A.4.1 Dye calibration procedure

The concentration of dye to be mixed into the source fluid was inferred from cali-

bration experiments conducted in the general manner of Dong & Selvadurai (2006).

These were performed to determine the correlation between the dye concentration

and the pixel intensity. Separate correlations were, of course, derived for the upper

and lower layers, which are comprised of glass beads of different diameters, and which

therefore transmit a different fraction of the light from the overhead projector located

behind the box of figure 2.7. Calibration experiments were carried out by completely

filling the heterogeneous porous medium with dyed (fresh) water of known concen-

tration after which images were collected using the Canon Rebel EOS T2i 18.0 PM

camera. This process was repeated for various dye concentrations ranging from 0 to

0.14 g/L. The resulting data were used to construct calibration curves. We observe

that, due to the smaller permeability of the lower layer, the pixel intensity saturates

comparatively quickly. The dye concentration in all our experiments was therefore set

by the shape of the lower layer calibration curve. Note finally that different calibration

curves were constructed for different θ.
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A.4.2 Estimation of reduced gravities

To determine values for g ′̄c and g
′̄
d, we defined two interrogation windows within ex-

perimental snapshot images, one each for the upper and lower layers. These windows

could either encompass fluid within the bulk phase or within the dispersed phase.

However, and when computing the value of G′, we had to be consistent with the

sharp interface assumption applied in section 2.3. As such, the interrogation win-

dows in both the upper and lower layers were defined so that they enclosed only fluid

within the bulk phase. Once the windows were defined, we then computed the pixel

intensity averaged over area. The averaged values so obtained were compared with

the corresponding calibration curves for the upper and lower layers. These calibra-

tion curves were obtained using the procedure described in appendix A.4.1 but were

constructed specifically with reference to the above interrogation windows. In this

fashion, we were able to convert from an average pixel intensity to an average dye

concentration and then finally to an average salt concentration and fluid density, dye

and salt having been mixed into the source fluid in fixed proportion. An implicit

assumption in this latter step is that salt and dye are transported at roughly equal

speeds, which is justified given the large Péclet numbers of interest here (Sahu &

Flynn, 2017). By this procedure, we thereby estimate the average reduced gravities

in the upper and lower layers separately.

A.5 Scaling of reduced gravitiy, g′s

Realizing that expressing g′s in dimensional form in the results is not always a good

practise, we attempt to non-dimensionalize g′s using the scaling term, Q2
s/A

5/2
nozzle,

where Qs is the source flow rate and Anozzle is the area of the nozzle whose value is

2.8 cm2. From the plot in figure A.2, even though g′s scales differently for Qs = 1 cm3/s

and 0.5 cm3/s, we observe an approximately linear variation of G′ with g′∗s , with

slightly different slopes for the flow rates considered. In the region of overlap between
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Figure A.2: Reduced gravity ratio G′ vs. the source reduced gravity g′∗s . The open
symbols correspond to a source flow rate of 0.5 cm3/s while the solid symbols consider
1 cm3/s. The square, circle and diamond symbols show θ = 0◦, 5◦ and 15◦, respec-
tively.

the closed and open symbols, there is some offset between one and the other dataset.

It remains to probe this offset in future experimental work e.g. by extending the closed

symbols rightward or the open symbols leftward.
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Appendix B: Experimental details

B.1 List of experiments

A summary of the laboratory experiments performed as part of this study is given in

tabular form below.

Table B.1: List of laboratory experiments.

Expt. θ
(deg)

Qs ± 0.02
(cm3/s)

g′s ± 0.9
(cm/s2)

X∗
s

= Xs/L
H∗

lower

= Hlower/H
Filling mode
(downdip)

E1 0 0.51 20.1 0.25 0.45 Sequential

E2 0 0.51 40.1 0.25 0.45 Sequential

E3 0 0.51 60.1 0.25 0.45 Sequential

E4 0 0.51 80.1 0.25 0.45 Sequential

E5 0 1.01 20.1 0.25 0.45 Simultaneous

E6 0 1.01 20.1 0.5 0.45 Simultaneous

E7 0 1.01 20.1 0.75 0.45 Simultaneous

E8 0 1.01 40.1 0.25 0.45 Simultaneous

E9 0 1.01 60.1 0.25 0.45 Simultaneous

E10 0 1.01 80.1 0.25 0.45 Sequential

E11 0 1.01 80.1 0.5 0.45 Sequential

E12 0 1.01 80.1 0.75 0.45 Simultaneous

E13 5 0.51 20.1 0.25 0.5 Sequential

E14 5 0.51 20.1 0.5 0.45 Sequential

E15 5 0.51 20.1 0.75 0.4 Simultaneous

continued on next page....
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Table B.1 – continued from previous page

Expt. θ
(deg)

Qs ± 0.02
(cm3/s)

g′s ± 0.9
(cm/s2)

X∗
s

= Xs/L
H∗

lower

= Hlower/H
Filling mode
(downdip)

E16 5 0.51 80.1 0.25 0.5 Sequential

E17 5 0.51 80.1 0.5 0.45 Sequential

E18 5 0.51 80.1 0.75 0.4 Simultaneous

E19 5 1.01 20.1 0.25 0.5 Simultaneous

E20 5 1.01 20.1 0.5 0.45 Simultaneous

E21 5 1.01 20.1 0.75 0.4 Simultaneous

E22 5 1.01 40.1 0.25 0.5 Simultaneous

E23 5 1.01 40.1 0.5 0.45 Simultaneous

E24 5 1.01 40.1 0.75 0.4 Simultaneous

E25 5 1.01 60.1 0.25 0.5 Simultaneous

E26 5 1.01 60.1 0.5 0.45 Simultaneous

E27 5 1.01 60.1 0.75 0.4 Simultaneous

E28 5 1.01 80.1 0.25 0.5 Sequential

E29 5 1.01 80.1 0.5 0.45 Simultaneous

E30 5 1.01 80.1 0.75 0.4 Simultaneous

E31 10 0.51 20.1 0.25 0.55 Sequential

E32 10 0.51 20.1 0.5 0.45 Sequential

E33 10 0.51 20.1 0.75 0.35 Simultaneous

E34 10 0.51 80.1 0.25 0.55 Sequential

E35 10 0.51 80.1 0.5 0.45 Sequential

E36 10 0.51 80.1 0.75 0.35 Simultaneous

E37 10 1.01 20.1 0.25 0.55 Simultaneous

E38 10 1.01 20.1 0.5 0.45 Simultaneous

E39 10 1.01 20.1 0.75 0.35 Simultaneous

E40 10 1.01 80.1 0.25 0.55 Sequential

E41 10 1.01 80.1 0.5 0.45 Simultaneous

continued on next page....
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Table B.1 – continued from previous page

Expt. θ
(deg)

Qs ± 0.02
(cm3/s)

g′s ± 0.9
(cm/s2)

X∗
s

= Xs/L
H∗

lower

= Hlower/H
Filling mode
(downdip)

E42 10 1.01 80.1 0.75 0.35 Simultaneous

E43 15 0.51 20.1 0.25 0.6 Sequential

E44 15 0.51 20.1 0.5 0.45 Simultaneous

E45 15 0.51 20.1 0.75 0.36 Simultaneous

E46 15 0.51 80.1 0.25 0.6 Sequential

E47 15 0.51 80.1 0.5 0.45 Simultaneous

E48 15 0.51 80.1 0.75 0.3 Simultaneous

E49† 15 1.01 20.1 0.125 0.7 –

E50 15 1.01 20.1 0.25 0.6 Simultaneous

E51† 15 1.01 20.1 0.32 0.55 –

E52† 15 1.01 20.1 0.38 0.51 –

E53 15 1.01 20.1 0.5 0.45 Simultaneous

E54 15 1.01 20.1 0.75 0.3 Simultaneous

E55 15 1.01 40.1 0.25 0.6 Simultaneous

E56 15 1.01 60.1 0.25 0.6 Simultaneous

E57† 15 1.01 50.1 0.25 0.6 –

E58 15 1.01 80.1 0.25 0.6 Sequential

E59 15 1.01 80.1 0.5 0.45 Simultaneous

E60 15 1.01 80.1 0.75 0.3 Simultaneous

†Experiment was deliberately terminated before an assessment of the
filling mode could be ascertained.

B.2 Dye calibration procedure

The amount of dye to be mixed into the source fluid was determined from the method-

ology of Dong & Selvadurai (2006). Accordingly, correlations between the dye con-
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Figure B1: Dye calibration curves.

centration and normalized pixel intensity were obtained then plotted as in figure B1.

Two separate calibration curves, one corresponding to the upper layer and other to

the lower layer, were generated. Such a duplication is necessary because the two layers

are comprised of glass beads of different diameters. As such, the layers do not trans-

mit the same fraction of (background) light with the lower layer appearing darker

than the upper layer, c.f. figure 3.1 b. Calibration curves such as those shown in

figure B1 were obtained by completely filling the heterogeneous porous medium with

(fresh) water of known dye concentration then capturing images using the Canon

Rebel EOST2i 18.0PM camera. Multiple images were collected and the dye con-

centration varied from 0 to 0.3 g/L. Images were then processed using Matlab to

obtain the calibration curves. We observe from figure B1 that, due to the smaller

permeability of the lower layer, the pixel intensity saturates comparatively quickly.

Therefore, the dye concentration used in all of our experiments was set by the lower

layer calibration curve, which demanded, in turn, that we limit the dye concentration

to 0.15 g/L.
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Figure B2: [Color] Method to determine, for the primary gravity currents, the time
to runout, t∗ro, and the time for remobilization, t∗rm . Panels (a) and (b) respectively
consider the up- and downdip sides. C1, C2 and C3 indicate curve fits for data
points corresponding to different stages of motion, i.e. initial propagation, runout
and remobilization. C1 is a third-degree polynomial, whereas for C2 and C3 the
fitted curve is a first-degree polynomial.

B.3 Method for determining t∗ro and t∗rm

To demonstrate the method for identifying the time to runout and the time to remo-

bilization, we consider the downdip propagation of the primary gravity current for

the case illustrated in figures 3.5 a,b. The evolution of the nose is divided into three

time periods, which are curve-fitted by polynomial curves C1, C2 and C3 in figure

B2. The point of intersection of C1 with C2 specifies the time to runout. Conversely,

the point of intersection of C2 and C3 gives the time for remobilization.

B.4 Method for identifying simultaneous vs. sequential

filling

Consider figure B3, whose panels a and b show snapshot images of experiments E19

and E28, respectively. In both cases θ = 5◦, Qs = 1.01 ± 0.02 cm3/s and the plume

nozzle is located at X∗
s = 0.25. However, in figure B3 a, g′s = 20.1 ± 0.9 cm/s2 and
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the filling mode is simultaneous. By contrast, in figure B3 b, g′s = 80.1 ± 0.9 cm/s2

and the filling mode is sequential. In making these assessments, reference is made

to the surface plots of figures B3 c,d. These surface plots are generated by stacking

in the vertical coordinate, Z∗ = Z/H, contour lines derived from a horizontal time

series analysis that follows from the procedure outlined in section 3.3.3. The surfaces

therefore indicate, for prescribed X∗ and Z∗, the moment in time when the pixel

intensity first obtains a nontrivial value. This is, of course, the same instant when

discharged plume/contaminated fluid is first detected at the location in question. The

surfaces span the entire depth of the porous medium i.e. they draw data from the

upper and lower layers. However, the surfaces pertain only to the downdip side of the

nozzle. Analogue surface plots corresponding to the updip side are straightforward

to construct but are not shown here. For illustrative purposes, it is also helpful to

consider the shape of some of the contour lines that constitute the surfaces of figures

B3 c,d. To this end, figures B3 e,f correspond to figures B3 c,d, respectively. In both

line plots, data points falling on contour lines corresponding to 0.005 ≤ Z∗ ≤ 0.3 lie

completely within the lower layer. Data points falling on the contour line labelled

(Z∗ =) 0.4 span both the upper and lower layers. Finally, data points falling on the

contour line labelled (Z∗ =) 0.99 lie completely within the upper layer. In either

of figures B3 e,f, and except for the curve labelled (Z∗ =) 0.99, the general trend of

each curve is increasing. However, and as we explain below, it is the rate of increase

between those curves labelled e.g. as (Z∗ =) 0.005 and (Z∗ =) 0.4 that is especially

significant when distinguishing between simultaneous vs. sequential filling.

When g′s = 20.1 ± 0.9 cm/s2, the snapshot of figure B3 a confirms that, on the

downdip side, the upper layer begins to fill with dispersed fluid before the lower

layer. This behavior is more clearly illustrated in figure B3 c, whose surface exhibits

a vertical dip (highlighted by the vertical arrow) just below the permeability jump

and for sufficiently large X∗. The dip reflects the fact that dispersed fluid from

the primary gravity current reaches the sidewall boundary at relatively early times.
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Thereafter, the dispersed fluid in question either drains (slowly) into the lower layer

or else accumulates in a steadily thickening layer at the base of the upper layer. By

contrast, the secondary gravity current forms later and so the base of the lower layer

in the neighborhood of X∗ = 0.75 begins filling with contaminated fluid only after

the upper layer is, in effect, completely-filled. This latter conclusion is supported by

figure B3 e. Contrasting the curves labelled 0.005 and 0.99 in the limit of large X∗, we

note that contaminated fluid is observed in the neighborhood of the top of the box at

an earlier time than contaminated fluid is noted in the neighborhood of the bottom

of the box. For those pixels along Z∗ = 0.005, filling is associated with the horizontal

advection of the secondary gravity current, thus the nearly linear increase of the

curve labelled 0.005 in figure B3 e. Such linear behavior disappears when Z∗ = 0.25

or 0.3, because at these larger elevations, the intrusion of contaminated fluid stems

from the combination of the secondary gravity current and basal draining from the

overlying primary gravity current. In contrast to figure B3 a, figure B3 b considers

g′s = 80.1± 0.9 cm/s2 and shows an example of sequential filling. The right hand side

edge of the surface from figure B3 d corresponds to X∗ = 0.75 and shows a monotone

(and nearly linear) variation as highlighted by the long black arrow. In like fashion,

the curves from figure B3 f show, for sufficiently large X∗, a progressive increase from

small to intermediate to large values of Z∗.
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Figure B3: [Color] False-color snapshot images in (a) and (b), surface plots in (c) and
(d), and line plots in (e) and (f), for simultaneous (left panels, g′s = 20.1± 0.9 cm/s2)
and sequential filling (right panels, g′s = 80.1 ± 0.9 cm/s2). The vertical locations
of the curves, i.e.Z∗ = 0.005, 0.25, 0.3, 0.4 and 0.99, exhibited in (e) and (f) are
indicated in the snapshot images (a) and (b) by the dashed horizontal lines. Also,
the arrows in (e) and (f) point in the direction of increasing Z∗. In panels c and d,
the position of the permeability jump is indicated by the vertical plane (green). Here
θ = 5◦ and Qs = 1.01± 0.02 cm3/s.
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Appendix C: COMSOL simulation
details

C.1 Random order of permeabilities: k1 > k3 <

k2 > k4 > k5

In Chapter 4, we investigated the flow pattern formed in a multi-layered porous

media for layer configurations, starting from the source of injection, arranged in their

decreasing order of permeabilities. In this appendix, we relax the assumption of layer

configuration and consider a scenario in which low permeability layer exists on top of

a higher permeability layer.

Figure C1: [Color] As in figure 4.7 d but with Layers 2 and 3 interchanged.

Whereas figure 4.7 d considers a case in which the layer permeabilities follow a de-

scending order with k1 > k2 > k3 > k4 > k5, figure C1 examines a situation in which

two of the intermediate layers are interchanged. The numerical simulation in question
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allows us to explore a situation in which dense contaminated fluid, originating from

the source, drains into a lower layer of higher, rather than lower, permeability. We

observe from figure C1 that there is no outflow of contaminated fluid along the per-

meability jump between Layers 2 and 3. Rather all of the contaminated fluid drains

straightaway into Layer 2. In contrast to the observations in figures 4.7-4.9 where

the width of the draining fluid continuously increases in each successive layer, figure

C1 indicates that the fluid draining into Layer 2 experiences a decrease in its width.

This is because the fluid enters from a layer of higher resistance (Layer 3) into the

layer of lower resistance (Layer 2), consequently, the fluid experiences an increase in

its velocity. And in order to satisfy the conservation of mass, the overall width of

the fluid has to contract. In contrast, our theoretical model assumes that the fluid

always drains from a more permeable layer into a less permeable layer, and in such

cases, the fluid experiences a flow resistance due to which the draining velocity de-

creases. Therefore, we treat the flow exhibited in figure C1 as a special case and do

not compare with our theory predictions.

C.2 Method for determining runouts in COMSOL

simulation

To demonstrate the method for determining runout lengths along a permeability

jump, we consider, for illustrative purposes, the permeability jump corresponding

to case shown in figure 4.7 a. The variation in density is plotted vs. the horizontal

coordinate in figure C2. The data in question are fit with a variety of straight lines,

which we label as C1, C2, C3, C4 and C5. Of particular interest are the points

of intersection of adjacent lines, i.e. the intersections between the line pairs C1/C2

and C2/C3. We define as the left runout distance the midpoint between these two

intersections points. A similar procedure is applied to the right where the consider

the points of intersection of the line pairs C3/C4 and C4/C5. Following this approach

(and also extending it to cases where θ > 0) gives an objective and accurate means
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of estimating runout lengths along any given permeability jump.

Figure C2: Variation of density along a (horizontal) permeability jump. The linear
curve fits, C1, C2, C3, C4 and C5, are shown as dashed lines. The vertical lines in
blue indicate the runout distances.
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