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Abstract

In  th is dissertation numerical models o f self-sustained convective dynamos are studied and de

veloped, w ith  application to  solar system planetary dynamos. The three main works are: Chapter 

2, model o f different stages o f terrestria l planet core growth; Chapter 3, model o f magnetic fields 

of the ice giants; Chapters 4 and 5, development o f the legacy dynamo code to  include rad ia lly 

variable conductivity, and application o f resulting models to  the gas giants.

Aging terrestria l planets have growing inner cores. We show that core size can determine the 

character o f dynamo generated magnetic fields. Even though they depend on in itia l conditions 

and scaling parameters, it  is possible to  use field geometries and magnitudes as diagnostic o f 

internal planetary structure. The ra tio  between inner and outer core rad ii, y , yields strong mag

netic fields for intermediate values (0.25 <  y  <  0.45), and weaker fields otherwise. H igh magnetic 

field intensity patches are found near latitudes ±arccos(y) where the inner core tangent cylinder 

intersects the outer boundary. Boundary conditions and internal force balances are responsible 

for dominant harmonic components o f external magnetic fields. The peculiar characteristics of 

ice giants’ magnetic fields can be explained by internal force balances. Uranus and Neptune have 

deep electrolytic liqu id  interiors o f ice-like composition, w ith  electrical conductivity about two 

orders o f magnitude lower than molten iron. Low electrical conductivity models yield numeri

cal dynamos dominated by kinetic energies. We show the simulated flows are quasi-geostrophic 

and result in  non-dipolar, highly transient, and non-axisymmetric magnetic fields, comparable 

to  magnetic fields o f the ice giants.

M odifications o f the numerical code, better representing the gas giants’ interiors, are in

troduced and tested. Radially variable electrical conductivity (expected for the gas giants) is 

implemented into numerical algorithms to  solve the magnetohydrodynamic governing equations. 

We show tha t variable conductivity changes dynamo model flows and magnetic fields significantly. 

Redefinition o f non-dimensional parameters: Ra*, E * , and y* is introduced, better characterizing 

the new models. Tests presented here yield largely axisymmetric and dipolar fields, applicable 

to characteristics o f Jupiter and Saturn. Future work however, should use a wider range o f 

non-dimensional parameters in order to find force balances expected for the gas giants.
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Chapter 1

Introduction

Hum anity has studied the stars and planets for centuries. Many cultures have related the stars to 
myths and gods. For celestial bodies, length scales are not comparable w ith  human every day life, 
but the effects o f stellar and planetary internal dynamics affect us, from  the reading o f a compass 
to the magnetosphere shielding the Earth from  high energy solar winds. The ancient Greeks 
recognized differences in  motion between fixed stars and the wanderers, i.e. planets wandering 
through the sky amongst the stars. The planet Earth was known (or better re-discovered) to  be 
spherical in  the XV  century. The second physical property attributed to  the planet as a whole, 
early in  the X V II century, was its intrinsic magnetic field (G ilbert (1600)).

This dissertation w ill focus on planetary magnetic fields and particu larly on dynamo mod
els. For strong planetary magnetic fields, the planet’s internal dynamics are responsible for the 
magnetic field generation. I t  is interesting how planets w ith  different composition and structure, 
e.g. Earth and Jupiter, have intrinsic magnetic fields from sim ilar origins. We w ill present an 
overview of dynamo generated magnetic fields in  planetary environments for terrestria l and giant 
planets. As a b rie f introduction to  the celestial bodies studied in this dissertation, in  section 1.1 
we include a historical summary for some planets in the solar system, including a summary 
of current knowledge o f the ir magnetic fields, and how these fields were discovered. Particular 
characteristics o f planetary environments w ill be presented in  detail in  the introduction for each 
chapter referring to  the various respective models. In  section 1.2, a b rie f description o f the dy
namo model is presented. F inally, in  section 1.3 we present a b rief review of numerical models 
for the dynamo problem.

1.1 Solar system  planets

1.1.1 Mercury

Named after the Roman god, Mercury is the closest planet to  the sun, and also has the smallest 
radius. Its  short o rb ita l period likely led to  its  association w ith  Hermes, the fast messenger 
for the gods to  communicate w ith  humans in Greek mythology. Even though the existence o f
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this planet was discovered early in history, detailed measurements o f gravitational and magnetic 
fields were not possible un til the arrival of the spacecraft M ariner 10 in  the v ic in ity  o f the planet. 
In  1974 and 1975, M ariner 10 had three encounters w ith  Mercury (Ness et al. (1976)). Using 
measurements from gravitational moments, the non-compressed density o f the in terio r was found 
to  be relatively high when compared w ith  tha t o f the moon and the Earth. W ith  a mean radius o f 

0.38Rearth, Mercury has an iron core tha t extends up to  70% of the planetary radius (Stevenson 
(1987)). There is evidence for a flu id  core inside Mercury (Margot et al. (2007)). I t  is believed, 
as is true for the Earth, tha t Mercury has a solid inner core, but i f  so, its  size is unknown. In  

the case o f a pure iron flu id  core composition, the inner core is expected to  be large (due to  
rapid cooling). In  contrast, for a flu id  composed of a combination o f iron w ith  ligh ter elements 
(sulphur for example), the inner core growth rate diminishes notably, allowing for the possibility 
that Mercury could have a small inner core (Labrosse et al. (2001)).

The source o f the magnetic field measured by M ariner 10 has been a subject o f discussion in 
the literature. The relatively weak field does not seem to  depend on the inter-planetary magnetic 
field, since both spacecraft approaches (when the Hermean field was measured) showed the sim ilar 
magnetic field geometry, even though the solar conditions were significantly different. Thanks to  
these observations, the possibility o f the field being induced by an external source-as is the case 
w ith  Europa and Callisto, Khurana et al. (1998)-is not valid for Mercury, Ness et al. (1976).

Three possibilities remain for explaining the origin o f the magnetic fie ld in  Mercury. F irst, 
dynamo action may exist inside the planet. The small size o f Mercury yields a fast inner core 
cooling rate, and possibly, a relatively short tim e for the liqu id  core to solidify. The presence 
of ligh t elements in the flu id  becomes necessary to  account for a molten core in  M ercury to  the 
present. The abundance of ligh t elements in  the flu id  is d ifficu lt to estimate. Consequently, the 
size o f the inner core is also unknown. I f  the field o f Mercury is generated by dynamo action, the 
size o f the inner core is crucial, since a solid core is not able to  sustain a significant magnetic field. 
Second, the possibility o f remanent magnetism of the Hermean crust has been argued. Aharonson 
et al. (2004) calculated the crustal remanent magnetization for a non-uniform thickness spherical 
shell, and showed tha t it  is possible for a spherical shell w ith  no internal magnetic fie ld to  be 
magnetized by an imposed external magnetic field. Runcorn’s theorem states the im possibility 
of remanent magnetization in  a spherical shell by an external field. This theorem is only valid for 
a homogeneous perfectly spherical shell. That is clearly not the case in  M ercury’s crust. Thus, 

the possibility o f crustal remanent magnetization cannot ruled out as the reason for M ariner’s 
10 measurements. Last, a thermo-electric dynamo has also been proposed by Stevenson (1987). 
The magnetic field in this case would be generated in a th in  layer o f a m ixture o f sulphur and 
iron located at the top o f the Hermean flu id  core. The therm al dynamics o f the flow, driven 
by the topography o f the core-mantle interface, would generate an effective electromotive force 
producing a toroidal magnetic field. The poloidal component of the field would be generated by 
the convection o f the flow though the a  effect. The magnitude o f the resultant field would be 
small, in  agreement w ith  spacecraft measurements, and the geometry would be quite different 
from a dynamo generated magnetic field: this dynamo would not have any symmetry preference 
for the axis o f rotation (Stevenson (1987)).
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1.1.2 Earth

The best known dynamo in  the solar system is tha t o f the earth. D irect observations o f the 
Earth ’s magnetic field date back to  the sixth century B.C. The development o f the compass as a 
navigation tool drew attention to  the magnetic pole wandering, as opposed to  it  being stationary 
w ith  respect to  the fixed stars. G ilbert (1600) proposed the existence o f an internal magnet 
in the Earth that made the compass point north. The change in declination as a function of 
latitude became evident for people navigating the seas w ith  the help o f magnetic needles. The 
firs t geomagnetic chart o f the globe was drawn in  the X V III century. Later, J. C. Friedrich 
Gauss presented the coefficients o f the spherical harmonic expansion in  his Allgemenie Theorie 
des Erdmagnitismus in  1838.

In  the past century, paleomagnetism revolutionized what was known of E arth ’s dynamics. 
I t  helped to  prove the plate tectonic theory and showed evidence o f historical changes in  the 
E arth ’s magnetic field over geological tim e scales. These changes in  magnetic fields involved 
po larity reversals; a phenomenon in which the north-south magnetic poles change hemispheres 
in  a relatively short period o f time. Reversals seem to  occur w ith  no distinguishable frequency, 
but w ith  a mean occurrence period o f about 0.5 Ma, e.g. M errill et al. (1998).

Seismic measurements reveal the presence o f an iron core stratified in to  solid and liqu id  parts 
at the in terio r o f the Earth (Dziewonski &  Anderson (1981)). Combining seismological models 
o f the in terio r w ith  equations o f state for silicates (mantle) and iron (core), temperature and 
pressure profiles may also be inferred. A  detailed knowledge o f the therm al profiles o f mantle 
and core is im portant for dynamo studies because convection (thermal and compositional) is the 
driving force of the dynamo. Despite great uncertainties, we know th a t the crystallization of 
the inner core has supported the dynamo for approximately lOOOMa (Labrosse et al. (2001)). 
Estimates o f the inner core age are rough since they depend sensitively on composition o f the 
flu id  core alloy, which is not well constrained.

Sir J. Larmor proposed in  1919 tha t magnetic fields in celestial bodies may be generated by 
an internal dynamo. To study the possibility o f self-excited dynamos, T . G. Cowling analysed 
two-dimensional stationary electromagnetic fields. Cowling showed tha t stationary magnetic 
fields cannot be supported by axisymmetric flows. F lu id  convection w ith in  planetary cores re
sult in  three-dimensional flows. Rapidly rotating systems help to  constrain flows to  almost 
two-dimensional planes perpendicular to  the rotation axis, such geostrophic flows follow the 
Proudman-Taylor constraint. Nevertheless, a quasi-geostrophic flow allows weak m otion in  the 
direction o f the axis o f rotation, making the flow not completely planar.

Thus rapid ly rota ting spherical shells are able to  sustain magnetic fields. A  convenient math

ematical decomposition o f toroidal and poloidal contributions o f the magnetic field was presented 
by E. Bullard and H. Gellman in  1954 (Gibson et al. (1967)). They studied kinematic dynamos 
(where the magnetic field may be calculated for a given flow; the imposed flow may or may not al
low the magnetic field to  be sustained). Elsasser (1956) examined extensively the hydromagnetic 

dynamo theory (or magnetohydrodynamic dynamos). He explained magnetic field am plification 
mechanisms such as the w-effect and the cc-effect. These mechanisms explain the am plification of
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magnetic field by means o f field line stretching due to  the flow; generation o f poloidal fie ld lines 
from toroidal field lines and vice versa.

Only in  the very recent past could this theory be confirmed numerically as a magnetic field 
generation source. The fu ll set o f equations describing dynamo models are not simple, and 
analytic solutions o f self sustained dynamos have not been found. Numerical models solving the 
complete set o f equations have been developed in  the past 25 years and are evolving rap id ly 
w ith  the help o f the rapid advancement in computational capabilities. For more inform ation on 
dynamo models and its  numerical solutions please refer to  sections 1.2 and 1.3 in  th is chapter.

The physical properties o f the Earth ’s interior are more or less constrained. Indirect methods 
give us inform ation for expected values of the physical system parameters. As a reference, we 
include table 1.1 w ith  physical parameters known or estimated for the E arth ’s interior.

Table 1.1: Physical parameters o f the Earth ’s core. Estimated and known values for a liqu id  
iron core. Some o f the estimations included in  this table have great uncertainties. We include 
symbols w ith  the subscript t  at the bottom ; they estimate the increased diffusivities due for a 
turbulent flow. Values in  th is table are taken from Jones (2007)._______________

Value Symbol
Radius o f the outer core 3.48 x 10em r a
Radius o f the inner core 1.22 x 106m n
Temperature drop from the CMB to 
the ICB ~  1.3 x 103K A T

Outer core mean density 11340kg/m3 P
G ravity at r 0 7.8m/s2 do
Angular velocity 7.29 x 10_5s_1 l« l
Thermal expansion coefficient 1.5 x 10~5K _1 a
Magnetic d iffusivity ~ 2 m2/s A
Thermal d iffusivity ~  5 x 10~6m2/s n
Kinem atic viscosity ~  5 x 10~7m2/s V

Turbulent therm al d iffusivity ~  2 m2/s
Turbulent kinematic viscosity ~ 2 m2/s vt

1.1.3 Jupiter and Saturn

Also called the gas giants, Jupiter and Saturn are the largest planets in  the solar system w ith  

rad ii o f 11.2J?eort/i and 9.4Rearth respectively. Named after the god o f lightening and thunder, 
Jupiter and his father Saturn are two of the most powerful deities in  Roman mythology (along 
w ith  the ir Greek counterparts, Zeus and Cronus). These wanderers were discovered very early 
in history along w ith  Mercury, Venus, and Mars.

A  magnetic field attributed to  Jupiter was not found u n til the X X  century w ith  earth-based 
measurements o f radio emissions, Barrow (1960). These observations were confirmed by direct 
magnetic field measurements by spacecraft missions visiting  the gas giants. Pioneer 10 and 11 
verified the presence o f a magnetosphere around Jupiter; they found, at tha t tim e, a strong non- 
dipolar field component (Acuna & Ness (1975)). The influence o f Io  and Ganymede (causing
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the non-dipolar geometry) on the Jovian magnetosphere was measured by Voyager I  and I I  
spacecrafts (Ness et al. (1979)).

The field o f Saturn was discovered by Pioneer 11 and was also measured by the Voyager 
missions, Acuna &  Ness (1980), Ness et al. (1981, 1982). Later, spectral decompositions o f the 
radial magnetic fields were estimated using Pioneer’s and Voyager’s data, see Connerney et al. 
(1982, 1998). The magnetic fie ld of Saturn has been found to  be particularly dipolar and aligned 

w ith  the rotation axis (i.e. axisymmetric). Current missions are examining Saturn and its  moons. 
The Cassini-Huygens spacecraft reached Saturn in  2004. The European Space Agency’s Huygens 
Probe acquired four hours o f data from T itan ’s atmosphere and surface on its  descent, Lebreton 
et al. (2005). The Cassini orbiter is expected to  take data u n til at least 2008.

1.1.4 Uranus and Neptune

Uranus and Neptune are the outermost planets in  the solar system. W ith  rad ii o f 4Rearth and 
3.9Rearth for Uranus and Neptune, respectively, these planets are called the ice giants. They are 
the only classical planets discovered in modern history (1781 and 1846 for Uranus and Neptune, 
respectively). The name of Uranus came from  the chronological series o f the planets given by 
the Greeks: Mars son o f Jupiter, son o f Saturn, a ll descendants o f Uranus (the sky). Neptune 
was discovered thanks to  its  gravitational effects on the m otion o f Uranus. The name chosen 
for th is planet relates it  to  the god of the sea. The magnetic fields o f Uranus and Neptune 
were not discovered u n til Voyager I I  reached them in 1986 and 1989, respectively (Ness et al. 
(1986, 1989)). Their magnetic fields have unusual geometries in  which the dipolar components 
are relatively weak w ith  respect to higher m ultipolar components. A fter the firs t encounter of 
Voyager w ith  Uranus, scientists thought it  was possible tha t th is planet was encountered while 
undergoing a magnetic pole reversal. When Neptune was found to  have sim ilar characteristics, 
the idea was discarded. The probability o f both ice giants experiencing pole reversals from  stable 
dipolar Earth-like fields is low. Since both planets have high m ultipolar fields, there m ight be 
intrinsic characteristics o f field generation leading to  higher probabilities o f a non-dipolar, and 
non-axisymmetric magnetic fields and/or a higher probabilities of po larity reversals.

Another surprising feature is the axis o f rotation o f Uranus. A ll other solar system planets 
have an axis o f rotation almost perpendicular to  the ecliptic. In  contrast, Uranus’ ro ta tion  axis 
is 97.9° w ith  respect to  its  o rb ita l axis. This may have been caused by a strong impact w ith  an 
asteroid. Voyager also found an im portant difference in  the energy emission o f ice giants. Uranus’ 
and Neptune’s heat flows are lower than what would be predicted by homogeneous cooling. This 
may significantly affect the internal dynamics o f the planets, see Stevenson (1982).

1.2 The dynamo model

The derivation o f the equations describing the dynamo problem are included in  th is dissertation 
in appendix A . The system tha t these equations describe consists o f an electrically conductive 
flu id , bounded by two spherical shells o f internal and external rad ii r , and r Q, respectively (see
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figure 1.1). We take the inner sphere to  be electrically conductive and solid, as is appropriate

I
Figure 1.1: Geometry used for dynamo models. Inner core o f radius r  =  n  in  red, and outer 
core boundary, r  =  r 0, in  purple. The tangent cylinder is marked here w ith  a transparent green 
surface, and the rota tion axis , z, is marked w ith  a black line.

for a terrestria l planet’s in terior w ith  a solid inner core. The radius ratio  is defined as x  =  pAo-

vector z, marked w ith  a black line in  figure 1.1. For future reference, we define the tangent 
cylinder as an imaginary surface in  the outer core. Its  axis o f symmetry is parallel the 2-axis, 
and the cylinder is tangent to  the inner core at the equatorial plane (green transparent surface 
in figure 1.1).

The non-dimensional equations are derived using scaled quantities. Temperature is scaled 
by the temperature difference between the inner and outer shells, A T ; distance by the shell gap 
w idth, D  =  r 0 — rp, tim e by the viscous diffusion tim e, t „  =  D 2v~1, where v is the kinematic 
viscosity; velocity by zaD_1; pressure by pvfl; and magnetic induction by p p \f l,  where p is 
the density, p the magnetic perm eability and A is the magnetic d iffusiv ity o f the flu id . The 
non-dimensional equations describing velocity, magnetic field induction and temperature fields, 
in the rotating frame of reference, and under the MHD and Boussinesq approximations (see 
appendix A) are:

The system rotates w ith  an angular velocity ft, w ith  the axis o f rotation parallel to  the unitary

E  +  (u • V )u  — V 2u j +  2z x u

=  —V P  +  (V  x B ) x B (1.1)

(1.2)

(1.3)
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a - D  1

—  =  V  x (u  x B ) +  p r V 2B, (1.4)

where u  and B  are the velocity and magnetic induction vectors, respectively; t  is the tim e; T  
and P  are the temperature and pressure scalars, respectively; g is the rad ia lly dependent gravity, 
and ga is the gravity at the outer boundary; and r  is the radial un it vector.

Equations 1.1 to 1.4 are expressed in terms of the following non-dimensional parameters: The 
Rayleigh number,

„  (1.5)
KU

where a  is the therm al expansion coefficient and it is the thermal diffusivity. Ra is associated 
w ith  the therm al balance w ith in  the flu id . There is a critica l value, Rac, for which i f  Ra <  Ra<. 
heat is exclusively transfer by conduction while if  Ra >  Rae there is convection and conduction 
as heat transfer mechanisms. The Ekman number,

which is the ra tio  between viscous and coriolis forces in  the system. The P randtl number,

Pr =  - ,  (1.7)
K

which is the ratio  between the viscous and the therm al diffusivites. And the magnetic P randtl 
number,

Fm = ^ ,  (1.8)

which is the ration between the viscous and the magnetic diffusivities.
Using values from  table 1.1, values o f the non-dimensional numbers expected for the in terior 

o f the Earth are calculated and presented in  table 1.2. I t  is useful also to  introduce the magnetic 

diffusion time as t\  =  D 2 A-1 . Using values in  table 1.1, t \  ~  100 ka. Please note tha t t \  =  P m Tv .

1.3 Three-dimensional self-sustained numerical dynam os

Stellar dynamos are based on the same set o f equations presented in  sections A .l, A .2, and A.3. 
D ifferent approximations axe suitable for different environments. The in terior o f a star, for ex
ample, has density tha t varies strongly w ith  radius; the Boussinesq approximation may not be
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Table 1.2: A  rough estimate o f non-dimensional numbers for the E arth ’s core. As in  table 1.1,
the subscript t  indicates estimations for turbulent flows._________________

Non-dimensional number Estimated value Symbol 
Rayleigh ~  10ao R̂ ,
Ekman ~ 5  x 10~15 E
P randtl ~  0.1 Pr
Magnetic P randtl 5 x 10~7 Pm
Turbulent Ekman ~  5 x 10~9 Et

valid. Furthermore, stellar deep interiors are subjected to  very high pressures and, in  some cases, 
it  is possible tha t the MHD approximation is not valid either (see discussion on Jupiter’s in terior 
in  page 101). Kageyama et al. (1995) cite the firs t three-dimensional non-linear MHD numerical 
simulation as developed in  the 1970’s in  a fusion plasma context. Gilman &  M ille r (1981) applied, 
for the firs t time, MHD numerical simulations to  celestial bodies. They presented solar dynamo 
models using the Boussinesq approximation; they used very high viscosities (E  ~  102). W ith  
solar dynamo models, spherical three-dimensional self-sustained dynamo simulations were firs t 
attained. Divergence o f the solution near the poles restricted the simulations to  equatorial zones. 
Glatzmaier (1984, 1985a,b) later developed anelastic solar dynamo models (the anelastic approx
imations is explain in detail in  appendix A ). He applied to  the dynamo equations the spectral 
decomposition by poloidal and toroidal potentials proposed in Chandrasekhar (1961). W ith  th is 

approach, the problem w ith  divergent solutions near the poles was sufficiently addressed. The 
numerical implementation using the spectral algorithm  yielded, for the firs t tim e, stable solutions 
over a whole sphere, except for the singularities at the poles.

For fu lly  compressible fluids (i.e. neither Boussinesq or anelastic), Kageyama et al. (1993) 
solved non-magnetic convection models, but s till using relatively high viscosity fluids (E  ~  10” 1). 
Later, they developed a finite-difference fu ll MHD dynamo model. The goal o f these simulations 

was a better understanding o f the MHD dynamo solutions, rather than a direct application to  
the stars or planets, Kageyama et al. (1995).

Computational hardware advancements and the accurate spectral techniques allowed for geo
dynamo simulations continues to  evolve rapidly. W ith  the use of hyperdiffusivities (which are 
used for damping high harmonic order energy contribution) numerical solutions were found to  
reproduce characteristic features o f the magnetic field o f the Earth (e.g. Glatzmaier &  Roberts 
(1995), Kuang &  Bloxham (1997)). Even though the numerical solutions were stable thanks 
to  the hyperdiffusivities, the physical effect o f th is a rtific ia l damping may be o f concern when 
comparing numerical solutions to  actual physical systems. Nevertheless, the promising results 

o f these original numerical simulations, dipolar and non-periodically reversing self sustained dy
namos (e.g. Glatzmaier et al. (1999)) encouraged various groups to  use spectral methods to  solve 
the dynamo problem numerically.

For example, Glatzmaier’s models were the basis for Christensen et al. (1998) to  continue the 
development o f three-dimensional self-sustained numerical dynamos, as those included in  th is 
dissertation. This code, featuring the Boussinesq approximation, and using spectral methods,
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has also been modified and improved further in the past ten years. W icht (2002) added an 
electrically conductive inner core and studied the coupling between inner and outer cores. The 
numerical code we use throughout this study has, as a base, a modified version o f W icht’s MagIC 
2.0. We present here a further development o f this code, and it  is explain in  detail in  chapter 4.

The proliferation o f numerical models for geodynamo simulations yielded the creation o f 
a benchmark, presented in  Christensen et al. (2001). That paper compared results from  six 
different groups; a ll o f them using spectral methods for the solution over spherical surfaces. 
They found that fu lly  spectral methods (i.e. including a spectral radial solution) have higher 
numerical accuracy than those applying finite-difference methods for the radial component. More 
complicated solutions (w ith  high energy for higher orders and degree components) may be more 
suitable for the finite-difference methods, where the parallelization o f the code is more efficient.

The study o f the geodynamo has not been restricted to  spectral methods. For example, using a 
tri-linea l hexahedral grid, a fin ite  element approach has been successfully used to  model therm al 

convection between spherical shells, M atsui &  Okuda (2002). They found tha t th is approach 
requires a high density grid in  the radial direction, in  order for results to  be comparable w ith  
those using spectral methods. As mentioned above, i t  is possible tha t spectral methods are 
more suitable for low Ra and high E  models, due to  the sharp decreases in  energy spectra w ith  
increasing spherical degree, and that fin ite  element or fin ite  difference approaches become more 
suitable for runs w ith  high spherical degree and order contributions. Self-sustained dynamo 
models have been developed as well using interesting grid configurations such as the “Yin-Yang 
grid” presented by Kageyama & Sato (2004). They divided the space into two identical grids 
that overlap over a small area o f the space, but covering the whole spherical area. Their grids 
allow for a fin ite  element code that avoids the numerical complications in  regions close to  the 
poles (0 =  0,7r) tha t Gilman &  M ille r (1981) found earlier. One of the great advantages o f fin ite  
element or fin ite  difference methods is not only the parallelization (and thus speed) o f the code, 
but also tha t they are more suitable for including mechanically compressible fluids (which is not 
suitable for spectral methods). Some other interesting studies are, for example, those o f M atsui 
& B uffe tt (2005). The influence o f small scale eddies in large scale flow was studied using a sub
grid scale model. The effect o f small scale turbulence on the overall macroscopic system has been 
argued to  increase the kinematic viscosity. The extent to which small scale turbulence affects 
flows is im portant for large scale simulations, since it  may have macroscopic effects in  m odifying 
physical properties o f the flu id , i.e. turbulent kinematic viscosity versus flu id  kinematic viscosity 
(see table 1.1).

In  th is dissertation we include models and results from  numerical simulations to  help under
stand the in terio r dynamics o f planetary bodies. In  chapter 2, we present a set o f ninety five 
simulations w ith  boundary conditions that make them comparable to  terrestria l planets. We find 
the Rayleigh number for the onset o f dynamo action and how it  varies w ith  radius ratio , y , and 
variations in  the in itia l conditions. Chapter 3 presents a set o f simulations w ith  strong zonal 
flows. We find tha t our models, originally motivated by the ice giants’ interiors, result in  highly 
non-dipolar fields. The magnitude o f the field generated by these models is relatively small, in 
agreement w ith  spacecraft measurements from the ice giants. We then propose a possible mech
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anism for field generation in  the ice giants. We also introduce modifications on the numerical 
model, featuring variable electrical conductivities. We present the new model and prelim inary 
tests in  chapter 4. We use our new implementation to  study variable electrical conductivity 
models. In  chapter 5 we present results o f low E  and stress free velocity boundary condition sim
ulations. We show how variations in the electrical conductivity profiles may affect therm al and 
magnetic fields. For the parameters studied, the velocity field is not changed significantly by the 
new implementation when compared to  the homogeneous electrical conductivity runs. We find 
that, w ith  the parameters tested for the variable conductivity runs, the system is dominated by 
the kinetic energy. Our runs yield dynamos tha t are axisymmetric and dipolar, but where high 
harmonic degree and order contributions to magnetic fields are significant. F inally, we propose 
to  explore different therm al boundary conditions to  find simulations w ith  dom inantly magnetic 
energies (which is what we expect for the gas giants based on the results presented in  th is dis
sertation). The variable electrical conductivity in  planetary dynamos changes significantly the 
dynamics affecting resultant magnetic fields. I t  is im portant to  include th is approximation in  
modelling the gas giants.
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Chapter 2

O nset o f dynam o action in 
spherical shell geom etry

2.1 Introduction

Prom the enigmatic Hermean magnetic field (Ness et al. (1976)) to  the highly non-dipolar dynamo 
in  Neptune (Connerney et al. (1991b)), the solar system presents a variety o f dynamos to  explore. 
Dynamos in  terrestria l planets are believed to behave sim ilarly to  Earth ’s. Convective m otion by 
the flu id  iron core is the origin o f the intrinsic planetary magnetic field. The convection is due to 
cooling and solid ification o f the inner core, and an efficient heat transfer though the mantle. The 
result is a temperature difference between the core-mantle boundary (CMB) and the inner-outer 
core boundary (IC B). This cooling causes the growth o f the inner core due to  crystallization. 
The crystallization o f the inner core also causes a separation o f ligh t elements in  the flu id  core 
which, by buoyancy, rise to  the CMB. This process is called compositional convection. The 
inner core w ill continue to  grow un til complete solidification occurs. Studying the dependence of 
dynamo action on the size o f the inner core (or the shell thickness) w ill help our understanding 

of the evolution o f terrestria l planets. In  this chapter, we identify particular characteristics of 
the magnetic fie ld generated by dynamo action for various shell thickness.

The history o f the evolution o f the Earth ’s core is not well determined. Its  rate o f growth 
is not well constrained and depends on the m etallic core content o f radioactive elements, see 
Labrosse et al. (2001). In  addition, the therm al boundary conditions may vary from  the present 
cooling mechanism (e.g. plate tectonics may cease), and th is would change dram atically the 
underlying flu id  core dynamics.

Moreover, one can imagine that other terrestria l planets are at different stages o f inner core 
growth. Mars, for example, has no magnetic field from dynamo action, but has a strongly 
magnetized crust, see Acuna et al. (1998). I t  is reasonable to infer an extinct dynamo; the 
extinction like ly due to  either a change in  the therm al dynamics of the planet (conduction rather 
than convection), or inner core size. In  the former case, the core could have grown to  the point
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CHAPTER 2. ONSET OF DYNAMO ACTION 12

where the convective motion o f the flu id  core was too constrained to  sustain dynamo action.
To catalogue a planetary magnetic field as internally generated by dynamo action, the planet 

should present a magnetosphere that is independent o f the background field. M ercury has a 
magnetic field tha t may be strongly affected by the solar wind, but it  has been found to  be 
independent o f the solar wind, see Ness et al. (1976), Grosser et al. (2004). The uncompressed 
density o f the planet is high when compared to  a ll other terrestria l planets. This is due to  a 
large iron core that occupies about 70% o f the to ta l planetary radius. The growth an inner core 

in  terrestria l planets depends sensitively on composition. Nucleation may be inh ib ited given the 
presence o f ligh t elements in  the flu id  core such as sulphur. One o f the great unknowns in  the case 
of Mercury is the presence and size o f a solid inner core (Spohn et al. (2001)). This outstanding 
question may be solved by indirect methods. The size o f the inner core restricts the flow which 
gives rise to  a characteristic magnetic field. We w ill show that the magnetic field can be used as 
a diagnostic to  determine the size of the inner core.

Numerical models have been used to understand chaotic systems such as the one described 
by the Navier-Stokes equations. The critica l Rayleigh number, Rac, defines a critica l value for 
which the heat flow is due exclusively to  thermal conduction, for Ra <  Rac, or a combination 
of therm al conduction and convection for Ra >  Rac. In  the case o f rotating spherical shells, the 
critica l Rayleigh number for convection depends on the geometry o f the shell, and the physical 
properties o f the flu id . The value o f the Ekman number, E, plays a significant role since the 
Coriolis forces could facilita te  convection, thus the value o f Rao depends on E. Al-Shamali et al. 
(2004) present a systematic study o f parameters for the onset o f convection in spherical shells at 
various shell thicknesses. They analysed the effect o f the shell geometry on the critica l Rayleigh 
number for convection, Ra<s, as well as investigated the influence of E. They found the relation:

where x  =  f i/ fo  is the ra tio  between the inner and outer core radii.
They also discussed the flow patterns for different geometries for Rayleigh numbers just above 

i?oc. Hot plumes are formed at the inner-outer core boundary, and are found regularly spaced 
w ith  a characteristic azimuthal wave-number mc. For the ir study mc depends on E  and x- For 
a given E, m c oc ?’,■, that is, for thinner shells (high x) there are more plumes than for thicker 

shells (low x)-
Ra for the onset o f dynamo action (Rad) have been previously studied for E arth ’s geometry. 

Grote et al. (2000) studied the effect o f the magnetic P randtl number, Pm, for various Rayleigh 
numbers, Ra- They found quadrupolar solutions for low Ra (just above Ra i) and low Pm. For 

higher values o f Pm and low Ra their simulations result in  dipolar and stable dynamos, becoming 
chaotic for increasing Ra. The temporal behaviour o f the resultant fie ld is h ighly dependent on 
the flu id  properties (tim e variable versus stationary).

Heimpel et al. (2005a), presented a study on the onset o f dynamo action as a function o f radius 
ratio  x- Their results showed tha t the inner core size characterizes the geometry o f the field. 
They also found that the magnitude o f the radial magnetic field at the outer boundary is affected

(2.1)
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by the value o f y . In  th is chapter, we include the results presented by Heimpel et al. (2005a). To 
further explore the generation o f dynamo action, we study the influence o f E, and x  on Rad, the 
Rayleigh number for the onset o f dynamo. Rather than a theoretical approach taken by Jones 
et al. (2001) for finding Rae, we use a numerical approach sim ilar to  Al-Shamali et al. (2004). 
We studied a specific set o f parameters, varying the radius ratio  for two different E. Using as a 
base curve the actual values for onset o f convection found by Al-Shamali et al. (2004), Ra was 
increased u n til a self-sustained dynamo was found. In  section 2.2 we describe the methodology 
used for our study. In  section 2.3 we present the results from 95 different simulations th a t we 
include in  th is study. Lastly, in  section 2.4 the discussion of how the external magnetic fie ld is a 
diagnostic o f the internal geometry as well as the conclusions o f this study are included.

2.2 Num erical M odel and M ethodology

As described in  section 1.2, we use a model based on magnetohydrodynamics (equations 1.1-1.4). 
We study numerical simulations for various Ra and x  using two different Ekman numbers and 
two variants in  in itia l conditions.

Since the numerical code yields a discrete solution, a grid needs to  be defined for the simu
lations. I t  is necessary to  change the resolution for varying parameters. Higher Ra and lower 
E  require higher grid resolutions. The same is true for thinner shells. We choose the radial 
resolution based on the convergence o f the numerical solution and the thickness o f the Ekman 
boundary layer, D \fE .  The Ekman boundary should contain at least 4 radial levels o f the defined 
grid. The la titud ina l grid is chosen so that the cells at the equator in  the m iddle o f the flu id  
domain are almost square. The d istribution o f the la titud ina l grid follows the location o f the 
zeros o f the Legendre polynomial o f degree, lmax, and the d istribution is found for a specific grid 
using the Gauss quadrature. The longitudinal grid is regularly spaced in  angle and it  is always 
chosen to  have sim ilar angular resolutions (but w ith  a different d istribution) as the la titud ina l 
direction (figure 2.1).

For a ll the runs, we choose non-slip boundary conditions for the velocity, and the boundaries 
are kept at a constant temperature. The outer boundary is chosen to  be electrically insulating 
and the inner boundary is electrically conductive.

A ll the simulations feature an electrically conductive inner sphere w ith  a magnetic d iffus iv ity  
being the same as for the flu id  envelope. We also used a magnetic P randtl number Prn — 5.0, 
and a Prandtl number o f Pr — 1.0. Two sets o f simulations w ith  Ekman numbers E  =  1 x 10~3 
and E  — 3 x 10~4 are presented in this chapter. The Rayleigh number is changed w ith in  a small 
range just above the critica l Rayleigh number for convection, between 1.5 and 10 times Rac. The 
radius ratio , x , varies between 0.15 and 0.85.

The in itia l conditions are chosen to be the same for a ll the runs: the velocity fie ld is in itia lized 
to  zero, relative to  the rotating frame; a random temperature perturbation is added to  the 
reference state (the perturbation has a maximum amplitude o f over the central shell, r  =  
(r0 +  u ) / 2); the poloidal magnetic field is in itia lized w ith  I — 1 and m  =  0, and amplitude B ini 
at r ,; the toro ida l component is defined w ith  I =  2 and m =  0 and a maximum amplitude B in i  at
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Figure 2.1: G rid used for a low resolution run. This simulation uses 41 radial levels w ith  a 
Chebyshev d istribution, 160 levels in  latitude using a Gauss quadrature rule for the 9 d istribu tion, 
and 160 x 2 =  320 levels in  azimuth, regularly distributed. The grey zone highlights the cells in  
the Ekman layer at the outer boundary for E  =  10~3. The blue cell is roughly midway through 
the flu id  core, r  =  (ra +  r i) /2 , and the 9 d istribution is chosen for th is cell to  be square (some 
distortion is caused by the perspective).
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r 0/ 2; and the radial component is in itia lized such tha t dr Jr  =  0, where Jr  is the radial electrical 
current. For the simulations presented here, the low amplitude in itia l condition (LA IC ) case is 
defined by values for B ini =  0.5 and Tim =  0.05. The cases of high amplitude in itia l condition 
(HAIC) are defined by B ini =  5.0 and Tm  =  0.10.

Figures 2.2-2.5 show a simulation w ith  x  =  0.35 Ra =  1.12 x 10® =  2Rac, E  =  10~3, Pr  =  1, 
and Pm =  5, at its  fifth  tim e step. The effect o f the temperature perturbation has affected the 
velocity fie ld and modifies the resultant magnetic fie ld to  some extent (see figure 2.5).

Figure 2.2: Normalized temperature inside the simulated flu id . On the le ft side, an azimuthal 
and longitudinal cut from  an example run where x  =  0.35. On the right, the same snapshot but 
on a spherical shell at r  =  (r» +  r a) / 2.

Figure 2.3: Magnetic field in  the direction o f 6, Be- This is the same snapshot as presented in 
figure 2.2 and the same azimuthal, longitudinal and spherical cuts.

We did not use any hyperdiffusivities in  our models. Hyperdiffusion refers to  a damping mech
anism used in  spectral domain to  guarantee the stab ility  o f the numerical solution by controlling 
the energy stored in  higher order harmonics. The convergence for a ll our runs is obtained using a 
small enough tim e step and high enough resolutions so that hyperdiffusivities are not necessary. 
We discard its  use in  order to  avoid numerical artifacts in  the solution, even though avoiding 
them is com putationally more expensive.
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Figure 2.4: Magnetic fie ld in  the direction o f ip, B v , using the same conditions as in  the previous 
figures (Fig 2.2 and 2.3). The northern hemisphere has a retrograde direction for the magnetic 
field while the southern hemisphere is in itia lized w ith  a prograde magnetic field vector.

Figure 2.5: Radial component of the seed magnetic field. This is a snapshot o f the 5th tim e step, 
and the temperature has modified the velocity and the radial magnetic field already. The field 
points inward on the southern hemisphere and outwards in  the northern, decaying in  magnitude 
at the equator.
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As stated previously, we use, as a base, numerical results from  the Al-Shamali et al. (2004) for 
the onset o f convection in rotating shells. Ra is increased above the critica l Rayleigh number for 
convection, Rac. This is done systematically u n til a self sustained dynamo is found (where the 
magnetic fie ld is sustained by the flu id  m otion). The definition for sustained or failed dynamos 
is simple: the cases where the magnetic fie ld energy decreases exponentially three orders of 
magnitude or more from  its  in itia l value is a failed dynamo. I f  it  has a constant average energy 
for at least t\ ,  the magnetic diffusion tim e (see page 7), i t  is a self-sustained dynamo. The tim e 
series o f the to ta l kinetic and magnetic energy stored in  the flu id  is calculated and presented for 
different values of Ra in  figure 2.6 to  illustrate  the defin ition of failed and sustained dynamos.
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Figure 2.6: Time series o f kinetic (top) and magnetic (bottom ) energies on the flu id  core. Four 
runs w ith  the same radius ratio  (y  =  0.15) are presented here for varying Ra. Green, blue, purple, 
and black curves correspond to  3Ra„, 5Rao, 7Rac, and 8Rac, respectively. The simulations here 
represent four o f the points in  Fig 2.7(b); two failed and two sustained dynamos.

For a ll four tim e series shown in  figure 2.6, the radius ra tio  is set to  y  =  0.15. In  general, 
the critica l Rayleigh number for dynamo action, Rad, is the lowest Ra for which the dynamo 
is sustained. As it  has been shown here, in  some cases th is is not a critica l value as it  is for 
convection since there are failed dynamos w ith  a Ra > Rad for a given E  and y  (figure 2.6).
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2.3 Results

Summarizing the results, figure 2.7 presents a ll failed (open symbols) and sustained (solid sym
bols) dynamos found in  th is study. The curve for the onset of convection is included in  a coloured 
solid line and the grey lines above it  represent integer m ultiples of the Rac line.
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Figure 2.7: For different amplitudes of the in itia l seed magnetic field and temperature, the onset 
of dynamo for E  =  10-3 was found as a function of the radius ratio , x  f° r (a) f°w field, and (b) 
high field in itia l conditions. On the bottom , (c), results for Ekman number E  =  3 x 10~4, and 
the high field in itia l conditions amplitude.

The Rayleigh number for the onset o f dynamo action, Rad, decreases w ith  increasing %• A 
change in  regime is found for high x  for LA IC  where the widest radius ratio  was explored. Before 
X =  0.65 the curve found for Rad seem very smooth varying between 5 and 3 times Rac curve. 
This trend is broken for x  — 0.75. A more careful and complete analysis of high x  values is
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needed i f  one wants to  determine when the flu id  stops supporting a field. We know tha t Rad w ill 
depend on parameters like E  and Pm due to  the effects o f the magnetic and viscous diffusivities 
in the dynamics o f the system.

For a ll three graphs there is a steep increase o f Rad/Rac for th ick shells, w ith  the sharpest 
increase for the lowest E. There is not an abrupt transition between th in  and th ick shell dynamos 
indicated by the behaviour o f Ra<1. The three cases presented here, have a smooth curve for Rad 
if  we do not take into account the very th in  shell range (y >  0.65).

We include the to ta l magnetic and kinetic energy densities for the dynamos w ith  the lowest 
Ra, Rad, found for a ll simulations. The error bars represent the standard deviation o f the tim e 
series. The average was taken for the stable part o f the tim e series. They were chosen ind ividually 
for every tim e series. For the green data set (HAIC  E  =  10-3 ) in  figure 2.8 the average is always 
dominated by the magnetic energy. Both energy densities show linear form  w ith  increasing y  
in  the semi-logarithmic p lo t used, and both lines are almost parallel. The same is true for 
intermediate values o f y  in  the blue data set (LA IC  E  =  10-3 ). The linear trend is not so 
evident for the orange data set (HAIC  E  =  3 x 10~4), there is a change in  behaviour around 
y  =  0.35. For th in  shells the kinetic energy decreases w ith  y  while for th ick shells it  increases 
w ith y.
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Figure 2.8: Time averaged energy densities as a function o f y  for the firs t (lowest Ra) dynamo 
found. In  the graph, triangles ( V )  show kinetic and circles (o) magnetic energy densities. The 
colours refer to  the three data sets in  figure 2.7: Blue is LA IC  w ith  E  =  10-3 , green is HAIC 
w ith  E  =  10-3 , and orange is HAIC w ith  E =  3 x 10~4.

Since the linear trend in  the kinetic and magnetic tim e average seem to  have the same slope, 
we calculate the ratio  between magnetic and kinetic tim e series and use the standard deviation of 
the series as the error bars presented in  figure 2.9. In  th is graph, a noticeable transition between 
th in  shell and th ick shell geometries is seen. For th ick shells the energy ratio  increases w ith  y, 
th in  or intermediate thickness shells present almost a fla t profile for th is ratio . There are a couple 
o f points where y  >  0.6, for which th is ra tio  is reduced again. The maximum ratio  is found for 
intermediate shell thickness.
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Figure 2.9: Time averaged of the ratio  between the to ta l magnetic over to ta l kinetic energies. 
The colours as in  figure 2.8 represent the lowest Ra found for the three data sets.

The CMB radial component o f the magnetic field is of particular interest in  dynamo simu
lations, since it  is the only component one can detect away from the dynamo region (see ap
pendix B). We present in  figure 2.10 the dipolar component over the to ta l energy at CMB. There 
is subtle change in  the curve between th in  and th ick shells for each set. The different results 
for the CMB component result partly from  the in itia l conditions used. For the same E  — 10~3 
both sets, LA IC  and HAIC  (blue and green respectively), result in  significantly different dipolar 
components at CMB. In  the HAIC  case a highly dipolar fie ld is produced tha t dominates over 
other degrees of the field w ith  between 60% and 80% of the to ta l CMB radial field. In  contrast, 
for the LA IC  case, the dipolar component does not exceed 50%, reaching less than 10% for high 
values o f %.

We found a weak correlation between the dipolar component at the CMB and the ratio  of 
magnetic and kinetic energy densities (see figure 2.9 and 2.10). Where the magnetic energy is 
an order of magnitude larger than the kinetic energy, the resultant field is dom inantly dipolar. 
The cases where the dipolax component o f the fie ld is particularly weak are found when the ratio  

between magnetic and kinetic energy densities is less than one (i.e. weak dynamos).
The percentage of the dipolar component in  the radial magnetic field at the CMB is useful, but 

insufficient for a complete understanding o f the measurable field. We include in  figure 2.11 the 
ratio  between the quadrupolar (aq) and dipolar (a<j) components that is defined as r qd- As well, 
the octupolar (a<j) to  dipolar components ratio  is defined as r 0d■ This figure shows the general 
trend o f the most significant harmonics. For a ll simulations the field is dom inantly dipolar, and 
the ratios in  figure 2.11 are always lower than one. The least dipolar set, the blue circles, have 
higher quadrupolar and octupolar components. This is not unexpected since the LA IC  resulted 
in  a higher values o f Rad, and it  has been widely reported in  the literature tha t the relative 
magnitude o f higher harmonic components o f the magnetic fie ld increases w ith  increasing Ra, 
(e.g. Kutzner &  Christensen (2002), Grote et al. (2000)). Sim ilarly, the dynamos tha t were 
sustained w ith  a lower value o f Ra are found to  be more dipolar, see HAIC  and E  =  10~3 in
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Figure 2.10: P lot o f the tim e averaged, relative dipolar energy at the CMB versus y. Colours 
s till follow the same code as in  previous figures: Blue is LA IC  w ith E  =  10-3 , green is HAIC 
w ith  E  =  10 3, and orange is HAIC  w ith  E  =  3 x 10~4. For HAIC, higher values o f x  result 
in  the same percentage o f dipole at CMB, just above 60%. For a ll three cases one can see the 
difference in  behaviour between th in  and th ick shells, changing for x  ~  0.4.

green. For the orange data set, HAIC and E  =  3 x 10-4 , extreme (low and high) values of 
X required a higher supercritical Ra, and thus the there is a more dominant quadrupole and 
octupole components. For intermediate values o f x, the dominance of the higher degrees in  the 
magnetic fie ld geometry is diminished.

2.4 Discussion and Conclusions

2.4.1 Constant outer core radius versus constant shell thickness

Planetary solid iron cores in  terrestria l planets are expected to  grow while they crystallize and 
cool w ith  tim e. The outer core is constant for a ll models and the shell thickness changes w ith  
time. I t  is useful then, to  present our results w ith  units other than what is merely convenient for 
the numerical model. We redefine Ra based on the core size, r a, instead o f the shell thickness D. 
For increasing y, the thickness o f the shell diminishes and the core radius, r 0, remains constant. 
A  new planetary Rayleigh number may be defined based on D  =  r 0( l — y ),

In  figure 2.12, we present RPl for onset o f dynamo as function of x  f° r the three data sets. For 
the case w ith  E  =  3 x 10-4 (figure 2.12(c)), RPld has a m inimum value around x  =  0.35. For 
the other 2 data sets, R%d increases w ith  x  w ithout showing a significant increase for lower y , as 
it  is clearly found for the firs t mentioned data set. The decrease in the Ekman number requires 
a significantly higher supercritical Rp1 for low values o f y , th is means tha t th ick shell dynamos
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Figure 2.11: From the tim e averaged poloidal energy at CMB, the dipolar (ad), quadrupolar 
(■aq) and octupolar (a0) components are taken, and ratios r qd =  aq/ad and r ad =  a0/«<z are 
calculated. In  th is figure, these ratios are plotted as a function of y ; the p lot uses the same 
colour code previously described, e.g. figure 2.10.

become more energetically expensive, in  terms of Ra„, for lower E.

2.4.2 Shell thickness

We find distinctive characteristics in  the magnetic field at the CMB for varying y. The character
istic flows for different shell thicknesses result in  signature radial fields tha t depend on y. Sim ilar 
to non-magnetic convection (Al-Shamali et al. (2004), Jones et al. (2001)), the flow pattern in 
the dynamo region depends strongly on the radius ratio . In  the cases where Rad is not highly 
supercritical (below ~  4 flaJ , the convection is quasi-stationary and an azim uthal periodicity is 

found (see figure 2.13). Hot plumes rise from  the ICB and are tilte d  in  the retrograde direction. 
The t i l t  is a direct result o f conservation of angular momentum on the Taylor column and it  is 
caused by the shape of the top and bottom  boundary o f the column (see Busse (2002)). For 
higher Ra, which is required for LA IC  dynamos, the convection becomes non-stationary. I t  is 
im portant to  note that for very low values o f y , given tha t the number o f plumes is proportional 
to y , we find the magnetic fie ld being supported by a single plume. These geometries develop a 
dynamo where the magnetic field is azim uthally localized (as a result o f the azim uthally localized 
flow). The therm al plumes define the shape o f the velocity field. A xia l vortic ity, wz =  (V x u )-z , 
creates column pairs w ith  cyclonic and anti-cyclonic directions. They are organized around the 
rising therm al plumes (see figure 2.15). These columns are quasi-geostrophic, the variation on 
the velocity fie ld as a function o f 2: is small when compared w ith  the azimuthal direction. The 
behaviour o f the flow may be separated in to  two m ajor zones defined by the tangent cylinder 
(see figure 1.1 for an illustra tion  o f the tangent cylinder). Outside the tangent cylinder, the 
convection develops columnar structures for the velocity field, where the columns are parallel to  
the axis o f rotation. Depending on Ra, few plumes rise inside the tangent cylinder from the ICB 
axially towards the CMB.

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.



CHAPTER 2. ONSET OF DYNAMO ACTION 23

x 10

Non-convective
3.5

•  Sustained dynamos 
o Failed Dynamos

2.5

“ asoc

0.5

0.1 0.2 0.3 0.4 0.5
X

0.7 0.8

x 10

Non-convective
3.5

♦  Sustained dynamos 
o Failed Dynamos

2.5

DC

0.5

0.1 0.2 0.3 0.4  0.5
X

0.7

(a) (b)

, x  10

Non-convective 
Ra

♦  Sustained dynamos 
o Failed Dynamos

(c)

Figure 2.12: Sim ilar to  figure 2.7 but p lo tting  Rapl instead of the Rayleigh number. On the 
top, both sets w ith  E  =  10-3 using (a) LA IC , and (b) HAIC. On the bottom , (c), results for 
E  =  3 x 10-4 and HAIC. We include in  th is graph a rough interpolation for Rpld using colours 
from previous graphs to  identify each data set.
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Figure 2.13: An equatorial cut o f the temperature seen from  the north pole. For the le ft panel 
(a), x  =  0-65 using LA IC , Ra =  4Rac and E  =  10-3 . In  the central panel, (b), x  =  0.55 w ith  
HAIC, Ra =  2Raa, and E  — 10-3 . And fina lly for the righ t hand side, (c), x  — 0-15 w ith  HAIC, 
Ra =  9Rac, and E  =  3 x 10-4 .

(d) (e) (f)

Figure 2.14: On top, the magnetic field is shown at the outer boundary using a Hammer projec
tion. The tangent cylinder at th is outer boundary is marked w ith  a white line. On the bottom , a 
polar view of the radial component o f the magnetic fie ld at the CMB, the outer most boundary. 
The same scale is used for each model and the colour bar is valid for each column. Panels left, 
center and right, show the results for three x  values for different simulation parameters (same as 
used in  figure 2.13)
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Figure 2.15: Graphs o f vo rtic ity  in  the direction o f the axis o f rotation, u>z. W ith  a view from 
the north pole, an equatorial slice shows the cyclonic (red) and anticyclonic (blue) vortices. The 
three panels show the results from  the simulations used in  figure 2.13 and 2.14

The pair o f cyclonic and anti-cyclonic columns collect and carry the magnetic fie ld lines w ith  
them. The position o f maximum magnitude patches o f the radial magnetic fie ld at the surface 
is correlated w ith  the therm al plumes at the equatorial plane and the vo rtic ity  columns. The 
magnetic fie ld maximum patches are found at a higher tp angle (retrograde direction) w ith  respect 
to the equatorial therm al plumes. The vo rtic ity  columns are tilte d  in  the retrograde direction in 
the same fashion as the therm al plumes. A t the CMB these columns are spread over a wider area 
than they are at the equator, and the magnetic field lines are pushed outward when the column 
reaches the CMB (where the flow is redirected in  direction to  the equator). The radial magnetic 
field lines on the CMB d rift w ith  respect to  the therm al plumes since they are produced by the 
change in  direction of the flow.

In  addition to  the surface structure o f the radial magnetic field, the magnitude o f the field 
is a diagnostic for the internal dynamo. The magnetic fie ld o f Mercury, for example, has an 
average magnetic field three orders o f magnitude lower than those o f Saturn or Jupiter and 
also significantly lower than the E arth ’s fie ld (Stevenson (2003)). We present here the Elsasser 
numbers calculated for R?ld (table 2.1). The Elsasser number is defined as the ratio  between the 
Lorentz and the Coriolis forces in  the system and may be expressed as:

which is equivalent to

where [Em] is the tim e averaged magnetic energy o f the whole flu id  core, and [Er  J  is the tim e 
averaged magnetic poloidal energy at the CMB (r =  r 0). The energy series obtained from MagIC 
(see for example figure 2.6) scale w ith  the kinetic energy; we convert it  here to  the equivalent

A _ E P m [Em]
1 ’ 
i  — X

(2.4)

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.



CHAPTER 2. ONSET OF DYNAMO ACTION 26

Table 2.1: Elsasser number for the lowest Ra dynamo for various shell thicknesses. Three data 
sets are organized by the value o f E  as well as the in itia l field amplitude. A is the Elsasser number 
calculated w ith  [j?2]rms over the flu id  core. Ar<j, is averaged only over the outer boundary.

E In itia l condition X Ra/ R(ic A A ,„
0.10 5.0 0.27 ±  0.03 0.0013 ±0.0001
0.15 5.0 0.71 ±0.10 0.0042 ±0.0003
0.25 6.0 4.80 ±  2.50 0.0538 ±0.0216

10~3 LAIC 0.35 4.5 57.99 ±38.80 1.4781 ±0.8875
0.45 4.0 124.62±24.91 3.3420 ±0.5611
0.55 4.0 276.55±47.53 7.8840 ±1.4196
0.60 4.0 371.14±88.23 10.2984±2.2262
0.65 4.0 91.15 ±74.59 1.7151 ±1.1336
0.10 3.0 10.34 ±4.11 0.2174 ±0.1962
0.15 3.0 14.89 ±  1.42 0.1423 ±0.0510
0.20 2.5 22.41 ±  0.82 0.7092 ±0.0196

10~3 HAIC 0.25 2.5 32.52 ±  5.81 1.3345 ±0.1405
0.35 2.0 57.63 ±  8.95 3.1403 ±0.4778
0.45 2.0 100.30± 6.35 5.9697 ±0.3746
0.55 2.0 191.71±16.73 14.3389±1.1384
0.15 8.0 4.86 ±2.65 0.0226 ±0.0124
0.25 4.5 19.57 ±  5.92 0.1584 ±0.0489

^ v in - 4 n  A ir1 0.35 3.0 14.59 ±  5.54 0.1590 ±0.0607
0.45 2.2 9.73 ±5.95 0.2789 ±0.0853
0.55 2.0 13.33 ±  0.26 0.8060 ±0.0028
0.65 1.8 61.15 ±  5.09 4.2944 ±0.4847

Elsasser number. The factor on the right hand side o f equation 2.5 appears from the norm alization 
of the energy integral. In  the case o f the surface magnetic fie ld the energy is normalized by the 
area o f the surface r  — r „  and in the case o f the whole flu id  core the energy is normalized by the 
volume.

We find a maximum Elsasser number at the outer boundary, Aro, for intermediate shell 
thickness. The single plume dynamos develop a strong magnetic field at the interior, but only 
a small percentage o f th a t magnetic energy reaches the outer boundary. Most o f the magnetic 
energy is in  the toroidal component, thus, it  cannot be seen from the surface. For th in  shells, 
ATo is found to  be small too but in  th is case the magnetic field over the flu id  core is significantly 
smaller than for lower x- The intermediate shell thickness presents the highest A and Aro. For 
X ~  0.35 the dynamo sustained by the system requires a lower Rtf, (particu larly for low E  ) and 
generated the strongest dynamo. The shell thickness may strengthen or weaken the magnitude 
of the magnetic field o f the dynamo and it  is optim al for shell geometries w ith  x  between 0.25 
and 0.45.

2.4.3 Planetary magnetic fields

Lim itations in  the numerical simulations force us to  use a range of parameters different from  
what is expected for planetary interiors. The values chosen for our simulations for E  and Ra
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are orders o f magnitude different from what is expected for the Earth, see table 1.2. Based 
on a low viscosity o f liqu id  iron and the known rotation rate, the estimated Ekman number 
for Earth is E  ~  10" 15 (de W ijs et al. (1998)). The critica l Rayleigh number for convection, 

which scales as £ ~ 4/ 3, results in  R „r ~  1016. Fully three dimensional numerical simulations 
are restricted by grid resolution and it  is not possible to  reach such parameter range. However, 
an asymptotic regime has been found for which the dynamics o f the flu id  are not affected by 
viscosity even though the actual value o f E  is greater than expected for Earth (Christensen & 
Aubert (2006)). A fter reaching th is regime, the decrease in  E  may not affect the dynamics of 
the system. Fully three dimensional numerical models have reached th is regime and simulations 
where the effect o f viscosity is negligible may be found in the literature, e.g. Olson & Christensen 
(2006). Our models are not in this asymptotic regime, nevertheless, a firs t order approximation 
of the dynamics o f planetary interiors may be described by our high viscosity models. Models 
outside the asymptotic regime have been found to  reproduce firs t order dynamics comparable 

w ith  the behaviour o f Earth ’s dynamo (e.g. Glatzmaier &  Roberts (1995), Glatzmaier et al.
(1999)).

In  th is chapter, we have described how two main diagnostic characteristics in  the radial 
magnetic field at the boundaries depend on the radius ra tio  x ■ The latitude o f the magnetic 
field patches o f high intensity increases for lower x ■ Even though a ll fields found are dom inantly 
dipolar, the variations in  the spatial disposition o f magnetic field at the CMB can clearly reveal 
the internal geometry that bounds the flu id  core in  which the magnetic fie ld is generated. Based 
on this, i f  the mantle is th in  enough (diffusion o f magnetic field through isolating materials 
decreases the observable resolution) and the resolution o f the measurements allow for these 
relatively high harmonic degree features to be determined, it  is possible to  find the thickness of 
the flu id  dynamo layer inside a planet using the geometry o f its  magnetic field at the surface.

The ra tio  o f the fu ll volume A w ith  the outer surface Aro decreases w ith  increasing y. For low 
Ra, th in  shell geometries are more successful at carrying a poloidal fie ld at the surface, and thus, 
they have a higher surface magnetic field than th ick shell dynamos. This is also supported by 
a tendency towards increased A w ith  increasing For a ll the simulations presented here, th ick 
shells result in  lower values o f Aro. Only for the LA IC  and E  =  10~3 we observe a decrease in  the 
Elsasser number for a th in  shell geometry, x  — 0.65. Even though we do not find the same effect 
for the other two data sets, we expect A, as well as Ar„ , to  decrease for very th in  shells. For high 
values o f Xi the magnetic field cannot be sustained by the flow outside the tangent cylinder. I t  
should be necessary then, to  increase the value of RPJ; to  support flow inside the tangent cylinder 
and thus to  be able to  sustain a dynamo. The increase in Ra to  highly supercritical values results 

in kinetic energies th a t are greater than magnetic energies. Weak dynamos are then expected 

under these conditions. Simulations using higher values o f x  need to be performed to  find whether 
they result in weak dynamos. In  addition to  the geometrical d istribu tion  o f the magnetic fie ld 
at the outer boundary, our results show that the Elsasser number ATo gives a constraint on the 
geometry o f the underlying dynamo.

The study o f these data sets provides constrains on the magnetic fields generated by dynamo 
action under th in , intermediate and th ick shell geometries. Dynamos w ith  low Elsasser number,
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such as Mercury, Uranus and Neptune (Stevenson (2003)) are then expected then to  have either 
th in  or th ick geometries, since intermediate values o f % produce a high values o f Ar<). The E arth ’s 
core (which supports a dynamo w ith  x  ~  0-35) has a high value o f Ar„, consistent w ith  our 
findings. The dynamos of the gas giants may also be restricted to intermediate shell geometries 
(due to  the value o f Aro). This is true for Saturn for which interior models suggest a geometry 
of x  ~  0-5, for the dynamo region (Stevenson (1982), G uillo t (1999b)). In  the case o f Jupiter, 
the in terio r models suggest a rather small value o f x  which is not consistent w ith  the results 
presented in  th is chapter. Note tha t our analysis is based on simulations w ith  low values o f Ra 
and relatively high values o f E. A dditionally the boundary conditions used (non-slip boundaries) 
are more relevant for terrestria l planets than they are for gas giants or ice giants.
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Chapter 3

N um erical m odels of zonal flow  
dynam os : an application to  th e  
ice giants 1

Abstract

The weakly dipolar and strongly tilte d  magnetic fields o f Uranus and Neptune are apparently 
generated by a dynamo process d istinct from tha t which produces axial dipoles. We study a suite 
of numerical dynamos driven by convection in  a rapidly rotating spherical shell and focus on cases 
w ith  relatively high magnetic diffusivity. Models are presented w ith  magnetic P randtl number 
Pm =  0.1 — 5.0 and Rayleigh numbers between 10 and 80 times the critica l Rayleigh number 
for convection. In  the cases w ith  high magnetic diffusivity, the flu id  flow has a dominant effect 
over the magnetic fields, which are characteristically quadrupolar and octupolar and strongly 
variable in time. The dipolar component is typ ically weak, and strongly tilte d  from the axis o f 
rotation. Most o f the cases we present result in low Alfven and Elsasser numbers, in  agreement 
w ith  previous studies o f non-dipolar dynamos. Our results suggest tha t the peculiar magnetic 
fields o f Uranus and Neptune result from  dynamo action driven by convectively generated, strong 
zonal flow in  the electrolytic flu id  envelope.

3.1 Introduction

The spacecraft Voyager I I  measured the planetary magnetic fields of Uranus and Neptune in  1986 
and 1989, respectively. A prelim inary model o f these fields was made based on measurements 
covering periods o f about 11 and 18 hours, and latitudes from 52°N to  78°S and 24°S to  0°, 
respectively. The proposed model was an offset tilte d  magnetic dipole OTD, (see Ness et al.

1This paper has been accepted for publication on May 25*^ 2007, by the journal Geophysical and Astrophysical 
F lu id  Dynam ics.
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Figure 3.1: A  model o f Uranus’ and Neptune’s interiors. The figure compares the models o f the 
in terio r w ith  the geometry from previous numerical models. Based on gravity measurements, 
Hubbard et al. (1991) present different density profiles tha t we summarize in  the wedge on the 
top part o f the figure. The bars on the bottom  represent the geometry used by numerical models 
o f ice giants dynamos. These are Stanley k, Bloxham (2004, 2006) and Aubert &  W icht (2004) 
On the bottom  is the geometry used for our simulations, here marked as Model.

(1989, 1986)). The dipole component o f each field is highly tilte d  (60° and 47° for Uranus and 

Neptune respectively) w ith  respect to  the rotation axis, and the dipole position is offset from  the 
centre o f each planet. Connerney et al. (1987, 1991a) and Connerney (1993) later presented a 
solution to  the inverse problem based on a ll magnetic data obtained by Voyager spacecraft. This 
inversion was made in terms o f the spherical harmonics (up to  degree two for Uranus, and degree 
three for Neptune), and provides a better representation o f the magnetic field at surface o f the 
ice giants.

Based on gravity measurements taken by Voyager I  and II, different models for the in terior 
stra tifica tion o f the ice giants have been proposed (Hubbard &  Marley (1989), Hubbard et al. 
(1991), Podolak et al. (2000)). Figure 3.1 illustrates these models. The existence o f a rocky core 
w ith in  each planet is possible, and would occupy less than 20% of the planetary radius. A  liqu id  
layer composed o f water, methane and ammonia could extend out to 80% o f the planetary radius. 
The outer deep atmospheric layer is composed of a m ixture o f molecular hydrogen and helium 
(Hubbard et al. (1991)).

The elevated temperatures o f Uranus’ and Neptune’s interiors allow a m ixture o f ice form ing 
components (H2O, CH4 and NH3) to  be in  the liqu id  phase. Derived from  the gravity models 
mentioned above, pressures and temperatures for which the liqu id  inside the ice giants becomes 
an electrolyte (w ith  a non-negligible electrical conductivity) agree w ith  the experimental results 
o f Nellis et al. (1997). Shock experiments performed by th is group also yielded values for the 
electrical conductivity o f a “synthetic Uranus” m ixture to  be on the order o f a few hundred 
(ohm m)_1 to  thousands o f (ohm m )-1 . These values are small compared w ith  the electrical 

conductivity o f metals -  liqu id iron, for example, has an electrical conductivity at least 3 orders
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of magnitude larger.

The density d istributions proposed by the models o f Hubbard &  M arley (1989), Hubbard 
et al. (1991), and Podolak et al. (1991, 2000) result in  a mostly homogeneous electrolyte layer. 
The most extreme variation represents roughly a factor o f three increase o f the flu id  density near 
the rocky core boundary when compared w ith  the density beneath the outer molecular H /He 
envelope. The region where dynamo action takes place is not like ly to  extend throughout the 
electrolyte liqu id. I t  is plausible that convection occurs only in the top part o f the electrolyte 
layer, from  perhaps 50% of the planetary radius outwards, (Podolak et al. (1991)).

The Earth, Jupiter and Saturn a ll have highly dipolax magnetic fields more or less aligned 
w ith  the rotation axis. Most numerical studies have focused on magnetic fields th a t are relatively 
stable in  tim e and w ith  a strong dipolar component (e.g. Christensen &  Aubert (2006)). Some 
solutions also exhib it reversals in  the direction o f the magnetic dipole, analogous to  po larity 
reversals of the magnetic fie ld of the Earth (e.g. Kutzner &  Christensen (2002), Glatzmaier 
et al. (1999)). Dynamo models in  which the core geometry (i.e. the ra tio  o f the inner to  outer 
boundary o f the convection region) is different from tha t o f the Earth also are characteristically 
dipolar, even though the magnetic field geometry changes for different radius ratios (Heimpel 
et al. (2005a)). Weakly dipolar numerical dynamos have been shown to  occur under condi

tions o f vigorous convection, where inertia  becomes strong relative to  rotational (Coriolis) forces 
(Christensen & Aubert (2006); Olson &  Christensen (2006)).

Using a spherical shell, single layer model near the onset o f convection, Aubert &  W icht (2004) 
found equatorial dipole solutions. They obtained magnetic fields w ith  the dipolar component 
being highly tilte d  w ith  respect to  the rotation axis, as observed for Uranus and Neptune. These 
equatorial dipoles were also characterized by a relatively weak magnetic field, as indicated by 
low Elsasser number. Such is the case for the ice giants where the Elsasser number, A ^  0.01 
(Stevenson (2003)).

One o f the explanations for the non-dipolar field is derived from the internal structure o f the 
planet. Based on the energy emission o f the planets, Hubbard et al. (1995) proposed a stably 
stratified in terio r where the innermost part, as stated previously, from  ha lf the planetary radius 
inwards, cools via  conduction. Based on this model, Stanley &  Bloxham (2004) simulated a 
stratified liqu id  where they imposed different heat mechanisms for the two liqu id  layers. They 
used a small solid core, a non-convective flu id  layer and a convective flu id  layer. For the stratified 
models, the electrical conductivity was homogeneous throughout the simulated volume. That 
model resulted in  a highly non-dipolar magnetic field such as those found for the ice giants.

A  unique characteristic o f the ice giants is the presence of a non-axisymmetric magnetic field. 
This characteristic, as well as the dominance o f the quadrupolar and octupolar components, 
distinguishes the magnetic fields o f the ice giants from  those o f other solar system dynamos. In  
th is study, as in  previous models applied to  the ice giants (Aubert &  W icht (2004), Stanley &  
Bloxham (2004), Stanley &  Bloxham (2006)), we assume tha t non-axisymmetric and non-dipolar 
magnetic fields are generated in the main dynamo region o f the working flu id .

An alternative mechanism for producing both non-axisymmetric magnetic fields like those 
o f the ice giants and strongly axisymmetric fields, like that o f Saturn, is the presence o f an
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outer layer o f conductive azimuthal flow that modifies the magnetic field produced by an internal 
dynamo, (Stevenson (1982)). Such an azimuthal flow would be expected to  exist at the top o f 
the liqu id  electrolytic envelope if  the atmospheric zonal winds extend to  great depths in  the flu id  
envelope (Aurnou &  Heimpel (2004), Aurnou et al. (2007), Heimpel et al. (2005b), Heimpel &  
Aurnou (2007)). Kinem atic dynamos have been shown to  generate non-axial and non-dipolar 
magnetic fields (under certain restrictions) on, for example, an axisymmetric imposed flow field, 
Holme (1997). The effect o f azimuthal flow on magnetic field symmetry has been previously 
studied w ith  m ulti-layer models, in which an internal dynamo is embedded in  an outer layer 

tha t is subject to  purely non-convective differential rotation. Schubert et al. (2004) studied a 
m ulti-layered kinematic dynamo, consisting o f a solid inner core, a time-dependent convective 
layer where an a 2 dynamo is generated, and an enveloping outer layer where a strong toroidal 
shear flow is imposed. They found that, independent of the symmetry of the internal dynamo 
model, axisymmetric outer flow models resulted in  axisymmetric external magnetic fields and 
non-axisymmetric outer flow models resulted in  non-axisymmetric external fields. Love (2000) 
presented steady two layer models w ith  an internal kinematic dynamo and an outer d ifferentia lly 
rotating azimuthal flow layer. That study found that both axisymmetric and non-axisymmetric 
magnetic fields can result from  an axisymetric outer flow layer. A lthough the results o f Love
(2000) were prim arily intended to  apply to  Saturn’s highly axisymmetric magnetic field, the 
non-axisymmetric fields are interesting in relation to  the models presented here -  they show that 
non-axisymmetric magnetic fields, like those o f the ice giants, may result from  axisymmetric 
differential rotation.

In  th is paper we present single layer dynamical models (see figure 3.1) w ith  vigourous con
vection and low electrical conductivities to  simulate the dynamo region. We obtain non-dipolar 
dynamos sustained by dom inantly zonal flows, characterized by strong radial and la titud ina l 
shearing. For comparison, we also include some dynamos w ith  higher electrical conductivity. The 
influence o f varying Rayleigh number and magnetic P randtl number is studied. In  section 3.2 
we present the model, the parameters and the boundary conditions used in  our simulations. The 
results from the numerical models are presented in section 3.3. Lastly, in  section 3.4, we discuss 
our results in  the context o f previous models. We find that models w ith  strongly zonal flows 
result in  non-dipolar dynamos. Thus, we propose that the idiosyncratic magnetic fields o f the 
ice giants could arise from zonal flow dynamos.

3.2 M odel and parameters

Dynamo action is driven by convection w ith in  a rotating spherical shell o f thickness D, subject 
to a temperature difference, A T , between the inner and outer boundaries. The boundaries are 
isothermal and the system rotates w ith  an angular velocity flz , where we choose the z-axis to  be 
in the direction of the angular velocity and z is the un it vector in the z direction. The radius 
ratio  o f the outer ( r0) and inner (r^) boundaries is chosen to  be x  — i'o /n  =  0.66 (see figure 3.1). 
G ravity decreases linearly w ith  depth.

The governing equations of magnetohydrodynamics w ith  the Boussinesq approxim ation are
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non-dimensionalised. Temperature is scaled by the temperature difference across the shell, A T ; 
distance by the shell gap w idth, D  =  r 0 -  rp, tim e by the viscous diffusion tim e, t v =  D 2!/-1 , 
where u  is the kinematic viscosity; velocity by pressure by pvQ.\ and magnetic induction
by >/p jIX n , where p  is the density, p, the magnetic perm eability and A is the magnetic d iffus iv ity  
of the flu id . The resulting set of non-dimensional equations are:

E  f —  +  u  • V u -  V 2u ) 4- 2 z x u  =

- V P  +  ^ ^ - f T + ^ - ( V x B ) x B ,  (3.1)
r  9o  M 7 l

V  • u =  0, V  • B  =  0, (3.2)
f t T  1
—  +  u • V T  =  - V 2T, (3.3)

1
—  =  V x ( u x B ) |  —  V 2B , (3.4)

where u and B  are the velocity and magnetic induction vectors, respectively; T  and P  are the 
temperature and pressure scalars, respectively; g is the radia lly dependent gravity and g0 is the 
gravity at the outer boundary; and ? is the radial un it vector.

Equations 3.1 to  3.4 are expressed in  terms of the following non-dimensional parameters. The 
Rayleigh and Ekman numbers,

=  (3.5) E = ^ t (3.6)

where a  is the therm al expansion coefficient and k is the therm al d iffusivity; and the P randtl 
and magnetic P randtl numbers,

Pr =  - ,  (3.7) Pm =  T ' (3-8)K A

We choose stress free boundary conditions for the velocity at the external boundary, and the 
internal velocity boundary condition is non-slip. The Prandtl number for a ll our simulations is 
Pr =  1. The electrical conductivity o f the flu id  is uniform  throughout the volume, having the 
same value as for the rig id  inner sphere. The electrical conductivity is defined by the magnetic 
P randtl number Pm. In  most cases the Ekman number is E  — 10-4 , except for case 4 where 
E  =  3 x 10-4 . These numerical simulations required the use o f weak hyperdiffusivities. The 
hyperdiffusion form ulation used here is the same as tha t used in Kuang &  Bloxham (1999) but 
the diffusion coefficient e used here is smaller by a factor o f roughly 1/500. A ll models used 
the same grid resolution: 61, 256, and 512 levels for radial, la titud ina l and azimuthal directions, 
respectively.
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We study dynamos w ith  a range of Pm and Ra (see table 3.1). Magnetic P randtl numbers 
range from  0.1 to  5.0. Rayleigh numbers range from  roughly 10 to  80 times the critica l Rayleigh 
number for convection, Rac. The value o f Rac is based on Al-Shamali et a!. (2004). We increase 
Ra in  cases 1 to  4 and to denote the increase in  magnetic P randtl numbers, Pm, we use letters 
A to  C. The base cases w ith  the intermediate value o f Pm =  0.3 are not marked by any letter.

The numerical code used for these simulations implements a pseudo-spectral algorithm . We 
used a slightly modified version o f MagIC 2.0 by W icht (2002).

3.3 Results

Using the parameters stated in  table 3.1 we find two failed dynamos (cases 1A and 2A), and 
seven self-sustained dynamos. We define failed dynamos to  be those in  which the magnetic field 
energy decreases exponentially three orders of magnitude or more from  its  in itia l value. I f  it  
has a consistent average energy for at least three magnetic diffusion times, i t  is a self-sustained 
dynamo.

The fluctuation o f energy (magnetic and kinetic) as a function o f tim e increases w ith  Ra. The 
tim e series for two cases, w ith  different Ra (case 1 w ith  Ra ~  l lR 0c and case 4 w ith  Ra ~  85Rao) 
but the same Pm =  0.3, are included in  figure 3.2. Assuming the behaviour is quasi-stationary, 
we take the standard deviation o f the tim e series as the fluctuation in  the mean energy. Thus, 
table 3.1 shows how the variation in  tim e (or the deviation in  the energy average) for the kinetic 
and magnetic energy increases for increasing Ra. For example, the averaged toroidal kinetic 
energy in  case 1 is 1.17 ±  0.08 x 106, and the deviation is 8K t  =  7% o f the mean. For the most 
extreme example, the deviation in magnetic energy mean for case 4 is SMxat ^  70%, (figure 3.2).

A  quasi-periodic oscillation in  the energy tim e series is found in case 4 (figure 3.2). A  sim ilar 
oscillation is visible for cases 3 and 3A and also presents a 180° phase difference between the 
magnetic and the kinetic energies. The period o f this oscillation is roughly 0.5 magnetic diffusion 
times for case 4, and 1 for both cases, 3 and 3A. In  these la tte r two cases, the oscillation, which 
is more dominant for the in itia l part o f the simulation, may be a transient state before reaching 
a quasi-stationary regime. For case 4 the oscillation is clearly dominant for the whole tim e series 
modelled. Another particu la rity  o f the time series of case 4 is a tim e interval where the magnetic 
field collapses ( it decreases by almost two orders o f magnitude) and the toroidal kinetic energy 
doubles, after this episode, which lasts roughly two magnetic diffusion times, the magnetic field 
recovers, and the toroidal kinetic energy decreases, returning to  the oscillatory regime shown in 

figure 3.2. The higher Ra models tend to have a stronger non-stationary character than low Ra 
models. In  our simulations th is effect is stronger for the magnetic field energy when compared 
to  the kinetic energy tim e series.

For most cases the flow is characterized by a strong azimuthal velocity component. For a ll 
cases except case 1C, the toroidal kinetic energy is greater than the magnetic and the kinetic 
poloidal energies. To show the relative importance o f zonal flows, table 3.1 includes a row w ith  
the ra tio  o f the tim e averaged toroidal kinetic energy, (K t}, and the tim e averaged poloidal 
kinetic energy, (K p). We find th a t (K t) / (K P) increases w ith  decreasing Pm and becomes quite
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Table 3.1: Table w ith  parameters and properties for the simulations studied in  th is paper. The non-dimensional parameters Ra, and the 
equivalent R,„/ Rar, Pm, and E  are included. The Elsasser number A, the Alfven number A  and the magnetic Reynolds nuber Rm, based on 
mean values o f the root mean squared value o f the tim e averaged u  and B . We also include the tim e averaged energy values, (K t ), (K p) and 
{M ro t) which are the kinetic toroidal, kinetic poloidal and to ta l magnetic energies respectively (including also the standard deviation o f the 
tim e series). We also present the energy o f the tim e averaged magnetic field, M ave; and the ratio  o f the toro ida l and poloidal kinetic energies, 
j p y j -  We calculated a spatia lly averaged geostrophy index, [w*] and the same index for only the region outside, [j j *z} o t c , and inside, [u j * ] i t c , 

the tangent cylinder._______________________________________________________________________________________
Case 1A Case 1 Case IB Case 1C Case 2A Case 2 Case 3A Case 3 Case 4

Ra
(x lO 6) 5 5 5 5 15 15 30 30 11

Ra/Rac 11 11 11 11 32 32 65 65 85
Pm 0.1 0.3 1.0 5.0 0.1 0.3 0.1 0.3 0.3
E

(x lO - 4 ) 1 1 1 1 1 1 1 1 3

A 0.00 0.07 0.09 1.30 0.00 0.43 0.03 0.18 0.10
A 0.00 0.31 0.40 1.10 0.00 0.32 0.07 0.19 0.08

Rm 60.46 75.20 227.96 866.55 179.61 157.08 131.53 259.93 242.71
(K t)

(x lO 6) 7.71 ±0.55 1.17 ±0 .08 0.91 ±0 .06 0.44 ±  0.04 68.38 ±  3.44 4.89 ±  0.69 34.66 ±  6.16 13.41 ±  2.10 12.14 ±3 .86

(K P)
(x lO 6) 0.10 ±0.33 0.17 ±0 .01 0.20 ±  0.02 0.20 ±  0.02 0.51 ±  0.07 0.97 ±0.13 2.29 ±0 .17 2.62 ±  0.22 1.84 ±0.12

(M t  at) 
(xlO 6) 0.00 ±  0.00 0.24 ±  0.03 0.32 ±  0.07 0.53 ±  0.03 0.00 ±  0.00 1.13 ±0.18 1.50 ±  0.44 2.20 ±  0.35 0.32 ±  0.23

Mave
(x lO 6) 0.00 0.10 0.04 0.11 0.00 0.61 0.12 0.26 0.05

(Kt)
(K » ) 80.08 6.81 4.53 2.16 134.84 5.04 15.14 5.12 6.59

'  i ^ i 0.87 0.82 0.81 0.81 0.88 0.82 0.84 0.82 0.81
[“ ! ]  O T C 0.89 0.75 0.73 0.72 0.90 0.76 0.80 0.77 0.74
[ u * z \ lT C 0.86 0.86 0.86 0.85 0.86 0.86 0.86 0.86 0.85
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•  Kt •  Mt
•  Kp ® Mp

Case 1

6 6.5 7 7.5 8 8.5
Magnetic diffusion time

Case 4,4
10

6 6.5 7 7.5 8 8.5 9
Magnetic diffusion time

•  Case I
•  Case 4

a

7 7.5 8 8.5
Magnetic diffusion time

Figure 3.2: Time series o f the energy for two values o f Ra and for an intermediate value o f the 
magnetic P randtl number, Pm =  0.3. Presented here are the poloidal and toroidal components of 
the kinetic and magnetic energies (Kp, K t,  M p  and M t  respectively) for case 1 (Ra — llf? 0c =  
5 x 106) and case 4 (Ra =  85Ra<! — 11 x 106). The bottom  panel shows the tim e series o f the 
dipole latitude for both cases.
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large when no magnetic field is sustained (see cases 1A and 2A in table 3.1 ).
The strength o f the flow is modified not only by Ra (higher driving energy results in faster 

equatorial flows, e.g. Aubert (2005) ) but also by Pm, as shown in  figure 3.3(b). The Rossby 
number is the ratio  between inertia  and Coriolis forces. For the scaled quantities o f the model it  
can be w ritten  as:

II
Ro =  m  =  ReE’ (3-9)

where Re is the Reynolds number, Re =  uD /v .
We found the azimuthal flow for a ll the simulations to  be highly axisymmetric. Episodic 

non-axisymmetric plumes do occur, but are transient, being swept into the strong axisymmetric 
zonal flow. Taking an azimuthal average o f uv at the outer boundary, the azim uthal Rossby 
number as a function o f la titude is calculated, and shown in  figure 3.3(b).

Flows under low Ra and E  are strongly affected by rotation and tend to  be geostrophic. 
A s tric tly  geostrophic flow is defined by a balance between the Coriolis force and the pressure 
gradient. In  the case o f a rotating spherical shell, geostrophic flow is separated in to  two regions 
defined by the tangent cylinder, an imaginary cylinder that has its symmetry axis parallel to  the 
rotation axis, z, and is tangent to the rig id  inner sphere at the equator. Due to  the Proudman- 
Taylor constraint, and the condition o f impermeable boundaries, there is no velocity component 

parallel to  the axis o f rotation for geostrophic flow, and flow is inh ibited across the tangent 
cylinder. We find our models to  be quasi-geostrophic. Indeed, the azimuthal velocity is very well 
differentiated by the tangent cylinder surface and the velocity field, which is dominated by the 
azimuthal component, changes little  in the direction o f the 2-axis (see figure 3.3(a)). Outside 
the tangent cylinder, the velocity field takes the approximate form o f d ifferentia lly rota ting  
cylinders, while inside the tangent cylinder columnar, hot plumes rise from  the inner boundary, 
mostly parallel to  z w ith  a relatively small azimuthal velocity. The cylindrical geometry of the 
flow w ith in  the spherical shell gives rise to the characteristic zonal flows at the outer surface 
plotted in  figure 3.3(b). A ll models result in a prograde zonal je t at the equator.

There are different mechanisms for field generation in  dynamo theory. The omega effect, 
for example, refers to  the generation of toroidal magnetic fie ld lines from  an existing poloidal 
magnetic field. The alpha effect refers to  production o f poloidal magnetic field lines from  an 
existing toroidal field. Once a magnetic field is sustained in  the convective region, and due to  the 
non-negligible conductivity o f the flu id , the flow tends to  m odify the magnetic fie ld lines. This 
results in a Lorentz force opposing the change and m odifying the flow, decreasing the velocity 
of the flu id  (G uillo t et al. (2004)). Since the strength o f the Lorentz force is proportional to  the 
flu id  electrical conductivity, it  is sensible to  find that the Rossby number o f the main equatorial 
je t at the outer boundary decreases w ith  increasing Pm (figure 3.3(b)).

In  contrast to  the relatively stable energy tim e series and flow geometry shown in  figures 3.2 
and 3.3, the symmetry o f the resultant magnetic field varies greatly w ith  tim e. In  our calculations
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OJOi 0.02 0.03 0.04 005

(a) (b)

Figure 3.3: Plots o f the toroidal Rossby number for a snapshot o f the velocity field. On the 
le ft, the toroidal velocity uv is plotted for a snapshot o f case 1. On the right, la titude  versus 
azim uthally averaged Rossby number at the outer boundary is plotted for various values o f the 
magnetic P randtl number and Rayleigh number. Included here models w ith  Pm =  0.1 for cases 
1A and 3A, Pm — 0.3 for cases 1 and 3, Pm =  1.0 for case IB , and Prn =  5.0 for case 1C. They 
also involve two values of the Rayleigh number, Ra =  11 Rac (cases 1A, 1, IB , and 1C) and 
Ra =  65Rac (cases 3A and 3). The horizontal lines mark the projection o f the tangent cylinder 
onto the surface r  =  r a.
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we express the magnetic field as the negative o f the gradient o f the potential 0 ,

OO I  ̂| ^
<f>(r,0 ,<p) -  EE(t) P;m(cos(0)) \gP cos(mip) +  h™ sin(f7iy>)], (3.10)

l — l  m = 0

where r a is the radius at the top o f the dynamo region, P™(x) is the Legendre polynom ial o f 
degree I and order m, and g\n and h]n are called the Gauss coefficients. The general geometric 
characteristics o f the magnetic field can be determined by a spectral decomposition. The mean- 
squared field strength can be calculated for different degrees and orders for the resultant magnetic 
field at the outer boundary. We calculate the spectra by summing the mean-squared fie ld strength 
for a common degree I, and common order m, that is (for I >  0),

To compare our models to  the magnetic field measured at the top o f the cloud layer o f the 
ice giants, we use upward continuation o f the magnetic fie ld in our simulations to  a radius 
r e =  1.25 r D. In  th is paper, we call the surface o f the sphere o f radius r e the equivalent planetary 
surface. We compare spectra o f randomly picked snapshots w ith  the spectra o f the time-averaged 
fields o f the radial magnetic field component, Br , at the equivalent planetary surface. The tim e 
averaged field magnitude is weaker when compared w ith  the magnitude at a given snapshot (see 
M ave and (Mxot) table 3.1). The averaged magnetic field geometry is also d is tinctly  different 
from  a snapshot. The non-transient component of the field tends to  be more dipolar fo r higher 
Ra, see figure 3.4(c). The spectra are averaged over approximately one magnetic diffusion time.

To show the tim e va riab ility o f the magnetic field we include the tim e series o f the energy for 
different spherical harmonic degrees and orders o f the magnetic field at the equivalent planetary 
surface. In  figure 3.5 the tim e series o f the energy for the dipolar (M i-1), quadrupolar (M i-2), 
and octupolar (M ;=3), components are shown. In  order to  describe the azimuthal symmetry as a 
function o f tim e we separate the field into axisymmetric (M m- 0), and non-axisymmetric (M m^ 0 
) parts. Using a subset o f the to ta l tim e of the simulation, we calculate the mean and standard 
deviation to  determine the percentage o f the variation about the mean, sim ilar to  our analysis 
for the tim e series in figure 3.2. We find tha t the ra tio  o f the standard deviation to  the mean 
yield values o f 8M i=1 =  90%, 8M i=2 =  57%, and SM[ - 3 =  58% for the top panel tim e series, 
for the bottom  panel, 8M m- 0 =  97% and SMm^ 0 =  85%. For the same short period, and as a 
comparison, we find that the to ta l magnetic energy in  the flu id  has 8M x0t =  24% deviation. For 
the toroidal kinetic energy 8K t =  5%.

For a more direct comparison w ith  the ice giants, we include a map of the radial magnetic 
field at the top o f the clouds. Using the Gauss coefficients for Uranus and Neptune published 
in Holme &  Bloxham (1996), we plot maps of the ice giants’ magnetic fields truncated to  a

and

(3.12)
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Figure 3.4: Plots o f the spectral power, ai and am o f the radial magnetic field, B r , at the
equivalent planetary surface (r e =  1.25 r 0); r a is the radius at the top o f the dynamo. A t the top, 
the spectra o f model snapshots are plotted. On these frames, we include the spectra for the radial 
magnetic fie ld o f Earth (IGRF-10), as well as those for Uranus and Neptune at the top o f the 
clouds (from  models Umoh and Nmoh in  Holme & Bloxham (1996)). A t the bottom , the spectra 
of averaged model magnetic fields are plotted. The average is taken over one magnetic diffusion 
time. To compare the magnetic field spectra, we p lot them a ll a t 1.25 r 0. Thus r 0 represents the 
radius o f the core-mantle boundary for Earth, the bottom  of the deep atmospheres for Uranus 
and Neptune, and the top o f the dynamo for our models.
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Figure 3.5: Time series of the magnetic energy for case 3A (Ra =  3 x 107 =  65Ra<. and Pm =  0.1). 
The top panel shows the dipolar, quadrupolar, and octupolar components o f the magnetic energies 
(M i= i,  M i—2, and 3 respectively) at the equivalent planetary surface, r e =  1.25 r 0. The 
bottom  panel shows the tim e series o f the axisymmetric (M m=0), and non-axisymmetric (M m^o) 
component o f the magnetic field at the equivalent planetary surface.
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(a) (b)

Figure 3.6: Maps o f the radial magnetic field o f (a) Uranus and (b) Neptune at the top o f the 
clouds. The magnetic field plotted up to degree five based on the Gauss coefficients from  Table 
2 in  Holme & Bloxham (1996).

maximum degree lmax =  5 (figure 3.6). The radial fields obtained for a numerical sim ulation 
(case 3A) projected to  the equivalent planetary surface, for four different times (marked in  the 
times series shown in  figure 3.5) are included in figure 3.7. As can be seen in  the tim e series 
(figure 3.5) o f our numerical simulation, the relative dominance o f dipolar, quadrupolar, and 
octupolar fields, as well as the relative dominance o f axisymmetric and non-axisymmetric fields, 
varies w ith  tim e. Thus, for some snapshots in  tim e the model magnetic field resembles those of 
Uranus and Neptune while at other times they do not. Figure 3.7(a) shows a snapshot when the 
modelled field is quadrupolar and relatively axisymmetric; in  figure 3.7(b) the field is dipolar and 
mostly axisymmetric; figure 3.7(c) presents a combination o f non-axisymmetry and axisymmetric 
components tha t are comparable and a dipolar field; and figure 3.7(d) shows a non-axisymmetric 
fie ld w ith  sligh tly more dominant quadrupolar and octupolar components w ith  respect to  the 
dipole than in  figure 3.7(c). The dipole colatitude found for each frame show a significant 
deviation from the axis o f rotation. Dipole tilts  o f 61.3°, 19.6°, 40.3°, and 49.4° correspond to  
panels (a), (b), (c), and (d) o f figure 3.7 respectively.

For most o f the simulations, the magnetic force is weak compared w ith  the Coriolis force, 
th is is indicated by low values of the Elsasser number, A =  , presented in  table 3.1.
The only case for which A >  1 is case 1C, which has the highest Pm- Furthermore, the magnetic 
field intensity increases w ith  increasing convective vigour and decreases w ith  increasing magnetic 
diffusivity.

We are interested in  the relationship between the geometry and vigour o f the flow fie ld and 
the resultant magnetic field for our models. This relationship may be understood in  terms o f the 

ratio  o f the kinetic and magnetic energies, or in  terms o f the ratio  o f the Alfven wave velocity and 
the flu id  velocity. This ratio , called the Alfven number, compares the influence o f the magnetic 
field on the flow and vice versa. I t  can be expressed as:

A
B

u /m ER eR,r,
(3.13)
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(a ) (b)

(c) (d)

Figure 3.7: Maps o f the radial component o f the magnetic field for the numerical sim ulation 
case 3A, up to  spherical harmonic degree five, at the equivalent planetary surface (r e =  1.25 r a), 
for four different instants. The dipole t i l t  calculated for each frame is significantly far from  the 
axis o f rotation, i.e. 61.3°, 19.6°, 40.3°, and 49.4° for (a) (b), (c), and (d) respectively. The tim e 
to which the panels correspond are marked by black vertical lines on figure 3.5.

where Rm =  uL/X  is the magnetic Reynolds number. The Alfven number in  table 3.1 is included 
to  estimate the effect that the magnetic field has on the flu id  flow. I f  A  -C 1 the influence o f the 
magnetic field on the flu id  flow is small. The values for the magnetic cases range from  A  =  0.07 
for Pm=0.1 (case 3A) to  A  =  1.1 for the dynamo w ith  Pm =  5 (case 1C). W ith  the exception of 
case 1C, the Alfven number is less than one but never small enough to  indicate that the magnetic 
field has a negligible effect on the flow field.

To analyse the geostrophic characteristics o f our model quantitatively we calculate the z 
component o f the vortic ity, |( V  x u )z, and normalize it  w ith  the magnitude o f the to ta l vo rtic ity  
at tha t given point to  obtain w* =  |(V  x u )2||V  x u |_1, which w ill be called the geostrophy index. 
I f  the flow is completely geostrophic, then in* =  1. Taking an azimuthal average, [u*] (where the 
brackets denote a spatial average), gives an indication o f the dominance o f the geostrophy as a 
function o f radius and latitude.

Figure 3.8 shows, for the calculations w ith  E =  10~4, snapshots o f the poloidal streamlines 
superposed on images o f the geostrophy index [in*], and the poloidal magnetic fie ld lines super

posed on images o f the magnitude o f the toroidal component o f the magnetic field. Increasing 
Ra changes the d istribu tion  o f [w*] over (r, 6) space (meridional planes). The flu id  is highly 
geostrophic near the equatorial plane for low Ra. When Ra is increased (bottom  to  top in  fig
ure 3.8) radial and poloidal flow is increased close to  the internal boundary, due to  the stronger 
convection. The geostrophic flow is then confined to the outer part o f the shell, near the equa-
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-----------------------------------------------------------------
Increasing magnetic Prandtl number

Figure 3.8: Images of the geostrophy index, poloidal streamlines, and poloidal and azimuthal 
magnetic field for a ll simulations w ith  E  =  10~4. For each panel the contour lines on the left 
side correspond to  the meridional streamlines superimposed on the normalized vortic ity, [w*] 
(see text). On the right side, the contour lines correspond to  the poloidal magnetic field lines 
superposed to  an image of the azimuthal magnetic fie ld B v . The panels are organized w ith  
increasing Pm from  le ft to  right and and increasing Ra from  bottom  to  top. The colour map 
used for the geostrophy index varies from  0.5 (blue) to  1 (dark red). In  the case o f the toroidal 
magnetic fie ld blue indicates retrograde direction and red prograde.
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to ria l plane. The tangent cylinder is clearly defined by the geostrophy index for low Ra and low 
Pm (cases 1, 1A and 2A). When Ra is increased the geostrophy index becomes more homoge
neous and the tangent cylinder becomes less well defined. For increasing Pm (le ft to  righ t in 
figure 3.8), the d istribution o f the geostrophy index varies principally between the non-dynamo 

case to  the magnetic solutions and does not change significantly between magnetic solutions 
w ith  Ra =  5 x  106 =  U R a,. W hile s till having a mostly geostrophic flow near the equatorial 
plane when increasing Pm, the poloidal vo rtic ity  becomes more significant w ith  respect to  the 
z-vortic ity in  regions outside the tangent cylinder, above and below the equatorial plane.

The magnetic field w ith in  the inner rig id  sphere is stronger for higher Pm. This is easy to 
understand since the value for the electrical conductivity is the same for the flu id  and the inner 
sphere, thus a higher Pm means a higher electrical conductivity for the rig id  inner sphere. The 
rig id  sphere’s magnetic field is more stable in  tim e than the field w ith in  the convective flu id. 
The dipolar fie ld generated inside the tangent cylinder is strengthened by presence o f the inner 
sphere and, as in  case 1C, creates a weak background dipolar field upon which the flow-generated 
transient field is superimposed. In  consequence, the tim e averaged field is dipolar (see figure 3.4) 
and sustained by the inner sphere, while the instantaneous field varies rap id ly over tim e due to 
strong fluctuations of the flow-generated magnetic field.

3.4 Discussion

Previous numerical models have also produced non-dipolar magnetic fields. Stanley &  Bloxham 
(2006, 2004) presented models w ith  a stratified interior, and compared them w ith  single flu id  
layer models (like the ones presented here). They studied the effect o f different radius ratios 
in  the single-layer models, and found tha t non-dipolar dynamos are attainable, but only for a 
lim ited range of radius ratios. They also pointed out, for these single-layer models, the need for 
a rig id  inner sphere o f low electrical conductivity. They concluded tha t a stratified flu id  is more 
suitable than a single flu id  layer when modelling the planetary interior, in  order to  reproduce 
the magnetic fie ld geometry of the ice giants. The flows developed in  the stratified models of 
Stanley and Bloxham seem to have low Alfven numbers, based on a comparison using magnetic 
and kinetic energy tim e series for the unstable layer. This would indicate tha t stra tifica tion  in  the 
flu id  allows the flow w ith in  the unstable layer to have a more dominant effect over the magnetic 
field, and th is results in  a non-dipolar magnetic field.

The m ultipo lar regime found in our models is consistent w ith  Christensen & Aubert (2006) 
and Olson &  Christensen (2006). They found that models w ith  high Rossby numbers (R0 >  0.02 
for E  =  K T 4) result in  h ighly variable, non-dipolar and non-axisymmetric magnetic fields. 
Other groups have also found correlations between input parameters, such as Pm and Ra, and 
field geometry. For example, our solutions for high Pm (cases IB  and 1C) may be compared 
w ith  results o f Grote et al. (2000). Although Grote presented only simulations w ith  Ra less 
than ten times Rac and had different radius ratio  and boundary conditions than our simulations, 
a comparison is relevant since they analysed the effect o f the magnetic d iffus iv ity  for various 
models. They found quadrupolar dynamos for Pm o f order 1 and Rayleigh numbers just above
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onset o f dynamo action. However, increasing in  the magnetic P randtl number led to  dom inantly 
dipolar dynamos, even for low Ra. For higher Pm values, only dipolar field geometries were 
found. In  agreement w ith  their study, we find tha t the increase in the magnetic P randtl number 
favours the dipolar component, relative to  the higher multipoles, in  the tim e averaged solution.

Our models differ from  previous models in  that we use low magnetic P randtl numbers (i.e. 
high magnetic d iffusiv ity), along w ith  free slip outer boundary conditions, which allows strong 
differentia lly rota ting zonal flows, driven by Reynolds stress, to  develop before Lorentz forces set 
in to  balance the torques. In  our simulations, the quadrupole component is favoured by zonal 
flows. The quadrupolar character o f the magnetic field may be determined by the strength of 
the azimuthal flow. We describe in  section 3.3 how the d istribu tion o f the geostrophy index 
varies depending on Ra and Pm. Notice tha t the [w*] d istribu tion (image on the le ft side of 
each panel in figure 3.8) indicates that the high geostrophy index is associated w ith  a lack o f 
poloidal magnetic field lines. Near the equatorial plane, the omega effect is favoured due to  the 
dominance o f differential toroidal flow. When this dominance is diminished (for higher Pm or 
Ra), the poloidal magnetic field lines are present and the field becomes less quadrupolar, and 
more dipolar. For our models dominated by strong zonal flow (which excludes the case w ith  
Pm =  5)> the Alfven number is always below 1 but increases w ith  Prn. For lower values o f A, 
the magnetic field has stronger quadrupolar and octupolar components, relative to  the dipolar 
component. Thus, zonal flows are weakly affected by the magnetic field, resulting in  low Elsasser 
numbers and non-dipolar fields, sim ilar to the magnetic fields of the ice giants. In  the models 
presented here, stronger magnetic fields inh ib it the zonal flows (see figures 3.3(b) and 3.8). For 
the case w ith  high electrical conductivity (Pm =  5, case 1C), the magnetic field interferes w ith  
the flow to  a point where A  >  1 and the dipolar field dominates.

I t  has been proposed tha t the force balance for planetary dynamos is p rim arily  magne- 
tostrophic, which is likely to  hold for planets like the Earth, Jupiter and Saturn (e.g. Starchenko 
&  Jones (2002)). For the ice giants, a deviation from  th is balance could be the reason for the ir 
uncommon magnetic field symmetry (Holme & Bloxham (1996)). For our models w ith  high mag
netic d iffusivities, geostrophic flows generate relatively weak (low Elsasser number) non-dipolar 
and non-axisymmetric magnetic fields. Thus our models im ply that the magnetic fields o f the 
Uranus and Neptune can be sustained by dynamos in which relatively low electrical conductivity 
o f the electrolytic flu id  results in a geostrophic (rather than magnetostrophic) balance.

In  summary, we have investigated dynamos for a range o f magnetic diffusivities and convective 
forcing w ith  a free slip outer boundary condition. We find that models w ith  high magnetic d iffu 

s iv ity  (low Pm) develop strong axisymmetric zonal flows resulting in  tim e variable and typ ica lly 
non-dipolar and non-axisymmetric magnetic fields. These dynamos are characterized by strongly 
inertia l flow (high Ro) and relatively weak magnetic fields (low A and A). Thus we propose that 
zonal flow dynam os may explain the magnetic field generation in the ice giants. T he electrolyte 

layers inside Uranus and Neptune are expected to  have low electrical conductivity, resulting in 
Pm values tha t are much lower than those in  the liqu id  metal cores o f the terrestria l planets 
and gas giants, and orders o f magnitude lower than most simulations have undertaken. Since 
Pm seems to  have a strong influence on the geometry o f both the flow field and the magnetic
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field, we look to  future models w ith  even lower Pm to  obtain magnetic fields sustained by strong 
zonal flows w ith  lower Alfven numbers. One o f the m ajor problems in  proving the va lid ity  o f the 

numerical models is the lim ited amount o f real measurements. We w ill look to  data from  future 
space missions to  better understand the geometry and tim e dependence o f magnetic fields in  the 
ice giants.
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Chapter 4

R adially variable electrical 
conductivity

4.1 Introduction

Equations o f motion that describe dynamical systems in planetary interiors determine typical 
length scales for the variation o f the velocity, magnetic and temperature fields. Numerical mod
els are restricted to  a range o f parameters where the length scales between these three fields are 
comparable. The problem w ith  low viscosity fluids is that the velocity field may present small 
scale dynamics, when compared w ith  the magnetic field. To solve th is problem, a small grid is 
required for resolving the velocity field. The grid must also extend over a great volume to  resolve 
the large scale field. The dynamo problem, then, is in trinsica lly demanding due to  the physical 
properties o f the flu id  itself. In  order to  overcome th is fundamental d ifficu lty, the physical equa
tions used to  model planetary interiors have been simplified, in  order to  w rite numerical solutions 
that contemporary technology can solve. Thanks to increasing computer capability, and the de
velopment o f efficient numerical algorithms, fu lly  three dimensional solutions o f self-sustained 
dynamos have been attained (e.g. Glatzmaier (1984), Kuang k. Bloxham (1999), Christensen 
et al. (1998)). For example, when modelling the geodynamo, a common assumption is to  use 
a spatially and tem porally constant density. A t E arth ’s core pressure and temperature, liqu id  
iron is not expected to  change density significantly. Thus, a constant density assumption is sen
sible for terrestria l planets where the dynamo region is expected to  be homogeneous in  density 
w ith  only a sharp phase change at the interface between inner and outer cores (Dziewonski &  
Anderson (1981)). Arguments against the homogeneity o f the flu id  core have been discussed 
in  the literature  (see Braginsky (1999) and references therein). The solidification o f the inner 
core differentiate lighter elements. The crystallization has a preference for the heavier elements 
(i.e. iron and nickel), leaving lighter-element-enriched flu id  that, by buoyancy, reach the core
mantle boundary. I t  is possible that th is lighter-element flu id  creates a stably stratified envelope 
surrounding the core near the CMB. The density variation w ith in  the flu id  core, even w ith  the
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ligh t element layer, would be too small to  be visible using seismology. Despite the possibility o f a
multi-component flu id  core, in  early studies, numerical simulations of the E arth ’s core neglect the 
density variation using the Boussinesq approximation (e.g. Glatzmaier &  Roberts (1995), W icht
(2002), Kuang & Bloxham (1999), Christensen et al. (1998)). Compositional convection has been 
included in  Boussinesq models (e.g. Kutzner &  Christensen (2004)), w ith  the introduction o f a 
‘co-density’ tha t depends on the chemical density contrast and the temperature. These models 
s till neglect the change in  density viscous force (see appendix A ). More recently, the change in 
density has been taken into account using the anelastic approximation, where various models 
have been proposed, and o f which some have been tested ( Glatzmaier &  Roberts (1996), Evonuk 
& Glatzmaier (2004), Jones (2007)).

W hile homogeneity is a relatively good assumption for iron cores in  terrestria l planets, the 
interiors o f the giant planets are not homogeneous in density. The phase transitions occurring 
w ith in  the giant planets are poorly understood. Various theories for the behaviour of liquids 
at high pressures and temperatures have been studied, and simplified models (w ith  great un
certainties) have been found (G uillo t (1999b), Nellis (2000), Stevenson (1982), Podolak et al. 
(2000)).

In  the case of Uranus and Neptune, as has been discussed in  chapter 3, the dynamo re
gion is restricted to  a zone where water, methane, and ammonia form  an electrolyte solution. 
I t  is expected tha t this solution has a relatively homogeneous density; hence, the Boussinesq 
approximation is valid (Gomez-Perez &  Heimpel (2007)).

For the gas giants, the helium differentiation w ith  depth, and the gradual change from  atomic 
to  m etallic hydrogen (as suggested by Nellis (2006)) indicate tha t gas giants interiors undergo a 
slow density change from  the non-conductive atmosphere, to  an electrically conductive interior. 
For Jupiter and Saturn, a homogeneous density for the dynamo region is like ly to  be a poor 
approximation.

4.1.1 Boussinesq and anelastic approximations

In  th is section, we include a b rie f discussion on the most common approximations used for 
the conservation o f mass equation. For a reference on the relevance o f the mass conservation 
equation on the dynamo problem, and where the approximation may be included, please refer to  
appendix A. The equation o f conservation of mass for a flu id  is defined by

where p is the density o f the flu id , t  is tim e, and u  is the velocity o f the flu id . In  the case where 
the velocity o f the flu id  is much smaller than the speed o f sound in  the flu id , one can assume 
that d p /d t ~  0, thus finding what is called the anelastic approximation,

(4.1)

V  • (pu) =  0. (4.2)
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Further, fo r a special case where the flu id  is well mixed (and the density is homogeneous), V p ~  0. 
This is the Boussinesq approximation,

V  • u  =  0. (4.3)

The differences between these last two approximations become relevant for compressible fluids. 
Consider a system tha t is heated at its  base, and where gravity is aligned w ith  the negative vertical 
direction. Under a gradient o f density (for which the anelastic approximation is necessary), rising 
plumes w ill expand w ith  height as the pressure diminishes towards the surface. In  the same way, 
sinking cold plumes w ill contract w ith  increasing depth. Thus, hot plumes have a greater effect 
at m ixing the flu id  than sinking cold plumes. Numerical simulations show how th is in tu itive  
understanding may be qualitatively described. Rogers et al. (2003) presented two-dimensional 
computer simulations o f turbulent convection comparing both, the Boussinesq and the anelastic, 
approximations. Plots of the entropy profile for two of the ir simulations w ith  exactly the same 
parameters except for the ir density profile are presented in  figure 4.1, showing the two different 
solutions due to  the density stratification.

Figure 4.1: Figures taken from  Rogers et al. (2003). A  flu id  heated from the bottom  w ith  gravity 
pointing downwards, Ra =  1011, and Pm =  1. On top, a snapshot of the entropy perturbation for 
an anelastic model w ith  decreasing density from bottom  to  top (the density changes by a factor 
of 12). On the bottom , the same model parameters as on top, but for a Boussinesq model.

In  the top panel o f figure 4.1, the density changes from  the base to  the top by a factor of 
approximately 12. The changes in  the small scale features are clear. The hot plume on the right 
side (at approximately x =  1.9D, where D  is the to ta l height o f the simulated volume) reaches
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a greater height for the Boussinesq case when compared to  the anelastic case. The expansion of 
the flu id  in  the anelastic approximation diffuses the hot plume by the tim e it  reaches a height 
of approximately D /2 , while the plume reaches 0.75D for the Boussinesq case. The large scale 
dynamics for both approximations are sim ilar, i.e. the length scale o f the convection cells for 
both is the same.

Magnetic rotating convective fluids may add further complications to  anelastic systems. 
Evonuk & Glatzmaier (2004) studied two-dimensional models, sim ilar to  those discussed above 
but for rotating convective systems under the additional influence o f Lorentz forces. We include 
here: I) The density profile used for the anelastic models of Rogers et al. (2003) and Evonuk 
& Glatzmaier (2004) (figure 4.2(a)). II)  The snapshot o f an entropy profile from  Rogers et al.
(2003) anelastic models (figure 4.2(b)). Maps of the entropy profile from: I II )  a non-rotating 
non-magnetic anelastic solution (figure 4.2(c)) and IV ) a magnetic, rotating, anelastic solutions 
(figure 4.2(d)) presented by Evonuk & Glatzmaier (2004).

Rogers (2003) 
Evonuk (2004)

0.25 0.5 0.75 1
n o r m a liz e d  d e n s ity  p

Figure 4.2: Figures taken from Rogers et al. (2003) (b), and Evonuk &  Glatzmaier (2004) (c) 
and (d). The models presented here used the same Rayleigh (Ra =  lO10) and Prandtl (Pr =  1) 
numbers. Density profiles for the simulations are plotted in  (a). In  (b), same as the top on 
figure 4.1 but for a lower Ra. On the bottom , (c) and (d), a slightly different anelastic model 
w ith  a more dramatic density stratifica tion for: (c) a non-magnetic, non-rotating, anelastic 
simulation; and (d), a rap id ly rotating (E  =  10-5 ), magnetic {Pm =  1), anelastic model.

A  direct comparison between Boussinesq and anelastic solutions presented in  Evonuk’s paper 
highlights the differences between the two approximations. One of the drawbacks for applying
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the ir results d irectly to  planetary interiors is tha t the effects o f the geometry o f the boundary 
conditions are neglected. They have been proven to have a significant effect on the flow (e.g. 
Heimpel et al. (2005b)), and are not considered by Evonuk &  Glatzmaier (2004). Busse (2002) 
presented a mathematical approach as well as numerical results on the effect o f the geometric 
constrain on the flow in a cylinder and in spherical shells. He attributed the differential rotation 
on a rota ting cylindrical annulus to  a mean flow instab ility  introduced by the geometry o f the 
top and bottom  geometrical boundaries. This results in  a mean zonal shear due to  the Reynolds 
stress Rrip. To study the effects o f density variation in  planetary systems requires the inclusion 
o f three-dimensional geometric constraints.

The anelastic approximation has been used in  three dimensional systems in  order to  model 
stellar dynamos, e.g. Brun et al. (2005). Even though they do not present a direct comparison 
between anelastic and Boussinesq models, their results for stress free boundaries have sim ilar fea
tures for the velocity field as the Boussinesq models presented in chapter 3. A  direct comparison 
between these two approximations is s till desirable.

I t  is expected tha t density inside the giant planets decreases gradually outward w ith  radius, 
as does the electrical conductivity (Nellis (2006)). The molecular hydrogen envelope, although 
not electrically conductive, may also present significant variations in density. The compressibility 
o f liqu id  hydrogen is significant, and it  is relevant to  take in to  account the density stra tifica tion 
and the electrical conductivity variation when modelling the gas giants’ dynamos.

We propose to  analyse the sole effect o f a radially variable electrical conductivity. For this, 
we use as a base a numerical code (Magic 3.1 W icht (2002)) that features the Boussinesq approx
im ation, and does not include variable electrical conductivity. A mathematical description of 
the modified numerical approach is included in  Section 4.2. In  Section 4.3, we present two tests 
based on seven numerical simulations as a way o f introducing and evaluating the m odifications to  
the numerical code. Lastly, in  Section 4.4 we discuss the results found based on the prelim inary 
tests.

4.2 Radially variable conductivity equations

Using equation A.47, derived from  Maxwell’s equations, the tim e derivative o f the magnetic 
induction vector is: QD

=  - V  x A(V x B ) +  V  x (u x B ). (4.4)

Since V  ■ B  =  0, dynamo models solve equation 4.4 using the poloidal and toroidal potentials 
(Chandrasekhar (1961)). The magnetic induction vector can be w ritten  as a function o f two 
scalar fields

B  =  V x V x 6f  +  V x j f ,  (4.5)

where b is the poloidal potential and j  the toroidal potential. We can find a relation between b 
and B :

r - B  =  r  • [V  x V  x r 6 + V  x r j] ,
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=  f[V (V  • r)b — V 2&r], 

=  V 2& — V 26 

r  B  =  -V% b, (4.6)

where the Laplacian is w ritten  as V 2 =  V 2 +  V #  in  terms of the radial, V 2, and the horizontal, 
V 2H, components. For future reference, we introduce here the angular momentum operator 

L h  =  - r 2V H.
Sim ilarly, the relation between j  and B  can be found,

f  • (V  x B ) =  r  • [V  x V  x V  x rb +  V  x V  x f  j ]  

=  r  • (V  x [V (V  • r) -  V 2f ])6 -  V 2g j  

=  r . ( V x [ V 2r - V 2r ] ) i i - V ^

=  r  ■ (V  x [V |,]f)6 — V 2Hj  

f - ( V x B )  =  -V % j. (4.7)

To find the how the radial component of the magnetic induction vector changes w ith  tim e, 
we can take the dot product o f equation 4.4 w ith  r

m
dt

r  =  [V  x (u  x B ) -  V  x A(V x B )] • r . (4.8)

The second term  on the right hand side o f this equation may be simplified, since we assume an 
exclusively radial change in  d iffusivity and thus VA has only the radial component,

[V  x A(V x B )] • r  =  ( V A x  (V  x B )) • f  -  AV2B  • f  

=  -A r  • (V 2B ). (4.9)

thus,

—  • r  =  V  x (u  x B ) +  Ar • (V 2B ). (4.10)

The second term  on the right hand side o f equation 4.10 may be developed further. For a vector 
a , the radial component o f the vectorial Laplacian is:

[V 2a] • r  =  V 2ar
2a,. 2 d(ae sin 6)

r 2 sin 6 86 r 2s in0 dr

V  ar -
2ar 2
upr ^

- l
rs in t

d {&0 sin 6) da^ 
86  +  dr

(4.11)

Since the divergence o f the magnetic diffusion vector vanishes,

1^  t ,  „  1 d (r2B r )V -B  =  0 = — -Y —S l  +  
r 2 d r r  sin 6

8 (s.\n6Br ) 8 B V
86 dip _
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-1  
r  sin 0

d(sin 6Br ) 0 B,fi 
m  + ~dip_

2 B r dBr 
r  d r

(4.12)

The th ird  term  in equation 4.11, when w ritten  for B  =  a, can be replaced, in  the case o f the 
magnetic induction, using the right hand side o f equation 4.12. Hence,

r  • (V 2B ) =  V 2B T
2 B r 4 Br  2 dB.+ +

r  d r

r z r 4 r  “  Qr

XT2—S. 4 - V7 ___
r  o „ 2

2 L h  2L h  2L h  d
a -r r3 dr

L < L
r 2 dr

,2_̂_ L h  \  + y 2 L h  2L h  , 2L h  d
d r r 2 'n -p r r 3 d r

L h & _ _ L h_
d r2 r 2

b. (4.13)

Substituting equations 4.6 on the le ft hand side and 4.13 on the right hand side o f equation 4.10, 
gives

T . r r  F ) h  T . r r  f ) 2  L u l

H b. (4.14)
L h  db _  . L h
   V  x (u  x B ) • r  +  A —7Tr2r 2 dt d r2

To find an equation for the tim e variation o f j ,  equation 4.4 may be m ultip lied by ? • V  x (see 
equation 4.7),

r  • V  x
cm
d t

r  ■ V  x [ - V  x A(V x B ) +  V  x (u x B ) ]. (4.15)

Developing the firs t term  on the righ t hand side o f equation 4.15:

r  • V  x [—V  x A(V x B )] =  - r  • V  x [VA x (V  x B ) +  AV x (V  x B ) ]

=  - f  • [V  x VA x (V  x B ) +  VA x V  x (V  x B )

+A V  x V x ( V x B ) ]

=  - r  • [V  x VA x (V  x B ) +  AV x V  x (V  x B )]. (4.16)

To solve separately both terms on the right hand side of equation 4.16, one can develop further
the vectorial expressions. The firs t term:

f  • [V  x [(VA) X (V  x B)]J

=  r  • [((V  x B ) ■ V )V A  — (VA • V )(V  x B )

+ V A (V  • (V  x B )) -  (V  x B )(V  • VA)]

=  f  • [(V  x B )rV rV rA f -  (VA ■ V )(V  x B ) -  (V  x B )(V 2A)]

=  r  • [ ( -V  x B )# V 2A — (VA • V )(V  x B )]

=  - f  • (VA- V )(V  x B )r . (4.17)
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The new term  can be w ritten  in terms o f the potentials (note that VA has only a radial compo
nent),

(VA • V ) f • (V  x B )r =  VA

=  V r A

V r AL#

L h  d j
M (ra?)

r 2 d r '
(4.18)

Now, for the second term  in  equation 4.16,

A r - ( V x V x ( V x B ) )  =  A f • (V (V  • (V  x B )) -  V 2(V  x B )) 

=  —A f • V 2(V  x B ), (4.19)

which is the same expression found for equation 4.9, but for (V  x B ) instead o f B . The radial 
component (V  x B )r can be expressed in terms o f the toroidal potential j ,

A f • (V  x V  x (V  x B )) =  -A L h & _ _ L h  
d r2 r 2 J- (4.20)

Thus, the diffusion term  of the magnetic induction vector can be expressed in  terms o f the 
poloidal and toroidal potentials,

L h  db 
r 2 dt 

LH d£  
r 2 dt

f  ■ (V  x (u  x B )) +  A:JH

=  f  • V  x (V  x (u  x B )) +  A

d r2 

L h

L h
r 2

<P_
d r2

L h • , r7 \ L h  d j

(4.21)

(4.22)

As shown in  equations 4.21 and 4.22, the only term  tha t depends on the change o f the 
magnetic d iffusivity, A, is the th ird  term  in  equation 4.22. This one needs to  be included in  the 
numerical solution in  order to  allow for the variable conductivity to be accounted for consistently 
in the dynamics o f the system.

4.3 Num erical test

4.3.1 Electrical conductivity function

To study the effects o f variable conductivity in a Boussinesq flu id , we define the electrical con
ductiv ity  function. For our simple model where the change in  the electrical conductivity, <7, is 
only a function o f radius, we choose a function o f the radius based on three main parameters:
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rTO, a*, and a. a  is chosen to  be a piece-wise function defined by:

< 7 ( 0 = 1  1 +  (<T _ 1 ) ( ^ )  ’ r - Vm , (4.23)
[  aexp ( £ r ( r - r 0)) , r  > r m

where k =  a(ir* — l) ( r „  — f j ) -1 . r m determines the volume (the radius o f the sphere) were the
electrical conductivity is non-negligible, a  determines how fast the exponential function decreases

outside the conductive volume, and a* is chosen to  be the value o f the normalized conductivity 
where the functions match, cr(rm) =  a*. Determining the value of these three parameters defines 
the electrical conductivity as function o f space in  the simulated sphere.

4.3.2 M ethodology

We use various simulations to  find the effect o f a low electrical conductivity layer surrounding a 
convective dynamo. As a comparison w ith  previous models we choose non-dimensional param
eters comparable to  those presented in  the literature (Heimpel et al. (2005a), Al-Shamali et al.
(2004), see also chapter 2). The Ekman number used is E  =  3x 10~4, the P randtl number Pr — 1, 
and the magnetic P randtl number (used for normalizing) Pm =  5. The boundary conditions are 
non-slip for both, inner and outer boundaries, and the radius ratio  is x  =  0.35. The simula
tions do not use hyperdiffusivities. For the firs t test, we use a relatively low Rayleigh number 
Ra — 6 x 105 »  2.8Ra0 tha t is comparable w ith  the simulation w ith  x  =  0-35 presented in  Heim
pel et al. (2005a). The second test uses a more vigorous convection, Ra =  4.8 x 106 «  22.9Pac, 
to  allow for the dynamo action to  be sustained in  a smaller electrically conductive volume.

Constant versus variable electrical conductivity.

The firs t test presented here is a comparison between a constant conductivity model, called from 
now on: control, and a case w ith  a low conductivity at a th in  outer shell where r m =  0.9 rg. We 
refer to  r m =  0.9r„ as Xm — r m/ r 0 — 0.9. Two sim ilar simulations w ith  a lower value o f r m are 

found not to  be able to  sustain a dynamo, these are Xm — 0.8 and Xm =  0.7.
The function o f variable conductivity is defined by r m =  Xm r 0 =  0.9 r 0, a  — 10 and a* — 0.5, 

see curves marked as control and Xm =  0.9 in  figure 4.3
The simulations present stable to ta l kinetic and magnetic energies tim e series shortly after 

they start. A fter two magnetic diffusion times the two simulations (control and Xm =  0.9) present 
clear differences as a result o f the change in  the electrical conductivity profile. The tim e averaged 
kinetic and magnetic energies are d istinctly different for both cases, see the grey rows in  table 4.1.

Even though the kinetic energy mean is sim ilar for both tim e series, for the control case, the 
deviation from  this mean, Ssh =  0.2%, is significantly higher than in  the variable conductivity 
case, 6Ek =  0.01%. The same is true, but less dramatic, for the deviation from the magnetic 
energy mean, $sm =  0.9 and < 5 =  0.1 for control and Xm =  0.9 respectively. I t  is interesting to  
note tha t the to ta l kinetic energy is higher than the magnetic energy for the control case while
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Figure 4.3: Comparison o f different profiles o f the normalized electrical conductivity. The simu
lated convective flu id  is marked w ith  a grey shade, the control case and three variable conductivity 
cases are shown in  th is figure.
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Table 4.1: Mean and standard deviation o f the tim e series for the kinetic and magnetic energies 
of the two tests presented in  th is chapter. Results for the firs t test, w ith  Ra =  2.8Rac, are found 
in  the grey cells. The results of the second test, w ith  Ra =  22.8Rac are presented in  the white 
cells. We calculate mean energy for to ta l, poloidal and toroidal for the kinetic (Ek, Ekp, and 
Ekt) and magnetic (Em, Emp, and E mt) energies. We also include the poloidal energy at the 
outer boundary (ETo), and the axisymmetric poloidal energy (Er<,ax) at the outer boundary. A ll 
models on th is table use the same non-dimensional parameters: E  =  3 x 1CT4, Pr  =  1, and 
Pm =  5 .________

X m

control
6.9

Ek
> _  t* .1.0'1) ..

ii.DM) ii n i:: 
n.oii? :. itn ii:;

Em
( x l O 4 )

11.251 : II Dili 
0.251 .1 ’ 6.027 ~

Ero 
( x l O 1) 

ii. UO 1 (1.1.1,0 
H.0U3 _• DIKIJ

EToax
( x l O 4)

o.v-st; -... u.511 
n.onu-i o.niiT

0.9 15.824 ±  1.918 3.860 ±  0.432 0.011 ±  0.005 0.002 ±  0.004
0.8 17.461 ±  3.260 2.346 ±  1.858 0.010 ±  0.061 0.007 ±  0.059
0.7 19.977 ±  3.125 0.450 ±  0.986 0.002 ±  0.026 0.002 ±  0.026

Xm

control 
0 9 
0.9

EkP 
(x lO 4) 

II.IIMI ; 11.1113 
0.064 ±  0.001 
5.852 ±  0.759

Ekt
(x lO 4)

II.25-J ■ li.il-lli 
ll 2-13 : (1 il l>3

9.973 ±  i.269

Emp
(x lO 4)

II. 1 III ■!. II.I (ill 
ii.m il i i i i iO

1.934 ±  0.228

Emt
( x lO4)

(I.*»3(i - n 5] 1 
0 191) -- (I IIL1>
1.926 ±  0.225

0.8 6.332 ±  1.662 11.129 ±  1.756 1.225 ±  1.070 1.120 ±  0.820
0.7 6.989 ±  1.606 12.988 ±  1.698 0.230 ±  0.592 0.220 ±  0.406

the opposite is true for the variable conductivity case. The variable conductivity model allows 
us to  access a weak field dynamo.

The toro ida l component of the kinetic energy dominates over the poloidal component. Never
theless, th is dominance is not as strong as the one found for low electrical conductivity dynamos 
for example, Gomez-Perez &  Heimpel (2007). The magnetic energy is strong for the control case 
and relatively weak for \m  =  0.9. For the model where the Lorentz forces are geometrically con
strained, the magnetic energy mean is about half, when compared to  the control case for each, 
poloidal and toroidal components. The magnetic energy that is measurable on the planetary 
surface is the poloidal component at the outer boundary (see appendix B). Its  tim e average and 
standard deviation are included in  table 4.1. The contribution of axisymmetric energy at the 
outer boundary is greater for \m  =  0.9. In  th is case, the non-axisymmetric component is less 
than the standard deviation from the mean (i.e the axisymmetric component reaches, in  average, 
100% of the energy at the outer boundary), while in  the control case only 80% of the to ta l energy 
at the outer boundary is axisymmetric.

The temperature profile is changed due to  the new flu id  characteristics, and an equatorial 
cut is shown for a snapshot o f both cases. On the variable conductivity model, the radius rm is 
marked by a white dashed line, see figure 4.4.

For the case of homogeneous electrical conductivity, the convection is non-stationary, hot 
plumes rise from  the inner core boundary and d istribute azim uthally w ith  a symmetry o f approx
imately order five (consistent w ith  Heimpel et al. (2005a)). In  the case of variable conductivity,
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control ^m-0 ,9

Figure 4.4: Equatorial cut o f a snapshot o f the temperature. For the control case and Xm =  0-9. 
Both figures here correspond to  models w ith  the Ra =  2.8Rac, E  =  3 x 10-4 , Pr =  1 and Pm =  5.

the plumes develop a quasi-stationary behaviour sim ilar to  tha t observed for a homogeneous flu id  
under a lower R „.

To examine the behaviour o f the velocity field, we include here an equatorial cut o f the 
vo rtic ity  in  the z direction, wz =  (V x  u) -z, see figure 4.5. Even though Ra in  both simulations is

control ^m- 0 '9

Figure 4.5: Equatorial cut o f the z-vortic ity for the control and x-m =  0.9 cases. For the variable 
conductivity case the sphere o f radius r m is indicated w ith  a black dashed line.

the same, the flu id  seems to  have a more vigorous and disorganized convection for the control case. 
For the variable conductivity flu id , the flow is organized w ith  a regular azimuthal periodicity. 
In  both cases the columns (defined by isosurfaces o f u z) are tilte d  in  a prograde direction when 
increasing in  radius. This is an effect of the geometrical constraint of the boundary conditions, 
see Busse (2002). For the variable conductivity case, the non-slip outer boundary does not 
increase the vo rtic ity  in  the same fashion as the control case does. In  both simulations there is
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a detachment o f the main vo rtic ity  column towards the outer boundary, and only for the control 
case, new strong vo rtic ity  maxima and m inima are found at r 0.

The temperature and velocity fields are affected by the changing electrical conductivity, but 
the m ajor effect is seen, as expected, on the magnetic field. The radial component o f the magnetic 
fie ld at the outer boundary, r  =  r a, is presented here in  figure 4.6. The resultant fie ld at the outer

control

Figure 4.6: Maps of the outer boundary radial field in  a Hammer projection.

boundary is significantly different for our two models. As expected, the magnitude o f the fie ld is 
lower for the variable conductivity model. In  th is case, the magnetic field is generated deeper and 
diffuses towards r 0 , thus when it  reaches the outer boundary, its  magnitude has decreased. In  
addition to  the diffusion through the lower conductivity region, the physical volume tha t sustains 
the dynamo is lower, and th is results in  a lower to ta l tim e averaged magnetic energy since we 
are averaging over the whole sphere, see table 4.1. Not only the magnitude but the symmetry of 
the resultant field is significantly different, as is seen in  figure 4.6.

We include here the spectral decomposition of the radial component of the magnetic fie ld at 
the outer boundary in  figure 4.7. For th is figure, we p lo t the energy stored on different harmonic 
orders and degrees (see equations 3.11 and 3.12). Figure 4.7(a) shows the dominance o f the 
dipole for both models and also the strong octupolar component for the variable conductivity 
model. Figure 4.7(b) shows the axisymmetry o f the control model w ith  a weaker order component 
that can also be seen in  figure 4.6. In  contrast, the variable conductivity model is dom inantly 
axisymmetric and the weak component o f order five seen in  the spectral decomposition is not easy 
to  distinguish on the map of the external fie ld (figure 4.6), since it  is three orders o f magnitude 
lower than the axisymmetric component.

Electrically conductive volume

The second set of simulations presented here involves a change in r m, the value of the radius 
defining the electrically conductive volume. For th is purpose, and for finding sustained dynamos, 
it  is necessary to  increase the value o f the Rayleigh number to  Ra ~  23 Rac ■

Three different values o f Xm are studied, Xm =  0.9, Xm =  0.8, and Xm =  0.7. The value of Ra 
was chosen to  be large enough to  be able to  sustain the dynamo w ith  an electrical conductivity
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•control
•X.-0-9

■control
-X* - 0 '9

Figure 4.7: Energy stored per degree (a), and order (b). Both simulations result in  a dom inantly 
dipolar field, and the axisymmetric component is stronger for Xm =  0.9.

region restricted to  70% of the radius o f the convective flu id . The profiles o f the electrical 
conductivity as function o f the radius axe shown in  figure 4.3.

As expected, the to ta l averaged magnetic energy of the system decreases w ith  decreasing 
Xm, see white cells in  table 4.1. For th is value o f Ra, a ll dynamos are weak dynamos and 
the to ta l energy (kinetic plus magnetic) remains approximately constant. Thus, the average 
kinetic energy increases by the same amount tha t the average magnetic energy decreases for 
lower values o f Xm- For a ll cases the ratio  o f toroidal to  poloidal components o f the magnetic 
energy is close to  one. In  contrast, the kinetic energy is dominated by the toro idal component, 
being greater than the poloidal by roughly a factor of two. There is noticeable increase in  the 
axisymmetric component for deceasing in  the poloidal component o f the magnetic fie ld at the 
outer boundary. The axisymmetric component is 18% for Xm =  0.9, i t  is 70% for Xm =  0.8 and 
there is an insignificant (compared to  the standard deviation from  the mean) non-axisymmetric 
contribution for Xm =  0.7.

An equatorial cut o f the temperature fie ld for the three cases is presented in  figure 4.8. There 
is no clear difference between the three models. The variation in electrical conductivity does 
not seem to  affect the convection for th is high Ra simulations. The motion is driven by strong 
convection, and the magnetic force is not strong enough to  m odify the flow. The therm al plumes 
are more abundant than the ones present in  the firs t test. This is due to  the increase in  Ra (see 
Al-Shamali et al. (2004)).

The vo rtic ity  in  the z direction, u>z, does not seem to  present a significant change between 
the various electrically conductive volumes either. For a ll cases, the high vo rtic ity  zones are 
localized by the outer boundary, centred around r  =  0.9 r a, in  the equatorial plane. W ith  respect 
to the kinetic energy and the flu id  velocity, the three models seem not to  present any difference 
o f behaviour -  besides the overall magnitude o f the kinetic energy, which varies little  between 
the three models. The general flow in  the system is not affected by the magnetic fie ld due to  the
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Figure 4.8: Equatorial cut o f three snapshots o f the temperature. For various values o f x«i> 
from le ft to  righ t 0.9, 0.8, and 0.7 A ll figures here correspond to  models w ith  the Ra =  22.8Rac, 
E  =  3 x 10-4 , Pr =  1, Pm =  5 and x  =  0.35.

Figure 4.9: Equatorial cut of the vo rtic ity  in  z direction, uiz, for the three models. From le ft to 
right, Xm =  0.9, Xm =  0.8, and Xm =  0.7. The non-dimensional parameters used are the same 
used for figure 4.8.
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very strong driving force.

In  contrast, the magnetic fie ld diffuses outward through the low conductivity flu id . The case 
w ith  Xm =  0.7 has the lowest magnitude o f the magnetic fie ld at the outer boundary, followed by 
Xm =  0.8 w ith  an intermediate magnitude, and \m  =  0.9 having the maximum magnitude shown 
in figure 4.10 but lower than the control case o f the firs t test. The change in  Xm introduces a

Figure 4.10: Radial magnetic fie ld at the outer boundary. We include the colour map since the 
maxima and m inima are different for each panel. The fie ld is filtered up to  degree 6.

noticeable change in  magnitude due to  the rapid diffusion through the low electrical conductivity 
flu id , see table 4.1.

The energy spectral decomposition o f the poloidal magnetic field at the outer boundary is 
shown in  figure 4.11. The change in  Xm influences the magnetic field outside and results in  a

■s'

' ' " ' ■ 9

(a)

• O--
*

(b)

- o - ’V,-0-9

- . . • V 0-8

Figure 4.11: Spectral decomposition o f the squared mean magnetic field for both degree (a) and 
order (b).

faster decrease o f higher harmonics for a higher diffusive volume. For the lower Xm, the averaged 
poloidal magnetic fie ld at the outer boundary (r =  r 0) is more axisymmetric.
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4.4 Discussion and Conclusions

In  th is chapter, the influence o f different approximations (generally used in  numerical simula
tions in  flu id  dynamics, and in particular dynamo action o f planetary interiors) is studied. We 
introduce a m odification in  a numerical code in  order to  account for a radia lly variable electrical 
conductivity.

To neglect the change in  density stratification in  numerical simulations o f dynamo action 
has been found to  have a significant effect, Evonuk & Glatzmaier (2004). For systems where 
the change in density is small, which is the case for the iron cores o f terrestria l planets, a ho
mogeneous liqu id  using the Boussinesq approximation may be sufficient to  describe the overall 
dynamics o f the system. Unfortunately, a direct comparison for magnetic flu id  under ro ta t
ing convection w ith  spherical boundaries for anelastic and Boussinesq approximations has not 
been studied, and to  explore systematically the effects o f non-dimensional parameters on both 
solutions would be interesting. The main drawback in  carrying out such an experiment is the 
requirement o f high cost in  computational resources. A  sound knowledge of the approximations 
used in  the numerical simulations is necessary for the understanding o f the reach o f the simula
tions themselves. Characterizing the lim itations o f each approximation is im portant for finding 
strengths and weaknesses o f our models, and in  consequence, for having a better understanding 
o f real physical systems.

Al-Shamali et al. (2004) present a comparison between Ra — 1.1 Rac and Ra =  5Rac for 
three different values o f the radius ratios studying exclusively thermal convection in  rota ting 
systems (no Lorentz forces). In  the case o f the highly supercritical Ra, they noted tha t there is 
a bifurcation in  the 2-vo rtic ity  columns at approximately the intermediate radius r  =  r j +  D /2. 
This effect is visible for our control model, see figure 4.5, and the results are consistent w ith  
magnetic convective models presented in  chapter 2 (see also Heimpel et al. (2005a)). The control 
case, as expected, is sufficiently supercritical (Ra ~  2.8Rac) to  exhibit a non quasi-stationary 
solution, in  contrast to  those found for Ra jus t above the onset o f convection in  Al-Shamali et al. 
(2004). On the other hand, for the same value o f Ra for the model w ith  %m =  0-9, the bifurcation 
of the 2-vo rtic ity  columns is not visible. The convection cells form rolls tha t are homogeneously 
d istributed in  the azimuthal direction and extend parallel to  the tangent cylinder, jus t as reported 
for the cases w ith  low Rayleigh number (Ra =  1.1 Rac) in  Al-Shamali et al. (2004).

As a firs t approximation we may th ink that the effect o f restraining the magnetic fie ld gen
eration to  a smaller volume, has a sim ilar effect to  reducing Ra. Since the dynamo is restricted 
to  a smaller volume the difference in  temperature and the characteristic length scale tha t define 
Ra is reduced, thus, there is an effect on lowering Ra that drives the dynamo when the variable 
electrical conductivity model is used.

The non-magnetic and the homogeneous electrical conductivity cases both exhib it sim ilar 
non-stationary flow behaviour that depends mostly on the super-criticality o f Ra. In  contrast, 
the solution for the variable conductivity case exhibits a quasi-stationary behaviour. In  th is test, 
the imposed change on the force balance at the top o f the dynamo changes not only the magnetic 

force, but results in  a change in  the flow.
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The magnetic field at the outer boundary, r  =  r a, has a higher magnitude for the control case 
than the case w ith  Xm =  0.9. In  the later case, the magnetic field diffuses through the outer (low 
conductivity) shell of the simulated volume. The magnetic field at r 0, in  both cases, is highly 
dipolar, more so for the control case than for Xm =  0.9. The high degree component is consistent 
w ith  a higher radius ratio  (th in  shell dynamos). Since the magnetic field is restricted to  a smaller 
volume, magnetic flux bundles that are correlated to  the 2-vo rtic ity  columns tend to  have a 

lower la titude for higher values o f x ■ This is consistent w ith  the results reported in  Heimpel 
et al. (2005a), where the radial magnetic field is concentrated outside the tangent cylinder, and 
this results in  a magnetic field w ith  low energy at the poles, and where high magnitude magnetic 
field zones are pushed to  lower latitudes for higher x-

The axisymmetry o f the radial component o f the magnetic field at r 0 is significantly higher 
for the variable conductivity case. Since the effective Ra driving the dynamo is lower, higher 
orders do not contribute significantly in  the magnetic energy. This fact added to  the diffusion o f 
the field helps the axisymmetric component o f the field to be dominant at r 0 for the case w ith  

Xm =  0-9.
The second test consists o f a comparison between various volumes for confining the dynamo. 

We change r m keeping invariable a ll other parameters. For this experiment to  be successful, 
a higher Ra is required. Ra is incremented by a factor o f eight from  the firs t test and as a 
consequence the kinetic energy in  the system is high (we find exclusively weak dynamos), see 
table 4.1. For the three cases presented in  th is test, the flow follows the same general behaviour. 
The therm al plumes at the equator f ill the whole simulated volume and the convection is not 
affected by the change in Xm- The 2-vo rtic ity  exhibits also a sim ilar behaviour for a ll three cases, 
changing character at m id-shell (r  =  n  +  D/2,) comparable w ith  the highly supercritical rota ting 
convection simulations reported in Al-Shamali et al. (2004).

The magnetic field on the other hand, is different for different values o f Xm- The dipolar 
and axisymmetric components o f the field are relatively higher for lower Xm• The diffusion over 
the low electrical conductivity flu id  filters rapid ly high harmonic degrees and orders, thus it  is 

reasonable to  find lower contributions o f high harmonic coefficients w ith  the decrease o f r m. For 
the snapshots presented in  th is test, for the Xm =  0.8 model, both a;=2 and am= i energies are high 
compared w ith  a;=1 and am- 0 energies respectively. This case has the most non-axisymmetric 
and non-dipolar field geometry. This characteristic depends on the randomly picked tim e. The 
tim e averaged magnetic field indicates the tendency for the axisymmetric component to  increase 
w ith  decreasing Xm-

We found tha t the flow may be changed by changing the electrical conductivity on the flu id . 
One o f the consequences o f the decrease in electrical conductivity towards the outer shell is an 
increase in  the axisymmetry o f the field at the outer boundary. I f  th is is true for models w ith  
non-slip boundary conditions, the high axisymmetry o f Saturn may be an effect o f the electrical 
conductivity profile a t the planet’s interior. We found exclusively weak dynamos. Planetary 
bodies are like ly to  hold a magnetostrophic balance, and thus the dominance o f the kinetic 
energy may be not desirable to  model terrestria l or gas giants (note tha t th is is not true for the 
ice giants, see chapter 3). We need to explore further a range of non-dimensional parameters and
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possible in itia l conditions, since they may affect the energy balance in  the resultant dynamos 
(see chapter 2).
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Chapter 5

R adially variable electrical 
conductivity: A n application to  
the gas giants

5.1 Introduction

In  the X X  century, pro lific space exploration advances gave us inform ation never before known. 
A brie f summary o f space missions that have visited Jupiter, follows here. Pioneer 10 was the 

firs t spacecraft to  take in situ measurements o f Jupiter’s magnetosphere, fly ing  by, in  December 
o f 1973, at about 130,000 km from the planet’s cloud top (2.8Rjupiter)- Pioneer 10 was followed 
by Pioneer 11, in  December 1974 (approaching the planet at lA R jupiter)- Even better mappings 
o f the magnetic field and gravitational moments were possible after the fly  by o f Voyager I  in 
March o f 1979. Jupiter was then visited by Voyager I I  in  July 1979. The Galileo orb iter observed 
the collision o f a massive asteroid (Shoemaker-Levy 9) w ith  Jupiter. This spacecraft also carried 
a probe to  sample Jupiter’s atmosphere. Deployed in December of 1995, Galileo’s probe found 
a hydrogen/helium proportion close to solar but somewhat helium depleted. The probe was 
operational to  a depth o f roughly 200km and obtained temperature, pressure, and composition 
profiles as function o f depth for Jupiter’s atmosphere (Niemann et al. (1996)).

Saturn’s spacecraft missions may be sim ilarly summarized. Pioneer 11 flew by Saturn in 
September 1979 at about 22,000 km above Saturn’s clouds (1.3i?saturn). Voyagers I  and I I  
collected magnetic field data from Saturn briefly after flying by Jupiter. Cassini-Huygens was 
launched in  October 1997 as a mission to  study Saturn. A fter they reached Saturn the Huygens 
probe was released towards T itan  in October 2004. Huygens reached T itan  surface in  January 
2005. The Cassini spacecraft is currently orb iting Saturn. W ith  these advances and increasingly 
accurate measurements, the gas giants o f the solar system are becoming better understood than 
ever before.

The gas giants’ stratifica tion can be determined based on the planet’s to ta l mass, M , equato
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ria l radius, a, and even number gravitational moments, J2, J4 and J% (Stevenson (1982), G uillo t 
(1999b)). Based on apriori models o f 3 layers and an equation o f state (i.e. the density as func
tion  of temperature and pressure), the extent of these layers may be determined by finding a 
solution tha t matches mass and gravitational moments measured. The main problem in  deter
m ining the in terio r stratifica tion o f the gas giants arises from  the possibility of inhomogeneous 
regions; transition zones from  atomic to  m etallic hydrogen. Such zones may be also associated 
w ith a change in  helium concentration.

□  Atom ic H/He 
0  Metallic H/He
□  Ice &  Rock

Figure 5.1: Schematic representation of Saturn’s and Jupiter’s interior. Boundary layers are not 
well defined due to  uncertainties in  the equation o f state o f H /He m ixtures at high pressures.

Based on estimates by G u illo t (1999a) and Stevenson (1982) the gas giants may have rocky 
cores w ith  upper bound rad ii o f Q.22Rsatum and 0.15 R jupiter for Saturn and Jupiter respectively, 
see figure 5.1. These estimates require Saturn to  have a rocky core, but for Jupiter, in terio r models 
w ithout a core are also possible. Despite the fact that solutions o f internal models define density 
distributions, the state o f the core is not known. A  core tha t is not solid but rather dissolved in  
the m etallic hydrogen/helium flu id  is as like ly as a solid rocky core. Using a sim plified equation 
of state, transition phases as a function o f pressure may be estimated. This results in  transition 
zones from  m etallic to  atomic hydrogen at 0.5Rsatum and 0.8R jupiter, for Saturn and Jupiter 
respectively.

Constraints given by gravitational moments, planetary mass, and rad ii w ill only determine 
quantities averaged over extended regions o f the interior, and are of little  help in  determ ining slow 
changes in  transitions zones. Before the in terio r of the gas giants can be sufficiently understood, 
efforts w ill need to  focus on understanding equations o f state for flu id  under high pressures and 
temperatures.

Arguments in  favour of slow density changes are suggested by experimental results. I t  has
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not been possible experimentally to  find a discontinuity for the atom ic/m etallic transition for hy
drogen, and measurements showing continuous changes in the electrical conductivity (and hence 

density) as a function o f pressure and temperature have been reported. Nellis (2000) proposed 

that electrical conductivities in  the interior o f Jupiter may be significant up to  0.95R jUpiter, 
and tha t the extent o f the dynamo region may reach further in  radius than what was proposed 
previously in  G u illo t (1999b).

Magnetic fields on the gas giants have been found to  be dipolar and axisymmetric (Connerney 
et al. (1998)). In  the case o f Saturn the field is particularly axisymmetric, more so than any other 
dynamo in the solar system. A  firs t possibility is that the field geometry is highly axisymmetric 
due to  the intrinsic generation mechanism in  Saturn. A  second possibility may be tha t the field 
is modified outside the dynamo region. As we briefly mentioned in chapter 3, numerical studies 
have found tha t the axisymmetry of the magnetic field measured outside the dynamo region may 
be related to  the symmetry o f an external flow. Love (2000) uses kinematic dynamo simulations 
where the flow is defined in two regions. A combination o f a toroidal and poloidal flow field is 
defined in  an internal sphere. An outer, non-convecting envelope is included where two different 
velocity profiles are imposed (one w ith  solid body rotation and one including radial shearing). 
As stated by Love (2000), results indicate that the envelope helps to  m odify the magnetic field 
geometry from a weakly non-axisymmetric underlying dynamo to  an axisymmetric fie ld at the 
outer boundary. This is true only when a dominant axial dipole is the underlying magnetic field 
symmetry. For cases where the underlying field is dominated by equatorial dipoles (highly non- 
axisymmetric), the non-axisymmetric component is increased by the presence o f the overlying 
(axisymmetric) flow.

Zhang &  Schubert (2006) also presented an analysis o f kinematic dynamos and the influence 
of a shear flow overlying layer on magnetic field symmetries at the outer boundary. Using 
simplified equations o f m otion and a fin ite  difference method, they solve for a magnetic fie ld on 
a non linear dynamos. They defined three regions: a solid inner core, a turbulent convective 
flu id , and a shear flow layer that is not therm ally affected by the underlying convection. The 
magnetic field is generated only in  the convective zone and it  diffuses to  the other two layers, 
internal and external, by following boundary conditions (continuity o f the radial component of 
the magnetic field induction vector). For the model o f Zhang &  Schubert (2006), the presence 
of the enveloping layer changes the symmetry o f the outer field to match the symmetry o f the 
overlying flow, independent o f the underlying magnetic field. In  that paper two dynamo models 
are presented, but the range of magnetic Reynolds numbers (Rm) explored is lim ited. Love (2000) 
found tha t for high enough Rm, equatorial dipoles are the solution o f the underlying dynamo, 
and the consequences o f the overlying symmetry may be significantly different to  what was found 
by Zhang &  Schubert (2006).

The variable conductivity model presented in  chapter 4 w ill help us understand the role of 
decreasing conductivities at the top o f the m etallic hydrogen layer in  the gas giants.
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5.2 M ethodology

In  th is chapter, we use the Boussinesq approximation to  study the effect o f a rad ia lly variable 
electrical conductivity. We present results for four numerical calculations o f three-dimensional, 
self-sustained dynamos. For two o f the runs, the electrical conductivity, cr(r), decreases expo
nentially for r  >  rm, as defined by equation 4.23 (see Fig. 5.2). The radial grid density of these

[ . ; iCoiivcclivc fluid!
-Control 
- a = 1 0  

-* a =  15

0.2 0.4 0.6 0.8
radius (D)

\

Figure 5.2: E lectrical conductivity o f the flu id  as a function o f radius for the models used in  th is 
chapter.

simulations is increased w ith  respect to  the criteria  used and explained in  previous chapters (see 
section 2.2) to  obtain a good resolution at the interface between the electrically conductive and 
non-conductive liquids. The decay in  the polynom ial for a{r) <  r m (see equation 4.23) is chosen 
to have at least four grid points where 0.99 <  a {r)a * .

A comparison between three different electrical conductivity profiles is presented in  th is chap
ter. As a control, we use two models w ith  constant electrical conductivity and two values of 
Ra, i.e. Ra =  4.8Rac (control 1) and Ra =  8Rac (control 2), see table 5.1. Simulations w ith

Table 5.1: Parameters o f the simulations in  this chapter. The simulations share common param
eters x  =  0.15, E  =  10~4, Pr =  1, and Pm =  5.______ ________________

control 1 control 2 P II h-1 o a =  15

Ra 6 x 10e ~ 1 0 7 ' 107 107
Ra / Rac 4^ 00 J 8 8 8

a - - 10 15
a* - - 0.7 0.7
Xm - - 0.8 0.8

Ra =  4.8Rac and variable electrical conductivity resulted in  failed dynamos and are not presented 
in  th is chapter (a =  10 and Xm =  0.8). We choose a th ick shell dynamo, x  =  0.15, in  order to
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simulate the in terio r o f the gas giants. Both velocity boundary conditions, top and bottom , are 
chosen to  be stress free. We use an electrically conductive inner core (see figure 5.2). The conduc
tiv ity  o f the inner core is used to  define the value o f Pm =  5. We use Pr =  1 and E  =  10~4. For 
both variable conductivity calculations Xm =  0.8, a* — 0.7, see equation 4.23. We w ill refer to  
them as a  =  10 and a =  15 in  this chapter. In  three o f these simulations (control 1, a  — 10, and 
a =  15) we use m ild hyperdiffusivities, the same as in chapter 3, and a high grid resolution (61 
radial levels and 512 azimuthal grid points). For control 2, we used hyperdiffusivities ten times 
stronger than those o f chapter 3, and a lower resolution grid (41 radial levels and 384 azimuthal 
grid points).

We find control 2 not to  be developed completely in  tim e. The stationary state for the velocity 
field has not been not reached by the tim e this dissertation is w ritten. I t  has, nevertheless 
developed stable energy tim e series.

5.3 Results

We present results for the four sustained dynamos found in this study. The resolution o f these 

models is relatively high and the simulations are com putationally expensive. The quasi-stationary 
state in  the energy tim e series is reached for a ll runs. The tim e averaged energies, i.e. kinetic 
and magnetic, along w ith  the ir respective poloidal and toroidal components are presented in 
table 5.2. Energy scale is the same as for a ll previous chapters. K inetic energy is calculated 
based on the Reynolds number and the magnetic energy is related to  the Elsasser number as 
presented in  page 25. The to ta l tim e averaged kinetic energy (Ek) is greater for the variable

Table 5.2: Mean and standard deviation o f the tim e series for the kinetic and magnetic energies 
of the four cases presented in this chapter. The mean o f the to ta l magnetic and kinetic energies, 
Em and Ek respectively, along w ith  their toroidal and poloidal components, Emt, Emp, Ekt, and 
Ekp, are calculated for one viscous time, r „ . We also include the mean of the poloidal energy at 
the outer boundary, E ro, and the axisymmetric component o f the poloidal energy at the outer 
boundary E r<>ax. A ll runs presented have x  =  0-15, E  =  10~4, Pr  =  1, and Pm =  5.

E k
(x lO 3)

Em
(x lO 3)

E ra
(x lO 3)

Er„ax
(x lO 3)

control 1 7.469±1.446 18.587±10.650 0.120±0.087 0.087±0.037
control 2 15.593±2.494 46.102±8.874 0.769±0.207 0.662±0.187
a  =  10 18.531±3.356 5.629±2.469 0.005±0.002 0.003±0.002
a  — 15 19.788±3.296 6.284±2.061 0.005±0.003 0.003±0.002

Ekp
(x lO 3)

Ekt
(x lO 3)

Emp
(x lO 3)

Emt
(x lO 3)

control 1 1.250±0.386 6.219±1.337 3.974±4.346 14.613±6.763
control 2 3.254±0.603 12.340±2.011 14.891±3.258 31.211±6.520
Q =  10 1.964±0.650 16.567±3.003 1.484±0.767 4.145±1.732
a  — 15 1.998±0.621 17.790±2.902 1.819±0.677 4.465±1.428

conductivity cases when compared to  control cases. I t  is sensible to  find a significant increase of
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the to ta l kinetic energy w ith  higher Ra, thus, it  is expected for the variable conductivity models 
to  have a greater kinetic energy than control 1. Control 2 has also a lower kinetic energy than the 
variable conductivity cases. This indicates that the existence o f zones where the Lorentz forces 
are not significant allows stronger kinetic energies to  develop. Prom table 5.2, i t  is clear th a t the 
decrease in  magnetic forces favours increased toroidal kinetic energies.

The ratio  between toroidal and poloidal kinetic energies is ~  5 for control 1, ~  4 for control 2, 
8.4 for a  =  10, and 8.9 for a  =  15. Since Prn =  5, we do not expect dominant zonal flows as 
those discussed in  chapter 3. Since the electrical conductivity for most o f the volume is high, 
the zonal flow is slowed down by the magnetic forces. Nevertheless, the values obtained for the 
ratio  o f toroidal to  poloidal kinetic energies for the variable conductivity cases are comparable 
to  the toroidal to  poloidal ratios from Pm =  0.3 simulations in  chapter 3. I t  is im portant to  note 
that, since magnetic energies are negligible for r  > r m, to ta l volume energy averages do not refer 
d irectly to  force balances in  the flu id  as they did in  the cases presented in  chapter 3.

The to ta l magnetic energy for control 2 is significantly greater than for a ll other runs. Since 
the driving energy is greater and the volume sustaining the dynamo maximum, a larger magnetic 
energy for control 2 is to  be expected. The to ta l tim e averaged magnetic energy o f the control 
cases is significantly higher (by over a factor o f three) than the variable conductivity cases. The 

difference in  electrically conductive volume for Xm and x  ~  0-15 between the homogeneous and 
the variable conductivity liquids is about a factor o f two. The decrease in  the magnetic energy for 
the variable conductivity cases is evident, and it  is not caused by averaging over the whole flu id  
alone. We find th a t both variable conductivity cases are weak dynamos, i.e. the to ta l magnetic 
energy is lower than the to ta l kinetic energy.

We can study the effect o f the variable conductivity on the overall flow. An equatorial cut 
o f the temperature profile for the control models is shown in figure 5.3. On the top le ft panel, 

control 1 results in  a single plume reaching approximately r  =  (r0 +  r i ) / 2. On the top right 
hand side, control 2 results in two hot plumes rising to  the outer boundary; the temperature 

profile is heterogeneous through out the whole flu id  core. The equatorial temperature profile 
shows significant changes when comparing the two control models. The increase in  the dominant 
order m  o f the temperature profile w ith  Ra is consistent w ith  previous studies reported in  the 

literature (see section 3.4 in  Al-Shamali et al. (2004) on supercritical convection).
For the variable conductivity models, a  =  10 and a =  15, the differences between the equa

to ria l profiles are less significant, see bottom  row in figure 5.3. In  both cases, hot plumes rise to  
approximately r  =  0.8r„ (as opposed to  control 2 for which the plumes approach r  =  r„) . The 
number o f plumes rising from  the inner core are consistent w ith  higher Ra when compared to  
control 1. The variable conductivity simulations present four plumes for the snapshots graphed. 
I t  is interesting to note that control 2 has only two main convective plumes; the increase in 
the convective wavenumber, m, is a direct result o f the variable conductivity. The snapshots in 
figure 5,3 present rad ia lly stratified temperatures for r  >  r m. This is more evident for a  =  15.

We include azimuthal components o f the velocity field for all cases at the outer boundary 
in figure 5.4. We marked the projection o f the tangent cylinder (see page 6) w ith  two white 
lines. A  tangent cylinder defined by the surface r  =  r m may also be defined, we call th is surface
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Figure 5.3: Equatorial cut o f the temperature profile for cases control 1, control 2, a =  10 and 
a =  15. On the le ft panel o f the top row, control 1 w ith  Ra =  4.9Rac. On the righ t panel o f the 
top row, control 2 w ith  Ra — 8RUc. On the bottom  row, a  — 10 on the le ft and a =  15 on the 
right, both w ith  Ra =  8Rac. The white dashed line corresponds to  r  =  r m
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Figure 5.4: Azim uthal velocity, uv , at the outer boundary (r =  r a). On the top row, control 1 on 
the le ft, and control 2 on the right. On the bottom  row, a  =  10 on the le ft, and a  =  15 on the 
right. The projection of the tangent cylinder (see text) onto the the outer boundary, is marked 
w ith  white lines. On the bottom , we include as well the projection of the tangent cylinder defined 
by r m, i.e. the variable conductivity tangent cylinder, in  black dashed lines.

the variable conductivity tangent cylinder. The projection of the variable conductivity tangent 
cylinder is marked w ith  black dashed lines in  figure 5.4.

The three cases w ith  higher Ra have smaller scale flow features at the outer boundary when 
compared w ith  case control 1. The azimuthal velocity, uv , is high close to  the tangent cylinder; 
the magnitude maxima for the control cases are located close to the tangent cylinder lines. 
The variable conductivity cases exhibit high azimuthal velocity at the tangent cylinder as well, 
but the maxima have lower latitudes, and are found closer to  the variable conductivity tangent 
cylinder. The quasi-stationary state expected for a stress free outer boundary, under geostrophic 
conditions (for definition see page 22), yields strong zonal flows w ith  a prograde equatorial je t 
(e.g. Aurnou &  Heimpel (2004)). I t  is clear tha t an equatorial je t has been formed for a ll cases 
except control 2. I t  is very im portant to  note that, possibly due to  insufficient run tim e, the 
control 2 (Ra =  8Ra<.) case did not reach a state where the velocity flow is quasi-stationary. This 
w ill have a significant effect on the velocity, as it  may be seen in  figure 5.4.

For the same simulations and snapshots, we include a meridional slice (constant ip) o f the 
azimuthal velocity (figure 5.5). For a ll four runs, the azimuthal flow is organized into columns par
allel to  the axis o f rotation. The flow is dominated by the toro ida l component (see table 5.2), and 
we find tha t the flow is quasigeostrophic (see page 22). Nevertheless, non-geostrophic zones are 
evident. Close to  the tangent cylinder, we find non-geostrophic features close to  the outer bound
ary, where ur and u$ are significant when compared to  Vertical columns in  the azimuthal
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Figure 5.5: For a ll four cases, the azimuthal velocity, uv , for a meridional slice (ip =  0). In  this 
plot, the axis o f rota tion is vertical. The colour-map is the same as for figure 5.4
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velocity profile tend to  be broken for higher Ra. The two variable conductivity simulations show 
disturbances from a geostrophic balance near the tangent cylinder. Control 2, shows disturbances 
though out the whole flu id  core.

Quasigeostrophic flows w ith  strong toroidal components yield banded structures at the surface 
(e.g. Busse (1994)). We present in  figure 5.6 (as we did in  chapter 3) the azim uthally averaged, 
azimuthal Rossby number, Ra =  E  Re; where Re =  u,pD /v  is the Reynolds number associated 
w ith  the ip component of the velocity u. The resultant surface flows for both variable conductivity

 control 1
 control 2
 a=10

40

-20

-40

-60

-15 •10 -5
Azimuthal Rossby number

0
number

Figure 5.6: Latitude, versus averaged azimuthal Rossby number Ra =  E R eif, where Re is the 
Reynolds number. The azimuthal velocity at the outer boundary uv (r  =  r 0,8,ip) is averaged 
in  the azimuthal direction. We include a ll cases: control 1, control 2, a  =  10, and a  =  15. 
The dotted line, control 1 results from  Ra =  4.8jRac. A ll simulations plotted w ith  solid curves 
correspond to  Ra =  8Rac. Latitudes o f the projection o f the tangent cylinder on the outer 
boundary are marked w ith  horizontal solid black lines, and those of the variable conductivity 
tangent cylinder are marked w ith  dashed black lines.

cases are almost indistinguishable for both values o f a  chosen, see bottom  row of figure 5.4. 
Even though control 2 reached a quasi-stationary state in  the energy tim e series, an equatorial 
prograde je t is not found. The development o f this je t may require longer run times. For the tim e 
developed simulations, two strong reverse jets are found approximately at the tangent cylinder 
(marked w ith  horizontal solid lines in  figure 5.6). The strength of these retrograde jets is higher 
for higher values o f a, i.e. higher electrical conductivity decay rate. There is a la titude where the 
flu id  deviates from  being geostrophic, where there is a plateau for Ra as a function of latitude, 
see figure 5.6. The latitude o f th is plateau is independent o f the variable conductivity or value 
o f a  for the cases studied. The plateau is like ly a consequence o f the change in  direction of the
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flow; eaxly stages of the simulations presented weak retrograde equatorial jets and, they reverse 
direction w ith  time.

To analyse the magnetic field geometry, it  is useful to  separate the energy contribution by 
harmonic degrees and orders. The normalized spectral decomposition o f the poloidal component 
of the magnetic fie ld at the outer boundary, r  — r 0, is shown in  figure 5.7. A ll models are

■0 "  control 1 
■©— control 2 
-© — a = 1 0  

1 a=15

10 3

10' °

degree /

•O • control 1 
■©—control 2 
•©— a = 1 0
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Figure 5.7: Spectral decomposition o f the magnetic energy at the outer boundary per degree, 
a;, and per order am. We present here both control cases, (w ith  a homogeneous electrical 
conductivity) control 1, 4.8i7ae, and control 2, 8Rac. Also shown are variable conductivity cases 
w ith  a  =  10, and a =  15 w ith  Ra =  8Rao.

dom inantly dipolar. The quadrupolar energy for the variable conductivity cases is about one 
order o f magnitude lower than the dipolar. In  contrast, for both control cases the quadrupolar 
energy is about two orders o f magnitude lower than the dipolar. The case w ith  a  =  15 presents 
a stronger non-axisymmetry closely followed by a  =  10 both far from the axisymmetric control 
cases. This is shown by the relative magnitude o f am w ith  respect to  am=o- For values o f a 
and Ra chosen, the snapshots show no preference for the axisymmetric or dipolar fields by the 
variable conductivity models.

In  addition to  the spectral decomposition, maps o f the radial component of the magnetic field 
at the outer boundary are shown in  figure 5.8. The control cases present smaller scale features 
when compared to  the variable conductivity cases. In  particular higher order components. There 
is not a clear tendency for high harmonic degree to  decrease faster in  the variable conductivity 
cases (they do not show particularly strong dipolar fields).

As expected, the magnitude o f the field at the outer boundary is lower (by about one order of 
magnitude) for the variable conductivity cases when compared to  control 2. The typical length 
scale o f the features and the magnitude o f the magnetic fields, both at the outer boundary, are 
a consequence of the diffusion over the low electrical conductivity volume.

The magnetic field magnitude is variable in  time. Magnetic fields for a  =  10 snapshot seem 
slightly higher than tha t for a  =  15, but as seen in  table 5.2 this is only due to  the tim e chosen 
for graphing. The tim e averaged energies at the outer boundary, ETol are indistinguishable for
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Figure 5.8: Radial component of the magnetic fie ld at the outer boundary, r  =  r a. On the left 
top panel: control 1 w ith  homogeneous electrical conductivity and R a =  4.8i?0o. On the right 
top panel: control 2, also w ith  a constant electrical conductivity but w ith  R a =  8R ac- On the 
left bottom  panel: a — 10 w ith  variable electrical conductivity and R a =  8R ac. On the right 
bottom  panel: a  =  15, also w ith  variable electrical conductivity and w ith  R a = 8R ac.

both variable conductivity cases.

The poloidal fie ld lines and the radial magnetic field, for longitudinal cuts of ip =  0, are 
shown in  figures 5.9 and 5.10. Both control cases (figure 5.9) present a mostly dipolar magnetic 
field a ll though the flu id . In  contrast, the variable conductivity cases (figure 5.10) present a more 
complicated internal field geometry. As expected, for the low electrical conductivity envelope, the 
field line density (i.e. magnetic field intensity) is lower and Br  is much weaker, when compared 
to the field in  the internal volume, r  <  rm.

In  figure 5.10, Br maxima for the variable conductivity cases are comparable to  those o f 
the case control 2. However, they extend through a confined volume roughly inside the tangent 
cylinder. Smaller scale fields are found for the variable conductivity cases, where a typ ical length 
scale is of the order of ry in  the horizontal direction, as opposed to  D  =  r 0 — n ,  in  the control 
cases.

The velocity fields present length scales comparable to  those of the magnetic fields. To 
illustrate  this, we present two figures analogous to  figures 5.9 and 5.10. In  figures 5.11 and 
5.12, we show the poloidal stream-lines and the radial component of the velocity field, ur for an 
azimuthal cut o f <p =  0. There is a noticeable difference in  the length scale o f the stream-lines 
just outside the tangent cylinder between control and variable conductivity cases (particu larly 
control 1). For the variable conductivity cases, ur maxima are found inside and at the boundary 
of the tangent cylinder, the same zones where Br  maxima are located, however not a noticeable
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Figure 5.9: On the top row, longitudinal cut o f the magnetic poloidal field-lines. Red lines 
indicate counter-clock wise direction. On the bottom  row, radial component of the magnetic 
field, B r . For both rows, the le ft panels present results for control 1 and the right hand side 
panel results for control 2.
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Figure 5.10: Sim ilar to figure 5.9 but for variable conductivity cases. On top: longitudinal cut o f 
the magnetic poloidal field-lines. Red lines indicate counter-clock wise direction and blue clock
wise directions. The sphere o f radius r  =  r m is marked here w ith  a black dashed line. On the 
bottom : radial component o f the magnetic fie ld Br . On the le ft a  =  10, on the righ t a  =  15.
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Figure 5.11: Left and right panels present results for controls 1 and 2. Top, longitudinal cut 
of the poloidal stream-lines. Red lines indicate counter-clock wise, blue clock wise directions. 
Bottom , radial component o f the radial velocity, ur -
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ct=10

Figure 5.12: (S im ilar to  figure 5.11). Top: longitudinal cut o f the poloidal stream-lines. Red 
lines indicate counter-clock wise and blue clock-wise directions. The sphere o f radius r  =  r m is 
marked here w ith  a black dashed line. Bottom : radial component of the velocity field ur . a =  10 
(le ft), a =  15 (rig h t).
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correlation o f th is fields is seen.

5.4 Discussion and conclusions

In  th is chapter we study the effects o f radia lly variable conductivity model on low Ekman number 

runs. Using flu id  parameters and geometries resembling expectations for planetary interiors, we 

compare four simulations: two homogeneous electrically conductive liquids w ith  two variable 
conductivity cases. Prom prelim inary tests using high E  (presented in  chapter 4), we inferred 
that, to  firs t order, our variable conductivity models are comparable to  low Ra models. In  this 
chapter, we find tha t for runs w ith  lower E, this is not the case.

In  chapter 4, relatively low Ra runs suggested that the effect of the variable conductivity may 
be sim ilar to  sim ilar runs using lower Ra. We observed great differences between our variable 

conductivity models and the low Ra control. For rotating convection, the characteristic wave 
number, ra, o f the temperature field depends on Ra, E  and x  (Al-Shamali et al. (2004)). We 
find ra increases from  control 1 to  control 2. We interpret this increase in  m  to  be caused by 
the increase in  Ra• For control 1, the equatorial therm al profile does not present significant 
convection in  the outer part o f the simulated flu id . For control 2, temperature is azim uthally 
heterogeneous over the whole flu id  volume (th is is possibly due to lack o f development o f zonal 
flows in  control 2). Variable conductivity cases (see figure 5.3), present higher order m  when 
compared not only to  control 1 but also to  control 2 (w ith  which they share common Ra, E, and 
x)- For these lower Ekman number cases, the electrical conductivity profile does have an effect 
on the temperature field, and th is effect is not d irectly comparable w ith  effects o f lowering Ra 
which seems to  be the case for higher Ekman number runs o f chapter 4.

The geometry o f the azimuthal velocity field is affected by the variable conductivity. A ll 
models develop stronger toroidal flows when compared to  poloidal components. Three o f the 
models exhibit equatorial prograde flows at the outer boundary. The averaged surface azimuthal 
field is sim ilar for the tim e developed cases (control 1 and the variable conductivity cases), and 
it  is like ly th a t control 2 should reach a sim ilar state. We found significant differences in  the 
magnitude o f retrograde jets at the tangent cylinder, being the sole characteristic separating the 
three models. The vortic ity, even though not shown here, presents sim ilar characteristics to  those 
found for the runs o f chapter 4 (see figure 4.5). For variable conductivity cases, the vo rtic ity  is 
small close to  the outer boundary while for control cases a detachment from  the main vo rtic ity  
column is found.

In  contrast to  the azimuthal component o f the velocity, the magnetic field is strongly affected 
by the conductivity profile. Even though a ll the fields are found to  be dom inantly dipolar, strong 

m ultipolar components are found in  the variable electrical conductivity models. Geometrical 
constraints on Lorentz forces yield a complex internal field. The typical length scale o f the 
magnetic field is smaller for both variable conductivity cases than for control 2.

Another interesting characteristic o f the magnetic field, found in  the variable conductivity 
models, is that high magnitude fields seem to  be constrained to  the interior o f the tangent cylinder 
(see figure 5.10). We know from previous chapters, that high magnitude poloidal magnetic fields
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avoid zones w ith  azimuthal shear flow, (chapter 3). Since the toroidal kinetic energies found in  
the variable conductivity models are high, particularly when compared w ith  the magnetic energy, 
the magnetic fieldlines are pushed toward the poles in  order to  avoid equatorial flows.

The diffusion o f the field in  a low conductivity volume results, as expected, in  smaller scale 
features at r  — r a than that at r  — r m. The tim e averaged axisymmetric field at the outer 
boundary does not distinguish between the two values o f a  (decay rate) chosen. Differences 
found between model runs w ith  different a  depend on the tim e the snapshots were taken, more 
than on a general behaviour o f the overall field. In  opposition to  what we expected from  Saturn- 
for which a highly axisymmetric dipolar field has been observed-the magnetic fie ld is neither 
more dipolar nor more axisymmetric for the variable electrical conductivity models than for the 
control cases.

The change in  the length scale o f both: poloidal velocity and poloidal magnetic field may be 
understood as a change in  the effective non-dimensional numbers. I f  we take the dynamo region 
as the volume where the electrical conductivity is significant, we obtain the radius ra tio  o f the 
dynamo region as x* — r i / r m ~ 0.187. We may redefine the typical length scale as:

where A T  =  1. We assume T (r) — T (r i)  oc r _1 for the weakly convective region near the outer 
boundary (see Kono &  Roberts (2001)). For higher Ra the convection is too strong (e.g. figure 4.8) 
and the azimuthal variations in temperature would not follow equation 5.2. I f  temperature 
decreases w ith  radius for r  > r m, then using the new normalization, we find the modified non- 
dimensional parameters:

Calculating the modified non-dimensional parameters for the runs presented in  th is chapter,

between 2.22 < mc <  3.14 (see Al-Shamali et al. (2004)). In  contrast, x  =  0-15 and E  =  
10~4 results in  m,c =  2.4. The azimuthal wavenumber of the variable conductivity models

Nevertheless, the upper lim it o f mc is not sufficient to  explain orders 4 and 5 in  the therm al 
equatorial profiles o f the variable conductivity models, see bottom  row of figure 5.3.

Under identical parameters low amplitude in itia l conditions resulted in  weak dynamos whereas

(5.1)

where D  =  1. Redefining also the temperature difference across the boundaries as:

AT* = T(rm) - T ( ri) = x ^
V™  — V

(5.2)

(5.3)

and

(5.4)

we find x * =  0.187 and E* — 1.7 x 10 4, the expected critica l azimuthal wavenumber ranges

may be partia lly  explained by spatial confinement, i.e. change in a model’s typ ical length scale.

D ifferent in itia l conditions may result in  either strong or weak dynamos, as shown in  chapter 2.
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high amplitude in itia l conditions resulted in strong dynamos. The differences in  dynamo regimes 
between control and variable conductivity cases may also be a ttributed to  differences in  boundary 
and in itia l conditions.

We find then, tha t i f  models have weak convection towards the outer boundary (for r  >  r m), 

we can treat variable conductivity dynamos approximately as the original homogenous dynamos 
w ith  x* radius ratios, E* Ekman numbers and i?* Rayleigh numbers. D ifficulties in  defining 
boundary and in itia l conditions, and dependencies on temperature profiles, set apart the variable 
conductivity from  homogenous models.

W ith  parameters studied in this dissertation, a ll variable electrical conductivity models result 
in weak dynamos w ith  dipolar and axisymmetric geometries. However, these models are not 
comparable to  the highly axisymmetric fields o f Saturn. The lack o f strong dynamos for variable 
electrical conductivity models requires further exploration; testing should explore a large range 
of non-dimensional parameters. Strong dynamos are expected for higher Pm values, but such 
models require very long run times. To find dynamos w ith  high magnetic energies it  is necessary 
to  increase the effect o f the Lorentz force on the flu id . A  magnetostrophic balance is like ly to 
yield dipolar fields, as expected for the gas giants.

Even though the magnetic field found for the variable conductivity models is not highly 
axisymmetric, m =  0 orders are dominant. Numerical models o f kinematic dynamos w ith  shear 
layer envelopes result in  more axisymmetric fields. By diffusing the magnetic fie ld through 
axisymmetric shear layers when the underlying geometry is dom inantly dipolar, even greater 
axisymmetry results (see Love (2000), Schubert et al. (2004)). We find tha t our models yield 
exclusively axisymmetric dipolar fields, and overlying axisymmetric shear layers are expected to  
yield more strongly axisymmetric magnetic fields.

In  order to  increase the contribution o f the Lorentz force we could propose simulations w ith  
higher values o f Pm. The main inconvenience w ith  such runs is the ir high computational cost. 
This factor poses a m ajor impediment w ithout more numerical code efficiency and advancement 
in the computational resources.

To better simulate giant planets, we may change the temperature boundary conditions. For 
a ll simulations included in  th is dissertation we assumed constant temperature boundaries. Such 
boundary conditions yield hot plumes rising from the inner core and thus, the velocity fie ld results 
in  high kinetic energies close to the tangent cylinder (even for relatively low R „). Heimpel et al. 
(2005a) explains how buoyancy can be produced at the outer boundary by means o f secular 
cooling or internal heating. I f  cold plumes sink from the outer boundary, then the velocity field 

may be disturbed where the Lorentz force is intrinsica lly low. In  this case it  may be possible that 
magnetostrophic balances hold for r  <  r m. I f  an internal dynamo surrounded by a shear flow 
results from  this model, a highly axisymmetric field would be expected. Runs o f th is type w ill 
require a comparable amount o f tim e to the runs presented in this chapter, and th is is feasible 
w ith  current computational resources.
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Chapter 6

Conclusions

In  th is dissertation we have presented numerical models o f planetary dynamos. Planetary en
vironments in  the solar system may present a variety o f behaviours. As we have seen from 
spacecraft measurements, gas giants, ice giants and terrestria l planets have magnetic fields w ith  
very d istinct characteristics.

For planetary interiors, the differences amongst length scales for the most significant forces are 
so great tha t numerical models are inherently d ifficu lt to  manage (Jones (2007)). Low viscosity 

fluids require high resolution grids, and non-dimensional parameters used for numerical models 
currently cannot reach values expected for planetary interiors. Nevertheless, an asymptotic 
regime may be reached, where the viscosity is small compared w ith  other forces, but numerical 
solution algorithms remain stable (Christensen &  Aubert (2006)).

In  th is dissertation, we studied terrestria l planets; how in itia l conditions and geometry (i.e. 
inner core size) may affect planetary magnetic fields. We used relatively weakly convecting 

dynamos (i.e. dynamos w ith  low Ra) w ith  different dimensionless parameters to  compare aging 
planets. Numerical simulations require a balance between computation tim e and resolution. In  
order to  reach the low viscosity regime, higher resolutions, and consequentially longer processing 
times, are required. We compared data sets w ith  two values o f E, and found the behaviour to  
be dependent on the Ekman number.

For younger planets, the magnetic field is generated in a th ick shell geometry; the inner core- 
when present- is small. Older cores present a th in  shell geometry such that the flow is restricted 
to  a smaller volume. We found curves for the onset o f dynamo action for three different data 

sets. The Rayleigh number for onset o f dynamo action, R^ld, is found to  have a m inimum value 
for intermediate size cores (0.25 <  x  <  0.45). For high values o f E, th ick shells are found to  have 
relatively weakly supercritical Rtf compared to  low E, which resulted in  a highly supercritical

< ■
The effect o f core size on external field geometries is in  agreement w ith  Heimpel et al. (2005a). 

We analysed the radial component o f the magnetic field at the outer boundary. We found a ll 
our models to  be dom inantly dipolar; the difference introduced by the core geometry is related 
to  the magnetic field near the poles. Magnetic flux patches change latitude as arccos(x)! being
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found jus t outside the tangent cylinder. For low values o f x  (i-e. th ick shells), the magnetic field 
intensity is high at high latitudes. In  contrast, for high values of x, field intensity maxima are 
found at lower latitudes. I f  the resolution o f the planetary magnetic fie ld measured by spacecrafts 
is high enough, th in  and th ick shell geometries may be differentiated using the field geometry.

For aging cores, it  is possible to  determine the magnitude o f the outer field based on the shell 
thickness. Thick shell models result in strong toroidal field in  the flu id  core, whereas the poloidal 
component (tha t can be measured from  outside) is relatively weak by comparison. Thin  shell 
models were found to  have kinetic energies comparable w ith  magnetic energies. The poloidal 
component at the outer shell is also stronger when compared to  th ick shell models. I t  is also 

possible tha t for extreme values o f x  (probably higher values than those considered in  th is study), 
magnetic fie ld intensity decreased due to  the restricted volume accessible to  support a dynamo 
(this is only found for one o f the data sets, see table 2.1). We expect low Elsasser numbers for th ick 
shells, and possibly for very th in  shells as well. Intermediate shell thicknesses are expected to 
have strong dynamos, agreeing w ith  our knowledge about terrestrial magnetic fields. The Earth 
sustains a relatively strong magnetic field w ith  an intermediate shell geometry. We conclude 
tha t M ercury’s weak magnetic field is expected to  present either th ick or th in  shell geometry. 
D iscrim inating between these two options may be possible when we have more inform ation about 
the external fie ld geometry from  current space missions (Kabin et al. (2007)).

We studied as well, the magnetic field resulting from weak dynamos (i.e. where magnetic 
energies are lower than kinetic energies). We used low electrical conductivity dynamos where 
magnetic fie ld energies resulted about two orders o f magnitude lower when compared to  kinetic 
energies. Under the boundary conditions used (i.e. stress free outer boundary) strong toroidal 
flows were developed. The magnetic forces in  the system were small enough to  have lesser effects 
in the flow fields. We found that low Alfven number dynamos resulted in  non-dipolar and highly 
tim e variable magnetic fields. We proposed then, that magnetic fields under these conditions 
display an unusual symmetry due to  the force balance. In  agreement w ith  Holme & Bloxham 
(1996), we find th a t in  the ice giants’ interiors, a geostrophic balance is more like ly to  be present 
rather than the widely accepted magnetostrophic balance in  conventional planetary dynamos. 
Dom inantly zonal flows are favoured in  a flu id  w ith  low electrical conductivity. Such dynamos 
result in  low Elsasser numbers and non-dipolar non-axisymmetric magnetic field geometries as 
observed for the ice giants.

We later studied the effects o f the approximation o f a homogeneously electrically conducting 
flu id , and compared it  to  a model w ith  rad ia lly variable electrical conductivity. Neglecting the 
change in density (i.e. using the Boussinesq approximation) we introduced slowly rad ia lly vary
ing electrical conductivity to  numerical simulations. This required m odification o f the existent 
dynamo code to  introduce consistently a variable electrical conductivity in  the dynamics o f the 
system. The main objective o f the new implementation was to  better model the gas giants. In  
Jupiter’s and Saturn’s interior continuous and strong changes in  the electrical conductivity and 
density are expected (e.g. Nellis (2000)).

We found significant effects on the flow field due to  the radia lly decaying electrical conductivity 
alone. As expected, magnitudes o f the magnetic fields at the outer boundary were low due
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partly  to  the diffusion o f the magnetic field through the low electrical conductivity zone. The 
resultant field was more axisymmetric at the outer boundary exclusively as a result o f the variable 
conductivity. D iffusion for higher degree components occurs faster than for the dipolar component 
(I =  1). Thus, dipole dominated fields are expected. Our results for non-slip boundary runs agree 
w ith  the expectations. In  general, when low electrical conductivity envelopes were used, fields 
appeared to  be more dom inantly dipolar when compared to  the underlying field at r  =  r m. The 
set o f runs presented in chapter 4 helped us test modifications we made to  the numerical code. 
We found that the new implementation gave reasonable results and provided evidence tha t the 
electrical conductivity profile has significant effects on the resultant external field.

In  order to  analyse further the behaviour of the variable electrical conductivity models, we 
performed tests w ith  lower values o f the Ekman number. The geometry and boundary conditions 
were chosen to  match those expected for planetary interiors. We compared two control models 
w ith  two variable conductivity models using high resolution grids. We found it  d ifficu lt to  a tta in  
dynamos holding a magnetostrophic balance and found tha t for both variable conductivity models 
kinetic energies dominated over magnetic energies. W hile a ll models were found to  be dipolar 
and axisymmetric, the variable conductivity models had more significant high degree and order 
contributions than the homogeneous cases. The azimuthal wavenumber was found to  be higher 
for the cases w ith  variable conductivity. This may be a consequence o f the variable conductivity 
defining a thinner shell dynamo w ith  an outer shell o f approximately r m. The effective typical 
length scale, D * =  r m — r,:, o f the system is then changed and Ra is modified by both a change 
in D * and a reduction in  A T *  =  T (rm) — T (r i). To assume that the sole effect o f variable 
conductivity to  simply redefine the radius ratio, the Ekman number and Rayleigh number o f 
the models, is a crude sim plification o f the problem, but th is helps us to  understand the system. 
Nevertheless, we found tha t variable electrical conductivity models introduce m odifications to  the 
dynamics that are not comparable d irectly w ith  other numerical models (e.g. axisym m etrization, 

overly increased wavenumbers, presence o f significant degree components o f magnetic fields), and 
thus, the modifications we implemented in  the magnetic diffusion equation are im portant for 
modelling realistically the interior of the gas giants.

Since we do not find Saturn-like magnetic fields in our simulations, we proposed future work 
that may result in  fields sim ilar to  those expected in  the gas giants. The firs t option is to 
increase the electrical conductivity close to  the inner core; higher Pm values result in  strong 
dynamos (e.g. Kutzner &  Christensen (2002)). The run tim e o f these simulations w ill increase 
w ith  Pm, and thus become computationally expensive. In  addition to  increasing Pm to  obtain 
strong dynamos for our variable electrical conductivity models, we proposed as a second option, 
to  change the therm al boundary conditions.
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Appendix A

D ynam o Problem

The dynamo theory explains the planetary magnetic field as generated by an electrically conduc
tive, convective, and rota ting flu id. The system consists o f a flu id  enclosed between two spherical 
shells rota ting w ith  an angular velocity f f . The flu id  is electrically conductive and viscous. In  or
der to  determine the motion of the flu id  and if  a magnetic fie ld may be sustained by th is m otion, 
we need to  w rite  equations o f motion, conservation o f energy, and conservation o f momentum.

A .l  Navier-Stokes equation

We can w rite  the equation o f motion o f the system as F  =  ma. For a flu id , it  is more convenient 
to express the forces as the force per un it volume, that is f =  =  pa, where p is the density of
the flu id . The dynamics of the system is determined by the forces acting on it. For the dynamo 
problem these are

f  =  _ v p - p v ^ 9 - r i s - f 6 +  f c +  f m, (A .i)

where the firs t and second term  are the forces due to  the pressure gradient and the force of 
gravity respectively. f vls is the viscous force; th is term  is expected to  be very small compared to 
a ll the other forces, but it  is also very im portant for the stab ility  of numerical solutions, f6 is the 
buoyancy force; i t  determines the convective force in the flu id. fc is the Coriolis force; we choose 
the rota ting frame of reference and thus this force needs to  be included. And lastly, fm is the 
Lorentz force; there is a magnetic force exerted on the a flow carrying currents. Since the flu id  

is electrically conductive if  there are electrical currents in  the system the flow should be also be 
affected by the Lorentz force. Given that each term  in equation A .l requires some explanation, 
we treat them separately.

A. 1.1 Viscous force

For convenience, the derivation of the viscous force w ill be developed on cartesian coordinates. 
We w ill use th is derivation and apply the resultant vectorial expression to  spherical coordinates. 
The stress tensor is defined as djH ij =  /? ” , where / ” s is the ith  component o f t ms, and dj is

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



APPENDIX A. DYNAMO PROBLEM 97

the covariant derivative in the direction ej, which corresponds to  the unitary vector tha t defines 
the coordinate system. The stress tensor may be expressed as,

iTij =  r) (d jm  +  diUj)  +  /xt(V • u)<5i j ,  (A.2)

where r] is the dynamic viscosity, and fib is the bulk viscosity, u is the velocity vector, and u, is 
the ith  component o f u. Thus, ith  component o f the viscous force per un it volume,

f r  =  d j iv  {djUi +  diUj) )  +  dj  {fib( V  ■ u)5i j )

=  (djV){djUi)  +  V(djdjUt) +  (djTf)(diUj) +  rf(djdiUj)  +  dj  (p6(V • u )% ),

from  where

P is =  (Vr; • V)u +  rjV2u +  V(u • V77) +  »;V(V • u) +  V(p&(V • u)) (A.3)

= r jV2u + ( r f  + f i b ) V ( V  ■u). (A.4)

Where we assume the viscosities, rf and fib, to  be constant as function o f space.

A. 1.2 Compositional convection

The buoyancy force per un it volume may be expressed as f 6 =  (5p)g. Using thermodynamic 
equations one may find an expression for dp.

The therm al expansion coefficient, a  is defined as

_  —1 dp 
a ~  ~p W

(A .5)
p

where T  is temperature and P  is pressure. Thus, we can, for a constant pressure, w rite

^  —apdT' — f T
fTref
f T -a p d T ' =  [ T % -f d T \  (A .6)
Jl'rt -hwr 01

where Tref  is the equilibrium  state o f temperature for which p(Tref )  — p0- I f  the deviation o f T  
from  the reference state (Tref ) is small,

-a p 5 T  =  p (T ) -p (T re f) =  5p. (A.7)

I t  is convenient to  w rite  the temperature as the temperature difference from  the equilibrium  
state, Tref ,  and thus we w rite  ST as the temperature T. We find then

f b =  —a p T  g. (A .8)
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A .1.3 Coriolis force

We have chosen the rotating frame of reference. For a system w ith  an angular velocity f i ,  where 
we choose the z-axis to  be aligned w ith  the axis o f rotation. The Coriolis force is expressed as 
F c =  —2m (n  x u ). The force per un it volume is then

f c =  -2 p ( f t  x u). (A .9)

A .1.4 Lorentz Force

The electrical conductivity o f the flu id  allows for the flow to  be modified by magnetic fields. The
force exerted by a magnetic field B, on a body carrying a current J is Fm = J x B .  Using the
density current j, the force per un it volume is

r = j x B  = / j-1( V x B ) x B ,  (A.10)

where p  is the magnetic permeability.
Once we have found a ll the forces for the equation o f motion, we can express the acceleration 

of the system as

pa =  -V p  -  pV0 +  r/V 2u +  (p +  p f,)V (V  • u) + a p T g

—2p (fl x u) +  p -1 (V  x B) x B. (A .11)

A. 1.5 Normalization

In  order to  use numerical solutions, it  is convenient to  use non-dimensional parameters. In  
addition, the adimensionalization o f the equations allows for a easier analysis o f the flow when one 
wants to  compare w ith  experimental results and w ith  measurements from planetary environments. 
We choose the non-dimensional tim e as the viscous diffusion time, t „  =  D 2v ~ l , where D  is the 
thickness o f the shell containing the flu id , v  =  p /p  is the kinematic viscosity. Given the external 
and internal rad ii o f the shell, r,; and r 0, we define the radius ratio  as

X =  r i / r 0-

We choose to  use D  as our normalized length thus r Q — r i  =  1. This yields a normalized

r 0 =  (1 -  x)-1 and n  = x(l -  x)~r-
To make non-dimensional equation A . ll,  we sta rt w ith  the acceleration, the net force:

pa =
D

(£>2v -1 )2 
p v 2 -

V p v  

iW 2 D  a

(A .12)

(A .13) 

(A -14)
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pvQ,
~ rT Ea, (A .15)

where E  is the Ekman number. Now, we normalize every term  in equation A. 11 and m u ltip ly  
each term  by For the pressure gradient and the gravity we w rite an expression tha t includes 
a ll the terms tha t my be expressed as a potential (conservative forces).

The viscous force term,

The buoyancy term,

V P  =  (Vp +  PV(j>)
D

pvfl

D
pvQ,

(r?v2u +  (n +  M b)V(v • u ))

^ ^ ( ^ 2u  +  (r, +  M6) V ( V - u ) )

p ttD 2 

E V 2u +

V 2u + V +  Pb
p ttD 2 

V +  Pb

V (V  • u)

p fiD 2

{ a p T s ) r v n

D a A T g0 
v Q 

ag0A T D  1 
v f l

V (V -u ) .

D

T g r

f g i

agaA T D 3 k 1

=  R,

VK 
K V

D 2 n

■Tgr

T g r

av D 2Q 
RaP ~ l E f g r ,

(A.16)

(A.17) 

(A .18) 

(A .19) 

(A.20)

(A .21) 

(A .22) 

(A .23)

(A .24) 

(A.25) 

(A .26)

where the temperature has been normalized in  terms o f A T , the temperature difference between 
the outer and inner shells; and gravity by g0, the gravity at the outer shell. We have also 
introduced here the Rayleigh number Ra =  ag0A T D 2/ ( v k ) , and the P randtl number Pr =  v k T 1.

The Coriolis term ,

2p(Sl x u ) =  2(z x u — ) =  2(z x u).
OlS\ i  1/

And lastly, the term  for the Lorentz force.

^ - ‘ ( v  x B )  x B  .  - L j i t v  x B) ,  B  -  J - ‘ (V  X B )  X B,

(A .27)

(A .28)

where A is the magnetic d iffusivity, and the magnetic field is normalized using B  =  y/ppXTi B . 

Pm — f  is the magnetic P randtl number.
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Thus, the non-dimensional Navier-Stokes equation is:

E { a - V 2u) -  ^ V ( V - u )  +  2 ( z x u )

=  - V P  +  R a P - 'E T g v  +  P - X(V x B ) x B . (A.29)

A .2 Heat equation

The equation o f conservation o f energy is the heat equation. As we did previously we take the 
temperature T  as the temperature difference from a reference state. The reference state in  th is 
case is the adiabat as a function o f pressure (which changes w ith  radius exclusively). Once this 
reference state is chosen, one may w rite the energy conservation equation

<9T
■Jg =  « V 2T  +  (V k -  V T ) - u -  V T  +  e, (A .30)

where k is the therm al d iffusivity; and e is an external heat source, such as heat from  radioac
tive elements in  the core. This equation may also become non-dimensional. Normalizing, as 
done previously, length, temperature and tim e (V  =  D ~ l V , T  — (A T )T , and t  — D 2v~ l t  
respectively),

f)T r
^ D ~ 2v =  kD ~2V 2T - D ~ 2u u - V T - f i ^ ,  (A.31)

from where,

^  =  * v 2T - u -  V T + ^ -  (A .32)
dt v A  T v  K '

=  Pr- 1V 2r - u - V f +  e (A.33)

defining i  =  as a normalized heat source.

A.3 M axwell’s equations

Electric and magnetic field are governed by a set o f four equations,

V x H  =  J  +  | ,  (A.34)

V x E  =  -  — , (A .35)

V  • B  =  0, (A .36)

V  • E  =  Pe. (A .37)

where H  is the magnetic field vector, D  is the electric displacement vector, B  is the magnetic 
induction vector, E  is the electric field vector, and pe is the charge density.
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A.3.1 Electrical current

To understand the behaviour of the charged particles under an electric field some careful con
siderations need to  be taken into account. The d rift velocity for an electron w ith  charge qe in  
presence o f an electric field |E| follows:

me ( l F  +  fcUd)  =  9e|E i, (A.38)

where me is the mass o f the electron, ud is the d rift velocity, t  is time, and fc is a constant where 

mek Ud is the fric tion  force due to  collisions w ith  other electrons. The solution o f th is equation is

ud(t) =  u0e -kt +  ^ .  (A .39)
k m e

For the steady state (kt —> oc) the current then becomes

N a 2E
J  =  Nqeud =  =  aE, (A.40)

rC TTIq

where N  is the number o f electrons, and a  is defined as the electrical conductivity. Equation
A.40 is known as Ohm’s law, and it  is found for the steady state current. The steady state then
requires i > r ,  where r  =  fc-1 is the relaxation tim e, and fc represents the collision frequency.

Given a tim e dependent electric field E (t), where the field changes w ith  a frequency v e , 
there are two extreme scenarios. F irst, i f  i/ e  »  fc the steady state may not be attained and the 
electrons move w ith  the electric field causing charge separation. Second, if  i/e  -C fc the steady 
state may be attained and the electrons follow Ohm’s law. For the la tte r case, ^  ~  0, and thus 
^  «  0. The second case mentioned here is denominated the MHD approximation. M e rrill et al. 
(1998) suggest th a t the charge separation may occur at pressures greater than about 1012Pa, 
which is an order o f magnitude higher than the pressure at the centre o f the Earth (of the order 
of 10n Pa). In  the case o f Jupiter though, the estimated pressure close to  the centre is on the 
order o f 1012 (e.g. G u illo t (2005)) and thus the MHD approximation may be invalid for the very 
deep in terio r o f the Jovian planet.

To define the dynamo equations we use Ohm’s law:

J =  u (E  +  ( u x B ) )

^AJ =  E  +  (u  x B ), (A.41)

Where J  is the current, a  is the electrical conductivity, E , u and B  are the electric field, 
velocity and magnetic induction vectors, (i is the magnetic perm eability and A is the magnetic 
d iffusiv ity which is related to  the conductivity as A =  —

Taking the curl o f equation A.41, and using Faraday’s Law, (V  x E  =  —<9fB ), an expression 
for the tim e derivative of the magnetic induction vector may be found:
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V  x fiXJ =  V  x (E  +  (u  x B ))

=  +  V  x (u  x B ). (A.42)

Using Ampere’s law, the cnrl o f the current may be expressed as:

= (V* B- ® )
V x / r A J  =  V x a | v x B - ® J ,  (A.43)

Taking the righ t hand side o f equations A.42 and A.43, the magnetic induction tim e derivative
can be expressed as,

QO an
— - V  x A(V x B ) +  V  x A ~ -  +  V  x (u  x B ). (A.44)

Using the M HD approximation,

8B
=  - V x A ( V x B )  +  V x ( u x B ) .  (A.45)

The previously proposed normalization yields

—  =  - i z - i v  x A(V x B ) +  V  x (u  x B ). (A.46)

I f  the magnetic d iffusivity, A is constant in  space, and using V  x (V  x B ) =  — V 2B

—  =  P - ^ B  +  V  x (u  x B ). (A.47)

A .4 The dynamo equations

The equations o f motion, energy conservation, as well as the equation for the tim e derivative o f the 
magnetic induction vector have been derived in this appendix. We used the MHD approximation 
to  obtain equation A.47.

In  order to  use the spectral solutions proposed in  Glatzmaier (1984), vectors should be diver
gence free, V  • a =  0. I f  this is true,

a =  V  x V  x apf  +  V  x atr , (A.48)

where at is the toroidal potential, and ap is the poloidal potential (Chandrasekhar (1961)).
For the case o f the magnetic induction vector, th is is true since the non-existence o f magnetic
monopoles yields d irectly to  V  -B  =  0. The magnetic field induction then, may be w ritten  as two,
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toroidal and poloidal, potentials instead o f three independent components. For the velocity field, 
th is task becomes a little  more complicated. The divergence o f the velocity field is determined 
by the equation o f conservation o f mass,

For dynamo models where the density is believed not to  change significantly w ith  respect to  tim e 
or space, the Boussinesq approximation is used (that is V  • u =  0). Since it  is the approximation 
used for the modelling presented in this dissertation, we w ill only present the equations using 
th is approximation. The relevance and a b rief discussion on whether or not it  is reasonable to 
use th is approximation is included in section 4.1.1, where the discussion about the giant planets’ 
in terio r requires a close examination o f the equation o f conservation o f mass.

In  summary, the complete set o f normalized Boussinesq, MHD equations:

(A .49)

E (a -  V 2u) +  2(z x u)

=  - V P  +  R a P - 'E fg r  +  p - 'W  x B )  x B , 
B T  ~ ~
^  =  p - 1V 2r - u - V T  +  e, 

=  P ‘ l V 2B  +  V  x (u x B).

(A .50) 

(A .51)

(A.52)

Note that a =  ^  =  § f +  (u  • V )u .
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Appendix B

M agnetic field outside the  
dynam o region

The poloidal magnetic field at the outer boundary determines uniquely the magnetic fie ld away 
from the dynamo region. In  contrast, the toroidal component cannot be determined from  outside, 
and does not affect the outside field. To determine the interaction w ith  the solar w ind or the 
magnetic fie ld at the planetary surface, it  is necessary to  calculate the fie ld far from  the dynamo 
region. I f  we assume that the mantle and/or clouds are not electrically conductive and tha t there 
are no external fields, the magnetic field outside may be expressed as function o f a potential. In  
this appendix, we present the expression o f the magnetic field outside (assuming no magnetic or 
electric field sources outside the dynamo region) in terms of the poloidal magnetic potential b, 
defined in  equation 4.5.

B .l  M agnetic field vector outside the dynamo region

The potential may be expressed in  terms of a sum of complete ortho-normal functions,

To define the field outside the dynamo region one needs to  solve the Laplacian o f a potential 
where

Vcf> =  B . (B.l)

OO R \
-  ) P/"(cos e) [o f  e™*’ +  0[ne - tmv] . (B.2)

From equation B .l we find,
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And thus, B  may be expressed in terms o f sums as well,

§£ = EE-tf*1̂ ^ 0™ o)[are*mv+(jre-*m*]. m
l m.

=  E E ^ ^ » K e - + M . (B.7)
I rn 

r  I m

In  order to  use the Legendre and Fourier expansions in  equation B.7, i t  is convenient to  ex
press the derivative o f the Legendre polynomial in  terms o f the polynomial themselves. For the
axisymmetric part (m =  0)

P „(x )( 1 -  a;2) =  nPn- i( x )  -  nxPn(x). (B.9)

Note that P'n(x) =  =  , where x  =  cos0j thus gg = _=^.

dP?(cosO) I
60 sin 0

[cos OP? (cos 0) — P?_! (cos 0)] . (B. 10)

In  the case o f the non-axisymmetric component o f the field, m >  0, the derivative o f the Legendre 
polynom ial may be expressed as

V T ^ P 'n ( x )  =  \ P n +1( x ) - l ( n  +  r n ) ( n - r n + l) P ™ - 1(x), (B .ll)

[P /“ +W )  -  (I +  m)( l  - m  +  1)P;m~ W ) ]  . (B.12)

In  order to  sum a ll the axisymmetric terms w ithout calculating polynom ial w ith  I >  lmax, we 
could use the identity

P™+\ x )  =  - ^ = P ™ ( X) -  (n(n +  1) -  m(m  -  1 ))P ™ ~\x), (B.13)
V I — *

thus,

P™+1(cos0) =  2mcot OP™(cos0) — (1(1 +  1) — m(m — l))P |m -1(cos0). (B-14)

Using equation B.14 in equation B.12

dP™(msO) =  _  ^  cQt q  +  *.P ™-1(C0S #)] ; (B-15)

where k =  [— (I +  rn)(l — m. +  1) — 1(1 4-1) +  m (m  — l ) ] /2 . The vector components then, may be 
expressed in  terms of the spherical harmonic coefficients potential a  and [1 as:

  ,    ,  p i+ i
Br  =  E E ^ 1) ^ " 10® ^ 01" ^ ^ 6" ^ ’ (B -16)

I rn
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[m  cot 6Pjn  (cos 0) +  UP"1' 1 {con 6)] [a ,; leirnv +  fi]ne~irntf‘] ,

(B.17)

m

P{n (cos 0)im, [a™em 'p +  p™e imv>] .
I m

(B.18)

B.2 The poloidal potential and the electrostatic potential

Glatzmaier (1984) writes the radial component o f the magnetic field at the outer boundary in 
terms o f the poloidal potential, b (from equation 4.5).

-  oo m ~ l

Br (r, M  =  ^ £ ( I  +  1)&!” P{n(cosO)eimv. (B.19)
/ “ 0 m = —l

which may also be expressed in  terms of m >  0 as

One may define the coefficient on the right hand side as b'\n =  (—l ) rn f i '^ y  b” 1-

Since the radial component o f the magnetic field is continuous at r  =  r a, B r |r+ =  B r |r - .  
This is equivalent to

Thus, the poloidal potential, b(r,0,ip), at the outer boundary, r 0, gives us an expression for 
the coefficients a  and (I o f the potential <I){r. 9, tp).

oo m—l

1=0 m = 0

'T n A m ip ■imip'

So, for R =  To, we can w rite the matching coefficients for m >  0,

(B.22)

which can be true for a ll m  only if

(B.23) >m (B.24)
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B.3 Num erical im plem entation

We have found an expression for the the potential <j> and we can now calculate the field far from 
the dynamo region using equations B.16, B.17, and B.18. I t  is im portant to  note tha t the fields 
have been expressed in  terms o f the non-normalized Legendre polynom ial, and tha t in  order 
to use the normalized polynomial one has to  take care o f terms w ith  degree other than I or 
order other than m. Since the sum in  equation B.17 was found from  when normalizing the 
polynom ial p f1 =  c™P[n, where

cm f  ( - 1)mV W @ T  - 17,111 normalization

|  ~ , Schmitt normalization

The natural normalization o f p ™ 1 all(1 P?-i wl11 not be useful to  express where c™ is
expected. For the axisymmetric terms then

[  o9 /H+l. /_p... = a 0 /ST py.il
0 r>0 _ , 0  Cl J p l - IV V  21-1  P l - i y  2 1 -1 > ruu

W * 1 —1 — P i —1 ~n—  — \  /—
Ci“ ! I P?-1 . Schm itt

(B.26)

For the non-axisymmetric part the m ultip lying factor is independent o f the norm alization used, 

m  n m  — 1 m—1 cl 0 /  i  /  ( /  — TTl)! , \ r n ~ l  /  (^ ~i" ( r n  ! ) ) •

C(Pi -  V ( ^ ) ! (_1) \ /> ~  ( r« ~  1))!
m —1

— m +  1)(/ +  m)

Using the normalized coefficients we can express completely the three components in  terms of 
the coefficients from  the poloidal scalar potential for r  =  r 0. Rewriting equations B.16, B.17, and B.18,

I m a x  I  j j I

B '  =  E  E ^  +  1) ^ 2 ^ ( c o s 6 )[b re im*  +  b 7 e - im* } ,  (B.27)
0 m~0

I max /  nl 12
Be =  E  |  ̂ 7+2 2 gin g [feiP?-i(cos6l)-cos (cos g)] (B.28)

 ̂ p i ^
+  E  ^  [ m o o t ( c o s 0) +  f a p r W ) ]  [fc jV ” 1*’ +  I ,

771=1 J
Im a x  t  T}1

B * =  E E l T 2 ^ ( c o s 0 ) f m / [ 6 r e imv +  & T e - iTO1 .  (B.29)
i=0 771=0

where fci =  \ IW - \  in  case of the Schmidt normalization or Aq =  1 otherwise. fc2 == (H m )(i-m + i)+ i(i+ i)-m (m -i) 

for both Schmidt and fu ll normalization, k2 =  k for non-normalized Legendre polynom ial.

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.



108

Appendix C 

Sym bols

Table C .l: In  th is table the symbols used throughout the document are listed. We include the 
meaning o f the symbol, the units o f the quantity they represent and the firs t page where the 
symbol was used in  the document (in  this page the reader may also find a description o f the 
quantity). We used polar spherical coordinate system, (r, 6, ip}, unless otherwise specified, and 
we denote the vector component w ith  the direction as a subscript. We define the axis o f rotation 
by z where z — r  cos 6.

Symbol Meaning Units page
A Alfven number 42
a Coefficient o f thermal expansion K " 1 4
B Magnetic induction vector T 7
b Poloidal magnetic potential T m 2 52

X Radius ratio  T i/r0 6
D r o - n m 6
D Electric displacement vector C m - 2 100
E Electric field vector V m " 1 100
E Ekman number 7
Et Turbulent Ekman number 8
£ External heat source K s " 1 100

V Dynamic viscosity Pa s 97
f Force per un it volume N m-3 96
f 6 Buoyancy force per un it volume N m r3 96
fC Coriolis force per un it volume N m ~ 3 96
j?m Magnetic force per un it volume N m“ 3 96
fvis Viscous force per un it volume N rn "3 96

$ Electric potential N m 39

<j>g G ravitational potential N m 96
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Symbol Meaning Units page

9 Acceleration due to  gravity m s-2 7

9o Acceleration due to  gravity at the outer boundary m s-2 4
H Magnetic field vector A m -1 100
J Electrical current A 98

j E lectrical current density A  m~2 98

3 Toroidal magnetic potential T  m 52
K Thermal d iffusivity m2 s_1 4
Kt Turbulent therm al d iffusivity m2 s-1 4
k Electron collision frequency s_1 101
A Magnetic d iffusivity m2 s-1 4
I Latitud ina l degree 39
A Elsasser number 25
m Azim uthal wave number (exp{irtvp)) 39
me Mass o f the electron Kg 101

P magnetic perm eability H m - 1 6

Pb Bulk viscosity Pa s 97
V Kinem atic viscosity m2 s_1 4

Vt Turbulent kinematic viscosity m2 s -1 4
UJ V ortic ity s-1 22
n Rotation rate o f the mantle s-1 4

p Pressure Pa 96
p Fluctuating modified pressure Pa 7

P T (x) Legendre polynomial degree I and order m 39
Pr ( x ) Normalized Legendre polynomial degree I and order m 107

P<n Magnetic P randtl number v / \ 7

Pr Prandtl number v /n 7

di P artia l covariant derivative r1 96

Itij i j  component o f the stress tensor Pa 97

9e Electrical charge o f the electron C 101

n Radius o f the internal boundary m 4

To Radius o f the external boundary m 4

Ra Rayleigh number g aA T D 3/ ku 7

Rac C ritica l Rayleigh number for convection 12

Rad Lowest Rayleigh number for dynamo action 12

RPa Planetary Rayleigh number Ra/(  1 -  y )3 21

Re Reynolds number u D /v 37

Rearth Mean Earth ’s radius 6.3728 x 106 m 2

Rm Magnetic Reynolds number uD/X 43

Ro Rossby number u/Q D 37

P Mass ensity Kg m~3 4
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Symbol Meaning Units page

Pe Charge density C m - 3 100
a Electrical conductivity S m - 1 56
t Time s 7
T Temperature K 7
Tref Reference temperature K 97
A T Temperature difference across the shell K 4
n Magnetic diffusion tim e s 7
Tu Viscous diffusion tim e s 6
U Velocity vector m s_1 7
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