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Abstract—Hardware-in-the-loop (HIL) technology is in-
creasingly becoming the preferred, reliable, and cost-
effective alternative in a virtual scenario for tedious,
time-consuming, and expensive tests on real devices. This
paper presents a digital hardware emulation of commonly
used electrical machines for HIL simulation on the field-
programmable gate arrays (FPGAs) in a general frame-
work. This paper provides a useful and comprehensive
comparison between floating- and fixed-point arithmetic for
hardware implementation, and addresses the differences of
deeply pipelined and highly paralleled realization schemes,
and the contribution of schematic and textual programming
language methods for design configuration of electrical
machine models. The hardware implementation by these
approaches is evaluated in terms of real-time step size,
accuracy, and hardware resource consumption. Finally, an
experimentally measured electrical machine behavior is
employed to demonstrate the effectiveness of the emulated
electrical machine.

Index Terms—Electrical machines, field-programmable
gate arrays (FPGAs), hardware-in-the-loop (HIL) simulation,
real-time systems.

NOMENCLATURE

s, r, f, k Stator, rotor, field, and damper indexes.
d, q Reference frame index.
l,m Leakage and magnetizing indexes.
V, I, λ Voltage, current, and flux linkages.
Te, Tmech Electromagnetic torque and mechanical torque.
Tdamp Damping torque.
r, L Resistance and inductance.
ω, θ Angular speed and rotor position.
J, P Rotor inertia and the number of pole pairs.
a, b, c Phase-domain indexes.
Ah×h,Bh×p State matrix and input matrix.
Cq×h,Dq×p Output matrix and feedforward matrix.
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I. INTRODUCTION

O FFLINE transient simulation of electrical machines using
software such as MATLAB/Simulink or electromagnetic

simulation tools such as JMAG or ANSYS has been very
successful for many years. Although execution time is still a
matter of concern in such offline tools, it is not as critical
as in a real-time digital simulator, which has to interact with
external devices in a hardware-in-the-loop (HIL) scenario. The
main application of real-time emulation of electrical machines
is to evaluate the behavior of newly designed machines, drive
systems, controllers, and protective devices in a HIL configu-
ration in an effective and economic approach before applying
them in a real system [1]–[6]. Such testing allows the sys-
tem components to be subjected to extreme conditions in a
nondestructive environment and in an expedited manner. To
reproduce electrical machine transients with high fidelity, an
accurate modeling of the machines with a small simulation time
step is a necessity for the real-time simulator. To meet stringent
real-time step-size constraints, a compromise is usually made
between the accuracy and complexity of the system model [5].

Owing to the rapid developments and dramatic advances in
digital hardware technology, the field-programmable gate array
(FPGA) is becoming the fastest, most reliable, and preferred
computational engine for digital hardware realization of com-
plex systems without sacrificing the accuracy [7]–[15]. Today,
the FPGA has gained a crucial role in the HIL simulation
and rapid control prototyping of electrical machines and drive
systems employed in the industrial applications. According
to their paralleled hardwired architecture, reconfigurability,
large amount of logic resources, full-custom digital-signal-
processing (DSP) units, and storage elements, currently avail-
able FPGA devices are able to satisfy the accuracy demands
of machine models adequately by providing a nanosecond
computational clock cycle within the simulation time step in
real time.

A number of studies have been conducted in this area with
different objectives [16]–[21]. Most methodologies adopted
in the literature for the real-time simulation of machines on
FPGAs are based on fixed-point calculations [16]–[20], and
a 32-bit floating-point hardware emulation of a synchronous
generator used in the nodal analysis for power-system transient
simulation is presented in [21]. Since the need for a compre-
hensive comparison between fixed- and floating-point imple-
mentation, deeply pipelined and paralleled architecture, and
schematic and textual programming language (TPL) methods
have not so far been met, in this paper, the focus is to evaluate
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FPGA-based real-time emulation of the machine models in a
general framework. The remainder of this paper is organized as
follows. Section II gives an overview of FPGA design method-
ologies. Section III explains the mathematical modeling and nu-
merical techniques for digital realization of electrical machines.
Implementation of the machine model by different approaches
are presented in detail in Section IV. Section V evaluates the
various designed architectures in terms of real-time simulation
time-step sizes and hardware resource consumption and accu-
racy. The effectiveness and usefulness of FPGA-based real-
time emulated machine models are assessed and highlighted by
providing a number of case studies (for induction motors, syn-
chronous generators, line-start permanent-magnet synchronous
motors (LSPMSM), and dc motors) in Section VI. Section VII
gives the main conclusions of this paper.

II. OVERVIEW OF FPGA DESIGN APPROACHES FOR

ELECTRICAL MACHINE REALIZATION

The techniques to emulate a system on FPGAs can be
broadly classified into two groups: 1) TPLs, such as a hardware
description language (HDL); and 2) a schematic method from
vendor-specific block sets. The textual programming method
by means of HDL such as Verilog HDL (VHDL) is a powerful
method to develop a digital hardware design without any re-
strictions. However, it can be very complex and cumbersome to
debug. Even experts in machine modeling and simulation may
find programming in the HDL a daunting task. The schematic
or model-based method relies on a library of basic combina-
torial and sequential building blocks offered in the Altera DSP
Builder, Xilinx System Generator (XSG) block sets, etc., within
the MATLAB/Simulink environment. This method allows users
to go from system simulation using the industry-standard Math-
works simulation tools to hardware implementation in a short
time. This method is user-friendly, easier to troubleshoot, easily
understandable, and specifically useful for novice users of
embedded digital systems. Expert users will of course be able
to save development time by adopting intellectual property (IP)
core blocks already available in such block sets, and no HDL
hard-coding is required. However, this approach is still limited
to applications in which no complex sequencers and deeply
pipelined structures are required [22].

Furthermore, the FPGA is a space-oriented logic device that
enables full hardwired parallelism to be achieved to the extent
permitted by the implemented user model and algorithm. A
large number of customized parallel processing units can be
easily configured. Thus, a highly parallel implementation is
the best realization according to the FPGA architecture (one
data per hardware module per time step) for the algorithms
where a lower amount of hardware resources for computa-
tional processing is required, such as fixed-point arithmetic-
based designs. The integrated massive memory blocks can be
partitioned into many independent types such as RAM, read-
only memory, firt-in–first-out, single-port, or dual-port user
memory units through which multiple data can be accessed
simultaneously. Although multiple data can be processed in
parallel on FPGAs, due to resource limitation, it is difficult
to achieve the ideal parallelism for large systems and is not

area-optimized for the algorithms that utilize a massive amount
of hardware resources such as floating-point-calculation-based
designs. In such cases, the pipelining technique has to be used.
In a pipelined scheme, a function is divided into several stages
by inserting registers between stages, allowing multiple data to
be processed at different stages at once and resulting in a high
computational throughput (multiple data per hardware module
per time step).

As a consequence of the above reasons, the seamless and
user-friendly schematic method is the best technique for a
highly parallel implementation of a real-time machine model
based on fixed-point operations, whereas on the other hand,
the TPL method is the most appropriate approach for the
pipeline realization of a floating-point-calculation-based real-
time system, resulting in an area-optimized hardware architec-
ture acceptable in the industrial applications.

In this paper, floating-point number calculations in the deeply
pipelined scheme are employed for an FPGA-based real-time
emulation of commonly used electrical machines to support
a wide range of machine specifications and characteristics.
Moreover, a fixed-point algorithm of the models is implemented
for a complete comparison. The implementation is carried out
by a state-space approach to provide a unified framework.
Therefore, the real-time emulation of electrical machines can
be realized by this approach, and the presented methodology
can be used for the implementation of other systems such
as mechatronics, aerospace, and control systems that can be
expressed in terms of state-space equations.

III. STATE-SPACE REPRESENTATION OF

MACHINE MODELS

The governing equations describing magnetically coupled
stator and rotor circuits in the electrical machines, whose
windings are identical and symmetrically placed and whose
parameters and specifications are constant, can be written as
follows:[

Vabcs

Vabcr

]
=

[
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The equations representing the dynamic behavior of ma-
chines consist of an inductance matrix being a function of
rotor position. Thus, a change of frame is used to reduce the
complexity of this matrix by referring the machine variables
to a reference frame that rotates at an arbitrary velocity given
by [23]
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where f represent voltage, current, or flux linkage vector of the
stator and rotor circuits.

READ O
NLY



ROSHANDEL TAVANA AND DINAVAHI: FPGA-BASED REAL-TIME EMULATION OF ELECTRICAL MACHINES 2043

Using the state-space approach in the orthogonal dq-axis
model, the simulation of the electrical side of various machines
can be expressed as{

d
dtx(t) = Ax+Bu
y = Cx+Du

(3)

where x ∈ R
h is the state vector, u ∈ R

p is the input vector, and
y ∈ R

q is the output vector. Flux linkages λqdo, supply voltages
Vqdo, and output currents Iqdo are selected as the state, input,
and output variables, respectively. The matrices and vectors in
(3) are defined in Appendix A for different types of machines.

The second set of equations is for the mechanical side of
machines for which electromagnetic torque Te and rotor speed
ωr are the input and state vectors, which are represented by

Te =

(
3

2

)(
P

2

)
(λdsiqs − λqsids) (4)

ω̇r =
P

2J
Teffective =

P

2J
(Te − Tmech − Tdamp). (5)

For the digital hardware realization, the differential equations
of the machine model should be discretized. The implicit
techniques for discretization are more expensive due to a root
finding procedure at any given time step. The important obser-
vation regarding explicit methods is that the unknown quantities
at each time step are given in terms of history parameters.
Thus, the discretized equations with an explicit technique can
be computed within the shorter elapsed time compared with
the implicit one with the same order, resulting in a reduced
local truncation error at every time step, a reduced global
error, and higher simulation accuracy. However, the drawback
arises from the limitation on the time-step size in the explicit
method to ensure numerical stability. Since the FPGA can
provide nanosecond computation clock cycles, a very small
simulation time step, which is much smaller than electrical
and evidently mechanical time constants of machines, can be
achieved to capture all transients of machine behavior. Thus,
the numerical stability is of no concern for the FPGA-based
real-time emulation of machines.

The explicit Adams–Bashforth (A-B) method can be em-
ployed as a good choice to discretize the machine’s equations
based on s = (z − 1/Ts) for the first-order A-B transforma-
tion or s = (2/Ts)(z

2 − 1/3z − 1) for the second-order A-B
transformation [24]. In this paper, the first-order A-B method
(forward Euler) is chosen for the discretization of state-space
equations, and several implementations in the literature have
also used the forward Euler method [25], [26] as follows:⎧⎨

⎩
x(t) = x(t− Ts) + Ts × [A(t− Ts)x(t− Ts)

+B(t− Ts)u(t− Ts)]
y(t) = C(t)x(t) +D(t)u(t).

(6)

IV. SYSTEM CONFIGURATION ON FPGA

A. Number Representation

Choosing either a fixed- or floating-point number represen-
tation is the first step for any hardware design. To provide
a comparison for hardware resource utilization and achieve

Fig. 1. FSM for paralleled and deeply pipelined real-time algorithm for
FPGA implementation of electrical machines.

accuracy, a 32-bit single precision floating-point format (IEEE
Standard 754) by the TPL method (VHDL) and a 32-bit fixed-
point format. (The binary point is located where the integer
part of the maximum or minimum value of flowing data is
effectively fitted in the underlying integer part of the fixed-point
number for the highest accuracy) by the schematic method are
used for real-time emulation in this paper.

B. Realization of Machine Models

The FPGA design procedure basically involves the design
entry step using the TPL or schematic method to configure
the system model and the implementation step to generate the
downloadable bitstream.

In this paper, the realization approach can be applied to any
type of FPGA devices such as Altera, Xilinx, Lattice, etc. In
the developed machine blocks for real-time emulation, the TPL
(HDL coding) and schematic methods for different hardware
platforms remain the same, and the only difference is between
the IP cores of one FPGA type to another designed just for the
implementation of basic arithmetic operations.

1) Floating-Point Implementation by VHDL: The hard-
ware modules that assist the real-time emulation to be
executed include: Main Control Module, Source Module,
Timer & Switch Module, andElectrical Machine Module.

Fig. 1 shows the overall procedure in a simulation time
step in the proposed hardware. First, Source Module gen-
erates input voltages for the three-phase machine termi-
nals, whereas Switch Module checks the switch states to
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Fig. 2. Pipelined configuration for calculating Source Module.

apply or remove faulty conditions and load torque. Then,
Electrical Machine Module starts to solve machine’s equa-
tions. It is obvious that the parallel processing exists in each
stage, while preserving the necessary sequential stages in the
overall simulation algorithm.

The Main Control Module coordinates the operation of the
whole emulator to carry out the algorithm. It sends out control
signals (Simu_on, Socmd, EMcmd) to each module to perform
the required functions. Meanwhile, it receives the acknowl-
edged signals (Sodone, EMdone, dtOver, Sw) to judge if the
functions are done or the switches are on or off.

Using the rst function on the FPGA board, the digital
hardware emulator starts executing real-time simulation. At
first, Main Control sends out a command signal Socmd to
the Source Module for generating supply voltages while it
checks the switch status signals (Sw0, Sw1, Sw2, . . .) to apply
or remove voltage source to electrical machine terminals or
mechanical torque to the machine shaft. Once acknowledge,
signals are received from Source and SwitchModules, the
main control sends out a command signal (EMcmd) to the
Electrical Machine Module to compute the state variables
of the machine. Then, it waits to be given acknowledge signal
EMdone from the machine module and transmits real-time sig-
nals to the output ports of the emulator. Finally, Main Control
checks whether a real-time procedure is performed within the
simulation time step dtOver and decides to go to the next
simulation time step or send the error signal to output ports and
terminate the real-time emulation procedure.

The voltage source in the Source Module, as shown in
Fig. 2, are represented using sinusoidal function cos function.
The lookup table (LUT) is the most commonly used method
to evaluate this nonlinear function. Since cos is a periodic
function, only a half-cycle of the cos function values need to
be stored in the LUT in order to save the memory space of
the LUT. The accuracy of the cos value is determined by the
length of the LUT. In this design, 4096 (212) cos values for half-
cycle are stored in the LUT; thus, the resolution of the LUT is

Fig. 3. Functions realized in the Timer & Switch Module.

dθ = π/4096. The calculation of the source values begins with
the updating of the phase angle. The new_phase is obtained
by adding the previous phase by ωTs. Since the LUT has only
a half-cycle of cos function values, the calculated phase needs
to be checked with π; if greater than π, it is subtracted by π, and
the sign of the result is inverted. Then, the new_phase is con-
verted to the address of the LUT. Finally, the retrieved cos value
is multiplied by the magnitude Mag. The exponent and mantissa
of the input floating-point number are used directly to access the
LUT when the step length is always a power of two. Assume the
floating-point input is θ, the LUT addressing unit in Fig. 2 out-
puts the addresses of the point θi, making θ − θi < resolution,
where resolution is the interval of the LUT. This is done by left
shifting the leading “1” and mantissa of θ/resolution by dexp
bits, where the dexp is the exponent of θ/resolution (without
bias). An example is shown in Fig. 2. In this example, input θ is
1.437, whose dexp is 10 (without bias). Left shifting the leading
“1” and mantissa by 10 bits gives 1873, which is the address of
θi = 1.43692 and cos(θi) = 0.133473 [11].

A hardware module of Timer & Switch is designed to sim-
ulate switches. Fig. 3 shows the details of this module and its
input/output signals. Since the switches are time controlled, the
core of this module is a real-time clock generator. The best
achievable clock frequency is generated by the input system
clock frequency (200 MHz). This clock signal is counted and
compared with the switch operation times saved in a RAM
device. Once the switch times are reached, the corresponding
switch state bit in Sw register (Sw0, Sw1, Sw2, . . .) is inverted
using “0”/“1” for switch open/closed. Another important func-
tion of the Switch Module is to generate the dtOver sig-
nal, which indicates the end of the real simulation time step
Ts. When a simulation step is finished, the Ts-over signal is
checked. If it is not “1,” the simulation step is finished within
Ts; thus, the real-time simulation is achieved. Otherwise, the
simulation step takes a longer time than Ts, and the real-time
constraint is not met [27].

The finite-state machine (FSM) diagram for the hardware
realization of machine models is depicted in Fig. 1. The pro-
cedure starts with the update of input matrix A using the cal-
culated speed from the previous time step in parallel with the
computation of transformation matrices K and K−1 using the
sinusoidal function LUT based on information about rotor and
reference frame positions from the passed time step in state S0.
Then, in state S1, Vabc is transformed to an arbitrary reference
frame qdo to provide an input vector for state-space equations.
Once Vqdo is available, the electrical state variables λqdo are
calculated in state S2. The output state variables Iqdo and
output torque Te are computed concurrently in state S3. Iqdo
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Fig. 4. SprMxMul unit. (a) Hardware design. (b) RAM initialization.
(c) Timing diagram.

is transformed back to the abc frame in state S4; meanwhile,
rotor speed ωr and other required outputs are obtained. Finally,
the rotor position and load angle are calculated simultaneously
in state S5. Obviously, since the implementation involves six
sequential steps, it is time-consuming. To improve the hardware
computational efficiency of the deeply pipelined modules, all
possible parallel processing paths have been taken into account,
although the overall procedure is sequential.

The hardware realization of electrical machines is designed
and performed by arrangement and manipulation of sparse
matrix multiplication (SprMxMul) and floating-point multiply-
add/subtract (FLPMAS) units. These submodules can be chained
to realize many functions and computations, such as simple ad-
dition/subtraction, multiplication, conversion between floating-
and fixed-point numbers, a× b× c, a× b± c× d± e× f ,
(a± b)×c, An×1 ± c×Bn×1, An×n×Bn×1 ± c×Dn×1, etc.

A fast sparse matrix multiplication submodule where a com-
pact sparse matrix storage format (see Fig. 4), which uses only
one vector is defined for the realization of An×n ×Bn×1. Each
entry in this format has the following: 1) a 32-bit value to store
the subsequent nonzero value of matrix An×n in row order;
2) a 4-bit column number to identify the column index of this
nonzero value; and 3) a 1-bit row index to label all nonzero
values in the same row with “0” or “1”. Fig. 4(b) shows an

Fig. 5. Pipelined realization of FLPMAS Module.

example sparse matrix and its storage format. In the SprMxMul
submodule, the accumulation is done in the fixed-point format.
The reason is that floating-point accumulator has much longer
latency and requires much more logic resources to implement.
The fixed-point accumulator needs only one adder with one
clock cycle latency. The used fixed-point number format is
40.100, which has 40 integer bits and 100 fraction bits to
guarantee both the range and precision. As shown in Fig. 4(a),
the SprMxMul submodule contains one floating-point mul-
tiplier, one floating-to-fixed-point converter, two fixed-point
adders, and one fixed-point converter. The elements of sparse
matrix An×n are retrieved from RAM Asprs, whereas 4-bit
column indexes are used to access the Bn×1 matrix stored
in RAM B. The registers are inserted for synchronization in
the computation. The realized matrix–vector multiplication is
fully pipelined and fast because there is no stall between two
consecutive matrix row–vector multiplications. This is achieved
by the two parallel fixed-point adders (accumulators) acc0 and
acc1 with opposite enable inputs en0 and en1 controlled by the
row label information. Fig. 4(c) shows the logic timing diagram
for the SprMxMul unit based on the example in this figure. As
can be seen, the accumulation of the first matrix row–vector
multiplication is processed in the acc0, whereas the acc1 is reset
to zero, which makes it ready for the accumulation of the next
matrix row–vector multiplication [10].

Moreover, the basic floating-point functions, including ad-
dition/subtraction and multiplication, are combined to build a
basic arithmetic unit. Fig. 5 presents the data flow of various
outputs of this submodule. The latency of the longest path is 19
clock cycles. It can be used for floating-point arithmetic oper-
ations of both scalar and vector quantities, e.g., the realization
of (4)–(6). The FLPMAS unit is pipelined to achieve high data
throughput.

Fixed-Point Implementation by the Schematic Method:
The schematic method is performed under the MATLAB/
Simulink software environment. The procedure is started by
the development of a functional model of a system using
basic Simulink continuous-time blocks or M-file coding. The
behavior of the developed model is verified by the performance
of the machine model from the SimPowerSystem toolbox, and
the fixed-point formats are then defined for all coefficients, vari-
ables, and data paths inside the model. In addition, the number
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of required clock cycles and suitable real-time simulation time-
step size are determined to compute all governing equations of
the system model.

At this stage, the emulation is realized by the development
of a digital fixed-point model by using XSG. The final step is
linked with FPGA-based implementation. The HDL code of
the design architecture is automatically generated. The main
control and interface files, as well as pin assignments suitable
for the FPGA platforms or HIL test setups, are written and
organized. The modifications and adjustments are performed in
this step to get the balance in terms of area/time performances.
Synthesis, map, place, and route processes and analysis of the
static timing performances are done in the Xilinx ISE software.
The binary files produced are then transferred to an FPGA via
a serial interface (JTAG) for its reconfiguration.

The generated FPGA digital and analog input/output signals,
which transmit low-level voltages and currents, can be inter-
faced with an amplifier that generates and absorbs high-level
power where an actual real-time emulated machine works in
the HIL configuration.

A generic digital machine model implementation is shown in
Fig. 6. It mainly consists of five functional steps. The algorithm
starts from the calculation of voltage source in the three-phase
domain. The phase angle is incremented over each time step to
feed the Xilinx DDS Compiler block that implements a high-
performance optimized phase to sinusoidal circuits. The core
sources sinusoidal waveforms and consists of a SIN/COS LUT.
Moreover, the appropriate voltage magnitude can be achieved
by a multiplication unit at the output port of this module [28].

The transformation module is in charge to change abc to an
arbitrary reference frame. As can be seen in the associated unit
for abc to stationary transformation, to obtain Vq, two sets of
calculation (production of 2/3 and Va0 and production of 1/3
with the summation of Vb and Vc) must be performed in parallel
mode with the same latency before the final addition happens.
This is why a register is inserted in the first path to synchronize
the data flow with the second parallel path. Consequently, the
final addition is only done when the operations at the two input
ports are completed at the same time. A similar strategy is ap-
plied to compute Vd and also can be used for the transformation
of other reference frames.

The state-space variable calculator, depicted in Fig. 6, in-
cludes a memory controller that schedules the reads and writes
to memory, and a highly parallel processing unit that computes
state variables. To show how to implement a state-space system
without losing the generality of the problem, the first row of
the induction motor state equations is expanded and realized.
All potential parallelism and data synchronism by registers are
considered in the data flow graph of the following:

λqs ((n)Ts) =λqs ((n− 1)Ts) + Ts

× [A11 · λqs ((n− 1)Ts) +A14

·λqr ((n− 1)Ts) + Vqs ((n− 1)Ts)] . (7)

In this step, the dual-port RAM devices are employed to store
the history terms of the state variables in the (n− 1)th time
step and call them for the integration procedure in the (n)th
time step.

Fig. 6. Design configuration for one emulation step of induction motor
by the schematic method.

Once the parallel computation of the state variables are
performed, the required output variables are calculated. Most
of the output variables such as stator and rotor currents and
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TABLE I
LATENCIES AND TIME-STEP SIZES OF DIGITAL HARDWARE REALIZATION

electromagnetic torque can be obtained by using elementary
operators, including adders, multipliers, multiplexers, and reg-
isters. (The calculation of stator current and electromagnetic
torque is provided in the corresponding module in Fig. 6.)
However, to obtain some output variables, e.g., the magnitude
of a space vector, a square-root function is required, for which
the generalized CORDIC function has been used.

Additionally, the structure of blocks arranged to calculate
rotor speed is realized based on the A-B integration technique.
The RAM controller is responsible to manage the data flow
of the history information of rotor speed synchronized by the
incoming current speed difference for an accumulation over
each time step. The same pattern is applied to calculate rotor
position based on currently computed rotor speed information.

V. EVALUATION OF DESIGNED ARCHITECTURES

A. Real-Time Emulation Time-Step Size and
Accuracy Assessment

Emulation time step is an important criteria from a practical
point of view. In reality, currently available FPGA-based HIL
test setups are not able to accommodate real-time models with
a time step of more than a few microseconds due to practical
limitations to communicate and transfer data to amplifiers and
actual devices under real-time tests.

It is worth mentioning that, although in the offline simulation,
an increase in the order of the discretization method or in
the precision of numbers and operations undoubtedly results
in an increase in the accuracy of final results; in the real-
time emulation, it does not necessarily lead to an increase in
accuracy.

As will be explained later about all case studies, with
the same discretization method, single-precision (SP) floating-
point implementation of machine models expends more time,
as listed in Table I, to finish all calculations within the time
step compared with a fixed point. It means that the executed
real-time emulation of floating-point realization is carried out
with longer time-step size than that of the fixed point. There-
fore, although floating-point calculations mathematically offer
a higher level of accuracy in comparison with the fixed point,
an increase in the associated simulation time-step size of digital
hardware implementation increases the truncation error at each
time step. Consequently, it may reduce the accuracy of the
results in the time-marching or time-stepping digital real-time
simulation. That is why, in real-time emulation, an increase in
discretization order and precision of calculations may not guar-

Fig. 7. Stator current of the induction machine using different methods
presented in the caption of Fig. 8.

antee more accurate results, whereas in the offline simulation,
they can.

It should be noted that the real-time hardware emulation
of machine models in this paper is realized by 5 and 7.5 ns
of FPGA clock frequency for fixed- and floating-point imple-
mentation, respectively, resulting in smaller real-time emulation
time-step sizes compared with [21] and [20] (confirms better
real-time implementation).

B. Offline and Experimental Validation

The first validation step is an offline simulation of design
architecture according to the best case achievable frequency
obtained at the end of the place and route report. This step
can be performed by using ISim, ModelSim, or MATLAB
software tools. The good functionality and accuracy of the
design algorithm written by the TPL or schematic method can
be verified in this step.

In the following transient offline study, the first two os-
cillations of stator current of a Baldor induction machine,
whose specifications are listed in Appendix B, by the various
approaches are plotted in Fig. 7. The induction machine is
started from stall. The reference solution is obtained using the
dq induction machine model of the SimPowerSystem toolbox
and solved with the Runge–Kutta fourth-order (RK4) method
and double-precision (DP) operations using a small time step of
100 ns. The simulation results obtained by XSG, MATHLAB
M-file, and ISim software are overlaid with the reference so-
lution. As can be observed in Fig. 7, the transient responses
produced by all methods coincide and converge to the reference
solution. This clearly demonstrates that all approaches predict
the machine behavior with the acceptable accuracy. A magni-
fied fragment of Fig. 7 is also shown in Fig. 8 for better com-
parison. As shown in Fig. 8, the behavior of deeply pipelined
digital hardware implementation of the machine model by
VHDL coding and SP floating-point operations obtained by
ISim (red solid line) with a time step equal to 1.755 μs
gives the most deviation from the reference (green solid line),
whereas a minor improvement can be achieved by DP calcula-
tions with the same algorithm and time step (blue dashed line)
obtained by MATLAB M-file coding. The result produced by
a digital fixed-point (FiP) hardware implementation (32 bits)
of induction motor with a 230-ns time step (magenta dotted
line) by the schematic method (XSG) provides more accurate
results compared with the previous ones. The most noticeable
difference of this waveform from others is its stair step shape.
The reason is attributed to the errors that occur when a value
lies outside the representable range and when the number of
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Fig. 8. Zoomed in view of Fig. 7 identified by a legend (realization tech-
nique, time-step size, number representation, discretization method).
Red solid line: (digital hardware realization by VHDL in ISim, 1.755 μs,
SP, A-B), blue dashed line: (offline simulation by M-file, 1.755 μs,
DP, A-B), magenta dotted line: (digital hardware realization by XSG,
230 ns, FiP (32 bits), A-B), black dash-dot line: (offline simulation by
M-file, 230 ns, DP, A-B), and green solid line: (offline simulation by
SimPowerSystem tools, 100 ns, DP, RK4).

Fig. 9. Experimental setup: induction machine.

fractional bits is insufficient to represent the fractional portion
of a value in fixed-point architecture. Moreover, DP calculated
stator current by M-file coding (black dash–dot line) with the
same condition of fixed-point simulation is also provided for
further comparison.

The second validation step is done via a comparison between
the FPGA-based real-time emulated machine model and an
actual induction machine to make sure that the FPGA-based
model can truly duplicate the behavior of the machine in the
virtual environment of HIL tests.

A 3-hp Baldor induction machine that is mechanically cou-
pled to a dc generator, shown in Fig. 9, is employed for
experimental test. The experiment is carried out to capture the
stator current and rotor speed when the test motor is started
directly from three-phase power supply.

To plot the experimental and real-time emulated results in
the same figure with high precision, the real-time data of output
signals generated from the FPGA-based emulator are exported
by the ChipScope analyzer and laid over the real values cap-
tured by using a current probe and an encoder mounted on an
induction machine shaft.

As can be seen from Fig. 10, there is a good agreement
between FPGA-based emulated and experimentally measured

Fig. 10. FPGA-based real-time emulated and experimentally mea-
sured results.

induction motor current and rotor speed. Both currents decay
to a steady state over almost 0.4 s. Furthermore, it is found
that the simulated speed follows the measured one closely.
The difference between the current amplitude and speed fluc-
tuation, particularly in the lower speed region or the transient
period, is mainly due to the backlash between the induction
machine shaft and the dc machine, which magnifies the effect
of torque pulsations on the experimentally measured current
and speed. Another reason for the discrepancies is due to the
lumped qd method not being able to model all distributed and
spatial effects inside the actual machine. Still, the qd model
remains the commonly used approach for modeling of electrical
machines in the industry and its accuracy has been verified by
MATLAB/Simulink in Figs. 7 and 8.

C. Hardware Resource Utilization

The electrical machine hardware designs were targeted to
Xilinx Virtex-7 XC7VX485T FPGA. This FPGA is mainly
composed by configurable logic blocks that contain a pair of
logic slices that are configured by six-input LUTs and storage
elements, configurable input/output blocks, and programmable
interconnections. It has the following features: 1955k logic
cells, 68-Mb block RAM, 2800 DSP48E1, and 1200 I/O pins.

Table II shows the FPGA hardware resource utilization of
various types of machines. It can be observed that, although
fixed-point operators are thrifty, massively parallel fixed-point
implementation of machine models consumes more hardware
resources in terms of registers and LUTs compared with
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TABLE II
FPGA RESOURCE UTILIZATION OF REAL-TIME MACHINE EMULATOR

deeply pipelined floating-point realization containing extrava-
gant floating-point calculations.

VI. REAL-TIME EMULATION CASE STUDIES

This section presents the real-time performances from the
developed hardware machine models. The results were captured
on a 500-MHz four-channel oscilloscope that was connected
to the data acquisition card on the Xilinx Virtex-7 VC707
FPGA development board. The results show the details of
the electrical machine transients under normal and disturbed
conditions. To demonstrate the usefulness of the proposed
hardware designs for real-time emulated electrical machines
in the HIL environment, the models of an induction motor,
a synchronous generator with field windings, an LSPMSM,
and a shunt-connected dc motor are tested and evaluated. The
parameters and specifications of the machines are listed in
Appendix B. Note that all the real-time results have been
validated by offline simulation of machine models from the
SimPowerSystems toolbox in MATLAB/Simulink; however,
for the sake of brevity, only the offline results of the induction
machine were provided in the previous section.

A. Case I: Induction Motor Transients

The dynamic performance of the induction motor is shown
in Fig. 10. The oscilloscope traces of the real-time emulator
corresponding to induction motor transients during free ac-
celeration from stall are captured in this case. Moreover, the
corresponding offline and experimental results are presented
and discussed in Section V. Good agreement between offline,
real-time, and experimental results confirms the effectiveness
of proposed approach for real-time emulation of the induction
machine.

B. Case II: Synchronous Generator Transients

This case focuses on the real-time emulation of dynamic
performance of the synchronous generator during a three-phase
fault at the machine terminals. The stability of synchronous ma-
chines in a power system following a fault is of importance to
determine line loading limits. The real-time oscilloscope traces
shown in Figs. 11 and 12(a) illustrate the dynamic behavior
of the synchronous generator during and following a three-
phase fault. The machine is initially connected to an infinite
bus delivering rated apparent power at a nominal power factor.
The input torque and field voltage are held constant. With the
machine operating in a steady state, a three-phase fault occurs
at the machine terminals at t = 0.25 s. During the fault, the

Fig. 11. Real-time traces of synchronous generator dynamic behavior
under normal and faulted conditions. [Time: 450 ms/div, vs (stator volt-
age phasor): 11.3 kV/div, is (stator current phasor): 104.4 kA/div, Pgen:
2660 MW/div, Qgen: 2660 MVar/div, If : 98.5 kA/div, Ia: 166.5 kA/div,
ωr : 590 rps/div].

terminal voltage is zero, and the machine is unable to transmit
power to system. Hence, all of the input torque, with the
exception of the ohmic losses, accelerates the rotor. The fault
is cleared at t = 0.5 s, and the machine returns to its original
operating condition after experiencing a transient condition.
Moreover, Fig. 12(b) shows the impact of this disturbance on
torque-rotor angle characteristics by a real-time oscilloscope
Lissajous curve.

C. Case III: LSPMSM Transients

The LSPMSM is a very high efficient alternative to replace
induction motor in the constant speed operations with load
variations. The dynamic performance of real-time emulated
LSPMSM is depicted in Fig. 13 by oscilloscope traces for
applied three-phase supply voltages. The motor accelerates
from stall. Once the steady-state operation is established, the
load torque is suddenly stepped to 80% of nominal torque at
t = 1 s. Motor increases load angle δ to maintain a steady-
state operation, and then a three-phase fault occurs at the
motor terminal after t = 1.5 s, whereupon the motor loses its
synchronism and reestablishes the steady-state condition when
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Fig. 12. (a) Real-time traces of torque and rotor angle of the syn-
chronous generator versus time. [Time: 450 ms/div, δ: 1.4 rad/div, Te:
12.8 MN · m/div]. (b) Real-time X-Y mode trace of torque versus rotor
angle of synchronous generator. [Te: 7.9 MN · m/div], δ: 0.33rad/div].

Fig. 13. Real-time traces of LSPMSM performance. [Time: 250 ms/div,
Te: 18.2 N · m/div/div, Texc: 39.5 N · m/div/div, , Trel: 91.7 N · m/div, ],
Ia: 46.1 A/div, ωr : 269.3 rps/div, δ: 2.6 rad/div].

the fault is cleared at t = 1.65 s. An induction component Tind

of electromagnetic torque Te significantly contributes to the
acceleration of the rotor during starting and faulty conditions,
whereas excitation component Texc plays a considerable role
in the steady-state operation where reluctance torque Trel has a
small effect.

D. Case IV: DC Motor Transients

The results from the real-time emulator of the dc machine
are assessed in this case study. A shunt-connected dc motor
is selected for evaluation due to its desirable features and

Fig. 14. Real-time trace of dc motor behavior. [Time: 375 ms/div, Ia:
62.5 A/div, Ea: 86.1 V/div, ωr : 45.5 rps/div, δ: 2.6 rad/div, Te: 72 N ·
m/div/div, If : 0.5 A/div].

characteristics in the industrial and adjustable speed drive ap-
plications. The starting transients of the motor are represented
in Fig. 14, when it is started with a resistance starter switched
at a fixed armature current level to keep it within the safe limit.
The armature and field winding currents Ia and If , internal
electromagnetic force Ea, rotor speed ωr, and torque Te are
captured in the results. During no-load starting, the switching
of the four resistor segments is being triggered by the crossing
of Ia below the threshold value. After a transient condition,
steady-state operation is achieved at t = 2 s approximately.
Then, the rated load torque is suddenly applied at t = 2.7 s.
There is an increase in the armature current and a decrease in
speed for this increase in load torque.

VII. CONCLUSION

In this paper, a unified framework for FPGA-based digital
hardware emulation of electrical machines by different ap-
proaches has been presented, and a comprehensive comparison
has been provided. Hardware designs are developed for an
induction motor, a synchronous generator, an LSPMSM, and
a dc machine. The close agreement between the real-time
emulated performances, offline simulation, and experimental
measurements confirms the effectiveness of the proposed ap-
proaches. Such a real-time emulation of the electrical machine
can be used in HIL simulations to test new controller and drive
systems against a virtual model of the machine. Furthermore,
the general framework for digital hardware implementation of
the state-space model presented in this paper not only can
be applied to machine equations but also can be used for
real-time emulation of any system such as power converters,
controls, mechatronic systems, etc., that can be described in
terms of state-space equations. Moreover, in this paper, the re-
sults have demonstrated that, although floating-point arithmetic
utilizes more hardware resources compared with fixed-point
calculations, deeply pipelined implementation by floating-point
number representation can consume less hardware resources
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than massively parallel realization by fixed-point operations. In
addition, the presented results show that, in spite of the fact
that floating-point calculation leads to more accurate results
in offline simulation compared with fixed point, in real-time
simulation, floating-point computation may not guarantee such
a basis. Future work would include modeling of the spatial and
nonlinear phenomena inside the machine structure to emulate
the machine performances with higher accuracy.

APPENDIX A

Based on the following matrix notation, the state-space defi-
nitions for various machines are given as follows:

A=

[
A11 A12

A21 A22

]
,B =

[
B11 B12

B21 B22

]
,C =

[
C11 C12

C21 C22

]
.

Induction Machine:

x = [λqs λds λqr λdr]
T (A1)

u = [vqs vds vqr vdr]
T (A2)

y = [iqs ids iqr idr]
T (A3)

A11 =

⎡
⎣ rs

Lls

(
Laq

Lls
− 1

)
−ω

ω rs
Lls

(
Lad

Lls
− 1

)
⎤
⎦

A21 =

[
rr
Llr

Laq

Lls
0

0 rr
Llr

Lad

Lls

]
,A12 =

[
rs
Lls

Laq

Llr
0

0 rs
Lls

Lad

Llr

]

A22 =

⎡
⎣ rr

Llr

(
Laq

Llr
− 1

)
ωr − ω

ω − ωr
rr
Llr

(
Lad

Llr
− 1

)
⎤
⎦ (A4)

B = eye(4, 4) (A5)

C =
1

D

⎡
⎢⎣

Lrr 0 −LM 0
0 Lrr 0 −LM

−LM 0 Lss 0
0 −LM 0 Lss

⎤
⎥⎦ (A6)

D = zeros(4, 4). (A7)

where

Lss =Lls + Lm, Lrr = Llr + Lm, D = LssLrr + L2
m (A8)

L−1
ad =L−1

aq = 1/Lm + 1/Lls + 1/Llr. (A9)

Synchronous Machine:

x = [λqs λds λkq1 λkq2 λfd λkd]
T (A10)

u = [vqs vds vkq1 vkq2 exfd vkd]
T (A11)

y = [iqs ids ikq1 ikq2 ifd ikd]
T (A12)

A11=

⎡
⎢⎢⎢⎣

rs
Lls

(
Laq

Lls
− 1

)
− ωr

rs
Lls

Laq

Llkq1

ωr
rs
Lls

(
Lad

Lls
− 1

)
0

rkq1

Llkq1

Laq

Lls
0

rkq1

Llkq1

(
Laq

Llkq1
− 1

)
⎤
⎥⎥⎥⎦

A21 =

⎡
⎢⎣

rkq2

Llkq2

Laq

Lls
0

rkq2

Llkq2

Laq

Llkq1

0
rfd

Llfd

Lad

Lls
0

0 rkd

Llkd

Lad

Lls
0

⎤
⎥⎦

A12 =

⎡
⎢⎣

rs
Lls

Laq

Llkq2
0 0

0 rs
Lls

Lad

Llfd

rs
Lls

Lad

Llkd

rkq1

Llkq1

Laq

Llkq2
0 0

⎤
⎥⎦

A22=

⎡
⎢⎢⎢⎣

rkq2

Llkq2

(
Laq

Llkq2
− 1

)
0 0

0
rfd

Llfd

(
Lad

Llfd
− 1

)
rfd

Llfd

Lad

Llkd

0 rkd

Llkd

Lad

Llfd

rkd

Llkd

(
Lad

Llkd
− 1

)
⎤
⎥⎥⎥⎦

(A13)

B11= eye(3, 3),B12=B21=zeros(3, 3),B22=

⎡
⎣ 1 0 0
0

rfd

Lmd
0

0 0 1

⎤
⎦

(A14)

C11 =

⎡
⎢⎢⎣
(Lkq1Lkq2−L2

mq)
Dq 0

(−LmqLkq2+L2
mq)

Dq

0
(LfdLkd−L2

md
)

Dd 0
(LmqLkq2−L2

mq)

Dq 0
(−LmqLkq2+L2

mq)

Dq

⎤
⎥⎥⎦

C21 =

⎡
⎢⎢⎣

(LmqLkq1−L2
mq)

Dq 0
(LqLmq+L2

mq)

Dq

0
(LmdLkd−L2

md)
Dd 0

0
(LmdLfd−L2

md)
Dd 0

⎤
⎥⎥⎦

C12 =

⎡
⎢⎢⎣
(−LmqLkq1+L2

mq)
Dq 0 0

0
(−LmdLkd+L2

md)
Dd

(−LmdLfd+L2
md)

Dd
(LqLmq+L2

mq)
Dq 0 0

⎤
⎥⎥⎦

C22 =

⎡
⎢⎣

(−LqLkq1+L2
mq)

Dq 0 0

0
(−LdLkd+L2

md
)

Dd

(LdLmd−L2
md

)

Dd

0
(LdLmd−L2

md
)

Dd

(−LdLfd−L2
md

)

Dd

⎤
⎥⎦

(A15)

D = zeros(6, 6) (A16)

where

Lq =Lls + Lmq, Ld = Lls + Lmd, Lkq1

=Llkq1 + Lmq (A17)

Lkq2 =Llkq2 + Lmq, Lfd = Llfd + Lmd, Lkd

=Llkd + Lmd (A18)

Dq =L2
mq(Lq − 2Lmq + Lkq1 + Lkq2)

− LqLkq1Lkq2 (A19)

Dd =L2
md (Ld − 2Lmd + Lfd + Lkd)− LdLfdLkd (A20)

L−1
aq =1/Lmq + 1/Lls + 1/Llkq1 + 1/Llkq2 (A21)

L−1
ad =1/Lmd + 1/Lls + 1/Llfd + 1/Llkd. (A22)
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LSPMSM:

x = [λq λd λkq λkd]
T (A23)

u =

[
vq vd + rs

Lmd

Lls
im vkq vkd + rkd

Lmd

Llkd
im

]T
(A24)

y = [iq id ikq ikd]
T (A25)

A11 =

⎡
⎣ rs

Lls

(
Laq

Lls
− 1

)
−ωr

ωr
rs
Lls

(
Lad

Lls
− 1

)
⎤
⎦

A21 =

[
rkq

Llkq

Laq

Lls
0

0 rr
Llr

Lad

Lls

]

A12 =

[
rs
Lls

Laq

Llkq
0

0 rs
Lls

Lad

Llkd

]

A22 =

⎡
⎣ rkq

Llkq

(
Laq

Llkq
− 1

)
0

0 rkd

Llkd

(
Lad

Llkd
− 1

)
⎤
⎦ (A26)

B = eye(4, 4) (A27)

C =

⎡
⎢⎣
−Lkq/Dq 0 Lmq/Dq 0

0 −Lkd/Dd 0 −Lmd/Dd

Lmq/Dq 0 −Lq/Dq 0
0 Lmd/Dd 0 −Ld/Dd

⎤
⎥⎦

(A28)

D = zeros(4, 4). (A29)

where

Lq =Lls + Lmq, Dq = L2
mq − LkqLq (A30)

Ld =Lls + Lmd, Dd = L2
md − LkdLd (A31)

L−1
aq =1/Lmq + 1/Lls + 1/Llkq, L

−1
ad

=1/Lmd + 1/Lls + 1/Llkd. (A32)

DC Machine:

x = [λf λa]
T ,u = [vf va]

T ,y = [if ia]
T (A33)

A =

[ − rf
Lff

0

−ωr
raf

Lff
− ra

Laa

]
,B =

[
1 0
0 1

]
(A34)

C =

[
1/Lff 0

0 1/Laa

]
,D = zeros(2, 2). (A35)

APPENDIX B

The parameters of various machines are given in the
following.

i: 3 hp, 230 V, rs = 0.5 Ω, rr = 0.51 Ω, lls = 4 mH, llr =
4 mH, lm = 89.4 mH.

ii: 26 kV, 802.5 MVA, rs = 0.0048 Ω, rfd = 0.58043 Ω,
rkd = 0.0203 Ω, rkq1 = 0.0727 Ω, Lls = 0.57031 mH,

Lmd = 4.2 mH, Lmq = 3.8 mH, Lfd = 0.40759 mH,
Lkd = 0.27852 mH, Lkq1 = 0.16605 mH.

iii: 4 hp, 230 V, rs=0.017 Ω, rkq=0.108 Ω, rkd=0.054 Ω,
lls = 0.172 mH, llkq = 0.350 mH, llkd = 0.350 mH,
lmq = 2.7 mH, lmd = 1.3 mH, im = 1.6203 A.

iv: 240 V, ra = 0.6 Ω, rf = 240 Ω, Lff = 120 mH, Laf =
1.8 H, Laa = 0.012 H.
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