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ABSTRACT

This thesis discusses the concepts of geostatistics of petroleum reserves. In order to
predict the amount of petroleum in a certain area, one must first record the amount of oil at
selected well sites in the area. Then one models the variation in the data using a tool known as
the semivariogram. Once a semivariogram model has been chosen, then by means of a method
known as kriging, the average amount of oil in the area is predicted. If circumstances exist
where kriging is not feasible, then alternative methods of prediction such as random kriging or
regularization are used. If the intention is to study the dispersion characteristics of the data,
then a method known as conditional simulations is used. Throughout this thesis, some of
these methods are slightly modified in order to allow greater freedom in fitting the models to

the data. As well, some of these methods are applied to real world examples.
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SECTION 1 INTRODUCTION

The purpose of this thesis is to study the concepts of
geostatistics, as applied to petroleum reserves. The bulk of
the material used in this thesis came from the references
Cressie, Hohn, Journel & Huijbregts, and Rendu. As well, the
FORTRAN program in Deutsch was used to perform an estimation
problem using the techniques laid out in these references.
Geostatistics is a technique that predicts the existence and
quantities of a variable (such as iron, copper) in space. This
technique is used because after performing seismic tests to
prove the possible existence of the variable in the area, a
company wants to be able to predict the total quantity of the
variable in the area. Before one can perform these techniques,
data on the variable under study must be collected. The first
step is to set up a coordinate system with the easting and
northing directions as coordinates for each point in the area.
The next step is to drill holes at selected points on the grid,
and from the drill cores, determine the potential quantities of
the variable at each point. Once this is done, an estimation
procedure known as kriging is used to predict the quantities of
the variable at other points on the grid, and eventually the
total quantity of this variable. With regard to the estimation
of petroleum reserves, an area is chosen after seismic tests

prove the potential existence of petroleum in that area. A grid
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is then set up for this area. At selected points on this grid,
a certain geological procedure is performed in order to give us
the initial potential of these reserves. These initial
potential values are recorded. Kriging is then used to predict
average initial potential of the area of interest, and the total
initial potential in the area.

Some of the standard geostatistical formulas in the textbooks
will be modified in a way that will allow greater freedom in
fitting models to data. Some of these modifications will be
subject to certain mathematical conditions that are necessary
for a model to hold. The concept of stationarity, which is
defined in terms of first and second moments, will be examined
first, since most geostatistical models are based on this
assumption. Kriging uses the spatial correlations between the
samples to estimate the regionalized variable at the unknown
points on the grid. A geostatistical method of describing this
spatial variation is the sexivariogram. Two basic types of
semivariogram models, exponential and spherical, will be
examined in great detail with the aid of several graphs. These
concepts will then be applied to real world examples using
either one of the basic models or a combination of the two. The
notion of an anisotropy will then be considered, in order to
better model the variation by considering direction as well as
distance. Since the variation may sometimes appear somewhat
periodic, the notion of a hole effect will then be looked at.

Once the semivariogram models have been discussed, then

2



another way of modelling the semivariograms will be presented in
the form of a time series. The basic concepts of a time series
will first be explained, then it will be shown how they relate
to the semivariogram models. The time series models wi.l then
be graphed in order to show the similarities between the two
ways of modelling.

The assumption of stationarity may not hold, so before
considering the estimation procedure, the concepts of quasi-
stationarity and drift will be looked at. Kriging depends on
the semivariogram and will be discussed next. The estimates are
obtained by solving a system of linear equations that minimize
the estimation variance. The concept of cokriging will then be
analysed to deal with the case where we are estimating the
initial potential in an area using other variables in addition
to the initial potentials at selected points in the area.

Alternative forms of estimation will then be looked at in the
event that kriging may not be possible. If for example, the
locations of the points are unknown but randomly scattered, or
if for some reason we cannot measure the initial potential value

at certain points in the area of study, then methods known as
random kriging and regularization are needed and will be

examined.



SECTION 2 BASIC GEOSTATISTICAL CONCEPTS

Geostatistics is based on the concept of a regionalized
variable (Hohn, pp. 2). A regionalized variable is a variable
that is distributed in space. The purpose of geostatistics is
to predict the values of this regionalized variable. 1In order
to do this, one must first model the spatial variation of this
variable. This can be accomplished by the use of a
semivariogram (often denoted as v(h), where h is the distance
between two points). The semivariogram is a graphical device
that is used to model spatial continuity and autocorrelation.
In estimating petroleum reserves, we attempt to measure and
predict the initial potential (often denoted as IP) of the
reserves. The IP is determined when geologists perform a
DST(drill standard test). In doing so they drill a hole at a
potential well site and they measure the water pressure and
other variables of interest and from these they are able to

determine the IP of this potential well site.
Let z(x) = IP at well site x
and z(x+h)= IP at well site x+h.

The usual estimate of vy(h) is

v*(h)= ¥, [z;(x)~z;(x+h)]%*/2n , i=1,2,........ ,n



where n = the number of pairs of points on the grid that are h

units apart.

The semivariogram y(h) is a measure of covariance and is
similar to the familiar covariance of basic statistics. v*(h),
the experimental semivariogram is calculated using all pairs of
wells separated by a distance h. This is done for all values of
h up to as big as h can be such that there exists sufficient
data to calculate the experimental semivariogram. Once this is
done, these values are plotted on a graph with distance on the
horizontal axis and v(h) on the vertical axis. For small h, the
IP are about equal, i.e. as h goes to 0, so does v(h). For large
h, the values become more independent, i.e. y(h) tends to level
off at a certain h value. This value of h is called the range of
the semivariogram. The range is simply the distance at which we
see a transition from spatial correlation to the absence of
spatial correlation. The corresponding v{h) 1is called the

sill.

SECTION 3 STATIONARITY

Stationarity is an assumption that must hold in order for the
semivariogram models to be valid. It assumes that the first and
second moments of the observed random function remain invariant

across the area being studied. For the regional variable z(x)



at point x, the distribution function has the following

property: E[z(x)]l= u(x), and this value can depend on the
location x. This is our first order moment. The following
properties must hold in order for first order strict

stationarity to exist(Journel & Huijbregts, pp. 30-32):
E[z(x,)-2(x,+h) 1= n(h), where u(h) is a function only of the
distance h, and it is independent of the point x,. i.e. the
semivariogram is independent of the point x for all possible
distances h on the grid being studied.

The two conditions for second order stationarity are:
(1) E[z(x)]= n(x)= n, the expectation of z(x) is independent of
x, i.e. it is invariant across the grid being studied
(2) The covariance for each pair of regionalized wvariables
{z(x),z(x+h) }depends only on the separation distance h, with
covariance C(h) = E{z(x+h)z(x)} - pn?, for all x. If the
covariance is stationary, the variance and semivariogram are

defined to be stationary, thus

C(0)=E[(z(x)- n)?l= var(z(x))

v(h)=E[(z(x+h)-z(x))?]/2 = C(0)- C(h)

At this point, it 1is important to note that there is a
restriction on the choice of semivariogram due to the one to one
correspondence between the semivariogram and the covariance,

which must be positive definite.



SECTION 4 SEMIVARTIOGRAM MODELS

The two types of semivariogram models that will be analysed are
the (1) Exponential Model and (2) Spherical Model (Hohn, pp. 25-

28) .

A. EXPONENTTIAL MODEL

The basic form of the exponential model is

v(h)=C[l-exp(-(h/a))] (Hohn, pp. 27), but in order to allow more
freedom in choosing the parameters and to give a better fit of
the model to the data, this model has been modified and is now

the following more general model:

v(h)=C[l-exp(-(h/a)®)], for 0<6<2,
to ensure positive definiteness, where the C and a are the sill
and range, respectively, as stated earlier. The 6 value is a
parameter that 1is chosen in order to give us the best fit.
Finding the values of C, 6, and a is done using a trial and
error process. We first look at the graph of the plot of the
experimental semivariogram and choose C and a based on the
pattern of the experimental semivariogram. For instance, if a
levelling of v(h) occurs at the point (h,,v(hy)), a=h, and C=y(h,)
would be chosen as the range and sill respectively. After

having chosen these values, 6 is then chosen in order to provide
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the best possible fit to the data. A special case of the
exponential model is the case where 6=2, this is known as the
Gaussian model. At this point it is important to note that vy (h)

approaches the sill-value, C, asymptotically.

Case (1) Regular Exponential with 6 = 1:

Regular Exponential 6 =1

t

gamma

{

N WA NN W
I e

t




Case(2) Exponential with 6 = 0.65(more hump-shaped) :

Exponential 6 =.65

gamma

12 13 14 15

Case(3) Exponential with 6 = 1.8(slightly more parabolic

shaped) :

Exponential 6=1.8

gamma




Case(4) Gaussian(Exponential with 6

gamma

Gaussian

10

11

12

13

14

15
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B. SPHERICAL MODEL

The basic form of the spherical model is

v(h) = C[(3/2) (h/a)- (%) (h/a)’] (Hohn, pp. 26).

But as in the case of the exponential model, to allow more
freedom in choosing the parameters and to give a better fit of
the model to the data, the model has been modified to give the
following general model:

y (h) C{(o/(o-1))*(h/a) - (1/(0-1)) (h/a)’} , h:a

C . h>a

It is important to note that in the graph of the spherical model
that yv(h) does not approach C asymptotically; it is equal to C
when h>a. Like the exponential model , the values are chosen in
order to find the best fit. This equation is of this form for
the following reasons:

(1) at h=a, v(h) = C, and

(2) At h=a, the derivative with respect to h of y(h) must be
equal to 0.

These conditions must hold in order for the graph of y(h) to
approach the point at h=a smoothly. As well, once the value of
¢ has been chosen, once must check for positive definiteness

again.

11



Case(l) Regular Spherical with ¢ = 3:

Regular Spherical $=3
9
8
7
6
£S5
Ea
o
3
2
1
0 - + — + + 4
o 1 2 3 4 S5 6 7 8 9 10 11 12 13 14 15
h
Case(2) Spherical with ¢ = 2(slightly more hump-shaped) :
Spherical ¢ =2
9
8
7
6
E S
£ 4
-}
3
2
1
0 —— ; v + : —
9 10 11 12 13 14 15
h

12



Case (3) Spherical with ¢ = 3.8 (approaches sill less smoothly

than regular spherical):

Spherical $=3.8

gamma

10 11 12 13 14 15

13



C. NUGGET EFFECT

The nugget effect is defined as the case where y(h) does not
approach 0 as h goes to its minimum well-spacing value. It is
in many cases the result of spatial variability on a very small
scale, and is often no more than a standard semivariogram model
with a small range, i.e. y(h)=C,[1l-exp(-(h/a))®], where a is very
small relative to the well spacing . and the observed nugget
effect is the sill Cy(Hohn, pp. 29-31). It is also chosen
arbitrarily in the sense that we inspect the graph of the
experimental semivariogram and try and decide on the point where

the function crosses the y(h) axis 1if it is not at 0.

14



Notice in the plot below how y(h) does not go to 0 as h goes to

its minimum well-spacing value.

Case of a Regular Exponential with nugget effect = 5:

Exponential with nugget=5

gamma

15



D. EXAMPLE (A) (data on the IP’s of reserves in West Virginia in

APPENDIX A):
EXPERIMENTAL SEMIVARIOGRAM:

gamma

0.2
0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

¢

e e e o]

L

experimental semivariogram

.
¢ 6 06 ® ¢ % o o o ® ¢ ® o o 00 o

o

4 6 8 10 12

distance

16



Case(l)Fit a Regular Spherical with a nugget effect of 0.08,

a=1l.6, C=0.18:

Regular Spherical

0.2 -
0.18 -
0.16 +
0.14 J’
0.12 14

¢ actual
—— predicted

gamma
o
-

0 2 4 6 8 10 12

distance

Case(2)Fit A Regular Exponential with C=0.18 and a=0.8:

Reguiar Exponential

l & actual
predicted !

gamma

0 2 4 6 8 10 12

distance
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Case(3)Exponential fit with 6 = 0.72, a = 0.63, nugget=0.1,

C=0.18:

Exponential(0.63,0.72)
02 -
0.18 -
0.16 - ¢ y
0.14 -
012 14/ e acwa

0.08 i j ——— predicted

gamma
[=]
b
+

1] 2 4 6 8 10 12

distance

Notice how this modified exponential model allowed greater
latitude in fitting the model to the data and resulted in an

excellent fit.
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SECTION 5 NESTED MODELS

A. BACKGROUND
In most real world cases, the final model chosen is not just
one of the spherical or the exponential; it is a combination of

both(Hohn, pp. 31-33). The general form is the following:

v(h)=X, (y,(h)), i=1,2,...... I

if v;(h)=C,, this model is known as a pure nugget effect.

B. EXAMPLE (B) (data on IP’'s for reserves in West Virgina in

APPENDIX B)

EXPERIMENTAL SEMIVARIOGRAM:

Experimental Semivariogram
for Double Spherical Model

|
T [ J P'S L 4 [ J
[ J
[ J
E * o
[ & [ 2
o 10 -
! . * o
5_0
0
0 2 4 6 8 10 12 14 16 18 20
distance

19



A nested spherical model will be fit to this data set.

We fit a Double Spherical Model to the data, where

(1) Model 1 has a=1 and ¢=2.5, and

(2) Model 2 has a=12 and ¢=3.3.

gamma

Spherical(1;2.5:12;3.3)

predicted
m actual

distance

(Note: Due to the lack of a hump-shape of the earlier points,

the

decision was to try spherical models and not exponential)

20



SECTION 6 ANISOTROPIES

Anisotropies exist when the term [z (x)-z(x+h)]? depends on both
the value of h and direction; i.e. the orientation of the vector
between x and x+h(Journel & Huijbregts, pp. 175-184). The
angles are assumed to be measured counter-clockwise from the
east. If (x,,%x,) are the coordinates of a point x in 2
dimensional space, then a corresponding vector h has coordinates
(h,,h,) and modulus: |h|=V(h +h?) . If anisotropy exists, the
semivariogram will be a function of the direction represented by

the vector (h,, h,).

A. GEOMETRIC ANTSOTROPY

A semivariogram v{(h,,h,) is said to have a geometric anisotropy

if there exists a linear transformation such that the following

formula holds:

v(h, h,) = v [V(h, *+ B, ],
where y(h) is an anisotropic model and v’'(h) is an isotropic

model. The variables h,’ and h,’ are defined in the following
way:
h,’= a,;h, + a;;h, , where the a;;’s are weighting factors

h,’= a;h, + azh, .

21



a;; 412
[A] , B = (h,, h, ), and h’ =(h,',h,')

a,; 4y,

The matrix form of this equation is:

2 4,
h’ = [Alh, where [A] =

a a

21 22

Define ® to be the angle that the major axis of an ellipse makes

with the x-axis, and then the a;,'s satisfy the relations:

a,; = cos*(®) + ksin’(®)

sin’(®) + kcos?(®)

)
o
n

w
1

(1-k)sin(®)cos(Qd),

where k is the ratio of the anisotropy., i.e. the ratio of the
minor axis to the major axis of the ellipse. After finding h;'
and h,', they are then substituted into the y(h) model. As a
result, the direction along the major axis of the anisotropic

ellipse is now the x-axis.

22



If the semivariogram models have a sill, the sill stays constant

for all directions if a geometric anisotropy exists.

of the semivariograms vary with direction,

the

a graph like the one in EXHIBIT A,

The ranges
but must conform to

following criterion: if the semivariograms are plotted on

the ranges will lie on an

ellipse in two dimensions or an ellipsoid in three or more

dimensions.

EXHIBIT A

Three semivariograms with ranges 4.5,

and 7.5 respectively:

gamma

—
1

04
0.5

-

1 156 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 10

: f
T

i
T

i
t

T

h

:
+=
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B. ZONAL ANJISOTROPY

With a zonal anisotropy each direction is modelled separately in
the sense that

yv(h)=X,y;(|h]|) i=1,2,..... ,n

Each model is isotropic or anisotropic and is accompanied by the

transformation matrix A;.

General Structural Model for Anisotropies is

v(h)= X;v;(|h])

where

h;= [A;]1[h].

Each v,[h] has its own anisotropy, and |c;(h) [< C;(0), for all j
In the limiting case,

y(h]l=lim, [¥ v, (|h;]|)/N]

i.e. look at it as a relative frequency approach for the

infinite different directions.

SECTION 7 HOLE EFFECTS

Sometimes the petroleum geologist encounters the occurrence of
significant periodicity. Whereas semivariograms along a
structural trend can be fitted by one or two simple models

mentioned earlier, a correlation structure may experience highs

24



and lows as it approaches zero. This process is known as the
hole effect. As a result, the correlation between points in the
area decreases as the distance h gets 1larger, but not
monotonically as in the case of the two simple semivariogram
models (Hohn, pp. 43-44). When fitting these models, it is
important to note that since the hole effect varies inversely
as the distance h, the models must be chosen in such a way that
they dampen out as h gets larger, since the covariance goes to

zZero.

Examples of proposed models include the following:

(1) C(h) = sin(h)/h
v(h) =1 - sin(h)/h
(2) C(h) = cos(h)

vy(h) = 1 - cos(h).
In order to allow more freedom in fitting the models to the
data, the following more generalized models have been proposed:
(1) Cth) = sin(wh)/wh , where w is an arbitrary natural number
v(h)= 1 - sin(wh)/oh
(2) C(h)= cos(wh) , where w is an arbitrary natural number
v(h) = 1 - cos(wh).
Case 1 is already damped, but case 2 needs to be damped using
v(h)= C[1-{exp(-(h/a)®)cos(wh)}],

where C = the sill value.

The amplitude of a hole effect is defined as the ratio of the

25



minimum value of the covariance divided by the value of the
sill.

Amplitude =|Min(C(h))|/C(0)

For model (1), C(h)=sin(h)/h, the amplitude = .212. For a
three-dimensional space, the maximum possible amplitude of an
isotropic hole effect is 0.212. For the function C(h)=sin(h) /h,
C(h) reaches its minimum at h=3n/2, and C(3m/2)= 0.212. If the
observed amplitude is greater than 0.212, this means that the
assumed hole effect is illusive. 1In a one-dimensional model,
such as case (2), the maximum amplitude is 1. This is so
because cos(h) is positive definite in only one direction. Thus
the model in case (2) allows us to fit 1large hole

effects(Journel & Huijbregts, pp 169).

Two more possible models are:

(3) v(h) = 2 - sin(wh)/wh - cos(wh)

This is dampened using

v(h)=C[2 - sin(wh)/wh - exp[-(h/a)®]cos(wh)], w,6, arbitrary.
(4) v(h)= 2-sin(wh)/wh - cos?®(wh)

This is dampened using

v (h)=C{2-exp(-(h/a) ) cos®(wh)-sin(wh) /wh}.

26



SECTION 8 MODELLING AS A TIME SERIES

A. BACKGROUND

The spatial representation of IP values can also be represented
by second order autoregressive processes(Hohn, pp . 52-59). 1In
this case, we simply replace distance h by time t. For time
series models, the correlations between data points decrease as
t increases. Since the same thing occurs with spatial
variability in that the covariance goes to zero as h gets
larger, then there is a one to one correspondence between time
and distance, allowing us to model the spatial variation in the
form of a time series. In order to do so we must first look at
how autoregressive(from now on denoted as AR) processes are
represented and define all the terms(Cryer, Ch. 4).

z = the variable of interest

z(t) = the value of z at time t

z(t-1l)= the value of z at time t-1

z(t-2)= the value of z at time t-2

a(t) = the error term, independent of z(t-1),z(t-2),,,,, etc.

] the autoregressive coefficient

T+
18

the moving average coefficient
Y, = the autocovariance for a time series model
v(h) = the semivariogram for a geostatistical model

P, = autocorrelation for a time series model

If second-order stationarity exists, then the covariance and
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semivariogram graphs are alternative representations of spatial
autocorrelation. The relationship vy(h) = C(0) - C(h) implies
that there is an inverse relationship between the covariance and
the semivariogram. Therefore, while the semivariogram increases
with distance h, the covariance decreases. The semivariogram of
a regionalized variable displays a sill C(0), which is equal to
its sample variance. The existence of this sill implies that a
correlogram can be computed using the following formula:

p(h) = C(h)/C(0) = 1 - y(h)/C(0)

If this formula is rewritten, we get y(h) = C(0)(1-p(h)), which
gives the semivariogram corresponding to a given autoregressive
process. At this point it should be pointed out that the p, for
a time series process is equivalent to the p(h) for a
semivariogram process in the sense that they are both measures
of correlation. The difference being that for the time series
model the correlation is measured over time and for the
semivariogram model the correlation is measured over distance.
Therefore if p, for a time series model can be found, then its
semivariogram equivalent can be determined, and used to model a

particular semivariogram.

An AR(2) process has the following representation:

z(t) = y.z(c-1) + w,z(t-2) + a(t) {1}

The characteristic polynomial of z is:

r(x)=1 - y;x - WQf, and ¢ always has 2 roots(possibly complex)

A stationary solution to {1} exists if and only if the roots
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exceed unity in absolute value. For the AR(2) case,

x =[v, £ V(y,>-4(1) (-v,;))1/(-2¥,), using the quadratic formula.
These roots are greater than 1 in absolute value if and only if
(a)w, + v, < 1,

(b)y, - ¥, < 1, and

(c)hs,)<1, all hold simultaneously.

(1)Y= V¥Ye; + VoY, = autocorrelation function

(2) 0)= W10y + WPy

and (2)=(1)/y,, therefore p,=¥,/(1l-¥,), which implies that

o, = W0, + W, = [W,(1-y,) + ¥,;°]1/(1l-y,), and we can then obtair

successive values of p from (2).

If the roots of the characteristic polynomial are complex then,

o = VI(-v,)sin(Tk + w)/sin(y)]

cos[T] v/ (2v(-vy.)),

tan{V¥] tan([T] (1-y,) / (1+y,) .
If the roots are equal,

0,=[1 + k(1+y,)/(1-v,)]1(y,/2)%, k=0,1,2,,,,,,.

An exponential semivariogram results from an AR(1l) of form
z(x,)= wz(x,.,) + €;, with wv=1. If vv<l, the resulting
semivariograms are similar to the general exponential model,
yv(h)= C(0) [l-exp(-(h/a)®) ]. If ¥ is near 0.9, then there will
be a large range. Smaller values of ¥ will reduce the range.

The equivalence of the ARMA(1l,0) model to the exponential model
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for v will now be demonstrated. The autocorrelations are

p(0) = ¢° =1

p(l)= wp(0)=y
p(2)= wp(1l)=y?
p(3)= yp(2)=y’

o(h)=y".
Therefore y(h)=C(0) [1-y"'], this is the exponential model with

W= exp(-(h/a)®), where h’ = h®, and therefore a = -1/(1ln(y)]"°".

ARMA (2,0) models give greater latitude in model building. If
wf + 4y, > 0, the resulting graph is a Gaussian type curve. If
w,” + 4y, < 0, the resulting graph has a hole effect due to the
pseudoperiodicity in the data(Cryer, pp 68). At this point it
is important to note that in order to preserve stationarity,

that ¥, + ¥, < 1, must hold.
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B.

C.

CASE(1):ARMA(1,0) with ¥ = 0.8

gamma

[ARMA(1,0) ,0.8]

18 20 22 24

26

28

30

CASE(2): ARMA(1,0) with w = 0.9

gamma

[ARMA(1,0),0.9]

6

-

8 10 12 14 16 18 20 22 24 26 28 30

h
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D. Case(3) ARMA(0,1) with 1=0.5
[ARMA(0,1),0.5]
12
10
8
-1
E s
<
-]
4 ~
2
0 R ) ) .
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
h
E. Case(4) ARMA(1.1) with w=0.9 and 1=0.3

[ARMA(1,1),0.9,0.3]

gamma

o - s + " + PR S PR S — .
¢ + —p—t- +—t + —

10 12 14 16 18 20 22 24 26 28 30
h

0 2 4 6 8
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F.

G.

Case(5) ARMA(1,1) with w=0.9 and 1t=0.6

gamma

[ARMA(1,1),0.9,0.6)]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

30

Case(6) ARMA(2,0) with y, = 0.9 and ¢, = -0.05

gamma

1
0.9
08

) !

[ARMA(2,0),0.9,-0.05]

. P
bt

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
]
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H. CASE(7)ARMA(2,0) with ¥, = 1.8 and w, = -0.9

gamma

[ARMA(2,0),1.8,-0.9]

4

6

8

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
h
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SECTION 9 EXAMPLE C:

EXAMPLE

F _ANTISOTROPIE

IN THE 4 BAST

DIRECTIONS (data on IP’s from reserves in West Virginia in

APPENDIX C

EXPERIMENTAL SEMIVARIOGRAM FOR EAST-WEST DIRECTION:

3oo0

250

200

150

5o

4=

experimentalgammas 0 degrees

[] 10 12

distance

20

Fitted Semivariogram for east-west direction:

Nested model: pure nugget effect plus an spherical with ¢ =8.

gamma

Gamma(east-west)

10

distance

20

predicted
actual

|
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EXPERIMENTAL SEMIVARIOGRAM FOR NORTH-SOUTH DIRECTION:

3g0

gamma
"
Q
f

Experimentalgamma 90 degrees

- > ..0-

1 10 15 20
distance

Fitted Semivariogram for the north-south direction:

Nested Model:

Pure nugget effect plus Exponential with 6=0.85.

gamma

Gamma(north-south)

predicted -

8 acwd |

5 10 15 20

distance

36



EXPERIMENTAL SEMIVARIOGRAM FOR NORTHEAST-SOUTHWEST DIRECTION:

3Joe¢

25¢

experimentalgammea 45 degrees

H 10
distance

20

Fitted Semivariogram for the northeast-southwest direction:

Nested Model: Pure nugget effect plus an Exponential with 6=0.8.

Gamma(northeast-southwest)

5 10 15

distance

20

predicted
| actual
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EXPERIMENTAL SEMIVARIOGRAM FOR NORTHWEST-SOUTHEAST DIRECTION:

Experimentalgamma 135 degrees

200 +

gamma

¢} S 10 15 20
distance

;—————-———-—-———_—

Fitted semivariogram for the northwest-southeast direction:
Nested Model: Pure nugget effect plus a spherical with ¢=4 and

a hole effect model of the form v(h)=1-(sin(0.628h))/(0.628h).

Gamma(northwest-southeast)

gamma

distance
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SECTION 10 PROPORTIONAL EFFECT AND QUASI-STATIONARITY

Let x = (x,x,)and x’' = (x,’,%,’) be two points on a particular
grid(Journel & Huijbregts, pp.186). In the absence of the
hypothesis of stationarity,

(1) The expectation of z(x) depends on the location of the
regionalized variable on the grid,

i.e. it depends on the coordinates of x
E{z(x)} = n(x,.x,).

(2) Both the semivariogram y(x,x') and covariance C(x,x') depend
on the locations of x and x', i.e. (1/2)E{[z(x) -z(x')]%}=
vi{x,x"').

Under the hypothesis of quasi-stationarity we have

(1) The expectation of z(x) is quasi-constant over a limited
number of neighbourhoods and n(x)= p(x')= u(x,) when x and x' are
inside the neighbourhood V(x,), which is centred at a point x,.
(2) Within V(x,), v and C depend only on h = x - x' and not on
the locations of x and x'; but they are dependent on
neighbourhood V(x,) in which they are found, i.e. on the location
of x;.

Thus vi(x,x') = v(x-x',%X,) = v(h,xq), V X,xX'€ V(%) .
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A. PROPORTIOQONAL EFFECT

Let V(x,) and V(x,’) be two neighbourhoods centred on x; and
X,’ . Assume they are quasi-stationary on x, and X,’ respectively
and that v(h,x,) and v(h,x,’) are the semivariograms defined on
these 2 neighborhoods(Journel & Huijbregts, pp.187-190). The
two y’'s can be made to coincide after being multiplied by a
factor which is a function of the experimental means p*(x,) and
p*(x,'), therefore we assume the existence of a stationary model
Yo(h) that is independent of the neighbourhood V(x,) and such
that

v{h,xy)=£[u*(x4) ]y, (h) .

B. CASES OF A PROPORTIONAL EFFECT (Journel & Huijbregts pp 188-
189) :

(1) Direct Case:

v(h,x,) /7£[n*(xy) 1= v(h,xq') /£[u*(%x,') ], where

v(h,x,) and yv(h,x,') differ by a proportional effect in a
direct manner. This would be the case if the experimental
semivariogram varies directly as the corresponding experimental
mean. This would be true if 2z(x) has a lognormal-type
histogram.

(2) Inverse Case:

Here y(h,xy) Elu*(xy) 1= v(h,x,') flu*(x,')].

v(h,x,) and v(h,x,') differ by a proportional effect in an
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inverse manner. This would be the case if the sills of the
experimental semivariograms vary inversely as the corresponding
experimental mean. This would be true if z(x) had an inverse
lognormal-type histogram.

(3) Case where a proportional effect in (n*)® exists, r is

arbitrary:
1. Direct: flu*(x,) I=ln*(xy) 17
2. Inverse: flu*(x,)1=[ A - u*(x,)1°%,

where A = the maximum value that pu* can assume.

Here is an example of a case where two semivariograms have

nugget effects.

v(h, %) =[E£(n* (%)) + Nylv,(h), and v(h,x,')= v (h) [E[n*(x,')] +N;'],
where N,, N,' are nugget effects.

Therefore in the case with N,=0,

vih,x) /Elu*(x,) 1= v(h,x") /E[n*(x,") ]

and in the general case

vi(h, %)/ [E(m*(xy) +Nyl= v(h,x,') /[E(u*(x,')) + Ng'l

SECTION 11 AUXTILIARY FUNCTIONS

Sometimes we may want to find the average value of a
semivariogram in a one-dimensional deposit over a rectangular

block of length L, instead of finding every value of y(h) at
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each point in this area(Rendu, pp. 30-43). This is done by means
of what are known as auxiliary functions. These are functions
related to the actual semivariograms by means of certain
mathematical formulas, which are used separately to derive these
functions for the exponential and spherical models. The
rectangular block is defined as having corners A,B,C,D,E,F,G,H,
and two square faces ACEG and BDFH. As mentioned earlier, the
length of the rectangular block P is L, i.e the distance from
the side ACGE to BDHF, and the height and width are both of

length 4.

The two types of auxiliary functions that will be examined are

(1) x(L;d% = v (ACEG;P), the mean value of y(h) between one

square face and P, and

(2) F(L;d?) = ¥ (P;P), the mean value of vy(h) within P.

A. MATHEMATICAL REPRESENTATION OF THE AUXTLIARY FUNCTIONS

X (L) (1/L) ch v (h)dh

F(L)

(2/L2) foL fyL v (h-y) dhdy
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B. GENERALIZED EXPONENTIAL MODEL
The auxiliary functions F(L) and x(L) for the generalized

exponential model will now be computed.

F(L) = (2/L% [L f’* (l-exp (- ( (h-y) /a) %) ) dhdy
C y

=(2/L%) fcbfah (1-exp (- ( (h-y) /a) *dydh

let u={((h-y)/a)b,

therefore du = (6/a)u‘®?’s,
Let o = (1/8),
therefore du = (1/ca)u't™, and

F(L)= -a’ fOL] u *'exp (-u)dudh

au’

-a? ch (L-au®)u®‘exp (-u)du

-alLr (o) + a’ fOL u®*lexp (-u)du
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= -az[I"(O()-al"(ZO()],
= -a®[r(1/6)-ar(2/90)]

where I' is the standard gamma function.

Now X (L) = (1/L) fo" 1-exp (- (L/a)®) dn,
Let u = (h/a)?®,
therefore du =(68/a)u'®*s,

Let @ = 1/6,
therefore du =(6/a)u’™dh, and

dh = (a/8)u*'du, so

24 g
x (L) = (cxa/L) fu“'ldu - fu"'lexp(-u)du,
o] o]
g
= 1- (xa/L) f u®texp (-u)du,
0
where g = (Ls/a)¥®, now
x(L) = 1 - (ca/L)y(a, (L/a) V),

1 - (a/6L)y(1/6,(L/a)®),

where v(a,x) 1is the incomplete gamma

Oberhettinger, Tricomi, pp 387).

function (Magnus,
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C. GENERALIZED SPHERICAL MODEL:

The auxiliary functions x(L) and F(L) for the generalized

spherical model will now be computed.

v(h) = (o/(9-1))(h/a]l -(1/(0o-1))[h/al® , hsa
= 1 , h>a
x (L) = (1/L) fof‘ {(¢/(0-1))[h/a] - [1/(¢-1)]1[h/al’}dh

=(1/L)[(®/(20-2)) (h?/a) - [1/(9-1) (0+1)]1[h*'/a%]]
=[{o/(2¢0-2)1(L/a) - [1/(9-1)(e+1)]([L/a]’, L<a,

and if L:a

x(L) = [1/L]I [o (0/(0-1)) [h/a] -(1/(¢-1))[h/al’dh + f’*dh

(1/L1{ (9/(20-2)) (h%/a) - (1/(6-1) (o+1)) (h®*/a®)]%, +

(1/L) [L-a]

(1/L) [ (9a-03a) / (¢-1) (9*-1) -L]

1 - ¢(¢*-1)[a/L], L2a.

F(L) = [2/L?] ch [L {(¢/(9-1)) [(h-y)/al - (1/(¢-1)) [ (h~y) /aldhdy
Y
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= [2/L%] fof* [¢(L-y)23/2(9-1)a]l - (L-y)**/(0-1) (¢+1) (¢+2)a’dy

(2/L21 {(oL3/6(9-1)a) - L7/ (9-1) (p+1) (p+2)a’}

oL/ (3(0-1)a) - (2/(9-1) (#+1) (¢+2)) (L/a)®, if L<a,

and if L2a, then

F(L) = [2/L2][ [o fy" (¢/ (9-1)) [ (h-y/al - (1/(0-1)) [ (h-y) /a] *dhdy

+ f: fyi dhdy

=(2/L%) [y?/2 -alL + a?/2] + (2/L?) [0 {¢p(a-y)?3/ (2a(¢p-1)) -

(a-y) 7%/ (0-1) (p+1)a’}dy
=[2/L°]1 [y*/2 -aL + a?/2 - o¢a/6(0-1) - a?/(e-1) (¢+1) (¢+2) ]
=1 + [(0°-1) (p+2)a® -2a?] /L% (¢-1) (¢+1) (¢+2) - 2a/L - ¢a/L?3(¢-1)

SECTION 12 KRIGING

A. BACKGROUND

Named after the South African geologist D.G. Krige, kriging
is a procedure that estimates the values of the geological

variable under study at unknown sites on a chosen area V. It is
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a local estimation procedure which provides the best linear
unbiased estimator of the variable being studied(Journel &
Huijbregts, pp. 304). It is limited to the linear class of
estimators, since only the second moment (covariance or
semivariogram)of the regionalized variable is required. The
parameters are then chosen in order to ensure that the estimates
are unbiased. With regard to o0il reserves, a predetermined
grid is set up for the area under study. Then in order to model
the variation of the IP’'s across the grid, a semivariogram is
chosen in the manner explained earlier. Kriging is then
performed by using the covariances of the known IP’s in order to
estimate the IP’'s of potential well sites on the grid.

Let v(h) be the semivariogram chosen.

Let z(x) be the IP at a point X.

The conditions for second-order stationary of z(x) are

(1) E{z(x)}= u, an unknown constant,

(2) C(h)= E{z(x+h)z(x)} - n?, the centred covariance,

(3) v(h)= E{[z(x+h)-z(x)]%}/2, the semivariogram.

Either of these second order moments is assumed to be known.
Let z,* = the kriged estimator of the average IP over some area
V. It is a linear combination of n values of the regionalized

variable, where n is the number of IP’'s that are used in the

kriging process. The kriging estimate is z* = X.\;z,,
i=1,2,,.,,,.n. The z,'s are the mean IP's 2z, (x;) defined on the
supports v;, which are centred on each point x,. These n

supports can differ from each other. Under the hypothesis of
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stationarity, the expectation of each z, is E(z;}= u, for all i.
The A;'s are the weights calculated in order to ensure that our
three conditions above are satisfied. As well, if Y A;=1, then
this will ensure that the estimate is unbiased and that E[z,*]
= pX A, = u = E(z,), where z, is the unknown average IP for the
area V, and that E[z,-2z,*]=0.

The second condition that states that the estimation variance

has to be minimized. This means that we must minimize

El(z,-2,*)%1=E(2,2]-2E[2,z,*] + E[(2,*)%] = C (V,V) - 2X A, C (v,,V)

+ LY AN € (v,,vy), i=1l,..n, j=1,...,m,

where C (A,B)= the average covariance between each point in an
area A and each point in an area B.

B. KRIGING SYSTEM

There are n+l linear equations with n+l1 unknowns obtained by

equating each of their partial derivatives of E{[z;ﬁq*]z} -

28X, \; to zero(Journel & Huijbregts pp.304-308),

S (El(z,-2,7)°1] - 205A0=0, i=1,2,..... .
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where & is a lLagrange multiplier.
The n weights are to be calculated from this.

The result is the kriging system:

(1) £, A, € (v,,vy)~ & = C (v;,V) for all j =1 ton

(2) XA, =1

And the minimum estimation variance 1is given by

gl = C(V,V) + 8 - L, C (v,,V).

C. MATRIX FORM

v, vy) Clv,,v,) 1

C(v,.v,) Clv,,v,) 1
W =

C(v,, v;) Clv,,v) 1

1 1 0




é(vllv) ’Alq
C(v,, V)
(B] = . A =
C.'(VH,V) A,
1 5
Then [W]*[A] = [B] and therefore [Al=[W] ![B].

Explanation of the terms.
[W] is the covariance matrix for the points v,,v,,...... .V,. The
distance between well sites i and j is calculated giving h;; as

well as the direction of the vector described by two samples if
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an anisotropic situation exists. The matrix [B] is composed of

the elements C (v;,V), where C (v;,V) is the mean value of the

covariance function C(h) when the domains V and v; are
independently described by the two extreme points of the vector
h. Due the one to one correspondence between the covariance and
the semivariogram, the value of C(v;,v;}) is obtained from
Y (v, v5), which 1is determined from the chosen semivariogram
model. Although the calculation of point-to-block covariance
should be done using integration, in practice it is done using
discrete summation. The covariance between each point in a

block and the sample v, is calculated, and then an average value

is determined and used for C (v,,V).

If, for example, V is approximated with k points, then k values

of C (v,,v;) are calculated.

D. KRIGED ESTIMATES

The weights A depend on 4 factors:
(1) The size and shape of the block to be estimated. Since the
average covariance of points in the block varies inversely as

the block size, the estimation variance will reach its maximum
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when estimating a variable at a point. For this reason, C(V,V)

can be used as a measure of the size and shape of the block.

(2) C (V,vy)= covariance between points in the block and the

control points. But since distance varies directly as
estimation variance and inversely as the average covariance, it
is essentially a measure of the distance between the points in

the block and the control points.

(3) C (v,,v;)= the covariance between the control wells, but for

the same reasons as in (2), it is also a measure of the distance

and configuration between control wells.

(4) The quality and value of the estimate depend on the vy
model. The kriging system of equations and kriging variance
depend on the size and shape of V, the distance between V and

the control points and the configuration of the control points

and v.

E. INFLUENCE OF A NUGGET EFFECT (Journel & Huijbregts, pp. 310-

312)
C(h)= N, + C,(h), where N; is the nugget effect, and C,(h) is the

usual covariance at distance h.
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C (v,,v,) = c"l (v,,Vv;) + A/v,, v.Cv,

= C

L (Vo V), v NVg=0,

where A is a constant given by A = [Nydh.

The kriging system is:

NIA/v, + G (v, V)] + LA, G (v,,v)] -8 = C (v,,V), for all

o.
Y.\, =1, if all supports V, v,, v;, are disjoint. The minimum

estimation variance provided by kriging is then given by

o’ = A/V + C (V,V) + & - XX C (v,,V)]

If all the supports are not disjoint, then each of the C terms

in the kriging system must be calculated separately.
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SECTION 13 MULTIVARTATE CASE

A. COREGTIONALIZATION

Coregionalization occurs when there are m regionalized
variables z,,,,.,,2, and n sample locations(Hohn, pp.140-141).
This leads to the multivariate extension of kriging known as
cokriging. In cokriging, the analysis performed is essentially
the same as in kriging in that the IP values of potential
undrilled well sites on the grid are predicted using the
semivariogram models that have been chosen. Only now the values
of other variables are included, such as natural gas or water
pressure, in the analysis. So naturally with the existence of
more than one wvariable, not only must it be known how each
variable varies with itself across the grid, but also how each
variable varies with the other variables being considered.

The natural extensions of the variance and semivariogram to the
multivariate case, which are known as the cross-covariance and

the cross-covariograms, respectively, must now be considered.

Z (%)= [2,(x;),2,(x;),....,2,(X%X;)], which is the vector of values

of each variable at each location. Once again, stationarity is
assumed, so for a given random function z_(x)

E{z,(x)}= p, ., for all x, and

C,(h)=E{z.(x+h) z, (x) -n;n, is known as the cross covariance,

2v; (h) =E{[z;(x+h)-2;(h) ] [2,(x+h) -z, (x) ]} is known as the cross-
covariogram. Unlike the semivariogram, it can assume negative
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values; this would be the case if the variables were negatively
correlated. Another important difference 1is that the
semivariogram is symmetric when j and k are reversed, but the
cross-covariogram is not. At this point, a few other conditions

that need to be pointed out are

(1) vic(h) = vyy(h)

(2) Cu(h) = Cy(-h)
(3) v (h) = vy, (-h)
(4) Cy(h) = Cy(-h).

The estimation procedure uses matrices:

c.. ¢, c.n

.ml

The general equation for relating the cross semivariogram to the
cross-covariance is

simplify to vyj.(h)= C; (0)-C, (h).
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B. COKRIGING EQUATIONS

The idea is to estimate 2Z (x)=[z,(xX),z,(X),...... ¢ 25(x)] given
the data Z (x,),....... P Zo(xy).
Here 2z *(x)=X, Z (x,)I,, i=1,...,n, and each I', is an m by m

matrix. This equation is equivalent to the one used in kriging
except that the quantity being estimated is replaced by an mxl
vector, and the n weights are replaced by the n matrices T;.
It is sufficient for X .= I, i=1,....,n, for z*(x) to be
unbiased, or for

Z > =X X.z;(x;) A}, where A,'= the entry in row j and column
k of I';, i.e. the weight given to variable j at location x; in

estimating variable k. Not each I, is diagonal but I, '=0,

for j = k, and X.A,' =1 for all k.

56



The set of equations is(Hohn, pp.141-143):

-C—n e 1 Pl"l C—m
&nl éc T I"n C‘.no
I IO 3 I

Each C * is an m by m matrix of cross covariances between

sample i and sample 1. d is an m by m matrix of Lagrange

multipliers. C *° is an m by m matrix of cross covariances

between each sample and the location to be sampled.
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The estimation variance, denoted o¢’; is equal to,

o’.= Tr[ C [0]1]- Tr(X, € ], i=1,..,n - Tr &

= Cy (0) _iji C io)\jki = Oy,

where i=1,....n, and j=1,....,m, and Tr([A] is the trace of a

matrix A. The variance is attributable to variable k.

v o |l [
v 2l I R I
I I 0| |8 I]

Thus o; = Tr(X, v *r;1] + Te[ & ].

At this point it should be noted that C; (h)=C(h) is assumed

throughout.
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C. PRINCTPAL MPONENT KRIGING

Cokriging is more complex than ordinary kriging since there is
more than one regionalized variable, and thus all the
interactions between all of the regionalized variables must be
accounted for. It can be very tedious and time consuming to
compute and model n(n+l)/2 semivariograms(Hohn, pp. 165-167).
In this section, a way of cokriging which does not require that
the cross-semivariogram be modelled will be presented. In this
method, the original variables are initially orthogonalized.
The semivariograms are then computed and modelled. The
transformed data are then kriged, and the estimates are

reconstructed as a linear combination of the principal component

estimates.
5 1
21y 2y 2, z,
1
221 23 22, 2
z = ) (2] = [1]=
2
Zp1 Zp2 Zpn| g 1
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Here 2. = [X.z..]/n,

1 PR S|

z is the data matrix,

the number of locations,

)
]

p = the number of variables,
[2] is a pxl vector of variable means,

[1] is a px1l matrix of 1’s, and

S, 0 0
0 s, 0
(s} =
0 0 Sp-
where ([S] is a diagonal matrix of standard deviations S,, and
S, = v(X,[(z,;- 2, )%/ (n-1)1), J = 1,2,....,n.

The data are then normalized to give a pxn matrix [ x]

60



[x] = [S17'(lz] - [ 2 11[11"),

where [l1]’ is the transpose of [1l]. Each column of [x] has mean
of zero and standard deviation equal to one.

The matrix [R] of correlations between the variables is then
calculated from the normalized data:

(R] = (1/n)[x][x]"-

The pxp matrix of eigenvectors [E] of [R] is then computed.
[E] = [E, E, ... EJl,

where each E; is an eigenvector.

Define the matrices [F]_, and [Al_, as

(F1 = [S]I[E]

and [A] = [E]'[x].

The matrix [A] contains the coordinates of n samples along p
axes. The weights in any row of [A] are uncorrelated with those
in any other row of [A]. Should this absence of correlation
extend spatially, i.e. for h>0, then the cross-semivariograms
will resemble a pure nugget effect of zero.

The semivariograms are calculated from the rows of [A]. In
order to verify that there exists negligible spatial covariance
between the rows of [A], the cross-semivariograms must also be
calculated and checked for orthogonality. For a given location,
an estimate for variable k is calculated using ordinary kriging
to give a,*.

akO* = Z;)\iaki' i=l,2, P 9 U
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The p kriged estimates are assembled into a pxl vector.

[ao-] =

p0

The matrix [a,*] is then premultiplied by the transpose of [F]

to transform and rescale back to the original variables.

(z,*] = [ 2] + [Fl'[a*].

SECTION 14 EXAMPLE D:KRIGING AND AUXTLTARY FUNCTION

EXAMPLE (USING THE OKB2DM FORTRAN PROGRAM TN DEUTSCH)

(Data on the IP’'s from reserves in West Virginia in APPENDIX D)
For this example, the natural logarithms of the IP values were
inputted into a computer program that performs the ordinary
kriging calculation. It was a trial and error process in that

a semivariogram model had to be chosen first, then the
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parameters for the range, sill, and n had to be chosen. This
process was continued until the kriging variance was minimized.
The final model chosen was an exponential model with a=8, 6=0.7,
and C=0.16. The kriging variances and the final kriged IP’'s of
the unknown potential well-sites, along with their coordinates
in the easting and northing direction are displayed in the

following output:
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easting in(IP) | IP variance northing | In(iP) P variance

Inorthing leastin

499.16] 4200| 5.859] 350.374 0.262]414.17 4320 5.559| 259.56 0.262
400]4206.67] 5.972] 392.289 0.26]408.33| 4326.67 5.593| 268.54 0.263
400.83}4213.33] 5.972] 392.289 0.26]| 402.5{ 4333.33 5.624 277 0.263
400 4220f 5.972| 392.289 0.26] 425 4340 5.604| 271.51 0.259]
400.83}4226.67| 5.972| 392.289 0.26(400.83] 4346.67 5.711] 302.17 0.261
400}4233.33| 5.884] 359.243 0.258{414.17] 4353.33 5.604] 271.51 0.259]
400.83] 4240{ 5.889] 361.044 0.258] 427.5 4360 5.61] 273.14 0.258
400}4246.67] 5.872] 354.958 0.258§ 402.5| 4366.67 5.604] 271.51 0.259|
413.33[4253.33] 5.872{ 354.958 0.258/415.83] 4373.33 5.609] 272.87 0.258
407.5] 4260| 5.861| 351.075 0.258429.17 4380 5.637] 280.62 0.258
401.67}4266.67] 5.731| 308.277 0.255| 405] 4386.67 5.609] 272.87 0.258
400.83}4273.33] 5.707| 300.967 0.254{418.33] 4393.33 5.647| 283.44 0.258
401.67] 4280] 5.738] 310.443 0.253431.67 4400 5.646| 283.16 0.258
448.3314286.67| 5.744| 312.311 0.261f 445| 4406.67 5.647] 283.44 0.259]
405]4293.33] 5.749| 313.877 0.255[420.83] 4413.33 5.643| 282.31 0.257
403.33] 4300| 5.762| 317.984 0.257}434.17 4420 5.632| 279.22 0.258
416.67/4306.67| 5.709] 301.569 0.26] 447.5] 4426.67 5.571f 262.7 0.258
400.83|4313.33] 5.559| 259.563 0.262

The auxiliary functions for this example were then calculated using the parameters

chosen for the exponential model. Here are the resulting graphs:

AUXILIARY CHI(L)

CHI(L)

ocooooooo0o0
O~ NWsLH-pNONOO®WOW
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L i
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AUXILIARY F(L) ;
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F(L)
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SECTION 15 DRIFT

A. BACKGROUND

A drift is a geographical complication that forces us to relax the assumption of second-
order stationarity(Journel & Huijbregts, pp. 314-315). The following relationship occurs
during the existence of drift:

y(x) = z(x)- d(x), where y(x) is the residual term, and d(x) is the drift. It may or may not
be stationary, but E{y(x)}=0, for all x.

The form of the drift d(x) is assumed to be known.

It is assumed that d(x) = X a,*f(x), where 1= 1,.....,k, where the a,’'s are known constants

and the f(x)'s are known functions.
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B. TYPES OF DRIFT

(1)d(x) = a, + a,x, linear.

(2)d(x) = a, + a,x + a,;x%, quadratic .

(3)m(u,v)= a, + a,u + a,v + a,u® + agu?® + aguv, the 2-dimensional case.

(4) d(u,v,W,) = @, + AU + a5V + 3,W + agU® + 3,V° + a,W° + UV + aUW + a,oVW + a,,u°
+ A,V + a,W + a,uvw.

But this, of course, may not be evident in some directions, i.e. some of the a, may
be zero.

(5)d(x) = In(x), logarithmic drift.

(6)d(x) = exp(x), exponential drift.

Looking at the covariance or y of a non-stationary random function, we have

C(x,y) = E{z(x)z(y)} - p(x)u(y) = E{Y(x)Y(y)}, and

2y(x.y)= E{[z(x)-2(y)F} - [u(x)- BY)F = Var{Y(x) -Y(y)} = E{[Y(x) - Y(y)F}.

The semivariogram y(x,y) represents the semivariogram of the residuals Y(x) = Z(x) -
u(x). Due to the existence of drift, y(x,y) cannot be estimated directly from the initial
experimental data. This is so because in order to do so, one would have to
simultaneously estimate the drift d(x) and the semivariogram y(x,y) from a single
realization z(x). This is not possible, although some iterative methods have been

proposed.

SECTION 16 NONLINEAR GEOSTATISTICS

If a drift exists but the covariance or semivariogram and the two or k-variate
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distributions of the random function z(x) are known, then nonlinear geostatistics must

be used(Journel & Huijbregts, pp.555-559).

SECTION 17 A VECTORIAL SPACE AND PROJECTION MODEL OF KRIGING

(Journel & Huijbregts, pp. 558-559)

Define A={Z(x), xeD} to be a set of random variables Z(x) defined at each point x of,
say a tridimensional deposit. Let E be the vector space of all finite linear combinations
of the elements of A plus the limits of all such finite linear combinations(this is known
as the closure property), i.e.  E={YsAZ(Xs): Z(X5)€A, Aq real}.

E is equipped with a scalar product equal to the non-centred covariance(which is not
necessarily stationary), given by
<Z(x),Z(y)> = E{Z(X)Z(y)} = Oy

Let Z(x,)=Z,cE be any unknown variable and E be any vector subspace of E(or in
general, any closed linear manifold). According to the Projection Theorem, there is one
and only one element Z*<E’ which will minimize the distance 11Z,-Z"ll; this unique
element is known as the projection of Z, onto the subspace E'.

Kriging is simply the projection of some unknown value onto a particular subspace
E’, within which an estimator Z* is searched for. The corresponding minimum
estimation variance, [1Z,-Z*11P=E{{Z,-Z*}}, is known as the kriging variance. There are

just as many kriging processes, and thus kriging estimators Z*, as there are different
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subspaces E'<E within which the projection of the unknown element Z(x,) is carried out.
Consider two subspaces E” and E’ of E, such that E"cE'<E. Their corresponding
kriging estimators are therefore Z*” and Z*, respectively. Since E" is contained in E',
the projection Z*' will be nearer to the unknown than Z*”. In terms of estimation
variance, this means that l1Z,-Z*'|I?<l1Z,-Z*"I>. Therefore as the set where the search

for the estimator takes place gets larger, the estimation improves.

Projection theorem: There exists one and only one element z*c E’ which will minimize
liz,-z*1l; this unique element is the projection of z, onto E' and the kriging variance is liz,

-z*12

E" € E' € E, and generalizing this gives

E"eE™ e, .nneene ,eE"eE'€E

Another possible method of finding z* is to use the generalization of Heren's formula
to 3-space. In 2-space, Heren's formula states that the distance from a point (h,k) to

a line with equationax+by=c, is

| (ah + bk +c)/ ya?+b? |

If this is generalized to the 3 space case, then the distance from a point (h,k,l) in space

toaplaneax+by+cz=d,is
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l(ah + bk + cl + d)/ Ja?+b?+c? L

The coordinates of z* could then be obtained from this formula.

SECTION 18 LINEAR KRIGING PROCESSES

A. BACKGROUND

The vector subspace E™" < E of dimension n+1 is generated by the linear
combinations:

3 Az, +A*1 of n particular variables {z,=z(x,); a = 1,,,,n}, called data plus the constant
1(Joumel & Huijbregts, pp.559-567). Linear kriging processes project the unknown z(x,)

onto E™" itself or any linear manifold of E®™".

Consider the expectation of an element 2* = A, + £ A,z,€ E™", we have

E[2°] = Ao + ZAE[Z,] = Ao + L AH(X,)-

The estimator z*(x) of z,(x) is unbiased if and only if
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Ao + ZAH(X)=pixe) {*}

(1) All expectations are known(stationary or not). In this case A, = p(x,) - L AH(X,),
therefore an unbiased estimator exists.

(2) The expectation of z(x) is stationary but unknown, i.e.

E{z(x)}) = pforall xif Ay=p - H[EAJ= p[1 - XA, therefore it is unbiased

(3) The expectation p(x) is neither stationary nor known. In this case the unbiasedness
relation {**} cannot be expressed. In this case, the form of the expectation p(x) must
be provided. For example if p(x) is an unknown linear combination of L known
functions f(x),

then p(x) =X [af(x)], with all a’s unknown. The unbiasedness condition {**} can now
be rewritten as:

A, + X2 X Afi(x)= Zafi(x).

Regardless of the unknown parameters, this relation will be satisfied if and only if A, =
0,

which results in the restriction E" < E™'-and

T A (%)= f(Xo), for I= 1to L.
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Case (1) Known Expectation:

Let z*,,= A, + £ A2, be the projection of the unknown z(x,) onto E™". [tis unique and
defined by z(x,)-z*,, as being orthogonal to each of the n+1 vectors that generate E™?,
i.e. <z(Xy)- Z*y, 1> =0, and

<Z(Xg)- Z0r Z,> =0, foralla=1,,,,n

The kriging variance is again
Hz(x,) - 2* ol
Heren's formula could be used again to find z*,,.

Case(2) Unknown stationary expectation

Let C, c E" c E™". In order for {**} to be satisfied, the following conditions must be

imposed.
(1) A,=0, and
@) XA =1

The first condition is required to restrict the set of possible estimators to the vector
subspace E". These vectors are generated by the linear combinations ¥z, of the n
data only. The second condition is required to restrict E" to the linear manifold C,.

Then z*,, = ¥ A,,Z, is unique and is defined by
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(@) 2 € C, ie. LAye=1

(b) z(x,)- Z*,, is orthogonal to each of the n vectors z, - y
generating C, with z,, y € C,

<Z(Xo) - 2y Z, - y>=0foralla=1,,,n.

This gives us a system of n+1 linear equations

Tehg=1

YeMgTos - By = O, foralla=1,,,,,.,,,n

Once again, Heren's formula could be used.

Case(3) Linear Kriging in the existence of a drift.
The expectation of z(x) is non-stationary and unknown, but is of the following known
form

E{z(x)} = u(x) = X af(x), I=1,......L

The unbiasedness condition forces us to restrict our search for a linear estimator to the
linear manifold C, < E" defined by the following condition on the weights

Y ASf(x,) = fixy), foralll=1,....L,

The kriging estimator z*, = Y A2, is the projection of unknown z(x,) onto C, .
Therefore we have (n+L) linear equations

2 A sfi(B) = fi(xo), forallI=1to L,

26N g0os = Ll fi(Xg) = O X, forallI=1,,n
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Once again Heren's formula could be used.

SECTION 19 ESTIMATION VARIANCE

Consider the case where the petroleum geologist wants to estimate the IP’s in a block
W from the values of n samples wi=1,,,,n),
which may be located inside or outside of W(Rendu, pp. 54-56).
Let w, be the set of all samples w;.
W, = [WyiWoi...iW,]
and the block W is estimated using the samples w,.
Let x = the value of the i sample , and

M, = the average value of the samples in block W.

Let i = the estimator of p,, where

g, =[EZwx)[Xw], i=1,....n

-~

The mean squared error when estimating p, by {i, is known as the estimation

variance of W by w,. lItis the error incurred when assigning the value of sample set

w, to the block W, and is denoted a%(w, to W).
By definition, o®(w,to W) =E[( &, -H,)]
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If n=1, the expression for o’(w, to W) is known as the extension variance. The

estimator

fi, is unbiased because the weights assigned to the sample values allsumupto 1.

Therefore E[( 4, -u,)]=0.

The errorterm ( {1 - M) is assumed to be normally distributed with zero mean and

variance equal to o%:(w, to W). As a result, confidence limits for p,, can be obtained.

Let t, = the value of the normally distributed variable t such that P{t < t,] = p.

ThenP[ @, <, - t., O%(W, to W)] =p, and

P[ ﬁw >Hy, + t1-p ozs(ws to W)] =p.

An expression for o%z(w, to W) will now be derived.

Consider the sample set w, as being made up of p points with value x(j=1,2,....,p) and
the block W consists of q points with value x,(k=1,2,....,q). The terms x, and x;" will be
used to denote two points in w, (i'=1,2,....,p, and x/= x if j'=j), and the terms x, &nd x,’
will denote two points in W(k'=1,2,.....,q, and x,'=x, if k'=k).

Therefore we can write
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o’ (W, to W) =E[( 7, -u,)°]

E[(1/P)Lx; - (1/a) Lk
-(11P)L; LEN(1/2)06%)7] - (V@) LLEN(1/2)(x%() + (1/pQ) LEEL(4-%)7]

= - ¢ (Wagw))- v (W:W)+2 ¢ (waW).

Thus we now have the fundamental relationship:

0% (W, to W) =- ¢ (Wgw)) - v (WiW)+2 ¢ (WgW).

Or if we wish to use the covariogram

0% (W, toW)= & (Waw) + & (W;W)-2 5 (wgW).

SECTION 20 RANDOM KRIGING

Often in practice, the samples being used to estimate a particular block are not
located on a regular grid(Rendu, pp.68-70). The sample sizes may vary, and the
number and relative position of the samples used to estimate each block vary from
block to block. Thus if each sample in the neighbourhood of a block W were examined
individually, estimation of W would be very tedious. A possible solution is to group the
samples in blocks W,(i=1,,,,,n) in the neighbourhood of W, and then estimate p,, as a
weighted average of the mean x; of the sampled blocks in the W.. In order to calculate
the kriging estimator of p,, one must be able to calculate the variance of x, the

75



covariance of x, and x;, and the covariance of x, and i, . The samples are assumed

to be randomly distributed in W,. Kriging with this assumption is therefore known as
random kriging.

The following notations are used

W = the block being valued.

n = the number of blocks used in the valuation of W.

W, = the i" block used in the valuation of W(i=1,2,....,n).

w = size of a unit sample(it is assumed that all samples are of size w).
q; = the number of samples of size win W,

x; = the value of the j" sample of size w in block Wi(j=1,2,....,q).

X, = the average value of x; in block W,.

w; = the support of x; .

w; = the support of x; (w, is simply the union of all the w,).

or W, = [W;;Wyi...;W,0]

B, = the unknown value of block W

n, =the kriging estimator of 1,

v, = 2bx, where the b, terms satisfy the kriging equations.
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This system will therefore be a function of

v (wyw), i=1,2,...,n

v (wpw), i=1,2,...,njj=1,2,...,n.

If the positions of the g, samples of size w in W, are unknown, then the values of ¥

cannot be calculated. [f, however, the q,samples take all possible positions in W, at

random, then the expected value of ¢ can be calculated. These expected values are

used in the kriging systems of equations. From the definition of v , if the samples w;

are randomly distributed in W,, then the expected value of ¢ (w;W)is

E[ v W;W)]= ¢ (W;W)i=1,,,n

El v Wiw)l= ¥ (WiW)) fori = j

v (waw) =(1/qlz)zi Y (Wij;wii)"’zzkzj v (Wiiwg)

(where j=1,.....,q; for the first expression and for the second expression j=1,......,q;, and

k=j+1,......,q, since all the w;’s have the same size.

E[ v (Wew)l=(W, v (WiW))-w v (Wiw))/(W;- w), forj = k.

i
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Random kriging is only valid if the block size W, is much larger than the sample size w.

In the limiting case as w approaches W,

W v WW)-w 7 (wwWew) = 7 (wiw) + W T (Wi,

where ¢ ’'(w;w) = the derivative of y (w;w).

Therefore the limit as w goes to W, of this derivative is

lim,_w{ v (Ww;w) +w ¢ (w;w)}
= v (WaW) + W, v "(W;W).

Thus E[ v (wywi)l= v (W,W)forj =k,
and E[ ¢ (w;w)]=(1/q) v (wiw) +((g-1)/q) ¥ (W,W),

and so in the limiting case as w goes to W,, this becomes

(t/a) v (WaW) + (g - 1)/q) v (WaW)= ¢ (w;w).
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SECTION 21 DISPERSION VARIANCE

Consider a large block W(x) in Q with average value B, and all possible smaller
blocks or samples w(x') of size w in W(x). The variance of the blocks w(x') in the block
W(x) is known as the dispersion variance(Rendu, pp. 45-48). It is determined from the
following relationship:a?[w in W (X)I=E, s weol[Hu{X)-Hw(X)?}. If stationarity is present,
this variance is a function only of the dimensions of the supports w and W, and is
independent of the position of the block W(x). The dispersion variance of win W can
therefore be defined as: o?(w in W)=E,, ., w[(l.-Hw)?]. If stationarity does not exist, the
variance of samples w in blocks W may vary only slightly from block to block. In this
case the average dispersion variance of w in W(x) would be used for all possible W(x)
in Q: g*(w in W)=E,, n of°[W in W(x)]}.

The variance of p,(x) when w(x) assumes all positions in Q is called the dispersion
variance of win Q and is denoted by

GZ(W € Q) = E(w(x)s Q){[IJ(X) - P]z}-

Let w, W' and W" are 3 blocks of increasing size

The variance additivity relationship is defined in the following way

o(we W") =c®(w € W') + 6®(W' e W").
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The generalized formula is

o*(w € W™) = 03w € W) + 03(W'e W)+ .cannncnee. + AW e W™).
To find any o?(W; € W), the above formula is applied.

From this equation. The following can be deduced

o3(w e W™) 2 c3(W™" e W™)

SECTION 22 CONDITIONAL SIMULATIONS

An infinite number of possible realizations {z,(x), s=1,....,=} of a regionalized variable
z(x) exist (Joumnel & Huijbregts, pp. 492-496). From these, the simulations z,. (x) that
are chosen are the ones that meet the experimental data values at the actual data
locations x,, i.e. the simulations for which z..(X,)=24(x,), for all x;. This process is called
conditioning the simulation to the experimental data, or conditional simulation. The
simulated wells and the real wells have the same clusters of rich and poor data at each
location. The regionalization of z,(x) is then considered. This is the realization of a
stationary random function z,(x) with expectation u, covariance C(h), and
semivariogram y(h). The conditionally simulated process must pass through the data
and will have the same expectation and second order moments C(h) ory(h), i.e. Z,(x,)

= 2,(x,), for all x,'s that are elements of the data set(Cressie, pp 207-208).
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WHY SIMULATIONS ?
The main objective of estimation is to provide an estimator z*(k) at each point x which
is as close as possible to z,(k), the true unknown IP. As mentioned before, the criteria

for measuring the usefulness of estimation are unbiasedness and estimation variance.

L

These estimators, however, need not reproduce the spatial variability of the true /IP’s

{z,(k)}. When minimizing the estimation variance in kriging, this involves a smoothing
of the true dispersions(Cressie, pp 208). As a result, the variance of the kriging
estimate underestimates the local variability of the true IP’s. Conditional simulation,
on the other hand, has the same first two experimentally found moments(mean and
covariance) as the real IP’'s {z,(k)}. It therefore is better able to identify uncertainty of
the true IP's. But on the contrary, the conditionally simulated value, z,(x), is not the
best possible estimator of zy(x).

Generally speaking, the objectives of simulation and estimation address two different
problems. Although estimation in general is closer on average to the true values,
simulations provide a better reproduction of the fluctuations of the real curve.
Estimation is preferred if the objective is to locate and estimate reserves, while
simulation is preferred if the objective is to study the dispersion of the characteristics
of the [P's. As well, one must keep in mind that in practice, the real curve is known
only at the experimental data points.

Z,(X)[true value] and z*,,(x)[kriged value] differ by an unknown error
Zy(X) = Z°(X) + [Zo(X) - Z"ak(X)] =

To get the desired conditional simulation, it suffices to replace the unknown kriging
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error [z,(x) - 2*(x)] by an independent isomorphic kriging error [z,(x) - z*,(x)]. Given
a realization z,(x), the kriging procedure will give a kriging error (2 (x) - 2*4(x)] which is
isomorphic to the true error [2y(x) - Z*4(x)] and independent of 2*,(x) when applied to

the simulated data. The desired conditional simulation is then written as

Z" (%) = Z"(X) + [Z5(X) - Z°(X)]

The conditioning principle gives both values kriged 2", (x) and z*.(x) at each point x
by considering the independence of E(x) and [z,(x) - Z"4(x)]. The variance of the
estimation of the real z,(x) by the conditional simulation z.(x) is written as
E{[Z6(X)-2o(X)P}=E{[Zo(X)-2" (X)) + E{[Z,(%)-2"(X)]}

=2E{[z4(x)-2"o(X)]?} = 20

This result is not surprising given the greater variability in conditional simulations.

SECTION 23 REGULARIZATION

If the values of z(x) cannot be measured at a particular point x on the grid, one must
use what is called regularization. The average of the points surrounding x is calculated,
and this average w, is taken to be the value of z at x. Therefore an area Q
surrounding x must first be analysed. The measured property w, is referred to as a

regularized variable(Rendu, pp. 22-24), and the corresponding semivariogram or
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covariogram computed from these values is also referred to as regularized.

Fundamental relationships:

it is assumed that Q has been investigated by samples of equal size w, and therefore
the semivariogram or covariogram computed using these sample values is regularized
by the volume or the area w.

Notation:

w, = the centre of mass at x,

w, = the centre of mass at x+h,

z(x) = the value of the point regionalized variable z at point x,

M = average value of zin Q,

v(h) = the point semivariogram of z(x),

o(h) = point covariogram of z(x),

o2 = variance of z in Q,

w,(x) = sample of size w, centred at point x,

w,(x+h) = sample of size w, centred at point x+h,

H.+(X) = average value of z in w,(x),

Yui(h) = the regularized semivariogram of p,(x),

o0,,(h) = the regularized covariogram of y,,(x),

o02,,= variance of p,,(x) in Q.

v (w,,w,) is defined as the average value of the point semivariogram y(x’x”) where
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x'x” is the vector distance between any two points x’ in the sample w,(x) and X" in the
sample w,(x+h). This integral is a function of the sample shape w and of h, the
distance between the samples w,(x) and w,(x+h). It is independent of the position of

the samples in Q and of the sample values y,,(x) and y,,,(x+h).

7 (wy,W,) = (T/ww,)  [dX fAXY(X'XN{X’ in w,, X7 in w,}

v (w,;w,) is equal to the average value of y(x'x") where x’ and x” are any two points

in
the sample w,.

& (wy;W,) is equal to the average value of o(x'x") where x’ and x” are any two points

in w,(x) and w,(x+h) respectively.

& (w,;w,) is equal to the average value of a(x'x”), where x’ and x" are any two points

in the sample w, .

By definition, the following relationships are true:
M =E «inal2(X)],

Hwi(X) = By inwaol2(X)],

o(h) = E, g wall2(x)-p][z(x+h)-u]},

Tui(h) = Eyiggin awatesty in ol [Hwa (X)-H][Hy2(x+h)-p]},
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2Y(h) = Ex in Q.x+h in Q{[Z(X)-Z(X-i-h)]z},
2Y,1(h) = By in awaixshy in o{[l-‘m(x)'l-‘wz(x'*'h)]z}-

The following relationships will now be proved:

(1) V(W) = ¥ (Wiwp) - ¥ (Wyiwy).

@) gu(h) = & (Wy;wy).

To prove (2), assume that w,(x) is made up of n points x/, {i=1,,,n} with value z'=z(x/),
and that w,(x) is made up of m points x", {j=1,,,m} with value z* =z(x;")
therefore y,,(2)=(1/NXz, i= 1,....... N
and Hu(z+h)=(1/m)22", j= 1,.......m
So O (N)=E{[(1/n)Xz- p][(1/m)1;2" - u]}
=E{(1/nm)[Xz/-ul[Xz" - ul}
=(1/nm)[ZX[E[(z(x)- p)(z(x")- W)]]
=(1/nm)LZX{o(x/%")]

= & (w;w,). QED for (2)

To prove (1),
We first consider that y(h) = a? - o(h),

then Yw1(h) = o’zw - c).w(h)r

and since 0%,,=Y,,(0) = & (W;;w,)
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this implies vy, (h)= & (w;w,) - & (w;;w,)

which implies & (w;w,) =0%- ¢ (wW;w,)

and since v (W;w,) = 0% ¥ (W;W,),

we get y.(h)= ¢ (Wuw,) - ¥ (Wyiw,).

QED for (1)
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SECTION 24 CONCLUSION

The purpose of this thesis has therefore been accomplished. The original
geostatistical concepts have been explained and represented mathematically. The
original assumptions were laid out in order to deal with the simplest cases, then some
of these were relaxed and other models were proposed to deal with the more
complicated cases. In some cases, by adding new parameters, further modification
allowed greater latitude in fitting the models to the data. As well, we were able to show
in some cases that by allowing a limiting case, we were better able to represent some
real world cases. As a result of the generalizations, we were able to better fit the

models to the data.
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SECTION 25 APPENDIX A: DATA FOR FITTING BASIC SEMIVARIOGRAMS

The notation used is:

h = distance,

gamma(h) = the experimental semivariogram values ,

sph(a,p) = a fitted spherical semivariogram model with range a and spherical
parameter @,

exp(1) = the fitted regular exponential model, and

exp(a,0) = a fitted exponential semivariogram model with range a and exponential
parameter 6.

For each value of h, the corresponding values for each of the

terms above is in the corresponding column on the same line.

h gamma (h) sph(l1.6,3.5) exp(1l) exp(.63,.72)
0 0.078
0.18 0.115 0.094 0.094 0.111
0.56 0.137 0.126 0.121 0.138
1.02 0.152 0.15% 0.142 0.154
1.51 0.163 0.177 0.156 0.163
2 0.165 0.178 0.164 0.168
2.51 0.168 0.178 0.170 0.171
3 0.174 0.178 0.173 0.173
3.5 0.172 0.178 0.175 0.175
4 0.172 0.178 0.176 0.176
4.5 0.175 0.178 0.177 0.176
5 0.176 0.178 0.177 0.177
5.49 0.178 0.178 0.178 0.177
6 0.175 0.178 0.178 0.177
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10.5
11
11.51
12

OO 00000000 OO0

.177
.177
.181
.179
.176
.179
.176
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.178
.178

0.178
0.178
0.178
0.178
0.178
0.178
0.178
.178
.178
.178
.178
.178

(el ol ole e

0.
0.
0.
0.
0.
.178
.178
.178
.178
.178
.178
.178

OO 0000 O0

178
178
178
178
178

0.178
0.178
0.178
0.178
0.178
0.178
0.178
0.178
0.178
0.178
0.178
0.178
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SECTION 26 APPENDIX B: DATA FOR FITTING A DOUBLE SPHERICAL MODEL

Here we have

h = distance,
gammay(h) = the experimental semivariogram values,
sph(a,,9,:a,,9,) = a fitted double spherical semivariogram with ranges a, and a,, and

spherical parameters ¢, and @,.

h gamma (h) sph(1,2.5:12,3.3)
0.39 6.140 5.640
1.04 8.318 7.238
2.03 9.411 8.415
3.02 9.205 9.565
4.02 10.760 10.689
5.02 10.870 11.757
6 12.160 12.732
7 11.890 13.635
8 14.320 14.425
9 17.570 15.078
10.01 17.110 15.578
10.99 19.750 15.887
12 20.080 16.000
13 23.220 16.000
14 20.100 16.000
14.99 22.000 16.000
16.01 20.560 16.000
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17.

18

19.
19.
20.

22

22.

02
01
99
99

99

17.
17.
.790

15

16.
.070

15

15.
.730

17

620
110

660

120

16.000
16.000
16.000
16.000
16.000
16.000
16.000
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SECTION 27 APPENDIX C: DATA FOR FITTING AN ANISOTROPIC MODEL

In this appendix, we have

h = distance,

actual = the experimental semivariogram,

theoretical = the theoretical semivariogram model fitted(could be any kind),

b-0 = the experimental semivariogram in the east-west direction, i.e. 0 degrees,
c-45 = the experimental semivariogram in the northeast-southwest direction, i.e. 45
degrees,

d-90 = the experimental semivariogram in the north-south direction, i.e. 90 degrees,
e-135 =the experimental semivariogram in the northwest-southeast direction, i.e. 135
degrees,

gamma(e-w) =the theoretical semivariogram model fitted in the east-west direction, i.e.
0 degrees,

gamma(ne-sw) = the theoretical semivariogram model fitted for the
northeast-southwest direction, i.e. 45 degrees,

gamma(n-s) =the theoretical semivariogram model fitted for the north-south direction,
i.e. 90 degrees,

gamma(nw-se) = the theoretical semivariogram model fitted for the
northwest-southeast, i.e. 135 degrees,

h,' = the coordinate h,’,

h,' = the coordinate h,’ .
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EAST-WEST DIRECTION
actual theoretical
h b-0 gamma (e-w})
0
0.18 40 103.656
0.56 95 111.375
1.02 115 120.718
1.51 118 130.664
2 133 140.593
2.51 142 150.886
3 144 160.696
3.5 149 170.573
4 158 180.234
4.5 1380 189.576
5 195 198.463
5.49 197 206.569
6 207 214.163
6.5 195 220.523
7 224 225.518
7.5 212 228.807
8 227 230.000
8.5 242 230.000
9 205 230.000
9.5 233 230.000
10 223 230.000
10.5 222 230.000
11 231 230.000
11.51 229 230.000
12 235 230.000
12.5 226 230.000
13 239 230.000
13.5 243 230.000
14 217 230.000
14.5 227 230.000
15 248 230.000
15.5 232 230.000
16 234 230.000
16.5 243 230.000
17 238 230.000
17.5 241 230.000
18 229% 230.000
18.5 250 230.000

NORTH-SOUTH DIRECTION

0.18
0.56
1.02
1.51

10.5
11
11.51

1
-

12.5
13
13.5
14
14.5
15
15.5
16
16.5
17
17.5
18
18.5

actual

d-90

105
80
121
127
134
138
148
141
162
172
159
166
172
173
178
189
198
207
209
204
204
233
218
223
229
253
238
245
238
245
241
229
247
259
276
255
255
259

theoretical

gamma (n-s)

106.169
115.651
125.140
133.885
141.636
148.886
155.207
161.106
166.523
171.519
176.141
180.344
184.411
188.122
191.584
194.818
197.844
200.677
203.334
205.828
208.170
210.372
212.443
214.431
216.231
217.963
219.596
221.138
222.593
223.968
225.267
226.496
227.657
228.757
229.798
230.783
231.717
232.601
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19 259 230.000 19 261 233.440

NORTHEAST-SOUTHWEST DIRECTION NORTHWEST-SOUTHEAST DIRECTION
theoretical actual theoretical actual
h gamma (ne-sw) c-45 h gamma (nw-se) e-135
0 0
0.18 105.297 104 0.18 100.261 46
0.56 112.973 79 0.56 102.336 115
1.02 120.696 120 1.02 107.521 142
1.51 127.984 126 1.51 115.984 131
2 134.644 133 2 127.020 140
2.51 141.086 137 2.51 140.586 143
3 146.902 147 3 154.894 157
3.5 152.524 140 3.5 169.990 156
4 157.876 161 4 184.795 187
4.5 162.993 171 4.5 198.565 182
3 167.900 158 5 210.653 215
5.49 172.526 165 5.49 220.382 233
6 177.167 171 6 227.937 233
6.5 181.558 172 6.5 232.640 238
7 185.804 177 7 234.696 248
7.5 189.916 188 7.5 234.305 250
8 193.903 197 8 231.818 235
8.5 197.772 206 8.5 227.698 217
9 201.531 208 9 222.485 233
9.5 205.186 203 9.5 216.751 228
10 208.743 203 10 211.056 218
10.5 212.206 232 10.5 205.898 189
11 215.580 217 11 201.686 227
11.51 218.934 222 11.51 198.665 222
12 222.078 228 12 197.135 217
12.5 225.210 252 12.5 196.987 237
13 228.268 237 13 198.169 221
13.5 231.255 244 13.5 200.471 226
14 234.173 237 14 203.601 217
14.5 237.027 244 14.5 207.214 211
15 239.817 240 15 210.944 205
15.5 242.547 228 15.5 214.439 209
16 245.218 246 16 217.390 210
16.5 247.833 258 16.5 219.555 204
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hu

0.127
0.396
0.721
1.068
1.414
1.775
2.121
2.475
2.828
3.182
3.536
3.882
4.243
4.596
4.950
5.303
5.657
6.010
6.364
6.718
7.071
7.425
7.778
8.139
8.485
8.839
9.192
9.546
9.898

hv

0
0.127
0.396
0.721
1.068
1.414
1.775
2.121
2.475
2.828
3.182
3.536
3.882
4.243
4.596
4.950
5.303
5.657
6.010
6.364
6.718
7.071
7.425
7.778
8.139
8.485
8.839
9.192
9.546
9.899

hu-

0
0.165
0.515
0.938
1.388
1.838
2.307
2.758
3.217
3.677
4.137
4.596
5.047
5.515
5.975
6.435
6.894
7.354
7.814
8.273
8.733
9.192
9.652
10.112
10.580
11.031
11.490
11.950
12.410
12.869

hv’

0.127
0.396
0.721
1.068
1.414
1.775
2.121
2.475
2.828
3.182
3.536
3.882
4.243
4.596
4.950
5.303
5.657
6.010
6.364
6.718
7.071
7.425
7.778
8.139
8.485
8.839
9.192
9.546
9.899

hu

-0.127
-0.396
-0.721
-1.068
-1.414
-1.775
-2.121
-2.475
-2.828
-3.182
-3.536
-3.882
-4.243
-4.596
-4.950
-5.303
-5.657
-6.010
-6.364
-6.718
-7.071
-7.425
-7.778
-8.139
-8.485
-8.839
-9.192
-9.546
-9.899

hv

0.127
0.396
0.721
1.068
1.414
1.775
2.121
2.475
2.828
3.182
3.536
3.882
4.243
4.596
4.950
5.303
5.657
6.010
6.364
6.718
7.071
7.425
7.778
8.139
8.485
8.839
9.192
9.546
9.899

o
[+
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hv’

-0.038
-0.119
-0.216
-0.320
-0.424
-0.532
-0.636
-0.742
-0.849
-0.955
-1.061
-1.165
-1.273
-1.379
-1.485
-1.591
-1.697
-1.803
-1.909
-2.015
-2.121
-2.227
-2.333
-2.442
~-2.546
-2.652
-2.758
-2.864
-2.970
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10.253 10.253 13.329 10.253 -10.253 10.253 0 -3.076
10.607 10.607 13.789 10.607 -10.607 10.607 0 -3.182
10.960 10.960 14.248 10.960 -10.960 10.960 e -3.288
11.314 11.314 14.708 11.314 -11.314 11.314 0 -3.3%4
11.667 11.667 15.167 11.667 -11.667 11.667 0 -3.500
12.021 12.021 15.627 12.021 -12.021 12.021 0 -3.606
12.374 12.374 16.087 12.374 -12.374 12.374 0 -3.712
12.728 12.728 16.546 12.728 -12.728 12.728 0 -3.818
13.081 13.081 17.006 13.081 -13.081 13.081 0 -3.924
13.435 13.435 17.466 13.435 -13.435 13.435 0 -4.031

ISOTROPIC SEMIVARIOGRAMS:

NOTE: These are the transformed isotropic semivariograms corresponding to the

original anisotropic experimental semivariograms with their directions in brackets.

h gamma (e-w) gamma (n-s) gamma (ne-sw) gamma (nw-se)
0 0 0 0 0
0.136 103.361 105.958 104.78S 100.016
0.424 110.456 114.568 112.242 100.120
0.772 119.045 123.205 119.822 100.370
1.144 128.190 131.328 126.924 100.788
1.515 137.323 138.731 133.321 101.360
1.901 146.802 145.869 139.400 102.117
2.272 155.858 152.296 144.780 102.999
2.651 165.010 158.493 149.876 104.053
3.029 174.022 164.377 154.624 105.258
3.408 182.823 169.987 159.065 106.613
3.787 191.326 175.355 163.231 108.113
4.158 199.263 180.404 167.071 109.720
4.544 206.970 185.456 170.838 111.533
4.923 213.815 190.226 174.321 113.445
5.301 219.763 194.828 177.614 115.484
5.680 224 .592 199.274 180.730 117.645
6.058% 228.045 203.575 183.683 119.923
6.437 229.827 207.741 186.485 122.312
6.816 229.608 211.779 189.145 125.524
7.185 230.000 215.697 191.673 128.100
7.573 230.000 219.501 194.077 130.768
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7.952
8.331
8.717
9.088
9.467
9.845
10.224
10.603
10.981
11.360
11.738%
12.117
12.496
12.875
13.253
13.632
14.011
14.389

230.000
230.000
230.000
230.000
230.000
230.000
230.000
230.000
230.000
230.000
230.000
230.000
230.000
230.000
230.000
230.000
230.000
230.000

223.197
226.792
230.358
233.693
237.009
240.239
243.389
246.461
249.458
252.384
255.240
258.030
260.755
263.419
266.022
268.568
271.058
273.495

196.
198.
200.
202.
204.
.294

206

208.
209.
.234

211

212.
214.
215.
216.
218.
219.
220.
221.
222.

365
544
662
602
491

016
662

738
176
552
869
131
339
4396
605
668

133.
136.
139.
142.
145.
148.
.415

151

154.
.723

157

160.
164.
.295
.485
173.
17s6.
179.
183.
.089

167
170

186

521
352
312
218
238
306

556

906
100

661
817
945
038
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SECTION 28 APPENDIX D: DATA FOR THE KRIGING AND AUXILIARY FUNCTION

EXAMPLE

EASTING NORTHING In(IP) IP

492.73 4289.94 3.045 21.010
479.58 4317.46 3.219 25.003
476.26 4310.35 3.638 38.016
473 .22 4313.38 3.664 39.017
461.32 4310.62 3.989 54.001
486.75 4306.13 4.060 57.974
473.68 4314.52 4.094 59.979
471.49 4309.44 4.094 59.979
470.27 4310.18 4.111 §1.008
473.23 4316.06 4.317 74.963
485.85 4285.48 4.605 95.983
484 .56 4295.56 4.605 99.983
473.03 4321.95 4.779 118.985
471.91 4325.03 4.779 118.985
495.49 4295.52 4.787 119.941
465.19 4331.5 4.942 140.050
458.63 4280.92 4.942 140.050
472.18 4320.84 4.942 140.050
479.28 4313.98 4.942 140.050
462.10 4282.72 5.004 149.008
471.64 4317.51 5.011 150.055
464.69 4290.66 5.063 158.064
459.35 4279.19 5.063 158.064
472.69 4307.8S 5.075 159.972
465.40 4309.69 5.130 169.017
465.82 4284.28 5.193 180.008
473.58 4321.76 5.193 180.008
480.87 4314.34 5.231 186.980
482.99 4293.19 5.242 189.048
465.83 4280.85 5.298 199.937
480.00 4313.67 5.298 199.937
466.37 4281.04 5.298 199.937
466.37 4282.52 5.298 199.937
471.08 4322.35 5.298 199.937
488.07 4282.64 5.298 199.937
459.92 4282.24 5.347 209.977
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4281.56
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459.46
476.70
485.56
463.87
474.78
464.88
461.14
464.83
460.79
482.73
485.76
483.52
464.24
475.29
473.45
487.92
465.23
489.01
484 .35
476.35
482.05
486.44
485.63
485.19
477.€7
479.58
467 .95
487.39
473.39
479.29

4281
43189
4285
4285
4320
4284
4278
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.72
.48
.02
.62
.22
.56

4284.1
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.88
.42
.24
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4323
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.15
.45
.67
.63
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4314.
4313.
4292.
4300.
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4304.
4308.
4284.
4285.

4292
4299

.23
38
79
69
17
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09
64
95
08
91
.88
.09

6.213
6.215
6.215
6.215
6.215
6.215
6.275
6.286
6.328
6.332
6.365
6.390
§.397
6.397
6.593
6.615
6.620
6.620
6.620
6.620
6.633
6.771
6.838
6.867
€.892
6€.892
7.244
7.283
7.313
7.313

499.197
500.196
500.196
500.196
500.196
500.196
531.126
537.001
560.035
562.280
581.145
595.857
600.042
600.042
729.968
746.205
749.945
749.945
749.945
749.945
759.758
872.184
932.622
960.064
984.368
984.368
1399.682
1455.348
1499.669
1499.669
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