. * l National Library
of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microform is heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

I pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-339 (r. 88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

S'il_manque des pages, veuillez communiquer avec
l'université qui a conféré le grade.

La qualité dimpression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées a l'aide d'un ruban usé ou si l'université nous a fa
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme es!

soumise & la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

Canada

University of Alberta

An Automatable Specification Directed Software Testing Method
BY

W. Donald Lawrynuik {; 2

A thesis

submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Doctor of Philosophy.

Department of Computing Science

Edmonton, Alberta
Spring 1991

BN

National Library
of Canada

Bibliothéque nationale
du Canada

Canadian Theses Service

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése & la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d’auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent @&tre
imprimés ou autrement reproduits sans son
autorisation.

ISRN A-218-60741 0

8

Canadi

UNIVERSITY OF ALBERTA
RELEASE FORM

NAME OF AUTHOR: W. Donald Lawrynuik
TITLE OF THESIS: An Automatable Specification Directed Software Testing Method
DEGREE : Doctor of Philosophy

YEAR THIS DEGREE GRANTED: 1991

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly or
scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor ex-
tensive extracts from it may be printed or otherwise reproduced without the
author’s written permission.

(Signed) /
o~ (o

Permanent Address:
Apt#702 Phase II

2267 Lakeshore Blvd. W.
Toronto Ont.

CANADA

Date: A‘f’" / '7/‘1//‘7"//

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the
Faculty of Graduate Studies and Research, for acceptance, a thesis entitled "An
Automatable Specification Directed Software Testing Method" submitied by W.
Donald Lawrynuik in partial fulfillment of the requirements for the degree of Doctor
of Philosophy.

Dr. M. Green

Dr. L. White

Dr. J. Laski
Dr. P. Sorenson

Dr. J. You

Dr. A. ' Robinson

Date

ABSTRACT

Specification directed testing is an important and largely unexplored area of
software testing. We have built a prototype of a system to do specification directed
testing of abstract data types. That system is called T-3. In building and using T-3
we have discovered some basic problems that must be addressed before such a sys-
tern can be useful for most practical applications. This thesis describes those prob-
lems and our solutions to them.

A correct software implementation can be viewed as one that (a) does
everything it should; and (b) only does what it should. We show that
specification directed testing should only be used to investigate (a). A new pre-
cise goal for specification directed testing is developed based on this result is
presented and developed.

Previous methods for using PROLOG to produce test cases do not work
for inequality predicates and cannot test ail arbitrary sequences of functior
calls. A new method for using PROLOG to generate test cases that overcor:.:»
these limitations is presented.

Previous methods for test set generation for specification directed software test-
ing are based on the syntax of the axioms in the specifications of the software. We
demonstrate the limitations of these methods by presenting simple faults that are
never (even with infinite testing) detected by those previous methods. We have
developed a new model of the computations of an abstract data type so that a new
test set generation methodology could be developed.

We have developed a new test set generation methodology that uses the seman-
tics as well as the syntax of the software specification. It is based on: (1) our new
computational model, (2) our method for using PROLOG to generate test cases, and
(3) our new goal for specification directed software testing. We have validated this
new methodology by comparing the number of faults it reveals to the number of
faults revealed by previous methods.

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. L.J. White, for his guidance, sup-
port, and infinite patience throughout this research.

I'am grateful to my co-supervisor, Dr. M. Green for his help over the last few
years. I would also like to acknowledge the members of my examining committee,
Dr. P Sorenson, Dr. J You, Dr. A. Robinson, and Dr. J. Laski for their valuable
comments.

I would also like to thank Miss I.L. Macdonald and Miss M. MacPherson for
providing me the financial and personal computing resources necessary to pursue
my studies.

Special tlianks must go to Edith Drummond, without whom there would be
no graduate program in The Department of Computing Science at the University
of Alberta. In addition I would like to thank the Power Plant crew, both old and
new, for maintaining a good environment for graduate research.

Thanks to Cathy Olson for the patience and tolerance she has shown in
keeping everything in perspective and keeping my feet on the ground.

Finally, and most importantly, thanks to my parents, Helen Lawrynuik and
Walter Lawrynuik. This thesis is really for them.

1 INTRODUCTION

TABLE OF CONTENTS

..

1.1 The New Testing Methodologycccoveeviiviinieniicecriee e,

1.2 Thesis Qutline
2 BACKGROUND
2.1 Software Testing

2.2 Abstract Data Types

.......

..

..

..

2.1.1 Specification Directed Testingcccoeerrvererevennrareennnns
2.1.2 Summary of the Testing Processc.ccceeveevvveveecicennnnnns

..

2.2.1 Implementation of Abstract Data Typescc.cceeevevennnes
2.3 Test Case Generation Using PROLOGcccoeeemvevicreevcennne.
2.3.1 The Test Procedurecccccoeveveeievrnirnernennieneenseneena
2.3.2Using PROLOGccoociiorirrieneiereenreeeiete e enens

2.3.3 Sample Run ...

..

2.3.4 Partitioning of Instance CIassesccccccueecvrreereerieennnns

2.3.5 Problems
3T-3: APROTOTYPE
3.1 Test Harnesses

............

...........

..

..

..

3.1.1 What Does DAISTS D07 .o eeeeeenreeeesessensenes
3.1.2 How Does DAISTS WOTK? ...ooveeeeceeeeeeeeeeeeieeesesineenens

3.1.3 An Example ..

3.1.4 Specifications

..

..

3.1.5 DAISTS within the Testing Processcccceeeveeecrnvenen.

3.1.6 Advantages ...
3.1.7 Constraints
3.1.8 Experi=nces ...

..

..

..

3.2 A New Method for Testing ADTScceerrrerneerverenenrecseesnenesenns
3.2.1 Specification FOrmatc.ccoceuerenenrereressererereenieeenerenesnnne

....................................

..

...

10
10
12
20
20
27
29
29
30
33
35
38
40
41
41
42
45
48
48
49
50
53
54
56
61
65

34 PTODIEIMS ...ttt 66
4 A THEORY FOR ABSTRACT DATA TYPE TESTING .o 68
4.1 What is Being Testedccovwvvermememmomoeooooooooooo 68
4.2 Abstract Machineooueveveeeeemeoeeeeneeoeeeeooeooooooo 69
4.3 Goals of the Testing Methodooovvvvvoeo 71
4.4 A General Testing Methodcooooooeemooooo 76
4.5 The Testing Methodooueeeiveeeeeeeeeeeeeeeeoooooooe 78
4.5.1 Previous Methodsc.ooveeeoeemmmeooooo 80
4.5.20ur Method ..o 88
5 A FOUNDATION FOR AUTOMATABLE SPECIFICATION-
DIRECTED TESTING METHODScoooeiomeooeooeoeooooooo 90
5.1 Software Testing ASSUMPUONSoovveveveeeremooeeoeooeooe 91
5.2 Abstract Data Type ASSUMPLiONSoeevrveveeooooo oo 93
5.3 Algebraic Specificationsoeeeveveeveoemeersoeooo 96
5.3 T EXISIENCE ..ottt e Y7
5.3.2 COITECINESSoeoeveerarrerereceeeseee e 98
5.3.3 CONSISENEocuererrerrteteeeeeeeeeee e oo 99
5.3.4 Sufficiently Completecocooeeovercommerereeoser) 100
5.3.5 Other Specification Techniqueso..ovovvvevvoveon. 102
5.4 SUMMATY ..ouiiiicecnreniaeie ettt es e 105
6 A NEW METHOD FOR TEST CASE GENERATION USING
PROLOG ..ottt 107
6.1 Instance Classes and Sub-Instance Classesooovvvoono... 108
6.2 Testing a Sub-Instance Classoo.oeemmveerrervoeeeoooeoeooon. 114
6.3 An Updated Test Case Generation Method Using PROLOG
... 116
6.3.1 et 120
6.3.2 A More General Constraint Handling Method. 122
6.3.3 The Problem of More General Traces 126
6.3.4 Comparison to Previous Workcccoooeeevorerernenennn, 130
6.4 An Extended EXaMPIecooveouieeeeereeeeeeeeeeeree oo 133
6.5 CONCIUSION ...ttt 137
7 A COMPUTATIONAL MODEL FOR ABSTRACT DATA TYPES
... 139

1C€ SPACES .eieveiiiirienieiee e sttt ta st e s es e sese e aa e eens 142

7.3 Computdi 0N SPACE ...oovviviiniriiiiniiiieee et e e e st sese e T 145
7.4 Implications for ADT TeStingc.cccceeverriverinneeninennerneeceneeenaa 151
8 TEST SET GENERATION ...ccooiiiiiiiiiecinrtetee et aaee e 153
8.1 Goals of the Testing Methodc.ccccooevvreiiniens e . 153
8.2 A General Method For Testing Abstract Data Types 154
8.2.1 Instance ClaSsescccoceeurnreirerierscercrsriressnnsesensnssennns 155
8.2.1.1 Possible Failure Set (PFS) ..o, 155
8.2.1.2 Testing an Instance classceccoveecvencrnrerrenenn. 160
B2 2 ettt et et e st a s e ae s e teea et s et aeennn 163

8.2.3 Calculating the Relative Benefit of Testing an In-
SLANCE ClASS ettt et s e ve st e be e e e sb e s s s et ne e s 165
8.2.4 An Algorithm For Testing ADTScccccvveevnrieccrenennne. 174
B IEXAMPLE .oeiiiiiiiinicecite ettt seerer e s et 174
B.4 DISCUSSION ...coiiiiniiiriieerierertenressneseeesransstesaeessasesessasesensanssessnnas 181
ESVAIAAtION oot erae s 183
RS T EXAMPIE ottt 188
B.EZMOdeEl o 191
8.5.3 Experimental Procedureccoevievievnrveeccneesieiene, 192
B.S.ARESUIS ..ottt seerseesberessasssaa et e 194
B S, bbbt r b s enaes 198
9 SUMMARY AND CONCLUSION ...t neetereneeresesnineenas 200
9.1 SUMMATY .ot ettt e es s e s aesabas e ns 201
9.2 CoNCIUSIONcoveeirieeriiieneetsrireee e et seeereete e sssrsseesesenesssnseenees 207
Q.3 FULUI® WOTK ...oeinicictinictcecee st s e ere e e easr s e 207
GLOSSARY ettt et berne s e es s arstas s ons 213
REFERENCES ...ttt seere e ersesses e e et ensens se s snsaaeane 218
APPENDIX L ..ottt seae e stesnesrebassrsta s s e aesseneans 226
APPENDIX II ...ttt ctessr e ese st ssavssaesesesssssssnennes 229
INPULFUIES vttt ss s sa s s baren e 229
OPETALION ...ucniiiriireniereieinreeereee st stsses e csereessesssassssss st snssssssessostassressnsssens 233
SAMPLE RUNS ..ottt sesaeve e sn s e sene e sresssassassseane 240
APPENDIX IIT .ottt stste s be st sssae b rnesa s s st s srstennnens 242

GENETALIONoeiveiiiiiie ettt ceeereeseeeaeesassessereensassenseassssnnesssesnsssseessesseseserasnns 245

Table 6.1
Table 7.1
Table 8.1
Table 8.2
Table 8.3
Table 8.4
Table 8.5
Table 8.6

LIST OF TABLES

O-Type Functions Applied to Three Instancesc..c.......... 113
Traces, Instance Classes and Canonical Formscccoeueen... 143
Sub-instance Classes fOr 0, ..uuvcvvriieiiiinreeiceececree e ceeeeeenes 165
Order of Traces Tested for Type Bag-Cccccccceecuerecuiveeecnerinns 179
Test Case Generation for Trace #6 in Table 8.2.ccooveeneeen. 181
Observable Functionality for T,cceovcveeevceneevcceiierieeene. 190
Observable Functionality for T,ccccooveeceivrnivinnenniiceieicnen. 190

Observable Functionality for 7,ccccoovviivnvnnecierneeceiieenee, 191

Figure 1.1
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
“igure 3.10
Figure 3.11

Figure 3.12a
Figure 3.12b

Figure 4.1
Figure 4.2
Figure 4.3
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8

LIST OF FIGURES

Testing Process Diagramoceeeeeieiveniiinecveeceecee e, 2
An Algebraic Specification of a Queueccceevvereererenennnn... 21
PROLOG Specification of a Queue.occevvvvvvevereeerennnnne. 32
Generating Test Cases and ReSultsocoeceveeeeeeeereeeeeeriien, 33
Extended Generation Examplecoocoevoviiivvvereeieeee e, 37
The DAISTS SYStemcoiieeiniieecieececeeeeeeerese e e s ens 43
The DAISTS Input Streamc..coocoevmieeeeiieoieeeeeeeeeeseeeeene, 44
Sample DAISTS INPUL ..o e, 46
Procedure from an AXiomccoceeeieniieercenineneeseeee e 47
DAISTS Main Test DIVETcc.coviemieeineecieee s seeeeeens 47
DAISTS within the Testing Processccoceveveievcvircnereeerennnnn. 49
An Algebraic Specification with a Hidden Function 51
T-3 TESHNE PrOCESS .vvveenreceeiiereirireeereserrerete e seenereees 56
MODULA-2 Code to Test an Instanceocoeeeveveeevirvvenennnns 57
Sample Specification SYRtaxcoeovevevinenireiececeee e 60
A New Testing Methodocveeeenircecce e 62
Previous SYSIEMSc.ocvceiieeriveeeceieeeeeeee st n s eene e 64
T-3 Testing TOO!ccccovvrreenririeesieseeererereneerec s e iresecenarene 64
General Testing Methodc..ccceevvienemeececeeceeciee e 77
An Operational Outline of Qur Testing Method 77
Code with a Fault over Twe Functionsccooevvieeveieennn.e. 85
Application of ASSUMPHONSccoeeerecerrvereienieniereencrinerenenes 11i
Algebraic Specification of Type: BAGcccccovvvveerereereeeenns 118
PROLOG Specification of Type: BAGcccccceovreeevererererennnns 118
PROLOG Queries for Type: BAGccovevevvverenrcencrirecsenene. 120
Failed GOalscoccvvimmrnreeecreirie et 127
A New Set of Translation Equivalencesccecevevrveeverinennnee. 129
Additional Axioms for New Bag Typecccocveveeenrvevenvcrerennne. 133

PROLOG Specification: BAG-nccccovvvnirnveerencrernnrnensennen. 135

Figure 6.9
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7
Figure 8.8
Figure 8.9
Figure 8.10
Figure 8.11
Figure 8.12
Figure 8.13
Figure 8.14
Figure 8.15
Figure 8.16
Figure A2.1
Figure A3.1
Figure A4.1

Sample PROLOG Run for Bag-nccceivecevveneninienienennnens 137
Traces of Length 2ccccvoeiiiii e ccrrecrereee st seeesare e 147
Traces of Length 3 ..ot evens 148
Traces of Length 4 ..ot eveesreneas 149
Traces of Length S ..o 151
Algorithm to Test an Instance Classcccocvrieriereeveersvenene 162
The Cost of Testing an Instance Class ¥ccocevuererceccrecnnne. 164
Two PFS Elements Removedcccoiveeevnenenencnneniinnenieeenenns 169
POsSible PES EIEMENLSvvccunnrvresesrisseserssssssmmmesssssnsssssnsssssnssens 171
Algorithm for testing an ADTccccoovurvininnnnnirnenecnena, 175
An Algebraic Specification for a Type Bag-Ccccccevevercrveannnn. 177
A PROLOG Specification for a Type Bag-Ccccceerevivrenenennnnns 178
RELAY Model of Error Detectionc.ccocervniccceeerecreniennnaa. 185
Algebraic Specification of Queue with Hasccccccccccuecvruennnee. 189
Validation Error Modelccovmnieivinnnneeienneniniresessecssnnne 192
Faults vs. # Tests. For STACKccccoviininrnnieneeceenennienns 195
Faults vs. #Function Calls. For STACKccccoevvrvvrvrrreennnne. 196
Faults vs. #Tests. For QUEUE WITH HAScoeeurennenee. 196
Faults vs. #Function Calls. For QUEUE WITH HAS 197
Faults vs. #Tests Run. For BAG.cccoeiecivvcinrrerecrenennnenene 197
Faults vs. #Function Calls. For BAG.cccoovvineevnenveinienne, 198
Operation Of T-3ooiriierenee e esesanesnes 234
Algebraic Specification for a Large Examplecccveuvnnn.e. 244
Algorithm for Counting PFS Elementsc.ccoceevrrreeceneenennae 255

1. INTRODUCTION

Until recently, researchers looking at the problem of software testing only
had one formal object upon which to base their work. That object was the pro-
gram itself. Thus much of software testing research has focused on white box
testing. In recent years considerable work has gone into developing techniques
and methodologies that produce formal requirements and software specifications.
This in turn means we have another formal object (the software specification)

upon which to base software testing.

The initial hypothesis of our research has been that a complete testing metho-
dology for abstract data types that is based on software specifications could be

developed. This thesis describes the results of our investigation of that hypothesis.

Our first step in investigating specification-directed software testing was to
design and build a prototype of a new specification-directed software testing system.
That system is called T-3. This prototype tests abstract data type implementations
and requires as input only the implementation and the specification. Previous
researchers [Gannon81, McMullin83, Day85] have proposed and implemented a
compiler-based system, called DAISTS, to test abstract data types (ADTs). That
system also requires as input the specifications of the abstract data type and the
implementation. Additionally, DAISTS requires a set of test cases and test data. In

a separate line of research, several authors [Bouge85b, Bouge86, Wild86] have

reported a methodology for translating algebraic specifications of abstract data types

into PROLOG horn clauses and then using them to generate test cases.

1.1, The New Testing Methodology

Figure 1.1 contains the testing process diagram as first presented by Bouge

[Bouge85a). The basic problem we are concerned with is: "Is the implementation

correct with respect to its specif?.ations?" That problem is broken down into the sub-

problems of abstractly representing or modeling the testing problem, characterizing

or constructing an abstract battery of tests for that abstract testing problem, and

Concrete
Level

Abstract
Level

Implementation
Specification

representation

Initial Testing
Context

Overall
Process

construction

N NS

B

Test T

application

Battery of

Tests

Figure 1.1 : Testing Process Diagram

run .
Saasonclusion

(9%

applying a concrete instantiation of that abstract battery to the the implementation.
From the problem to be solved: "Is this implementation correct with respect to its
specification?", we build in the representation phase (Step A), "an abstract problem
(intuitively) equivalent to the concrete one this defines an initial testing context”
[Bouge85a]. We construct for this initial testing context an acceptable battery of
tests much as other testers seek an ideal criterion. Having obtained an abstract bat-
tery of tests, we can pick some test from it and apply (Step C) it to the given problem

leading to a conclusion.

In t :ilding T-3 we found that the limitations of the overall testing process (Step
Z + run) were not the intersection, but rather the union of the limitations of the
methods used for representation, construction, and application. We found that an
overall testing methodology based on the best current methods (due to the Gannon
and Bouge groups) for representation, construction, and application was so limited

that it was of no use. The limitations included:

(1) Requiring all functions used in the specification to be included in the implemen-
tation. It is often useful to use extra functions that will not be externally visible
when specifying an ADT. The example in Appendix III uses several such extra
functions. The requirement that these extra functions exist in an implementation
restricts the way a programmer can implement the ADT, which violates the prin-

ciple of information hiding, and effectively eliminates the advantages of using

(2)

3)

4

ADTs.

Requiring the system to be tested to be able to determine if two elements of the
ADT are the same. This seriously limits the ADTs that can be tested. For exam-
ple it makes no sense to say that one bag of integers is the same as another. If
two second year computing science students were asked to implement a bag of
integers they might not use the exact same data structures, yet both could be
correct; therefore it would make no sense to ask if one representation of a bag is

equal to another.

Requiring that equality be the only predicate used in the specification of the
ADT. Predicates such as >, 2, and set membership are not allowed. Thus, func-
tionality based on conditions other than strict integer, floating point, or boolean

equality of elements is not allowed.

Requiring the assumption that any faults that do occur in the implementation are
localized to one function. That is, the tester cannot test for a fault spread over
more than one function. For example a fault that involves setting a flag in one
function and using it in another function is assumed not to occur by those previ-
ous methods. Clearly this is an unreasonable restriction. These are the sort of
faults that an average tester might miss and we would like to detect with an

automated system.

(3) Requiring the ADT under test to be simple enough that a non-trivial ordering of
test cases is not required and potentially infinite backtracking in the production
of a test case cannot occur. We found that in practice this limit on simplicity was
reached when an ADT’s specification had 12 to 15 axioms. Requiring a
specification of no more than a dozen axioms means that ADTs with more than
four functions cannot be tested. This eliminates most non-trivial abstract data

types.

Our testing methodology is a union of new methods we have developed for
steps A, B and C (representation, construction, and application). These new methods

were developed to get around significant shortcomings in current methods.

We have developed a testing system prototype, called T-3, which implements a
new method for the application of a battery of test sets (Step C). This new method
can be applied to implementations that do not necessarily contain all functions men-
tioned in the ADT’s specification. This considerably extends the applicability of our

overall methodology.

Previous specification directed testing methods only allowed faults in indivi-
dual functions, a fault could not be spread over more than one function. We attack
this problem by developing a new goal for the general software testing process. This
refined goal allows us to develop a new method for representing the testing context

(Step A). This new method allows a less constrained hypothesis to be made about the

programmer, which in turn allows for a wider class of faults to be detected.

We begin to address the problems of allowing only strict equality predicates and
simple ADTs by presentine a foundation for our specification-directed software test-
.ng methods. We will use that foundation to develop a new methodology for con-

ructing test cases. That methodology is currently implemented in PROLOG. We
fizve also developed a new method for generating and ranking test sets for ADTs.
Together these methods make a new construction methodology (Step B) that is
improved in the following ways:
(1) It does not get into potentially infinite backtracking.

(2) It ullows for predicates other than strict equality in the specification of the ADT.

(3) It provides a ranking of test cases so that we may produce a sequence of tests

with the more useful tests first.

1.2. Thesis Outline

In Chapter 2 we give some background on software testing and on abstract data

types. Both of these concepts are key to this thesis.

In Chapter 3 we describe our initial new software testing methodology and a
prototypical system called T-3. T-3 has been briefly described previously in
[Lawrynuik87]. This new methodology is the initial result of our work and is a com-

bination and extension of previous results in test hamess construction [Gannon§1,

McMullin82, McMullin83, Day85] and the use of PROLOG for test set generation
(Bouge85b, Choquet86, Wild86, Bouge86]. This extension required an analysis of
the DAISTS method in light of the overall testing process (Fig. 1.1). In implement-

ing this methodology with T-3 we discovered:
(1) there was insufficient theoretical basis to allow the or«tering of test cases;

(2) it was difficult to determine what assumptions about the software to be tested
and its specification were made in previous papers [Gannon81, McMullin82,

McMullin83, Day85, Bouge85b, Choquet86, Wild86, Bouge86].
(3) the PROLOG interpreter would often go into infinite backtracking.
The solutions to these problems form the basis for our new testing methodology.

In Chapter 4 we outline the foundations of our new testing methodology. We
present a useful theoretical way of viewing abstract data types. That view allows us
to determine how an ADT might fail. We examine the overall goal for software test-
ing and develop a justifiable goal for specification-directed testing of ADTs. Finally,
we present a general testing method based on that new goal and on our findings of

how an ADT might fail.

In Chapter 5 we outline the assumptions for our new specification-directed
software testing methodology. This chapter gives the constraints on the domain of

software our methodology can test. This description of what can and cannot be

done is important as it allows us to use that methodology as a basis for future work.
The constraints on the domain of testable ADTs are considerably more relaxed than

has previously been possible.

In Chapter 6 we show why previously published methods [Wild86, Choquet86,
Bouge86] for using PROLOG to generate test cases do not work for most abstract
data types. We then present the new methods we have developed to generate test
cases for a much wider range of ADTs. These methods have been implemented and
are used in the overall testing method described in Chapter 8. A detailed example

using these methods is given in Appendix III.

We found that to be able to generate a useful test set it was necessary to "rank"
the test cases. We found that while it was possible to do this based upon the syntax
of the test cases and the syntax of the ADT, such syntactic rankings do fiot give
operationally practical test sequences. We found it necessary to look at what the ADT
was actually computing. In Chapter 7 we outline the model of abstract data type
computation we developed to address this problem. We found this computational

model useful for ordering tests.

In Chapter 8 we use the results from Chapters 4 through 7 and the new concept
of possible failure set(PFS). It is shown that one can view the possible failure set as
containing all the ways an ADT can fail. The concept of the possible failure set is

used to determine the benefit of running a particular test. Understanding the benefit of

a test allows us to rank the tests and generate a series of tests. A new ADT test sei
generation methodology is developed based on that ranking. Appendix 111 contains

the results of applying this new methodology to a large complex ADT.

10

2. BACKGROUND

In this chapter we will give some background on several topics which are

key to this thesis.

2.1. Software Testing

Given an implementation of a brogram P, working over an input domain D, sup-
pose that for each data element d of D, one is able to decide whether the implementa-
tion behaves correctly or not with respect to its specification. P(d) denotes the result
of executing P with input d € D. Out(d,P(d)) specifies the output requirements for P,
i.e. dut(d,P(d)) is true if and only if P(d) is an acceptable result. For a deterministic!
implementation Out(d,P(d)) is true if and only if P(d) is the (single) result required
by the program’s specification. In the non-deterministic? case Out(d,P(d)) may be
true for several different values of P(d). In this case Out(d,P(d)) is false if and only if
P(d) violates the specifications of P. In accordance with previous authors, we use
OK(d) as an abbreviation for Qut(d,F(d)). The correctness of the implementation
with respect to its specification, for both the deterministic and non-deterministic

cases, can thus be expressed as V d € D OK(d).

! Deterministic: Denoting a method, process, eic., the resulting effect of which is entirely determined by the inputs and ini-
tial state,

*Non-detemministic: A mode of computation in which, at certain points, there is a choice of ways to proceed: the computa-
tion may be thought of as choosing arbitrarily between them or as splitting into separate copies and pursuing all choices simul-
taneously. (Nllingworth83]

11

If the predicate OK is to be evaluated, then a test oracle is needed which can
check the correctness of any test output. Test oracles may be human experts, tables of
values, algorithms for hand calculations or executable specifications. Sometimes the
“program behavior should be constrained but not uniquely determined” [Guttag78b).
Thus specifications alone may not be sufficient for the oracle function. Construction
of an oracle to determine OK(d) can be very expensive [White87]. In testing research
the existence of a test oracle is often assumed in order to refer tc test cases to being
correct or incorrect. One of the significant advances of our work is the fact that our

testing method does not have to assume the existence of a tesi oracle.

A test set T can be viewed as a subset of the domain D of the software to be
tested. The elements t of T (T < D) can be called test cases. Goodenough and Gerhart
[Goodenough77] introduce the idea that test cases are chosen to satisfy some data
selection criterion Dsc, where Dsc is a predicate over subsets of D. T is a test set if
and only if Dsc(T). They define two desirable properties for a criterion Dsc: reliabil-
ity and validity.

Definition (Reliable):

Reliable (Dsc)= (V T, , T, & D) ([(Dsc(Ty) A Dsc (Ty))—{(Successful (T')) & Successful (T)))

where Successful T)=VieT OK(1).

12

Definition (Valid):

Valid(Dsc)= (Vde D)}{-OK(d) — (3T < D ¥Dsc(T) — - Successful (T))).

A criterion is reliable if all test sets that satisfy that criterion produce the same
result. A criterion is valid if at least one of the test sets that satisfy it produces the
correct result. A criterion that is reliable and at the same time valid, is said to be an
ideal criterion.

Howden [Howden78] showed that it is not possible to algorithmically produce a
crit- on that is guaranteed to be ideal. For all programs, passing an ideal test that
satisfies an ideal criterion demonstrates correctness. Bouge [Bouge85a) shows that
“extrapolating testing to infinity” (infinite cost, infinite knowledge) "is to show
correctness wiil: < 2rtainty.” Thus testing may be viewed as a special case of proving

correctness witt: certain restrictions on the kind of proof that is used.

2.1.1. Specification Directed Testing

In order to more formally describe this testing process we will use the

mathematical tools as presented in [Gourlay83] and [Bouge85a] and consider first

order languages.’

A language® L can be identified with its set of symbols. If § is a set, L(S) is a

? “The first order language given by an alphabet consists of the set of ALL formulas constructed from the symbols of the
alphabet.” (Lloyd84]

* Language: "Any set of strings over an alphabet I, that is, any subset of I’ iscalleda language.” [Lewis81]

R

language obtained by adding to L the members of § as constants. An extension of a
language is denoted by < . If LcL', then L(S) cL'(S). A theory T on a language L is «
set of L(S)-formulas (axioms). T is a finite theory if it contains a finite number of
axioms. For example, if we have an alphabet Z= (+, -, x, +} then our language L
could be £°. If we let S be the set of integers I, then our L(S) language is
{+~x.+" Ul. We could extend L to L' to include "valid" where valid(A + 0)=false.

NowLcL'and L(S)cL'(S). An axiom for our language L might be:
24 +=6.
A finite theory on L might be:

T={(2 4 +=6), (571 + x =40)}.

We are interested in the validation of implementations of abstract data types.
ADTs are meant » be considered by users as "black boxes." Users are only concerned
with the input/output behavior of ADTs, and not with their internal operations.
Therefore ADT implementations may be modeled by their functional behavior. An
ADT implementation may be described as a Mg_s_ [Bouge85a). Our model of
the iraplementation will be an L(S)-structure called "IT." Once we have represented

our particular testing problem as an abstract testing context, we are dealing with a

whole family of potential i:nplementations (I1), to which the implementation under

test belongs.

14

In Figure 1.1 we presented the testing process diagram as first presented by
Bouge [Bouge85a]. The problem to be solved is: "Is the implementation correct with
respect to its specification?” (Step Z + "run").This in turn breaks down to the three
sub-problems of representation, construction, and application. In the representation
phase (Step A of Figure 1.1) we build an abstract problem equivzlent to the concrete

one. This defines a testing context C.

Thus a resting context is defined as follows:

Definition (Testing Context):

A testing conicxt C is a 4-uple (L .S (I1),A) where L is a first order language; S is a
set; (N) is a family of L(S)-structurcs; and A is an L'(S)-thcory, where L g L',

From thi. definition we see that the problem to be solved is stated as a testing con-

text C that | - made up of:

(1) asetof operations L,

(2) asetof values S on which those operations work,

(3) afamily of implementations (1) to which the one under test belongs,

(4) aset of properties A to be tested (the axioms of the algebraic specification).

Cons’der, as an example, a square-root program P, which should output the

square-roct ot any natural number given as input. Then a reasonable testing context

% 1{S)-structure: In this thesis an L(S)-structure may be viewed as an ADT implementation. (See glossary for definition)

15

C=(L.S.@n.A) could be:

L={ROOT; *; -<-<-; -+-}, where the ROOT symbol represents
the function of the implementation
§= { The natural numbers)

(Th= a family of impleinentations that provide the function "ROOT "
A= (Vx[ROOT (x)* < x < (ROOT (x }+1)3]}

Note that for a testing context (L S (IT),A) every structure in the family (IT) will
also validate L'(S)-theories other than A. If we call such a theory H, we say C is an

H-context if every element of (1) validates H.

A testing context is an abstract model of a concrete testing problem. In this
model the problem of testing an ADT is reduced to seeking an acceptable collection
of test sets for a testing context [Bouge85b). To define such a test set previous
researchers [Bouge85b, Choquet86, Wild86, Bouge86] have made two "powerful”

assumptions called a regularity hypothesis and a uniformity hypothesis.

For the regularity hypothesis, let us assume it is possible to associate a level of
complexity with every series of function calls. A common complexity metric is the
number of function calls in the series. The regularity hypothesis states that the axiom
to be tested behaves "regularly” [Bouge86j with respect to the complexity measure.
This means that as tests get more and more complex there is a point beyond which
there is no point in testing because those more complex tests do not increase our

confidence in the correctness of the implementation. For practical purposes, this

16

means dhat they assume there exists an upper bound on complexity beyond which
testing is not needed. If one tests all combinations of function calls whose complex-
ity is less than that upper bound and the system being tested behaves according to its
specification for all those tests, then the implementation will behave correctly for any
combination of function calls. For example, if a system works correctly for all lists

shorter than some upper bound then it works correctly for lists of all lengths.

A complexity metric can be any function that can be applied to all possible test
cases and then returns a numeric result. A complexity metric should give the user
some measure of how “"complex" a series of function calls is to test. The term "com-
plex" can refer to syntactic complexity, computational complexity, space complexity,
or any other sensible measure. Typically, complexity is measured by the number of

function calls in the test case [Bouge85b, Choquet86].

For white box ._sting, Weyuker and Ostrand [Weyuker80] showed the need to
partition the domain of a software system into sub-domains that are uniform with
respect to correctness. A subdomain is uniform with respect to correctness if the
correctness of one element of the sub-domain implies the correctness of all the ele-
ments of the sub-domain. Therefore, a uniform sub-domain D; of an input domain D
is such that [(3deD; OK(d))->(VdeD; OK(d))]. For black box testing it has been

shown that:

"If no complexity measure is available, we are faced with the well-known problem

of partitioning variable domains in such a way that the axiom under test behaves
uniformly on these sub-domains." [Bouge85b]

Bouge showed that this uniformity hypothesis is satisfied for each sub-domain when
there exists an element in each sub-domain such that a test of that element can infer
the correctness of the whole sub-domain. This is a powerful hypothesis and has not
been sufficiently justified in previous works [Bouge85b, Choquet86, Wildg6,
Bouge86]. New regularity and uniformity hypotheses will be formally presented and

justified in Sections 4.5 and 6.1 respectively.

A test for a given problem (given a testing context) is a finite set of experiments.
An experiment is a question about the implementation whose answer can be answered
in finite time. An example of an experiment for the ADT specified in Figure 2.1
might be:
"Does Frontq(Addq(Newq,4)) Return the value 47"
As Bouge [Bouge85a] points out, this distinction between experiment and test is sim-
ply a matter of convenience as a test can always be identified with the conjunction of

the experiments it contains.

A battery of tests should be a family of tests, ordered by some criterion. We

can view a battery of tests as a sequence of tests: T\, 72,73, ..., n . Tyet,Taszr. Thus

we can define a battery of tests as follows:

18

Definition (Battery of Tests):

Lei C = (L.S(IT),A) be a testing context. A battery of tests T for C is a pair
(" (T,)aen) wWhere N is the natural numbers and H is an L(S)-thcory such that C is
an H-context; (T,).en is a family of tests for C such that forallneN T, \H —>T,.

Recall that H is a theory about the testing context. The most commonly used H-
theory is "7, is a subset of the experiments in T,.,." Now clearly under this assump-
tion, if you pass all the experiments in test T,,; you pass all the experiments in 7,,
and 7., — T.. (T.) has often been used instead of (I (T.).en) for the sake of concise-

ness. We will also use (7,) when it is convenient to do so.

Goodenough and Gerharts’s concepts of reliability, validity and ideality have
been extended for specification-directed testing to projective reliability, asymptotic

validity and acceptability by Gourlay [Gourlay83] and Bouge [Bouge85a].

Projective reliability refers to the consistency of results produced without

regard to their usefulness. A family of tests is projectively reliable if passing a set of

tests T,., implies passing the set of tests 7,.

Definition (Projective Reliability):

Let C =(L .S .,(IM,A) be an H-context, and (T,).en a countable family of tests for that
context. (T.).en iS Projectively reliable if for every neN and for every structure I1
of (IT) such that IT — T, ,; then [1->T,.

19

We note that a battery of tests for a given context is projectively reliable because by
definition T, H - T, for a battery of tests <#,(T,).ex>. As we have noted, the
most common H-theory is thai test T,, contains all the experiments in tests
Ty,Ty....T,. Given the knowledge (H) we know that passing all the experiments
in T,,, implies passing all the experiments in T,.

Goodenough and Gerhart said that a test criterion is valid if, whenever the pro-
gram is incorrect, the program will fail at least some test. This concept has been
extended to asymptotic validity.

Definition (Asymptotic validity):

Let C = (L S (IT),A) be a testing context, and T =(/{ (T,)ren) A battery of tests for
that context. T is asymptotically valid if for every structure [T of (IT) if [T > T, for
everyneN thenT— A.

Since a battery of tests is necessarily projectively reliable, an acceptable battery

of tests can be defined as follows:
Definition (Acceptable):

Let C be a testing context, and T a battery of tests for that context. T is said to be
acceptable if it is asymptotically valid and unbiased®.

¢ Unbiased: A test is said to be unbiased if whenever the implementation to be tested is correct it will pass that test.

20

2.1.2. Summary of the Testing Process

In the representation phase of the testing process diagram in Figure 1.1 we
produce an abstract testing context. We then construct an acceptable battery of
tests for that context. Having obtained an abstract battery of tests we can pick some
test T from it, according to a quality/cost assessment, and apply it to the given prob-

lem, leading to the conclusion.

By using the notions of a testing context and a battery of tests, these new
definitions of projective reliability, asymptotic validity, and acceptability extend
Goodenough and Gerhart’s notions of valid, reliable and ideal to allow an asymp-
totic approach to the notion of testing. Based on the definitions presented here, we
view a good test run as the application of a test chosen from an acceptable battery of

tests for a testing context representing that particular testing problem.

2.2. Abstract Data Types

A data type is defined to be a pair <V,0> where V is a possibly infinite
set of values, and O is a set of operations defined on those values. Thus a
data abstraction requires the definition of acarrier7ylwhich 1s a set of values,

and the definition of a set of operations defined on those values. An abstract

data type defines a class of abstract objects that is completely characterized by the

7 Carvier: The camier of an algebra "is the set of mathematical objecis we wish o manipulate, such as integers, real
numbers or a set of character strings.” (Stanat77)

21

-

operations available on those objects [Liskov74]. Data abstraction is useful
because it allows us to define and use the essential concepts of a data type
while hiding information about its implementation. Some examples of systems
that might be implemented as abstract data types are: complex numbers, queues,
or sorted lists. More complex items such as system activation records, and editors

[McMullin83] have also been implemented as abstract data types.

An algebraic specification of an abstract data type will usually have two
sections: a syntax section and a semantics section. The syntax section defines the
data types of the input and output values of each of the functions of the
abstract data type being specified. The semantics section is normally a list of
axioms which together specify all the properties of the functions of the type
being specified. One of the data types in the specification of an ADT is specified
solely in terms of other types, that type is called the Type Of Interest and is
denoted as the TOI. Figure 2.1 is an example of an algebraic specification of a
queue. Appendices I and III contain larger examples of algebraic specifications of

abstract data types.

For abstract data types, the value of a data object of the TOI is determined
by the sequence of function applications which generate it from some initial

state. This sequence is called a "tace” . The value of a data object is also

22

Type Queue(Integer)

SYNTAX

Newq
Addq(Queue,Integer)
Deleteq(Queue)
Frontq(Queue)
Isnewq(Queue)

SEMANTICS

For all q : Queue; i : Integer,

Isnewq(Newq)
Isnewq(Addq(q,i))
Deleteq(Newq)
Deleteq(Addq(q,i))

Frontq(Newq)
Frontq(Addq(q,i))

END Queue

-> Queue

-> Queue

-> Queue

-> Integer U {error}
-> Boolean

Let

- True

- False

- Newq

- IF Isnewq(q) THEN Newq
ELSE Addq(Deleteq(q),i)

- error

- IF Isnewq(q) THEN i
ELSE Frontq(q)

Figure 2.1 An Algebraic Specification of a Queue

called an "instance" of the data type. For example
Addq(Addq(Addq(Newq,4), 10), 6)
produces an element of the TOI (a queue) with three elements and those elements are
the integers 4, 10, and 6. All instances of a TOI whose traces differ only in the
values of the non-TOI input variables are said to form an instance class. In this
case replacing the integers 4, 10, or 6 with other integers would produce another
queue in the same instance class. Thus an instance class can be viewed as a generali-
zation of an instance. For example: the trace
Addq(Addq(Addq(Newq,Variablei), Variable2), Variable3)

could produce two different queues containing the values [123, 66, 99], and [747, 1,

999]. Both of these queues would belong to the same instance class.
Definition (Instance):

Let L be language and S a set. An instance i of L(S) is an L(S)-formula without
quantificr or logical symbols whose symbols arc p,, p2, pa.. ... p. Where n is the
number of L(S) symbols ini.

Definition (Instance Class):

Let L be a language and S a set. An instance class I of L(S) is formed from an in-
stance i=py,paP3 ..., Pa of L(S) by including ail instances
i'=p',p'ap'y...,p's of L(S) that have the same number of symbols as i and
where if p, is different from p', thenp, € S and p', € S.

We can classify the types of functions in an algebraic specificaticn «¥f an

abstract data type by the type of values they accept and return. Furnctions that

24

return values that are not of the TOI are called O-Type (Output) functions. For
our queue example "Frontq"” is an O-type function. Those functions that return a
value of the TOI but do not accept any arguments of the TOI are called N-
Type (New) functions. "Newq" from our example is an N-Type function. Those
functions that accept a value of the TOI and return a value of the TOI are
either C-Type (Constructor) or E-Type (Extendor) functions. The difference

between C-Type and E-type functions is:

any trace containing an E-Type function application can be rewiiti= in
an equivalent form containing only N-Type and C-Type functici: aop'a-
tions.

For the queue example given in Figure 2.1 "Deleteq” is an E-Type function
because any trace containing a "Deleteq" can be equivalently written as a series of
"Addq’s" and "Newq’s". For example

Deleteq{Addq(Addq(Addq(Newq,1), 2), 3))
is specified to be equivalent to

Addq(Addq(New/q,2), 3).

It is important to note that since the TOI for an abstract data type is defined
solely in terms of other types and the operations that may be applied to it, the
functionality for that abstract type is totally defined by the output of the O-type

functions.

Definition (Functionality of an Instance)

Let i be an instance of a language L(S), and a L(S)-structure 1 be an implementa-
tion. The functionality of i in I1 is the set of pairs (0,€ O , v,), where O is the set of
O-type operations in L that may be applicd to i such that their meaning in I is cal-
culable, and v, is that meaning in IT.

Definition (Observable Functionality of an Implementation):

Let L(S) be a language, let an L(S)-structure 1 be an implementation, and let T be a
set of instances of L(S). The observable functionality of T1 for T is the union of the
functionalities of all instancesi.e T in I1.

If we build an abstract data type with no O-type functions then that ADT will be
viewed as having only one value, as the user will have no way of differsntiating
two different values of the TOI Thus any useful abstract data type must have at
least one operation that returns a value that is not of the type of interest. This
leads to an answer to the questiva "what is abstract about an abstract data
type?" An abstract data type is abstract in that from the user’s point of view it is
an isomorphism class of types rather than any particular concrete representation
of the class. From a tester’s point of view we are working with a whole family of

potential implementations (IT) to which I .the implementation under test, belongs.

Abstract data types facilitate software construction by successive decomposi-
tion. At any point in the decomposition we can view the programming task as

writing a program which:

26

(1) solves the problem;

(2) runs on an "abstract machine” [Liskov74] which provides those data objects

and operations that are ideally suited to solving the problem.

Note that abstract data types can form hierarchies where "higher" types are built
on top of and using "lower" types. In such a case the lower types are part of the
abstract machine upon which higher types are executed. This process of building
ADTs on top of other ADTs which are in turn built on top of other ADTs may be
continued for many levels. At each level the lower types are part of the abstract

machine upon which the new ADT is built.

While our queue example is a simple one, it should not be concluded that
only simple software systems can be viewed as abstract data types. A messaging
system (Roberts88] and a line editor [McMullin82] are examples of software sys-
tems that have been specified as a set of permitted operations and a set of abstract
objects that are defined in terms of those permitted operations. We have also seen
an initial attempt at defining the file system of the UNIX operating system as an

abstract data type [Gaudel88).

There is a final point about abstract data types that is often forgotten or
left unstated, but which we believe is significant to our work and any other work
related to testing them. Guttag [Guttag80] has found that, with some notable

exceptions, types with four or less C-type and N-type functions are manageable, but

27

that types with more than four constructors are usually more easily specitied by
decomposing them into simpler types. Therefore, we believe the examples we
present in this thesis, while not huge, are sufficient to show the applicability of

our method.

2.2.1. Implementation of Abstract Data Types

The most obvious method of implementing an ADT, given an algebraic
specification, is to use the axioms in the specification itself as function definitions,
to obtain an “antomatic" implementation. Guttag {Guttag78b] and Moitra [Moitra79)
have shown t:.. restricted set of axioms, it is possible to produce a crude
impiementation fr» aigebraic specifications. Berztiss [Berztiss83] shows that this is
not always possible and not often desirable. The basic problem is that the kinds of
axioms allowed in algebraic specifications are too general to be used as simple re-
writing rules. "For example, the arbitrary level of nesting on both the left- and right-
hand sides of the axioms necessitates complex pattern matching to determine applica-
bility. Commutativity axioms can be used for re-writing only under heuristic gui-

dance for fear of looping indefinitely” [Berztiss83].

In practice the implementation phase of ADT development involves two steps:
the choice of a representation of the abstract objects and the implementation of the
abstract operations in terms of that representation. The design process begins with a

formal, declarative specification of the problem. An algebraic specification is an

28

example of such a specification. This is followed by a series of procedural and data
refinement stages that yield a series of programs, the last program in the series is the

final code [Laski88].

Essential to this refinement process is the notion of the abstraction function that
maps a concrete object into an abstract one. Such a function defines an interpreta-
tion, i.e., the abstract meaning of the data [Laski88]. For example, assume we
implement the queue specified in Figure 3.10 with an array of integers (to store the
values) and two natural numbers (to store where the top and bottom currently are).
In this case there exists an abstraction function that converts a concrete array of
integers and two natural numbers into an abstract entity we call a queue. In general,
when implementing a type T, using objects r,.¢2,....1, one needs an abstraction
function, say Abstr, with the functionality

Abstr:) xtyx -+ Xty = T.

This abstraction function does not need to be specifically written down. Indeed, it

often only exists in the programmer’s mind.

The existence of an abstraction function has some significance for software
testing. As we have shown, implementations and specifications of ADTs can be
treated as algebras. The testing problem can now be viewed at an abstract level, as

one of showing that this abstraction function which is a mapping from one algebra

29
to another, is a homomorphic? mapping from one to the other.

2.3. Test Case Generation Using PROLOG

Several authors [Wild86, Bouge85b, Peschs5) have reported the methodology
of translating algebraic specifications of abstract data types into PROLOG hom
clauses and then using them to generate test cases. In this section we will
review the use of the algebraic specifications as a guide to allow a PROLOG
interpreter to produce test cases. It should be emphasized that the methodolo-
gies outlined in this section are currently only being directed toward testing of

abstract data types.

2.3.1. The Test Procedure

While the various research groups looking at using PROLOG to test imple-
mentations of abstract data types [Wild86, Bouge86, Pesch86] vary in the degree
of formality with which they approach the problem, the basic testing procedures

they follow are very similar. Their general approach can be outlined as follows:

(1) Choose an instance class from the set of instance classes of the TOI (recall

this is a trace of function applications).

(2) Instantiate all input variables to constants, to form a particular value "V."

*Homomorphism: A structure preserving mapping between algebras. (See Glossary)

30

(3) Apply the sequence of function applications specified in "V" to the imple-

mentation to produce the value "Vi."

(4) Apply the sequence of function applications specified in "V" to the

specifications to produce the value "Vs."

(5) AIll O-type functions are applied to Vi. This results in an implementation out-

put being returned from Vi.

(6) If the implementation output obtained in step (5) is the same as the specified

output obtained from Vs, then the test succeeds; otherwise it fails.

2.3.2. Using PROLOG

It should be noted that the specification of the abstract data type must be
in such a form that we can apply function specifications to obtain the specified
result value "Vs." This s where PROLOG enters into the process. It has been
noted by various authors [Wild86, Bouge86, Bouge85b, Choquet86, Pesch85] that
the axioms (function definitions) of an algebraic specification of an abstract data
type can be mechanically translated to the horn clauses that make up a PRO-
LOG program. As [Choquet86] points out, an axiom of the form :

a(x)=bx¥x=>t(x)=t'(x)
can be written under a PROLOG:-like formalism as :

t(x)=t'(x)—a(x)=b(x).

K}

The transformation of an algebraic specification into a horn clause is performed by

using the following equivalences due to Bouge [Bouge86]:

) - glxn..., X)=y ot e - Glxy. .., Xnoy) oo
where G is a relation symbol corresponding to the n-ary
defined operator g andx,,..., x,,y are variables.
2) P(g(xy,..., I hZonn.s Zp) = o & P(y.za.... Zm) - 80Xy ..., X)=y -

for any m-ary relation symbol P, any n-ary defined operator g, any argument
position of g(x,,..., X)) .

3) =Pk, Xu)Z2h .., Zn) r & =Py aa..., 2) R (X1 .., Xg)=y s
for any m-ary relation symbol P, any n-ary defined operator g, any argument
position of g(xy,..., x,) .

To see how these equivalences work, note how the first equivalence would translate

the axiom

Isnewq(Newq) = True

into the following horn clause:
isnewq(newq,true).

Figure 2.2 gives a listing of a PROLOG translation of the queue

specification given in Fig. 2.1.

32

isnewg(newq, true) :- !
isnewq(addq(Queue,l), false).

frontq(newq, error) :- !.
frontq(addq(newq, I, I) :- !.
frontq(addq(Queue, I), X) :- frontq(Queue, X).

deleteq(newq, newq) :- .

deleteq(addq(newq,I), newq) :- !
deleteq(addq(Queue, 1}, addq(X, I)) :- deleteq(Queue, X).

Figure 2.2 PROLOG Specification of a Queue.

Once the specifications have been written in PROLOG, we can use a PRO-

LOG interpreter to do several things.

[

11

PROLOG will automatically perform step (4) of the testing process listed
in Section 2.3.1. That is, given a set of specifications and an instance class,
a PROLOG interpreter will return the general specified result "Vs." It should
be noted that the PROLOG interpreter is acting as an oracle for a class

of test cases.

PROLOG will automatically perform the instantiations required by step (2)

of the testing process. In so doing it will partition the given instance class

KX

into sub-instance classes if any such sub-instance classes exist. We will dis-
cuss this partitioning in Section 2.3.4. The differentiation of these sub-instance
classes depends on the properties of the input variables. For example, if the
behavior of the TOI depends on whether I1 =12 or not, a PROLOG inter-
preter would give results (act as an oracle) for both the Il #12 and 11 = I2
cases and give the constraints on I1 and 12 for the I1 =12 case. In this case

that would mean stating thatI1 and I2 must be the same.

I If a given set of function applications is infeasible (possibly due to an
impossible requirement on the input values such as [1=I2 AND 11 # 12),

then the PROLOG interpreter will simply return "no" if asked to instantiate

the necessary values for a test case.

2.3.3. Sample Run

How to actually generate test cases is best described by an example. Recall
that all we are doing is implementing the final few steps of the test procedure

outlined in Sub-section 2.3.1.

The example given in Figure 2.3 is taken from [Wild86] and shows the
generation of the test cases and correct results according to the specifications

for a few simple instance classes for the queue example.

2) ?- deleteg(newq,Answer).
Answer = newq

3) ?- frontq(newq,Answer).

Answer = error

4) ?7- isnewq(newq,Answer).
Answer = true

5) ?- deleteq(addq(newq,I1),Answer).
I1=_0

Answer = newq

6) ?- frontq(addq(newq,I1),Answer).
It=_1

Answer=_1
7) ?- isnewq(addq(newq,I),Answer).
=2

Answer = false

Figure 2.3 Generating Test Cases and Results .

EXPLANATION:

(1) Queries 3 and 4 define all the test cases (frontq and isnewq are the
only O-type functions) that should be applied to an empty queue.
Note also that the answer the implementation should return is also
given ("error" and “true®).

(2) For query 6 the PROLOG interpreter implies that to add an integer to

at

a queue and then apply "frontq" to that queue, we supply a value for

35

that integer and the result from applying "frontq" should be that value.

(3) Query 7 implies that for the O-type function "isnewq" there must be a
value for that integer but the result should be "false” no matter what

value that integer is given.

Just as queries 3 and 4 make up all the test cases for an empty queue,
queries 6 and 7 make up all the test cases fora queue of length onc. We point
out that while the example given here is simple, this methodology has been

successfully applied to more complicated problems [Choquet86].

2.3.4. Partitioning of Instance Classes

In Section 2.3.2 we stated that "PROLOG will automatically perform the instan-
tiations required by step (2) of the testing process. In so doing, it will partition the
given instance class into sub-instance classes if any sub-instance classes exist." A
sub-instance class would exist if the instance class given was not specified to be

functionally uniform across the domain of all the non-TOI input variables.

Definition (Input Values):

Let L be alanguage, S be a set, and I be an instance class of L(S). For an instance i=
P1P2PY -« s pa € I we obtain the sequence of input values ¢,.92.93. gm (m<n)
for i by removing all symbols p, ini where p, ¢ S.

36

Definition (Sub-Instance Class):

Let L. be a language, S be a set, I be an instance class of L(S), and A be an L(S)-
theory. For an instance i= p,p2p3.....px € I with input values 41,4293 ..., Gm

there exists a function F; without conditionals such that according to A
Fi(41.9249. . . - .9n) =i. A sub-instance class /; of I is formed from i by including all
instances i, € I with input values ¢,;,4:2.4x3...- .9 Such that according to A

Fi(qx19:2:Gx3 - - - 1 Gam) = ix-

Such sub-instance classes arise in an ADT when "what the operations do" is
dependent on the values of some of the non-TOI variables. In our queue of
integers (Fig 2.1, Fig 2.2) such sub-instance classes do not exist, as none of the

axioms are dependent on the values in the queue.

To illustrate sub-instance classes and how a PROLOG interpreter will handle

them, we extend our queue example. We introduce the function:

has (Queue, Integer): BOOLEAN

This function will return rue if the given Queue has the value Integer in it, and

false otherwise. The additional axioms would be:

Has (Newq,j) -False
Has (Addq(q,i),j) -IF i=j THEN True
ELSE Has(q,j)

This would create the following three additional PROLOG horn clauses:

has(newq,J false) :- !.
has(addq(Queue,l),J,true) :- I=J.

RY)

has(addq(Queue,l),J,Answer) :- has(Queue,J,Answer).

Now we will have an additional query for queues of length one. This query will
arise from applying the O-type function has to that queue. Figure 2.4 extends our

example from Section 2.3.3 with a new query 8).

6) ?- frontq(addq(newq,I1),Answer).

I1=_1

Answer=_1

7) ?- isnewq(addq(newq,I1),Answer).
IN=_2

Answer = false
8) ?- has(addq(newq,I1),I2,Answer).

I1=_3
12=_3
Answer = true ;
I1=_3
2=_8

Answer = false

Figure 2.4 Extended Generation Example

It is important to note that for query 8), PROLOG returned more than one
result (in this case two). These two results are produced because in this case, there

are two sub-instance clauses for that particular instance class:

38

input values: ¢, =1I1;¢,=12
Fa(q1.9:) = true
Fy(q1.92) = false.

Thus depending on the values of the non-TOI input variables (in this case I1 and
[2), we get two separate output functions. Both of these cases must be tested. The
important point for our work is that if PROLOG is given algebraic specifications in
an appropriate form and a trace in an appropriate form it can determine all the
different possible output values for that trace. An appropriate form is determined by

the equivalences given in Section 2.3.2.

2.3.5. Problems

This methodology is a useful tool as it provides an oracle and allows
some automatic test case generation given an instance class. We foresee, however,

several problems that may hinder this as a useful test case generation method:

(I) PROLOG’s backtracking is depth-first and thus leads to potentially infinite

depth-first recursion of instance classes.

(2) The PROLOG interpreters current!- available ¢z only distinguish behavior
based on the equality of some input - i " <s. i -avior based on inequali-
ties is a problem. For example: given a domain D = { (x,y) | x # y }, there
should be only one instance class with a pair of variables and two sub-

instance classes, one with a constraint stating that the variables are not equal,

(3)

9

and one with a constraint stating the variables are equal. Unfortunately a PRO-
LOG interpreter can only enumerate all possible x’s and all possible y's and

then exhaustively list all the pairs (x,y) satisfying x #y.

This testing procedure assumes the ability to generate all instance classes and
to be able to choose which of the untested ones should be tested next. We
do not have the ability to automatically generate all instance classes as
there may be infinitely many of them. For the instance classes we can generate,
there is no useful theoretical basis for determining which instance class should
be tested next. Current methods [Choquet86, Bouge86, Wild86] simply select

the shortest untested instance class available and test it.

3. T-3: APROTOTYPE

In this chapter we describe our initial new software testing methodology. This
methodology is based on the software specification. We also describe a prototypical
system called T-3 (Type Testing Tool) that implements it. This initial new methodol-
ogy is a combination and extension of the results of two separate research directions:
test harness construction and using PROLOG to generate individual test cases. Back-

ground on both of these subjects is given in Chapter 2.

Previous results in test harness construction [Gannon81, McMullin83, Day85]
and in the use of PROLOG to generate test cases [Bouge85b, Choquet®s, Wild86,
Bouge86] have a significant property in common. They both work on abstract data
types. Thus our first decision for our specification-directed software testing system
was to take advantage of the preliminary work done by other researchers and limit
ourselves 10 abstract data types. As we outlined in Chapter 2, mos: software systems
can be viewed as abstract data types, so we do not feel this is a significant limitation

to the applicability of our work.

Since our methodology and prototype extend previous research, the following
Sub-section gives a new analysis in tcrm's of the testing process (Figure 1.1) for the
DAISTS test system. In Section 3.2 we outline our new methodology and briefly
describe the operation of T-3 in Section 3.3. A detailed outline of T-3 can be found in

Appendix 11

41
3.1. Test Harnesses

For our automatable testing method and for our prototype implementation,
it was necessary to develop a methodology for automatically producing test
hamesses suitable to our needs. In terms of the testing process diagram (Figure 1.1),

we need a method for performing sicp C (application).

Gannon et al. [Gannon81, McMullin83, Day85] have developed a compiler-
based software system that combines a data-abstraction implementation language
and ADT specification by algebraic axioms. This system, called DAISTS, is
intended to help with the production of correct implementations of ADTSs. It
does this by providing a test harness for an abstract data type given the imple-

mentation, the specifications of the ADT, and a set of test data.

3.1.1. What Does DAISTS Do?

Given the axioms and the implementing code for an ADT, the DAISTS sys-
tem produces a “"program" that consists of the axioms as test drivers for the
implementation. Test data in the form of expressions using the abstract func-
tions and constant values are fed to this program to determine if the implemen-
tation is correct by determining if the axioms and implementation agree. Thus
we have in essence an automated testing system; the user produces axioms, the

implementation, and test data; DAISTS then writes the test drivers. Section 3.1.3

42

gives an example of how DAISTS and similar systems work.

3.1.2. How Does DAISTS Work?

There are three main parts to the input to the DAISTS system: an implementa-
tion of an abstract data type written in SIMPL-D, a collection of =igebraic
axioms describing the type, and a collection of test data. DAISTS produces a
"program"” containing :

(1) the implementing code compiled as if it had been produced by a debug-
ging compiler;
(2) a block of code calling on this implementation; this code has been com-

piled from the supplied axioms of the specification;
(3) adriver program that cycles through the given data;
(4) a set of execution monitoring routines.

As this program executes, the test data drive the axioms, the axioms in turn drive
the implementation code. After the execution a summary reports any data for
which the axioms did not hold, as well as some coverage measures. Figure 3.1

gives a schematic description of the operation of the DAISTS system.

DAISTS Compiler

Class

Axioms

Test Points

code for
implemented

functions

code for axioms
as expressions in

the implemented

functions

driver program

feeding tes
points to uxiom

code

library and
monitoring

routines

Object Program

Figure 3.1 The DAISTS System.

a4

There are four basic sections of the input to the DAISTS system. They
are the "class definition” which implements the ADT, the "axioms," "testpoints,”

and "testsets." The general form of the input to the DAISTS system is given in

Figure 3.2.

SIMPL-D class definition
axio;ns

algebraic axioms describing the type
testp.oints

declaration and initialization of test values
tcsts;:ts

set of test points to be used with each axiom
stan.

Figure 3.2. The DAISTS Input Stream

The implementation is written in a subset of SIMPL-D. The "testsets” sec-

tion contains a list of axiom names with values to be substituted for the free

45

variables of the axioms. A common data object may be needed in testing several
axioms in the "testsets" section. The "testpoints" section allows the user to build

such objects just once so that they may be referenced in different portions of the
"testsets” section.
3.1.3. An Example

The following example of the operation of the DAISTS system is due to

McMullin et al. [McMullin82].

Given the input listed in Figure 3.3, DAISTS produces a procedure for the

axiom "Pop1" as listed in Figure 3.4.

The DAISTS input listed in Figure 3.3 causes the code listed in Figure 3.5 to be pro-

duced within the main test driver program.

Axioms
Pop1(BoundedStack S, integer I):
Pop(Push(S,I))=
if Depth(S)= DepthLimit
then Pop(S)
else S

Testpoints
BoundedStack S1, S2
S1 := Push(Push(Push(NewStack,1),1),2)
S$2:=81
while Depth(S2)<DepthLimit
do
Push(S2,Top(S2)+Top(Pop(S2)))
end

Testsets
Popl: (Newstack,7), (51,22), (S2,83),
(Push(Pop(S52),19),82)

Figure 3.3: Sample DAISTS Input

47

proc Pop1(BoundedStack S, integer I, integer Testsetnumber)
if StackEqual(Pop(Push(S,I)),
exprif Depth(S) = DepthLimit
exprthen Pop(S)
exprelse S)
then
return
endif
call Report_axiom_failure(’Pop1’, Testsetnumber)

Figure 3.4 Procedure from an Axiom

call Pop1(NewStack,7,1)

call Pop1(S1,22,2)

cal] Pop1(S2,83,3)

call Pop1(Push(Pop(S2),19),82,4)

Figure 3.5 DAISTS Main Test Driver

Note how DAISTS compiles the algebraic axiom into a procedure that compares

equivalent words by comparing the values returned by the implementation functions

48

that comprise the words. Each user-supplied set of test data is translated into a call to

the procedure that was generated from the appropriate axiom.

3.1.4. Specifications

Since the DAISTS system attempts to mechanically determine the con-
sistency of specifications and implementations a formal specification technique is
essential [Gannon81]. The specification fed to the DAISTS system consists of a
series of axioms. The primitives of the specification language include boolean
and integer constants, free variables, equality, boolean and integer operators, and
functional composition. T-3 uses a similar specification language because T-3 has

the same need for a formal specification technique.

3.1.5. DAISTS within the Testing Process

When we compare the function of DAISTS with the testing process diagram in
Figure 1.1, we see that DAISTS only performs the "application” function (Step C). In
requiring the a priori existence of test points and test sets, DAISTS assumes that
representation and construction have been done elsewhere. Therefore, to produce our
automated test system (T-3) we have had to develop and incorporate methods for
representation and construction. Figure 3.6 shows the operation of DAISTS within
the testing process. Given a specification, implementation and a previously con-

structed set of test points and test sets, DAISTS will apply the test data to a SIMULA

49

program. That is, given the results of the representation and construction steps,

DAISTS performs the application step of the testing process.

essecvescsessccscsscessvessnsensose IXTTXYY

§Implementation

! Specification

sescessssecsconee soteccccans ssescescee

representation

..... SO -SSR

E Initial Testing

Context

sessesqeceesse

............................ ». SIMULA run
e
Program
application

/ DAISTS

construction

teccssvsrtneececetnsnonsesnes

.
.

Test Points

Test Sets

Figure 3.6: DAISTS within the Testing Process

3.1.6. Advantages

Normally, when a scftware system is tested, a result is obtained from the

implementation and then checked against the "correct” result. This ‘correct" result

Conclusiot

50

is supplied by a test oracle. Generally programmers serve as test oracles for
software. They then compare the program output against their often imprecise
and inadequate understanding of the problem being solved and agree too quickly
with the results of the program execution [Day85]. One of the advantages of
the DAISTS system is ihe fact that the correctness of the implementation is
determined independent of any human decisions. This advantage is carried

through to our testing system (T-3).

Gannon et al. [Gannon81] showed that using DAISTS helped users to
approach testing in a more systematic manner. They found that more of the code was
tested. They also found that the use of DAISTS did not lengthen the develop-

ment process.

3.1.7. Constraints

It is often convenient and sometimes necessary to use hidden or auxiliary func-
tions in the specification of an ADT. Such hidden functions cannot appear as part of
programs using the ADT. They are part of the specification of the abstraction but not
of the abstraction itself. The specification of a stack of at most 100 integers given in
Figure 3.7 makes use of the hidden function "Depth." Depth is not a function the
ADT supplies to the user. Depth is only used to make the specification simpler and
easier to use. Now, even if we assume that the programn is either correct or

"close" to correct, and assume a top-down methodology was followed, then the

Type Stack(Integer)

SYNTAX

New ->Stack

Push(Stack,Integer) ->Stack

Pop(Stack) ->Stack

Top(Stack) ->Integer

Isnew(Stack) ->Boolean

Replace(Stack.Integer) ->Stack

SEMANTICS

For all s:Stack; i:Integer, Let

1) Pop(New) - New

2) Pop(Push(s,i)) - IF Depth(s) 2 100 THEN Pop(s)
ELSE s

3) Top(New) - error

4) Top(Push(s,i)) - IF Depth(s) 2 100 THEN Top(s)
ELSE i

5) Isnew(New) - true

6) Isnew(Push(s,i)) - false

7) Replace(s,i) - IF Isnew(s) THEN Push(s,i)
ELSE Push(Pop(s),i)

8) Depth(New) -0

9) Depth(Push(s,i)) - 1+ Depth(s)

END Stack.

Figure 3.7: An Algebraic Specification with a Hidden Function: Depth

52

best we can say is that "most of the functions mentioned in the specifications
will probably be implemented.” We certainly cannot guarantee that all hidden
functions in the specification will appear in the implementation. For example, for our
type Stack in Figure 3.7 we cannot guarantee the function Depth will appear in the

implementation. Thus DAISTS simply cannot test the ADT specified in Figure 3.7.

There are two main problems with the DAISTS system. The first problem
is that the system requires each function MENTIONED (as opposed to just the
ones being specified) in the specification to be implemented. That is, every hid-
den function in the specification must also exist in the implementation. This is of
course by no means necessary for the implementation to be currect. The imple-
mentation is only REQUIRED to implement the functions that will be externally
visible.

The second problem is that an equality function for each new type r;'mst
be provided. In the example in Figure 3.4 the function "StackEqual" was required.
This is a problem because the proper meaning of "equality” changes from one data
type to the next. Thus a generic equality would seldom implement what the
user intended. An equality function may not be required by either the
specifications or the implementation of an ADT. Thus requiring an equality func-

tion leads to two problems for the DAISTS system:

53

(1) The DAISTS system requires the tester to understand the idea of equality
for the new type, which may not necessarily be straight forwarJ. The tester

then has to implement this equality function.

(2) An error in this tester-defined equality function may cause the DAISTS
system to state that there was an inconsistency between the specifications
and the implementation when no such inconsistency existed. An even worse
possibility is that such an error could lead the system to miss an incon-

sistency that did exist.

3.1.8. Experiences

MicMullin, et al. [McMullin83] conducted a case study using the DAISTS
system to specify, implement and test a record-oriented text editor. They found
that producing formal specifications reveals interesting boundary conditions that
are often omitted in even the most carefully constructed informal problem state-
ments. Using the specifications with a testing tool forced their implementatioas

to handle the boundary conditions .

While they found the use of algebraic axioms as a formal specification
language unwieldy for several of the functions that they implemented, they
considered this test of the DAISTS system successful. They found that only two

errors escaped unit testing, and one of those was due to the specification and

implementation both being wrong.

3.2. A New Method for Testing ADTs

In the previous section we discussed how Gannon, et al. [Gannon§1, McMul-
lin83, Day85] have develeped a compiler-based software system that can provide
an automated testing of an absiract data type implementation given the
specifications of the abstract data type, the implementation itself, and a set of test
cases. Several authors [Wild86, Bouge85b, Pesch85] have reported a methodology
of translating algebraic specifications of abstract data types into PROLOG hom
clauses and then using them to generate test cases (See Section 2.3). Our initial
methodology for testing ADTs builds on these two earlier methodologies and is
an improvement on both, as it will automatically test an abstract data type imnle-
mentation given only the implementation and the specification. The software tester
need not produce a set of test cases as was the situation before. The following

is the high level outline we initially used to develop our testing methodology.

(1) Follow the methods described by Bouge et al. [Choquet86, Bouge86, Wild86] to
produce a series of instance classes to be tested . These methods use a PROLOG

interpreter.

(2) Select a set of concrete instances from that instance class.

55

(3) Produce MODULA-2 code to run all the test cases.

(4) Run that code.

Figure 3.8 shows this high level operation of T-3 in terms of the testing process
diagram. The abstract steps of representation and construction are executed by pro-
ducing a series of instance classes in step (1). The concrete step of applying a test set
is broken down into two parts: selecting the particular tests to run (step(2)) and pro-

ducing the MODULA-2 code to test them (step(3)).

In Step (1) we use the equivalences we gave in Section 2.3 to produce a PRO-
LOG version of the specifications. We then generate instance classes for the ADT
starting with the shortest and then producing all successively longer instance classes.
Bouge [Bouge85a] has shown that this ordering of instance classes ensures that the
tests produced are acceptable (asymptotically valid, projectively reliable, and

unbiased).

Step (2) involves sending the instance classes to a PROLOG interpreter whose
program is the PROLOG version of the specifications. This procedure is described in

Section 2.3 and elsewhere [Wild86, Choquet86, Bouge85b].

In Step (3) we apply all applicable O-type functions to the concrete instances
and compile these with the algebraic axioms for those O-type functions to produce
MODULA-2 code. Figure 3.9 shows the MODULA-2 code produced for the Queue

type specified in Figures 2.1, 2.2, and 2.3 for the concrete test instance addq(newq,8).

56

seeseEeveIsEEsREIIPETEOIESER RIS RIEN Seessecearsstsesscotacsisasenrassacteraee

Concrete |lmplementation breresseerensessnenns B Test T PIUnC 1us
: Specification : : i
Level e e ssgesnessesssssrase fStep (4)
representation application Step (3)

(2)

Abstract §Initial Testing ;...999.?.25.‘9.95.@.9&.5 Battery of
Level i Context Tests

. .
--

Figure 3.8: T-3 Testing Process

Note these two tests correspond to queries 6 and 7 in Figure 2.3.

3.2.1. Specification Format

The form of the algebraic specifications to be used in our methodology is
similar to that outlined by Guttag [Guttag78b]. We have chosen this type of format
because we have observed that recent publications on the use of abstract data types

have, to varying degrees, adopted this as a standard format.

57

Instance: addq(newq(),8)
O-type functions isnewq,front
MODULE MainTest
FROM Queue IMPORT
queue,

newq, add , remove , front , isnewq ;

FROM StdMonitoring IMPORT
Failure , Pass;

BEGIN

ELSEIF (NOT(front(add(newq(),8)) = 8))
THEN
Failure(11)
ELSEIF (NOT(isnewq(add(newq(),8)) = FALSE))
THEN '
Failure(12)

ELSE

Pass()
END;
END MainTest.

Figure 3.9: MODULA-2 Code to Test an Instance

58

(1) For our specification language we will assume five primitives: functional
composition, an equality relation (=), two distirct constants (TRUE &
FALSE) and an unbounded supply of free variables. From these primitives
it is possible to construct an arbitrarily complex specification language,
because once we have defined an operation in terms of these primitives it
may be added to the language. For example, an IF-THEN-ELSE operation

may be defined as follows:

IF-THEN-ELSE (TRUE, q,r) =q
IF-THEN-ELSE (FALSE, q,1) =T

and thus IF-THEN-ELSE may be added to the language of the five primi-

tives.

(2) We will assume that the operation IF-THEN-ELSE(A,q,r) shall be part of the

specification language. This operation shall be of the form:
IF ATHEN qELSEr .
(3) We shall also assume the availability of the standard BOOLEAN operators:
AND, OR, NOT.

(4) For simplicity we also allow for the type INTEGER and the conventional

operations on integers: +, -, ¥,/, mod 2, <, #.

59

We realize that a richer language may often be more desirable for the
specification of an abstract data type. We have restricted our specification language
for two basic reasons.

(1) Simplicity: With a limited number of specification language constructs we
allow for simpler translation of algebraic axioms to PROLOG and a simpler

analysis of the test cases that need to be run.

(2) Sufficiency: Our simple language is sufficient 10 specify any abstract data
types we want. We observe that all conventional programming control con-
structs can be translated into our basic primitives [Tennant81}). Thus in prin-
ciple, there are no limitations tc the applicability of our methodology due to

the simplicity of our specification language.

For this thesis and for our implementation we use some straightforward

notational conventions for algebraic specifications.

(1) There are two sections, labeled SYNTAX and SEMANTICS.

(2) All free variables in the semantics section are declared in the Declare line.
(3) Al free variables in the syntax section are represented by their type.

(4) ThelIF THEN ELSE construct is capitalized.

(5) All operations are of the form op (x°) even if x° is empty.

60

Figure 3.10 contains an example of a specification of the abstract data type
Queue Of Integers, using our specification language. A large example of a

specification of an ADT using our language can be found in Appendix IIL

Type queue

SYNTAX
newq() ->queue
add(queue,integer) ->queue
remove(queue) ->queue
front(queue) ->integer
isnewq(queue) ->boolean

SEMANTICS

Declare q:queue,i:integer

1) isnewq(newq()) =true

2) isnewq(add(q,i)) =false

3) remove(newq()) =newq

4) remove(add(q,i)) =IF isnewq(q) THEN newq()
ELSE add(remove(q).i)

5) front(newq) =-1

6) front(add(q,i)) =[F isnewq(q) THEN i
ELSE front(q)

END.

Figure 3.10: Sample Specification Syntax

61
33. T3

We have implemented the new testing methodology outlined in the previous

section in a system called T-3 (Type Testing Tool). T-3 implements this new testing

methodology by executing the high level system description given in Figure 3.11.

The procedure described in Figure 3.11 requires an object language which is
the language in which the ADT is to be implemented. For T-3 we have chosen

MODULA-2 as an object language. We choose MODULA-2 for two reasons:
(1) Its "modules” are a good implementation of abstract data types.
(2) Itisreadily available.

To "produce the next instance class” as required in step 3), we have based T-3
on the Regularity Hypothesis used by Bouge [Bouge85a, Bouge85b, Bouge86] as
described in Section 2.1.1. We assume it is possible to associate a level of com-
plexity with each member of the input domain of the software to be tested. For
the T-3 system, as with previous work [Bouge85b, Bouge86, Choquet86], complex-
ity is measured by the length of the trace that generates any particular instance
class. T-3 will generate more and more complex (longer) instance classes until
some termination condition is met. As outlined in steps 7.1) and 7.2) of the metho-
dology, that condition is met when a failure is detected or a given number of test

cases have been run.

62

1) Take as input the algebraic specification of the ADT
and its implementation
2) Start a PROLOG interpreter with the PROLOG form of the
ADT’s specification as its program.
3) Produce the next instance clas= ic be tested and
put it in a form appropriate for input to
the PROLOG interpreter.
4) Apply all O-type functions to the result of 3) and pass
these to the PROLOG interpreter as goals.
4.1) FOR each goal:
4.2) Determine all possible solutions to each goal.
4.2.1) FOR each solution
4.2.2) Generate random values for the variables
in these solutions so that they satisfy
any constraints.
4.2.3) Translate this into an object language
test.
5) Append all the object language test code from 4)
to driver code to form a main program module.
6) Compile and link this program with the ADT implementation
modules and any library modules.
7) Execute this program
7.1) IF an error is found: stop and report it.
7.2) ELSE IF enough tests have been run: stop
7.3) ELSE Goto step 3.

Figure 3.11: A New Testing Method

To implement step 3), T-3 generates the set/, of instance classes to be tested
by starting with /o containing the instance classes whose¢ traces contain only the
N-type functions. For the queue example, /o = { {Newq} }. T-3 then applies all

the C-type functions that occur in the specification to the new members of /,. The

63

resulting traces are added to the set/, to produce a new set/,,;. For the queue

example:

Iy ={ {Newq} (Addq((Newq),Integer)} }
I;={1, {(Addq(Addq((Newq),Integer).Integer)) }

In step 4), test cases are produced by applying all the O-type functions to all
traces in the set/,. The resulting MODULA-2 code is of the same format as the
code in Figure 3.7. The various steps of the PROLOG test procedure as outlined in
Section 2.3.1 are incorporated into the parts of T-3 that implement steps 3), 4) and 7)

in Figure 3.11.

Appendix II contains a detailed outline of the operation of T-3. This includes
the main shell script (Listing A2.8) that can be repeatediy called to execute steps 4)
through 7) of our method. Appendix II also includes listings of the significant rou-
tines and samples of the various files that are passed between routines. The reader is

referred there for implementation details of T-3.

Figures 3.12a and 3.12b are block diagrams of the previous (DAISTS) system
and T-3. As can be seen, T-3 is a significant improvement as it only requires two
sources of information. Those are the specification and implementation. The software

tester does not need to supply test cases and test data.

As shown in Appendix II, T-3 does in fact test appropriate software implementa-

tions. It did find errors in early versions of an implementation of our sample queue

ADT
Implementation
User-Specified DAISTS-like
Test Cascs ———— Test Results
System
ADT
Specification
Figure 3.12a Previous Systems
ADT
lmplcmemla[ion R AR R R L LA LI
~». Test driver sub-sys :
.............. R.-....n-.?-...--.....n..
e feerererenrentieenes Y
\ Main :
: System = Test Results
N A
Specification > JROLOG

Figure 3.12b T-3 Testing Tool

65

type.

3.3.1. improvements

T-3 represents a good first step in combining the methods using PROLOG to
generate test cases for ADTs with automated harnesses such as DAISTS. T-3 has all
the advantages of DAISTS as outlined in Section 3.1.6 and has solved some of the
problems with DAISTS. In Section 3.1.7 we outlined two problems associated with
testing with systems such as DAISTS. The first problem was that DAISTS required
every function that is even mentioned in the specification to be implemented. This
included hidden functions in the specification; T-3 solved this problem. By using the
PROLOG interpreter as an oracle (step 4) Figure 3.11) as opposed to directly using
the specification to determine the expected result, we do not need to call hidden func-
tions of the ADT to determine what the specified result value should be. This is a
significant improvement as the point of specifying an ADT is to separate implemen-
tation considerations from specification considerations. Requiring the implementa-
tion of certzin internal functions prevents this separation of considerations and cer-

tainly violates the principle of information hiding.

The second problem with DAISTS was the requirement of an equality function
for each new type. Our Queue example does not have an equality function defined on
it (in this case there is no equalg(Queue, Queue) function), yet T-3 has no problem

handling it (see Appendix II). We have solved this problem by changing the question

66

"Is Queue-A equal to Queue-B?" to "Are the resulis of all Observations 1 can make
about Queue-A the same as the results of the Observations I can make about Queue-
B?" For ADTs the second question reduces to "Are the results of the O-type functions

the same?" Step 4) of our procedure (Figure 3.11) implements that query.

3.4. Problems

In building T-3 we discovered new research problems that needed to be
solved. Some of these problems were solved during the process of building T-3 and
are discussed in Section 3.3.1., whereas some still remain to be solved. In Section
2.3.5 we outlined three problems with the use of PROLOG to generate test cases.
Those problems still exist in T-3 and need to be solved.
(1) There is a potential for infinite backtracking.
(2) Only equality predicates work can be used in the specifications.

(3) There is no theoretical basis for usefully ranking instance classes.

In Chapter 6 we outline a new methed for test case generation which we have

implemented in PROLOG. This methodology solves problems (1) and (2).

While we were developing a theoretical basis for ranking instance classes to be
tested, we discovered a fourth problem which needed to be addressed before we could

consider the problem of ranking instanie classes. We found that

67
(4) the theoretical foundation for specification-directed testing of ADTs was not
sufficient to build a usable practical system.
We found there were two theoretical sub-problems which needed to be addressed.

(4-a) We found that certain ADT and software testing assumptions are being impli-
citly applied without being explicitly stated.
(4-bYWe alse found that a reasonable goal for the specification-directed testing of

ADTs s not been developed.

Chapters 4 ar . 5 give the results of our research into problems (4-b) and (4-a) respec-

tively. Finalily Chapters 7 and 8 present our solution to problem (3).

4. A THEORY FOR ABSTRACT DATA TYPE TESTING

In this chapter we present the foundations necessary for our testing methodol-
ogy. We present what we have found to be a useful view of ADTs. That view allows
us to characterize the ways an ADT implementation can fail. We then develop a goal
for the specificauon-directed festing of ANTSs based on a new view of the goal of the
general software testing problem. We then give a theoretical justification for our

method of addressing that goal and compare it with previcus methods.

4.1. What is Being Tested

Guttag and others [Guttag77, Liskov74] have put forward the case that
Abstract Data Types are very useful and powerful tools for programming. ADTs
improve the ease of use and convenience of a programming language as well as

iacilitate the production of more reliable software.

As stated by Gougen [Gougen77]: "An algebra is simply a set, called the carrier
of the algebra, together with an indexed family of operations defined on (cartesian
powers of) that set. A many sorted algebra consists of an indexed family of sets
called carriers and an indexed family of functions defined on the cartesian products of
those sets.” From a specification perspective, an ADT may be viewed as a many
sorted algebra and "may involve several different sorts of things" such as truth values,

integers, or stack states.

69

"All things of sort s are lumped together into a set, called the "carrier” of sort s."
[Gougen78]

In terms of a testing context <L.5 (.4 =, the indexed family of sets (S) and the
indexed family of operations (V) of thc many sorted algebra described by the ADT,

implement the L(S) language of the testing context.

4.2. Absiract Machine

As with any dasta type, an abstract data tyve is basically a set of values and
a set of operations on those values. The adjective "abstract” in "abstract data
type" is generally accepted to refer to an independence of representation. To
examine the problem of how an ADT implementation can fail and how independence
of representation affects testing, we have found it useful to vse Liskov and Zilles
[Liskov74] definition that "an abstract data type defines a class of abstract
objects which is completely characterized by the operations available on those

objects."

Abstract data types are useful to programmers because they allow the pro-
grammer to be concerned only with the behavior which an (abstract) object exhi-
bits, and relieve the programmer of the concemn of how that behavior is achieved.
In this sense ADTs are similarto the "standard" types provided by most pro-
gramming languages. A programmer does not normally care how an integer is

represented internally in a machine, or what series of machine operations are

70

required to perform a particular integer operation. That programmer is only con-
cerned with the fact that 2 ** 4 =16. That is, the programmer is normally only
interested in the behavior of the integers, not how they are implemented. When a
programmer uses a "standard" data type he is making use of an abstraction
which is implemented at a lower level. That level could be the compiler level or
lower. An ADT can also be used at one level and implemented at another. The
difference is that for an ADT, the lower level does not come into existence sim-
ply by being part of the language; rather an ADT exists through a cluster of

programs that implement the operations which define that ADT.

We may view ADTs as hierarchical in nature. They may be built on top of each
other without knowing how the lower types are implemented. We do not need to
know whether lower types are implemented in silicon, in the complier, or as an ADT.
In any of those cases we can view the ADT we are building and testing as running on

top of an abstract machine. This abstract machine provides all the types and opera-

tions necessary to conveniently specify and build the ADT [Liskov74].

Since an ADT is built to run on an abstract machine, we can view the testing of
ADTs as something that we apply recursively to a set of embedded systems. In such a
system each object is made up of objects below it. For an implementation of an ADT

to fail in such an embedded system one of three things must happen:

1A

(1) oneof its lower components fails;

(2) the implementation’s use of a component does not match that lower

component’s specification;

(3) the way in which the implementation combines the results from its component

parts does not match the ADT’s specification.

To handle (1) above, specification-directed testing of ADTs should be per-
formed in a bottom-up manner. In that way we may assume that the abstract machine
executing the ADT is correct. Thus we may assume, for test set generation purposes,
that case (1) does not occur. We are then concerned with failures (2) and (3) above
which deal with whether the implementations of the functions of our ADT are

correct.

4.3. Goals of the Testing Method

In Chapter 2 we introduced the predicate OK over the input domain D of a pro-
gram, where OK(d) means that the implementation behaves correctly ford € D. The

correctness of an implementation can therefore be expressed as "Vd eD 0K (d)."

We have found it useful to view the predicate OK as a conjunction of two other
predicates OK, and OK,,: These terms are short for "OK-black-box" and "OK-white-
box." In general terms, 0K, implies that the implementation does everything it is sup-

posed to do. Ok, implies the implementation only does what it is supposed to do.

72

Thus we can say:
OK(d) < 0Ky(d)AOK.(d).

A computational state can be viewed as having two components: "the environ-
ment, which is used as a record of identifier bindings, and the store, which is used as
a record of the effects of assignments” [Tennent81]. Consider a program F whose
input domain is the set of data D. The result of executing F with input deD may be
viewed as a 6-uple <d 0.5, 5,.;,¢,> where d is the input value, o is the output value, s,
and e, are the store and environment before execution, s, and e, are the store and
environment after execution. We will denote this 6-uple as Result(F(d)). We will use
Out(d,F(d)) to mean that the output values from F given d do not violate F's
specification.

Detinition (0K, and 0K,):

Given a function F with domain D, the result of executing F with input deD,
Result (F(d))= <d .0 .5; .55 € ,€0> and an expected result
Result (F(d)) = <d,0” 5.5, €€, >

THEN CK,(d) — {o=0"})
OK.(d) = {(s,=5,") Ale,=€,)}

Now the testing process can be viewed as two separate tasks:

(1) determining T, such that [V(:)eT, OQut(t F(@t))] - [VdeD OK,(d)]; and

73

(2) determining 7., such that [V(t)eT,. Ow(t.F(t))] - |VdeD 0K, (d)].

We separate OK into white box and black box cases because white box testing
alone cannot say (without further information) that the implementation "does every-
thing it should.” To make that statement we need to know everything the system is
specified to do. That in turn requires black box methods for analyzing the
specifications of that software. Similarly, specification-directed black box testing can-
not say (without further information) that the implementation "does only what it is
supposed to." To make that statement we need to determine all possible results for all
possible inputs. That in turn requires white box methods for analyzing the imple-

menting code.

Since we are working on a "Specification Directed Software Testing Method,"
the best we can do is try to ascertain that the implementation does everything it
should. In the remainder of this thesis we will assume that our overall software test-
ing goal is to find a test element for which the implementation does not do everything

it should. That is, our overall testing goal is to make the system under test fail.

For our purposes a correct function is a function that is consistent with every

axiom of its specification for all possible inputs. That is:

74

Definition (Correct Function):

Let A be an arbitrary function, and
Let D(A) be the domain of the function A

Then we define the predicate "Correct” as:

Correct (A)->Vxe D (A)OK, (A (x)))

As we outlined in Chapter 2, all the observable functionality of an ADT is sup-

plied by its O-type functions. Therefore we now define a correct ADT implementa-

tion for our purposes as follows:

Deftinition (Correct ADT Implementation):
For an ADT T=(V.5)
And an implementation [of T

Correct(1)-VO 1O eVAO€O-type) \(VxeD (0)OK,(0(x))))
Where O -type is the set of all O-type functions in T.

It is important to note that our new definition of a correct ADT implementation
is independent of the TOI of that ADT. This in turn will allow us to develop a testing
method that does not ask the unanswerable question “is this element of the TOI
correct 7" This is a critical advance in our method. The implementation of the TOI
will vary from programmer to programmer, therefore a testing criterion that answers
the question "is this element of the TOI correct?” cannot be built without understand-

ing how the ADT was implemented (white box testing).

75

Given this definition of a correct ADT implementation and our overall goal for
software testing we can state that the operational goal of our software testing
methodology is to detect failures in a software system. A failure is an Ghserv-
able event where a system is inconsistent with its specifications. A failure
should not be confused with an error which is a piece of information (code or
data) which when processed by the systeni may produce a failure. Thus our goal
is to demonstrably show that

30 10€V AO €0 ~type @xe D (0 XOKy (0 (x)))

Either an implementation is correct or it is not. If it is correct it does not matter
which functions we test, the results of our tests will match the specifications. If the
implementation is incorrect, then there exists a set of test inputs that will, at some
point, cause an observably incorrect result to be produced. Since O-type functions are
the only functions to produce an observable result, we need only concern ourselves
with analyzing the output for them. Since the choice of test cases will make no
difference to a correct implementation, we are justified in assuming the implementa-
tion we are testing has « fault. We then try to make the system fail, and to make the

system fail as quickly as possible using as few resources as possible.

We would also like, in a more general sense, the continued testing of a software
system to increase our confidence in that system. With infinite resources, extrapolat-

ing testing to infinity should yield a proof of cormrectness or at least a proof of no

76

incorrectness. That is:

lim — NOT{NOT (Correct (ADT))).
#uusts (ADT)—vee

The key point here is that we are aiming for a hierarchy of tests; one test to be
applied after the other such that the more tests we execute the more likely it is that
the software is not incorrect. Note we are not saying "the more tests we (success-
fully) run the more likely the software is correct.” That approach is not practical

because a test cannot show the absence of errors, only their presence.

4.4. A General Testing Method

Using the definitions of the previous sections, our testing method (M) uses
some assumptions (A) about the system under inspection, as well as an imple-
mentation (I) of that system and an algebraic specification (S) of that system, to
produce a test case series. It then calls for the execution of the associated test
series in such a way that the more ADT operations we execute, the more likely
we are to detect a failure. Figure 4.1 outlines the general function of any test-
ing method. Note that the result of testing is dependent on four separate entities: the
assumptions (A), the implementation (I), +he specification (S), and the testing method

(M)

It is impractical to require a user to repeatedly state his assumptions about a

system every time he wants to test it. Indeed the very nature of any testing

77

£
|

(Failure found / Failure not found)

Figure 4.1: The General Testing Function

(A+M)

|

(Failure found / Failure not found)

Figure 4.2: An Operational Outline of a Testing Mecthod

78

method is predicated on assumptions about the nature of the system to be tested.
Thus for any testing method there are some assumptions about the system
under test that should not be separated from the testing method. Figure 4.2. gives
an operationally useful outline of the function of our testing method. Note how
Figure 4.2 matches Figure A2.1 (flow chart of the operation of T-3), but that the
assumptions (A) are bundled with the method (M) and the two are not independent.
Therefore a description of a testing method is incomplete without a description of the

assumptions attached to it.

In Chapter 5 will we outline the assumptions (A) of our methodology.

4.5. The Testing Method

Algebraic specifications of ADTs do not involve any existential quantifiers.
Bouge [Bouge85a] shows that this ensures the existence of an acceptable collection
of test instance classes, given the extra hypotheses of uniformity and regularity as
discussed in Section 2.1. Our uniformity hypothesis will be defined and justified in

Section 6.1.

For the regularity hypothesis we assume it is possible to associate a level of
complexity with each member of some input subdomain of the program under test.
Complexity was discussed in Section 2.1.1. A regularity hypothesis states that the

program behaves "regularly” with respect to this measure. A program behaves regu-

79

larly with respect to a measure if the fact that the implementation works correctly for
all input of complexity less than some level k in the domain implies that it works

correctly for any input in that domain. The following is our regularity hypothesis.

Regularity Hypothesis:
There exists a k such that
(Vd €D (complexity (d)<k — OK (d)))=Vd €D OK(d)
Where D is some subset of the input domain of the implementation.

We observe that this hypothesis is trivially satisfied as k tends to infinity.

If "complexity(d)" can be calculated for all elements of the input domain of the
ADT, then an acceptable (as per definition in Section 2.1.1) battery of tests will be
<H (T.)aen> Where (T,) is a family of tests T,,7,,Ts,.... For any particular subscript
k, passing the set of experiments (also called a test) T, will imply, in combination
with the assumptions H about the testing method, that all the elements of the input
domain with complexity less than or equal to & are "OK." The assumptions about
our method are discussed in Chapter 5 and our uniformity hypothesis is described
and justified in Section 6.1. Here we are concerned with describing the properties
of a complexity metric that will allow us to produce a test set 7, that will check if
all the clements of the input domain with complexity less than or equal to k are
OK. Thus we must view each test 7, in the family of tests (7,).en as follows:

Ty=(Vd 1 (deD A complexity(d)<k)OK(d)?)

80

Since the subscript in (7,) is only defined on the natural numbers, and therefore
has a lower bound, there must be a lower bound for the complexity of any ele-
ment of the input domain. Normally that lower bound will be zero. To be able to
produce a test 7, we must be able to calculate a complexity value for all ciements

of the input domain. Thus we define a valid complexity metric as follows:
Definition:

Wecall M a valid complexity metric for the inputs /, to program P;

IF:

(1) There is a value min for which there does not exist an input 1, of program P
for which M (1,) is less than min.
That s, (VI, M({l,)> min)

(2) M) can be finitely calculated for all possible inputs /, for program P.

The commonly used complexity metric [Wild86, Bouge86, Choquet86,
Bouge85b] for an instance i is the number of ADT-function calls in i. We note that

such a complexity metric satisfies our definition of "a valid complexity metric."

4.5.1. Previous Methods

As we have stated, the length of an element of L(S), for a testing context
(L.S()A), is the complexity metric that has been used [Wild86, Bouge86, Cho-
quet86, Bouge85b] to perform step B of the Testing Process Diagram (Figure 1.1).

That step produces batteries of tests for that context. We agree that such a metric does

81

guarantee -n acceptable battery of tests as it is a valid complexity metric as defined
above. A .1ajor problem with these previous methods is how this metric is applied.

We quote fi . m Bouge [Bouge85b] where "X" is any ADT:

"Consider the case where a sct of constructors” {N and C-type functions} "is given
together with the specification of the type of intcrest. Hypotheses can be
strengthened by assuming that X is actually finitely generated with respect to those
constructors. Instantiation may thus be limited to those terms of size less than
which are combinations of constructors. The number of generated instantiations is
then considerably decreased. This corresponds preciscly to optimizing a test set by
discarding redundant tests. This optimization is usually left implicit in testing
methodologics.”

This statement was a significant step forward in that it at least recognized that "This

optimization is usually left implicit in testing methodologies."

We examine the statement "This corresponds precisely to optimizing a test set
by discarding redundant tests." We will use for our examples the ADT "Queue with

Has" as specified in Chapter 2. The axioms of that specification are:

82

(1) Isnewq(Newq)
(2) Isnewq(Addq(q,i))
(3) Deleteq(Newq)
(4) Deleteq(Addq(q,i))

(5) Frontq(Newq)
(6) Frontq(Addqg(q,i))

(7) Has(Newg,1)
(8) Has(Addq(q,i),j)

-True

-False

-Newq

-If Isnewq(q) THEN Newq
ELSE Addq(Deleteq(q),i)
-eITor

-IF Isnewq(q) THEN i
ELSE Frontq(q)

-False

-IF i=j THEN True

ELSE Has(q,))

Consider that we have a test case

ta = 0(e1(fa(x)))

Where o, is an O-type function.
e, is an E-type function.

Since e, is an E-type function then there is a C-type function ¢, such that according to

the specifications

(o)) = (s &)

Where ¢, is a C-type or N-type function
f+(y) contains only C-type and N-type functions

According to the optimization as described by Bouge if we have test cases:

ta =01(e1(fa(x))
I =0(ca(fo ()

83

we need only run the test "1, as the test "1," is a "redundant” test.
For our Queue example if we have the tests:

ta=Frontq (Deleteq (Addq (Addq (Newq ,1),2)))
ty=Frontq(Addq (Newq 2))

By applying axiom (4) to ¢,:

Frontq (Deleteq (Addq (Addg (Newq ,1),2)))=
Froniq (Addq (Deleteq (Addg (Newq ,1)).2))

By again applying axiom (4):

Frontq(Addq (Deleteq (Addq (Newq ,1)),2))=
Frontq(Addq (Newq ,2))

Thus:
I, = Frontq (Addg (Newg 2)) = t,

Therefore, by their "optimization,"” we need only run the test:
Frontq (Addg (Newq ,2))

because once we have done that test, the test
Frontq (Deleteq (Addq (Addg (Newq ,1),2)))

becomes redundant.

This optimization is necessary to produce test sets that can be run with finite
resources. Without the optimization an ADT with n functions would require greater

than n* tests for a maximum trace length of k. Clearly the number of tests would be

large for even a small upper bound or instance length.

We found in running T-3 with test baiteries based on this method of test set
generation, there were some faults in some implementations that were never exer-
cised. On inspection we found that even as k tended to infinity and we tested forever,
these faults would not be exercised. According to Bouge’s theory [Bouge85al, this is
not possible. Figure 4.3 contains an example of such a fault. The queue is imple-
mented with a standard double linked list using the following MODULA-

2/PASCAL record type:

queue_element = record
value: Integer
previous: "queue_element
next: "queue_element
end
queue = record
top: "queue_element
bottom: “queue_element
end

When "Deleteq” removes an element it simply moves the "top" pointer to the next
element. The "Has" function starts at the bottom of the queue and scans until it finds
the element it is looking for or it encounters the NIL element. The "Has" function
may scan past the top of the queue. Since elements past the top of the queue
have been deleted and should not be considered, this is an algorithmic defect (a

fault). This is a very simple fault spread over two functions.

85

PROCEDURE deleteq (q:queue): queue;
BEGIN
IF q.top = NIL
THEN RETURN q
ELSE
q.top = q.top”.next;
RETURN q
END;
Deleteq;

PROCEDURE has (q:queue , term:INTEGER): BOOLEAN;
VAR current : gpointer;
BEGIN
current := q.bottom;
WHILE current <> NIL DO
IF current”.value = term
THEN
RETURN TRUE
ELSE
current := current”.previous
END;
END;
RETURN FALSE
END has;

Figure 4.3: Code with a Fault over Two Functions

For this example the fault would be detected by the test:
Has(Deleteq(Addq(Newq,1)),1)
The correct result is "false” and this implementation returns "true." This simple logic

fault is never exercised because by applying axiom (4) we can say:

Has (Deleteq (Addq (Newq ,1)).)=
Has (Newq 1) '

Thus according to the optimization as described by Bouge,

Has (Deieteq (Addq (Newq ,1)),1)
omes redundant once the test:

Has (Newgq 1)

has been run. Therefore the test:
Has (Deleteq (Addgq (Newgq ,1)),1)

is never run nor is any test of the form:
Has (Deieteq (Addg (F (X))).a).

This means that this fault is never discovered even as the complexity tends to infinity.
As we have found a simple counter-exampie. ' =re must be something wrong with the
previous test selection theories of Bouge and others [Wild86, Bouge86, Choquet86,

Bouge85b].

87

In re-analyzing this method of generating a battery of tests we found that as long
as a complexity metric satisfies our new definition of a valid complexity metric, it
will produce an acceptable battery of tests. The complexity metric "length of trace" is
such a valid metric and does produce an acceptable battery of tests. We have found
the problem is in the second last sentence of Bouge's statement that we quoted: "This
corresponds precisely to optimizing a test set by discarding redundant tests." This is,
prima facie, a reasonable statement. According to the axioms we can certainly say (by
simply applying axiom (4) once):

Has (Deleteq (Addgq (Newq ,1)),1) = Has (Newq ,1).
The problem here is: we are testing the implementation, not just using it. We must
assume there is an fault in the implementation. Therefore we cannot assume
Has (Deleteq (Addq (Newq ,1)),1) will be implemented properly. If

Has (Newgq 1)
and
Has (Deleteq (Addg (Newq ,1)),1)

are both implemented properly then

Has (Deleteq (Addg -wq,1)),1) = Has (Newq ,1).
As software testers we cannot assume this equality. Thus the optimization "usually
left implicit in previous testing methodologies" does NOT correspond precisely to

optimizing a test set by discarding redundant tests.

B8

This optimization corresponds to adding the assumption "The implementation
of all E-type functions is correct” as one of the assumptions in (A+M) in Figure 4.2.
As shown in Section 4.4 we cannot "unbundle” the assumptions of a methodology
from the methodology. In terms of Figure 4.2, we cannot separate "A" from
"(A+M)". Therefore, to use those previous methods [Wild86, Bouge86, Choquet8s,
Bouge85b], we must assume a potentially large part of the implementation is correct.
Consequently, those previous methodologies do not produce an acceptable battery of

tests.

4.5.2. Our Method

At the start of Section 4.5 we showed that to test an implementation of an
ADT we produce a battery of tests:
(T,)=T1,Ty,T,,...
such that each T, asks the question:
Vd | (deD A complexity (d)<k)OK (d)?
for a valid complexity metric. That is, we produce a battery of tests T, that, in combi-
nation with assumptions about our method, shows that all elements of the input

domain with complexity less than or equal to k are "OK". We know that:

"A testing methodology that iteratively tests instance classes in an order dic-
tated by what we call a valid complexity metric will produce an acceptable
collection of tests."

89

Therefore at the highest level our testing methodology is:

Iteratively test instance classes of the ADT in the order dictated by our
complexity metric.

We know this will produce an acceptable battery of tests as long as our complexity

metric is valid.

We could not find a complexity metric based solely on the < ntax of the ADT
that was both "valid" and practical to use. We have developed a valid metric based
on a new model of the computations of an ADT. That metric will be presented in
Chapter 8, after we have developed a usable way of testing instance classes in

Chapter 6 and presented our model for the computations of an ADT in Chapter 7.

9w
5. A FOUNDATION FOR AUTOMATABLE SPECIFICATION-DIRECTED TESTING
METHODS
In the previous chapter we showed how dangerous it can be not to explicitly
state the assumptions intrinsic to a software testing methodology. In this section
we will describe the universe in which our specification-directed software testing
methodology is to work. We believe that it is important to state as explicitly as
possible what our methodology is meant to do. We have searched the literature
on specification-directed test hamesses [Gannon81, McMullin83] and previous
work on test case generation using PROLOG [Wild86, Bouge85b, Bouge86, Cho-
quet86]. We have found that a common shortcoming of this previous work is that
very little or no information was given defining and describing the domain of
software to which the results are applicable. Therefore we have undertaken to inves-
tigate and specifically state, as reasonably as possible, the assumptions and con-
straints on the domain of software to be tested by our specification-directed
software testing methodology. Our results are based on an implementation of our
methodology. We believe this is an important step forward, not only for
specification-directed test harnesses and test case generation using PROLOG, but
also for specification-directed testing in general. We leave for future work the
investigation of the impact of loosening the assumptions and constraints developed

here.

91

5.1. Software Testing Assumptions

We found it necessary to make some “standard" software testing assumptions
about the software we are going to test. The first of these assumptions concerns
"coincidental correctness.” In software testing, coincidental correctness occurs when
a fault is tested and yet coincidentally the test data results in correct output variables
[White87]. If different test data had exercised that fault, incorrect output variables
would have resulted. A common software testing assumption is the "no coincidental

correctness” assumption which assumes that this does not happen for any reason.

Coincidental correctness occurs when a fault is tested yet, coincidentally, the
test data resuits in correct ouvtput values [White87]). We make a less restrictive
assumption than no coincidental correctness. We assume that two incorrect results
do not cancel each other out. That is, we allow that for any experiment E, the imple-
mentation may return an incorrect result for a function call in E. We assume that a
second function call in E will not return another incorrect result that, in combination
with the first incorrect result, will cause a correct overall result for E. This assump-
tion is called the "no coincidental incorrectness” assumption and is not as restrictive
as the coincidental correctness assumptidn because it allows the existence of some

faults that are exercised with no output manifestation.

To see how "no coincidental correctness” and "no coincidental incorrectness"

differ, let us take two functions specified as follows:

Ju\"vB)=A+B
fs(C.D)=CP.

Let us assume there is a fault in f, so that instead of returning the value A+8

it returns the value A-B.
If we run a test:
Output = f,(1,-5) + f.(32.5)
we will get the output value 39 which is the correct result. In this test the
error in the first f, calculation is canceled out by the error in the second fa
calculation. A "no coincidental correctness” assumption would assume this does

not happen. A "no coincidental incorrectness" assumption would also assume that

this does not happen.

If we run a test:

Ouiput = f,(1,fa(54)

we will get the correct output of 1 because 1 raised to any power is 1. Again we
have tested the fault and coincidentally the test gives the correct output values. If
we say we are assuming "no coincidental correctness” then we are assuming this
does not happen. With. "no coincidental incorrectness” we do not make that
assumption because in this case the error is not masked by another error. No
coincidental incorrectness only assumes that an execution of a fault is not masked by

another execution of a fault.

93

We assume that the ADT is testable. To do that we assume that for each opera-
tion o associated with an abstract data type, there is a set of operations 0, with
the following properties:

(1) o"is in0, , whereo" is the correct operation.

(2) ois in0, ,whereo is the implemented operation.

(3) There is a method of selecting tests foro such that for any o'in 0,, if o and

o' agree on these tests, then they are equivalent.

These three assumpt.ons are necessary for the ADT to be testable [Howden85]. Our
regularity hypothesis (Secticn 4.5)
(Vd €D (complexity(d)<k — OK (d))] —» Vd eD OK(d)
follows directly from property (3). If a failure can happen and there is a test Usire that
can reveal that failure, then our regularity hypothesis holds when we set our com-
plexity limit k to the complexity of the test that reveals the failure:
k = complexity (tfaiture)-
We have found the "no coincidental incorrectness,” and "testable" assumptions

necessary for a workable system.

5.2. Abstract Data Type Assumptions

The most important assumption we make about the software to be tested is

that it is in the form of an abstract data type. That is, we are testing a set of

L

operations that together define a set of abstract objects (the elements of the
abstract data type). These operations are the only operations permitted to manipu-
late those objects directly. Thus for any abstract data type T we can assume the
existence of a language L(T) which is defined by that abstract data type. For
testing purposes this means we can assume for a testing context (L (5).S (INA), L(S)
does exist and is a language defined by the ADT to0 be tested. Facilities for produc-
ing modules that implement abstract data types are available in such program-
ming languages as SIMULA, C".U, MODULA-2, Concurrent EUCLID, and TUR-

ING.

We have found it necessary to assume for our testing methodology that the
type T= [{V], {S+0}] is restricted to only allow total functions as members of
{S+O}. We are not saying that nonsensical inputs or inputs that may cause
error conditions are not acceptable; rather we are only requiring that the opera-
tions never fail to terminate and are defined over all of their domain. We grant that
some software, such as an operating system, is non-terminating, but in most cases
programs are meant to terminate. We agree with Guttag and Homing's
[Guttag784] argument that it is hard to imagine a useful type T= [{V}, {S+O}]
where O contains a potentially non-terminating operation. We justify this
assumption as reasonable by observing that: testing abstract data types without

making some assumptions about their termination would involve solving the

95

halting problem.

In Section 4.2 we showed that ADTs are hierarchical in nature and that they are
meant to run on an "abstract machine." By following a bottom-up test plan we
showed that we can assume that this abstract machine works correctly. The abstract
machine provides all the types necessary to build the ADT [Liskov74]. This means
that for the representation phase of the testing process (Step A, Figure 1.1), we can

assume that the set S in the testing context (L (5).5 (IT),A) is correct.

We have found that for our testing methodology and for previous methodolo-
gies [Bouge85b, Bouge86, Choquet86, Wild86], it is necessary to assume that the
functions to be implemented by the abstract data type to be tested are primitive
recursive. We recall that a primitive recursive function is any function that can
be obtained from certain initial functions by a finite number of applications of
composition and recursion. In the simplest case these initial functions can be the
zero function, the successor function and projection functions. While some func-
tions are not primitive recursive, most of the useful computable furctions are
primitive recursive. Thus we do not believe this significantly limits the applica-
bility of our methodology. Our main reason for assuming primitive recursive

operations is that we will be requiring an algebraic specification to exist (see fol-

lowing section). This in tumn requires an axiomatization of a containing algcbra9

*Containing Algcbra: "An algebm that, by the forgetting of some operations, can be restricted to the intended algebna”
[Guitag78s].

96

for our type T= [{V}, {S+O}] [Guttag78al. Requiring primitive recursive opera-
tions ensures the existence of such an axiomatization [Guttag78a]. The existence
of such an axiomatization has always been assumed in previous research in using
PROLOG to aid in test set generation. Since we rely on such an axiomatiza-

tion, we must BE SURE that it exists, and know what constraints that imposes.

A . ul side effect of assuming only primitive recursive operations in {S+0)
for a type T=[{V]}, {S+0}] is that all the elements of that type are finitely gen-
erated. This is significant because if it were not true there would be values of our

ADT that we could not test.

5.3, Algebraic Specifications

Our testing methodology requires the existence of two sources of informa-
tion: the implementation of the ADT 0 be tested and an algebraic specificatici of
that abstract data type (see Figure A2.1). In this section we will outline what we

mean by "an algebraic specification."

We have found it necessary to make the following assumptions about the
specifications of the abstract data type .10 be tested. Assumption (2) has already
been discussed in Section 3.2.1. Each of the others will be discussed in the following

sub-sections.

(N

(2)

(3)

(4)

(5)

They exist; not all software systems have formal specifications.
They are algebraic and of the general form outlined in Section 3.2.1.

They are correct; clearly, if the specifications are incorrect then testing that a
system does not violate its specifications is not testing for correctness of the

implementation.

The axioms are consistent; if the axioms are not consistent then we may not be

able to uniquely determine the correct output for a test.

The axiomatization is sufficiently complete; this assumption assures us that

we can determine at least one correct output for each test.

We have found assumptions (1), (3), (4) and (5) are also necessary, although unstated,

for previous methods to work. Those methods were outlined in Sections 2.3 and 3.1.

§.3.1. Existence

That the specifications exist and that they are algebraic are the two basic

premises of our work. Assuming the existence of algebraic specifications, while

necessary for our methodology, is not always reasonable, and must be taken into

account when considering the use of our testing methodology. If the software to be

tested was developed using a rapid prototyping methodology it is probable that a

formal set of specifications was never developed. The production of algebraic

specifications for such a system may represent a significant cost which may be

98

prohibitive in some cases. One point in the defense of the cost of building such
specifications is given in [McMullin83]. They found that requiring such
swec.fications forced the consideration of conditions missed in even the best informal
specificadons. We also found that building the algebraic specifications for a List type
forced the considerations of conditions that had been missed. We used as a basis for
that type a two page verbal description given as an assignment to third year undergra-
duates at the University of Alberta. When we built the algebraic specifications we
found that the two page verbal description did not consider all conditions. We refer
to this "extended List" type as the List-¢ type, specified in Appendix III. This type
contains two unusual functions for a list: intersection and union. The undergraduate
assignment defined these functions in the usual set-theoretic way. That definition
does not specify the order of the elements of the list that results from intersection or
union. Therefore the result of applying an output function such as "getElt" to a list
that is the output from a union or intersection was undefined in the undergraduate

assignment. Note that it is defined in our specification.

5.3.2. Correctness

The problem of determining the correctness of the specifications of a unit of
software is beyond the scope of this research. The purpose of our work has
been to investigate specification-directed software testing. As such we are con-

cerned with showing that an implementation and a specification are inconsistent. For

- 99

a software module to be "correct,” it is sufficient that it be consistent with its
specifications (V d e D OK(d)), and that the specifications are correct. The issue
of correctness of specifications deals the problem of specifying systems that can-
not be realized, or that are not usable. This may happen if the specifications do not
provide the functionality the user desired. The reader is referred to [Kemmerer85]
for an investigation into the determinatior of the correctness of a specification. For
our work we assume the specifications we are given are correct in that they pro-

vide the desired functionality.

5.3.3. Consistent

A major issue concerning algebraic specifications "is adequacy which comprises
consistency and completeness” [Berztiss83]. The classical notion of consistency is
that a theory is consistent if and only if it is impossible to derive a contradiction as
one of its consequences. The classical form of a contradiction is

PA°P
where P is any predicate. The traditional notion of completeness is that for any

predicate P, either P or “P should be the consequence of the theory.

In building T-3 we have found that for the previous methods [Bouge85b,

Bouge86, Choquet86, Wild86] and our methodology to work, we need to assume that

100

the specifications are consistent'®. In an algebraic specification of an abstract data
type the partial semantics of the type is supplied by the axioms in the semantics
section. These axioms may be viewed as individual statements of fact. If two or
more of these are contradictory, the axiomatization, and therefore the specification,

is inconsistent.

Proving the consistency of an arbitrary set of axioms is, in general, an
unsolvable problem. We observe that Guttag [Guttag80] found that the production of
algebraic specifications of types with more than four constructor functions quite
difficult to accomplish directly, but that it could readily be accomplished by break-
ing the type into several parts. Therefore, although the problem of assuring the
consistency of very large axiomatizations is very difficult, it can be successfully
attacked. We also observe that useful and consistent specifications have been pro-
duced for smaller types with less than four constructor operations. Therefore, the
consistency of an axiomatization is reasonable to assume as a basis for an opera-

tional software verification methodology, even though it is unprovable.

5.3.4, Sufficiently Complete

In building T-3 we found that it is absolutely necessary to assume that the alge-

braic specifications are sufficiently complete. A complete axiom set is one to which

19 "If we can use the statements to derive an equation that contradicts the axioms of one of the underlying types used in the
specification, the axioms of the specification are inconsistent. Ultimately, any inconsistent axiomatization is characterized by the
fact that it can be used to derive the equation true=false.” [Guttag80]

101

an independent axiom cannot be added, or "one with which every well-formed for-
mula or its negation can be proved as a theorem" [Guttag78a). For abstract data
types this is revised slightly to the property of sufficiently complete. The idea is
that if L(T), which is the language defined by the abstract type T=[{V], [S+O}],

is sufficiently complete, then every term in this language must be assigned a mean-

ing by the axiomatization.
Definition (Sufficiently Complete):

"For an abstract type T= [{V}, {S+O}] and an axiom set A, A is a
sufficiently complete axiomatization of T if and only if for every word of the
form Fj-n(x1,..., xn) contained in L(T) where Fj-n €0, there exists a theorem
derivable from A of the form Fjn(xi,..., xn)=u, where ueV,evV."
[Guttag78a]

Note that by this definition the axiomatization A is consistent if for each

Fjn(x1,..., xn), u is unique.

As with consistency, the problem of ensuring that a set of axioms is sufficiently
complete is, in general, undecidable [Liskov74, Guttag78a, Gougen78]. It has been
shown however [Thatcher82], that if we limit the kinds of algebras in our
domain and limit the language used to specify the axioms, then it is possible to
produce a sufficiently complete axiomatization. These limits do not put any new
constraints on the ADTs we will be testing. Therefore the consistency of the

specifications is not an unreasonable or burdensome assumption.

102

We recall Guttag and Homing’s [Guttag78a} theorem that states for any type
T=[{V], {S+O}], all of whose operations are primitive recursive, there exists an
axiomatization A which is sufficiently complete. What was actually shown was
that those conditions are sufficient to guarantee that for any term o(x,y°), 0€0

there exists a series of reductions:

0(x .y)2, >ZZ3— - o7,
where Z,eV;,
and VeV.

That is, for any term there exists a series of reductions or replacements that produce a
non-TOI value. Every axiom in the semantics section of an algebraic specification
can be viewed as a statement saying "the value or expression on the right side of this
axiom can be used in place of the expression on the left side, whenever one is trying
to evaluate an expression that contains the ¢xpression on the left side of the axiom."
Therefore, any sufficiently complete axiomatization in that form may be viewed

as a set of replacement rules. Being able to view axioms as replacement rules will

be very useful to us as the PROLOG interpreter in our methodology treats the hom

clauses we derive from those axioms as replacement rules.

5.3.5. Other Specification Techniques

Our testing methodology generates tests based on the algebraic specification

of the ADT. Currently, there are two other basic families of specification tech-

103

nisyues «vailable: state machine specifications and abstract model specifications. All
sxee approaches "define behavior in units called functions, and do so in a result-
ori«r=” r non-procedural way that suppresses most detail of the implementation™
[Berg: -

Stawe »»:achine specification resembles other specification techniques in that it
defines a set of functions that specify transformations on inputs. The set of functions
may be viewed as defining the nature of an abstract data type or describing the

behavior of an abstract machine. It divides the interface procedures into two classes.

V-functions: (for Variable or Value) report values. They have no side effects.
O-functions: (for Operations) change the state of the module.
They do not return values.

Specification languages based on this technique include SPECIAL, which was
developed at SRI international, and INA JO which is part of a verification system at

the Systems Development Corporation {Berg82].

The practical use of the state machine method is largely a result of its suita-
bility for validation of security [Berg82]. In general practice, the state-machine
approach has been found to be unwieldy and "unsatisfactory for more complex and
arbitrary structures and for expressing effects that involve the evaluation of algebraic
formulas" [Lamb88]. These limitations make current state-machine specification

methods impractical for our specification directed testing methodology.

104

With the model oriented approach to specification, the concrete data structures
that are manipulated by the programs are modeled via abstract mathematical objects
such as sets and sequences. The meaning of the interface procedures is described via
predicates on these abstract objects [Lamb88]. Once a concrete representation of the
abstract model has been developed, a correspondence between the abstract and con-

crete representations is established via

(1) an abstraction function which maps a concrete data structure into an abstract

model of the data structure, and

(2) arepresentation function, which maps an instance of the abstract model into the
set of all possible concrete representations of the abstraction. This is a one-to-
many mapping because there can be several representations of the "same"

abstract value.

This approach was developed by Hoare and is very compatible with the program-

ming languages Alphard and Euclid [Berg82).

There are two problems with using model oriented specifications as a basis for
our testing methodology. The first problem is that model oriented techniques are not
always universally quantified. Since all clauses in PROLOG are universally
quantified this will make the use of PROLOG, at the same time as model oriented

specification techniques, impractical.

105

The second problem with using model oriented specifications as a basis for our
testing methodology is that they use operations on "well known mathematical objects
such as sets and sequences” [Lamb88]. Logic programming theories to handle these
objects are just now being developed. Logic programming languages that use those
theories and handle these objects are not yet available. Therefore using logic pro-

gramming to generate test data based on abstract models is not yet feasible.

5.4. Summary

In this chapter we have described and justified the assumptions inherent in our

methodology. They are:

Software Testing Assumptions:

(1) We are testing an ADT.

(2) There is no coincidental incorrectness.

(3) The ADT is testable.

Abstract Data Type Assumptions:

(1) The language L(S) exists.

(2) The ADT contains only total functions.

(3) The abstract machine on which we run works correctly.
(4) The functions are primitive recursive.

Algebraic Specifications:

(1) The specifications exist.

(2) The specifications are of the form outlined in Section 3.2.1.

106

(3) The specifications are correct.
(4) The axioms of the specifications are consistent.
(5) The axiomatization is sufficiently complete.

For a completely automated system there would be one final requirement for our
ADT specification. We would require a complete procedure for generating terms that

satisfy all equations in the predicates of the axioms.

107

6. ANEWMETHOD FOR TEST CASE GENERATION USING PROLOG

We have found PROLOG very useful for software test case generation. The
general approach of our method is to use an algebraic specification of abstract data
types to be tested and a series of tools based on logic programming to derive a
series of functional test data. Previous researchers [Bouge85b, Bouge86, “Wild86]
have developed one method for generating test data from algebraic specifications.
We found this method produced overly large data sets and could not handle, in
finite time, a wide variety of predicates that may appear in algebraic specifications of
ADTs. Examples of such problem predicates might be #, >=, < or is_empty. The
only predicates handled by those previous systems are simple equality and boolean

operations such as AND and OR.

In this chapter we present our method for using PROLOG to produce test
cases for abstract data types. In Section 6.1 we outline what we call instance classes
and sub-instance classes of ADTs, and why they are important for ADT testing. In
Section 6.2 we present our general method for testing these instance classes and
sub-instance classes. In Section 6.3 we present our method for using PROLOG to
test ADTs. In Section 6.4 we give a brief example using our new method and show
how it handles some major problems in a useful and consistent manner. We will

show that our method:

108

(1) allows predicates other than equality to be tested;
(2) prevents infinite searching for equality/inequality predicates; and

(3) allows non-C-type TOI functions inside the traces being tested.

6.1. Instance Classes and Sub-Instance Classes

Weyuker and Ostrand [Weyuker80] significantly extended some preliminary
work by Meyers [Meyers74, Meyers76] by introducing the concept f revealing sub-
domains as a basis for white box software testing. They describe a subset of a
program’s input domain as revealing if the existence of one incorrectly processed
input implies that all of that subset’s elements are processed incorrectly. Their intent
was to partition the program’s domain "in such a way that all ¢lements of an
equivalence class are either processed correctly or incorrectly.” While it is recognized
that finding such a partition is in general as undecidable as finding a proof of correct-
ness, Weyuker and Ostrand argued that "testing in terms of restricted subdomains
allows us to concentrate on probable local errors, and increases the likelihood of
finding good tests” [Weyuker80]. Our intent is also to partition the program’s
domain in such a way that all elements belong to exactly one sub-domain. We recall
that our testing goal is different from the white box goal. Our goal is to test that the
software system does "everything it is supposed to " rather than "only what it is sup-

posed to." Thus rather than having "subsets such that the existence of one incorrectly

109

processed input implies that all of that subset’s elements are processed incorrectly” as
Weyuker and Ostrand did, we are interested in subsets such that the existence of one
correctly processed element implies that all of that subset’s elements are processed

correctly.

Exhaustively testing every combination of input values for a software system is
usually impossible. Therefore, to say something about the overall correctness of a
program on the basis of some tests requires the user to extrapolate from a finite set of
test cases 1o an infinite number of possible inputs. Commonly a user will say "The
system passed these 200 test cases; therefore it will probably work properly all the
time." The quality of the *estisg method used determines how convincingly a user can
make that extrapolatica. #:iy extrapolation from a finite set of information such as
"the system passed these 200 tests” to a statement about something infinite such as
"working properly all the time,” requires making an “infinitary" [Bouge85a]

hypothesis. In our case that extrapolation rests on the following hypothesis:

OUR INFINITARY HYPOTHESIS:
Given a language L, a set S, and an instance class I of L(S):

[VI; where I, is a sub—instance class of 1 :3x xel; 1 OKy(x)] —
[VI; where I, is a sub-instance class of 1 :Nx xel; | OK,(x)]

We can view this hypothesis as saying that if a programmer correctly implemented

some elements in every possible sub-instance class of an instance class then he did

119

not incorrectly implement other instances in those sub-instance classes. The quality

of test sets produced by our methodology can be expected to vary with the validity of

that hypothesis.

Our infinitary hypothesis will allow us to more readily partition the elements of
our TOI into subsets such that the existence of one correctly processed input in cach
set implies that all of the subset’s elements are processed correctly. Now we group

tkie elements of the TOI together such that:
(1) the series of TOI function calls that generate them is the same;

(2) the observable functionality that these elements should exhibit in a correct

implementation of the ADT is the same.

By testing an implementation with one instance from a group of instances of the TOI,
where that group has the characteristics given in (1) and (2), we show that the imple-
mentation gives the correct results for at least some elements of that subset. We can
use our infinitary hypothesis to say that if the programmer implemented the correct
functionality for some elements of the subset then he did not implement incorrect
functionality for other elements of the subset. Thus all the elements of the subset
function correctly (.. VyeX (OK(y))). Therefore we may now make the uniformity

hypothesis as presented in Figure 6.1.

111

Uniformity Hypothesis:

Given a subset D, of a domain D:

3B(d)eD; OK(d)) » (VdeD; 0K (d))

This hypothesis holds for any subset with the group characteristics given in (1) and

(2).
Algebrai: :'v:
i)x€a Group X has properties (1) and (2) above
it) OK (x}) o Result of testing
iii) 3x, €X | OK(x)))-VyeX (0K (y)) Infinitary Hypothesis
iv)3xeX |(OK(x)) 1&2
V) VzeX (OK(z) OR OK(z)) something is correct or it is not
vi) .. VyeX (OK(y)) 3&4
vil) .. VyeX (0OK(y)) 5&6

Figure 6.1: Uniformity Justification

This uniformity hypothesis allows us to extend the results of testing one element of
a subset of the TOI to the whole subset. We can make this extension as long as the

subset has the group characteristics given in (1) and (2).

Grouping elements of the TOI into groups such that “the series of TOI function
calls that generate :i.em is the same" and then further partitioning these groups to
form sub-groups such that "the observable functionality these elements should exhibit

in a correct implementation is the same,” is wher: we introduce “instance classes”

112

and "sub-instance classes" to our testing methodology. An instance class is made up

of instances of the TOI whose traces contain the same series of TOI function calls.

For example the elements of our List type!! given in example 6.1 are members of the

same instance class.

removeDups(AddElt(AddElt(initlist(),5),747))
removeDups(AddEIt(AddElt(initlist(),99),99))
removeDups(AddEIt(AddElt(initlist(),123),456))

Example 6.1

To represent an instance class we take the series of function calls for these instances
and replace their non-TOI operands by variables. For example, the above elements

are members of the instance class represented by :

remove Dups(AddEIt(AddElt(initlist(),I1),12))

Thus, instance classes define a grouping on the set of all possible ways to produce
elements of the TOI That grouping satisfies property (1) outlined earlier in this sec-

tion.

In Section 2.3.4 we defined a sub-instance class as a group of elements of the

TOI that are members of the same instance class and are specified to have the same

UThe algebnai. specification of our example ADT "Lint” is given in Appendix I.

113

observable functionality. That is, they contain all elements of an instance class with
the same expected output functions. For example, the instances presented in example
6.1 are members of two sub-instance classes. The O-type functions for our List type,
as specified in Appendix I, that produce "observable" functionality are: emptylist,

getElt, size, and includes. Table 6.1 outlines the results of the O-type functions when

applied to our three instances :

Trace 11=5;12=747 | 11=99;12=99 } 11=123;12=456
emptyList(removeDups(AddElt(AddElt(inidist(),I1),12))) false false false
getElt(removeDups(AddEIt(AddEl(initlist(),11),12))) 12 2 12
size(removeDups(AddEI(AddEt(initlist(),11),12))) 2 1 2
includes(removeDups(AddElt(AddElt(inishist(),11),12)),11) true true true
includes(removeDups(AddER(AddE(initlist(),11),12)),12) true true true
includes(removeDups(AddEI(AddEl(initist(),11),12)),13) true true true

Table 6.1.

Note that the first and third instances produce the same observable functionality and
that the second instance’s observable functionality is different. Thus the first and third
instances are members of the same sub-instance class and the second is a member of
a different sub-instance class. If we group elements of the TOI into sub-instance

classes then:
(1) every element of the TOI will appear in exactly one group;

(2) all elements of any group will be generated by the same series of TOI function

calls;

114

(3) all elements of any group will exhibit the same observable functionality in a

correct implementation of the ADT.

Now we may apply the argument shown in Figure 6.1. The result of that argument
allows us to state that by partitioning the TOI into sub-instance classes, we have par-
titioned the program domain into "subsets such that the existence of one correctly

processed input implies that all that subset’s elements are processed properly."

6.2. Testing a Sub-Instance Class

In this section we describe how to test a given sub-instance class. Determining
which sub-instance class to test next will be discussed in Chapter 8. For the purposes

of this section we will assume we have been told which sub-instance class to test.

We recall that an instance class can be viewed as a series of TOI function calls
with the non-TOI operands replaced by variables. From our discussion in the previ-
ous sections, it follows that given an instance class representation to test, we must
determine what sub-instance classes exist for that instance class and then check that
the observable functionality of an element of each of these sub-instance classes is
consistent with the ADT’s specification. From here on we will refer to "checking that
the observable functionality of an element is consistent with the ADT’s specification”
as "testing" an element. Thus to test an instance class we must determine all its sub-

instance classes and test an element from each of these sub-instance classes.

115

Checking the observable functionality of an element of a sub-instance class
involves applying all applicable O-type functions to that element and checking that
the result the implementation gives, R;, is consistent with the expected result R,.

Algorithm 6.1 gives an outline for this process.

1) Given a sub-instance class trace y
2) For each O-type function
2.1) Determine R, for each legal 0 -y combipration
by following the procedure given in Section 6.3.
2.2) Determine R; for each legal o -y combination
by giving those function calis to the implementation.
23)R, =R;?

Algorithm 6.1.

Determining an implementation result, R;, is simply a matter of giving the
appropriate set of TOI function calls and input values to the implementation and

recording the output values. Thus, the keys to testing an instance ciass are :
(1) determine the sub-instance classes
(2) determine R for each sub-instance class.

PROLOG has proven particularly useful in accomplishing these two tasks.

116

6.3. An Updated Test Case Generation Method Using PROLOG

In this section we describe our method for using PROLOG to accomplish the
two key testing tasks of determining the sub-instance classes of an instance class, and
determining the expected result R, for each sub-instance class. We have found that
previous PROLOG methodologies [Bouge85b, Choquet86, Wild86, Bouge86] could
not be used in our general testing method because of a limitation we call "the con-
straint problem."” In Section 6.3.1 we describe that problem. We next present our
solution to that problem and, in Section 6.3.2, we will present how we have imple-
mented our solution with PROLOG. In Section 6.3.3 we will outline an unexpected
problem with using PROLOG in our more general testing approach. We will then
present our solution to that problem, and show how we have implemented that solu-
tion with PROLOG. Finally in Section 6.3.4 we contrast our work with that of previ-

ous authors.

To begin with, we specify in Figure 6.2 a slightly more complex type, called
Bag, with more observable functionality than our type Queue which was specified in
Figure 2.1. Bag is more complex than the Queue because the "removeDups" opera-
tion depends on the values of non-TOI (fnteger in this case) inputs. Figure 6.3 gives
the PROLOG specification for the ADT specified in Figure 6.2. The PROLOG
specification was produced by applying the equivalences outlined in Section 3.2.3 to

the algebraic specifications in Figure 6.2.

Type bag

SYNTAX
initBag()
addElt(bag,integer)
removeElt(bag,integer)
emptyBag(bag)
sizeBag(bag)
includesElt(bag,integer)
removeDups(bag)

SEMANTICS

->bag
->bag
->bag
->boolean
->integer
->boolean
->bag

Declare bl:bag,b2:bag,il:integer,i2:integer

1) removeElt(initBag(),il)
2) removeElt(addEIlt(b1,i1),i2)

3) emptyBag(initBag())
4) emptyBag(addElt(b1,i1))

5) sizeBag(initBag())
6) sizeBag(addEl(bl,i1))

7) includesElt(initBag(),i1)
8) includesElt(addElt(b1,i1),i2)

9) removeDups(initBag())
10) removeDups(addElt(b1,i1))

END.

=initBag()
=[F [1=12 THEN bl
ELSE addElt(removeElt(b1,i2),i1)

=true
=false

=0
=sizeBag(b1)+1

=false
=[F I1=I2 THEN true
ELSE includesElt(b1,i2)

=initBag

=IF includesElt(b1,i1) THEN removeDups(b1)

ELSE addElt(removeDups(b1),il)

Figure 6.2: Algebraic Specification of Type: BAG

117

118

removeElt(initBag,I1,initBag).
removeElt(addEIt(B1,11),I12,B1):- I1=12 .
removeElt(addEIt(B1,11),12,addEIt(B2,11)):- !,removeElt(B1,12,B2).

emptyBag(initBag,true).
emptyBag(addEIt(B1,I1),false).

sizeBag(initBag,0).
sizeBag(addEIt(B1,11),X):- !,sizeBag(B1,Y), X is Y+1.

includesElt(initBag,I1 false).
includesElt(addElt(B1,11),12,true):- 11=12.
includesElt(addEIt(B1,I1),12,X):- !,includesEi(B1,12,X).

removeDups(initBag,initBag).
removeDups(addElt(B1,11),X):- includesElt(B1,I1,true), removeDups(B1,X).
removeDups(addElt(B1,I1),addEIt(X,11)):- !,removeDups(B1,X).

Figure 6.3: PROLOG Specification of Type: BAG

i19

The specification in Figure 6.3 is also a PROLOG program. If we load this pro-

gram into a PROLOG interpreter we may give the interpreter goals of the form

oef (of {cf Acf 3+). Answer)

Where:
- ¢f 1,6f sandcf 5 are all C-type functions.
- oef is a non-C-type (O or E -type) TOI function
- Answer is an unbound PROLOG variable.

The interpreter will attempt to find a solution to this goal by using the clauses of the
program as replacement rules to bind a value or variable to "Answer." Figure 6.4

shows several such queries and the output from a PROLOG interpreter.

Notes:

(1) Queries 1 and 2 give us the Ry values false and 1 for applying two of the O-type

functions to the particular instance class addElt(initBag(),I1).

(2) Query 3 gives the two sub-instance classes corresponding to I1=I2 and I1+12 for

the instance class removeElt(addElt(initBag(),I1),12).

(3) Query 4 shows that there is only one sub-instance class associated with the

instance class removeDups(addElt(initBag(),I1)).

yes
1)?- emptyBag(addEl1(initBag,I1),Answer).
Answer = false,

n=_77,;
no

2)?- sizeBag(addElt(initBag,I1),Answer).
Answer = |,

IN=_687;
no

3)?- re:noveElt(addElt(initBag,11),12, Answer).

Answer = initBag,

11=_72,

R=_72%;

Answer = addEli(initBag,_72),
I1=_72,

2=_927;

nc

4)?- removeDups(addEli(initBag,[1), Answer).
Answer = addEl(initBag,_74),

n=_747;

no

Figure 6.4: PROLOG Queries for Type: BAG

6.3.1. The Constraint Problem

When we examine the specification in Figure 6.2, the only non-TOI predicate
used is equality. It is used in axioms #2 and #8. These axioms translate, in part, to

the second and ninth clauses in the PROLOG specification in Figure 6.3. These

121

clauses impose the constraint that I1=I2. This constraint gives rise to the first sub-
instance class found in query #3 in Figure 6.4. This method of using PROLOG as
described in previous papers [Bouge85b, Bouge86, Wild86] has been shown to work
for several different sample ADT specifications. Unfortunately all those examples

only allowed the equality predicate in the specification. Predicates such as ">" ">="

"#" were never mentioned, much less demonstrated. It has been suggested [Cho-

quet86] that these other predicates are unique and therefore will require special han-

dling. We disagree with that suggestion.

In the specification in Figure 6.2 when we say "I1=I2", we mean the integer
value of I1 must be the same as the integer value of I12. In the clauses of the PRO-
LOG specification, the PROLOG interpreter takes "I1=I2" to mean Il and I2 are to
be unified. These two meanings are quiic different. As a result of unifying I1 and 12
we do in fact ensure I1 and 12 have the same value, if they have one at all. Thus it is
possible to get away with translating "I1=I2" in an algebraic specification into
"I1=I2" in a PROLOG specification even though they do not mean the same thing.

The important point is that equality is a unique predicate, and this uniqueness allows

for a simple translation. This trick will not work for any other predicates. Thus, for a
testing system that will work on more than a handful of examples, we have found that

a general method for handling constraints that arise from any predicate is needed.

We note that many PROLOGSs do have ">" and "\=="(not equal) symbols. The
former fails if its operands are not arithmetic expressions, that is, it will not work for
unbound variables. The later means "cannot currently be instantiated to". Neither

of these are what we need.

6.3.2. A More General Constraint Handling Method.

In this section we outline a new, more general, method of handling general
predicates and their associated constraints, for test case generation. We then present a
new set of translation equivalences to implement this method. The results presented
here focus on the problems of handling constraints in logic programming for test
case generation. The reader is referred to {Jaffar87a, Jaffar87b] for discussions on the

more general problems in constraint logic progrzmming.

We begin by noting that in the equivalences in Section 3.2.3 we are already
adding a variable (y in equivalence #1) to the axioms, to communicate the "answer"
between sub-goals, and to return the "answer" to the parent clause. Thus it is reason-
able to add other variables through the translation procedure to communicate infor-

mation in addition to the final specified output result (R;).

If we look at axioms such as #3 and #6 in the specification in Figure 6.2, we see
that these axioms give information about Rs for a particular class of traces. Axioms

such as #2 and #8 also give information about R but this information is subject to a

123

constraifit: (I1=I2) or (not(I1=12)). That is , these axioms also give information about
the constraints Cgs that must be true for Rs to be valid. We propose to explicitly cor-
municate this information between sub-goals, and to the parent clause, rather than

implicitly communicate it, as has been done before.

We will introduce a variable called “"constraints in " (CI) through the translation
procedure. CI will contain the constraints the parent goal must currently satisfy.
This variable will be used to communicate to each sub-goal those constraints the
parent (and therefore the sub-goal itself) must currently satisfy. We also introduce
through the translation procedure a variabie called "constraints out" (CO). This vari-
able will communicate back up to a parent goal those constraints this particular solu-
tion of the su: -goal must satisfy. Note that for any sub-goal the constraints coming in
(CI) must be implied by the constraints going out (CO), i.e.,

CO- (I

As pointed out above, axioms such as #2 and #8 in Figure 6.2 give rise to con-
straints of the form (I1=I2) and (not(I1=I2)). To allow a more general handling of
predicates, so that we may uniformly handle predicates in addition to equality, we
propose to view these constraints in the form:

IMopl2
AND

I1op2 12

"__n

where opl is "=" and whe:e op2 is "«"

We can now introduce a new set of equivalences that allow a consistent han-
dling of all non-TOI predicates by a PROLOG interpreter. First we note that

fx)=1If C THEN A, ELSE A,

can be viewed as
C=>f(x)=A,
C=>f(x) = A,
Under a PROLOG foi. =32 axioms are written as :
f(x)=A:-Cx)
fx)=42:-C(x)
Our transformation into hom clauses is performed by using the following

equivalences.

Df@ilen .. xag20n .. 02, @ Yam) 2102)=A - C(X) L e
F()'l,yz, S 2T 2 T .ZP.A.CI.CO) -
Gi(x1, ... o X Y1,C1 L Coy),
GAwy. ..., 042Yy2.C0,,C02),

Gu (Yh v oo o Tam o Ym »Cam-l Com)
add_constraint (C (X),Con ,CO).

F(yl-hn---h-zl ----- ZP,A.Cl,CO):’
Gixp,.. . xa1.y1.C1 Co)),

Gy, ..., 0 2,¥2,0,,C03),

Gu ('Y] ----- Yam +Ym vcou -1 'CO)

"add_constraint(C,L1,L.2)" simply adds the constraint C to the
list of constraints L1 giving a new list of constraints L2.

An example using these equivalences is given in Section 6.4.

125

There are several advantages to our new method of translating axioms to homn

clauses.

(1) This method does not require the PROLOG interpreter to implement any of the

)

predicates that are used in the axioms. Thus the range of predicates that the tes-

ter may use is no longer limited by the PR OLOG interpreter.

The interpretation of the meaning of predicates such as ">" and "#" are left to

the user. By using this new procedure the PROLOG interpreter directly returns

the constraints instead of simply implying them. If we look at query #3 in Fig-

ure 6.4, we sce that 71 272 is implied in the second answer. That constraint is not

given directly.

126

(3) We will no longer get infinite depth-first recursion for predicates such as X =Y.
With our method the interpreter no longer tries to "solve” X =Y by enumerating
all possible X’s, all possible Y’s, and then retuning pairs where X # Y. The

interpreter simply treats the constraint X #Y as a fact.

(4) Thris method makes the use of integers in our specification a lot easier: we do not
have to view each integer as a set of "base" and "successor” functions as has

beer done previously [Bouge85b, Choquet86].

(5) Finally, abstract data types tend to be hierarchical in nature. That is, they are
built on top of each other. Thus ADT’s will be built and specified using types
more complicated than just integers. This method allows for the use of arbi-
trarily complicated predicates from these more complicated types to be used in

the specification of new higher types.

6.3.3. The Problem of More General Traces

As outlined in Sections 6.1 and 6.2, our testing method calls for generating
sub-instance classes and expected results for traces made up of any of the TOI
operations. This is significantly different from previous users of PROLOG for test-
ing. We showed at the beginning of Section 6.3 that previously, goals had to be of

the form:

oef (cf \(cf oef 3+ -+), Answer)

127

where: ¢f |, ¢f 5, and ¢f ; can ONLY be C-type functions.

Thus previous methods only allowed non-C type functions to appear as the outermost
function of the trace. For example, the goals in Figure 6.5 simply return "no" for the
PROLOG specification in Figure 6.3. This problem arises because the axioms of the
initial algebraic specification define the non-C-type functions of the ADT in terms of
the C-type functions, but the C-type functions are only implicitly defined. There are

no explicit axioms for C-type functions.

yes

5)?- removeElt(removeElt(addElt(addElt(initBag,I1),12),13),Answer).
no

6)?- removeElt(removeElt(addElt(addElt(initBag,I1),12),13),14, Answer).
no

7)?- removeDups(removeEIlt(addElt(addElt(initBag,11),12),13),Answer).
no

I?-

Figure 6.5

128

To be unable to test traces of arbitrary orders of C-type and non-C-type func-
tions is a significant limitation of an ADT testing method. We have had to develop
new translation equivalences that differentiate between C-type and non-C-type func-
tions so that our testing method can handle traces that may contain arbitrary orders
of functions. This was not required before, as previous researchers did not require that

their methodologies handle general traces.

Figure 6.6 contains our final new series of translation equivalences. They are an
extension of those outlined in Sub-section 6.3.2. This extension allows for arbitrary
traces in PROLOG by recognizing that C-type and non-C-type functions are specified
differently in the algebraic specifications, and that both types should be allowed in an

arbitrary trace.

Df@uxn. o800 8V Yam)21 2 A - C(X) . &
F(yl,yz, NS T AT ,ZP'A,CI,CO) -
G](X]. . ,x,.l.}'l,Cl.Col),
GAaoy,..., 042,Y2,C01,C03),

Gn (Ylv oo s Yam o Ym COmy Cow),
add_constraint (C (X),Com,CO).

-where F & G, are relation symbols corresponding to f & g,
and CI/,C0 ,Co, and y, are PROLOG variables.

-For any axioms with constraints " C(X)".

-For any non-C-type functions f g,....,gn-

2)](31(11 ----- Xu1) 820y, . .., @2, ..., &n(Y1s. .., Yam)Z1e o oo zp)=A -
Fyiyz..... YaZleenos 7, ACI,CO) -
Gl(xl x,.l.yl,Cl ,COl),
GaAay..... 2,y2.C01.C0)),

Gm (.Yl ----- Yam Ym vcon-l 1C0)

-where F & G, are relation symbols corresponding to f & g,,
and C1,C0 ,Co, and y, are PROLOG variables.

-For any axioms without constraints.

-For any non-C-type functions f .g1,...,gn.

3)F(hl(xl ----- xnl)’hZ(alo- .. 'aNZ) ''''' hﬂl(Yl ----- Ym)»zl Zp) tes = m

F()'l.)'2 y,,,z,,,,,,zp)... .-
34 1S Hl(xl """ xn])v

y2 ‘is HZ(al ----- auZ)9

Ym iS Hu(Yl ----- YM)'

-where F & #, are relation symbols, H, corresponding
t¢ h,, and y, are PROLOG variables.

-For any non-C-ty functions f.

-For any C-type function &,.

4) - — - Fglxy,..., X)2 ..., 2n ACICO) -+ &
et Gy Xy CTCY) L, F(y2a, ... 2m.A,C,,.CO)

-where F corresponds to any TOI function (C-type or non-C-type).

and G is a relation symbol corresponding to g.
-For any non-C-type function g , at any inner level of

nesting on the right hand side of the PRCLOG implication.

Figure 6.6: A New Set of Translation Equivalences

129

130
Notes:

I) Equivalence 3) handles C-type functions in a way consistent with the han-
dling of non-C-type functions in equivalences 1) and 2). Equivalence 3) is
not necessary if nesting of non-C-type functions inside 4,---h, does not
happen or is not allowed.

II) There is no equivalent to 4) for C-type functions.

IlI) Equivalence 3) need not be applied if the results of the non-C-type
functions inside A, - - - h,, do not affect the axiom.

IV) "add_constraint” is simply a PROLOG predicate that adds a constraint
to an already existing set of constraints in a consistent manner; this set of
constraints could be empty.

6.3.4. Comparison to Previous Work

This new method of using PROLOG to generate test cases allows three
significant improvements in the solution of the larger problem of testing the imple-

mentations of abstract data types. Those improvements are:
(1) we can test any combination of TOI functions;
(2) our method does not repeatedly generate the same test case over and over;

(3) we can test against all the axioms of an ADT at the same time.

131

Previous test case generation methodologies were limited in the types of func-
tions that could occur in test cases. They were “limited to those terms of size less than
k that are combinations of constructors. The number of generated instantiations is
then considerably decreased.” [Bouge85b] While we agree that decreasing the size of
a test set is desirable if nothing else is sacrificed, but that is not the case here. As we

showed in Section 4.5.1, previous researchers needed to make a hidden assumption

equivalent to "All E-type functions and their combinations work correctly” to pro-

duce a justifiable test set. They needed to make that assumption because their method
was limited to terms that are combinations of C-type functions only. Our new trans-
lation equivalences remove the requirement of looking at only "combinations of con-
structors.” We feel that a testing method that requires us to assume that a potentially
large part of a software system works correctly without ever testing it, defeats the
point of doing testing. The fact that our PROLOG method will handle terms made up
of any valid combination of ADT fuactions means our overall ADT testing method

does not have those limitations.

Another significant point about our PROLOG method is that i :loes not repeat-
edly generate the same test case over and over. Ini previous methodologies, given the
constraint azb, where a and b were specified to be of a particular type, a PROLOG
interpreter would give all the a x b combinations where a # b. That is (1,2), (1,3),

(1,4), (1,5), (1,6) ... Our method properly returns two sub-instance classes (a,b | a=b)

132
and (a,b | azb).

We have eliminated potentially infinite backtracking for all inequalities (< and
are examples of inequalities) by treating the constraints they imply as conditions
rather than problems to be solved. Previous methods required a PROLOG interpreter
to determine all possible solutions for an inequality. There maybe an infinite number
of solutions to these inequalities and thus this may lead to infinite backtracking. Our
method returns the inequality as a condition that is either true or false. Therefore a
PROLOG interpreter will only have a finite number of solutions to check via back-

tracking.

Finally, at a higher level, we can view the work of previous researchers as study-
ing "how to test an implementation of a data type against a property (an axiom)
which is required by the specification” [Bouge86]. With our new methodology we
can now view all the properties (axioms) of the specification as a unit. This is better

than having to look at each individual property (axiom) separately.

133

6.4. An Extended Example

To demonstrate our method, we extend our previous Bag example to a new type
called Bag-n with a function whose axioms could not previously be handled. That
function will be called "negs" and will return true if the bag contains a negative
integer and returns false otherwise. We will call the new type "Bag-n." The additional
axioms for this new function are given in Figure 6.7. Figure 6.8 gives the PROLOG

specification of our Bag-n type. Note that :
(1) constraints are now explicitly handled;

(2) we no longer use "=" for equality; we use "eq", and that this is consistent with

the other predicates (ge,lt,ne);

SYNTAX
negs(bag) ->boolean
SEMANTICS
11) negs(initBag()) =false
12) negs(addElt(b1,il)) =IF i1<0 THEN true

ELSE negs(bl)

Figure 6.7: Additional Axioms for Type Bag-n

134

(3) there is no problem adding the "negs" function.

Figure 6.9 is a PROLOG listing for several goals given to the interpreter after
the program in Figure 6.8 had been loaded. Note that for all three instance classes the
interpreter returns the correct result (Ans) for each {trace x constraint} pair as well

as the constraints for each of the sub-instance classes.

The first query in Figure 6.9 shows that our method correctly handles the new
function "negs" which contained a predicate other than simple equality (in this case
"less than"). There are two sub-instances: one where the integer is less than zero, and

the other occurs when that integer is greater than or equal to zero.

The second query shows that our method correctly handles traces that have inner
functions other than C-type functions. These traces simply could not be handled
before. In this case the trace is:

size(removeDups(addElt(addElt(initBag,11),i2)))

Note that "removeDups" is an E- function.
p

The third query is a combination that has inner non-C-type functions and the
new "negs" function that could not be run with previous methods. Note that for this
trace there will be three test cases, one when the two integers are equal and two

different cases where they are not equal.

135

removeElt(initBag,I1,initBag,CI,CI).

removeFlt(addElt(B1,11),12,B1,C1,CO):- add_constraint(I1 eq 12,CI,CO).

removeEli(addEly(B1,11),12,addEIt(B2,11),CI,CO):- ! removeElt(B1,12,B2,CI,Ca),
add_constraint(I1 ne 12,Ca,CO).

emptyBag(initBag,true,CI,CI).
emptyBag(addEIt(B1,I1),false,CI,CI).

sizeBag(initBag,0,CI,CI).
sizeBag(addEIt(B1,I1),X,CLCO):- !,sizeBag(B1,Y,CL,CO), X is Y+1.

includesElt(initBag,I1,false,CI,CI).

includesElt(addElt(B1,11),12,true,CI,CO):- add_constraint(I1 eq 12,CL,CO).

includesElt(addEIt(B1,11),12,X,CI,CO):- !,includesElt(B1,12,X,CI,Ca),
add_constraint(I1 ne 12,Ca,CO).

removeDups(initBag,initBag,CI,CI).

removeDups(addEIt(B1,11),X,CI,CO):- includesElt(B1,I1,true,CI,Ca),
removeDups(B1,X,Ca,CO).

removeDups(addEIt(B1,11),addEIt(X,11),CL,CO):- . includesELi<ii1.I1,false,CI,Ca),
removeDups(B1,X,Ca,CO).

negs(initBag,false,CI,CI).
negs(addElt(B1,11),true,CI,CO):- add_constraint(I1 1t 0,CI,CO).
negs(addElt(B1,I1),Ans,CI,CO):- negs(B1,Ans,CI,Ca), add_constraint(I1 ge 0,Ca,CO).

Figure 6.8: PROLOG Specification: BAG-n

yes

| 2- negs(addElt(initBag.I1),Ans,[},COnstraints).

Ans = true,
COnstraints = {62 1¢ 0],
IN=_627;

Ans = false,
’Onstraints = [_62 ge 0],
1=_627;

no

1 ?- removeDups(addElt(addElt(initBag,I1),12),Y.{],Ca), sizeBag(Y,Ans,Ca,COnstraints).

Ans=1,
COnstraints = [92 eq _112],
Ca=[_92eq_112],

11 =_92,

12=_112,

Y = addElt(initBag,_92) 7 ;
Ans =2,

COnstraints = [92 ne _112],
Cu=[_92ne_112],
11=_92,

12 =_112,

Y = addElt(addElt(initBag,_92),_112) ?;

no

12- removeEt(addEl(initBag,I1),12,Y,Ca,COnstraints),negs(Y,Ans,[},Ca).

Ans = false,

COnstraints = {_72 eq _92),
Ca=[],

n=_72,

R=_92,

Y = initBag ?;

Ans = true,
COnstraints = [72 ne _92,_72 1t 0),

136

6.5.

137

Ca=[_7210}

n=_12

R=_92,

Y = addElt(initBag,_72) ?:

Ans = false,

COnstraints = [_72 ne _92,_72 ge 0],
Ca=[_72ge 0],

n=_72,

[2=_92,

Y = addEl(initBag, _72) 7 ;

no
Figure 6.9 Sample PROLOG Run for Bag-n

Conclusion

In this chapter we have outlined a new method for using PROLOG to generate

test data for abstract data types. This method allows two major advances.

(M

)

We can now test instances whose traces contain any combination of TOI func-
tions. Previously published methods only allowed testing of traces whose inner
functions are C-type functions. We have shown that this amounts to assuming
all E-type functions and their combinations are correct. To require a software
tester to assume that a potentially large part of the software to be tested is
correct is a significant limitation. By developing a method that can handle any

combination of TOI functions, we have removed that limitation.

We can now handle, in finite time, specifications that contain predicates other
than equality. As we showed in this chapter, previous methods could handle the

equality predicate because of its unique properties. Our method, by treating

138

constraints as facts, prevents infinite searching, and allows the use of any predi-

cate in the ADT -,pecification.

Our example showed that this method ¢orrectly handles predicates other than
equality and traces that contain functions other :han C-type functions as well as C-
type functions. This significantly expands the class of ADTs that we can test in this

way as it allows us to test ADTs that have E-type functions.

139

7. A COMPUTATIONAL MODEL FOR ABSTRACT DATA TYPES

In this chapter we outline a new model of the computations performed by
abstract datz types. This model was developed to give an understanding of what it
means to "tcst” an element of an ADT. We begin by showing how sub-instance
classes of the TOI can be viewed as trace x constraint pairs. This view will be useful

for describing and understanding our model.

The specified observable functionality of an element of the TOI is depen-

dent on:
(1) the function calls in the trace which generated that element; and

(2) the values of the non-TOI variables that were used as input to those func-

tions.

An instance class may have several sub-instance classes if the observable func-
tionality of its elements is dependent on characteristics of the non-TOI input

elements. For example:

If we have an operation f,(x) in our abstract
data type that is defined as follows:

faex)=fu(x) IF x>0
fax)=f,(x) IF x =0
fa(x)=f:(x) IF x <0

Then the instance class whose trace is f,(x)
will have three associated sub-instance classes.

140

Therefore in our computational model can view a sub-instance class, whose ele-
ments are all specified to have the same functionality, as a trace x constraint
pair. For example, in our "Bag" type the instance class whose uninstantiated trace
is:
removeDups(addElt(addElt(initBag(),i1),i2))
would have two sub-instance classes defined by the following
trace X constraint pairs:
removeDups (addElt (addElt (initBag (), i 1), i2)) X il=i2

removeDups (addElt (addElt (initBag (), i 1), i2)) X P12

7.1. A Canonical Form for ADTs

When we presented the theoretical foundation for our specification directed
software testing methodology we stated that we will be working with a sviticiently
complete set of axioms. We showed that any sufficiently complete ax*omatization
may be viewed as a set of replacement or re-write rules. If an axiomatization is
sufficiently complete for a language L(T), which is the language defined by the
abstract type T=[{V},{S+O}], then every term in the language must be assigned a
meaning by the axiomatization. We can view these axioms as re-write rules; every
trace of ADT functions can be assigned a canonical form by those re-write rules. The
axioms of the algebraic specification of an ADT define the results of O-type and E-

type functions in terms of C-type and N-type functions. Thus a sufficiently complete

141

algebraic specification of an ADT can be used to re-write any valid fully instantiated
trace of ADT functions as an equivalent trace containing only C-type and N-type

ADT functions.

If we take a "re-written" form of a trace and replace all nor-TOI values by

variables then we get what we call the canonical form of that fully instantiated trace.
Definition (Canonical Form):

Let L be a language, S be a set and {variables} be a set of variables. An in-
stance i, of the language L({S U {variables}}) whose symbols are
P1P2P3 s pa is a canonical form if Vp[(pe C) v (p e N) v (p € {vari-
ables})], where C is the set of C-type functions in L, and N is the set of N-
type functions in L.

For example, with our "List" type (see Appendix I):

(1
removeDups (addElt (addElt (initList (),747),74T))

via axiom 23 rewrites to:
removeDups (addElt (initList (),747))

which via axiom 23 reduces to:
addElt (removeDups (initList ()),747)

which via axiom 22 reduces to:
addEl: (initList (,747).

Replacing non-TOI values with variables we get:
addEilt (initList (1 1).

Thus addEl (initList 0J 1) is the canonical form for
removeDups (addEit (addEl: (initList (),747),747))

(2)

142

removeDups (addElt (addEl1 (initList (),123),456))

via axiom 23 rewrites to:
addElt (removeDups (addElt (initList (),123)),456)

which via axiom 23 rewrites to:
addElt (addElt (removeDups (initList ()),123).456)

which via axiom 22 rewrites to:
addElt (addElt (initList (),123),456).

Replacing non-TOI values with variables we get:
addElt (addEl (initList O J 1)1 2).

Thus addEli(addEl (initList)/ 1)J2) is the canonical form for
removeDups (addElt (addElt (initList (),123),456))

7.2. Equivalence Spaces

We now look at (trace, constraint) pairs. For any fully instantiated trace that

produces an element of the TOI, we can build an equivalent canonical trace con-

taining only C-type functions according to the set of specification constraints that it

satisfies. Table 7.1 lists three fully instantiated traces, their instance class, their

canonical form, and the constraints that the input variables had to satisfy accord-

ing to the specifications. It should be noted:

(1

that the first and second traces are part of the same instance class but do not

reduce to the same canonical form; and

143

(2) that the second and third traces have very different operation sentences but

reduce to the same canonical form.

We introduce the new concept for ADTs of equivalence space as a space that

contains all the (trace, constraint) pairs that can reduce to the same canonical
form. An equivalence space is the set of all sub-instance classes that have the

same functionality specified for them.

We can view an equivalence space as containing all traces whose canonical
representation is the same series of ADT-function calls. We note that some

traces cannot be reduced, that is, they are already in a canonical form. We view

Trace Instance Class Canonical Form | Constraints
removeDups (addEilt (addElt removeDups (addElt (addElt addElt (initBag (0. 1) i1=i2
(initBag ().6).6)) (initBag 0 1),4 2))
removeDups (addElt (addElt removeDups (addElt (addElt addE!t (addEl P12
(initBag 0.5).6)) (initBag 0. 1)1 2)) (initBag (),i1)42)
removeElt (addElt (addElt (addElt | removeElt (addElt (addElt (addEls addElt (addElt NONE
(removeEit (initBag (),5),6),7)) | (removeElt (initBag (), 1) 2)4 3)) (initBag 0, 1),i 2)

Table 7.1

144

these as prototypical elements of the equivalence space. We call these structures
“equivalence spaces" because their members are specified to be equivalent, and, in a
correct implementation of the ADT would be equivalent. For example, in our "bag"
type example:
removeDups (addElt (removeElt (addEl (addElt (initBag (),747).99).99),747))
AND
addEl (initBag (),747)

are specified to have the same functionality, and in a correct implementation would
be equivalent to each other. They both should produce bags of one element and that

element should be 747. Thus they are in the same equivalence space.
Definition (Equivalence Space):

Let L be a first order language, S a set, and A an L'(S)-theory where LcL’,
and EcL(S). If (VieE(VjeL(S)(=4 j)-(eE))) then E is an equivalence
space for L(S).

where i =, j means i and j reduce to the same canonical form according to theory A.

Thus there is one equivalence space associated with each canonical form of an
ADT, and urder the sufficiently complete assumption (Section 5.3.4), every fully
instantiated trace of ADT functions that produces elements of the TOI falls into at
least one of thesc equivalence spaces. Our specification consistency requirement

(Section 5.3.3) ensures that they fall into at most one of these equivalence spaces.

145

7.3. Computation Space

We define the computation space for a particular ADT as the space that contains

all the equivalence spaces for that ADT, and the transitions between these
equivalence spaces. These transitions resuit when we apply a valid TOI-function to a
member of an equivalence space. Since that means we are applying a valid ADT
function to a trace of valid ADT functions, we get a new trace of ADT functions. As
we stated, the result of this trace is an element of the TOL. Since any valid trace of the
ADT that returns an element of the TOI is a member of exactly one equivalence
space, this new trace is an element of some equivalence space in that same computa-
tion space. Thus the application of C-type and E-type functions of an ADT may lead
to transitions between equivalence spaces in the computation space of that ADT. For
an ADT whose set of equivalence spaces is {Sg } and whose C-type and E-type func-

tions are {Fc) and (Fg }, the computation space ¢ is a relation:

Se c{lSe) x ((Fe)y (Fe}))

Figures 7.1, 7.2, 7.3 and 7.4 show portions of the computation space for our
"Bag" example. They show the equivalence spaces that may be reached by traces
of length 2,3,4, and 5 or less, respectively, for our Bag-type example. The ovals in
these figures represent equivalence spaces, and are labeled with their canonical

form. The arcs represent TOI-function applications. In Figure 7.1 we can see that

146

traces of length 2 can reach two possible equivalence spaces:
removeDups(initBag()) and removeElt(initBag()) reach the lower equivalence
space; addEl(initBag(),il) reaches the upper equivalence space. Note that the
equivalence space reached is independent of any input values. Therefore all of these

traces represent instance classes with only one sub-instance class.

In Figure 7.2 we can see that traces of length 3 or less can reach one of
three possible equivalence spaces. Again, note that the equivalence space which is
reached by a trace of length 1, 2, or 3 is solely dependent on that trace’s operation
sentence (see Chapter 8 or Glossary) with no constraints on the non-TOI variables,

and is independent of any externally supplied data.

In Figure 7.3 we can see the equivalence spaces that traces of length 4 or less
can reach. Note that the trace
removeDups(addElt(addElt(initBag(),il),i2))
can reach one of two possible equivalence spaces depending on which set of

constraints (il=i2 OR il1#i2) the variablesil and i2 satisfy.

In Figure 7.4 can see how traces of longer length can reach several different
equivalence spaces depending on constfaints the rion-TOI inpur values sziisfy. In
this figure that means constraints for which values of il, i2, i3 are equal. For
example:

removeDups(addElt(removeDups(addElt(addElt(initBag(),i1),i2)),i3))

147

may take any one of five sets of arcs depending upon which set of constraints

variables il, i2 and i3 satisfy.

addElt (initBag(},il)

RemoveElt

initBag

RemoveDups

Figure 7.1: Traces of Length 2 or Less for Bag Type

148

addElt (addElt (initBag(),1i1),1i2)

addElt (initBag(), il)

RemoveDups

RemoveElt

RemoveElt

~initBag

RemoveDups

Figure 7.2: Traces of Length 3 or Less for Bag Type

149

addElt (addElt (addElt (initBag(),il),12),i3)

addElt (addElt (initBag(),1il),1i2)

RemoveDups
AddElt
dd {i1#12}
RemoveDups
{1i1=12}
addElt (initBag(),il)
emoveDups

RemoveElt

emoveElt

RemoveDups

Figure 7.3: Traces of Length 4 or Less for Bag Type

150

addeElt (addElt (addElt (addElt (initBag(),il), iZ),i3),i4)

RemoveDups AddELt
{11#1i2 & 11#i3 & j2eis

addElt(addElt(addElt(initBag(),il),iZ),i3)

RemoveDups
{12=1i3%& 1l1l#i2}
oveElt AddE1lt
RemoyeDups
i1#i2}

addElt (addElt (initBag(),il),1i2)

{il=42 & i1#i3}
RéMoveDups

RemoveDips {11#12)

{il=i2=1i RegloveElt
RemoveDups
{i1=1i2}
addElt (initBag(),1il)
RemoveDups
AddE1t
RemoveElt
L RemoveElt
initBag
. Figure 7.4: Traces of Length 5 or Less

for Type Ba
RemoveDups Yp g

151

7.4. Implications for ADT Testing

Our ADT testing method involves producing a series of instance classes
[=<y.¥;, - > for the ADT being investigated, and then determining all sets of con-
straints on the non-TOI values in the operations of each y, that will cause func-
tionally different behavior. That i57 for each instance class y;,, we must determine
the functionally different sub-instance classes. For each of these sub-instance
classes we select an element and check that the observable functionality for‘
that element is consistent with that ADT’s specification. This is done by applying

all possible O-type functions to that element.

In terms of our computation space model, our testing method selects an ele-
ment, and that element necessarily belongs in one equivalence space. We then
apply all ine mappings that map from the equivalence space of that element to an
output value. Since output values are not members of an equivalence space, we are
applying all mappings that take us out of the computation space for that particu-

lar ADT.

Thus when we say we have "tested" an element of the TCI we are saying

that we have checked:
(1) that it has been mapped correctly into its equivalence space; and

(2) that the observable functionality (output values) of that equivalence space are

correct.

152

This new model of the computations of ADTs and its commensurate insight into
the testing of elements of the ADT may be used as a busis for ordering instance

classes to produce test sets. This will be outlined in Chapter 8.

153

8. TEST SET GENERATION

In this chapter we describe how to generate an ordered battery of tests. We will
call an ordered battery of tests a test set. These test sets are made up of a series of
instance classes to be tested. We will often be concemed with the sequence of ADT

function calls in the trace of an instance or instance class.

Definition (Operation Sentence):

An operation sentence for an ADT is:

Base Case: a valid application of a single operation for that ADT;
or
Recursive Case: an application of a valid operation of that ADT
to an operation sentence of that ADT.

Example:

Assumc an ADT with three operations V= { fa.(ai, " .an) + fo(b1, - " ba)
fe(c: -+ cp)}. For clarity we will denote the operation sentence f,(a), " * am) as
fa and the operation sentence fo(a, - @x-1, f5(B1," " Da)Bse1s" " *Gm) 3 fofs.

Then for this ADT the set of operation sentences is that subset of the set

{fa -fb ofc -flfn vfcfb »fafc ofbfa -fbfbv ofafbfcfafcv -----] which represents
allowable sequences of operation applications.

8.1. Goails of the Testing Method

The goal of our software testing method is to detect the presence of failures

in a software system (see chapter 4). A failure is an observable event where the

154

performance of a system is inconsistent with its specifications. A failure should
not be confused with an error, which is a piece of information which when

processed by the system may produce a failure.

Itis important to realize that to attempt to make a software system fail we are
going to apply a sequence of tests; one test is to be applied after the other. We can-
not guarantee that as more tests are run more failures will be detected; but it is still
desirable to generate tests such that the more ADT operations we execute, the more
likely we are to detect failures. Note we are not saying "the more tests we suc-
cessfully run, the more likely the software is correct.” As we showed in chapters 2
and 4, the later approach is not practical because testing cannot show the
absence of errors, only their presence. Note also that we are producing a test case
series whose elements are not independent of each other. The n+1" choice of which
instance class to test next will depend on which » instance classes have already been

tested.

8.2. A General Method For Testing Abstract Data Types

As we have previously stated, our testing method involves producing a series
of instance classes I'=<y,,p, > for the ADT being investigated, and then deter-
mining what constraints on the non-TOI values in the operations of each y, pro-
duce functionally different behavior. That is, for each instance class we deter-

mine the different sub-instance classes. We have shown that these differences in

155

functionality (for example: includesElt(B,i)= true, or, includesElt(B,i)= *alse, depend-

"i"

ing on the value of "i") are delineated by constraints defined in the axioms of the
specification. For each of these sub-instance classes, we select an element and
check that the observable functionality (as defined in Section 2.2) for that instance is
correct, that is, we check that the output from the O-type functions of the imple-

mentation when applied to that instance are consistent with that ADT’s

specification,

8.2.1. Instance Classes

A significant advance in our testing method, and indeed one of the keys to
our approach, is the ordering of the instance classes that are to be tested for a
given ADT. We construct the series I'=<y, .73, -- > for each n=1,23,--- by deter-
mining which instance class with associated trace y, has the largest ratio of possible
failures to testing cost, given that v,....Y,_, have executed in a manner consistent with

the ADT's specification.

8.2.1.1. Possible Failure Set (PFS)

Given that the goal of our testing methodology is to make the software
which we are testing fail, and that the tester has only limited resources to achieve
that goal, we would like to test the system as economically as possible. To

“"economically” test we need some concept of cost and benefit for testing. To model

156

how an ADT can fail we introduce in this sub-section the concept of a Possible
Failure Set or PFS for an ADT. We will show that there are two basic ways an ADT
can rail, and we define the PFS to include those two ways. We will use this failure

model to develop a measure of the benefit we get from running a given test.

As we discussed in Chapter 2, for an abstract data type it is possible to iden-
tify a set of constructor functions or C-functions. The idea is that any trace that
contains E-type functions can be equivalently written using only C-type func-
tions. In Chapter 7 we defined a canonical representation for ADTs and developed
the concept of an equivalence space. If we replace all instantiated non-TOI ele-
ments with variables in a canonical representation we define an "equivalence space,”
and can view it as containing all traces that, according to the specifications, can be
reduced to the same series of ADT-function calls. An example of this might be

"all stacks of depth 4."

There are several important characteristics of these equivalence spaces. First,
we can view the ADT-functions as mappings between equivalence spaces. For
example, adding an element to a list of length 3 to produce a list of length 4 is
a mapping from a particular 3-dimensional equivalence space to a particular 4-
dimensional equivalence space. Similarly, sorting a list of length 3 is a mapping

from a 3-dimensional equivalence space into a 3-dimensional equivalence space.

157

The second characteristic of an equivalence space is that there are generally
an infinite number of traces that may lead to it. We can view these traces as
routes to that equivalence space within the computation space of that ADT. For
example a queue of length three may be generated by adding three elements to an
initial empty queue, by adding four elements to an initial empty queue and deleting
one, or by adding five elements to an initial empty queue, deleting three elements,

and then adding another element.

The third characteristic of equivalence spaces is that together, they contain
every element of the TOI for an ADT. For example, every queue produced by our
ADT Queue as defined in Figure 2.1 is a member of an equivalence space of queues.
In Section 7.2 we showed that every trace of ADT functions that produces elements
of the TOI falls into at least one equivalence space and at most one equivalence

space.

Guttag [Guttag80] has argued that any useful computation done by an imple-
mentation of an ADT gives a result that is not a member of the TOIl, and that any
ADT that does not return a non-TOI value is of no use. For testing purposes we
extend this and recognize that any useful computation involving an ADT may be

viewed as having two parts:

(1) creating a particular element of the ADT; and

158

(2) applying an O-type function to that element.

We have shown that every element of the TOI is a member of exactly one
equivalence space. By definition, the only observable events for an ADT are the
results of applying output functions to an element of the TOL Since a failure is an
observable event where the system violates its specification, the only way a failure
can occur is by applying an output function to an element of the TOI as that is the
only way to produce an observable event with an ADT. Therefore, for an ADT

failure to occur we must have at least one of the following:
(1) an incorrect TOI element;
(2) an incorrect output function applied to a TOI element.

The only way an element of tne TOI can be created is with a trace of ADT func-
tions that leads to an equivalence space. In terms of our computation model, an out-
put function is a mapping from an equivalence space to a non-TOI value. Therefore,
from the two possible conditions for an ADT failure we find that the conditions for

failure in our computation model are:

Computation Space Model of Conditions for an ADT Failure:

there mwust exist at least one equivalence space such that either
(1) oneof the traces that lead to it contains a fault; or

(2) one of the mappings from it (to an element outside the computation
space) contains a fault.

159

As stated previously, to test an element of the TOI we check its "observable
behavior,” that is, we apply all valid O-type (non-TOI) functions. These non-TOI
mappings from an equivalence space are implicitly included when we test a route to

an equivalence space. Thus we define the Possiul¢ Failure Set (PFS) for an ADT as

the union of

(1) the set of different traces to each equivalence space, and

(2) the set of O-type function mappings from each equivalence space.
Definition (PFS):

PFS = {{se} x ({0} L (T})})
Where: {Sg } is the set of ali equivalence spaces
{0} is the set of all O-type functions
{T} is the set of all TOI traces.

Viewed in another way, the PFS contains the union of all the routes from the ini-
tial states of the ADT (for example an empty queue) into an equivalence space with
all the ways out of an equivalence space, over the complete computation space of

the ADT.

As we have already discussed for software testing in general, a fault is a defect
which may generate an error, and an error is an item of information. From our
definition of the PFS we can see that our iesting method allows for faults in any arbi-

trary sequence of functions that produce an element of the TOI (any element of {T})

or any output function (any element of {O}). If we have a TOI trace whose operation

160

sentence iS Ty =f, /b fcr.... f. then it is a member of (T} in our definition of the
PFS. The trace To=fy fods fer.... fx» which can be viewed as T,=f,(T,) is also a
member of (T}. Since T, and T, are separate members of {T}, we are treating the
testing of T, as a separate event from the testing of T,. Therefore we are not assuming
that an error from the evaluation of T, will necessarily be propagated to the evalua-

tion of T, = £,(T)).

8.2.1.2. Testing an Instance class

The PFS is the set of all ways an ADT implementation can fail. Once we have
tested an element of the PFS we know that the system will not fail for that element.
Therefore, by successfully testing an element, we have removed it from the set of
possible failures. The goal of our testing method may now be viewed as "remov-
ing elements from the possible failure set (PFS) as cheaply as possible." To be

able to do this we need to be able to calculate two things:

(1) How many elements will be removed from the PFS by the testing of a par-

ticular instance class?
(2) How much will it "cost" to test that instance class?

In this section we describe a method we have developed for testing instance
classes that uses the results of our investigation of testing sub-instance classes

described in Section 6.2. With that method established, we investigate the "costs”

and "benefits” of testing an instance class in the following two sections.

From our definition of sub-instance class in Chapter 2 we know that a sub-
instance class partitions an instance class such that every element of an instance class
falls into exactly one of the sub-instance classes for that instance class. Therefore to

test an in3lnasy class it is sufficient to test all its sub-instance classes.

To test an instance class we must test all its sub-instance classes. To test a
sub-instance class we use our result from Chapter 6 (Figure 6.1) which used our
infirwary hypothesis and states that "if the test is successful for one TOI element in a
suo-instance class the program behaves correctly for any TOI element in this sub-
instance class.” That is, elements of our TOI generated by the same series of
operations and whose non-TOI operands satisfy the same set of constraints
behave in the same manner. Thus, if one element in a sub-instance class behaves
correctly then we can expect all elements in that sub-instance class to not exhibit
any failures. For testing this means that to test a sub-instance class we select an ele-
ment from that sub-instance class and check that its functionality is consistent with

the ADT's specification.

Since an ADT is specified in terms of its operations, the only functionality
an element of the TOI exhibits is the non-TOI outputs from the O-type functions
applied to that element. Thus, to check the functionality of an element of a sub-

instance class we apply all O-type operations to that element’s trace. We then

162

check that the output from those operations are consistent with the specifications
of the ADT. Figure 8.1 outlines how to test an instance class. Note that Algorithm

6.11is contained inside step 2) in Figure 8.1.

Given a trace T, of an instance class y:

1) Determine all sub-instance classes of that
instance class (i.e., determine the different
sets of constraints)

2) FOR EACH SUB-INSTANCE CLASS:

2.1) Generate an element satisfying all
constraints for that sub-instance classes.
2.2) FOR EACH O-TYPE OPERATION OF THE ADT:

2.2.1) Execute the operations in
that elements trace with the
appropriate input values and
apply the O-type operation
to the result.

2.2.2) Check that the non-TOI
outputs are consistent with
the ADT’s specification

2.2.3) IF they are consistent, continue;
ELSE stop and report a failure.

Figure 8.1 : Algorithm to Test an Instance Class

163

8.2.2. Calculating The Relative Cost of Testing an Instance Class

In Section 8.2.1.2 we showed that if we test all the sub-instance classes of an
instance class, then we have tested that instance class. Therefore the cost of testing an
instance class is the cost of testing all its sub-instance classes. This in turn is the
sum of the costs of applying all O-type operations to elements of that sub-instance
class and the cost of creating those elements. In Chapter 5 we showed how we can
not make any assumptions about how the ADT under consideration is implemented
as that to some degree defeats the purpose of using ADTs. Thus, if an ADT has
two TOl-operations, f, and f,, we do not assume that f,(a,,---,a.) iS more or
less expensive an operation to execute than f,(b,,---,b,). We can, however, assume
that fy(by, - fa(a@1.' - .8,)." - - by) Will be more expensive than f,(a,,--- a,). Thus
we use the number of ADT function calls to test that instance class as our cost
metric. Given an instance class whose associated trace operation sentence is
Y= fafa-tfaz - f1, and alist O=(0,0,...,0,) containing all applicable output func-

tions for the ADT, the cost of testing that instance class is shown in Figure 8.2.

If we view the cost equation in Figure 8.2 at a higher level it makes intuitive
sense. The 'n’ term gives us the cost of one experiment (as defined in Chapter 2) for
that instance class. The other term gives us the numnber of experiments that must be
run to test that instance class. Therefore, their product gives us the cost of all experi-

ments required to test that instance class.

164

2
n X 3. (# of (trace constraint»—pairs for o,y)
i=l
of operation total # of sub-instance classes
cadlls for any for that instance class
clement of the
clas=

Figurc 8.2 : The Cost of Testing an Instance Class y

As will be shown later in Table 8.4, the number of test cases generated by

applylng an output function to a trace (o;y) may vary depending on both the trace

and the output function.

For the "List" type specified in Appendix I we may want to test:
removeDups(addElt(addElt(initList(),[1),12)).
This particular example has also been used in Chapter 7. There are four O-type func-
tions for this ADT. Table 8.1 shows the eight sub-instance classes that need to be
tested for this instance class. As we can see, there are five ADT operation calls for
each test. Those five are the O-type function call, one "removeDups" call, two

"addElt" calls, and one "initList" call. Therefore the relative cost of testing this

165

0; Constraints | Result
emptyList(y) None False
getEl(y) 11=12 12
getElt(y) =12 1
siz.{y) I1=I2 1
size(y) =2 2
includes(y,I3) Ii=I3 True
includes(+,I3) 12=I3 True
includes(y,I3) 11213 & False

12#13 i

NOTE: y = removeDups{addElt(addElt(initList(),11),12))
Table 8.1: Sub-instance Classes for o; -y

instance class is Sx8=40.

8.2.3. Calcviting the Relative Benefit of Testing an Instance Class

Since our goal is to make the software system fail with a limited set of
resources, we would like to exercise, and therefore remove from the PFS, as raany
elements as possible, yet hold the costs of testing to a minimum. As we showed in
Section 8.2.1.2 the goal of our testing method may now be viewed as removing ele-
ments from the PFS as cheaply as possible. Thus the "benefit" of testing an
instance class is the removal of some elements from the PFS. Therefore the
metric we use in comparing the relative benefit of testing two different
instance classes is the number of elements the testing of each removes from the

possible failure set that have not previously been removed.

166

Given our "no coincidental incorrectness” assumption from Section 5.2, we can
now identify three ways the testing of an instance class may affect the PFS. The
first effect of testing an instance class whose equivalent operation sentence is
F=fofnidfnafng. ., fi is the removal from the PFS of the trace
fafnrfuafas....fras a route i e.chof the equivalence spaces associated with
each of the canonical forms of £, J:,. A 2 w3 e ey fi. To see this, recall that in Sec-
tion 8.2 we showed that a trace may lead to more than one canonical form depending
on the set of constraints satisfied by the input variables, and that every canonical form
has an associated equivalence space. In Section 8.2.1.1 we defined the PFS for an
ADT as PFS={{S;} x {{0} U {T}}}. Now, for a tested trace "T" that hzs canonical
forms Cr,, Crs Cry,. with associated equivalence spaces Sgi, Sga, Sey. we have
removed (tested) Sg,xT, SgoxT, SgaXT ... from the possible failure set. If we use the list
example given in Appendix III and used in Chapter 7 we can sce this. In Section 7.1
we showed that

removeDups(addElt(addElt(initList(),11),12))
can reduce to:
addElt(initList(),]1) AND
addElt(addEk(initList(),I1),12)
Note that each of these reduced canonical forms has an associated equivalence space.

In testing that instance class, we have removed one path to each of these equivalence

167

spaces from the PFS. Figure 6.3 is the portion of the computation space shown in Fig-

ure 7.4 with the two elements we have removed emboldened.

168

—

addElt(addElt(addElt(addElt(initBag(),il),iZ),i3),i4)

RemoveDups AddElt
{il#1i2 & 1l1#i3 & i2zi3})

addElt (addElt (addElt (initBag (), il),i2),1i3)

RemoveDups

RemoveDX\ps {1112}
{miz=s /RemoveDups
1=i2}

RemoveElt

.Lt(initBag() ,1i1)

emoveDups

RemoveElt

@" emoveElt
Figure 8.3

/ Two PFS Elements Removed
)

RemoveDups

169

The second effect of testing an instance class is the removal of the mappings
o,(E;) from the PFS, where the o;’s are the O-type functions and the E,’s represent
the equivalence spaces associated with each of the canonical forms of
faSnafa2fa3. f1. To see this effect, recall that every instance "i" of an ADT is a
member of exactly one equivalence space (Sgz:i€ {Sg}). To test that instance involves
applying all possible O-type functions {0,05.03,...} to that instance. Thus we have
removed Sg; x01, Sgi%02, Sgi%03.... from {{Sg} x ({0} (T}}). Interms of Figure 8.3,
we have removed from the PFS the arcs from the two emboldened equivalence spaces
and that lead to elements outside the computation space of the ADT. For this "list"
example we have four O-type functions (emptyList, getElt, size, includes), thus

2x4=8 Sgxo; elements are removed from the PFS.

The third effect the testing of an instance class has on the PFS is more subtle. It

arises from the fact that if we have executed a trace, for example:
addQ (add(Q (deleteQ (addQ (initalQ 04 1)),i 2),i 3)
we have also executed the inner traces
addQ (deleteQ {(addQ (initalQ 0, 1)).i2) and deleteQ (addQ (initalQ 0,i 1)) , etc.

In such a case we may be able to say we have tested these inner traces. We can say
this only if all the sub-instance classes of the inner trace have been preserved in
the outer trace. This does not always happen. For example, in testing a trace such as

deleteQ (deleteQ (addQ (addQ (initialQ Q.i 1)1 2)))

170

we are essentially testing an empty queue which will exhibit very listle functional-
ity. In this case we cannot say we have also tested the inner trace

addQ (addQ (initialQ (04 1)4 2)
as there would be sub-instance classes in that queue of two elements that would
be lost upon deleting elements and thus would not be preserved in the larger

trace.

For our removeDups(addElt(addElt(initList(),/1)12)) example in Figure 8.3 we

want to know if we can remove any of the elements of the PFS associated with
(1) addElt(addElt(initList(),I1),I2);

(2) addEl(iniiList(),I1);

(3) initList().

The paths associated with each of these "inner" traces are labeled and emboldened in
Figure 8.4. In this example all the constraints for testing initList() are included in the
sets of constraints for testing addElt(initLisi(),/1). All the sets of constraints for test-
ing addElt(initList(),/1) are included in the sets of constraints for testing
addElt(addElt(initList(),11),12). Finally, all the sets of constraints for testing
addEli(addEl(initList(),]1),12) are included in the sets of constraints for testing
removeDups(addElt(addEl(initList(),/1),12)). Thus for this example we have three
more SgxT elements (one for each of the traces enumerated above) that are removed

from the PFS.

171

(1) Ef

AddElt

ups

ReploveElt

(3)
RemoveElt

RemoveElt

Figure 8.4

, Possible PFS Elements
RemoveDups

172

To characterize this third effect of testing in terms of our PFS model, we say
that for testing an instance class whose equivalent operation sentence is
Fz=fofnanafaa .. . f1, we may also remove the ~'=ments of the PFS that
teStNg facif w2 acss. .. f1, would reuiove, if all the fuactional boundaries of all
the domains of the sub-instance classes of fr_,fr2fac3 ... /1 are preserved in
fadntfn-2fa-3 ... fie

An alternate view of this is: if in satisfying each individual set of constraints that
determine the sub-instance classes in fo facifa-2fncsn. ... f1, we have also satisfied
all the individual sets of constraints in f._,f.-2fas..... f1, then we have also
tested faoifa2f a3 ... f

An example of where we cannot say we have tested the "inner" traces of a par-
ticular element is:

deleteElt(addElt(initList(),I1)).

In this case all the constraints for testing addElt(initList(),I1) are not included in the

constraints for testing deleteElt(addElt(initList(),11)).

173

To summarize, there are three ways the testing of an instance class may affect

the PFS:

(1) The patns associated with the trace of that instance class are removed form the

PFS.

(2) The output functions that have been applied to the tested instances are removed

from the PFS.

(3) Some of the smaller traces included in the trace of that instance class may also

have been tested, and could therefore be removed from the PFS.

For our example instance class
removeDups(addElt(addElt(initList(),11),12))
we remove 2+8+3=13 elements form the PFS (assuming they have not already been

removed by previous tests):

2 - from the first effect;
8 - from the second effect;
3 - from the third effect;

Thus the relative benefit of testing this instance class is 13.

174

8.2.4. An Algorithm For Testing ADTs

Our new method for testing an ADT can be described in general terms as
repeatedly selecting and testing the untested instance class that is the most cost

effective to test. Figure 8.5 gives our algorithm for testing an ADT.

Note that this algorithm is an instantiation of the general testing method for
which we developed a theoretical foundation in Chapter 4. In that chapter we showed
that at the highest level our methodology would "iteratively test instance classes of
the ADT in the order defined by our complexity metric.” Step 2 of our algorithm cal-
culates its values as described in Sections 8.2.2 and 8.2.3. Note also that steps 3 and
4 incorporate the algorithm given in Figure 8.1, which in turn incorporates Algorithm

6.1 given in Section 6.2.

8.3. Example

Figure 8.6 gives an algebraic specification of an abstract data type called “Bag-
c” (of integers). This Bag-c type is more complex than the Bag type we specified in
Chapter 2. The N-type function is initBag(), which produces a new, empty, object
of type Bag-c. The C-type function is addElt(bag,integer). There are two E-type
functions, the first is removeEli(bag,integer) which removes one element from the
bag if that integer is ir the bag, otherwise nothing is removed. The other E-type

function is removeDups(bag), which returns a bag of equa! or smaller size than

175

1) Start with PFS containing all mappings and canonical forms.
2) (Re)-calculate which untested instance class has the
highest "test value" Y. That is, the sentence F:

. F=fnfn—Lfn-2 o 'fl(n >0)
with the highest value Y:

Y=# elements of PFS which are removed by testing F

n X Y (¥ of (trace constraint }-pairs for o; F)
izl

WHERE 0=(0,0,. o0,) is the set of all O-type functions.

3) Determine all sub-instance classes of that
instance class (i.e., determine the different
sets of constraints)
4) For each sub-instance class:
4.1) Generate an element satisfying that
instance classes constraints.
4.2) For each O-type operation of the ADT:
4.2.1) Execute the operations in
that elements trace with the
appropriate input values and
apply the O-type operation
to the result.
4.2.2) Check that the non-TOI
outputs are consistent with
the ADT’s specification
4.2.3) IF they are consistent, continue
ELSE stop and report a failure.
5) Remove appropriate members from PFS.
6) Go to step 2.

Figure 8.5 : Algorithm for testing an ADT

176

the given one. The returned bag contains the same integers as the given one except

that any particular integer element appears only once.

Figure 8.7 gives the PROLOG program that we derived for our Bag-c type
specification in Figure 8.6. For this example we built the tree of traces, to be
evaluated for test cases, to a depth of six (i.e., we looked at all traces of length

six or less).

The PROLOG program in Figure 8.7 was produced by applying the
equivalences in Figure 6.6 to the algebraic specifications of our Bag-c type. That pro-
gram was used to determine the number of test cases that resulted from separate
sub-instance classes in each trace. From the number of test cases we determined the
cost of testing each instance class using the method outlined in Section 8.2.2. The
PROLOG program was also used to determine the benefit of testing each
instance class as per Section 8.2.3. A detailed description of these PFS benefit cal-
culations is given in Appendix IV. The algorithm in Figure 8.5 was then applied to
produce the series of instance classes to be tested, and thus a series of test
cases. Table 8.2 shows the instance classes that are tested by the first 30 test cases.
Each time the instance class with the best benefit/cost ratio was selected. Once an
instance class was selected, the appropriate elements of the PFS were marked as

tested (step S in Figure 8.5). Then the benefit and benefit/cost values were recalcu-

Type bag-c

SYNTAX
initBag()
addElt(bag,integer)
removeElt(bag,integer)
emptyBag(bag)
sizeBag(bag)
includesElt(bag,integer)
removeDups(bag)

SEMANTICS

177

->bag
->bag
->bag
->boolean
->integer
->boolean
->bag

Declare bl:bag,b2:bag,il:integer,i2:integer

1) removeElt(initBag(),il)
2) removeElt(addElt(b1,i1),i2)

3) emptyBag(initBag())
4) emptyBag(addElt(b1,il))

5) sizeBag(initBag())
6) sizeBag(addElt(bl,il))

7) includesElt(initBag(),il)
8) includesElt(addElt(bl,il),i2)

9) removeDups(initBag())
10) removeDups(addElt(b1,i1))

END.

=initBag()
=[F i1=i2 THEN bl
ELSE addElt(removeElit(b1,i2),i1)

=true
=false

=0
=sizeBag(bl)+1

=false
=IF il=i2 THEN true
ELSE includesElt(b1,i2)

=initBag
=IF includesElt(b1,i1) THEN removeDups(bl)
ELSE addElt(removeDups(bl),i1)

Figure 8.6: An Algebraic Specification for a Type Bag-c

178

removeElt(initBag,I1,. itBag,CI,CI).
removeEli(addEl(B1,11),12,B1,CI,CO):- add_constraint(I1 eq 12,CI,CO) .
removeElt(addEl(B1,11),12,addElt(B2,11),CI,CO):- removeElt(B 1,12,B2,CI,CX), add_constraint(11

emptyBag(initBag,true,CI,CI).
emptyBag(addEIt(B1,11),false,CI,CI).

sizeBag(initBag,0,CL,CI).
sizeBag(addElt(B1,I1),X,CI,CO):- sizeBag(B1,Y,CI,CO), X is Y+1.

includesElt(initBag,I1,false,CI,CI).
includesElt(addEIt(B1,11),12,true,C1,CO):- add_constraint(I1 eq 12,CI,CO).
includesElt(addEIt(B1,I1),12,X):- includesElt(B1,12,X,CI,CX) add_constraint(I1 ne [2,CX,CO).

removeDups(initBag,initBag,CI,CI).
removeDups(addEIt(B1,11),X,CI,CO):- includesElt(B1,11,true,CI,CX), removeDups(B1,X,CX,CO).
removeDups(addElt(B1,I1),addEIt(X,I1),CI,CO):- removeDups(B1,X,CI,CO).

Figure 8.7: A PROLOG Specification for a Type Bag-c

s

179

_ First 30 Tests for Search to Depth 6
Trace Trace Sentence Level | #of Test | PFS Elements B/C
Ordering Cases Removed

1 E,D,I 3 3 5 5/9=0.56
2 AD,I 3 4 4 4/12=0.33
3 E,E,D,D.,E,I 6 3 5 5/18=0.28
4 D,E,.D,E,E,I 6 3 4 4/18=0.22
5 E,D,E.D,D,I 6 3 4 4/18=0.22
6 D,D,D,EA,I 6 7 9 9/42=0.21
7 AAAAL 5 7 6 6/35=0.17

Total 30 37

NOTE:E= removeElt
D= removeDups
I=initBag
A= addElt

Table 8.2: Order of Traces Tested for Type Bag-c

lated for each trace and the next trace with the largest benefit/cost value was selected
(step 2 in Figure 8.5). It is not necessary to repeatedly re-calculate the cost of test-
ing each remaining instance class as that value does not change. The benefit for
testing each remaining instance class must be re-calculated each time an instance
class is tested because some of the elements in the PFS have just now been
removed by performing that test. It took approximately 5 minutes using unoptimized

PROLOG code on a SUN 3-60 to produce these first 30 test cases. That time could

180
be shortened considerably if the code were optimized.

In examining Table 8.2 one can see that after testing the first two traces we have
called all the TOI functions at least once. RemoveElt, removeDups, and initBag are
called in the first trace. AddElt is called in the second trace in addition to removeD-
ups and initBag. Note that the trace that provides the most testing benefit is only the
sixth trace to be selected. The reason trace 6 is not selected sooner is its high testing
cost. There are six TOI function calls in that trace and each must be executed seven

times.

To see how the specific tests arise for each instance class, we can examine
trace #6 from Table 8.2. As we outlined in the previous section, we test a trace by
applying each output function to that trace. For each of these combinations we
determine all the different sub-instance classes, an(i produce an element from
each sub-instance class that satisfies the appropriate c;)nsuaints. Table 8.3 gives the

different test cases for the sixth trace selected to be tested as outlined in Table 8.2.

181

Test Cases for D,D,D,E,A,I

Output Function Test Case Correct Output Constraints
size size(y) 1 il 2142

size size(y) 0 il =i2
emptyBag emptyBag(y) true il =i2
emptyBag emptyBag(y) false il #i2
includesElt includesElt(y.i3) false il =i2
includesElt includesElt(y,i3) false il #13
includesElt includesElt(y,i3) true il 212, & il =13

Note: y= removeDups (removeDups (removeDups (removeElt (addElt (initBag (), i 1), i2))))

Table 8.3: Test Case Generation for Trace #6 in Table 8.2.

8.4. Discussion

We have applied the methodology outlined in the previous sections to
ADTs with considerably more axioms in their semantics section. For example we
used an extended list type called List-e which had 39 axioms, and more than one
C-type operation. The specification of the type List-e, along with the PROLOG rou-
tines to determine the test set, and test cases produced for this large example are
given in Appendix III. The results of that experiment produced test sequences simi-

lar to the one outlined in Table 8.2. That example is not included here for the

182

sake of brevity. Some of the more interesting and non-trivial operations of type
List-e example are included in our shorter Bag-c example. These include the E-
type functions "removeDups" and "removeElt" and the O-type function “inclu-
desElt." The outputs from these functions depend not only on the set of operations
that generate their operands but also on the order in which those operations are
applied, and on the non-TOI integer input values. The type List-¢ also included
functions that accept more than one TOI value as input. Two such binary-TOI
functions were intersection(list,list) and union(list,list), both of which return lists.
The constraints on the sub-instance classes of these tunctions include the caitesian
product of the constraints of the "input” lists. Although these functions lead to com-

plex sub-instances and traces, they are handled within this methodology.

The most important application we have found for our computation space
model of an ADT is in the ordering of test cases. This model of ADT computation
may provide useful insight into problems other than testing such as software imple-
mentation and maintenance. For our research, using this model means that we do not
need to assume that in a fault in the implementation of the ADT must occur in a
single function. We allow for faults to be distributed over several functions. For
example, an error might occur in how an "end of list" flag is set in one operation
and then used in some other operations. Thus when examining possible faults we

consider not only the functions that may be applied to a particular class of ele-

183

ment of the TOI (say queues of length four), but also the different combinations of

ADT-operations and non-TOI values that may yield an element of that class.

Another important concept we have introduced in this chapter is the possible
failure set (PFS). This concept provided two advantages. First, it gives us a sound
basis to determine which instance class should be tested next. Secondly, by using a
software testing goal of "making the implementation fail" and assuming limited
resources to achieve that goal, we have been able to apply the concepts of PFS and
equivalence space to produce a sequence of test cases. That is, we can say "run this
test next." It is important to note that our choice of the "next test case" is not
independent of what has already been tested. The number of PFS elements
removed by testing a trace, and therefore the benefit of testing that trace, depends on

which PFS elements have been removed by previous tests.

8.5. Validation

For the validation analysis of our test set generation method we use the RELAY
model of error detection as presented in [Richardson88). We selected this model
because it is a well accepted model that builds on the idea that an error is created
when an incorrect state is introduced at some fault location, and the error is pro-
pagated if it persists to the output. Richardson introduced the concepts of “origina-
tion” and “transfer,” as the first erroneous evaluation and the persistence of that

erroneous evaluation, respectively. This fault-based model of testing relies on an

184

assumption that the module being tested bears a strong resemblance to some
hypotheticaily-correct module. In Chapter 5 we showed that our method makes a

similar assumption (Section 5.1).
Another reason the RELAY model is appropriate for our use is it allows that:

"It is possible that the tested module produces correct output for all input despite a
discrepancy between it and the hypothetically correct module” [Richardson88].

Since the point of using ADTs is to hide implementation details, it is important that
any model we use allow that there be more than one way to implement a correct

module.

According to the RELAY model; given some potential fault, a potential error
originates if the smallest sub-expression in the block of code containing the fault
evaluates incorrectly. We can view that block of code as existing in a context which
contains the value of all variables. "A context oracle is a relation that relates an initial
execution on a test to one or more acceptable contexts. Execution on one or more
tests reveals a context error when the context is not acceptable by the oracle”
[Richardson88]. A potential error in some expression transfers to a "super'-
expression if the evaluation of the "super"-expression is also incorrect. Figure 8.8 is
a representation of the RELAY model of error detection. The conditions necessary

for a potential error to prod 2 an output error is called the revealing condition for

that error. In Figure 8.8 we can see that to produce an output error we need to:

185

Output

Error
Potential Potential Context

Fault . Error Error
r Computational _‘
Transfer

Data Flow
Transfer

Figure 8.8 RELAY Model of Error Detection

(1) originate a potential error in the block of code with the potential fault;

(2) transfer that error through that block of code to produce a context error; this is

called computational transfer;

(3) transfer that context error to the next block of code in the computation; this is

called data-flow transfer;

(4) cycle through (2) and (3) until an output error is produced.

186

Therefore the revealing condition for a context error resulting from a potential fault

/. occurring at node n is the conjunctiun of the origination condition and the transfer

conditions for f, and ».

The RELAY model has been used for white box testing. Based on the geweric
revealing conditions outlined abovg, the model "is applied by first selecting potential
faults for which a module is to be tested and instantiating the generic origination and
transfe.: conditions to provide conditions specific to those faults" [Richardson88]. To
apply the RELAY model in our case, we interpret the "module” where an error can
happen as broadly as possible. We allow such a module to be as small as a single

ADT function call, and to be as large as any series of ADT function calls.

Given that we allow a potential fault in any series of ADT-function calls, a
potential error originates if the L(S) expression to bc tested contains the (smallest}
expression (say SEXP) such that

(SEXP) = (SEXPY
for some set of constraints required by the specifications. Here (SEXP)" is a hypothet-

ically correct result for SEXP.

As long as all observable outputs of an inner expression E; with constraints C;
are active inputs in the output of a "super"-expression E, with constraints C, contain-

ing E;, any errors in the output of £; will be propagated to E,.

187
Definition (Active Input):

Given a set of operations (op,0py0ps.....op.} an expression
E=lyop, I20py I50p. -+, I, is an active input in E iff a change in the value
of I, will always cause a change in the value of E for all possible values of
the other "I"s.

It 1s possible that an error in an inner expression E; could be masked and not
transferred to a super expression E,. In such a case E; does not satisfy our definition
of "active input” for E,. If E; is an active .nput for E, then the output of E, will
depend on the constraints for E;. Therefore C;cC,. If E, is always independent of E,
then a potential error in £; may not propagate to E,. In such a case all the constraints
C, for E, will be independent of the constraints C; for E;. In this second case C;C,.

If E, is sc.metimes independent of E; depending on condition ¢, such that:

E, =]F ¢, THEN F((E;)
ELSE F,

then the constraints for E, will be:

Ce= {cx UG, &)
Thus in this third case C;cC, and the potential error in E; will be propagated to £, in
the c,=true case. Therefore if we require the constraints of an inner expression to be
propagated outward, we cause any context error in the inner expression to transfer to

the outer super-expression.

188

8.5.1. Example

To give an example of a fault that may or may not be propagated we will use our
"Queue with Has" example as outlined in Chapter 2. The algebraic specification for

that ADT is given in Figure 8.9.

Let us assume we have an error spread over the series of functions:

Addq(Addg(...) ...)

If we test the trace
T,= Addq (Addq (Addq (Newq ().i1),i2),i 3)
we see that
T,=Addq(Addg(Newq ()i 1},i2)
is an inner trace or "sub-expression." The question now becomes "In testing T, will

we reveal the potential error in 7, 7"

When we apply the O-type functions (in this case Isnewq, Frontq, Has) to the
inner trace T, we get the functionality presented in Table 8.4. When we apply all the
O-type functions to 7, we get the functionality presented in Table 8.5. We can see

that:

-T1 implies E1
-T2 implies E2
-T4 implies E3
-E1, E2 and E3 are .he only constraints for 7,.

Therefore testing T, will reveal our potential error.

189

Type Queue(Integer)
:) P | TAX

Newq
Addq(Queue,Integer)
Deleteq(Queue)
Frontq(Queue)
Isnewq(Queue)
Has(Queue,Integer)

SEMANTICS

For all q: Queue; i : Integer
Isnewq(Newq)
Isnewq(Addq(q.i))
Deleteq(Newq)
Deleteq(Addq(q,i))

Frontq(Newq)
Frontq(Addq(q,i))

Has (Newq,j)
Has (Addq(q,i),j)

END Queue

-> Queue

-> Queue

-> Queue

-> Integer U {error)
-> Boolean

-> Boolean

, Let

- True

- False

- Newq

- IF Isnewq(q) THEN Newq
ELSE Addq(Deleteq(q),i)

- error

- IF Isnewq(q) THEN i
ELSE Frontq(q)

-False

-IF i=j THEN True

ELSE Has(q,j)

Figure 8.9 Algebraic Specification of Queue with Has

Constraints for T,
Output Function | Correct Output | Constraints | Constraint #
o - false none
lirc;r@ . il none
Has(T, ,x) true x=il El
Has(T, ,x) true X=i2 E2
Has(T, ,x) false x#1] & x#12 E3

Table 8.4: Observable Functionality for T,

190

Constraints for T,

Output Function | Correct Output Constraints Constraint #
Isnewq false none
Fronty il none
Has(7,,x) true x=il T1
Has(T7,.x) true x=i2 T
" Has(T,.x) true x=i3 T3
Has(T,\) faise x#il & x#2 & T4
x#13

Table 8.5: Observable Functionality for T,

Now let us consider testing the trace

T,= Deleteq (Addq (Addq (Newq ()i 1),i 2)).

We see that T, is also a sub-expression of 7,. When we apply all O-type functions to

T, we get the functionality presented in Table 8.6. We can see that constraints El

and E3 are not implied by any of the constrainis arising from testing T,. Thus the con-

text error from 7, may not be transferred to T, as our transfer condition has not been

met. Therefore testing 7, may not reveal our potential error.

191

Constraints for T,
{ Output Function | Cormrect Qutput | Constraints | Constraint #
Isnewq false none
Frontg il none
Has(T, ,x) true X=12 X1
Has(T,,x) false X#i2 X3

Table 8.6: Observable Functionality for T,

If we step back and look at this example from a more general persrective we can
see that it makes sense. We may be able to say we have tested a queue of length 2 (7,)
after we have tested a queue of length 3 (T,). It would be premature to say we have
tested a queue of length 2 after we have tested a queue of length 1 (T,). If we extrapo-
late this process of saying we have tested a queue when we have tested a shorter
queue we could eventually say we have: tested all queues of any length by testing an
empty queue! Thus, from this example we see that this model also makes intuitive

sense.

8.5.2. iwdel

For our analysis we will look at how many potential faults are revealed (as
described earlier in this section) by our test set generation method and by the methods
published previously [Bouge85b, Wild86, Choquet86, Bouge86]. Our error model

(based on the RELAY model) is as follows:

192

Potential Faults

A potential fault may occur in any single ADT-function or may be spread
over any possible series of ADT-functions.

Origination Condition

The test expression SEXP is the smallest expression containing a potential
fault:

o f)2fr - fa)
for some set of constraints required by the specification of the ADT.

Transfer Condition
V feADT:
If the constraints required in

fl . .fl
are all required in

Iif1 fn
then a potential errorin f, - - - £, is transferred to f.f, - - fa

Figure 8.10: Validation Error Model

8.5.3. Experimental Procedure

In this sub-section we describe the experimental approach we used to compare
our test set generation method with previously published methods [Bouge85b,

Wild86, Choquet86, Bouge86]. For all experiments we used SICStus PROLOG.

We used the following experimental procedure for the example ADTs used in
this thesis (Queue with Has, specified in Figure 8.9; Stack (with a hidden function),

specified in Figure 3.7; and Bag-c, specified in Figure 8.6).

193

Given an ADT and its algebraic specification:

1) Produce an old-style PROLOG specification using the
equivalences given in Section 3.2.3.

2) Produce a PROLOG specification using our new
equivalences given in Figure 6.6.

3) REPEAT until one method reveals 300 potential faults,

3.1) Gererate the next set of test cases according to our
method as outlined in this chapter, using the PROLOG
specifications produced in step 2).

3.2) Determine all possible faults that the tests from step 3.1) will
reveal (using the model given in the previous sub-section).

3.3) Determine which of the faults from step 3.2) have not already
been revealed by tests previously generated by our method
and add them to the count of "faults revealed" by our method.

3.4) Generate the next set of test cases according to the
methods described by previous authors, using the PROLOG
specifications produced in step 1).

3.5) Determine all possible faults that the tests from step 3.4) will
reveal.

3.6) Determine which of the faults from step 3.5) have not already
been revealed by tests previously generated in step 3.4),
and add them to the count of "faults revealed” by previous
methods.

194

4) Produce plots of "faults revealed” for each method versus the number of
test cases run and versus the number ADT function calls executed.

Procedure 8.1: Experiment for Comparing ADT Testing Methods

The "possible faults revealed” (steps 3.2 and 3.5) were determined by exhaus-
tively looking at all operation sentences in the traces of the test cases that have been
generated and then determining which of them gave potential faults that would be

revealed according to the RELAY model of error detection.

300 faults was selected as a stopping point because that was how far the experi-
ment had progressed after running for 24-48 hours (on a MIPS M1000 with 32 M-
bytes of memory and a load average below 2.00), and because the plots of the results

appeared to be stable.

8.5.4. Results

Figures 8.11- 8.16 are graphs of "potential faults revealed vs. number of test
cases run,” and "potential faults revealed vs. number of ADT function calls” gen-
erated by the procedure described in the previous sub-section for the example ADTs

we have used in this thesis.

195

I\ L
300- Our Method
-------------- Previously Published Methods
2004
Ptential
FaultsRevealed } ~ P
lm-
0 [eeectt? ' ' . »
0 20 40 60
Number of Tests
Figure 8.11: Potential Faults Revealed vs. # Tests Run. For Type: STACK
[}
300~ Our Method
-------------- Previously Published Met
2004
Potential
FaultsRevealed | -~ P
lm-
0 : -

Number of Function Calls
Figure 8.12: Potential Faults Revealed vs. # ADT Function Calls. For type: STACK

156

Our Method

-------------- Previously Published Methods

Potential
Faults Revealed

0 T T T | R
0 20 40 60 80
Number of Tests

Figure 8.13: Potential Faults Revealed vs. #Tests Run. For type: QUEUE WITH HAS

300-‘
e~ Our Method
.............. Previously Published Methods p

2004 e

Potential |
FaultsRevealed | 7 7
w{ L
0 | | Y T 1 T T >
0 100 200 300 400 500 600

Number of Function Calls
Figure 8.14: Potential Faults Revealed vs. # ADT Function Calls. For Type: QUEUE WITH HAS

197

3004
250+ Our Method
Previously Published Methods
2004 P
Potential 150-
Faults Revealed
100
504
0 I - >
0 80 100
Number of Tests
Figure 8.15: Potential Faults Revealed vs. # Tests Run. For Type: BAG.
3004

Our Method
-------------- Previously Published Methods

Potential
Faults Revealed

0 100 200 300 400 500
Number of Function Calls
Figure 8.16: Potential Faults Revealed vs. # ADT Function Calls. For Type: BAG.

198

8.5.5. Analysis

Using the nonparametric sign test for paired comparisons [Chapman70], we can
accept at better than the 99 percent confidence level that our new method reveals
more potential faults than the previous method. We note that this experiment does
not require any correlation of faults. The experiment views the faults revealed as

independent.

There are two basic factors that caused our method to reveal more potential
faults than the previously published methods. The first factor is that our method does
not assume "The implementation of all E-type functions is correct.” In Section 4.5.1
we showed that previous methods do make that assumption. Thus as the number of
tests or the number of ADT function calls approach infinity, there will be many
potential faults that are not tested by the previous methods but are profitably tested by
our method. As our example in Section 4.5.1 showed, the potential faults that previ-
ous methods did not reveal can exist in even very short traces. This problem is

described in detail in Chapter 4.

The second factor that caused our method to reveal more potential faults than
the previously published methods is the fact that the previous methods start with the
shortest possible trace and test all shorter traces before longer ones. For simple ADTs
that are not affected by their input values and have short specifications with no "IFs"

(QUEUE WITH HAS is simple in this sense), testing almost becomes a problem of

199

pattern matching. Since these simple ADTs have little observable functionality, all
traces with the same ADT functions will act the same and the tester need only ask
"have I tested this pattern of ADT function calls yet." As we introduce more func-
tionality (Figures 8.15, 8.16, 8.11, 8.12), some traces will be better than others for
testing purposes. In that case, requiring all shorter traces to be tested first becomes
more and more expensive, because the shorter traces may not necessarily be as good
as longer traces. Our method is not restricted to testing all the shorter traces first.
Therefore as the ADT to be tested has more and more observable functionality, our
method outperforms the previously published methods by larger and larger margins.
This has been borme out in our results. QUEUE WITH HAS (Figures 8.13, 8.14) is
less complex than BAG (Figures 8.15, 8.16), which is less complex than STACK
(Figures 8.11, 8.12). In all cases our method reveals more faults than previous
methods. When more complex ADTs are produced and require testing, our method
can be expected to outperform previously published methods by larger and larger

margins.

200

#. SUMMARY AND CONCLUSION

A great many industrial, government, and academic concerns are making large
nivestments in software systems whose successful operation is critical to their on-
going operations. Today, the failure of a software system could possibly be meas-
“red in human lives in the case of the American space shuttle, in hundreds of lives

the case of the AirBus A-300 airliner, or in a catastrophic situation, thousands of
nunan lives in the case of a CANDU nuclear reactor. Therefore the ability to pro-
Quce reliable software is currently of great importance. Unfortunately, the problem
of determining if a program obeys its specifications is undecidable in general.
Therefore the production of software systems that are as reliable as possible
requires the use of several validation and verification techniques. These include
system and code review, software inspection, and more than one type of testing.
These various software validation and verification techniques do not exist in isola-
tion, but co-exist and complement each other in improving software reliability,
safety, and correctness. This thesis presents a new testing technique that is just
now becoming feasible. This technique will help insure that software "does every-
thing it should," and thus in co-existence with other validation and verification
techniques will help to increase the reliability of software systems. Developing this

technique required several research contributions. These include:

201

(1) building a prototypical system based on the combination and extension of previ-

ous research results;
(2) developing a foundation for a general method for specification directed testing;
(3) developing a new method for using PROLOG to generate test cases;
(4) developing a computational model for data abstraction;

(5) developing a description, called the possible failure set (PFS), of the ways an

abstract data type can fail;

(6) comparing our technique to previously published techniques.

9.1. Summary

The initial focus of our work was the development of a new specification-
directed software testing methodology, and the construction of a prototype called T-3.
T-3 is a combination and extension of previous research results in test harness con-
struction and test case generation using PROLOG. T-3 can test a limited class of
ADT:s against their specifications and only requires the specifications and the imple-
mentation as input. This system is a significant advance as it solves the oracle prob-
lem. Most software testing methodologics previously described in the literature
need or have assumed the existence of an entity or oracle that could determine if
the output from a software implementation was correct. Qur methodology does not

need any external entities to determine the correctness of test results. The limitations

202

on the ADTs that can be tested by T-3 are listed in Section 3.4. These limitations
result from limitations in previous test harness construction methods and previous
black-box test case generation methods. The main focus of our work has been to

determine and solve the undesiying problems that led to these limitations.

Since ADTs can be viewed as running on an abstract machine, a specification
directed testing methodology for ADTs should be applied in a bottom-up manner.
This allows us to assume the correctness for lower types. That is, we assume the

abstract machine we are working on is correct.

Given the abstract machine we are using is correct, we developed a new concept
of "correct” for an ADT implementation. We u.d this by separating the predicate
'OK” into two parts: OK, and OK,. Now for our black-box testing purposes, a
correct implementation I of an ADT T= (V,S) is one for which every O-type function
that is a member of V returns correct (0K,) values for every element of its domain.
For black-box testing we are only interested in the 0K, portion of the OK predicate.
This definition of "correct” allowed us to state the goal of our overall testing system.
That goal is "to generate and observe a software implementation faiiure as quickly as
possible."” Instead of selecting tests such that "the more tests we successfully run, the
more likely the software is correct," we select tests such that "the more (ADT) opera-

tions we execute the more likely we are to detect failures."

203

We have defined what we have found to be the necessary properties uf a “valid
complexity metric.” Given our overall testing goal and the concept of correctness for
an ADT, we showed that a testing methodology that iteratively tests instance classes
in an order dictated by a valid complexity metric will produce an acceptable collec-

tion of tests.

We have shown how dangerous it can be to not explicitly state the assumptions
intrinsic to a software testing methodology. We have investigated the assumptions
and constraints on the domain of software to be tested by our specification-directed
software testing methodology. Those assumptions and limitations are listed in Sec-

tion 5.3.5.

A new test case generation method using PROLOG has been developed. This
method rests on the new general theoretical method we have developed for achieving
our testing goal. This method generates test cases for a given instance class. The two
key tasks for testing an instance class are: determining all the sub-instance classes,
and determining all the expected results for each sub-instance class. To generate test
cases an algebraic specification is translated into horn clauses using the equivalences
in Figure 6.6. These hom classes are used as a PROLOG program. That program is
used to find all the solutions to goals formed by applying an O-type function to an
instance class. Each solution to those goals becomes a test. This PROLOG method

provides three significant improvements over previous methods.

204

(1) We can handle general predicates in a uniform method as opposed to only

allowing equality predicates.
(2) We can now test all functions of the ADT and all their combinations.
(3) Wedo not repeatedly produce the same #¢st case over and over.

These improvements significantly expand the class of ADTs that we can test
using PROLOG and reduce the assumptions we need to make about their imple-

mentation.

A new computational model for ADTs was developed to give some insight into
what "testing” an element of an ADT means. This model was used to determine an
ordering of the elements of a test set. The concept of a canonical form for any ele-
ment of an ADT was developed within this model and was used to define two new
entities: the equivalence spaces and the computation space of an ADT. Equivalence
spaces partition the space of all elements of the TOI such that every member of an
equivalence space has the same canonical form. In this model all C-type functions
and E-type functions can be viewed as mappings from one equivalence space to
another within the same computation space. These mappings and their associated
equivalence spaces make up the computation space of the ADT. N-type functions are
mappings from outside the computation space to an equivalence space within that
computation space. An O-type function is a mapping from an equivalence space to a

value outside the ADT’s computation space.

208

According to this model of the computations of an ADT, when an element of

the TOl is "tested" we have checked:
(1) that it has been mapped correctly into its appropriate equivalence space;
(2) that the observable functionality of thar equivalence space is correct.

This model of ADT computation allowed us to model the conditions for an ADT
failure. Those conditions are such that there must exist at least one equivalence space

such that either:
(1) one of the traces that lead to it contains a fault; or

(2) one of the mappings from it (to an element outside the computation space) con-

tains a fault.

Note that these two conditions correspond to the two problems we have checked
when an element of the TOI is tested. Thus the Possible Failure Set (PFS), which
contains all the ways an ADT can fail, is a union of two sets of conditions. Therefore

it can be viewed as the union of
(1) the set of different traces to each equivalence space; with

(2) the set of output function mappings from each equivalence space.

Testing can be viewed as removing elements from the PFS. This leads to a

"valid complexity metric" with which to order the instance classes to be tested. That

206

metric is used in the new algorithm for testing an ADT that was presented i Figure
8.5. The algorithm for selecting the next instance class to test is to select the next
instance class with the best benefit/cost ratio as determined by the equation in step 2)
of Figure 8.5. "t should be noted that if we view this as a berefit/cost metric; the

benefit of testing is the removal of elements from the PES, and the cost of testing is

the number of ADT function calls required.

A small demonstration of the overall methodology is given in Section 8.3.
Appendix III gives the test set that this new methodology produces for a large com-

plex example.

A major advantage of our methodology is that we allow the user to use the
hierarchical nature of ADTs. We have shown in Section 2.3.1 that previous methods
[Bouge85b, Choguztf6, Wild86, Bouge86] for using PROLOG to produce test cases
required O-type #i:~ctions to return values of a type with an equivalence function.
Therefore ADTs could only be built on types that had equivalence functions. That is a
severe restriction. In Section 6.3.2 we showed the our PROLOG methodology does
not require the values returned by O-type functions to have an equivalence function
defined on them. Thus a user can build an ADT on top of another ADT that does not

have an equivalence function.

Experiments have shown that our methodology revealed more faults than previ-

ously published methods. These experiments were run on ADTs for which the

207

previous methods work. We showed in Chapters 3 and 6 that there are a grez: many

ADTs which the previous methods simply cannot test but which our methodology

can.

Previously published methods for ADT testing have been bas:d solely on the
syntax of the ADT’s specifications. We found it necessary to look at "what the ADT
was actually computing.” The ADT computation model presented in Chapter 7 allows

us to do that. We have shown that such a method will reveal more software faults.

9.2. Conclusion

In Chapter 1 we stated that the initial hypothesis of our research has been
that a complete testing methodology for abstract data types that is based on
software specifications could be developed. We can now accept that hypothesis.
A complete software testing system, called T-3, based on software specifications has
been developed. W'« have extended the methodology that T-3 implements to handle a
wider range of software and to produce fundamentally sound and usable test sets. In
Section 8.5 we have shown that this methodology reveals more faults than previously

published methods.

9.3. Futuire Work

One of the main contributions of our work is the new testing algorithm given in

Figure 8.5. Step 2) of that sigorithm requires the user to determine which untested

208

instance class has the largest benefit/cost value. This is currently done by exhaus-
tively searching all traces of length one followed by all traces of length two, and so
on. This leads to some very long, slow, searches for the more complicated ADTs
such as tlie one in Appendix [Il. Algorithms for pruning and shrinking that search
space need to be developed. These algorithms should be based on the syntactic struc-
ture of the traces examined, and could also be based on our computational model for
ADTs. In Section 8.5 we showed that it took 24-48 hours on a MIPS M1000 to reveal
3x: sible faults. We believe that time could be shortened by one or two orders of

magni.ude by effective trace-search algorithms.

Our overall testing methodology partitions an input domain into instance classes
and selects the best untested instance class. To test an instance class we test all its
sub-instance classes. It may be the case that some of these sub-instance classes tend
to be more 1. portant to the testing process than others. This importance may be
dependent on how the software was produced, who produced it, or how it is to be
used. An algorithm for ranking sub-instance classes may produce more efficient test

sets.

Our testinz method selects the next instance class to be tested based on the
value of benefit/rost. This metric can also be viewed as "number of possible failure
space elemen's removed per function call.” This method has been shown to be a

significant improvement over previous methods. The benefit/cost metric we use is not

208

the only selection metric possible. For more complicated ADTs or as computer
hardware gets faster it may be more useful to use different metrics for benefit and
cost. An investigation of revised benefit/cost metrics for our overall testing methodol-

ogy, and when to use them, would be useful.

ADTs can be viewed as running on "abstract machines” that provide all the
types and operations necessary to conveniently specify and build the ADT. In Sec-
tion 5.2 we showed that our methodology assumes the correctness of the abstract
machine on which the ADT runs. An interesting extension of our work would be
to develop a methodology that relaxes that assumption. This would require an inves-

tigation of:
(1) the effect of faults in lower types on the testing of higher types; and
(2) the possibility of testing lower types while testing a particular "higiier” ADT.

Such an investigation would lead to a method for developing an integrated test

plan, for specification-directed testing of several ADTs.

Our overall testing methodology requires an algebraic specification of the ADT.
The main reason we cannot use model oriented specification techniques is there are
no logic programming facilities available yet that are based on such objects as sets
and sequences. When such facilities are available an investigation of extending our
methodology to model oriented specifications would be valuable. That investigation

will have to develop ways of handling the existential quantification and side effects

210

that are allowed in model oriented specifications and not allowed in algebraic tech-
niques.

The equivalences developed in Chapter 6 that produce a PROLOG version of an
ADT’s specification do not produce rules that lend themselves directly to parallel
implementation. Each clause in these rules uses the "constraints_out” of the previous
clause as its "constraints_in." This usually means these clauses cannot be solved in
parallel. A PROLOG specification that effectively implements our test case genera-
tion method for a parallel-PROLOG system could be developed by looking at
different ways of implementing the "add_constraints" clause in equivalence 1) of Fig-
ure 6.6. This could significantly increase the efficiency of the overall testing metho-

dology.

T-3 is only a prototype; a production quality system based on the T-3 model
needs to be built. The next logical step for the test case generation methodology
outlined in this thesis will be to integrate an implementation of our new test set
generation methodology into a complete testing tool similar to T-3. While the T-3
system used a rather simple trace generation algorithm to generate the test
cases, it did demonstrate that our general methodology can be used to produce a
useful working system. We have seen in a large example that by using the test
case generation methodology outlined in this paper, such a system will not require

infinite resources to test an ADT implementation. In fact it will exercise it in a

21

useful and practical manner.

Now that a foundation for specification-directed software testing has been set
down and a methodology developed, it would be useful to investigate what types of
faults are revealed in the implementation code by different testing strategies. A use-
ful study would be one that required programmers with different skill levels to imple-
ment several different ADTs, and then test those ADTs and any earlier "working
copies” that might have been produced with our testing method. Such a study would
produce some guidelines for determining when our methodology would be most use-

ful and when other validation and verification methods would be more appropriate.

Our testing methodology is not intended to exist in isolation. The production of
software systems that are as reliable as possible requires the use of several validation
and verification techniques. We have shown that a specification-directed software
testing methodology such as ours can only address the "0k, " half of the testing prob-
lem. We also showed that white box testing methods could only address the "0K.,"
half of the problem. An investigation of the advantages and problems of combining
white-box and black-box testing methods is needed. The hierarchy of white-box
coverage measures is already well defined. As a first step toward combining white-
box and black-box techniques, a two or three dimensional hierarchy that reconciles

white and black-box coverage measures must be developed.

212

Abstract data types have been described as "half way to an object” (in the object
oriented programming sense){Ingalls89]. Therefore, we have developed a solution
for part of the problem of software testing in an object oriented environment. We
have looked at encapsulation. A very interesting and useful extension of our results
would be the design and construction of a testing system for an object-oriented pro-
gramming environment. That system should be based on T-3 and extended to handle
inheritance in object oriented environments. To build such a system research must be
done to determine how and when faults are transmitted through an inheritance hierar-
chy in an object oriented environment. It will be particularly important to characterize
when faults may be transmitted and when faults are guaranteed to be transmitted

through an inheritance hierarchy.

213

GLOSSARY

Acceptable Battery of Tests

Asymptotic Validity

Carrier

Complexity Metric

Context

Deterministic

Error

Experiment

A battery of tests T for a testing context C is acceptable if it is
asymptotically valid and unbiased.

Abstract Data Type. An abstract data type defines a class of
abstract objects that is completely characterized by the opera-
tions available on those objects.

Let C = (L.5,(IN),A) be a testing context, and T=(H (T.)aen) @
battery of tests for that context. T is asymptotically valid if for
every L(S)-structure IT of (I1) if M i=T, for every neN then
ITi=A.

The carrier of an algebra is the set of mathematical objects
we wish to manipulate with that algebra. [Stanat77] Exam-
ples might be integers, real numbers, or a set of character
strings.

A complexity metric can be any function that can be applied to
all possible test cases and returns a numeric result.

See testing context.

Denoting a method, process etc., the resulting effect of which is
entirely determined by the inputs and initial state.

An error is a piece of information which, when processed by a
system, may produce a failure.

Let C = (L S (IT),A) be a testing context. An experiment E for C
is a L(S)-formula without quantifier, such that for any non-
logical symbol p of E and for any L(S)-structure IT of (IT), the
meaning of p in I1 is calculable.

Failure

Fault

Functionality

Homomorphism

Instance

Instance Class

Language

214

A failure for a software system is an observable event where
the system violates its specification.

A fault is an algorithmic or mechanical defect which may gen-
erate an exTor.

Let i be an instance of a language L(S), and a L(S)-structure I1
be an implementation. The functionality of i in IT is the set of
pairs (0,€0 ,v,), where O is the set of O-type operations in L
that may be applied to i such that their meaning in I1 is calcul-
able, and v, is that meaning in I1.

A structure preserving mapping between algebras. Let G and
H be two algebraic structures of the same type in the sense
that G has a binary operation ° and H has a binary operation
defined. Then
¢ : GoH
is a homomorphism (homornorphic mapping) provided it is a
function from G into H and
¥21°82 = ¢g1) - ¢(g2
forall g, and g, in G. [Illingworth83]}

Let L be language and S a set. An instance i of L(S) is an
L(S)-formula without quantifier or logical symbols whose sym-
bols are p,p2ps..... p» Where n is the number of L(S) sym-
bols in i.

Let L be a language and S a set. An instance class I of L(S) is
formed from an instance i =p,, p2,pa. ..., p. Of L(S) by includ-
ing all instances i'=p',p'5,p'3..., p'» Of L(S) that have the
same number of symbols as i and where if p, is different
from p', thenp, € S and p', € S. Thatis, an instance class
contains all instances with the same trace of functions.

Any set of strings over an alphabet %, that is, any subset of £’
is called a - language. [Lewis81]

215

L(S)-structure In this thesis an L(S)-structure may be viev’ed as a program or
an implementation. Formally: "a structure is a pair P=({P.7,),
where [P] is any non-empty set called the universe of P and /,
is a function having as its domain a set of predicate and func-
tion signs. Specifically,

(1) if Q is an n-place predicate sign in the domain of
1,, then 1,(Q) is an n-ary relation on [P], that is, a sub-
setof [P]*;

(2) if f is an n-place function sign in the domain of /,,
then /,(f) is a function from (P]* to [P]." [Lewis81]

L(S)-theory In this thesis the set of axioms in an algebraic specification of
an ADT can be viewed as a theory about that ADT. Formally, a
theory T on a language L is any set of L-formulas.

Nondeterminism A mode of computation in which, at certain points, there is a
choice of ways to proceed: the computation may be thought
of as choosing arbitrarily between them or as splitting into
separate copies and pursuing all choices simultaneously.
Nondeterminism is important in the field of complexity: it
is believed that a nondeterministic Turing machine is capa-
ble of performing in "reasonable time" computations that
could not be so performed by any deterministic Turing
machine.

Observable Functionality
Let L(S) be a language, let an L(S)-structure I1 be an imple-
mentation, and let T be a set of instances of L(S). The observ-
able functionality of 1 for T is the union of the functionalities
of all instances i€ T in Il

Operation Sentence An operation sentence for an ADT is:

Base Case: a application of a single operation for that ADT;
or
Recursive Case: an application of a operation of that ADT
to an operation sentence of that ADT.

216

Projective Reliability Let C =(L 5 ,(IT),A) be a testing context, and (Tu)aev countable
family of tests for that context. (T,).en is projectively reliable
if for every neN and for every structure IT of (IT) such that
M 1=T,, then [TI=T,.

Reliable Test Criterion
Given program domain D a test criterion C and two test sets T,
and T, the criterion C is reliable if:
Reliable(C)= (VT ,To D) [(C(T}) A C(T))—>(Successful (T,) &> Successful (T2)) }

Sub-Instance Class Let L be a language, S be a set, I be an instance class of L(S),
and A be an L(S)-theory. For an instance i= p1p2p3.. ... pn €1
with input values ¢1.g243..... qm , there exists a function F;
such that according to A Fi(¢14243..... gm) =1. A sub-instance
class /; of I is formed from i by including all instances i, € 1
with input values ¢,1.x2.4:3 - - .. g= Such that according to A

Fi(q.ll-ququ- .o -qm) = ix-

Testing Context A testing context C is a 4-uple (L.S,(ID,A) where L is a first
order language; S is a set; (IT) is a family of L(S)-structures;
and A is an L'(§)-theory. Where LC L".

Trace The sequence of ADT-function applications which generated a
data object from some initial state is the trace of that data
object.

Test Let C = (L ,5,(0).A) be a testing context. A test T for C is an

L(S)-theory with only a finite number of axioms, each of them
being an experiment of C.

Type of Interest For an ADT, the data type defined solely in terms of other
types is called the Type of Interest (TOI).

Unbiased A test set is said to be unbiased if whenever the implementa-
tion to be tested is correct it will pass that test.

Uniformity Hypothesis
A sub-domain is uniform with respect to correctness if there

Valid Test Criterion

217

exists an element of that sub-domain such that its correctness
implies the correctness of all elements of that sub-domain.

Given program domain D and a test set T, a test criterion C is
said to be valid if:
Valid (C) = (VdeD)[-0K({d) - @T < DY C(T) A — Successful (TH)1.

[Abramson84]

[Adrion82]

[Berg82]

[Berztiss83]

[Bouge85a])

[Bouge85b]

[Bouge86]

[Budd78]

218

REFERENCES

H. Abramson, "Definite Clause Translation Grammers," 1984
Intl. Symposium on Logic Programming, IEEE Comp. Soc.
Press, pp. 233-240, Feb. 1984.

W.R. Adrion, M.A. Branstad, J.C. Cherniavsky, "Validation,
Verification, and Testing of Computer Software," ACM Com-
puting Surveys, vol. 14, nv. 2, pp. 159-192, 1982.

H.K. Berg, W. Boebert, W. Franta, T. Moher, "Formal
Methods of Program Verification and Specification,”" Prentice
Hall, 1982.

A.T. Berztiss, S. Thatte, "Specification and Implementation i
Abstract Data Types,” Advances in Computers, Acagrime
Press, vol. 22, pp. 295-355, 1983.

L. Bouge, "A Contribution to the Theory of Program T«:ting,”
Theoretical Computer Science, vol. 37, pp. 151-181, 1985.

L. Bouge, N. Choquet, L. Fribourg, M.C. Gaudel, "Application
of PROLOG to Test Sets Generation From Algebraic
Specifications,” TAPSOFT Joint Conference on Theory and
Practice of Scftware Development, vol 2, pp. 261-27S5, Berlin,
March, 1985.

L. Bouge, N. Choquet, L. Fribourg, M.C. Gaudel, "Test Sets
Generation From Algebraic Specifications Using Logic Pro-
gramming," Software and Systems vol. 6, no. 4, pp. 343-360,
1986.

T.A. Budd, R. DeMillo, RJ. Lipton, F.G. Sayward, "The
Design of a Prototype Mutation System for Program Testing,"
Proc. ACM Natl. Comp. Conf., pp. 623-627, 1978.

[Budd81]

[Choquet86]

[Davis85]

[Day85]

[Feather82]

[Ford85]

[Gannon81]

[Gannon87]

[Gaudel88]

[Goodenough75]

[Gougen77]

219

T.A. Budd, "Mutation Analysis: Ideas, Examples, Problems
and Prospects,” Computer Program Testing, North-Holland
Publishing, pp. 129-148, 1981.

N. Choquet, "Test Data Generation Using a Prolog with Con-
straints," Proc. ACM-IEEE Workshop on Software Testing, pp.
132-141, July, 1986.

R.E. Davis, "Logic Programming aad Prolog: A Tutorial,"
IEEE Software, vol. 2, no. 5, pp. 53-62, Sept., 1985.

J.D. Day, J.D. Gannon,"A Test Oracle Based on Formal
Specifications," Proc. SOFTFAIR 11, pp. 126-130, Dec., 1985.

M.S. Feather, "Program Specification Applied to a Text For-
matter,” IEEE TSE, vol. 8, no.5, pp. 490-498, Sept. 1982.

R. Ford, K. Miller, "Abstract Data Type Development and
Implementation: An Example," IEEE TSE, vol. 11, no. 10, pp.
1033-1037, Oct. 1985.

J.D. Gannon, P. McMullin, R. Hamlet, "Data-Abstraction
Implementation, Specification, and Testing," ACM TOPLAS,
vol. 3, no. 3, pp. 211-223, July, 1981.

J.D. Gannon, R.G. Hamlet, H.D. Mills, "Theory of Modules,"
IEEE TSE, vol. 13, no. 7, pp. 820-829, July, 1987.

M.C. Gaudel, B. Marre, "Algebraic Specifications and
Software Testing: Theory and Application,” Rapport de
Recherche no. 407, Universite de Paris-Sud, Feb., 1988.

J.B. Goodenough, S.L. Gerhart, "Toward a Theory of Test Data
Selection," IEEE TSE, vol. 1, no. 2, pp. 156-173, June 1975.

J.A. Gougen, J.W. Thatcher, E.G. Wagner, 1.B. Wright, "Initial
Algebra Semantics and Continuous Algebras,” JACM, vol. 24,

[Gougen78]

[Gourlay83]

[Guttag77]

[Guttag78a]

[Guttag78b]

[Guttag80]

[Guttag85]

[Hayes86]

[Heninger80]

[Hoare72)

220

no. 1, pp. 68-95, Jan., 1977.

J.A. Gougen, J.W. Thatcher, E.G. Wagner, "An Initial Algebra
Approach to the Specification, Correctness, and Implementa-
tion of Abstract Data Types," Current Trends in Programming
Methodology, vol. IV, pp. 80-149, Prentice Hall, 1978.

J1.S. Gourlay, "A Mathematical Framework for the investiga-
tion of Testing,” IEEE TSE, vol. 9, no. 6, pp. 686-709, Nov.
1983.

J. Guttag, "Abstract Data Types and the Development of Data
Structures,” CACM, vol. 20, no. 6, pp. 396-404, June, 1977.

LV. Guttag, J.J. Horning, "The Algebraic Specification of
Abstract Data Types,” Acta Infomatica, vol. 10, pp. 27-52,
1978.

J.V. Guttag, E. Horowitz, D.R. Musser, "Abstract Data Types
and Software Validation,"” CACM, vol. 21, no. 12, pp. 1048-
1064, Dec., 1978.

J. Guttag, "Notes on Type Abstraction (Version 2)," IEEE
TSE, vol. 6, no. 1, pp. 13-23, Jan., 1980.

J. Guttag, J. Horning, J. Wing, "The Larch Family of
Specification Languages," IEEE Software, vol. 2, no. 5, pp.
24-36, Sept. 1985.

LJ. Hayes, "Specification Directed Module Testing," IEEE
TSE, vol. 12, no. 1, pp. 124-133, Jan., 1986.

K.L. Heninger, "Specifying Software Requirements for Com-
plex Systems: New Techniques and Their Application," IEEE
TSE, vol. 6, no. 1, pp. 2-12, Jan. 1980.

C.A.R. Hoare, "Proof of Correctness of Data Representations,”
Acta Informatica, vol. 1, pp. 271-281, 1972.

[Howden76]

{Howden80]

[Howden82]

[Howden85]

[Howden86]

[Illingworth83?

[Ing21s89]

[Jaffar87a)

[Jaffar87b]

{Kemmerer85]

[Lamb88]

221

W.E. Howden, "Reliability of the Path Analysis Testing Stra-
tegy,” IEEE TSE, vol. 2, no. 3, pp. 208-215, Sept., 1976.

W.E. Howden, "Functional Program Testing," IEEE TSE, vol.
6, no. 2, pp. 162-169, March 1980.

W.E. Howden, "Weak Mutation Testing and Completeness of
Test Sets," [EEE TSE, vol. 8, ne. 4, pp. 371-379, July 1982.

W.E. Howden, "The Theory and Practice of Functional Test-
ing, " IEEE Software, vol. 2, no. 5, Sept. 1985, pp. 6-17.

W.E. Howden, "A Functional Approach to Program Testing
and Analysis," [EEE TSE, vol. 12, no. 10, pp. 997-1005, Oct.,
1986.

"Dictionary of Computing," V. Illingworth editor, Oxford
" . iversity Press, 1983.

wngalls, "Object Criented Programming,” Video Tape, Dis-
nguished Lecture Series, vol. III, University Video Communi-
cations, 1989.

J. Jaffar, J. Lassez, "Constraint Logic Programming,” Proc.
14th. ACM POPL Conf. Munich, Jan. 1987, pp. 111-119.

J. Jaffar, S. Michaylov, "Methodology and Implementation of a
CLP System," Proc. 4th. Intl. Conf. on Logic Programming,
Melbourne Austrailia, May 1987, pp. 196-218

R.A. Kemmerer, "Testing Formal Specifications to Detect
Design Errors," IEEE TSE, vol. 11, no. 1, pp. 32-43, Jan,,
1985.

D.A. Lamb, "Software Engineering: Planning for change.
Prentice Hall, 1988.

[Laski8K)

|L.awrynuik87]

[Lawrynuik89]

[Lewis81]

|Liskov74)

[Liskov75]

[Liskov77}

[Lloyd84)

{McMullin81]

[McMullin82)

222

J. Laski, "Testing in Top-Down Program Development,” Proc.
Second Workshop on Software Testing, Verification and
Analysis, Banff, Canada, pp. 72-79 July, 1983.

W.D. Lawrynuik, “The T-3 Testing Tool,” Proc. Intelligence
Integration, CIPS Edmonton ‘87, pp. 355-360, Nov., 1987.

W.D. Lawrynuik, LJ. White, "Test Case Generation ior
Specification Directed Testing of Abstract Data Types,” Tech.
Rept. TR89-22, University of Alberta Department of Comput-
ing Science, Aug. 1989.

H.R. Lewis, C.H. Papadimitriou, "Elements of the Theory of
Computation,” Prentice-Hall, 1981.

B. Liskov, S. Zilles, "Programming with Abstract Data Types,"
SigPlan Notices, vol. 9, No. 4, pp. 50-59, 1974.

B.H. Liskov, S.N. Zilles, "Specification Techniques for Data
Abstractions," IEEE TSE, vol. 1, no. 1, pp. 7-19, Mar.h 1975.

B.H. Liskov, V. Berzins, "An Appraisal of Program
Specifications,” MIT Project MAC, Computation Structures
Group Memo 141-1, April 1977.

J.W. Lloyd, "Foundations of Logic Programming,” Springer-
Verlag, 1984.

P.R. McMullin, J.D. Gannon, "Evaluating a Data Abstraction
Testing System Based on Formal Specifications,” Joumnal of
Systems and Software, vol. 2, pp. 177-186, 1981.

P.R. McMullin, J.D. Gannon, M.D. Weiser, "Implementing a
Compiler-Based Test Tool," Software Practice and Experience,
vol. 12, pp. 971-979, 1982.

[McMullin33]

[Meyers74]

[Meyers76])

[Moitra79]

[P~sch85]

(Richardson81]

[Richardson85]

[Richardson(8]

[Stanat77]

[Tennenm81)

223

P.R. McMullin, J.D Gannon, "Combining Testing with Formal
Specifications: A Case Study," IEEE TSE, vol. 9, no. 3, pp.
328-334, May, 1983.

G.J. Meyers, C. Heuerman, J. Winterton, "Automated Test and
Venfication,” IBM Tech. Bulletin, vol. 17, no. 7, pp. 2030-
2035, 1974.

G.J. Meyers, "Software Reliability: Principles and Practices,"
pp. 169-215, John Wiley and Sons, 1976.

A. Moitra, "Direct Implementation of Algebraic Specification
of Abstract Data Types,” Tech. Rep. 48., NCSDCT, TIFR,
Bombay, 1979.

H. Pesch, P. Schnupp, H. Schaller, A.S. Spirk, "Test Case Gen-
eration Using Prolog,” Proc. 8th Int. Conf. on Sofiware
Engineering, pp. 252-258, Aug., 1985.

D.J. Richardson, L.A. Clarke, "A Partition Analysis Method to
Increase Program Reliability,” PROC. Sth. Int. Conf. on
Software Engineering, pp. 244-253, March 1981.

D.J. Richardson, L.A. Clarke, "Partition Analysis: A Method
Combining Testing and Verification,” [EEE TSE, vol. 11, no.
12, pp. 1477-1490, Dec., 1985.

D.J. Richardson, M.C. Thompson, "The RELAY Model of
Error Detection and its Application,” PROC. 2nd. Workshop
on Software Testing, Verification and Analysis, pp. 223-230,
July 1988.

D.F. Stanat, D.F. McAllister, "Discrete Mathematics in Com-
puter Science,” Prentice Hall, 1977.

R.D. Tennent, "Principles of Programming Languages,” Pren-
tice Hall, 1981.

[Thatcher82]

| Thomas88]

[Travendale85]

[Urban§2]

[Weber§6]

[Weyuker80]

[Weyuker82]

[White80]

[White87]

[Wild86]

224

JW. Thatcher, E.G. Wagner, J.B. Wright, "Data Type
Specification: Parameterization and the Power of Specification
Techniques," ACM TOPLAS, voi. 4, no. 4, op. 711-732, Oct.,
1982.

P. Thomas, H. Robinson, J. Emms, "Abstract Data Types:
Their Specification, Representation, and Use," pp. 189-202,
Clarendon Press, 1988.

R.D. Travendé.le, "A Technique for Prototyping Directly from
a Specification,” Proc. 8th. Intl. Conf. on Software Engineer-
ing, pp. 224-229, Aug., 1985.

J.E. Urban, "Software Development With Executable Func-
tional Specifications,” Proc. 6th. Intl. Conf. on Software
Engineering, pp. 418-419, Sept., 1982.

H. Weber, H. Ehrig, "Specification of Modular Systems," IEEE
TSE, vol. 12, no. 7, pp. 784-793, July 1986.

E.J. Weyuker, T.J. Ostrand "Theories of Program Testing and
the Application of Revealing Subdomains,” IEEE TSE, vol. 6,
no. 3, May 1980, pp. 236-246.

E.J. W yuker, "On Testing Non-testable Programs,” The Com-
puter Journal, vol. 25, no.4, pp. 465-470, 1982.

L.J. White, "A L umain Strategy for Computer Program Test-
ing," IEEE TSE, vol. 6, no. 3, pp. 247-257, May 1980.

L.J. White, "Software Testing and Verification,” in: Advances
in Computers, vol. 26, pp. 337-391, 1987.

C. Wild, D. Eckhardt, A. Pang, S. Sundararajan, "Analysis of
Executable Specifications for Testing and Monitoring Abstract
data Types,” Dept. of Computer Science, Old Dominion
University, Norfolk, VA, March, 1986.

225

[Zave84] P. Zave, "The Operational Versus the Conventional Approach
to Software Development,” CACM, vol. 27, no. 2, pp. 104-118,
Feb., 1984,

226

Appendix I: An Algebraic Specification for Type List

The following is an algebraic specification of our sample abstract data type
"List". The hidden functions, as discussed in section 3.1.7, are "move_previous,"

"atend," anc "is_single."

Type list

SYNTAX
initList() ->list
addElt(list,integer) ->list
deleteElt(list) ->list
next(list) ->list
previous(list) ->1ist
setElt(list,integer) ->list
emptyList(list) ->boolean
getElt(list) ->integer
size(list) ->integer
includes(list,intege') ->boolean
removeDups(list) ->list

SEMANTICS

Declaie 11:list,12:list,i1:integer,i2:integer

1) getElt(initList()) =NULL

2) getElt(addElt(11,i1)) =il

3) getElt(previous(11)) =IF emptyList(11) THEN initList()
ELSE getElt(move_previous(11))

4) next(initList()) =initList()

5) next(previous(11)) =11

6) next(addElt(11,i1)) =IF atend(11) THEN addEIlt(11,i1)

227

ELSE addElt(setElt(next(11),i1),getElt(next(11)))

7) deleteElt(initList())
8) deleteElt(addEIlt(11,i1)) =I1
9) deleteElt(previous(i1))

=initList()

=IF emptyList(11) THEN previous(i1)

ELSE previous(addElt(deleteElt(deleteElt(11)),getElt(11)))

23) removeDups(addElt(11,i1))
24) removeDups(previous(i1))

25) atend(initList())
26) atend(previous(i1))

27) atend(addElt(11,i1))
28) is_single(previous(11))
29) is_single(initList())
30) is_single(addElt(11,i1))

31) move_previous(initList())
32) move_previous(previous(11))

10) setElt(initList(),i1) =addElt(initList(),il)
 11) setElt(addElt(11,i1),i2) =addElt(11,i2)
12) setElt(previous(11),il) =addElt(deleteElt(11),i1)
13) emptyList(initList()) =true
14) emptyList(addElt(11,i1)) =false
15) emptyList(previous(i1)) =emptyList(11)
16) size(initList()) =0
17) size(addElt(11,i1)) =size(11)+1
18) size(previous(11)) =size(l1)
19) includes(initList(),i1) =false
20) includes(addElt(11,i1),i2) =[F 11=I2 THEN true
ELSE includes(l1,i2)
21) includes(previous(l1),i1) =includes(11,i1)
22) removeDups(initList()) =initList

=[F includes(l1,i1) THEN removeDups(11)
ELSE addElt(removeDups(i1),i1))
=removeDups(11)

=true

=[F emptyList(11) OR is_single(11) THEN true
ELSE false

=atend(i1).

=is_single(l1)
=false
=emptyList(l1)

=initList()
=IF emptyList(move_previous(l11)) THEN 11

228

ELSE move_previous(move_previous(l1)
33) move_previous(addElt(11,i1)) =IF emptyList(11) THEN addEl(11,i1)
ELSE 11

END.

Appendix II: T-3

In this appendix we will present a detailed outline of our Type Testing Tool (T-
3). This includes listings of the main shell scripts and significant routines. We also
include samples of important files that are passed between routines. At the end of this
appendix we demonstrate how T-3 works for both correct and incorrect MODULA-2
implementations of a simple queue. In section 3.3 we outlined our new software test-
ing methodology that T-3 implements. In section 3.4 we described the general opera-

tion of T-3.

Input Files

As outlined in sections 3.3 and 3.4, T-3 needs only the specification and imple-
mentation of an ADT. The implementation of an ADT in MODULA-2 actually con-
sists of two files. The "name.mod" file contains the "code" and the "name.def” file
contains "header" information that allows independent compilation. The ADT
specification consists of the file "alg_spec". For this version of T-3 we also include a
file called "name.functions". This is a short file that lists the various functions in the
ADT. This file is produced separately to ailow separation of instance class production
from the rest of the system. It could be derived from "alg.spec” if that were required.
Listing A2.1 is a listing of the name.mod file for a simple queue type. Listing A2.2 is

a listing of the comresponding name.def file. Listing A2.3 is a listing of the

230

corresponding alg spec file, and listing A2.4 is a listing of the corresponding

name.functions file.

IMPLEMENTATION MODULE Queue;

FROM Sworage IMPORT
ALLOCATE, DEALLOCATE;

TYPE queuve = POINTER TO queuedata;
queucdata =
RECORD
val : INTEGER;
next: queue
END;

PROCEDURE newq():queue;
VAR q: queue;
BEGIN
NEW(q);
q.val:=-1;
q .next := NIL;
RETURN gq;
END newgq;

PROCEDURE add (q:queue; i:INTEGER): queue;

VAR 1,s: queue;

BEGIN

NEW(r);

rvali=1;

r.next:=q;

s :=q .next;

WHILE s < NIL DO
r.next:=s;
s:= s next

END;

RETURN gq;

END add;

PROCEDURE remove (q:queue) : queue;
VAR r:queue;
BEGIN
IF q".next = NIL
THEN RETURN gq
ELSE
1:= q .next;
DISPOSE (q);
RETURNT
END;
END remove;

PROCEDURE front (q:queue): INTEGER;
BEGIN

RETURN (q".val);
END front;

PROCEDURE isnewq (q:queue) : BOOLEAN;
BEGIN

RETURN ((q".next) = NIL);
END isnewq;

END Queue.

Listing A2.1: Queue.mod

231

DEFINITION MODULE Queue;
EXPORT QUALIFIED

queue,

newq, add, remove, front, isnewq;
TYPE queue;
PROCEDURE newq() :queue;
PROCEDURE add (q:queue; i:INTEGER): queue;
PROCEDURE remove (q:queue) : queue;

PROCEDURE front (q:queue): INTEGER;

232

PROCEDURE isnewq (q:queue) : BOOLEAN;

END Queue.
Listing A2.2: Queue.def

Type queue
SYNTAX

newq() ->queue

add(queue,integer) ->queue

remove(queue) ->queue

front(queue) ->integer

isnewq(queue) ->boolean
SEMANTICS

Declare q:queue,i:integer

1) isnewq(newq()) =true

2) isnewq(add(q,i)) =false

3) remove(newq()) =newq

4) remove(add(q.i)) =IF isnewq(q) THEN newq()
ELSE add(remove(q),i)

5) front(newq) =-1

6) front(add(q,i)) =IF isnewq(q) THEN i
ELSE front(q)

END.

Listing A2.3: Queue.spec

i_type(newq).
e_type(remove(adt)).
c_type(add(adt,v)).
o_type(front(adt.ans)).
o_type(isnewq(adt,ans)).

Listing A2.4: queue_functions

Operation

The operation of the overall T-3 system is shown in figrre A2.1.

233

234

~

adt_functions

algbraic

C-PROLOG

pecilication

C-PROLOG

A /

PROLOG

specification m

Instance

A 4
Classes b . m - U

mkcode

Test
Results

13_alg_to_
rolog_trans_ mkics_prol tesls II'
maoa.:mmam_. “ A
cu_prol.1
cu_prol.2 _
mod.end
mkheadar
cProloG [

N8

v

MainTest.mod u

ﬂ a.out vl

mod

(Modula-2 comp)

H

H

L

:

235

Given the four input files (two for implementation, two for specification) out-
lined in the previous section, T-3 is invoked by giving the following two commands:

instance_classes name functions >ic file

T-3 alg_spec name ic file

"T-3" and "instance_classes" are “imple shell scripts and are listed in Listings

A2.5 and A2.6.

echo "[" > /unp/$$_x

echo $1 Icat /tmp/$$_x - >/tmp/3$_xx

echo ","/ul/grad/don/T-3/ics/mkics_prol'],do_to_level(6)." | cet tmp/$$_xx - > fmip/3$_xxx
cat imp/$$_xxx Isicstus

m fump/$$_x /tmp/$S_xx /tmp/3_xxx

Listing A2.5: "instance_classes” Script.

echo "T-3 OPUS-3"
echo
fust/cavellful/grad/don/T-3/OPUS-3 §1 $2 $3

Listing A2.6: "T-3" Script.

The operational part of "instance_classes” command is /ul/grad/don/T-

3lics/imkics_prol. Listing A2.7 gives the PROLOG code for mkics_prol.

first_line_variable(1).

236

second line_vanabie(1).

ks first line _level(O) !

tuild first_hine level(1): 1 typelF).atomx(F), name(F,L1),
concatenate(L1.{40.411.L2), name(Fo,L.2),
asserta(first_line_level(1,Fo)).fail.

huild first_line_level(1):- i_type(F), + (stomic(F)), replace_vs(F,Fo),
asserta(first_line_level(1,Fo)).fail.

bushd_first _line_level(l):- '

burkd_first_line_level(N):- M 1s N - 1, (c_type(F).e_type(F)),
fist_line_level(M,F1),
replace_vs(F.Fx), replace_sdyFx.F1.Fo),
asserta(first_line_level(N,Fo)), fal.

busld _first_line _level(N):- !.

budd_second _line_levek0):- 1.
tutld_second_line_level(1):- i_type(F),atomic(F).asseria(second_line_level(1.F)).fail.

uld_second_line_level(1):. i_type(F), + (atomic(F)), replace_vs_2(F.Fo),
asserta(second_line_level(1,Fo)), fail.

huild_second Ime_level(1):.- !.

buikd_second_line_level(N):- M is N-1, (c_type(F).e_type(F)),
second_line_leveM,F1),
replace_vs_2(F.Fx).replace_sdi(Fx.F1 Fo),
asseria(second_line_level(N, Fo)),
fail.

build_second_lne_leveN):- 1.

build_output_first_line(Level):- first_line_level(LevelF),
o_type{O)seplice_ans(0,0x), repls:e_adyOx.F Fo),
asserta(first_oug ut_line(Level Fo)). fail.

build_output_first_line(Level):- !,
huild_output_second_line(Level):- second_line_leveLevel.F),

o_type(OQ)replace_ans(0.0x), replace_ad(Ox,F.Fo)
asserua(second_output_line(Level,Fo)), fail.

build_output_second_line(Level).- !.

write_level(N):- get_output_lines(N,F1,F2),
format("“nwrite("****w.""),"n"v.."n",[F1,F2)), fail.

write_level(N):- 1.

get_output_lines(Level,Linel,Line2):- retraci(first_output_line(Level,Line1)),
retract(second_output_line(Level,Line2)).

do_to_level(0):- 1.

do_to_level(N):- M is N-1, do_to_level(M),
build_first_line_level(N),
build_second_line_level(N),
build_output_first_line(N),
build_output_second_line(N),
write_level(N).

replace_ans(Fi,Fo):- Fi =.. Li, replace(ans,’ Answer’,Li.Lo), Fo =.. Lo, !.

replace_adi(Fi,A.Fo).- Fi =.. Li, replace{adt,A,Li,Lo), Fo =.. Lo, !.

replace_vs(Fi.Fo):- Fi =.. Li, member(v,Li), retraci(first_line_variable(N)),
N1 is N + |, asserta(first_line_variable(N1)),
name(N,Ln), concatenate([86],Ln,Lv).name(V,Lv),
replace(v.V LiLo), Fx =.. Lo, !,
replace_vs(Fx,Fo).

replace_vs(Fo,Fo):- !.

replace_vs_2(Fi.Fo):- Fi =.. Li, member(v,Li), retract(second_line_variable(N)),
N1 is N + 1, asserta(second_line_variable(N1)),
name(N,Ln), concatenate([86]),Ln.Lv),name(V,.Lv),
replace(v,V.LiLo), Fx =.. Lo, !,
replace_vs_2(Fx,Fo).

replace_vs_2(Fo,Fo):- !.

replace(,O.{TIL).[OL]):- 1.

PRY}

238

replace(1,0,[XILi},{XILo]):- replace(I,O,Li,Lo).

concatenate([),L,L).
concatenate([XIL1],L2.[XIL3]):- concatenate(L1,L2,L3).

member(X,[XI_)).
member(X,[_IL]):- member(X,L).

Listing A2.7: Code For Simple Instance Class Generation.

The operational part of the "T-3" command is OPUS-3. OPUS-3 is also a shell

script and is given in Listing A2.8

This command should be invoked as follows:

OPUS-3 alg_spec imp ic

WHERE:
alg_spec is the file containing the algebraic
specification of the ADT.

imp.mod is the file containing the MODULA-2
implementation of the ADT.
NOTE: This will actually be 2 files:
imp.mod
imp.def

ic is the file containing the instance
classes.
<FORMAT of 3_tmp_pl>

2 X T ETTETTREERERETEETEEXEEREREES

set pal="ful/grad/don/T-3/OPUS-3.files"
set adt="$2"

set path =($pal . “/bin /usr/ucb /bin fust/new/bin Must/bin fusr/local/bin)

mkdir /tmp/$$

cp $3 Amp/$$/3_pl #produce instance classes

cp $1 /tmp/$8/sys_alg_spec # copy algebraic spec ovar

cp $adt.mod /tmp/$3/$adt.mod #produce ADT implementation with (coverage meas
#monitoring code.

cp Sadt.def /tmp/$$/Sadt.def #copy definition module over.

B e s

cd tmp/$$

cp $pal/StdMonitoring.* .

mod StdMonitoring.mod >& m_garb

mod adt.mod >& m_garb

echo Sadticat - sys_alg_specimkheader>mod.header #make header of MainTest.mod file

cat $pal/determine_constructors kcprolog $pai/t3_alg_to_prolog_trans_px >cp_garb
#determine constructor functions
cat $pal/produce_prolog_specs Icprolog Spal/t3_alg to_prolog_trans_px >cp_garb
#make PROLOG version of specifications

cat Spal/cp_start_up | cprolog>& cp_garb #Start PROLOG process with specs
cat B_pl | cprolog 3_px>& 3_pO #iFeed ic’s to PROLOG process
cu_prol.1 < 13_pO ku_prol.2 > tests #clean up PROLOG output

mkcode <testsicat mod.header - $pal/mod.end>MainTest.mod #make test prog

mod $adt.mod StdMonitoring.mod MainTest.mod #Compile this test
a.out #run this test

cd ..

m -r tmp/$$

Listing A2.8: OPUS-3 Script.

240

Sample Runs

The implementation module in listing A2.1 is an actual implementation the
author produced while implementing the queue type which contains an error. Below
are three runs of T-3. The first is for the implementation given in listing A2.1. The
second is for an implementation withb a comma error. The third is for what we

believe is a correct implementation.

Script started on Fri Jan 19 11:24:41 1990

% pwd

ful/grad/don/private/thesis.work/tests/OPUS-3

% lIs

Errorl.mod Error3.mod Queuve.mod correct.def holding. mod 3_tmp_pl.2
Error2.mod Queue.defl Queue.spec correct. mod 3_tmp_p lygw:n

% cp Errorl.mod Queue.mod <copy "Error.1" into 1mplementat10n le>

% T-3 Queue.spec Queue t3_tmp_pl.2 <Run T-3 with "Error.1">

T-3 OPUS-3

Implementation Failed on this pass on test #1

% cp Error2.mod Queue.mod <COR Error.2" into 1mplemcmat10n file>
% T-3 Queue.spec Queue 3_tmp_pl.2 un T-3 with "Error.2">
T-3 OPUS-3

File Queue.mod, line 29: syntax error
VAR 1.5, queue;

File Queue.mod, line 31: r: Symbol not found
File Queue.mod, line 32: r: Symbol not found
File Queue.mod, line 33: r: Symbol not found
File Queue.mod, line 34: s: Symrbol not found
File Queue.mod, line 35: s: Symbol not found
File Queue.mod, line 36: s: Symbol not found
File Queue.mod, line 36: r: Symbol not found
File Queue.mod, line 37: s: Symbol not found
File Queue.mod, line 37: s: Symbol not found
File Queue.mod, line 41: r: Symbol not found
File Queue.mod, line 41: Return value not assignable to function result
12 parsing errors

a.out: Permission denied.

% cp correct.mod Queue.mod <copy "correct” into implementation file>

241

% T-3 Queue.spec Queue 13_tmp_pl.2 <Run T-3 with a "correct” implementation>
T-3 OPUS-3

All tests completed successfully on this pass.

%
script done on Fri Jan 19 11:39:10 1990

Listing A2.9: Sample Runs of T-3

242

Appendix III. A Large Example

In this appendix we give the details of producing the test set for a large example
ADT. Figure A3.1 gives the algebraic specification for an extended list type called
“List-e". This ADT was originally given as a MODULA-2 assignment to a third year

undergraduate class at the University of Alberta.

Type list-e

SYNTAX
initList() ->list-e
addElt(list-e,integer) ->list-e
deleteElt(list-e) ->list-e
next(list-e) ->list-e
previous(list-¢) ->list-e
setElt(list-e,integer) ->list-e
emptyList(list-e) ->boolean
getEl(list-e) ->integer
size(list-¢) ->integer
intersect(list-e,list-e) ->list-e
union(lisi-e,list-e) ->list-e
includes(list-¢,integer) ->boolean
removeDups(list) ->list

SEMANTICS

Declare 11:list,12:list-e,il :integer,i2:integer

1) getElt(initList()) =NULL
2) getElt(addElt(11,11)) =il

3) getElt(previous(11))

4) next(initList())
5) next(previous(l1))
6) next(addEIlt(11,i1))

7) deleteElt(initList())
8) deleteElt(addElt(i1,i1))
9) deleteElt(previous(11))

10) setElt(initList(),i1)
11) setElt(addElt(11,i1),i2)
12) setElt(previous(11),i1)

13) emptyList(initList())

14) emptyList(addElt(11,i1))
15) emptyList(previous(11))
16) size(initList())

17) size(addEIt(11,i1))

18) size(previous(l1))

19) includes(initList(),i1)
20) includes(addElt(11,i1),i2)

21) inciudes(previous(i1),i1)

22) intersect(initList(),12)
23) intersect(addElt(11,i1),12)

24) intersect(previous(11),12)

25) union(initList(),12)
26) union(addEl(11,:15,12}

243

=IF emptyList(11) THEN NULL
ELSE getElt(move_previous(i1))

=initList()

=l1

=[F atend(11) THEN addElt(11,i1)

ELSE addEli(setElt{(next(11),i1),getElti(next(11)))

=initList()
=l1
=IF emptyList(i1) THEN previous(i1)
ELSE previous(addElt(deleteElt(deleteElt(11)),getEl(11)))

=addElt(initList(),i1)
=addEl(11,i2)
=addElt(deleteElt(previous(11)),i1)

=true
=false
=emptyList(11)

=0
=size(11)+1
=size(l1)

=false

=IF 11=I12 THEN true
ELSE includes(11,i2)
=includes(11,i1)

=initList

=JF includes(12,i1) AND

NOT (includes(intersect(11,12),i1))
THEN addElt(intersect(11,12),I)
ELSE intersect(11,12)
=intersect(11,12)

=removeDups(i2)
=IF includes(union(11,12j,11)
THEN union(11,12)

27) union(previous(11),12)

28) removeDups(initList())
29) removeDups(addEIt(11,i1))

30) removeDups(previous(11))

31) atend(initList(})
32) atend(previous(l1))

33) atend(addElt(11,i1))
34) is_single(previous(11))
35) is_single(initList())
36) is_singie(addElt(11,i1))

37) move_previous(initList())

38) move_previnus(previous(l1))

39) move_previous(addEIlt(11,i1))

END.

244

ELSE addElt(union(i1,12),i1)
=union(l11,12)

=initList

=IF includes(l1,i1) THEN removeDups(11)
ELSE addElt(removeDups(11),i1))
=removeDups(11)

=true

=IF emptyList(11) OR is_single(11) THEN true
ELSE false

=atend(11).

=is_single(11)
=false
=emptyList(11)

=initList()

=[F emptyList(move_previous(11)) THEN 11
ELSE move_previous(move_previous(11))
=IF emptyList(11) THEN addElt(11,i1)
ELSE 1l

Figure A3.1: Algebraic Specification for a Large Example

245
Generation

To generate our test set we started the SICStus PROLOG complier and loaded

the necessary PROLOG files as follows:

:- [list_prolog_spec,list_proleg_startup].

:- [build_level,work_level_cost_calc,utilities].

:- [work_level_benefit_calc_2,assume_tested,upper_level].
:- [work_canonical_form].

" "

The key files here are "list_prolog_spec", "list_prolog_startup"”, "upper_level”, and
"work_level_benefit_calc_2". These files are listed in listings A3.1 through A3.4

respectively.

getEl(initl ist,null ,CI,CI).

getElt(addEl(L.1,11),11,CLCI).

getEli(previous(L1),7ull,CL,CO}):- emptyList(L1,true,CLCO).
getEli(previous(L1),getEI(X),CI,CO):- emptyLisy(L1,false,CL,CA),move_previous(L1,X,CA.CO).

next(initList,initList,CI,CI).

next(previous(L1),L1,CLCI).

next(addEl(L1,I1),addElt(L1,11),CI,CO):- atend(L1,true,C1,CO).

next(addElt(L.1,11),addEI(X,Y),CI,CO):- atend(L1.false,CI,CA),setElt(next(L1),I1,X,CA,CB), setElt{next(L1),Y,CB.CO).

deleteElt(initList,initList,CI,CI).

deleteElt(addEl(L1,11),L1,CL.CI).

deleteElt(previous(L1),previous(L1),CI,CO):- emptyList(L.1,true,CI,CO) .

deleteEl(previous(L1),previous(addEIX,Y)).CLCO):- emptyList(L1,false,CI,CA), deleteEl(L1,Z,CA,CB).deleteEN(Z,X,CB,C(

setElt(initList,I1,addElt(initList,11),CICI).
setElt(addEly(L1,11),12,addEl(L1,12),C1,Cl).
setEl(previous(L1),I1,addEI(X.11),CI,CO):- deleteEli(previous(L1),X,C1,CO).

emptyList(initList,true, CL.CI).

246

emptyList(addEl(L1,I1),false,CI,CI).
emptyList(previous(L1),X,CI,CO):- emptyList(L1,X,CL.CO).

size(initList,0,C1,CI).
size(addEI(L1,11),X,CI1,CO):- size(L1,Y,CL.CO), X is Y+1.
size(previous(L1),X,CI,CO):- size(L1,X.CL,CO).

includes(initList,I1,false,CI,CI).

includes(addE1{L1,11),12,true,CI,CO):- constrain(11=12,C1,CO).
includes(addEIy(L1,11),12,X,CI,CO):- constraint(I1 == I2,CI,CA),includes(L1,12,X,CA,CO).
includes(previous(L1),11,X,CI,CO):- includes(L1,11.X,CL,CO).

intersect(initList,L.2,initList,CI,CI).

intersect(addEl(L1,11),L2,addE(X,11),CI,CO):- includes(L2.I1,true,CI,CA),intersect(L1,L2,X,CA,CB),includes(X,I1,false,CB,CO)
intersect(addEI(L1,11),L2,X,CI,CO):- includes(L2,I1,false,CI,CA),intersect(L1,L2,X,CA,CO).
intersect(addElt(L1,11),L2,X,CI,CO):- includes(L2,11,true,CI,CA).intersect(L.1,L2,X,CA,CB),includes(X.11,true, CB,CO).
intersect(previous(L1),L.2,X,CI,CO):- intersect(L1,1.2,X,CLCO).

union(initList,L2,X,CI,CO): - removeDups(L2,X,CL,CO).

union(addEIYL1,11),L2,X,CI,CO):- union(L1,L2,X.CI,CA),includes(X,I1,true,CA.CO).
union(addEI(L1,I1),L2,addE1(X,11),CL,CO):- union(L1,L2,X,CI,CA),includes(X,I1,false,CA,CO).
union(previous(L1),L2,X,CI,CO):- union(L1,1.2,X,CI,CO).

removeDups(initList,initList,CLCI).

removeDups(addElt(L.1,11),X.CL.CO):- includs(L1,I1,true,CI,CA), removeDups(L1,X,CA,CO).
removeDups(addEl(L1,11),addEI(X,11),C1,CO). includus(L1,11,false,CI,CA), removeDups(L1,X,CA,CO).
removeDups(previous(L1),X,CI,CO):- removeDups(L1,X,CLCO).

atend(initList,true,CL.CI).

atend(previous(L1),true,CI,CO):- emptyList(L1,true,CI,CA); is_single(L1,true,CA,CO).
atend(previous(L1},false,CI,CO): -emptyList(L1,false,CI,CA), is_single(L1,false.CA,CO).
atend(addElYL.1,11),X,C1,CO):- atend(L1,X,C1,CO).

is_single(previous(L1),X,CL,CO):- is_single(L1,X,CL.CO).
is_single(initList false,CI,CI).
is_single(addEl(L1,11),X,CI,CO):- emptyList(L1,X,CI,CO).

move_previous(initList,initList,CL,CI).

move_previous{previous(L1),L.1,CI,CO):- emptyList(L1,true,CLCO).

move_previous(previous(L1),X,CI,CO):- emptyList(L1,false,CI,CA),move_previous(L1,Y,CA,CB),move_previous(Y,X,CB,CO).
move_previous(addEly(L1,11),addER(L1,11),CI,CO):- emptyList(L1,true,CI,CO).

move_previous(addEly(L1,11),L1,CI,CO);- emptyList(L1.faise,CL,CO).

Listing A3.1: list_prolog_spec

level(0,initList,4,1,-1).
best_b_c(0,initList,0.25).

tested_trace(n_o_n_e).

tested_arc(n_o_n_e).

deepest_level(0).

variable(il).
variable(toi).

o_function(includes(toi,il)).
o_function(emptyList(toi)).
o_function(getElt(toi)).
o_function(size(1oi)).

i_function(initList).

c_function(addEl).
c_function(previous).

internal_function(atend).
internal_function(is_single).

internal_function(move_previous).

toi_function(addEl(t0i,i1)).
toi_function(deleteElt(toi)).
toi_function(next(loi)).
toi_function(previous(toi)).
toi_function(setElt(toi,il1)).
toi_function(intersect(toi,toi)).
toi_function(union(toi,toi)).
toi_function(removeDups(toi)).

external_function(initList).
external_function(addElt).
externai_function(deleteElt).
external_function(next).
external_function(previous).
external_function(setElt).
external_function(emptyList).
external_function(getElt).
external_function(size).
external_function(intersect).
external_function(union).
external _function(includes).
external_function(removeDups).

Listing A3.2: list_prolog_startup

247

248

do_level(L):- build_level(L), level_cost_calc(L), level_benefit_calc(L).

accept_best_level(L):- best_b_c(L,T.BC),
display(T),
display(" is being marked as TESTED."),
nl,display("BC="),
display(BC).nl,
display(’Level= "),
display(L)nl,
level(L,T,C,B,X),
display(‘Cost=),
display(C).nl,
display('Benefit= '),
display(B).nl,
assume_tested(T).

accept_best_all:- find_best_all(1,L), accept_besi_level(L.).

take_best:- accept_best_all,re_benefit_all.
take_first_20:- take_best,take_best,take_best,take_best,take_best,
take_best take_best take _best,take_best,take_best,
take_best,take_best take_best take_best,take_best,
take_best,take_best take_besttake_best,take_best.

go:- take_best,go.

find_best_all(Cur_lev,L):- deepest_level(Cur_lev),!.

find_best_all(Cur_lev,L):- Next is Cur_lev + 1, find_best_all(Next,L),
best_b_c(L.T,BC), best_b_c{(Cur_lev,T¢,BCc),
BC >BCc, !.

find_best_all(L.L).

re_benefit_all:- deepest_level(End), re_benefit_to_level(0,End).

re_benefit_to_level(L,L):- level_benefit_calc(L),!.

re_benefit_to_level(L,E):- level_benefit_calc(L), L1 is L+1,
re_benefit_to_level(L1,E).

print_level(L,File):- tell(File),pr_l(L).nltold.

pr_l(L):- level(L.T.C.B,BC), write(level(L,T.C.B.BC)). nl, fail.
pr_l(L).

print_tree(File):- tell(File).multi_level_print(1), nl, toid.

multi_level_priny(L):- deepest_level(L),!, nl, nl, write("***** Level '),

write(L),write(® ***%*") nl, nl,
pr_I(L).

multi_level_print(L):- nl, nl, write("***** Level "),
write(L),write(" *****') p|, nl,
pr_I(L), NextisL + 1,
multi_level_print(Next).

Listing A3.3: upper_level

Jwink trace_benefit_2).

level benefit_calc(L) - asserw(level(L,-1,.1,-1,-1)),
retract(best_b_e(L,T,BC)),
ssserta(best_b_c(L.0,-1)).fail.

level benehit calc(l):- retract(leve(L.T.C.Bi,BCi)), T == .1,
trece_benefit_2(T,B), BC is BXC,
check_best_b_c(L.T.BC).
asserz(level(L.T.C,B.BC)),
fail.

level henefit calc(L).

check_best_b_c(L,T,BC):- best_b_c(L,To,BCo), BC>BCo,

retract(best_b_c(L,To.BCo)), asserta(best_b_c(L,T.BC)),!.

check_best_b_o(L.T.BC).

sub_traces(().[}.{D):- 1.

sub_traces(L.{].[]):- stomic(l).(vanablie(I); internal_function(D)),!.

sub_traces(L.[{1]].(]):- atomic(l).!.

sub_traces(I.Nt.Ot):- 1=, [FiOps).(variable(F); internal _function(F)).!,
Ops={Ops110psx}.sub_traces(Ops1,Nt,Ot).

sub_taces(I.Nt,O1): - I=..{FiOps),Ops=(Ops110psx].sub_traces(Ops1,Nr,Or),

sppend(Nr,0r,On),
build_traces(F.Nr,Nt).

build_traces(F.[].H{F1}):- !
build_traces(F,[T'Rest].Out): - append([F),T.Tn),
build_uaces(F.Rest Tr).append({Tn),Tr.Out).

remove_bad_traces([}.[}):- !.

remove_bad_traces(]AIB),C):- (member{A B);tested_trace(A)).!,
remove_bad_traces(B.C).

remove_bad _traces(| AIB){AIC]):- remove_bad_traces(B.C).

Listing A3.4: work_level_benefit_calc_2

250

Results

Using the PROLOG programs listed above we used the methodology given in
chapter 8 to produce the following series of instance classes to be tested. These
represent the first 25 test cases to be run. For clarity we have also listed the test
- ases associated with each instance class. It took a SICStus PROLOG interpreter 48
hours on a MIPS M1000 and a system load below 2.5 to produce these test cases.
The reason this ADT took longer that the others is the functions "intersect” and
“union” accept two TOI inputs which leads to a rapid growth of the number of sub-
instance classes to be examined. This problem is discussed in section 8.4. while t..i-
example took a significant amount of computer time, we note that previous metho-

dologies simply could not handle this example at all.

As we stated in section 8.4, the results of this example are very similar to the
results of the example in figures 8.6 and 8.7 and Tables 8.2 and 8.3. The discussion of
these results is given in sections 8.3 and 8.4. We could not run a validation experi-
ment for this example, as we described in section 8.5, to compare our methodology
to previous ones [Bouge85b, Choquet86, Wild86, Bouge86] because those previous
methodologies do not work on this example. The reasons previous methodologies do

not work on this example are discussed in section 8.4.

252

removeDups(deleteElt(removeDups(initList)))

TESTS:
emptyList(removeDups(deleteElt(removeDups(initList))))
getElt(removeDups(deleteElt(removeDups(initList))))
size(removeDups(deleteElt(removeDups(initList))))
includes(removeDups(deleteElt(removeDups(initList))),I1)

removeDups(addElt(previous(initList)),I1)
TESTS:
emptyList(removeDups(addElt(previous(initList)),I1))
getElt(removeDups(addElt(previous(initList)),I1))
size(removeDups(addElt(previous(initList)),I1))
includes(removeDups(addElt(previous(initList)),I1),12); 1112
includes(removeDups(addElt(previous(initList)),I1),12); I1=12

deleteElt(removeDups(previous(initList)))

TESTS:
emptyList(deleteElt(removeDups(previous(initList))))
getElt(deleteElt(removeDups(previous(initList))))
size(deleteElt(removeDups(previous(initList))))
includes(deleteEit(removeDups(previous(initList))),I1)

253

removeDups(removeDups(delete Elt(remove Dups(addEl(initList,11)))))
TESTS:
emptyList(removeDups(removeDups(deleteElt(removeDups(addElt(initList, 1))
getElt(removeDups(removeDups(deleteElt(rcmoveDups(addElt(initList.l DY)
size(removeDups(removeDups(deleteElt(removeDups(addElt(initList,11))))))
includes(removeDups(removeDups(deleteElt(removeDups(addEli(initList,11)))):

addElt(addElt(addElt(addElt(initList,11),12),13),14)
TESTS:
emptyList(addElt(addElt(addElt(addElt(initList,11),12),13),14))
getEl(addElt(addElt(addElt(addElt(initList,11),12),13),14))
size(addElt(addElt(addElt(addElt(initList,11),12),13),14))
includes(addElt(addElt(addElt(addElt(initList,11),12),13),14),15); 11 =15
includes(addElt(addElt(addElt(addElt(initList,11),12),13),14),I5); 12 =15
includes(addElt(addElt(addElIt(addElt(initList,1),12),13),14),15); 13 =15
includes(addElt(addElt(addElt(addElt(initList,11),12),13),14),I5); 14 =15
includes(addElt(addElt(addElt(addElt(initList,I1),12),13),14),15); 11 #15 AND
[2#ISAND I3#ISAND 4215

254

Appendix IV: A Detailed PFS Calculation

In section 8.3 we gave an example of our test case generation method for the
type Bag-c. Table 8.2 gave the first thirty tests generated for that type. For conveni-
ence, table 8.2 is reproduced below. In this appendix we list exactly which elements

are removed from the possible failure set (PFS) for that example.

First 30 Tests for Search to Depth 6
Trace Trace Sentence | Level | #of Test | PFS Elements B/C
Ordering Cases Removed
1 E,D,I 3 3 5 5/9=0.56
2 AD,I 3 4 4 4/12=0.33
3 E,E,.D,D,E. 6 3 5 5/18=0.28
4 D.E.D,E.E,] 6 3 4 4/18=0.22
5 E,D.E,D,D,I 6 3 4 4/18=0.22
6 D,D,D,EA|I 6 7 9 9/42=0.21
7 AAAAL 5 7 6 6/35=0.17
Total 30 37

NOTE:E= removeElt
D= removeDups
I= initBag
A= addElt

Table 8.2: Order of Traces Tested for Type Bag-c

255

The reasons why particular elements are removed from the PFS are discussed in
section 8.2. The algorithm we used to determine how many PFS elements are

removed by testing an instance class is given in Figure Ad.1.

For the first trace tested there is only one canonical form. Therefore we have
tested EDI as a trace to the equivalence space of bags with no elements. During test-

ing we apply 3 O-type functions that have never been applied to a trace trace with

Given an untested trace y:
1) Determine all the canonical forms of Y
1.1) COUNT vy as a trace to each equivalence space form.

2) FOR EACH canonical form from 1):
2.1) COUNT all the O-type functions that have not yet been
applied to a trace with that canonical form.

3) Determine all the inner ‘races of y whose sub-instance classes
are preserved in v.

4) FOR EACH of the traces from 3):
4.1) Determine all its canonical forms.
4.2) FOR EACH canonical form:
4.2.1) COUNT this inner trace as a path to that
equivalence space IF this inner trace has not
been previously counted.

5) Return the sum of the counts from steps 1.1), 2.1) and 4.2.1).

Figure A4.1: Algorithm for Counting PFS Elements

256

that canonical form. We have also tested DI as a trace to the same equivalence space.
We do not count the "I" trace to that equivalence space as it is a mapping from out-
side our computation space and therefore technically not part of the PFS. From a
practical standpoint it does not matter whether we count the "I" trace or not. Any
trace of ADT functions must start with an I-type function, therefore the "I" trace
would be exercised no matter what insicnce class we tested. Thus we have removed

14+3+1=5 elements from the PFS.

For the second trace tested there is one canonical form. We have tested the trace
ADI that leads to the equivalence space of that canonical form. During testing we
also apply 3 O-type functions that have never been applied to a trace with that canoni-
cal form. We do not count "DI" as it has already been counted in the first trace. Thus

we have removed 3+1=4 elements from the PFS.

For the third trace tested there is one canonical form. We count the trace
EEDDEI that leads to the equivalence space of the bag with no elements. We have
already applied all O-type functions to a trace with this canonical form (first trace).

We have also tested EDDEI, DDEI, DEI, and, EI as traces to the same equivalence

space. Thus we have removed 1+1+1+1+1=5 elements from the PFS.

For the fourth trace tested there is one canonical form. We count the trace
DEDEEI that leads to the equivalence space of the bag with nu elements. We have

already applied all O-type functions to a trace with this canonical form (first trace).

257

We have also tested EDEEI, DEE], and, EEI as traces to the same equivalence space.

We have have already tested "EI" (third trace) and cannot count it. Thus we have

removed 1+1+1+1=4 elements from the PFS.

For the fifth trace tested there is one canonical form. We count the trace
EDEDDI that leads to the equivalence space of the bag with no elements. We have
already applied all O-type functions to a trace with this canonical form (first trace).

We have also tested DEDDI, EDDI, and, DDI as traces to the same equivalence

space. We have have already tested "DI" (first trace) and cannot count it. Thus we

have removed 1+1+1+1=4 elements from the PFS.

For the sixth trace there are two canonical forms, one is bag with one element,
the other is a bag with no elements. We have tested the trace "DDDEALI" to both
equivalence spaces, thereby removing two elements from the PFS. Similarly we have

also tested DDEAI, DEAI, and, EAI as traces to both equivalence spaces thereby

removing 2+2+2= 6 more elements from the PFS. We have also tested Al as a trace

to the single equivalence space of bags with one element. Thus we have removed

2+6+1=9 PFS elements.

For the seventh trace there is one canonical form. We count the trace AAAAI
that leads to the equivalence space of bags with four elements. In testing this trace
we apply 3 O-type functions that have never been applied to a trace with that canoni-

cal form. We also test AAAI as a trace to a bag of three elements and AAI as a trace

258

to a bag of two elements. "Al" has already been tested and removed from the PFS
when the sixth trace was tested and therefore cannot be counted here. ‘Tr.zrefore we

remove 1+3+1+1=6 elements from the PFS.

