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Abstract

This thesis describes a method for real-time motion detection from an active
platform whose position is not accurately known. The camera is mounted on a
pan/tilt device which provides rotation about two axes. Image mapping is used
to align images of different viewpoints so that static camera motion detection can
be applied. In the presence of camera position noise, the image mapping will be
inexact and static camera methods will fail. The use of morphological filtering of
motion images is explored to de-sensitize the detection algorithm to inaccuracies
in background compensation. Two motion detection techniques are examined and
experiments are run on stored image sequences to verify the methods presented.
Experimental results are given and future improvements suggested. The system
successfully extracts moving edges from dynamic image sequences taken with
camera rotation about both pan and tilt axis.
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Chapter 1

Introduction

1.1 Introduction to tracking

Computer analysis of images is a rapidly expanding field with applications in
diverse areas such as medical imaging, analysis of satellite photos and indus-
trial quality control. Image processing is computer interpretation of 2-D discrete
images which can represent visual, radar, X-ray, depth or infra-red information.
Computer vision is a branch of image processing that deals with real-time analysis
of a series of images to sense continual stimulus.

As computer vision matures, motion detection and tracking are becoming
recognized as important capabilities in any vision system designed to operate in
an uncontrolled environment. Animals excel in these areas, and that is because
motion is inherently interesting and important. In any scene, motion represents
the dynamic aspects. For animals, motion can mean danger or food, matters of
life and death. For a mobile robotics platform, motion can imply a chance of
collision, dangers to navigation, or alterations in previously mapped regions.

Tracking in computer vision, however, is still in the developmental stages and
has had few applications in industry. It is hoped that tracking combined with
other technologies can produce effective visual servoing for robotics in a changing
work cell. For example, recognizing and tracking parts on a moving conveyor belt
in a factory would allow robots to pick up the correct parts in a less stringent
work atmosphere.



In this thesis, we will consider tracking with an active camera. Active vision
implies computer vision implemented with a movable camera, which can intelli-
gently alter the viewpoint so as to improve the performance of the system. An
active camera tracking system could operate as an automatic cameraman for ap-
plications such as home video systems, surveillance and security, video-telephone
systems or other tasks which are repetitive and tiring for a human.

1.2 Inherent difficulties of computer vision

Although computer vision has received significant attention from researchers over
the last 25 years, the full potential of computer vision to provide general-purpose,
practical, and real-time sensing is still far from Being achieved. Why is this? One
reason is that the range of capabilities conceivably possible to computer vision is
enormous. We have merely to look at the binlogical evidence to see this. Many
higher animals have sight as their prime sense for performing a multitude of tasks.
These tasks include location and recognition of objects, navigation, controlr and
manipulation of objects (hand-eye coordination), motion detection and trdéking.
The demonstrated capabilities of vision in the animal world provide the computer
vision scientist with a never-ending series of challenging and difficult goals.

Clearly there is great potential in vision as a means of sensing. This is in part
due to the great quantity of information available through visual stimulus. Yet
the problems of computer vision often stem from poor quality of information, not
lack of information. Although each image holds a large amount of information,
much of it is irrelevant to the task at hand. As well, the information that is
relevant is often difficult and expensive to extract. The difficulties of computer
vision can be summarized into three categories: ill-posedness, ill-definedness and
intractability [23].

A problem which is ill-posed, or underconstrained, does not have a unique
solution. Since computer vision is the analysis of 2-D images constructed from
three-dimensional scenes, there is necessarily a loss of information. Therefore, it is
unrealistic to expect to reconstruct a 3-D model of an arbitl_'ary scene from a single
image. In the past the approach has often been to assume additional constraints to



the scene, such as smoothness. Such assumptions often decrease the robustness
of the system. The increase in availability of sophisticated vision and robotics
equipment has made multiple camera and moving camera systems feasible. Both
of which have the potential for resolving this inherent underconstrainedness.

Ill-definedness refers to the difficulty in modeling surfaces of the scene. It is
generally assumed that the surfaces viewed are smooth and Lambertian, which
is not always the case in the real world. To robustly extract surfaces containing
reflectance variation and non-gaussian noise, simple surface modeling is not suf-
ficient. Ill-definedness extends into object modeling and recognition as well. The
modeling of natural objects such as animals or trees is not well-defined and seems
intangible to computer techniques.

Mathematical intractability in computer vision primarily refers to reverse-
mapping and search problems. These problems are found when attempting to
match parts of an idealized model to noisy images. Matching is an NP-complete
problem. Its time complexity grows factoriallv with the number of parts in the
model. If we have a noisy image, the initial segmentation is inevitably inexact.
This means that we must also account for partial matches. Though a partial
match can theoretically be reduced to a number of complete match problems, the
actual time requirement is much higher and makes it impractical for a real-time
system.

Even if the problem is ‘tractable’, operations in vision are inherently expensive.
To this end, it is important to consider Rosenfeld’s statement [23]: “In principle,
the computations performed by a vision system should be chosen to yield maximal

expected gain of information about the scene at minimal expected computational
cost.”

1.3 Thesis objective

The objective of this work is to design a method of real-time motion detection
and tracking for an active camera system. The active camera system will be a
pan/tilt arrangement and thus allow the camera to be rotated about two axes,
giving is the ability to follow a moving object as it moves, and keep it within the



centre of the field-of-view of the camera. The experiments will be conducted with
real images taken from a pan/tilt platform. However, the image processing will be
done off-line. The emphasis is on the method of tracking, rather than actual real-
time implementation. The definition of the problem is more completely stated in
Section 3.1.

1.4 Thesis organization

The thesis is organized as follows. In Chapter 2 a brief overview of some of the
topics which affect tracking, and in particular, tracking with an active camera.

Chapter 3 gives a description of the tracking system proposed in this thesis.
The scientific notation used is presented and models for the camera and pan/tilt
device are given. As well, a justification is presented for the design of our system
attempting to show how the difficulties in Section 1.2 are overcome.

Our active camera is mounted on a pan/tilt device that allows rotation about
two axes. Chapter 4 investigates the relationships between camera coordinate
system positions and between pixel locations at different pan/tilt orientations.

Chapter 5 explains the methods of motion detection which were explored and
developed. .

In Chapter 6 the results of our motion detection algorithms are shown for
processing performed off-line on stored image sequences. The advantages and
disadvantages of the techniques are discussed.

Chapter 7 discusses some of the limitations of the system imposed by syn-
chronization error and noise filtering. For given system and noise parameters, the
upper and lower bounds of tracking velocity are examined.

The conclusions arrived at due to this work are presented in Chapter 8. As
well, possible modifications and implementation issues are addressed.



Chapter 2
Tracking overview

2.1 Tracking methods

In general, there are two approaches to tracking which are fundamentally differ-
ent, with different goals and methods. They are: recognition-based tracking and
motion-based tracking.

Recognition-based tracking is really a modification of object recognition. If
We can recognize a certain object in successive images, we can determine how it
is moving. The advantage of this method of tracking is that it can be achieved
in three dimensions. As well, the translation and rotation of the object can
be estimated. The obvious disadvantage is that only a recognizable object can
be tracked. Object recognition is a high-level operation which can be costly to
perform. Thus, the performance of the tracking system is limited by the efficiency
of the recognition method, as well as the types-of objects recognizable. Examples
of recognition-based systems can be found in the work by Lowe [19], Bray [10]
and others [24] [11].

Motion-based tracking systems are significantly different from recognition-
based systems. They rely entirely on motion detection to detect the moving
object. They have the advantage of being able to track any moving object re-
gardless of size or shape. Therefore, motion-based techniques are more suited for
our system. Their disadvantage is that object orientation cannot be extracted.
As well, 3-D tracking requires multiple camera systems or independent ranging



techniques.
Motion-based techniques can be further subdivided into optic flow tracking
methods and motion-energy methods as described in Sections 2.2 and 2.3.

2.2 Optic flow tracking

In a non-static scene, for every image in an image sequence, we can attach an
instantaneous retinal velocity to each point within that image. The field of retinal
velocity is known as optic flow [5]. This field is effectively the 2-D velocity of
every pixel within an image.

If we can extract this motion field for every image in an image sequence, and
use it as the input to our motion analysis techniques, it is possible to determine
ego-motion (camera motion) and detect independently moving objects.

The difficulty with optic-flow tracking is the extraction of the velocity field.
By assuming the image intensity can be represented by a continuous function,
f(z,y,t), we can use Taylor series expansion to show that:

) N |
0= 8zu+ ayv-l- Bt (2.1)

where u = % and v = % Therefore, the instantaneous 2-D velocity of any point
in the image is (u,v). This is a convenient equation since %%,%ﬁ and %5 all can
be locally approximated.

The difficulty applying squation 2.1 is that we have two unknowns and only
one equation. Thus, this equation describes a line on which (u,v) must lie, but
we cannot solve it uniquely without additional constraints. One way to solve this
problem is to employ relaxation techniques. This uses the assumption that the
motion field is locally smooth, which may not hold for arbitrary scenes. This
technique also requires iteration and several images in an image sequence, both
of which are costly [13].

Some interesting work has been doue with partial optic-flow information from
an active camera image sequence to detect motion [21]. By moving a fully
active camera (one which translates and rotates) with a known motion, rough
estimates of the expected optic flow can be made. These estimates of motion



are qualitative. In other words, suppose the camera is translating to the left.
The expected apparent motion of static objects will be to the right. The line
upon which the motion should lie in the velocity space can be calculated from the
motion of the camera. Any regions which are detected with significantly different
lines of possible motion are concluded to be due to an independently moving
object.

The significance of this work is that motion detection is achieved from a fully
active camera. The algorithm can be evaluated quickly and hence we have a
computationally efficient method for detecting motion from an unconstrained
platform. The drawback is that since the evaluation is qualitative; it is less
discriminatory than a quantitative approach. This means that objects with mo-
tion in similar directions as the apparent motion cannot be detected, whereas
motion perpendicular to apparent motion will easily be detected. At present, this
technique has only been uéed in motion detection without intelligent control of
camera motion. However, it would be interesting to apply this work to active
camera tracking in the future.

2.2.1 Optic flow estimation from discrete images

Since determining a complete optic flow field quantitatively is both expensive
and ill-posed, for practical systems solving the problem for a few discrete points
has been a popular alternative {14]. This method relies on identifying points of
interest (also known as features) in a series of images and tracking their motion.
The points of interest are selected by scanning the image for regions with high
gradients in more than one direction. These points are indicative of corners in a
3-D scene [9]. The points of interest are identified in two consecutive scenes, and
the motion of each point between images is measured to produce an estimated
optic flow velocity for pixels within the neighbourhood of that point.

The disadvantage with this technique is that the points of interest in each
scene must be matched to those of the previous image. This is difficult since such
a matching problem is intractable in general. The problems increase in the case
of an active camera. Since the scene viewed is dynamic, certain points will pass
beyond the field-of-view while new ones will enter (drop-ins and drop-outs). This



entails a iterative search which must include the possibility that for each point
there is no match. The complexity of this problem is such that it is not reasonable
for real-time applications.

2.3 Motion energy tracking

Another method of motion detection is motion-energy detection. Motion-energy
detection is a spatio-temporal method, since it involves simple filters in both the
spatial and temporal domains. The basis of these methods is the temporal deriva-
tive. Let us consider a function f(z,y,t) which describes the intensity of our input
image. For a static scene with a stationary camera, without considering noise in
irradiance or sensing, the derivative of this function with respect to time should
remain zero. In other words, a pixel representing the same 3-D point, with con-
stant illumination and reflectance, will have a constant greyscale value. If the
pixel intensity changes dramatically, this can be due to motion. Either a new
surface has occluded the previeus one, or an occluding surface has been removed
so that a different surface, with different reflection characteristics is now seen.
Hence, by calculating the temporal derivative of an image and thresholding at a
suitable level to filter out noise, we can segment an image into regions of motion
and inactivity.

Although the temporal derivative is sometimes estimated by a more exact
method, usually it is estimated by simple image subtraction:

df(z,y,t) ~ f(z,y,t) - f(z,y,t - 6t)
dt ot
This method of motion detection is subject to noise and yields imprecise values.
Several schemes have been developed to improve the motion detection.

In general, techniques to improve image subtraction include spatial edge in-
formation to allow the extraction of moving edges, rather than regions of motion.
Picton [22] utilized edge strength as a multiplier to the temporal derivative prior
to thresholding. Allen [1] uses zero-crossings of second-derivative gaussian filter-
ing as an edge locator, and combines this information with the local temporal and
spatial derivatives and equation 2.1 to estimate the optic flow velocity of edge




pixels.

For practical, real-time implementations of motion detection, image subtrac-
tion combined with spatial information is the most widely used and successful
motion detection method. In addition to computational simplicity, motion-energy
detection is suitable for pipeline architectures which allow it to be readily imple-
mented on most high-speed vision hardware. One disadvantage of this method is
that pixel motion is detected but not quantified. Therefore, one cannot determine
additional information such as the focus-of-expansion. Another disadvantage is
that the techniques discussed are not suitable for application on active camera
systems without modification. Since active camera systems can induce apparent
motion on the scenes they view, compensation for this apparent motion must be
made before motion-energy detection techniques can be used.

2.4 Camera rotation

Most work in computer vision has been done with stationary cameras. Of the few
researchers who have worked with active vision, some apply a fully active camera
(with both camera translation and rotation) [9] [21), while others constrain
camera motion to only one form [2]. In this thesis, we will be considering the
unique characteristics of an active camera with pan/tilt capability, i.e. one which
can only rotate.

Theoretical work on this specific kind of camera motion has been done by
Kanatani (16] [17] who has developed the fundamental geometry for such a
system. From this work we know that, given a rotation of the camera by a
rotational matrix R, a fixed 3-D point moves in the camera coordinate system as
follows:

P =RTP (2.2)

where P is the point location before rotation and P’ is the location after rotation.
This relationship between a 3-D point in camera frames at different orientations
allows us to compensate for active camera rotation. This is crucial for our method
of compensation for apparent background motion and will be dealt with specifi-
cally in Chapter 4.



2.5 Motion parameter extraction

The fundamental step in motion tracking must be motion detection. However, to
track a moving object successfully, motion parameters must be extracted and used
to predict future positions of the tracked object. Due to the delays in processing,
position information will always be out-of-date. Therefore, if we move the camera
to look at the detected position, the camera will always lag behind the immediate
position of the object. By extracting the motion parameters we can predict the
future position of the object and move the camera to intercept the anticipated
position.

There has been a lot of work recently in use of Kalman filters for motion
parameter estimation (18] [12]. While Kalman filters allow more adaptability to
noise and target motion, they impose additional computational burdens on the
system.

One approach to obtain the best compromise to this problem suggests using
fixed-gain filters with gain values based on noise characteristics of the known
tracking system [1]. Allen uses an a — § — v filter with gains arrived at by
Kalata [15] as optimal fixed gains derived from Kalman filter steady-state solu-
tions. Kalman filters adapt to changing noise conditions. If the noise present
in the system is constant, the Kalman filter adaptation will reach steady-state
values for filter gains. By exam}ning the filter-gain-to-noise relationships, the
computationally expensive process of adaptation can be skipped by assuming
these steady-state values from the onset.

In such a filter, position, velocity, and acceleration are estimated as shown in
the following equations. In these equations z., v,, and a, are the estimated motion
parameters (position, velocity and acceleration) using previous predictions and
the current measured values; z,, v, and a, are the predicted motion parameters,
which incorporate only prior information to extrapolate the current values; and
T is the measured position, which is corrupted by noise. The noise in this case
comes from two sources: position noise due to variance in acceleration of the
target, and the variance of the noise in the measurement of the object’s position
from an image.

10
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The predicted motion parameters are found using standard rectilinear motion
1]
Tp(t) = ze(t-1) + Tv(t—1) + 1T%,(t-1)
p(t) = v(t-1) + Ta,
a(t) = a(t-1)
where T is the time between two consecutive estimates. The updated motion
parameter estimates determined by the a — g ~ 4 filter are

z(t) = z(t) + afzm(t) — z,(t)]

ve(t) = uyt) + jl'ﬁ[‘tma) — z(t)]

a(t) = ayt) + gFav(em(t) - z5(2)]
in which the values of a, B and v are constants determined by

,72

4(1--0:)=A2
a=\/§§—%ﬁ
2
1=

and X is determined from the known noise characteristics o, (position uncertainty
due to variance of acceleration) and o, (the measurement noise variance) as

Allen notes that the values o, and ¢, are difficult to obtain and so he treats them
as tuned parameters in the filter.

Such a filter is computationally efficient. Also, for constant aoise the filter
is robust and accurate since it is based on optimal Kalman filts solutions. The
disadvantage of such a fixed-gain filter is that the assumptios: of constant noise
is unlikely to be true in an unconstrained situation. For =r applications, the
assumption of constant o, may be valid. For tracking & unpredictable object
such as a person or an animal, the assumption for sxxistaut o, will not be true.
Hence this technique will not perform optimally. Te wechieve better estimates a
fully adaptive filter must be used, at the expense of émputational performance.




Chapter 3

System overview

3.1 System description

The objective of this thesis is to design an active camera tracking system. The
hardware is comprised of a camera mounted on a pan/tilt device to allow two
degrees-of-freedom in orientation. The change in orientation is achieved by ro-
tation about two intersecting axes of the the pan/tilt device. The strategy is to
maintain the camera Z-axis passing through the estimated centroid of the moving
object. The position of the 3-D centroid of the object in spherical coordinates can
be described by two angles and a distance. For our application, only a direction
is necessary, and hence only two angles are estimated.

Tracking is achieved through the use of spatio-temporal filters for detecting
motion energy. Since motion-energy detection is based on a static camera, com-
pensation techniques for camera motion are developed. As well, additional filter-
ing for motion detection is explored to improve the robustness of the system.

Motion parameters of the tracked object are estimated in terms of angular
position, velocity and acceleration for each of the pan and tilt axes.

12



3.2 Modeling and Notation

3.2.1 Notation

Throughout this work, certain notation and conventions will be used. These are
presented here.

Since we often discuss point locations in both two and three dimensions, it is
important to differentiate between them. A location in 3-D is written symbolically
in capital letters as (X, Y, Z) or is presented as a column vector P where:

X
Y
P =
Z
1
Two dimensional points are written in lower case such as: (z,¥).

Arbitrary homogeneous transformations are formulated as a 4 X 4 matrix T
where:

™M T2 T3 p;
T = Tl Tz T3 py
Ta1 T2 T3 p,
0 0 0 1
where the 3 x 3 sub-matrix [r11...733] represents the orientation of the destina-
tion frame, and [p,, p,, o) denotes the translation vactor from the source to the
destination frame.
Rotation matrices are special cases of arbitrary transformation where p, =
Py = ps = 0. In this work we use two types of rotations, rotation about the X-
axis [Rotx(6)] and rotation about the Y-axis [Roty(8)]. These can be expressed
as
10 0 0
0 cosd —sind 0
0 sinfd coséd O
00 0 1

Rotx(0) =
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cosd O sinf 0
0 10 0
~sinf 0 cosd O
0 00 1

A frame which undergoes a rotaticn is expressed as:

Roty () =

Tvew = RToLp (3.1)
Also, a 3-D point in o;le frame can be expressed in another frame by:
P=TP

where T is the description of frame 2 with frame 1 as reference, and P,, P, denote
the point in frame 1 and frame 2 respectively.
For the pan/tilt and camera parameters:

f is the focal length of the camera

0 is the tilt angle from the level position

a i a small angle of rotation about the pan axis
7 is a small angle of rotation about the tilt axis

The word frame is used often in this work and can have the meaning of an
image in an image sequence, as used by computer vision researchers, or as a
coordinate system expressed by a homogeneous transform as used by robotics
researchers. ’

3.2.2 Pin-hole camera model

Throughout this work, the pin-hole camera model is used. This model is the
standard for single lens cameras. As shown in Figure 3.1, let OXY Z be the
camera coordinate system. The image plane is perpendicular to the Z-axis and
intersects it at a point (0,0, f) where f is the focal length. Using this model,
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Figure 3.1: Pin-hole camera model

¢..2 relationships between points in the image plane, and points in the camera

coordinate system are: X

Y
=fz v=F13 (3.2)
where (X,Y,2) is a point in the camera coordinate system, and (z,y) is the
corresponding point in the image plane.

3.2.3 Pan/Tilt Model

The active camera considered in this work is mounted on a pan/tilt device that
allows rotation about two axes. Figure 3.2 shows a drawing of the system used.
The reference frame for each camera position is formed by the intersecting axes
of rotation (pan = Y-axis, tilt = X-axis). The origin of the camera coordinate
system is located at the lens centre which is related to the reference frame by a
homogeneous transformation T such that:

P.=T.P, (3.3)

where P; and P. are 3-D points in the reference and camera frame respectively.
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Figure 3.2: Pan/tilt device



From Figure 3.3 we can see that for an arbitrary tilt angle 8, the camera
transformation T, is:

T.(0) = Rotx(0)Tc|s=o

10 0 PxX

0 cf —s8 clpy —sbpz (3.4)

0 30 c0 sbpy + clpz

00 0 1

Where:
1 00 px
010
Tc|0=0 = pY (3‘5)

001 pz
0001

(Please note the abbreviation of cos as ¢ and sin as s.) This transformation for
the camera position at arbitrary tilt angles is used in Chapter 4 in the derivation
of the background compensation algorithm.

3.3 Justification of system design

3.3.1 Why not 3-D tracking?

In principle, tracking in 3-D is more desirable than tracking in 2-D, since it yields
more complete information about the behavior of the tracked object. In this work,
however, we only track in 2-D in a spherical space about the centre of the camera
lens. .

The reason for this simplification lies in our discussion of the three inherent
difficulties of computer vision (see Section 1.2). Position extraction in 3-D from a
single camera is an ill-posed problem. For an arbitrary object, there is no way to
estimate depth from a 2-D image. To incorporate depth estimation, independent
range-finding techniques, such as focus ranging, must be employed. A multiple
camera system can extract range information. However, the inclusion of multi-
ple input images greatly increases the computational cost of tracking, since the
correspondence problem must be solved.
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Figure 3.3: Camera transformation with tilt

Since our goal is to follow a moving object with a rotating camera, knowledge of
depth would not significantly improve the tracking performance. In consideration
of Rosenfeld’s statement [23] about maximizing information gain with minimal
computation cost, 2-D tracking seems to be the optimal method to employ.

3.3.2 Why active vision?

In the last 5 years, active vision has been receiving increasing support from the
computer vision research community. It has been proposed that active vision can
be beneficial in overcoming the problems of ill-posedness mentioned in Section
1.2 (3] [4).

Often a difficult vision problem can be simplified by looking at an object from
the optimal viewpoint. However, determining the optimal viewpoint is also a
difficult problem. By combining information from several viewpoints the amount
and quality of information can be improved. A fixed camera system, by definition,
must maintain a fixed viewpoint and consequently does not have the potential
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that active vision has. While theoretical advantages of active vision are clear, in
order to use active systems optimally, one must be able to intelligently select a
viewpoint which yields a well-posed interpretation of a problem. Such intelligent
behavior has yet to be fully explored.

For the tracking problem, certain specific advantages are obtained through use
of an active camera. They are:

e increased field of view
8 foveation (region of interest processing can be simplified)
e improved centroid estimation

These advantages are detailed below.

Field of View

For a general solution of the tracking problem, one would like as few artificial
constraints in the system as possible. In an unconstrained situation, there is no
limit on the location to which an object can move. To successfully track such an
object, a very wide field-of-view is necessary. For a static camera to achjeve a wide
field-of-view, 2 wide-angle lens must be used. The effect of the wide-angle lens
is to compress a large scene into a fixed image sensor area. As the field-of-view
becomes larger, the resolution is reduced, since the sensor area remains the same.
If details of an object are to be preserved, there is clearly a trade-off between
resolution and field-of-view for a static camera.

An active camera, however, can overcome this trade-off. By moving the camera
so that the object of interest remains in the camera’s field-of-view, resolution
reduction can be avoided. Also, a camera with an active zoom lens can adjust
the scope of its field-of-view. Hence, if more detail is required, the camera can
magnify the object. If the object is moving quickly and erratically, the zoom lens
can be moved to minimum magnification, yielding a wider field-of-view with more
robust tracking characteristics.
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Foveation

A technique to overcome the field-of-view/resolution trade-off mentioned above
is to model the camera after biological vision sensors such as the human eye.
This method, known as variable resolution or anthropomorphic vision combines
different resolutions in the same image [6] [25]. The central region, or fovea, has
high resolution. This allows details to be obtained from selected ob jects viewed in
the fovea. As we move to the edge of the field-of-view, however, the resolution is
reduced. The purpose of this low resolution region is similar to human peripheral
vision. At low resolution, a wide field-of-view can be covered at low computational
cost. The high resolution fovea allows detailed processing of the centre, while
the low resolution periphery allows coarse processing over a wide angle. The
combination yields an over-all wide field-of-view without sacrificing detail of the
object of interest. This is advantageous for such problems as navigation, character
recognition [7], binocular camera vergence [8], and especially tracking. As with
human vision, the peripheral vision allows fast motion detection over a large area.
As the camera centres on the detected motion, more detailed motion estimation
as well as other image processing operations can be made.

Although it is possible to apply variable resolution to a stationary camera
system, the fovea would have to be moved about the image plane so as to cap-
tdre the object of interest. Having a movable fovea in the i image plane would
ihiake hardware implementation of variable resolution unfeasible and increase the
computational cost. Therefore, to maintain the object of interest within the high-
resolution fovea, an active camera is necessary. This application for active vision
is very appealing since it closely imitates biological vision systems, which are
remarkable in their flexibility and robustness.

Improved centroid estimation

Since we are only tracking the direction of the centre of the object, our position
estimation is simplified to obtaining two parameters. The ray projecting to the
centroid of the object is estimated o be the line from the lens centre through the
centre of the image (see Figure 3.4).
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Camera Coordinste System

Figure 3.4: 2-D centroid of the image defined in polar coordinates, 8 and ¢ are the
estimated parameters
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This method of estimating the position of the object is inherently inaccurate,
since we have no a priori knowledge of the object’s structure. However, if we
remove as many known sources of error as possible the estimate of position can
be improved. One source of error is the distortion of the image caused by the
imaging process: perspective projection.

Determining the distortion of an arbitrary object is not practical since it is
dependent upon the object’s structure and orientation. Thus, we consider a sphere
as an illustrative example. A sphere is a good sample object, since it is radially
symmetric and simplifies the mathematics of the error analysis.

First of all, let us consider the image centroid versus the 3-D centroid of a
group of points. Using the camera model mentioned in Section 3.2.2, consider n
points (X;,Y;, Z;){i = 1,....,n} . The three-dimensional centroid is:

1 & 12 1&
c=-EX0's Yc="ZYi1 Zc="'zzi (3-6)
U gomet i n a1

Using the pin-hole camera model and equation (3.6), the three-dimensional

centroid projected onto the image plane located at {(zey¥c), is given by:

X Sy Y f &
zc-‘fzc - ”chx', yc"' Zc.—;ZigoY.

Whereas, by similar triangles and the definition of a two-dimensional centroid,
the centroid of the corresponding image points at (Zicy yic) is:

=iy feX o1& fO&Y .
z.c—ngz.- gz‘_a ytc-ngys—ngzi (3.7)

Note that z;. and z. (and likewise Yic and y.) are the same if the depth (2)
is constant for all points (i.e. Z; = Z, for all i). This is true if all the points
(X:,Y;, Z;) are on a plane parallel to the image plane. In other words, if the
object lies on a two-dimensional plane parallel to the image plane, one can obtain
an undistorted image.

Let us now consider an illustrative sphere to see how the three-dimensional
centroid is related to the centroid in the image plane. Let S be a sphere with
radius r, and centre at (X,,Y,,Z,). From the symmetry of the geometry of the
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camera model about the Z-axis, it is evident that we can rotate our coordinate
system about the Z-axis with no change in the image shape. Therefore, without
loss of generality, we select a particular case for which we constrain Y, = 0. Hence
the centre of the sphere S rests on the X-Z plane (see Figure 3.5).

Figure 3.5: Projection of Sphere on Image Plane

In polar coordinates, the position (X,,0,Z,) can be replaced by an angle
from the Z-axis, and a range R,. The boundary of the image ct the sphere is
formed by rays that pass through the lens centre and are tangential to the surface
of the sphere. The tangential points exist in a single plane and form a circle.
Hence, the image of a sphere is the same as the image of the circle thus described.

With this knowledge it can be shown (for details, see appendix A) that the



projection of the sphere on to the image plane is:

2_ Rt [(z - Mﬂ)’cos’(ﬁa) mz(a) + y"’]

cos(ar)

¢ {f cos(a) + z sin(a)]?

(33)

where R, is the distance to the centre of the occluding circle seer by ¢ camess,
and r. is the radius of that circle.

If we consider the numerator of this equation, we see that it represents an
ellipse, with centre at (%,0). This centre is actually the same as the three-
dimensional centroid projected on the image plane. The effest of the denominator,
howevér, is to amplify the size of the ellipse as we move further away from the
Y-Z plane. Thus, the shape tends to extend further away from the origin and
pulls the image centroid in that direction. Note that this effect. is accentuated by
increasing a (Figure 3.6). In fact, for a = 0,

% =23 4
which is a circle centred at the origin with radius %f Hence, at a = 0 there is
no distortion of the shape and no difference between the image centroid and the
projection of the three-dimensional centroid.

Equation (3.8) is unwieldly for analysis; however, it can be solved numerically.
Figure 3.6 shows the image of the sphere found using this equation, for constant
range from the lens centre and varying angles from the Z-axis. We can see that
the projection of the sphere for angle a = 0 is a circle, with the projection of
the centroid in thre2 dimensions nia.tching the centroid of the two-dimensional
image. As a increases, the eccentricity of the shape becomes more pronounced
and the difference between the 3-D and 2-D centroids increases. Figure 3.7 shows
the error between the image centroid and the 3-D centroid. This error has been
normalized by the radius, thus giving indication of the distance from the true
centre of the sphere to the estimated 3-D position of the sphere relative to the
size of the sphere. We can see that at small angles from the longitudinal axis
of the camera, there is little inaccuracy. As the angle increases, however, the
error increases dramatically, and approaches infinity at o = 90°. Therefore, with
a lens that admits a narrow field of view, the error will not be large since a is

24



Image Plasic y-axis

Shape of Sphere with t/R = 1/10

Image Centroid ........... +
3-D Centroid Projection .. x

a=4s as3

Image Plane x-axis

Figure 3.6: at a(a) = 0°,15°,30° and 45°
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constrained to be within a narrow range. For a lens with a wide field of view,
however, the potential error will be much higher.

0 10 2 ) © 30 s
Angle siphs in degrees

Figure 3.7: (R, and r. constant)
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Chapter 4

Background Compensation

To be able to apply the motion detection techniques to be introduced in Chapter 5,
we must compensate for the apparent motion of the background of a scene caused
by camera motion. Our camera is mounted on a pan/tilt device and hence is
constrained to rotate only. This is ideal for background compensation, since
visual information is invariant to camera rotation [16].

Our objective in background compensation is to find a relationship between
pixels representing the same 3-D position in images taken at different camera
orientations. The projection of a 3-D point on the image plane is formed by a
ray originating from the 3-D point and passing through the lens centre. The
pixel representing this 3-D point is given by the intersection of this ray with the
image plane (see Figure 3.1). If the camera rotates about ihe lens centre, this
ray remains the same, since neither endpoints (the 3-D point and the lens centre)
move due to this rotation.

(Consequently, no previously viewable points will be occluded by other static
points within the scene. This is important, since it implies that there is no
fundainental change in information about a scene at different camera orientations,
It should be noted that for theoretical considerations, the effect of the image
boundary is ignored here. Obviously regions which pass outside of the image due
to camera motion cannot be recovered. For camera rotation, the only components
of our system that move are the camera coordinate system and the image plane.
An example of this motion is shown in Figure 4.1.
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Figure 4.1: with the <ame lens centre. Notice the line between the 3-D point and the
lens centre does not change with rotation of camera coordinate system.
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For a given camera orientation, the reference frame we use is shown in Fig-
ure 3.3. The initial camera coordinate system can therefore be determined by a
measure of the inclination of the camera due to previous rotation from the level
position around the tilt axis. From this initial orientation, the camera undergoes
small rotations about the pan and tilt axes, as shown in Figure 4.2,

Y A
Pan Axis X

»"c aerpn & snduk Y

Figure 4.2: Camera transformations after pan “d tilt rotations

We would like to obtain a relationship between every pixel position in the
latest image with the corresponding pixel position in the previous image. For an
initial inclination of the camera system 6, and pan and tilt rotations of a and v
respectively as showing in Figure 4.2, the relationship obtained is

_ T+ asinfy; + facosb
Z1=f ~acosfz; + vy, + f (41)
—asin 0z, + y, — fv
-1 = 4.2
ey Py (42)

where f is the focal length.

With knowledge of £, 4, +, and a, for every pixel position (z¢,y;) in the current
image we can calculate the position (z;..,y;-;) of the corresponding pixel in the
previous image.

4.1 Derivation of compensation algorithm

For each sampling instance, f, a, 4, and 9 are known. If we provide the equation
with all possible values of (z;,y,) for pixels within the image I(t), we generate all
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corresponding pixel locations in I(t — 1). The derivation of equations (4.1) and
(4.2) follows.

Any point in the refevence frame can-be expressed as a vector P, and is related
to its position in the camera frame by the transformation

P. =T,

where F. is the point in the camera frame, and T, is the 4 x 4 transform relating
the camera frame to the reference frame.

Consider that the current camera frame, [T(t)] is a result of a pan/tilt rotation
from a previous camera position [T¢(t — 1)] as shown in Figure 4.2. Any point
in the reference frame can be represented in camera frames before and after the
motion as P(t) or P,(t — 1) and hence

P, = T.(t)Pt) = Tu(t — )Pt ~ 1)

It follows that the position of a point in one camera frame can be related to its
position in the other camera frame by

Po(t —1) = Te(t — 1)7'T.(t) P.(t) (4.3)

Since T,(t) is the result of applying pan and tilt rotations to T(t-1)

T.(t) = Roty(a)Rotx(7)T.(t - 1) (4.4)
T.(t - 1) = (Roty(a)Rotx (7)) T.(t) (4.5)
T.(t = 1)~ = T.(t)"* Roty (a)Rotx (%) (4.6)

By substituting equation (4.6) into equation (4.3) we obtain
P.(t — 1) = T,(t)™" Roty () Rot x (7)T.(t) P:(t) (4.7)
where Roty(a)Rotx(y) is simply
ca sasy sacy 0

0 -sy 6}
Roty(a)Rotx(y) = oo c::'y cac:' 0 (4.8)

0 0 ¢ 1]
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However, since the sampling is assumed to be fast, the angles a and v are assumed
to be small (< 5°). For small angles, we can use the approximations

ca,cy ~ 1
sa, 87 X a,v for o and 4 < 5°
sasy =~ 0

Thus, the rotation matrix takes the form

1 0 a O
0 1 -4 0

Roty(Rotx(n)=| _ " ¢ (49)
0 0 0 1

In general, a homogeneous transformation describing a frame takes the form

Tl T2 T3 P2

To1 T2 T3 p
T = v (4.10)
31 T32 T33 P

0 0 o0 1

in which the 3x3 matrix [P11...733] represents the orientation of the frame and the
vector [pz, py, p:] represents a translation from the origin of the reference frame to
the origin of the destination frame. In characterizing the frame transform, T,(t),
we can make some simplifications to this general form to reduce the complexity
of the derivation.

Since in our system there is no displacement in the X direction between the
reference and camera frames, and there is no rotation about the Z -axis, the two
X-axes will remain aligned. This reduces the transformation to

1 0 0 o

0

Tc(t)= T2 T3 py
0 r32 ra3 p,
0 0 0 1

(4.11)

This also makes the orientation matrix expressible via a single angle. The orien-
tation can be considered to be a simple rotation about the X-axis (the current



tilt angle). Given an offset of angle @, equation (4.11) becomes

6 0 O
cd -sb p,
s cb p.

0 0 1

T.(t)= (4.12)

[— N = N

0 0 0

cd 30 —clhp, — sbp,
—s0 cf sbp, — clp,

0 0 1

Substituting in equations (4.9), (4.12), and (4.13), equation (4.7) can now be
expanded to

Tc(t)“l = (4. 3)

O O =

1 0 0 0 1 0 a 0 1 0 o 0
0 c0 38 —clpy~— s8p, 0 1 -4 0 0 c0 <380 py
Pt-1)= P.(t 4,14
e( ) 0 ~80 cf sbpy—chps - 4 1 0 0 88 of () (4.14)
0 O 0 1 0O 0 0 1] g 0 0 1

After multiplication and simplification of terms using trigonometric identities,
this becomes

1  asl acld ap,
—asd 1 -y +slp, — yclp,
P.(t-1)= Pt 4.15
e T o R )
0 0 0 1

From this, by multiplying out these matrices we obtain

X1 = Xy + astY; + aclZ; + ap, (4.16)
Yio1 = —asbX; + Y, — vZ, + vs0p, — vclp, (4.17)
Ziy = —achXy + vY: + Zy + yclp, — vs8p. (4.18)

Dividing both sides of equation (4.16) by Z,., and multiplying by f we obtain

th-l - th + asfY; + acdZ; + ap, (4.19)
iy 24y
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Now, recall from Section 3.2.2 that

z= % y= f—ZY- (4.20)

By applying equation (4.20) to the left hand side of equation (4.19) and substi-
tuting equation (4.18) for Z,_; on the right hand side we obtain

X + aslY; + achZ; + ap,
—addX; + 7Y + Z; + vycbp, — vs6p,

i1 = f (4.21)

Now dividing the top and bottom of the right hand side of equation (4.21) by Z,
and applying equations (4.20) again, this becomes

z: + asly, + fachd + %’;’3

_acozt +~’yt + f + fﬁg_z't:ﬂ'.

Ty = (4.22)
Notice that, aside from the last terms in the numerator and the denominator, this
equation is now wholy dependent on image plane information. These two terms
containing Z; are present since the camera rotation is not being applied about
the lens centre. If p, and p, were 0, this problem would not exist.

However, if we consider that f, p, and p, are significantly smaller than Z; for
actual implementation, the effect of this term will be small. Since it is virtually
impossible for us to get any depth information about our scene, and the effect of

these terms is small, we choose to neglect them with the understanding that the
compensation achieved will not be perfect.
Hence, the final equation for z,_, is

_ ¢Ze+asinfy, + facosd
At Oz + vy + f (4.23)
and similarly for y;-,
—asinfz; + y, -
Y1 =f sin 0z + % — fy (4.24)

—acosfz+ vy + f
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Chapter 5

Independent motion detection

5.1 Introduction

As we pointed out in Chapter 2, motion-energy detection is the most success-
ful motion detection approach among practical, real-time tracking systems. Our
implementation is therefore based primarily on motion-energy detection. Yet, be-
cause of the potential error incurred during camera motion compensation, mod-
ifications have to be made to the motion detection methods. In this chapter we
will first discuss in more detail motion energy detection. Then we will describe
what measures are taken in order to modify these techniques to active camera
systems.

5.2 Motion detection with a static camera

In practice, motion-energy detection is implemented through spatio-temporal fil-
tering. As the name implies, spatio-temporal filtering means filtering in both the
spatial and temporal domains. The simplest implementation of motion energy de-
tection is image subtraction. In this method, each image has the previous image
in the image sequence subtracted from it, pixel-by-pixel. This is an approxima-
tion of the temporal derivative of the sequence. In equation form, the temporal
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derivative is approximated by
dl(z,y,t) ~ I(z,y,t) = I(=,y,t - 6t)
d ot

The absolute value of this approximation is taken and thresholded at a suitable
level to segment the image into static and dynamic regions. _ Figure 5.1 shows two

Frame1 Static Camera Sequence Frame 2 Static Camera Sequence

Figure 5.1: Static camera sequence

images in an image sequence taken with a static camera. Figure 5.2 (left) shows
the result of image subtraction with the centre of the area of motion marked by
a cross.

As can be seen in Figure 5.2 (left), the drawback to this technique is that
motion is detected in regions where the moving object was either at time ¢ or
t — 6t. This means that the centre of the regions of motion will be close to the
mid-point between the actual positions of the object at ¢ and ¢ — 6t. For systems
with a fast sampling rate (small ét) compared to the speed of the moving object,
the difference in position of the object between frames will be small, and hence
the midpoint between them may be adequate for rough position estimates. For
objects with high speeds relative to the sampling rate, we must improve this



Figure 5.2: Result of thresholded image subtraction and edge detection

method. Our aim is to estimate the position of the moving object at time ¢.
To achieve this, we use information available from the image taken at time t to
extract the moving edges from the subtracted image shown in Figure 5.2 (left).

By applying edge detection filters, we can determine the edge strengths through-
out the image. We obtain a binary edge image of the current frame by applying a
threshold to the edge detection output. An example of the resultant edge image
is shown in Figure 5.2 (right). One way to incorporate this information into the
subtracted image is to perform a logical AND operation between the two binary
images: the edge image and the subtracted image. This highlights the edges
within the moving region to obtain the moving edges within the latest frame.
Figure 5.3 (left) shows the result of this operation. As we can see, there will al-
ways be edges highlighted in the area previously occluded by the moving object.
However, since these edges have only been viewed for one sample instant, it is
unreasonable to expect the system to be able to detect whether or not they are
moving until the next image is taken and processed.

A modified approach was suggested by Picton [22]. He argued that thresholds
are empirically tuned parameters and to keep the system as simple and robust
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Figure 5.3: Moving edges detected in frame 2 of static camera sequence

as possible, the number of tuned parameters should be minimized. Hence, he
proposed reducing thresholding to a single step by multiplying the pre-thresholded
values of the edge strength and image subtraction to obtain a value indicative
of both edge strength and temporal change combined. This product is then
thresholded and thus the tuned parameters are reduced to a single threshold.
The result of this multiplication method is shown in Figure 5.3 (right). As we
can see, the boundary of the moving object is the same as with the logical AND
method. However, since more interior edges are also emphasized, the centroid of
the moving edges is closer to the true centre of the moving object. Figure 5.4
shows the steps taken in implementing Picton’s method of motion detection with
a static camera.

5.3 Motion detection by an active camera

For a stationary camera, the pixel-by-pixel subtraction described in Section 5.2
is possible, since with a static scene a given 3-D point will continuously project
to the same position in the image plane. For a moving camera this is not the
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Figure 5.4: Motion detection with a static camera
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case. To apply pixel-by-pixel comparison with an active camera image sequence,
we must map pixels which correspond to the same 3-D point to the same image
plane position.

Chapter 4 has outlined the geometry behind invariance to rotation and derives
the mapping function between images. For each pair of images processed in the
image sequence, the image at time ¢ — 6t is mapped so as to correspond pixel-by-
pixel with the image at time ¢. Regions with no match between the two images
are ignored. The image subtraction, edge extraction and subsequent moving edge
detection is done as detailed in Section 5.2. The active camera motion detection
method is summarized in the block diagram in Figure 5.5.

I(t) I(t-1)

o x ¢y 0

Bukgond
Cappanstion

) (3]
Moving
Edgn

Figure 5.5: Moticn detection with an active camera
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Frame1 Moving camera sequence

Figure 5.6: Moving camera sequence

N

Figure 5.7: Image 1 of the moving camera sequence compensated for camera motion
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Subtraction of images without Subtraction of images with motion
compensation for camera rotation compensation (note inaccuracies
due to compensation error)

Figure 5.8: Image subtraction with and without compensation



Figure 5.6 shows two images taken from different camera orientations. Fig-
ure 5.7 contains the first image in the moving camera sequence with the compen-
sation mapping applied. Notice the white border along the top and left sides of
the image. These regions have no overlap between the two images and hence are
ignored. Figure 5.8 (left) shows the results of image subtraction without compen-
sation. Clearly this is unsuitable. The object of interest appears to be moving
less than the background. Figure 5.8 (right) shows the results after background
compensation. Notice that the scene background components have not been en-
tirely eliminated. This is due to inaccuracies in the inputs to the compensation
algorithm, and approximations made in the algorithm derivation.

The background compensation algorithm presented in Chapter 4 was derived
with the assumption that rotation occurs about the lens centre. In reality this is
not the case for our system, and the small amount of camera translation corrupts
the compensation method. As well, errors in pan/tilt position sensors and camera
calibration will contribute to the compensation inaccuracy. The following section
will show how we overcome this compensation noise and improve the robustness
of our method.

5.4 Robust motion detection with an active camera

If we could achieve exact background compensation, the methods described so far
would be sufficient. In the presence of position inaccuracies, however, the results
of these methods rapidly deteriorate. We are using edge information in our tech-
niques to detect moving objects. Ironically, regions with good edge characteristics
are the most sensitive to compensation errors during image subtraction. That is
to say, false motion caused by inaccurate compensation will be greatest in strong
edge regions, yet these are the very regions that are considered as candidates for
moving edge pixels. This makes the previously presented method unreliable.
Since errors in angle information are inevitably present, it is desirable to de-
velop methods of motion detection that can robustly reject the false motion they
cause. Errors in pan/tilt angles can be due to sensor error. For a real-time system
with a continuously moving camera, there is the additional problem of synchro-
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nization. If the instances of grabbing an image and reading position sensors are
not perfectly synchronized, the finite difference in time between these events can
be considered as error in position sensing. This error is calculated as

0. =w x At

where 0, is the error in angular positi-n, w is the angular velocity of rotation and
At is the synchronization error. Since few vision systems are designed with this
consideration in mind, the problem is a common one in active vision applications.

Figure 5.8 (right) shows an exaraple of the results of image subtraction after
inaccurate background compensation. Notice the region of the moving object
contains a broad area where true motion was detected, whereas false motion is
characteristically narrow bands bordering the strong edges of the scene back-
ground. Our apptroach to removing the false motion utilizes the expectation of
a wide region of true motion being present. By using morphological erosion and
dilation (morphological opening) we eliminate narrow regions of detected motion,
while preserving the original size and shape of the wide regjons.

5.4.1 Morphological Filtering

Morphological filters applied to digital images have been used for several appli-
cations which include: edge detection, noise suppression, region filling and skele-
tonizing [20]. Morphological filtering is essentially an application of set theory to
digital signals. It is implemented with a mask M overlaying an image region I as
shown in Figur- 5.9.

Fov wanrphoiogical filtering, the image pixel values, namely

nn °°° Un

tal " tnn

are selected by the values of M as members of a set for analysis with set theory
methods. Usually, values of elements in a morphological filter mask are either 0
or 1. If tue value of the filter mask element is 0, the corresponding pixel value is
not a member of the set. If the valwe is 1, the pixel value is included in the set.
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Figure 5.9: Example of mask for morphological filters

We can express the elements of the image region selected by the morphological
mask as a set A such that:

A={iill <j<n,1<k<nmy =1}

The morphological operations we will consider are erosion and dilation. Erosion
of Ais: E4 = min(A)
Dilation of A is: D4 = maz(A)

For binary images, this equates to:
Es=0if anyelementof A= 0
Es=1if all elementsof A= 1
Dy =1if anyelementof A =1
Djy=0is allelementsof A =0

44



For a 3 x 3 morphological mask with all elements set to 1, and a binary image,
this is also known as shrinking and growing.

By applying erosion to the subtracted image, narrow regions can be eliminated.
If the regions to be preserved are wider than the filter mask, they will only be
thinned and not completely eliminated. After dilation by a mask of the same size,
they will be roughly restored to their original shape and size. If the erosion mask
is wider than a given peak region, that region will be eliminated completely and
not appear after dilation.

Figure 5.10 shows the subtracted image of Figure 5.8 (bottom) eroded by
different size masks. For this particular image sequence we can see that to com-
pletely eliminate the noise due to position inaccuracies, we must use a mask size
of 9x9orll x1l.
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Figure 5.10: Subtracted Image with various sizes of erosion masks applied
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Chapter 6

Experimental Results

6.1 Overview

The experimental results presented here are from two sequences of images taken
with the pan/tilt mounted camera. The first sequence uses a camera aligned
horizontally (i.e. no tilt) and restricts the camera motion to pan. The second
sequence is taken with both pan and tilt camera motion. The image sequences are
processed off-line, and hence the pan/tilt motion of the camera is not controlled
by the motion detection results.

Two methods of motion detection were tested: thresholding the temporal
and spatial derivatives independently, and multiplication of derivatives prior to
thresholding. The image sequences and the processed results are presented in this
chapter.

6.2 Equipment layout

This section describes the system used for experimentation. The camera is
mounted on the Cohu-MPC, a pan/tilt device. Instruction for this device are
sent from a SUN3 over a serial interface. The SUN3 is mounted on a VME-
bus with the DT1451 frame digitizer board. The camera is a CCD device with
standard video output.

The Cohu-MPC allows controls of rotation about two axes (pan and tilt) as
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well as adjustment of zoom and focus settings. The position sensing of the pan/tilt
axes is done by a potentiometer coupled to the driving motor shaft.

6.3 Experimental results

Figures 6.1 and 6.6 show two image sequences taken with the pan/tilt mounted
camera. Figure 6.1 (image sequence 1) was taken with camera motion constrained
to pan only, whereas Figure 6.6 (image sequence 2) had pan and tilt motion.
Figures 6.2, 6.4, 6.7 and 6.9 show the results of two motion detection methods
applied to these image sequences with the moving edges only visible. Figures 6.3,
6.5, 6.8 and 6.10 show the results of the motion detection overlaid upon the
original images so that sources of the edges are more readily apparent.

6.4 Discussion of results

The results shown have been generated using the two motion detection techniques
presented in Chapter 5. The two approaches are summarized here:

Approach 1 Binary images of the spatial and temporal derivative peaks are
formed by thresholding the subtracted and edge strength images. These
two binary images are then ANDed together to extract the moving edges
in the scene.

Approach 2 The unthresholded values of the spatial and temporal derivatives
are multiplied, and the product is thresholded to extract the moving edges.

Both approaches use two 3 x 3 sobel edge detection kernels to find the edge
strength in the vertical and horizontal directions. The edge strength used for
motion detection is simply found by

STRENGTH = \/(df [dz)? + (df /dy)?

The results of the two approaches on image sequence 1 are shown in Figures 6.2
and 6.4. Although both approaches work, they exhibit significantly different
characteristics. Approach 1 detects primarily the boundary of the moving object,
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since the independent thresholding of the edge image tends to eliminate edges
within the image of the object. Approach 2 does not remove the contribution of
the fainter edges until after multiplication with the temporal derivative. Hence
we find that many interior edges of the moving object are revealed.

From the results shown in Figure 6.4, Approach 2 seems preferable, since it
produces a stronger signal within the moving object and thus provide: a more
robust centroid of motion. From Figure 6.9, however, we see that for a dificrent
moving object, this advantage is lost. In the case of image sequence 2, the moving
object is a book which does not have much texture on its surface. Therefore, due
to the lack of internal edges, the benefits of Approach 2 are not as significant as
in image sequence 1. It should also be mentioned that Approach 1 is easier and
faster to implement on the hardware available.

In image sequence 1, the moving object is a person. Due to the folds and
creases in the clothing, the moving region has rich texture. This provides a dense
area of weak edges that can be brought out by Approach 2. The backgrounds of
the image sequences, on the other hand, are characterized by homogeneous blocks
of similar intensity, bordered by abrupt changes in greyscale. In the results of
both approaches, background edges which were occluded by the moving object
in the previous frame are detected as moving edges. Since our system has only
viewed these regions for a single frame it is unreasonable to expect the algorithm
to determine whether these edges are static or dynamic until the next frame is
processed. Yet, if the background had more varied texture, such as a wheat field
or a chain-link fence, regions previously blocked by the moving object would have
the same weak edges brought out by Approach 2. This would corrupt the moving
edge signal and tend to produce a centroid of the moving object which would lag
the object’s true position.

6.5 Inaccuracies in moving edge detection

In Figures 6.2, 6.4, 6.7 and 6.9 the detected moving edges of the two images
sequences are shown. It is evident that some spurious motion has been detected.
As well, certain regions which are moving have not been detected.
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To begin, we will discuss the moving edges that are missing. These are pri-
marily in the first image sequence along the moving person’s shirt. We can see
from the image that there is very low contrast between the shirt and the light
wall behind it. This is an inherent difficulty with image snbtraction. Since images
aré noisy signals, small changes in greyscale must be discrunted for robustness
considerations. Hence, without good contrast, the image subtraction will fail.
Possible solutions to this are optimal thresholding and use of color images, which
are briefly discussed in Section 8.3.

The false motion detected in both image sequences are due to either previous
occlusion (as discussed above) or inaccurate background compensation with insuf-
ficiently large morphological filter mask. In image sequence 1, for example, we can
see that the moving edges detected by both techniques in frame 4 have significant
false motion present. Specifically, motion is detected along the dresser border
and the TV monitor seen in the background. This is due to particularly poor
position readings for the frame 3-4 pair. This false motion can be eliminated by
increased filtering. An increase in filter size places additional computational bur-
den on the filtering stage, as well as possibly eliminating the true motion signal.

The relationship between position noise and filtering requirements is presented in
Chapter 7.
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Chapter 7

Analysis of compensation

inaccuracy

7.1 Introduction

As discussed in Chapter 5, noisy positior information corrupts background com-
pensation algorithm and necessitates additional noise removal techniques. Mor-
phological filtering has been presented as one technique to remove narrow regions
of false motion from subtracted images. For effective noise removal to occur, the
morphological erosion mask must be at least as wide as the regions of false mo-
tion. If the mask is not wide enough, some noise will remain after erosion and
will be expanded to its original size during dilation. This means that no noise
will be removed.

This method of noise removal is therefore an all-or-nothing approach. The
advantage is, for acceptable noise levels, false motion is completely removed. The
disadvantage is, if the noise exceeds the filter capacity, no noise removal takes
place. Because of this behavior, it is important that we use filters large enough
to completely remove the expected noise. However, for computational reasons, it
is also desirable to limit filtering to the minimum required. This motivates us to
investigate the relationship of noise characteristics to filtering requirements.
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Recall the mapping algorithm derived in Chapter 4,

z, + asinfy, + facosd
= 7.1
T =J —acosfzi+ vy + f (1)
—asinfz, +y, —
ye-1=f asinfz + 4 - fr (7.2)

—acosfz+vy + f
The error between the correct pixel position and the pixel position found with
inaccurate angle information in the mapping algorithm can be expressed as

Te = Te-1(@,7) = Te-1(a + Aoy 7 + A,) (7.3)

Ve = Yro1(a, ) = ye-1(a + Agy v + A,) (7.4)

Where z,. and y. are the esrors in mapped pixel position in the = and y direc-
tions, and A, and A, are inaccuracies in measurement of the rotations a and v
respectively.

For evaluating the error in pixel mapping, we consider several cases depending
on the location of (z¢,y:). In general, the error in the mapped pixel pesition is
greater as we move further from the centre of the image. We use pixel positions in
the image centre to simplify the error equations when determining general error
characteristics as well as border pixels to determine the worst case behavior. To
simplify our discussion 4 is constrained to 0, i.e. the camera at the level position.

7.2 Compensation error for pan-only rotation

For the pan-only case, +, the tilt rotation, is 0. Hence equations (7.1) and (7.2)
is reduced to

o = f31 L (1.)
y-1=f 7 —ytaa:, (7.6)

To evaluate Ti-1(a+ Ag), ye-1(a + A,), we will approximate the function with a
first order Taylor series expansion as follows:

31‘1-1

Te-1(a@ + Ag) = 24-1(a) + e

Aa (1.7)

62



Oy,
vea(@ + Ba) = yia(@) + A, (7.8)

Substituting equations (7.7) and (7.8) into our equations for error in the compen-
sated pixel position [equations (7.3) and (7.4)] we obtain

Oy, _ . 224+ f°
e= 5= A= fmAa (7.9)
_ Y1 - YTy
ye - aa Aa - f(f - a.we)zAa (7‘10)

The magnitude of the error in pixel position, e, is shown in Figure 7.1 and can
be expressed as

For pan-only rotation, the error is predominantly in the z direction, since the

€ magnitude of emror

Al P o
k, position- T e errorin y-direction
’ ]

e, i

’ '

'l ] ’e
Comrect. z ! X ¢ error in x-direction
pixel Pl R S
posi

Figure 7.1: Magnitude of pixel mapping error

change in the y component for pixels at different viewpoints is effected by changes
in perspective only. Therefore

exz! exz,

To determine the pan-angle error A,, for a given pixel mapping error, from equa-
tion (7.9) we obtain
ze(f — az,)?
Ay = ——r—"7— 7.12
R+ 1) (712
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Z. Aa Ye e
in pixels | in degrees | in pixels | in pixels
[ 1 | 0.056555 | 0.075864 | 1.002873 |
0.113111 | 0.151728 | 2.005747
0.159666 | 0.227592 | 3.008620
0.226222 | 0.303456 | 4.011429
0.282777 | 0.379320 | 5.028694
0.339333 | 0.455184 | 6.017241 |
0.395888 | 0.531049 [ 7.020114 |
0.452444 | 0.606913 [ 8.022988
0.508999 | 0.682777 | 9.025862
0.565555 | 0.758641 | 10.028736 |
0.622110 | 0.834505 | 11.031609

=] 2] ©] o] <3} | en| x| cof ol

Table 7.1: Pan-only compensation error
!

Once A, is determined, we can solve for y. using equation (7.10) to verify our
initial assumpt that y. is negligible. For our system, where f = 890 and the
maximum z; == 35 we can make a table of values of A, for given errors z., the
corresponding y error for this position, y, and e for magnitude of (z.,y.). The
value for a used was 5°, since this is the upper bound for which our system is
designed. The results are shown in Table 7.1; notice the relationship between A,
and z. is linear.

7.3 Compensation error for pan and tilt rotations

The error in pixel mapping is more difficult to obtain if both pan and tilt rotations
are made. However, to gain insight in the general characteristics of the error, we
will consider a special case, where (z,y) = (0, 0), which is the pixel that lies
directly along the Z-axis of the camera coordinate system.

For this case, the pixel mapping functions are

Ti-1 = fa (7.13)

Yi-1 = f7v (7.14)



and, our error equations become
T = fA, (1.15)
Ye = fA, (7.16)
From equation (7.11) we know the magnitude of the error can be expressed by
e’ =23+ 42 = f’A.° + fA,} (7.17)

Plotting lines of constant error in terms of A, and A, yields a series of concentric
circles with radii of

“=ie

for any constant error e.

Unfortunately, the pixel error at the pixel centre is not the worst case. The
circles described by equation (7.17) are for error at the image centre. Although
this characterizes the compensation-error versus angle-error, it does not show the
worst case we can expect. To estimate the worst-case error, we use the worst-case
z. for no tilt error and the worst-case y, for no pan error to determine the A,
and A, intercepts of the constant error curves.

To determine the error in each case, we again use a first-order Taylor series
expansion. For z. this is

_ 0z, 0z
Ze = — A, + 3y A, (7.18)
Since A, = 0 for the A, axis intercept, we simplify this as.
0z, =} + e f + f
= A, = 7.19
"= ba (—az+ 9y + f)? (7-19)
and similarly )
9Yt-1 azf - yi = f?
=UA 7.20
=y &= et fr? (7.20)

For the worst-case error, (z;,y:) = (255, —~255). The angles of rotation were set to
a = 5%% = 5° Since the assumption of our system equations is that sina ~ a,
and similarly for v, 5° is a good cut-off point for this approximation and thus
gives us the limits of the worst-case angles of rotation.
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Te A, Ye A,

in pixels | in degrees | in pixels | in degrees
1 [ 0.054951 1 0.054961 |

2 0.1099524 2 0.109924

3 0.164886 3 0.164886

4 0.219849 4 0.219849

5 0.274890 5 0.274890

6 0.329772 6 0.329772
7 0384734 | 7 0.384734 |

8 0.439696 8 0.439696

9 0.494658 ) 0.494658

10 0.549620 10 0.549620

11 0.604581 11 0.604581

Table 7.2: Worst-case compensation error

Solving for A, and A, in equations (7.19) and (7.20) we generated Table 7.2.
The magnitude of the angle error for given z. and y, are the same, which implies
we have a circle again, but with slightly smaller radii. This signifies less required
angle error for a given error in pixel mapping.

7.4 Significance of error analysis

As shown in Sections 7.2 and 7.3, the pixel mapping error is linearly dependent
upon the magnitude of the error in angle information (\/A,? + A,?). In this
section we investiage the consequences of this error and the constraints it places
on our system.

7.4.1 Maximum speed of tracking

We assume that the primary source of angle error in a real-time implementation
is due to synchronization error, as defined in Section 5.4. For a fixed filtering
strategy we can determine the upper bound on the speed or rotation for our
system and thus the maximal angular velocity of a target that can be successfully
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tracked.
For rotation at a angular velocity of wpqz, the angular error caused by poor
synchronization will be
0. = W Al (7.21)

where At is the error in timing. Since compensation error is linearly dependent
upon angular position error, the compensation error is

e= K0,

where K is a constant determined by the system parameters. In the example
given in Section 7.3, K = 1/0.054961.

For a morphological mask of size n x n, the error tolerance will be n. That
i to say, if the compensation error is greater than n, the noise caused by this
error will not be removed. If the error is less than or equal to n, the noise will be
removed. Thus, for the boundary condition,

n = K8, (7.22)

Substituting equation 7.21 into equation 7.22 and solving for wma; we obtain
w — -L
T KAt
We can see that as synchronization error increases, the maximum possible angular
velocity decreases. Yet as the size of the morphological filter, n, increases, so does

wm“ .

7.4.2 Minimum speed of tracking

For a moving target with a very slow angular velocity relative to the camera, it is
possible that the target will not be detected, since any motion caused by it will
be removed with the morphological filtering. If we consider a target moving at
the slowest detectable speed, wmin, the angle covered by this target each éample
instant, ¢,, will be

Omin = Wmints ( 7.23)
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The distance on the image plane this will move can be calculated by

d = ftanOpin (7.24)
thus q
Omin = arctan -f- ’7.25)

If we are using an n X n filter mask, the object must move a2 minimum of .+ + 1
pixels to be identified, and

n+1

Omin = arctan (7.26)
f
Substituting equation (7.23) into equation (7.26) and solving for wmin yields
arctan 241
Wemin = —-t;-—!— (7.27)

Thus, to detect a slow moving object it is desirable to either decrease the filter
size n, or increase the samplie time {,.

7.4.3 Filtering and sampling strategy

As we can see, the desirable filter size is not identical for different moving objects.
Tdeally, we would like to set the filter size according to the camera motion and the
«:"imated motion of the target. Initially, before any target is acquired, the camera
may remain stationary with no filtering required, or conduct a slow search path
which would minimize compensation error, and the chance of missing a target.
As an object is tracked, and the angular velocity is estimated and predicted, the
optimal filtering solution could be determined. The difficulty with this adapt-
able filtering strategy, is that to implement different sized filters on a constantly
changing basis is demanding on the hardware and not realistically implementable
on most pipeline image-processing boards.
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Chapter 8

Conclusion

8.1 Summary

The objective of this thesis is to design methods of tracking moving objects with
a pan/tilt camera for real-time implementation.

It was shown that for a camera constrained to rotation, identical scene informa-
tion can be extraced from different camera positions. This allows the dvelopment
of a mapping relationship between images taken at different camera orientations.
With images compensated for camera rotations, static camera techniques can be
applied to active camera image sequences.

Since compensation is susceptible to errors caused by poor camera position
information, morphological filters are employed to remove erroneously detected
motion. While this method successfully removes false motion, large filter masks
impose an additional computational burden on the system and must be intelli-
gently selected.

Improving camera position information greatly relieves the filtering require-
ments and is necessary for a real-time implementation.

8.2 Assessment

Although active camera systems have many theoretical benefits, at present there
is still much work to be done before the many additional problems they impose can
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be satisfactorily solved. The method presented here is computationally fast given
appropriate hardware and accurate inputs. However, for improved performance,
additional strategies, such as variable filtering, as well as customized hardware
specific for compensation and morphological filtering should k= developed.

The system demonstrated yields reasonable results, considering the uncon-
strained and cluttered background, and the arbitrariness of the moving object.

8.3 Future research

As yet, this system has not been implemented on a real-time platform. With
the availability of pipline-architecture image-processing hardware, even without
customization, the methods presented here can be implemented in real-time.

With the basic system implemented, there are several possible modifications
which can be made to expand and improve the performance of the system.

As mentioned in Section 7.4.3, with a thorough knowledge of the etrors present
in a system, the performance could be improved using an adaptible fitering strat-
egy. As well, detecting texture information about the general background would
enable the system to select the most appropriate motion detection techniques.
An independent ranging technique, such as focus-ranging, makes it possible to
obtain 3-D information about the tracked object. This would improve the scope
of th system and opens up possibilities for sensor fusion with robotics systems.

As discussed in Section 3.3.2, there are computer vision techniques which
require an active camera to operate. Techniques such as variable resolution could
be implemented and tested with a real-time pan/tilt tracking system.

Since within all the basic equations and derivations of this work, the focal
length plays a key role, it would be interesting to investigate the potential with
an active zoom in which the focal length could be changed. For instance, for
erratically moving objects, a wide-angle lens would provide more robust tracking,
whereas for a predictable object, a telephoto lens should improve the position
estimates.

The use of color images would enhance the motion detection by adding ad-
ditional solutions to the contrast problem common with image subtraction tech-
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niques.
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Appendix A

Projection of a sphere onto the

image plane

This analysis discusses the relationship of the 3-D centroid of a sphere projected
onto the image plane and the 2-D centroid of the image of that sphere as presented
in Section 3.3.2. However, before we can determine the 2-D centroid of the image,
we must derive the shape of the image. The projection of a sphere onto the image
plane will b+ i va.2c . that of a circle formed by the occluded volume of the
sphere. The . ‘nere hes # radius r, and range to the origin R, while the occluded
circle has a radius r. and a range to the origin R.. The plane of the circle will be
perpendicular to a line from the origin to the centre of the circle.

The boundary of the circle is formed by the points where lines that intersect
the origin lie tangent to the surface of the sphere. In Figure A.l we can see the
geometry of the problem described. If the dimensions of the sphere and the range
to the centre of the sphere are known, from similar triangies we obtain

sintr) = 22

from which, using the identity cos® + sin? = 1 we find
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Centre

Figure A.1:

R, - distance between focal point and cantroid of sph :re

R - distance between focal point and centre of circle seen by the camera
r, — radius of the sphere

r. — radius of the circle seen by the camera
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By considering the geometry presented in Figure A.1 we derive

[

r‘,=1',,cos('y)=r,\il—F3

. r?
R.=R,-r, 31"’(7) = Rl(l - E)

Now that we have determined the information defining the circle, let us con-
sider its projection on the image plane. From the symmetry of the geometry of
the imaging process it follows that we can rotate the coordinate frame about the
Z-axis without change in the image shape. Therefore, without loss of generality,
we consider a particular case for which the centre of the sphere lies on the X-Z
ple.-- (1.2, Y. = 0). We then create a new coordinate frame at the centre of the
circle, :_own in Figure A.1. By projecting the new coordinate frame onto the
world frame, we obtain the relationship between the two frames as

X' = (X - X.)cos(c) +(Z ~ 2.) sin(a) (A.1)
Y=Y (A.2)
Z' = (Z - Z;) cos(a) — (X — X.) sin(a) (A.3)
Since
X. = R, sin(a) (A.4)
Z. = R. cos(a) (A.5)

by substituting equations (A.4) and (A.5) into {A.1) and (A.3) yields

X' = X cos(a) + Z sin(a) — 2R. cos(a)sin(a) (A.6)
Y=Y (A.7)
Z' = Z cos(a) - X sin(a) — R, cos(2a) (A.8)

The circle of interest is described in the new coordinate frame by the equation
of a circle with centre at the origin. Hence

2= (X + (V')



or, by substituting in equations (A.6)
r? = (X cos(a) + Z sin(a) — 2R, cos(a)sin(a))? + Y? (A.9)

The condition of equation (A.9) is that of the equation of the circle to he pro-
jected on the image plane. If we recall the relationship between points in three
dimensions and their projections on the image place (see Section 3.2.2)

X 1Y
z=Tm Y= (A.10)
it follows that
zZ yZ
X=—, Y==— A.ll
Using equation (A.11), equation (A.9) can be modified to
ri= (E:t:_tz_;sx(_a) + Zsin(a) — 2R, cos(a)sin(a))? + (-Zf—y)2 (A.12)

Now we have reduced the equation to terms of only (z,y) and Z. To eliminate
the Z terms, we will utilize the fact that the circle in question lies on a plane
which we can describe by

_ sin(a) R,
Z=-X cos(a) + cos(a) (A.13)
Again, using equations (A.10) this reduces to
- fR
~ fcos(a) + zsin(a) (A-14)
By substituting equation (A.14) into equation (A.12) we obtain
r2 = R2 [(z cos(a) - fSin(a))zmz(za) + y2] (A.15)

(f cos(a) + zsin{a))?

This equation describes the image created by the projection of the sphere onto
the image plane in terms of constants of the system aad in the image plane
coordinates.
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