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Abstract

The recovery of 3D information from 2D images is a well-studied problem in com-

puter vision, with many competing methods that can achieve highly accurate re-

sults. However, relatively little attention has been paid to the problem of 3D recon-

struction in underwater environments. When cameras are placed underwater they

must be protected by a waterproof housing, often featuring a flat glass port through

which the scene is viewed. Light rays passing from water into the housing are

bent by refraction, a nonlinear process that renders the standard perspective camera

model invalid. In spite of this, it is common practice in photogrammetry studies to

treat refraction as a radial lens distortion, which can lead to errors in the measured

3D information.

Recent research has acknowledged that a physically-correct model of refraction is

needed to obtain accurate 3D reconstructions in underwater environments. One im-

portant and necessary step is to calibrate the parameters of such a refraction model.

In this thesis we develop a novel calibration method that exploits the dispersion

of light, which is the angular separation of different wavelengths during refrac-

tion, and show that better accuracy is achieved compared to previous work. We

then show how to adapt existing reconstruction algorithms to use the physical re-

fraction model, and combine it with our calibration method to obtain a complete

process for underwater 3D reconstruction. By analyzing the reconstruction results

and comparing against the standard perspective model approximation, we identify

the shortcomings of the latter and reveal situations where the refraction model is

indispensable. Lastly, we apply the techniques developed in this thesis to real data

captured by an underwater observatory and obtain high quality 3D reconstruction

results.
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Chapter 1

Introduction

1.1 Motivation

Camera-based 3D reconstruction is the process of extracting three-dimensional

geometric information about a scene from 2D images. Researchers in computer

vision and photogrammetry have explored many different approaches to this prob-

lem, and these approaches are collectively termed Shape-from-X, indicating that

the shape or geometric structure of the scene is being deduced using a particular

property of the images or imaging process. Examples of X include scene shad-

ing [55], defocus blur [17], and specularity [38]. The most common approach,

however, is known as Structure-from-Motion, where “motion” means that multi-

ple images of the scene are captured with the camera in different positions; the

camera may be physically moved, or multiple cameras may be set up as an array.

The 3D structure of the scene is then obtained by identifying points seen from

different angles, and triangulating them geometrically.

The Structure-from-Motion (SfM) approach has enjoyed great success, with
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applications such as photo-tourism [48], terrain mapping [49], and motion capture

[25]. There are nearly 60 different algorithms listed on the Middlebury Multi-

View Stereo website, a standard benchmark for 3D reconstruction algorithms. On

the test scenes, which measure about 10cm across, the best algorithms are able to

achieve accuracies well within 1mm [43]. However, all of these algorithms are

designed to be used on land. The emergence of underwater 3D reconstruction as

an application area has presented a new set of challenges.

Cameras have been used in underwater environments for many different pur-

poses, including: monitoring marine habitats [47], tracking fish populations [47],

reconstructing archaeological sites [8], and inspecting industrial equipment [5].

Our work is motivated by the increasingly common practise of deploying multiple

cameras aboard underwater remotely-operated vehicles (ROVs) and observation

platforms. For example, Ocean Networks Canada has deployed an 8-camera ar-

ray (Fig. 1.1) for observation of the sea bed off the coast of Vancouver Island [3].

This camera array was designed to enable SfM-based 3D reconstruction, giving

biologists a way to make regular, non-intrusive, in-situ measurements of marine

life forms.

1.2 Background

There are multiple challenges involved in underwater imaging and 3D reconstruc-

tion. Besides the engineering issues of enclosing cameras in watertight housings,

configuring an array of cameras, and providing sufficient scene illumination, some

computational challenges arise as well. Sea water often has high turbidity because

of dissolved substances and suspended particles. This leads to backscattering and

2



Figure 1.1: The underwater camera array deployed by Ocean Networks Canada
under the NEPTUNE program [3].

Figure 1.2: Underwater view of a sponge captured by the camera array [3].
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attenuation of light, which reduces image contrast and limits the depth at which

objects can be seen. Furthermore, different wavelengths of light are absorbed at

different rates, causing depth-dependent color casts. Some recent work has been

done to simulate and compensate for these effects [27, 45].

Our work is primarily concerned with the challenge introduced by refraction,

the commonly-seen effect that, for example, causes a straw to appear bent when

placed into a glass of water. This occurs because light waves propagate at a differ-

ent speed in water than in air. A typical underwater camera housing has a flat piece

of glass in front of the lens, resulting in two refractions as the light travels from

water to glass to air. It was common in prior work to model refraction as a radial

distortion, as this was found to be satisfactory for applications such as measur-

ing fish [47]. More recently, there is a trend toward applying a physically-correct

refraction model, in the interest of obtaining more accurate 3D reconstructions

[2, 9, 19, 31, 27, 54].

The principles behind modelling refraction and incorporating it into existing

SfM algorithms have been studied to some extent [9, 19]. Before 3D reconstruc-

tion can be carried out, however, the first step is to obtain the parameters of the

refraction model. Similar to estimating the focal length and other characteristics

of the camera lens, a calibration process is needed to ensure that the refraction

model accurately describes how light propagates from the scene to the camera.

Earlier work on refractive calibration relied on nonlinear optimization proce-

dures and heuristic initialization, which did not always prove reliable [19, 44]. In

contrast, our work is inspired by the discovery of some mathematical properties

of the refraction model that enable more efficient and reliable estimation of the

model parameters [2]. We build upon these results by studying the phenomenon
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of dispersion, which is the differential refraction of light according to wavelength.

Dispersion often causes undesirable effects, such as color fringing around sharp

edges in an image, but we show that it is in fact useful in the calibration process.

As for the actual 3D reconstruction, ambiguous results have been reported in

the prior work. Some authors have experienced mixed success [19], while others

reported success but without quantitative evaluation against ground truth using

real data [9, 28, 31]. Still others indicated that a physically-correct refraction

model may not be needed after all, applying the land-based methods directly and

suggesting that they work well enough [30]. It is clear that a more comprehensive

study is needed to quantitatively evaluate 3D reconstruction with and without a

refraction model, and to determine whether the refraction model can lead to better

results in practice.

1.3 Contributions

The goal of our work is to develop a practical solution for underwater 3D recon-

struction. Our solution involves two main parts: first, a physically correct and

accurate calibration method; and second, adaptations of existing 3D reconstruc-

tion algorithms to accommodate for refraction. For the first part, we:

• show that the dispersion of light is a measurable side-effect of refraction

using a typical consumer-grade camera,

• derive mathematical constraints on the flat refraction camera model using

dispersion,

• incorporate these constraints in a calibration procedure that achieves greater

5



accuracy compared to existing work, and

• demonstrate how this calibration can be achieved in practise with a novel

calibration device.

For the second part, we:

• identify and implement the changes needed to use existing 3D reconstruc-

tion algorithms with the refraction model,

• evaluate the quality of reconstructions using the refraction model compared

to a standard perspective camera model,

• analyze the impact of errors in calibration, and

• show that with an accurate calibration and a physically correct refraction

model, high quality 3D reconstructions can be obtained in practise.

In the course of this work we also derive some computational techniques that

are new, to the best of our knowledge. We implemented a method to forward

project points in multi-layer refraction systems with an arbitrary number of re-

fractions. We also created specialized techniques to process images of the light

pattern emitted by our novel calibration device. Details on these techniques are

given in the relevant sections.

The remainder of this thesis is organized as follows: in Chapter 2 we survey

the existing work related to traditional 3D reconstruction, as well as 3D recon-

struction in the presence of refraction. In Chapter 3 we look at refraction and

dispersion in more detail, study the geometry of a flat refraction camera model,

and derive new mathematical constraints. We then describe how these constraints

6



are used in a complete camera calibration procedure in Chapter 4, together with

experiments and results. The penultimate chapter focuses on the application of

the preceding concepts to multi-view underwater 3D reconstruction. Lastly, we

close with a discussion and possible future work.
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Chapter 2

Related Work

There is a vast amount of research on the topic of 3D reconstruction. A com-

parative evaluation of many different algorithms can be found on the Middlebury

Multi-View Stereo website [43], and the associated paper provides a useful tax-

onomy for classifying these algorithms [46]. We will not attempt to give a com-

prehensive survey, but only to cover the key ideas such as triangulation, feature

matching, and epipolar geometry, before expanding on a few specific algorithms

most relevant to our work.

Having set the stage with the traditional SfM approach, we will describe a

number of works that generalize the problem to include transparent, refractive

objects. Some methods are intended to reconstruct the surface(s) of the object

such as, for example, the ripples on a body of water. Other methods are designed

to reconstruct a scene in spite of, or with the help of, a refractive object between

the camera and the scene.

Lastly, we will give an overview of the research in underwater 3D reconstruc-

tion. These works generally assume that the refraction boundaries have a simple

8



Figure 2.1: Triangulation of a 3D point from multiple views.

form, namely parallel planes, and that they are an integral part of the camera sys-

tem. The goal is to accurately model the refractive imaging process in order to

optimize the 3D reconstruction of the scene.

2.1 Structure-From-Motion

2.1.1 Triangulation

Consider a scene that is imaged from different viewpoints with a conventional

camera. We wish to deduce the three-dimensional structure of the scene by ob-

serving how it changes as the camera is moved. Suppose that a point X in the

scene is imaged to points x1 and x2 as shown in Figure 2.1. If the projection

matrices of the cameras are P1 and P2 respectively, then we have two linear con-
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straints of the form: P1X = k1x1

P2X = k2x2

(2.1)

where ki is an unknown scale factor. For the general case of n views, we have n

such equations that can be combined into a homogeneous linear system as in



P1 x1

P2 x2

... . . .

Pn xn





X

−k1

−k2
...

−kn


= 0 (2.2)

Given known Pi and xi, equation 2.2 can be solved to obtain X. This is known

as the linear triangulation method, and it is most commonly used because of its

simplicity. Although the algebraic error being minimized is not meaningful, it can

be modified with an iterative adjustment step to give good performance in most

cases [23]. Hartley and Sturm describe an optimal triangulation method [23] for

two views based on solving a set of polynomial equations, but unfortunately it is

difficult to extend to three or more views [29].

Another simple triangulation method is known as the midpoint method. Here

we consider the rays corresponding to the back-projections of the image points

x1 and x2. In the ideal case these rays would intersect at a point, but in general

they do not due to measurement noise. Therefore the point X is estimated to be

the midpoint along the perpendicular line joining the two rays. Writing P1 =
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[M1| −M1c1] and P2 = [M2| −M2c2], where ci are the camera centres and Mi is

a 3× 3 matrix, the ray directions are given by M−1
1 x1 and M−1

2 x2. The common

perpendicular of the two rays is u = (M−1
1 x1)× (M−1

2 x2), so we have

c1 + α1M
−1
1 x1 + βu− α2M

−1
2 x2 − c2 = 0 (2.3)

This vector equation can be easily solved for the unknowns α1, α2, and β (with

c1 and c2 obtained from P1 and P2). The midpoint method has reasonable per-

formance for Euclidean reconstruction, when the intrinsic camera parameters are

known, but in general it is not as good as other methods [23]. It is, however, easy

to implement for refraction because it considers only the back-projected rays and

not the projection matrices.

2.1.2 Epipolar Geometry and Feature Matching

The preceding discussion assumes that we already know the correspondence be-

tween a scene point X and the imaged points x1,x2. Moreover, it assumes that

the camera projection matrices are known, which combine both the extrinsic pa-

rameters (rotation, translation) and intrinsic parameters (focal length, principal

point). In the conventional framework without refraction, both of these issues are

addressed through the concept of the fundamental matrix [24].

Given two views of a scene, any point observed in one image cannot appear

arbitrarily in the other image. The back-projection of the point in the first image

is a line which must project to a line in the second image. The fundamental matrix
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F encodes this constraint, such that

x>2 Fx1 = 0 (2.4)

whenever x1 and x2 correspond to the same point in the scene. Suppose we know

x1, then Fx1 is the line in the second image on which x2 is constrained to lie. This

allows the elimination of false matches and greater efficiency when searching for

x2.

Equation 2.4 also gives a way to compute the fundamental matrix. Given a

sufficient number of putative correspondence pairs x1 ↔ x2, we can estimate F

with a linear method [24] and an outlier-removal strategy such as RANSAC [56].

The fundamental matrix found in this way can be used to perform triangulation

and 3D reconstruction up to a projective ambiguity [24]. If the camera intrinsic

matrices K1, K2 are known (or obtained using readily available software [4]), we

can go further to compute the essential matrix E, which is related to the funda-

mental matrix by:

E = K>2 FK1 . (2.5)

The essential matrix can be decomposed to obtain the relative translation t and ro-

tationR of the two cameras viaE = [t]×R, where [·]× denotes the anti-symmetric

cross product matrix [39]. Subsequently we can compute a Euclidean 3D recon-

struction using the triangulation techniques described above.

The remaining part of this process is feature matching. Detecting salient fea-

tures in an image and encoding them into descriptors that can be compared across

viewpoints is a non-trivial problem. Some feature detectors include the Harris cor-
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ner detector [22], the Scale Invariant Feature Transform (SIFT) [36], and DAISY

[52]. The feature descriptors computed by SIFT and DAISY both consist of his-

tograms of image gradients sampled around the feature point.

2.1.3 Sparse Reconstruction

Structure-from-Motion algorithms can be divided into two groups based on the

expected density of points in the final reconstruction. Sparse reconstruction is

concerned with recovering the position of distinctive feature points, together with

the pose of the cameras (rotation and translation), rather than producing a dense

3D model of the scene. This is useful for applications such as image registration

and organizing photo collections [48], and also as input to a subsequent dense

reconstruction step.

The Tomasi-Kanade factorization method is an example of sparse reconstruc-

tion from a set of tracked points in a video stream [53]. In this seminal paper, the

authors cast the Structure-from-Motion problem as a matrix factorization problem

by analyzing the rank deficiency of the measurement matrix W . For orthographic

projection cameras, this yields an elegant solution to obtain the motion matrix M

and structure S using the singular value decomposition (SVD). The matrices are
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Figure 2.2: Results of the Tomasi-Kanade factorization method. Left to right: a
ping-pong ball with marked features, a set of feature tracks as the ball is rotated,
final reconstructed points. Source: [53]

defined as follows:

W =



u1,1 · · · u1,N
... . . . ...

uF,1 · · · uF,N

v1,1 · · · v1,N
... . . . ...

vF,1 · · · vF,N


M =



r1,1
...

rF,1

r1,2
...

rF,2


S =

[
X1 · · · XN

]
(2.6)

where (uf,k, vf,k) is the measured image point number k ∈ {1, ..., N} in frame

f ∈ {1, ..., F}, rf,j is the j-th row of the rotation matrix for frame f , and Xk is

the 3D point number k. These definitions are such that we have W = MS, and

the task is to factorize W into the unknown M and S.

The key result discovered by Tomasi and Kanade is that rank(W ) ≤ 3 in the

absence of noise. When noise is present, W can be decomposed as W = UΣV >

by SVD. The closest rank-3 approximation is obtained by Ŵ = U ′Σ′V ′> which

keeps only the largest three singular values and the corresponding columns of U
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and V . This yields Ŵ = M ′S ′ where M ′ = U ′(Σ′)1/2 and S ′ = (Σ′)1/2V ′>,

which are equal to the true M and S but with an unknown change of basis. The

ambiguity is resolved by constraining the rows of M ′ to be unit vectors and rows

from the same rotation matrix to be orthogonal.

Unfortunately, this factorization method only applies to orthographic projec-

tion, and not perspective projection as found in most cameras. Various methods

have been proposed that iteratively correct for the projective depth in the mea-

surement matrix [12, 50], but they are more complex and will not be discussed

here.

An alternative to the factorization approach is to use a nonlinear optimization

algorithm to find the values of all the camera parameters and 3D point positions

simultaneously. This technique is known as Bundle Adjustment [24]. Let θi repre-

sent all of the (intrinsic and extrinsic) parameters of the i-th camera and proj be a

function that projects a 3D point onto the image, then the objective is to compute:

min
θi,Xj

∀i,j

∑
k,l

d(proj(θk,Xl),xl)
2 , (2.7)

where d is a geometric distance in image space. The error being minimized is

called the reprojection error, since it measures the distance between the observed

point xl and the projection of the estimated 3D point Xl. One successful ap-

plication of bundle adjustment is the open-source software Bundler, developed by

Noah Snavely [48]. Internally, Bundler relies on specialized optimization software

developed by Lourakis and Argyros called sba [35], which uses the well-known

Levenberg-Marquardt algorithm and exploits the sparsity structure of the problem.

Sparsity comes from the fact that many parameters do not directly influence each
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Figure 2.3: Photo Tourism from internet image collections. The SfM system that
simultaneously computes the scene structure and camera viewpoints is an imple-
mentation of bundle adjustment called Bundler. Source: [48]

other; for example, the parameters of a camera are not affected by the positions

of points not visible to it. This allows SfM to be applied on a large scale, such

as reconstructing landmarks from thousands of tourist photographs [48]. There

are some mechanics involved in strategically adding images, performing bundle

adjustment in phases, and filtering outliers, but the underlying method for initial-

izing the bundle adjustment is based on feature matching and pose estimation as

described previously.

2.1.4 Dense Reconstruction

Dense reconstruction methods aim to recover as much of the observed surfaces

as possible, usually assuming fully-calibrated cameras with known pose. A num-

ber of different methods are catalogued by Seitz et al. [46] based on the several

distinguishing characteristics including scene representation, photo-consistency

measure, and the reconstruction algorithm itself. One of the older but still top-

performing methods is PMVS2 by Furukawa and Ponce [18]. We chose to adapt

this open-source software for underwater 3D reconstruction because of its effec-

tiveness and relative simplicity.
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Figure 2.4: Example 3D reconstruction with PMVS2. Left to right: an example
input image, detected features, initial patches, final patches after expansion and
filtering, mesh model. Source: [18]

The scene representation in PMVS2 consists of a set of small rectangular

patches. As shown in Figure 2.5, each patch is parameterized by its center co-

ordinate c and a normal direction n, approximating a local tangent plane of the

true surface. Each patch is also assigned a photometric discrepancy score that

measures the difference in its appearance between two images. This is computed

by overlaying a square grid on the patch, projecting the points onto two images,

and calculating the normalized cross-correlation between the images sampled at

those points (with interpolation). Under the assumption of Lambertian reflectance,

a patch with low photometric discrepancy is more likely to accurately represent

the surface.

The overall algorithm consists of three distinct steps: patch initialization, ex-

pansion, and filtering. In the initialization step, salient features are detected and

matched across pairs of images. Feature pairs that satisfy the epipolar geometry

are triangulated into patches, and additional views are added where the patch is

also visible. The patches then undergo nonlinear optimization to minimize the

photometric discrepancy by adjusting the center and normal. Only those patches

having a sufficient number of views with low photometric discrepancy (below a
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Figure 2.5: Patch representation in PMVS2. Photometric discrepancy is computed
by projecting a sampling grid from the patch onto the images. Source: [18]

predefined threshold) are retained.

Subsequently, the algorithm alternates between the expansion and filtering

steps for a fixed number of iterations. Expansion means that new patches are

created next to existing patches. Each image is divided into a fine grid of square

cells, and the objective is to reconstruct at least one patch in each cell. Thus, given

a patch whose projection is adjacent to an empty cell, a new patch is created by

intersecting the back-projected ray of that cell with the plane of the original patch.

The center and normal of the new patch are then adjusted to minimize photometric

discrepancy, similar to the initialization step.

Finally, the filtering step applies three different heuristics to remove outliers.

The first filter examines patches that fall in the same cell but are not neighbours,

removing the ones that have higher photometric discrepancy and fewer views. The

second filter removes patches that have too few views when visibility is computed

while accounting for depth. The last filter removes patches with too few neigh-

bouring patches lying in adjacent cells. More details about these heuristics are

provided in the original paper [18].
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Figure 2.6: Fluid surface reconstruction by Morris and Kutulakos. Source: [37]

2.2 Refractive Reconstruction

2.2.1 Reconstructing refractive surfaces

One of the limitations of traditional SfM methods is that they cannot properly

handle scenes containing transparent objects that refract light. Such objects do

not have a fixed appearance, and instead derive their appearance from the sur-

roundings by changing the direction and intensity of light rays. While the focus

of this thesis is not on reconstructing the geometry of refractive surfaces, there are

some interesting and relevant works in this area.

Morris and Kutulakos showed that it is possible to determine the height and

normal direction of a point on the surface of a transparent, refracting fluid from

two views. Whereas this is an ill-posed problem for a single view, the addition of

a second view constrains the space of possible solutions to a discrete set. With ref-

erence to Figure 2.6, the key idea is that two light rays from different viewpoints

passing through p(d) on the surface must be refracted according to the same nor-

mal direction n. Suppose C(q, t) is a function that maps an observed image point

q at time t to a point on the reference pattern. The point p might be postulated

to lie at a distance d along the camera ray for image point q. This completely
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One reference point (M = 1)
K = 1 K = 2 K ≥ 3

N = 1
N ≥ 2 X+

Two or more ref. points (M ≥ 2)
K = 1 K = 2 K ≥ 3

N = 1 X+
N = 2 X+
N = 3 X+ X
N ≥ 4 X+ X+

Table 2.1: Tractability of light path triangulation problems. A check mark X in-
dicates that the problem is tractable, and a plus sign + indicates that it is tractable
even when the refractive index (or if a deflection is a reflection) is unknown. Un-
marked problems are intractable. Source: [33]

determines the refraction angle and n, which in turn determines how the ray for

q′ is refracted. Therefore, one needs only search for a d where the second camera

ray is refracted consistently with C(q′, t). The function C is obtained by tracking

feature points on the reference plane, in this case a checkerboard pattern [37].

This work was expanded into a more general theory of light path triangula-

tion by Kutulakos and Steger [33]. They analyzed the tractability of reconstruct-

ing reflective and refractive surfaces using light path consistency, and introduced

a system to characterize such reconstruction problems based on the number of

viewpoints N , the number of deflections K along the path, and the number of

reference points M . A deflection can be either a refraction or reflection, and ref-

erence points are on the light path segment farthest from the camera. In their

work, a light path triangulation problem is called tractable if the solution space

lies on a 0-dimensional manifold, i.e. a discrete set of points. The tractability of

various problem configurations is summarized in Table 2.1.
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2.2.2 Reconstructing scenes with refractive distortion

Sometimes the surface of a refractive object is not of interest, but it causes distor-

tions of the scene that we wish to reconstruct. These distortions may be desirable,

for example as part of a multi-axial imaging system [1], or they may be undesir-

able as in the case of underwater imaging. In either case, the goal is the same:

to obtain an accurate model of the distortion and thereby recover the true geom-

etry of the scene. This will typically entail a calibration procedure in which the

parameters of the cameras and of the refractive object are estimated (one such set

of parameters is detailed in Section 3.3). We will restrict our discussion to the

case where the refractive object is planar, as is often true in underwater imaging

applications.

Chari and Sturm studied the geometry of the stereo camera configuration,

where the scene is separated from the cameras by a single refractive planar surface.

By formulating the refraction of rays in terms of quadratic lifted coordinates, they

derived a 12× 12 refractive fundamental matrix analogous to the ordinary funda-

mental matrix for two views [10]. This result is theoretically interesting and the

authors described how it could be used to calibrate the camera pose and refractive

surface parameters, but no experimental results are presented. As far as we know

there has not been any follow-up work to implement a practical algorithm from

these ideas.

A different approach taken by Chang and Chen is to restrict the problem by as-

suming that some of the calibration parameters are known. Specifically, they used

cameras with built-in Inertial Measurement Units (IMUs) to provide the vertical

direction of each view, which is perpendicular to the single horizontal refraction

surface (such as a still water surface). The relative poses of multiple views, as well
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Figure 2.7: Restricting the refraction problem with known vertical direction al-
lows a simplified global coordinate system [9]. In three dimensions there is a Y
axis orthogonal to the page.

as the 3D points beneath the refraction surface, can then be computed by solving

a system of linear equations.

This result can be understood by writing the entire problem in terms of a co-

ordinate system aligned with the refraction plane Φ, as shown in figure 2.7. Since

the vertical direction Z is known at camera c, the incident angle θ1 of any camera

ray with Φ is also known. Therefore, the refracted ray direction can be computed,

and the point position px (and py in three dimensions) becomes a linear function

of the camera height cz and the point depth pz. The remaining unknown rotation

around the Z axis is also linear, as it is given by a matrix multiplication with the

x and y components of the camera ray direction. A set of linear equations is ob-

tained by equating the point positions from correspondences between two views

and eliminating pz, and the equations can be solved to obtain the unknown camera

center c and rotation about the Z axis.

The main limitation of this approach is the need to measure the vertical direc-

tion of each view. More generally, the pitch and roll of each view with respect to
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Figure 2.8: Depth from refraction method by Chen et al. [11], showing (a) the
experimental setup, (b) an image of the scene without refraction, and (c) recon-
structed depth.

a common refraction plane must be measured, and an IMU would be inadequate

to do so if the refraction plane were not perpendicular to the earth’s gravity, as is

the case with most underwater imaging systems. Moreover, the cameras used for

underwater imaging may not share a common refraction plane.

In contrast to the previous two methods, in which refraction is modelled from

multiple viewpoints, Chen et al. proposed a method for 3D reconstruction from

a single viewpoint by manipulating the refractive object [11]. Figure 2.8 shows

their experimental setup, in which a block of refractive material with parallel pla-

nar faces is placed between the camera and the scene. By capturing two images

of the scene with and without the refractive object in place, the depth of point

correspondences can be computed from the displacement due to refraction. The

effect is similar to narrow-baseline stereo, although the image with refraction is

not a single-viewpoint perspective projection [54] (see Section 2.3 below).

This method also has a calibration phase in which the pose of the refractive

object is estimated. Due to the camera and the scene being in the same medium,

the distance from the camera to the refractive object does not matter and only the
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Figure 2.9: Rays imaged by a perspective camera in an underwater housing with
a flat port. (Left) The physical rays imaged by the camera. (Right) The same rays
if they did not undergo refraction.

object’s rotation is needed. The main idea is that the images of a single point with

and without refraction lie on a line that also contains the vanishing point of the

normal direction of the refraction planes. This happens to be very similar to our

idea described in Section 4.1.

2.3 Underwater Stereo

In this section we take a slightly different approach in which the refractive medium

is considered as a part of the camera model, rather than a part of the scene. Such a

situation arises naturally when cameras are mounted inside individual underwater

housings. Compared to the methods described in 2.2.2, this is more general in that

the refraction model is not restricted to a single plane shared by all cameras. The

methods discussed here include those that focus on calibration, reconstruction, or

both.

Although refraction had been considered in the field of photogrammetry for

some time, in underwater applications the effect was often ignored, and allowed

to be absorbed into the intrinsic camera parameters [47]. Some earlier work on
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modelling refraction used camera housings with complex shapes, and focused on

optimizing the resulting large set of parameters [34]. More recently, Treibitz et

al. gave an analysis of the refraction effect of a single planar interface [54]. They

showed that the bundle of rays imaged by a perspective camera through such a

plane does not correspond to a single-viewpoint (SVP) camera. That is, when the

rays on the far side of the interface are extended back toward the camera, they

do not meet at a single point but instead form a caustic surface (Figure 2.9). It is

therefore erroneous to model such a camera system as a perspective camera, even

with radial distortion corrections (see 3.3).

Given that a physically-accurate refraction model should be used, Treibitz et

al. proposed a method to obtain its parameters under some simplifying assump-

tions. First, only a single flat refraction is modelled, even though real underwater

housings have glass of nonzero thickness. Second, the imaging plane is assumed

to be parallel to the refraction plane. Third, calibration objects of known size must

be placed parallel to the imaging and refraction planes, and at a known distance

from the camera. Under these conditions and with at least two calibration objects

imaged, their method is able to compute the distance from the camera center to

the refraction interface using nonlinear optimization [54].

The assumptions in Treibitz et al.’s calibration method are quite restrictive

and may be problematic for multi-view 3D reconstruction, for example if some

cameras must be set at an angle to the refraction interface. Gedge et al. devel-

oped a more general calibration method that accounts for multiple cameras with

independent refraction interfaces, and computes the interface angles in addition

to the camera-to-interface distances [19]. The main idea is to perform the calibra-

tion on pairs of images, identifying corresponding feature points on a calibration
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pattern and minimizing the perpendicular distance between back-projected rays

(this is a nonlinear optimization). Furthermore, once the refraction parameters

are obtained, Gedge et al. proposed a 3D reconstruction algorithm in which fea-

ture correspondences are matched along epipolar curves rather than epipolar lines.

Unfortunately, the authors had difficulty obtaining accurate refraction parameters

for more than two cameras using their method.

A similar calibration method was proposed by Sedlazeck and Koch with sev-

eral differences: the camera housing is modelled as thick glass with two refrac-

tions, a calibration pattern is not required, and a specialized error function is used

[44]. Their method proceeds by computing corresponding features in an underwa-

ter stereo image pair, and running an iterative sequence of nonlinear optimizations

over the triangulated points, camera poses, and refraction parameters. An interest-

ing aspect of this work is the derivation of a “virtual camera” error function, where

each 3D point is projected using an imaginary perspective camera positioned on

the refraction caustic surface (see above). This avoids the need to compute the

refractively-projected point on each optimization iteration, and the authors claim

improved efficiency. However, the runtime of this method reached 3 hours, and

the results with real data are not compared to ground truth.

Kang et al. developed another optimization procedure for two-view calibra-

tion in the restricted case where the (single) refraction interface is assumed to

be known or parallel to the image plane [31]. They showed that if the camera

rotations are known, together with a set of image correspondences, then the mini-

mization of reprojection error with respect to camera translations, 3D points, and

camera-to-interface distances can be formulated as a convex optimization. Ad-

ditionally, an algorithm based on Differential Evolution can be used to estimate
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Figure 2.10: Two-view underwater 3D reconstruction results obtained by Kang et
al. [31]. (a) The experimental setup. (b) Reconstruction without accounting for
refraction. (c) Reconstruction using their method. The highlighted areas indicate
where the result is less noisy and more geometrically correct compared to (b).
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Figure 2.11: Flat refractive geometry used by Agrawal et al. [2]. (Left) A camera
observing a scene through n flat refraction layers. (Middle) Each refracted light
path lies entirely on a single plane, and all the planes intersect at a common axis.
(Right) Layer thicknesses and refractive indices in the coordinate system of the
light path plane.

the camera rotations, with the convex optimization as a sub-procedure to evaluate

each trial. Figure 2.10 shows fairly good 3D reconstruction results that Kang et

al. were able to obtain using this method and a modified version of PMVS, but

they did not provide a quantitative comparison with ground truth.

To our best knowledge, the first method to fully and efficiently calibrate the

parameters of a flat refraction camera model was proposed by Agrawal et al. [2].

Their work was based on the insight that such a model corresponds to an axial

camera, where all of the imaged rays pass through a single line perpendicular

to the refraction planes, which they call the “axis of refraction.” Furthermore,

the entire path of a refracted light ray lies on a single plane called the “plane of

refraction.” With this formulation, they showed that all the refraction parameters

of a multi-layer flat refraction model can be computed by solving two systems of

linear equations.
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We will give a brief overview of their derivation, with reference to the con-

cepts illustrated in Figure 2.11. In the first step, suppose a known 3D point P (e.g.

a point on a checkerboard pattern) in the scene is transformed into the camera co-

ordinate system by unknown rotation R and translation t. Let v0 be the direction

of the initial ray from the camera for this point, and let A be the direction of the

axis. Then the “coplanarity constraint” states that the transformed point must lie

on the plane of refraction containing both v0 and A:

Coplanarity : (RP + t)>(A× v0) = 0 . (2.8)

This equation can be rewritten to be linear in terms [A]×R and A× t, from which

all three unknowns can be recovered except for the translation component parallel

to A. The linear system can be constructed with either 11 points or 8 points, the

latter using a solution based on essential matrix computation.

The second step relies on the axis of refraction being known. We now work

in a new coordinate system with orthogonal basis {z1, z2, z3} defined such that

z1 is parallel to the axis of refraction, z2 lies on the plane of refraction, and z3 =

z1 × z2 (all vectors on the plane have zero third coordinate). Let p represent P

transformed by R and t and mapped into the new coordinate system. Writing vn

for the final refracted ray direction from the camera, and qn for the ray intersection

point with the last refraction interface, the equation

vn × (p + αz1 − qn) = 0 (2.9)

⇒ vn × (αz1 − qn) = −vn × p (2.10)
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states that the last section of the light path is parallel to the final refracted ray

direction. Here α represents an unknown shift along the axis direction, since this

value was not recovered in the first step. Let v1, ...,vn be the directions of all the

light path segments, and observe that they can be easily calculated from known v0

and A. Let d0, ..., dn−1 be the unknown layer thicknesses and ci = v>i z1, then we

can express qn =
∑n−1

i=0 vi
di
ci

and

vn ×
[
v0

c0
. . . vn−1

cn−1
z1

]


d0
...

dn−1

α


= −vn × p . (2.11)

This is the gist of Agrawal et al.’s linear solution to refractive calibration, and it

is followed by nonlinear optimization to minimize the reprojection error. Unlike

the method of Sedlazeck and Koch, the reprojection error is directly computed

by solving an analytic equation, which is quartic for a single refraction and 12th-

degree for two refractions. They also show how to extend the basic method to

recover the refractive indices as well.

In a recent series of works, Jordt-Sedlazeck et al. made significant progress

toward a system for underwater camera calibration and 3D reconstruction. They

extended Agrawal et al.’s calibration method by introducing a genetic algorithm

optimization stage coupled with an analysis-by-synthesis approach [27]. By op-

timizing not just the grid points on a checkerboard pattern, but rendering the full

checkerboard and comparing every pixel with the captured image, they claim to

achieve high accuracy in calibrating the refraction parameters. However, they did

not compare their results with Agrawal et al.’s method, and their experiments with
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real data did not have ground truth available.

Jordt-Sedlazeck et al. subsequently developed methods for 3D reconstruction

accounting for refraction. Their approach for recovering dense depth maps, called

refractive plane sweep, is based on back-projecting pixels from the captured im-

ages onto a series of hypothesized depth planes [26]. The back-projections are

compared on the depth planes using normalized cross correlation (NCC) and sum

of absolute difference (SAD) metrics, and a low discrepancy indicated by these

metrics means that the depth hypothesis for that point is correct. The main advan-

tage of this method appears to be efficiency, since refractive forward projection

of points is avoided. For two views, fast runtimes of about 20 seconds are re-

ported. Accuracy appears to be good with synthesized images, but once again no

quantitative evaluation using real images with ground truth is performed.

Since their 3D reconstruction method assumes that all calibration parameters

are known, Jordt-Sedlazeck and Koch also developed a bundle adjustment method

to compute these parameters for image sequences [28]. They used a modified ver-

sion of the virtual camera error function from their previous work [44] to derive an

efficient optimization scheme with an analytic Jacobian. Simulated results show

that their method achieves lower reconstruction and camera localization errors

compared to those using a perspective camera model (i.e. ignoring refraction), but

the errors still appear to be somewhat high given that the input images are noise-

free. They also evaluate their method on real images, but the evaluation is mostly

qualitative and lacks ground truth comparisons.
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Chapter 3

Refractive Geometry

In this chapter we describe the mathematical foundations of our work. We follow

a simple geometric optics approach in which we consider the propagation of light

in terms of rays. Such an approach is common in the literature [2, 10, 28, 54].

First we cover some basic principles of refraction and dispersion, then we present

the flat refraction model and derive some new properties that we use in calibration

and 3D reconstruction.

3.1 Refraction

Refraction is the phenomenon that occurs when light passes through the bound-

ary, or interface, between two dissimilar materials. Depending on the physical

properties of the materials, the light waves will propagate at different speeds. The

refractive index µ of a material is defined as the ratio of the speed of light c in
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Figure 3.1: An illustration of Snell’s Law. Here, μ2 > μ1.

vacuum to the speed of light vmaterial in the material:

μ � c

vmaterial

.

The result is that the light changes direction at the material interface, when we

consider light in terms of rays. This effect can be derived in a number of ways,

including Fermat’s principle and Maxwell’s equations, but for our purposes it suf-

fices to consider a descriptive characterization in the form of Snell’s law. Suppose

a light ray passes through the interface of two materials with indices of refraction

μ1 and μ2, and makes angles of θ1 and θ2 with the normal direction on the corre-

sponding sides of the interface (assume that the interface is locally planar). Snell’s

law states that:

μ1 sin(θ1) = μ2 sin(θ2) . (3.1)

This equation is illustrated in Figure 3.1. Some significant properties of refraction

are:
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• Snell’s law is symmetric with respect to which material the light is entering

and exiting (this is known as the Principle of Reversibility). Therefore we

may trace a ray backwards from the camera to the scene point from which

it originates.

• The light path and interface normal lie entirely on a plane, regardless of the

refraction angles.

Note that there are some materials that violate these properties, such as birefrin-

gent crystals. However, they are not usually found in imaging applications, so we

will not consider them further.

Measuring the refractive index of a material is a fairly straightforward process

requiring a precise setup. In this thesis we use a free online database of refractive

indices [41] that draws its data from scientific sources, and we cite the original

source where appropriate.

3.2 Dispersion

The speed of light propagation generally depends not only on the material it is

passing through, but also on the frequency of the light itself. Therefore, the re-

fractive index of a material is more correctly denoted as a function of frequency

or, by common convention, a function of the wavelength of light in vacuum. Such

functions can be highly complex, but within the wavelength range of visible light

they can be modelled by the empirical Sellmeier equation of the form:

n2(λ) = 1 +
∑
i

Biλ
2

λ2 − Ci
(3.2)
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Figure 3.2: Refractive index of distilled water as a function of wavelength [14, 41].

where λ is the light wavelength. For common materials including water and glass,

the coefficients Bi, Ci are positive numbers such that n(λ) is a decreasing func-

tion. Figure 3.2 displays the refractive index of water from ultraviolet to near

infrared wavelengths. Combining the equation for n(λ) with Snell’s law (3.1), we

see that when light passes from air to water, shorter wavelengths are refracted with

a smaller angle than longer wavelengths. This is responsible for the “spreading

out” of a light beam into the familiar rainbow pattern, and this phenomenon is

called dispersion.

3.3 Flat Refraction Model

Our work is based on a model of refraction for parallel planar interfaces. It corre-

sponds to a regular perspective camera placed in an underwater housing, featuring

a flat glass port in front of the camera lens. While underwater imaging is the

primary application for our work, the model can employ an arbitrary number of
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Figure 3.3: Flat refraction imaging model.

refraction planes. The same imaging model has previously been used by a number

of different authors [2, 28, 19].

Figure 3.3 shows the components and parameters of the flat refraction model.

A pinhole perspective camera observes a scene through n+1 refracting layers with

parallel planar interfaces. We denote the refractive index of layer i for wavelength

λ by μi,λ, i ∈ [0, n]. Vector A is the axis of refraction, which is the common per-

pendicular of the refraction interfaces passing through the camera center, and the

layer thicknesses di are measured along this direction. Note that the optical axis

of the camera need not be aligned with the axis of refraction. Also observe that

because of the wavelength dependence of the refractive indices, light of different

wavelengths emitted by the same point in the scene will take different paths to the

camera.

3.3.1 Back Projection

Let v0,v1, . . . ,vn be the direction vectors for each segment along the light path

from the camera to the scene. The task of computing vn from v0, assuming all
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flat refraction parameters are known, is similar to ray tracing [15]. Consider the

first refraction from v0 to v1, and let n be the normal direction anti-parallel to

A, pointing from the refraction interface to the camera. Furthermore, write m =

(n×v0)
||n×v0|| × n for the direction of the component of v0 perpendicular to n. We can

decompose v1 into the components parallel and perpendicular to n:

v1 = −(v1 · n)n + ||v1 × n||m . (3.3)

Snell’s law gives:

||v1 × n||m =
µ0

µ1

||v0 × n||m (3.4)

=
µ0

µ1

(n× v0)× n (3.5)

=
µ0

µ1

(v0 + v0 · n) (3.6)

and

v1 · n =
√

1− ||v1 × n||2 (3.7)

=

√
1− µ2

0

µ2
1

||v0 × n||2 . (3.8)

Substituting into (3.3) and rearranging gives:

v1 =
µ0

µ1

v0 +

(
v0 · n−

√
1− µ2

0

µ2
1

||v0 × n||2
)
n . (3.9)
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Figure 3.4: Formulation of forward projection of a scene point for one refraction.

Thus we can apply this formula recursively to obtain vn. The point qn where the

light path intersects the refraction plane farthest from the camera is given by:

qn =
n−1∑
i=0

vi
di

−n · vi
. (3.10)

3.3.2 Forward Projection

Computing the forward projection of a scene point onto the camera image plane

is not a trivial task. Consider a single refraction of a ray as shown in Figure 3.4.

Recall that the incident and refracted rays as well as the surface normal, which is

the axis of refraction, always lie on a single plane called the plane of refraction.

Therefore we can use a coordinate system on the plane of refraction, where y and

z are displacements of the scene point in the perpendicular and parallel direc-

tions with respect to the axis, measured from the point where the axis intersects

the refraction interface. Given the camera-interface distance d0 and refractive in-

dices µ0, µ1 (ignoring dispersion for the moment), q satisfies the following quartic

equation [21]:

Nq4 − 2Nyq3 +

(
Ny2 +

z2µ2
1

µ2
0

− d20
)
q2 + 2d20yq − d20y2 = 0 (3.11)
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where N =
µ21
µ20
− 1. Of the four possible solutions, there is exactly one in the

interval [0, y] that is the correct solution. Once the point (d0, q) has been found,

it is a simple matter to transform it back into the camera coordinate system and

apply standard perspective projection to obtain the image point.

Agrawal et al. derived similar equations for the case of two refractions. They

showed that when µ0 = µ2 the equation is a quartic polynomial, and when µ0 6=

µ2 the equation is a 12th-degree polynomial [2]. However, they did not perform

such derivations for more than two refractions, and it appears that the degree of the

equation grows very quickly. We implemented a more general forward projection

technique based on optimization, described in Subsection 4.1.4.

3.3.3 Perspective Approximation

It has been noted in previous works that a regular perspective camera model can

accommodate for the refraction effect to a significant degree [30, 47]. Two com-

ponents of the model are mainly responsible, and these are the focal length and

radial distortion parameters. Either of these components by itself can somewhat

accommodate for refraction, but when calibrated together (e.g. using [4]), even

better 3D reconstruction results can be obtained [30].

The first component of the perspective approximation, which is called “focal

length adjustment,” is to apply a scaling factor to the true focal length of the

camera. This is illustrated in Figure 3.5, showing two cameras with focal lengths

f and f ′ and image planes parallel to the refraction plane. The first camera with

focal length f images a physical ray that is refracted and crosses the image plane

at point x, while the other camera observes an imaginary extension of the ray as

if there were no refraction, but also images it at the same point x. The refraction
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Figure 3.5: Approximate focal length adjustment for a single refraction.

angles θ, θ′ are equal to the ray angles at the first and second cameras respectively,

and relate x to the focal lengths f and f ′:

tan(θ) =
x

f
, tan(θ′) =

x

f ′
. (3.12)

Using Snell’s law and the approximation tan(θ) ≈ θ ≈ sin(θ) when the angle θ

is small,

µ0 sin(θ) = µ1 sin(θ′) (3.13)

⇒ µ0
x

f
≈ µ1

x

f ′
(3.14)

⇒ f ′

f
≈ µ1

µ0

(3.15)

Therefore we might approximate the real camera by scaling the focal length f

by a factor of µ1
µ0

, and also shifting the camera center so that the imaginary ray is

captured at the same image location. On the other hand, Treibitz et al. showed that

these imaginary rays do not intersect at a single point [54], so the camera center

shift will not be the same for all rays. For this reason, and because of the small
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Figure 3.6: Failure of radial distortion to approximate refraction.

angle approximation and the assumption that the image and refraction planes are

parallel, focal length adjustment is not a physically correct model of refraction.

The second component of radial distortion is ordinarily used to correct for

lens imperfections that result in the image not being exactly a perspective pro-

jection. Simple distortion models correct for warping that is symmetric about a

central point, and depends only on the radial distance from that point. Other mod-

els may have tangential warp parameters that account for imperfect alignment of

lens elements. All such models, however, operate in image space and rely on the

assumption of a single-viewpoint camera (i.e. all rays pass through a single point

at the camera center). The radial distortion model used by Bundler [48], which

was reported to give reasonable results for underwater 3D reconstruction [30], is:

x̂ = (1 + k1||x||2 + k2||x||4)x , (3.16)

where x is in normalized image coordinates (after perspective division), and k1

and k2 are the distortion parameters.

Regardless of the complexity of the radial distortion model, it cannot be an

exact model of refraction, and the reason is illustrated in Figure 3.6. Given any
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camera ray not parallel to the refraction axis, we can take two points P1 and P2

on the refracted ray, at different depths in the scene. For the radial distortion

model to accommodate for refraction, it must warp the measured image point x

to a position consistent with a perspective projection of the actual scene point.

However, x could be the image of either P1 or P2, which map to different image

points x1 and x2 under perspective projection, and there is no way to determine if

x should be warped to x1 or x2 based only on its image coordinates. Therefore,

no distortion model can eliminate refraction to give a perspective image using

information in the image alone.

It is worth noting that Figure 3.6 is highly exaggerated. When we apply focal

length adjustment and radial distortion together, the shift in camera center means

that the perspectively projected rays are much closer to being parallel to the re-

fracted rays. The radial distortion model can then adjust the rays to keep them

close to the refracted rays over the desired depth range. Nevertheless, since this

imaging model does not have a single viewpoint, the perspective and refracted

rays eventually diverge which leads to erroneous results.

3.3.4 Dispersion Analysis

Our underwater camera calibration method exploits the dispersion of light to

achieve high accuracy. We first analyze dispersion in the context of the flat refrac-

tion imaging model to show that the effect is in fact measurable with commonly

available camera equipment.

The geometric construction that we use is shown in Figure 3.7 (left). A scene

point at (z, p + q) emits light at two wavelengths a and b. The refractive indices

of the materials on the left and right are µ0,a and µ1,a respectively for wavelength
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Figure 3.7: Dispersion of light in the flat refraction imaging model, for a single re-
fraction. (Left) Geometric construction. (Right) Amount of dispersion for various
settings of q and z, for µ0,a = µ0,b = 1, µ1,a = 1.332, µ1,b = 1.343.

a, and µ0,b and µ1,b for wavelength b. In this instance based on refraction from air

to water, we assume µ1,b > µ0,b and µ1,a > µ0,a. Suppose µ0,b/µ1,b < µ0,a/µ1,a so

that the refrax for wavelength b is (0, q + δ), δ > 0, further from the axis than the

refrax for wavelength a at (0, q). Note that since the two refractive index ratios are

different, we cannot have δ = 0, for the refracted rays would diverge and never

meet at a single scene point. Without loss of generality, we choose a scale such

that d0 = 1. Snell’s law now gives:

µ0,a
q√
q2 + 1

= µ1,a
p√

p2 + z2
, (3.17)

µ0,b
q + δ√

(q + δ)2 + 1
= µ1,b

p− δ√
(p− δ)2 + z2

. (3.18)

Squaring and rearranging (3.18) gives

(µ2
0,b − µ2

1,b)q
2
δp

2
δ + µ2

0,bq
2
δz

2 − µ2
1,bp

2
δ = 0 (3.19)
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Figure 3.8: Dispersion of light in a multi-layer flat refraction imaging model.

where qδ = q+ δ and pδ = p− δ. Solving (3.17) for p and substituting into (3.19)

gives a quartic equation in δ in terms of q, z, and the refractive indices.

According to Daimon et al., the refractive index of distilled water at 19◦C is

1.332 for 656nm light and 1.343 for 404nm light. Using these refractive indices, in

Figure 3.7 (right) we plot δ over a range of values for q and z. For a typical camera

with a resolution of 1024 pixels over a 60◦ field of view, δ = 0.005 corresponds

to about 4.4 pixels. We would observe this amount of dispersion toward the edge

of the image (q = 0.58).

One last issue that we wish to address is dispersion in multilayer flat refraction

systems. For two refractions from air to glass to water, we found that the amount

of dispersion is quite similar to the single refraction case. Consider the general

case with n refracting layers and two different wavelengths a and b. It is difficult

to make a statement encompassing all possible optical materials, so we will limit

ourselves to common materials in which the following assumptions hold:

1. The refractive indices vary with wavelength, such that µi,a 6= µi,b for some

layer i (see, e.g., [41]); and

2. The Principle of Reversibility applies (Section 3.1).
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Suppose, for the sake of argument, that a scene point not on the axis of re-

fraction is observed under the two wavelengths, and exhibits no dispersion. That

means the rays observed by the camera are superimposed, as illustrated in Figure

3.8. First note that the refractive indices in Snell’s law telescope, so that the angle

θi of the ray in layer i can be written in terms of only two refractive indices and

the angle θ0 at the camera:

sin(θi) =
µi−1,a
µi,a

sin(θi−1) (3.20)

=
µi−1,a
µi,a

· µi−2,a
µi−1,a

· . . . · µ0,a

µ1,a

sin(θ0) (3.21)

=
µ0,a

µi,a
sin(θ0) (3.22)

and similarly for wavelength b. If the last refractive indices µn,a and µn,b are not

equal, and we exclude the unlikely case that µ0,a
µn,a

=
µ0,b
µn,b

, then the rays in the scene

are non-parallel and intersect in at most one point, if at all. (If the refractive index

dependency on wavelength is a decreasing function for all layers, as in typical

optical materials over the visible spectrum, then there is no intersection point in

the scene.) If there is no intersection point, this contradicts our assumption of a

single scene point being observed; on the other hand, a single intersection point

means that if we take the light path for wavelength a, any other point along the

scene ray would require a different light path for wavelength b. This means that

the rays at the camera will be superimposed for at most one scene point, but will

diverge for any other point, and hence exhibit dispersion.

A similar argument can be made when µn,a = µn,b and µ0,a = µ0,b, but now

we consider that the light paths diverge in some intermediate refracting layer.
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Excluding pathological cases where the light paths re-converge (such as finely

tuned achromatic lens designs, which are also not flat refraction models), the rays

in the scene will be parallel but will not coincide. The lack of an intersection point

is once again a contradiction.

3.3.5 Geometric Constraints

The flat refraction imaging model possesses some mathematical properties that

are useful for calibration. In this subsection we present three constraints, which

are equations that the model parameters and scene points must satisfy in order to

be physically correct.

Coplanarity Constraint

The coplanarity constraint was derived by Agrawal et al. [2]. We have described

the specifics in Section 2.3, but reproduce the equation here for reference:

Coplanarity : (RP + t)>(v0 ×A) . (3.23)

The scene point denoted by P is transformed into camera coordinates by rotation

R and translation t, and it must lie on the plane containing the ray from the camera

v0 and the axis of refraction A.

To see why this is the case, recall that Snell’s law implies that when a light ray

is refracted, the rays on both sides of the interface as well as the surface normal

lie on the same plane. Since all refraction interfaces have the same normal in our

imaging model, applying this property inductively shows that the entire light path

lies on a single “plane of refraction” regardless of the number of refracting layers.
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Figure 3.9: Light paths for scene points observed under two different wavelengths,
yielding the dispersion and triangulation constraints.

It remains only to note that A is (anti-)parallel to the interface normal.

Dispersion Constraint

We derive a new constraint that relates multiple wavelengths of light through dis-

persion. Observe that the argument for a plane of refraction containing the path of

a refracted ray does not depend on the refractive indices. Indeed, the plane does

not change even if the refractive indices are varied. Suppose that a single scene

point emits two different wavelengths, then the coplanarity constraint implies that

the light paths for both wavelengths must lie on the plane formed by the point

and the axis of refraction. Let v0,a and v0,b be the initial ray directions from the

camera for wavelengths a and b, and assuming that they correspond to the same

scene point, we can write:

Dispersion : (v0,a × v0,b)
>A = 0 . (3.24)
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Notice that this equation does not depend on the scene point, but that the nor-

mal of the plane of refraction is immediately given by v0,a × v0,b, as long as

the refractive indices vary with wavelength such that v0,a 6= v0,b (see Subsection

3.3.4). Therefore, each observation of a scene point under two different wave-

lengths yields a linear constraint on the single unknown A in the equation. In

Subsection 4.1.1 we describe our method to deal with measurement noise and

construct an overdetermined linear system.

Triangulation Constraint

In addition to coplanarity relationships, dispersion also gives a constraint on light

path intersections. When a scene point is observed under different wavelengths

of light, the light paths may be different but they all intersect at that point. This

is similar to triangulation as described in Section 2.1, except that the multiple

views of a point arise not by moving the camera center but from the different

wavelengths. To formally state this as a constraint, we write:

Triangulation :

q0,a = F (P, R, t,A, d0, . . . , dn−1, µ0,a, . . . , µn,a)

q0,b = F (P, R, t,A, d0, . . . , dn−1, µ0,b, . . . , µn,b)
(3.25)

where F is a function that projects a point P, using the given refraction model

parameters, onto refrax points q0,a and q0,b on the refraction interface closest to

the camera. All of the model and point parameters are the same in both projec-

tions except for the refractive indices, which depend on the wavelengths a and b.

Since forward projection is nonlinear (see Subsection 3.3.2), this is a nonlinear

constraint.
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Chapter 4

Underwater Camera Calibration

Having introduced and developed some geometrical properties of the flat refrac-

tion imaging model, we now discuss how to apply them in a practical calibration

method for underwater cameras. The importance of accurately estimating the

imaging model parameters will become clear in our 3D reconstruction experi-

ments in Chapter 5. Indeed, Gedge et al. found that an unreliable calibration was

likely the main reason that their multi-view reconstructions did not yield good

results [19].

In Chapter 2 we described several previous works on the calibration problem,

including methods based on nonlinear optimization [19, 28, 44], hybrid convex

and evolutionary optimization [31], and solving linear systems followed by non-

linear refinement [2, 27]. Our work follows the last approach and builds upon the

significant contributions of Agrawal et al. [2], which we also use as a point of

reference in evaluating our results.
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4.1 Calibration Method

Recall from Section 2.3 that the calibration method introduced by Agrawal et

al. [2] consists of three main steps. In the first step, the axis of refraction A

is found, together with the rotation R and translation perpendicular to the axis

t⊥ = t − (t>A) · A of the calibration object (such as a checkerboard pattern).

In the second step, the layer thicknesses di and the calibration object translation

t‖ = (t>A) · A parallel to the refraction axis are computed. (Optionally, the

refractive indices µi can be computed as well.) In the last step, all of the model

and calibration object parameters are refined using a nonlinear optimization that

minimizes the root mean square (RMS) reprojection error, which is defined as:

RMS(θ) =

√√√√ 1

N

N∑
j=1

||x̂j − xj||2 (4.1)

where θ represents the parameters, x̂j is the reprojection of point j of the calibra-

tion object onto the image using the refraction model, and xj is the corresponding

measured image point.

The main novelty in our method is that we exploit the phenomenon of dis-

persion by capturing images using disparate wavelengths of light. An overview

of the new method is as follows: the first step of the above procedure is split

into two parts to compute the refraction axis and the calibration object parameters

separately. Next, the remaining parameters are computed while incorporating dis-

persion constraints. Finally, nonlinear optimization is used to refine the estimated

parameters, also using dispersion.
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Figure 4.1: Effect of applying a local neighbourhood average over dispersion
point pairs for estimating the refraction axis. Each point pair is shown as a small
green arrow and extrapolated into a gray line. The projection point of the refrac-
tion axis, as estimated using the dispersion constraint, is marked with a red circle.
(Left) Without averaging. (Right) With averaging. Notice how the lines focus
more tightly at a single point. A side-effect is that the green arrows at the edges
are drawn slightly toward the center.

4.1.1 Refraction Axis

The dispersion constraint (3.24) can be used directly to form a system of linear

equations, given two or more scene points observed under two different wave-

lengths. In our work we construct an overdetermined system and solve it using

the method of least squares. The residual being minimized has a geometric mean-

ing, being the sine of the angles between the refraction axis and each plane of

refraction. Also note that the estimation of the refraction axis A is independent of

any scene point parameters, and the points used in this step do not need to be part

of a calibration object. By contrast, the method of Agrawal et al. simultaneously

solves for A and the calibration object pose [2], even though these parameters are

not inherently related.

One caveat to using the dispersion constraint, as the analysis of Subsection

3.3.4 shows, is that the amount of dispersion is small, typically on the order of

a few pixels. In our method we improve the signal-to-noise ratio by averaging

over neighbouring points. A scene point is captured as a pair of image points x
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and (x + w), corresponding to rays v0,a and v0,b for wavelengths a and b. For

convenience of notation, let image points be in R3 with zero third coordinate. We

wish to compute a new point pair {y, (y+w)} based on the set of measured point

pairs {xi, (xi + wi)}i=1:k in the local neighbourhood.

First we note that by definition, the axis of refraction A passes through the

camera center, so that any point along A projects to the same image point u.

Consider any point pair {xj, (xj + wj)} and the corresponding ray directions

vj0,a,v
j
0,b. Since perspective projection transforms lines to lines, we can construct

a line by joining any point along vja to any point along A, and the projection will

be a line in image space passing through xj and u. Now we know that vj0,a, v
j
0,b,

and A lie on the same plane of refraction. Therefore, in the absence of noise,

the line we constructed intersects the ray vj0,b so that its image passes through

(xj + wj) as well.

Each pair of points {xi, (xi+wi)} defines a line in the image with direction wi.

The preceding discussion shows that when the points are uncorrupted by noise, all

of these lines intersect at u. Let w = 1
k

∑k
i=1wi be the average direction, then we

have that

(u− xi)×wi = 0 ∀i⇒ u×w =
1

k

k∑
i=1

xi ×wi , (4.2)

where the implication follows by summing over i. Now we constrain the line

{y, (y + w)} to also pass through u:

(u− y)×w = 0⇒ u×w = y ×w . (4.3)

Substituting (4.3) into (4.2) eliminates u and gives a linear equation for y. There
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are an infinite number of solutions, so we find one that is “close” to the original

point pair by choosing y on the line perpendicular to w and passing through the

centroid of the point neighborhood. The image points {y, (y+w)} are then back-

projected into rays and used in the dispersion constraint.

Figure 4.1 displays an example of the effect of applying the averaging tech-

nique to dispersion data from a real image. In practice we found that good re-

sults were obtained by setting the neighbourhood radius to about 6% of the image

width, typically encompassing around 20 point pairs.

4.1.2 Calibration Object Pose

Part of the calibration object pose parameters, namely the rotation R and transla-

tion t⊥ perpendicular to the axis, are needed in the next step to estimate refrac-

tion layer thicknesses. Whereas in Agrawal et al.’s method these are computed

together with A by applying the coplanarity constraint (2.8), we show that the

equations can be simplified considerably when A is known. The constraint is first

rewritten as follows [2]:

(RP + t)>(A× v0) = 0 (4.4)

⇔
[
P> ⊗ v>0 v>0

]
︸ ︷︷ ︸

B

E(1:9)

s

 = 0 (4.5)

where ⊗ denotes the Kronecker product, E = [A]×R and s = A × t, and sub-

scripts in parentheses denote matrix elements taken column-wise. Since the re-

fraction axis is known, we can rotate the coordinate system such that A is aligned

with the positive z-axis. Let r1, ...r9 be the entries of R, then with such a transfor-
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mation we have

E =


−r2 −r5 −r8

r1 r4 r7

0 0 0

 , s =

[
−t2 t1 0

]>
. (4.6)

Furthermore, for a planar calibration object such as a checkerboard where

P(3) = 0, columns 7-9 of B are zero (Eqn. (4.5)). Therefore we can drop the last

row and the last column of E to obtain the simplified constraint:

[
P>(1:2) ⊗ v>(1:2) v>(1:2)

]E(1,2,4,5)

s(1:2)

 = 0 . (4.7)

Stacking five or more equations and solving the resulting linear system yields four

entries of R and the translation perpendicular to the axis, up to an unknown scale

factor. We recover the scale factor and the remaining entries of R by solving the

quadratic constraint that it is an orthogonal matrix.

In general there are four possible solutions. The sign of the scale factor cor-

responds to one solution in front of the camera and one behind. Two further

solutions are obtained by negating the signs of r8 and r7, corresponding to a re-

flection across the plane parallel to the refraction layers and passing through the

object origin. The correct solution is found after estimating the refraction layer

thicknesses by choosing the one with the minimum reprojection error.
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4.1.3 Refraction Layer Thicknesses

To obtain the thicknesses d0, . . . , dn−1 of the refraction layers, we use the equation

(2.11) developed by Agrawal et al. to construct a linear system. The difference

is that we incorporate the triangulation constraint (3.25) implicitly by adding one

equation for each observed wavelength for each scene point. For example, using

the same notation as in Section 2.3 but adding subscripts for two wavelengths a

and b, we have the following set of equations for each point p:


vn,a ×

v0,a

c0,a
. . . vn−1,a

cn−1,a
z1


vn,b ×

v0,b

c0,b
. . .

vn−1,b

cn−1,b
z1







d0
...

dn−1

α


= −

vn,a × p

vn,b × p

 (4.8)

where ci,λ = v>i,λz1. Note that this is really only two equations since all the vectors

lie on the plane of refraction and have zero third coordinate in that coordinate

system. After constructing and solving the system of equations, α corresponds to

the translation t|| parallel to A, which is simply t3 in the refraction-axis-aligned

coordinate system of Subsection 4.1.2.

4.1.4 Nonlinear refinement

The last step in our calibration method is to apply nonlinear optimization over all

the parameters A, di, R, and t with respect to the reprojection error (4.1). We use

the MATLAB function lsqnonlin to do this. Because we reproject each scene

point using all of the observed wavelengths, the optimization implicitly tries to

satisfy the triangulation constraint (3.25).
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Computing the reprojection error requires a forward projection for each scene

point. Rather than solving for the roots of polynomial equations as done by

Agrawal et al. [2], our approach is to perform a one-dimensional optimization

using the equations for back projection. The main advantage is that this approach

can accommodate any number of refraction layers, even as the polynomial equa-

tions increase significantly in complexity (4th degree for one refraction, 4th or

12th degree for two refractions, and currently unknown degree for three or more

refractions). Although we did not perform benchmark tests, we did not notice any

considerable performance loss compared to the polynomial solving approach for

two refractions, and accuracy is limited only by machine precision.

The details of our forward projection implementation are as follows. Recall

from Subsection 4.1.1 that when a scene point is imaged under two different wave-

lengths of light, the two resultant image points lie on a line passing through the

image point of the refraction axis. This holds even for a hypothetical wavelength

that does not refract at all, i.e. the line also passes through the image of the scene

point under standard perspective projection. Thus, given a scene point and the

axis of refraction, we simply construct this line in the image and search along it

for the point whose back projection (Subsection 3.3.1) intersects the scene point.

The error function that we use is the signed distance ε between the scene point

and the back-projected ray, measured on the depth plane of the scene point. If x is

the image position of the scene point under standard perspective projection, it can

be shown that either [x, x+ε] or [x−ε, x] brackets the correct solution, depending

on the sign of ε. Thus we have a very simple root-finding problem with a strictly

monotonic function, which we solve using Brent’s method as implemented in the

MATLAB function fzero. Further optimizations may be possible, but we ob-
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Figure 4.2: The calibration device that we constructed to emit two wavelengths of
light in a known spatial pattern.

served that this method is already fast, taking only around 7 iterations on average.

4.2 Calibration Device

4.2.1 Design and Construction

Thus far we have presented a theoretical calibration framework based on imaging

points in a scene at selective wavelengths of light. A potential way to achieve this

in practice is to use special scene illumination and/or spectral filters placed in front

of the camera, together with a reflective calibration object such as a checkerboard

pattern. We found it more convenient, however, to build a specialized calibration

device that emits its own light at the desired wavelengths.

Figure 4.2 shows the assembled calibration device. It consists of a watertight

acrylic box with LED lighting elements inside. The box is painted all black, ex-

cept for a rectangular area on one side from which the light is emitted. Over
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the light emitting area we mounted a precision CNC-drilled plate with a 27×29

grid pattern of 0.65mm diameter holes spaced 6mm apart. Each hole in the plate

thus restricts the emitted light to a narrow point, yet combining all of the light

wavelengths produced inside the box.

The lighting elements consist of two types of LEDs, one emitting light at

660nm1 and the other at 405nm2. Both were tested using a spectrometer to con-

firm the dominant wavelength specifications. We chose these wavelengths to be

as far apart as possible to maximize the dispersion effect, while remaining visible

to typical cameras equipped with a CCD or CMOS sensor and a Bayer-pattern

color filter array (CFA). Longer wavelengths in the infrared region suffer from

high attenuation in water, while ultraviolet rays are potentially hazardous.

One issue we encountered is that achieving uniform lighting is not trivial.

Lighting uniformity is important to avoid over- or under-exposure, which can in-

terfere with our point localization method described in Subsection 4.2.2. The

LEDs inside the box are arranged in a grid pattern, with 122 in total split evenly

between the two types. Our solution was to use a series of diffuser films placed

in front of the LED grid, but this resulted in the box becoming quite large. As a

result, a significant amount of ballast was also needed to make it sink in water.

We anticipate that more sophisticated construction techniques will reduce the size

and weight of the calibration device.
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Figure 4.3: (Left) Close-up of an image of six illuminated points on the calibration
device, showing the dispersion caused by an air-glass-water interface. Best viewed
in color; one red-blue pair is highlighted for visibility. (Right) Sensitivity of red
and blue pixels to 660nm and 405nm light. See text for details.

4.2.2 Point Detection and Localization

For simplicity, our calibration device emits two wavelengths of light at the same

time. This means we have to demultiplex the signals, which is made possible

by the CFA mounted on most color cameras. (An alternative would be to time-

multiplex the signal, but errors might be introduced if the calibration device or

camera moves.) We simply capture images in a raw format, before demosaicing

is applied, and isolate the two wavelengths by considering the red and blue pixels

separately.

To determine if there is significant leakage of 405nm light onto red pixels and

660nm onto blue pixels, we conducted tests by photographing each type of LED

individually in a dark room, and correlating the measurements of each pixel with

neighbours of the opposite color. Figure 4.3 (right) displays the result of these

tests. For 660nm light, as the intensity measured by red pixels increases from

1Lumex SSL-LX5093SRC/E
2Bivar UV5TZ-405-30
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near-zero to saturation, the neighbouring blue pixels register an increase of less

than 1.5%. Similarly, red pixels register less than 1% response to 405nm light.

These numbers are low enough that we consider the crosstalk between the two

color channels to be negligible.

The captured images are processed in three steps: points on the calibration

pattern are first detected, then the sub-pixel center location of each point is found,

and lastly the overall grid pattern is inferred. We detect points with a combination

of thresholding and morphological dilation, which is simple and works most of

the time (false positives occur occasionally, and are manually removed).

To refine the accuracy of the detected point locations, we approximate the

point spread function as a bivariate Gaussian and fit this distribution to the mea-

sured pixel values. An initial estimate is obtained by extracting a square window

around each point. Let xi be the coordinate vector of the ith pixel in the window

and I(xi) be its intensity, then we construct a covariance matrix according to:

C =

∑
i I(xi) · xix>i∑

i I(xi)
. (4.9)

The eigenvectors of C give the orientation of the Gaussian distribution, and the

eigenvalues give the variance in the corresponding directions. We use the MAT-

LAB function fminsearch to perform the final optimization.

The last step of inferring the grid pattern is needed because we found that the

intensity of the points varied significantly, especially when the calibration device

was set at an angle. To prevent overexposure of the brightest points, some points

around the periphery would be too dim to measure, resulting in an incomplete grid.

We implemented a method to detect and scan along the horizontal and vertical grid
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axes, thereby recovering the object coordinates needed for calibration (Subsection

4.1.2).

4.2.3 Chromatic Aberration Correction

In lens-based optical systems, dispersion occurs within the lens elements them-

selves as they refract light. This effect is known as Chromatic Aberration (CA)

and results in visible color fringes around sharp edges in the image. It is impor-

tant to compensate for CA in order to isolate the dispersive effect of the refractive

planes in front of the camera.

For this purpose, we use the image distortion model introduced by Brown [7].

We first capture images of our calibration object in air, and obtain two sets of

camera intrinsic parameters using the red and the blue channels separately. Then

we apply a nonlinear optimization to adjust the image distortion parameters of the

blue channel so that the blue points are aligned with the red points. The choice of

which color channel to warp is arbitrary as long as we do so consistently with the

underwater images.

Our tests suggest that this image warping CA correction approach is effec-

tive. For the camera used in our experimental results, which has a resolution of

4368×2912 pixels, the average distance between aligned red and blue points was

0.05px.

4.3 Experimental Results

We evaluated our calibration method through experiments using both procedurally

generated synthetic data and real data captured with a camera. We used a Canon
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5D camera with a resolution of 4368×2912 pixels and a 30mm fixed focal length

lens. The intrinsic parameters were obtained using the MATLAB Camera Cali-

bration Toolbox [4] and used to generate the synthetic data. For the real data, we

applied the chromatic aberration correction method described in Subsection 4.2.3.

Our results are compared Agrawal et al.’s method using the publicly-available

source code accompanying their paper3.

4.3.1 Synthetic Data

Our synthetic data experiments consisted of three different configurations for the

refraction model as listed in Table 4.1. All refractive indices are assumed known

and are listed in table 4.2.

Refractions d0 Est.? d1 Est.?
I Air→Water 0.06 Yes – –
II Air→Acrylic→Water 0.06 Yes 0.0056 No
III Air→Acrylic→Water 0.06 Yes 0.03 Yes

Table 4.1: Configurations for synthetic data experiments, showing the values for
parameters d0 and d1 and whether they were estimated during calibration or as-
sumed known. The angle between the refraction axis and the camera’s optical axis
was set to 4.47 degrees for all configurations.

Wavelength Water Acrylic
660nm 1.33151 1.488
405nm 1.34318 1.516

Unspecified/589nm 1.33344 1.491

Table 4.2: Refractive indices used in all experiments. Sources are [14] for water
and [32] for acrylic.

The calibration pattern was a 27×29 planar grid of points emitting both 405nm

and 660nm light. Since the use of two wavelengths in our method could be con-
3http://www.umiacs.umd.edu/ aagrawal/cvpr12/FlatRefraction.html
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strued as doubling the number of points, to provide a fair comparison we used a

39×40 grid with Agrawal et al.’s method. Moreover, all the points in the 39×40

grid used 405nm light to remove any advantage due to stronger refractions. For a

more direct comparison with our real data results, we also included a dataset for a

34×35 grid to determine the impact of using a smaller number of points.

All feature points were perturbed by random Gaussian noise with standard

deviation ranging from 0 to 1 pixel. For each noise level we generated 100 trials

with the calibration pattern placed 0.44 units in front of the camera and rotated

randomly by up to 20 degrees.

Figures 4.4 and 4.5 summarize the results. We include results before the non-

linear refinement step to compare the effectiveness of the dispersion and trian-

gulation constraints. For Agrawal et al.’s method the corresponding estimates

are computed by the 8-point algorithm and the linear system for recovering layer

thicknesses [2].

Our calibration method appears to give more accurate results overall for every

refraction model configuration. For configuration I we see that the initial esti-

mates for both d0 and A are noticeably better using our method, indicating that

the dispersion and triangulation constraints are indeed effective. Agrawal et al.’s

method is helped by the nonlinear refinement step, which narrows the gap con-

siderably, but we see that the implicit triangulation constraint in our method still

yields improved accuracy.

Turning to the results for configuration III, the difference between the two

methods is particularly striking. The layer thickness error plots for Agrawal et

al.’s method rise sharply as the noise increases and the final estimates are far

from the ground truth, whereas our method is able to obtain reasonable estimates
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Figure 4.4: Synthetic data results for configuration I. Error bars represent standard
error. Results for configuration II are very similar and are omitted. (Left column)
Before nonlinear refinement. (Right column) After nonlinear refinement.
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Figure 4.5: Synthetic data results for configuration III. Error bars represent stan-
dard error. Plots for Agrawal et al.’s method contain two additional data points
at σ = 0.01, 0.05. (Left column) Initial estimates before nonlinear refinement.
(Right column) After nonlinear refinement.

65



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
RMS Reprojection Error (px)

Gaussian Noise σ (px)

Agrawal et al. (39x40)
Ours (27x29)

Figure 4.6: Reprojection error after nonlinear refinement for synthetic data config-
uration III. Error bars represent standard error. Plots for Agrawal et al.’s method
contain two additional data points at σ = 0.01, 0.05.

for all three parameters. Intuitively, this configuration is challenging because the

distortion caused by an additional refraction is slight compared to the difference

between refraction and no refraction. Indeed, some authors including Agrawal et

al. have suggested that multi-layer refractions are well approximated by a single

refraction [2, 51]. In practice it is often the case that some layer thicknesses can

be measured directly (e.g. the housing for an underwater camera), but when this

is not possible, it seems clear that our method should be favored.

A possible contention is that our implementation of Agrawal et al.’s method

for configuration III is incorrect, since only configuration I is included in the orig-

inal source code. We believe that the implementation is correct because the error

goes to zero in the absence of noise, the refraction axis estimates appear reason-

able, and the reprojection error is being minimized properly (Figure 4.6). Unfor-

tunately, Agrawal et al.’s work [2] does not give layer thickness estimation results

for this configuration for us to corroborate our findings.

In light of our results, we believe that the additional constraints provided by
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Figure 4.7: Experimental setup, showing the calibration device and a checker-
board inside the tank, a checkerboard affixed to the tank surface, and the camera
mounted on a SlyderDolly translation rail.

dispersion have a significant impact on calibration accuracy beyond simply dou-

bling the number of feature points.

4.3.2 Real Data

We carried out an experiment by placing our calibration device inside a filled

water tank with transparent acrylic sides. The camera was mounted outside the

tank, facing inwards. The setup can be seen in Figure 4.7.

Obtaining Ground Truth

In order to approximate the intended use case of underwater imaging, we posi-

tioned the camera so that the lens barrel was within 0.1m of the surface of the

tank. With such a setup, we could not obtain the ground truth refraction param-

eters by placing checkerboard patterns on the tank surface, since it was too close

for the camera to focus.
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Our solution was to mount the camera on a SlyderDolly translation rail, which

allowed us to move the camera precisely in a straight line. We also attached

a ruler with a needle to accurately measure the camera’s motion along the rail.

By moving the camera backward a certain distance, we could then capture an

image of a checkerboard pattern on the tank surface and determine its pose with

respect to the camera. The final ground truth values were found from 48 such

pose estimates, averaging the rotations4 and fitting a linear scale of the measured

distances to extrapolate the original camera position.

Calibration Experiment

We collected two sets of data, one using our novel calibration device which has

a 27×29 grid of points, and a second using a 34×35 checkerboard pattern. The

calibration objects were placed approximately 0.45m behind the front surface of

the water tank and moved around slightly within the camera’s field of view. We

used an air→acrylic→water refraction model in all calibrations, with the tank

wall thickness assumed known at a measured value of 5.6mm. We remark that the

checkerboard in this experiment has somewhat fewer points than the 39×40 grid

used in our synthetic data experiments. This was simply to keep the squares of

the checkerboard from being too small, and the results in Figure 4.4 show that the

impact of using a slightly different number of points is minimal.

Table 4.3 summarizes the calibration results that we obtained. Additionally,

Figure 4.8 gives a visual representation of the refraction axis estimation results,

plotting the projection point of each estimated axis. (Since the refraction axis

passes through the camera center, its image is a single point.) There are two

4We used the SVD method described by Curtis et al. [13].
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Figure 4.8: Refraction axis estimation results. Each marker represents the projec-
tion point of the axis. The vertical and horizontal axes are in pixels and are shown
with the same aspect ratio as the image. (Top Left) The entire image. (Top Right)
Detail near the center of the image. (Bottom Left) Detail showing the distribution
of ground truth estimates and the estimates from our method.

Method Estimated d0 (mm) σ Error in A (degrees) σ

Ground Truth 45.91 0.07† 0.011‡ 0.006
Agrawal et al. 43.34 39.22 2.173 0.775

Ours 46.09 11.77 0.866 0.393
Ours (fixed axis) 52.31 14.08 0.065 0.022

Table 4.3: Estimated calibration parameters using real data. †Standard deviation
of linear scale fitting error (Subsection 4.3.2). ‡Error of each measurement point
with respect to the average.
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variations of our method, one of which is labeled “fixed axis.” This label means

that the estimated refraction axis A from the first calibration step, described in

Subsection 4.1.1, was taken as the final value and not allowed to vary during

the nonlinear refinement step (Subsection 4.1.4). The reason we did this is seen

in Figure 4.8 (Bottom Left), where the refraction axis estimates have very low

spread and are within a few pixels of the ground truth. This level of accuracy is

unfortunately degraded when nonlinear refinement is allowed to vary A, but on

the other hand the estimate for d0 improves, as shown in Table 4.3.

Interestingly, we found that the estimated d0 was particularly sensitive to vari-

ations in the refractive index difference λ2,405nm − λ2,660nm for water, but much

less sensitive to variations in both index values that do not change this difference.

This is in line with the theory since the triangulation constraint is based on the

difference in refraction angle. In our experiments, we found that varying only one

index value by 0.0005 affected the estimated d0 by about 4mm, whereas varying

both values correspondingly by this amount had an effect of only 0.3mm. Further

investigation is needed to generalize these relationships, but for our purposes the

refractive index of water is known to a high enough precision that we can achieve

good results.

Overall we see that our calibration method gives better accuracy that Agrawal

et al.’s method, which agrees with the results of our synthetic data experiments.

The “fixed axis” variant highlights a discrepancy in that the nonlinear refinement

step did not improve all parameter estimates as expected, but actually increased

the error in the refraction axis. While we do not have a definite explanation for

this behavior, one possibility is suggested and briefly analyzed in Subsection 5.3.3,

when we apply our calibration procedure to 3D reconstruction with real images.
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Chapter 5

Underwater 3D Reconstruction

In this chapter we explore the problem of 3D reconstruction in the presence of

refraction. Our goal is to achieve high-quality reconstruction results in underwater

environments. To that end, we first describe the necessary adaptations that we

made to existing software. Then, through a set of simulated experiments with a

multi-camera array, we aim to answer the following questions:

1. Under what conditions, and in what ways, is there a significant difference

between the reconstruction results obtained using a physically-correct re-

fraction model compared to a perspective approximation?

2. What is the impact of calibration accuracy on the quality of the reconstruc-

tion?

After establishing the feasibility and identifying some advantages of using a physically-

correct refraction model, we conduct an experiment using real data to validate the

proposed methods. Finally, we explore a potential application using images of the

seabed captured by an underwater observation platform.
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5.1 Reconstruction Method

As discussed in Chapter 1, the software that we have adapted for underwater 3D

reconstruction are PMVS by Furukawa and Ponce [18], and Bundler by Snavely et

al. [48]. These two open-source implementations come together to form a work-

flow for a dense, patch-based 3D reconstruction.

5.1.1 Reference Implementation

Kang et al. showed in an experimental study that the combination of PMVS and

Bundler can produce satisfactory results for underwater reconstruction, given cer-

tain mild assumptions [30]. To follow their terminology, we will refer to the direct

application of these algorithms as “Rdist+Fadj.” The name refers to the fact that

Bundler optimizes both the focal length and radial distortion parameters of each

camera, thereby approximating refraction through the camera intrinsic parame-

ters. (Note that the scene structure is optimized simultaneously.)

For our experiments, we use an initial focal length approximation as described

in section 3.3. The radial distortion model used by Bundler has two parameters

as shown in (3.16). In addition to the optimized focal length and radial distortion

parameters, Bundler also outputs a rotation and translation for each camera. These

parameters are passed into PMVS, along with the undistorted images, to compute

the final dense reconstruction.

5.1.2 Refraction-Corrected Implementation

We made a number of modifications to both Bundler and PMVS to account for

a physically-correct model of refraction, as described in Section 3.3. The most
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substantial changes are outlined here, and the code is made available at www.cs.

ualberta.ca/˜yang/vision.htm. We will refer to the 3D reconstruction

method using this refraction model as “FlatRefract” (in reference to the planar

nature of the refraction interfaces).

Bundler modifications

We modified the main bundle adjustment algorithm to add the refraction parame-

ters n and di. This involves replacing the perspective projection function with

a new refractive forward projection function (Subsection 4.1.4) to map scene

points to image points. The initial triangulation of scene points also needed to

be changed. For convenience in this particular codebase, we used a “virtual focal

length” method very similar to the one described by Jordt-Sedlazeck and Koch

[28]. It is essentially a pixel-wise focal length adjustment where each image point

is back projected into a scene ray, and the ray is then intersected with the refrac-

tion axis to find the equivalent perspective projection. This process is illustrated

in Figure 3.5 for a single refraction.

PMVS modifications

Modifications were made to PMVS in the following areas:

1. Initial feature point matching,

2. Point triangulation,

3. Patch projection and sampling, and

4. Patch neighbor radius.
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The first step in the PMVS algorithm is to detect and match feature points

across images. Since the camera pose and intrinsic parameters are already known,

the search for correspondences is restricted to a small margin around each epipolar

line (see Section 2.1). As shown by Gedge et al., this is incorrect in the presence

of refraction and can lead to erroneous or missed correspondences [20]. We follow

their approach in sampling along the refractive epipolar curves, with two changes:

firstly, the sampling density is automatically adjusted based on the image distance

between sample points. Secondly, the depth limits of the sampling volume are

computed from the minimum allowed angle between triangulation rays (this is

the parameter that ensures a reasonable baseline to point depth ratio). Thus the

need for manually specified parameters is removed.

After each pair of corresponding feature points is obtained, the scene point

is obtained using triangulation to create a patch. We implemented the back pro-

jection method described in Subsection 3.3.1 together with the midpoint triangu-

lation method from Section 2.1. This is followed by a nonlinear optimization to

minimize the reprojection error of the triangulated point, using refractive forward

projection.

The main optimization carried out by PMVS is to minimize the photomet-

ric discrepancy of each patch across multiple views. We chose to implement a

rigorous sampling strategy where every point on a patch is forward projected, ac-

counting for refraction, onto each view where the patch is visible. (In the original

code, only the center point and two orthogonal directions are projected, and the

remaining points are sampled along these directions in image space; see Figure

2.5.) While a straightforward implementation would be rather slow, our imple-

mentation takes advantage of the forward projection technique from Section 3.3,
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Figure 5.1: Relationship between focal length and object distance.

in which the projection of one point can be re-used as the initial guess for neigh-

boring points.

Lastly, a small but significant change concerns the computation of the patch

neighbor radius. This radius controls the distance between neighboring patches,

and is directly proportional to the distance from the camera. In the presence of

refraction, objects in the scene can appear closer or further away depending on

the refractive indices. As we noted in Section 3.3, such a magnification effect can

be approximated by adjusting the camera focal length. For a pinhole perspective

camera without refraction, this is equivalent to changing the distance from the

camera to the object.

Suppose the object, which has a displacement y away from the optical axis, is

located at distance s from the camera and is imaged at point x. If the focal length

is scaled by a certain factor from f to f ′ such that the image now appears at x′,

then the same effect can be achieved with a new distance s′, related to s by the
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same scale factor. With reference to Figure 5.1,

fy

s′
= x′ =

f ′y

s
⇒ s′

s
=
f

f ′
. (5.1)

Therefore, we could scale the patch neighbor radius by a constant factor, based on

the focal length adjustment strategy.

Instead, we choose to follow a more rigorous approach and compute the true

scale factor for each reconstructed patch. For the underwater reconstruction prob-

lem that we are concerned with, the objects always appear closer. This means that

the patch neighborhood radius will be smaller when performing a 3D reconstruc-

tion without refraction correction. In order to achieve the same patch density with

a refraction-corrected reconstruction, it is necessary to adjust the radius according

to the distance along the observed ray to the patch’s apparent position.

Figure 5.2 shows a typical air-glass-water refraction model and compares the

apparent object distance s′ to the actual object distance s. Given that θ and θ′ are
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respectively the angles of the rays with and without refraction, q and q′ are the

corresponding projected points on the first interface from the camera, and y is the

object’s displacement from the refraction axis, we can write:

s tan(θ′) = y = s′ tan(θ)⇒ s′

s
=

tan(θ′)

tan(θ)
=
q′

q
(5.2)

The right side of Figure 5.2 illustrates how the ratio varies with y and the object

distance in water dw.

In the limit as dw → ∞, we observed that s′/s → µ0/µ2, where µ0 and

µ2 are respectively the refractive indices of air and water. This is the same ratio

that we derived in Subsection 3.3.3, suggesting that for distant objects the focal

length scaling may be a reasonable approximation. However, we did not further

investigate the limit convergence properties since the relationship between q and

q′ involves a quartic equation without a convenient closed-form solution.

5.2 Camera Array Calibration

5.2.1 Extrinsic Calibration

The calibration method presented in Chapter 4 only deals with obtaining the re-

fraction and camera parameters of a single view. For 3D reconstruction from

multiple views, we also need the relative pose of each view, as mentioned in

Subsection 2.1.3. We obtain these parameters by capturing images of a standard

checkerboard pattern, extracting the grid points on the pattern, and then running

Bundler using these points as input. Note that the camera intrinsic parameters

are applied first (see 5.2.2), so that the bundle adjustment manipulates only the

77



rotation and translation parameters of each view.

We use a checkerboard pattern instead of a general scene because the grid in-

tersection points can be found accurately1 and matched perfectly across views.

Furthermore, points from multiple placements of the checkerboard can be com-

bined into a single, dense point cloud. After the camera extrinsic parameters are

found, we apply a scaling factor so that the sparse reconstruction output of Bundler

matches the physically measured dimensions of the checkerboard. This allows us

to perform 3D reconstructions at the actual scale and to take measurements in real

world units.

5.2.2 Intrinsic Calibration

By default, Bundler assumes that the principal point (intersection of the optical

axis with the image plane) is the center of the image, and includes the focal length

as an optimization parameter. While these assumptions are reasonable for uncal-

ibrated images, in our work we can easily obtain accurate intrinsic parameters

using the MATLAB Camera Calibration Toolbox [4]. We therefore implemented

an image pre-processing step to correct for radial distortion and shift the principal

point to the image center.

In effect, we compensate for lens distortions and misalignment separately, so

that the Rdist+Fadj method only has to deal with distortion due to refraction. This

pre-processing is also helpful for the FlatRefract method: we can assume a known

focal length with no lens distortion during the bundle adjustment phase, reducing

the complexity and increasing the stability of the optimization.

1We use OpenCV’s findChessboardCorners function [6].
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5.3 Experimental Results

5.3.1 Evaluation Methodology

Our evaluation methodology is similar to the one described by Seitz et al. and

used in the Middlebury Multi-View Stereo benchmark [46]. Specifically, we mea-

sured the accuracy and completeness of the reconstructed model R relative to the

ground truth G. We obtain R simply by considering the center point of each patch

reconstructed by PMVS. For synthetic data we sample the ground truth geometry

very densely (400 points/cm2) to create G, whereas for real data it is obtained

from a multi-view 3D reconstruction in air (see Section 5.3.3).

The first step is to align the two point clouds using an iterative closest point

(ICP) algorithm2. We manually inspect the results to ensure that proper alignment

is achieved. Each point x ∈ G is a correspondence of a point y ∈ R if ||x−y|| <

ρC , where || · || denotes Euclidean distance and ρC is a threshold chosen to be

1mm in our experiments. The completeness of R is then defined as the proportion

of points in G having correspondences in R:

Completeness(R,G) =
|{x ∈ G : ||x− y|| < ρC ,y ∈ R}|

|G|
(5.3)

On the other hand, the accuracy of the reconstructed model is measured in two

different ways. For synthetic data we have the benefit of the ground truth geome-

try, and therefore we compute the perpendicular distance of each point in R to the

nearest surface. For real data we measure the smallest distance from each point in

R to any of its correspondences in G. The distance measured for each point rep-

2We used the open-source CloudCompare software [16].
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Figure 5.3: Renderings of the scene used in our synthetic data experiments. (Left)
An overhead view, with the cameras are positioned near the bottom right of the
image and point toward the top left. The green planes recede away from the cam-
eras and rise upwards, and the furthest planes have enlarged textures to facilitate
feature matching. (Right) Four of the actual camera views.

resents its “error” with respect to the ground truth model. One way to compute an

accuracy score for the reconstructed model is to simply average the point errors:

Accuracy(R,G) =
1

|R′|
∑
y∈R′

min
{x∈G:||x−y||<ρA}

||x− y|| , (5.4)

where R′ = {y ∈ R : ||x − y|| < ρA,x ∈ G} and ρA = 2mm. For sections

with more detailed analysis, however, we characterize the accuracy through error

histograms, allowing us to estimate the number of points within each range of

error values.

5.3.2 Synthetic Data Results

In this subsection we present 3D reconstruction results from synthetically gener-

ated images. Our objective is to study the impact of using a physically-correct

refraction model, while minimizing the influence of unrelated sources of error
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such as lens imperfections, calibration errors, measurement noise, and so on.

We designed a test scene shown in Figure 5.3 consisting of several textured

planes, slanted at different angles and placed at varying depths. This scene covers

most of the scene volume captured by our camera array configuration (see be-

low), ensures a unique solution for point cloud alignment, allows measurement

of anisotropic scaling or shearing in any direction, and facilitates unambiguous

measurement of the distance from each reconstructed point to the ground truth

surface.

We simulated a two-layer flat refraction model based on the setup in our real

data experiments (Subsection 5.3.3), with a 5.6mm layer of acrylic in front of each

camera followed by the underwater scene. The refractive indices that we used are

1.491 for acrylic and 1.333 for water. The cameras are arranged in a grid pattern of

two rows and four columns, with a vertical/horizontal spacing of 0.2/0.15m. The

scene itself has a depth range of about 0.4m and the center is located about 0.6m

away from the camera array. All views were rendered using the POV-Ray ray

tracing program [40], simulating cameras with a resolution of 1032×776 pixels

and a focal length of 1805 pixels (these parameters are derived from our real data

experiments).

Using the camera and scene setup described above, we have nine different test

case combinations of the following variables:

1. Number of views: all eight views, middle two views from the top row only,

or four views by taking the middle two of each row.

2. Refraction interfaces setup: a single set of interfaces shared by all cameras

(as if looking through the same side of a water tank), or a separate set of
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interfaces for each camera. In the latter case, the axis of refraction is either

kept parallel to the optical axis of each camera, or tilted by 3.6 degrees.

Note that in the shared refraction interfaces setup, the cameras are angled inwards

to center the scene in each image. This introduces a refraction axis tilt between 8

and 25 degrees depending on the camera position.

Comparison of Imaging Models

We first compare the 3D reconstruction results of the FlatRefract and Rdist+Fadj

methods. Since we are only interested in the impact of the imaging model, we

leave out the effects of calibration by initializing the reconstruction with the ground

truth camera and refraction parameters. The Rdist+Fadj method was initialized

with the ground truth camera poses and an adjusted focal length (Section 3.3).

We also used perfectly matched, noise-free feature points as input to the bundle

adjustment phase. These feature points were generated from a sparse, regular

sampling of the ground truth geometry, giving about 700 points in each view.

For both FlatRefract and Rdist+Fadj, we investigated three different configu-

rations of the bundle adjustment procedure:

1. All camera parameters (including any refraction parameters) are adjusted.

This is denoted as “full adj.”

2. All parameters except camera translation are adjusted. This is denoted as

“fixed t.”

3. All parameters except camera translation and rotation are adjusted. This is

denoted as “fixed R,t.”
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Additionally, we included results without using bundle adjustment, in which the

FlatRefract method uses ground truth camera and refraction parameters. (There is

no equivalent for Rdist+Fadj, since this imaging model is an approximation.)

Accuracy. Figures 5.4, 5.5, and 5.6 display our experimental results for recon-

struction accuracy. For each imaging model and bundle adjustment configuration,

we plot a histogram of reconstructed point errors as a line graph, with 50 his-

togram bins over the range from 0mm to 2mm. In separate bar graphs we also

visualize the scale factor adjustment that was applied during the point cloud align-

ment process (Subsection 5.3.1). A scale factor of 1 means that the reconstructed

model is at the correct scale, and anything else means that it is either larger or

smaller than the ground truth model. Some examples of the 3D reconstructions

are shown in Figures 5.7, 5.8, and 5.9, together with the ground truth geometry

for a visual comparison.

From this data we can make a number of interesting observations. First of all,

the FlatRefract method maintains high accuracy in all test cases, with the error

distributions heavily biased toward 0 and dropping off rapidly by 0.5mm. The

scale factor errors are also very low, being at most 0.03%. (Note that the results

are not perfect because the PMVS reconstruction phase involves detecting and

matching new feature points, and optimizing patches by projecting onto image

pixels.) As one might expect, accuracy improves when adding more views, and

the differences between the bundle adjustment configurations are negligible since

noise-free feature points were used.

Secondly, the performance of the Rdist+Fadj reconstruction method varies

widely depending on the setup of the refractive interfaces. When the axes of re-
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Figure 5.4: Error distribution and scale factor plots for two views.
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Figure 5.5: Error distribution and scale factor plots for four views.
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Figure 5.6: Error distribution and scale factor plots for eight views.
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fraction are not tilted with respect to the optical axes, Rdist+Fadj can sometimes

yield results on par with FlatRefract, as shown in Figure 5.4 (Top, “fixed R,t”)

and visualized in 5.7 (Bottom Right). This particular test case and configuration

seems to be an exception, however, as all the other test cases show lower accuracy

for Rdist+Fadj. Furthermore, when a modest tilt is introduced in the refraction

axes (see above), the accuracy decreases both in absolute terms and relative to

the refraction-corrected method. This yields some visible discrepancies from the

ground truth data as shown in Figure 5.8. When using a setup with shared re-

fraction interfaces, both the error histograms and the visualizations in Figure 5.9

demonstrate that Rdist+Fadj consistently fails to produce a reasonable reconstruc-

tion result, regardless of the number of views.

Lastly, the 3D reconstructions using Rdist+Fadj show significant and varying

changes to the overall scale of the scene. Previous studies have ignored scene scal-

ing by focusing on metric reconstruction, where scale is ambiguous [30, 31], but

we believe that in many applications it is important to obtain 3D data in real world

units. From this perspective, Rdist+Fadj has the undesirable effect of scaling the

scene by 2-2.5% in several cases (and much worse when using shared interfaces).

Moreover, the amount of scaling is inconsistent as the number of views is varied,

as we see a markedly different pattern for two views compared to four or eight

views. Since the two-view reconstructions largely omit the closest set of angled

planes (see Fig. 5.7, Bottom) because no views are taken from the lower row, this

suggests that the scale factor also depends on which part of the scene is visible.

This is in contrast to the FlatRefract method, where the scale factor is consistently

very close to 1.

If we compare the three bundle adjustment configurations for Rdist+Fadj, we
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see that none of them is clearly superior in all test cases. The “fixed t” configura-

tion gives better accuracy in most cases, but also tends to have the highest scale

factor error. On the other hand, “full adj” generally gives a scale factor close to

1, but has the worst accuracy for two and four views. It appears that there may be

some trade-off between point cloud accuracy and scale factor error.

Completeness. Applying the completeness measure (5.3) to the 3D reconstruc-

tion results yields Figure 5.10. Observe that the completeness scores in the sepa-

rate interfaces test cases closely mirror the accuracy plots discussed above. This

means that in these test cases, there are no major holes or gaps in any of the re-

construction results (corroborated by manual inspection), and incompleteness is

mainly due to loss of accuracy.

Overall, we see once again that the FlatRefract method achieves the highest

completeness score, except where it is matched by Rdist+Fadj (fixed R,t) for two

views, and Rdist+Fadj gives consistently poor results for the shared refraction

interfaces setup. Note that the completeness scores do not reach 1.0 because some

parts of the scene are occluded or fall outside of the cameras’ field of view.

Impact of Feature Detection Errors

In the previous subsection, error-free feature points were used as input to the 3D

reconstruction process. We now assess the impact of errors in feature points by

using Bundler’s built-in feature detection and matching method, which is based

on SIFT [36]. Other than the input feature points, the experiment was structured

with exactly the same test cases and bundle adjustment configurations. The results

for eight views are shown in Figures 5.11 and 5.12. Further results for two and
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Figure 5.7: Reconstructed 3D point clouds (green) overlaid on the ground truth
geometry (black). (Top Row) Reconstruction result for FlatRefract (full bundle
adjustment), eight views, and non-tilted refraction axes. The same scene is shown
from two different angles. (Bottom Left) Result for FlatRefract (fixed R,t), two
views, and no axis tilt. (Bottom Right) Result for Rdist+Fadj (fixed R,t), two
views, and no axis tilt. Magnified views are provided for visual comparison with
Figure 5.8.
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Figure 5.8: Reconstructed 3D point clouds, with highlighted regions showing
deviations from the ground truth geometry. (Left) Result for Rdist+Fadj (full
adj), four views, and tilted refraction axes. Gaps between the reconstructed points
and the ground truth model are visible in the magnified regions, and the remain-
ing highlighted region shows where the points intersect and disappear behind the
ground truth plane. (Right) Result for Rdist+Fadj (full adj), eight views, and tilted
refraction axes. The magnified region shows where points are not centered on the
ground truth plane, and in the other two regions the density of points varies, indi-
cating that they form slightly curved surfaces intersecting the ground truth model.
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Figure 5.9: Reconstructed 3D point clouds, showing examples where Rdist+Fadj
performs poorly. (Left) Result for Rdist+Fadj (fixed R,t), eight views, and shared
refraction interfaces. (Right) Result for Rdist+Fadj (full adj), eight views, and
shared refraction interfaces.
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refraction axis with respect to the optical axis, and “Shared Int.” refers to the
shared refraction interfaces setup.
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four views are shown in Appendix A.

Compared with the previous accuracy results, we see that the Rdist+Fadj re-

sults are generally about the same, with a few exceptions: the “fixed t” configura-

tion improves significantly for two views for the separate interfaces test cases, and

yet is considerably poorer for eight views with no refraction axis tilt; also, the “full

adj” configuration improves slightly for four and eight views with tilted refraction

axis. On the other hand, with the FlatRefract method there are only instances

where the results are poorer, since all of the bundle adjustment configurations al-

ready matched ground truth configuration previously. Of particular interest is that

the “fixed R,t” configuration performed much worse for two views, but not for

four or eight views; similarly, the “full adj” configuration suffers in four and eight

views but not for two views. There is no configuration for the FlatRefract method

that always performs worse when using feature points with errors, and neither is

there any that always performs well (except for the ground truth configuration).

Given the evidence, it is difficult to draw definite conclusions about the impact

of feature point errors, other than to note that they can sometimes cause measur-

ably worse results for both the Rdist+Fadj and FlatRefract methods. There appears

to be complex interactions between the parametrization of the bundle adjustment,

the camera setup, and the scene itself (recall that the two-camera setup does not

capture the front-most part of the scene), and a more detailed study is beyond the

scope of this thesis. We are also not sure why Rdist+Fadj improves in some in-

stances, but it may have to do with differences in where Bundler-detected feature

points are concentrated, compared to the uniform sampling that we used. Never-

theless, we point out that the scale factor errors and completeness scores (Figure

5.12) are broadly very similar to the previous results, indicating that feature point
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Figure 5.11: Error distribution and scale factor plots for eight views.
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Figure 5.12: Completeness measure for eight view 3D reconstruction results using
feature points detected by Bundler.

errors do not drastically alter the reconstructed 3D model characteristics.

Impact of Calibration Errors

Some amount of error in the calibrated camera parameters are inevitable in real

applications. Specifically with respect to the refraction model parameters, we

wish to understand the effect of such errors on 3D reconstruction and the extent

to which they can be corrected during the bundle adjustment phase.

We repeated the synthetic data calibration experiment from Chapter 4 (Table

4.1 row II, 1px Gaussian noise), but using the lower resolution of the cameras in

our array, and obtained a representative sample of errors in the camera-to-glass

distance d0 and angular errors in the refraction axis. These error values are mul-

tiplied by a factor ranging from 1.0 to 18.0 and used to corrupt the calibration

parameters input to the 3D reconstruction stage. Table 5.1 shows a subset of the
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Figure 5.13: Bundle adjustment results for two views.

error values. Since the refraction model parameters do not apply to Rdist+Fadj,

we look at only the FlatRefract method. We also focus on the shared refraction

interfaces setup as it corresponds to the setup in our real data experiments.

Multiplication Factor 1 5 10 15
Mean Initial d0 Error (m) 0.0029 0.0147 0.0294 0.0441

Mean Initial Axis Error (deg) 0.1914 0.9572 1.9144 2.8716

Table 5.1: Error values added to the calibration data. The base values in the first
column are multiplied by constant factors, some of which are shown for reference.

Figures 5.13, 5.14, and 5.15 show the errors remaining in d0 and the refraction

axis, averaged over all cameras, after the bundle adjustment phase of the 3D re-

constructions. The feature points used were detected from the images by Bundler.

As the error in the initial calibration data is increased from 1 to 18 times the ex-

pected amount from our calibration method (see above), at some point the bundle

adjustment may fail to recover the correct solution such that the residual errors

increase markedly. For the “fixed t” configuration this appears to happen between

8-10 for two views, and around 12-15 for four and eight views. In terms of refrac-

tion axis error this is in the range of 2-3 degrees, which can potentially occur in

practice as we saw in Table 4.3 for Agrawal et al.’s calibration method.
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Figure 5.14: Bundle adjustment results for four views.
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Figure 5.15: Bundle adjustment results for eight views.
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Remarkably, the “fixed R,t” bundle adjustment configuration seemed to be

quite insensitive to the starting conditions, in some cases performing better when

the initial error was higher. On the other hand, the “full adj” configuration yielded

consistently poor results. Even if we ignore the error in d0, which might be caused

by a change in the overall scene scale (since camera positions are not fixed in this

configuration), the large refraction axis errors suggest that straightforward bun-

dle adjustment is insufficient to optimize camera extrinsic and refraction model

parameters simultaneously. A similar method developed by Jordt-Sedlazeck and

Koch seems to imply otherwise, but they do not provide a quantitative evalua-

tion in either synthetic or real experiments to show that such an optimization was

successfully achieved [28].

Comparing the bundle adjustment results with respect to the number of views,

we see that lower errors are achieved with more views. In fact, for two views in the

“fixed R,t” configuration the refraction axis error is about 0.8 degrees even when

the initial error was lower. This improves in four and eight views where the re-

fraction axis and d0 errors remain below 0.063 degrees and 0.0026m respectively.

We note, however, that this bundle adjustment configuration is given perfect data

for the camera poses, which may not be a reasonable assumption in practice.

We analyze the 3D reconstruction results in Figures 5.16, 5.17, and 5.18. The

plots for accuracy are similar in overall shape to the refraction axis error plots,

affirming that the refraction model parameters have a direct influence on recon-

struction quality. As for scale factor errors (the percentage difference between

1.0 and the reconstructed model scale), the “full adj” configuration predictably

does not maintain the scale of the scene. In contrast, the errors for the other two

configurations are generally below 0.3% (sometimes dipping to 0.02%), with the
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Figure 5.16: Reconstruction accuracy results for two views.
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Figure 5.17: Reconstruction accuracy results for four views.

exception of “fixed t” with two views. Once again “fixed R,t” is seen to be the

most robust bundle adjustment configuration. Plots for reconstruction complete-

ness closely mirror the accuracy plots, and are included in Figure A.5.

5.3.3 Real Data Results

For our real data experiments, we set up a camera array and an underwater scene

in a water tank as shown in Figure 5.19. Similar to the simulated camera array in

our synthetic data experiments, the cameras are in two rows of four and spaced

roughly 0.15m apart horizontally and 0.2m vertically. The array is placed parallel
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Figure 5.18: Reconstruction accuracy results for eight views.

Figure 5.19: Experimental setup for our real data experiments. (Left) The scene
set up inside an acrylic water tank. (Right) The camera array.

to the flat surface of the tank so that the lens of each camera is within about 0.02m

of the surface, and the cameras are angled inwards to capture the scene which is

approximately 0.56m away. Each camera has a resolution of 1032×776 pixels

and a horizontal field of view of about 32 degrees.

The scene itself consists of two aquarium objects attached together on a rigid

base, positioned to provide a depth range of about 0.22m in each camera’s field

of view. To obtain a ground truth model, we removed the objects from the wa-

ter and captured 100 images from different angles using a turntable, as shown in

Figure 5.20. The model was generated by Bundler and PMVS using the standard
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Figure 5.20: (Top Left) Camera setup to capture ground truth 3D model. (Top
Right, Bottom) Various rendered views of the reconstructed ground truth model.
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perspective projection model and known camera intrinsic parameters (see Sub-

section 5.2.2). Additionally, we placed a checkerboard pattern at the back of the

model. The grid intersection points of the pattern were extracted separately and

used to scale the model into real world units, similar to the process described in

Subsection 5.2.1.

Overall Procedure

We first present a summary of the procedure we used in our real experiments,

tying together all of the calibration and reconstruction steps discussed previously.

1. Calibrate the intrinsic parameters for each camera (Subsection 5.2.2).

2. Calibrate the extrinsic parameters for the camera array as a whole (Subsec-

tion 5.2.1).

3. Compute chromatic aberration correction image warp parameters for each

camera (Subsection 4.2.3).

4. Calibrate the refraction model parameters for each camera (Chapter 4).

5. Capture images of the underwater scene.

6. Apply either the FlatRefract refraction-corrected reconstruction method (Sub-

section 5.1.1), or the Rdist+Fadj perspective approximation method (Sub-

section 5.1.2).

Figure 5.21 shows examples of the underwater images that we captured and

used for our 3D reconstructions.
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Figure 5.21: Examples of the images used in our real data 3D reconstruction
experiments.

Figure 5.22: 3D reconstruction results for the FlatRefract method using eight
views (fixed R,t), overlaid on yellow points of the ground truth model.

102



Reconstruction Results

Our calibration and 3D reconstruction method gave convincing results, as shown

in Figure 5.22, using the full eight-camera array and the “fixed R,t” bundle ad-

justment configuration. The data shown in Figure 5.24 indicate that high accuracy

was achieved, with a mean error of 0.53mm, and a scale factor error of 0.76%.

In contrast, all of the 3D models reconstructed with the Rdist+Fadj method are

noticeably distorted and have at least 10% scale error. Figure 5.23 shows a typi-

cal result using eight views, which appears horizontally compressed, while Figure

A.6 shows the most visually acceptable model we obtained, which comes from

using two views in the “fixed t” configuration. We believe that increased distor-

tion occurs with eight views because the cameras at the left and right ends of the

array are included, and they are more steeply tilted with respect to the refraction

interfaces.

We also performed the 3D reconstruction using two and four views by taking

subsets of the underwater images, in the same manner as in our synthetic data

experiments. Compared to using all eight views, the accuracy of the FlatRefract

method decreases, although it is still clearly better than Rdist+Fadj (see Figure

5.24). However, the scale factor error of around 3.7% is unexpectedly high. Our

analysis on the impact of calibration errors in Subsection 5.3.2 showed that bundle

adjustment of the refraction parameters can be problematic with too few views,

and this appears to be the case here. (Although the “fixed R,t” configuration did

not have significant scale errors in simulation, that experiment was done with

perfect camera pose parameters, which is not the case with real data.)

Additional 3D reconstruction results using different bundle adjustment con-

figurations are included in Appendix A.
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Figure 5.23: 3D reconstruction results for Rdist+Fadj using eight views (full adj),
overlaid on yellow points of the ground truth model.
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Figure 5.24: Accuracy of real data 3D reconstructions.
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Figure 5.25: Completeness of real data 3D reconstructions.

Some noteworthy differences exist between the results in Figure 5.24 and our

synthetic data experimental results. First, the vertical scale of the accuracy plot

is significantly lower, and the error is more broadly spread out towards 1mm and

above. Several potential factors could have contributed to this increase in error,

including lens distortions and focusing issues, as well as the fact that the ground

truth model is itself not perfect. We also noticed that the images contained some

color-fringing and blurring caused by dispersion, which our method does not cor-

rect for, and which may interfere with the photo-consistency measure used by

PMVS. (We initially assumed that a small amount of dispersion under normal

lighting conditions would not present a problem. In hindsight, it may be advan-

tageous to perform color channel warps using the refraction model parameters,

analogous to the process described in Subsection 4.2.3.) Another possible factor

is that the wall of our water tank is not perfectly flat (see 5.3.3, “Calibration”).

A second difference from our synthetic data results is that there is a steep

decline in the number of points with error below 0.3mm. We believe this is largely

due to the way that the error is measured, since the ground truth in this case is
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a point cloud rather than a continuous surface (see 5.3.1), meaning that a point

exactly on the surface will still not have zero error unless it coincides with a point

on the ground truth model.

Third, the 0.76% error in scale factor for eight views is about an order of mag-

nitude greater than in our synthetic data experiments. It is likely that at least part

of this difference comes from physical measurement errors during the calibration

and reconstruction process, including measurement of the checkerboard patterns

used for intrinsic and extrinsic calibration and for rescaling of the ground truth

model (Subsection 5.3.3).

Calibration

The calibrated refraction parameters visualized in Figure 5.26 and listed in Table

A.1. While we did not have the ground truth available, the visualization suggests

that a good calibration of the refraction axes was achieved, because the refraction

interfaces are nearly parallel. On the other hand, the refraction interfaces do not

line up as they should, being part of a single tank wall, meaning that distances

d0 are not very accurate. Fortunately, during the bundle adjustment phase of our

3D reconstruction procedure, much of this error was corrected to give the result

shown in Figure 5.27.

Some difficulties in calibrating d0 were noted in our previous experiments in

Subsection 4.3.2. We investigated a number of possible reasons including lens

distortion and chromatic aberration, but could not find an adequate explanation.

Subsequently we discovered that the flat surface of our acrylic-walled tank was in

fact not perfectly flat, with an outward deflection in the centre measuring about

3mm relative to the left and right edges, and 1.5mm relative to the top and bottom.
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Figure 5.26: Camera array calibration result. Each camera is shown as a set of

XYZ axes (red, green, blue), and translucent blue squares represent the refraction

interface closest to it.
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Figure 5.27: Camera array calibration result, after bundle adjustment. Each cam-

era is shown as a set of XYZ axes (red, green, blue), and translucent blue squares

represent the refraction interface closest to it.

Figure 5.28: A straight edge placed against the wall of our water tank. The tank

wall comes out of the page at the top of the image (the camera is looking down

at the ground). The gap between the ruler and its reflection reveals that the wall

surface is not completely flat.
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This can be seen by placing a straight edge against the tank wall, as in Figure 5.28.

We conducted several simulated calibrations with the refraction interface mod-

elled as a quadratic surface (forward projection was done by extending the method

in Subsection 4.1.4 to use a two-dimensional optimization). When the refraction

interface was tilted by 20 degrees, we observed errors in d0 ranging from 6mm to

9mm depending on the orientation of the calibration pattern; when the refraction

interface was not tilted, the error was lower at around 1mm. Although we did not

collect enough results to reach a conclusion, further investigation may be merited.

We believe that in most underwater applications, curvature of the refraction inter-

faces will not be an issue, since the ports of camera housings are usually small

and made of glass that will not bend under pressure.

5.3.4 Application to Seabed Images

Having experimentally verified our calibration and 3D reconstruction methods in

the laboratory, we now apply them to data acquired by the underwater observation

platform mentioned in Chapter 1. This platform, operated by Ocean Networks

Canada, is situated in an area known as Folger Passage, just off the west coast of

Vancouver Island in British Columbia, Canada. It is mounted at a depth of 23m on

a reef containing many organisms such as sponges, barnacles, and algae, whose

growth and physical changes over time are of interest to marine biologists3.

Temp. (◦C) Salinity (psu) Wavelength (nm) Est. Refractive Index [42]
9.385 29.828 598 1.339

Table 5.2: Seawater conditions at time of capture of the undersea dataset, and its
estimated refractive index for a typical light wavelength.

3For more information, please refer to: http://www.oceannetworks.ca/
installations/observatories/northeast-pacific/folger-passage
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Figure 5.29: Undersea dataset from the Folger Passage observatory operated
by Ocean Networks Canada. This dataset was captured on January 1, 2013 at
19:00:04.

Figure 5.29 shows the images in the dataset that we used, captured by the cam-

era array in Figure 1.1. The cameras, which are Point Grey Research 5MP color

Grasshoppers, have a resolution of 2448×2048 pixels and a 54 degree horizontal

field of view, and are mounted in individual waterproof housings with flat glass

ports. Eight of these cameras are rigidly mounted in a semicircle with radius 0.3m

and angled downward by 30 degrees. Two LED lights illuminate the scene, since

not much sunlight reaches the depth at which the platform is located.

We had the opportunity to capture a set of calibration data while the observa-

tion platform was being serviced on land. The calibration results shown in Figure

A.11 were obtained by applying the same calibration steps described in Subsec-

tion 5.3.3. (Calibrated parameter values are given in Table A.2) We assumed a

glass thickness of 6mm with refractive indices of 1.51421 and 1.5302 for 660nm

and 405nm respectively. The refractive indices for water were assumed to be the

same as in our laboratory experiments, since the cameras were immersed in fresh

water when capturing the calibration data. However, for the 3D reconstruction
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phase, the refractive index of sea water is needed. Although a direct measurement

is not available, the observation platform includes instruments to measure water

temperature and salinity. We use the empirical equation derived by Quan and Fry

[42] to estimate the seawater refractive index, as presented in Table 5.2.

The reconstructed point clouds are shown in Figure 5.30, providing a visual

comparison between the results from the Rdist+Fadj and FlatRefract methods.

The most evident differences are found on the periphery of the reconstruction

volume, with the FlatRefract method reconstructing additional regions along the

right edge and on the top left. On the other hand, the Rdist+Fadj “fixed t” recon-

struction contains a larger group of points in the bottom-left corner. As for main

subject of the scene, the yellow sponge in the middle, we cannot say that any of

the three results is definitely better than the others.

Although a ground truth model is not available for a quantitative evaluation,

we can still compare the point clouds with each other. The FlatRefract recon-

structed model contains 375,303 points, which is 4.7% more than than Rdist+Fadj

“fixed t” with 358,374 points, and 7.9% more than Rdist+Fadj “full adj” with

347,752 points. By aligning the models using ICP, we found that the Rdist+Fadj

“fixed t” model was 3.2% smaller than the refraction-corrected model, and the

Rdist+Fadj “full adj” model was 1.7% larger. The disparity in scale can be seen in

Figure 5.31. Considering our previous synthetic and real data results, it is likely

that the Rdist+Fadj models are incorrectly scaled, while the FlatRefract model is

probably close to actual scale.

Additionally, the ICP aligned point cloud models reveal some distortion in

the scene. While difficult to show in static images, we observed that compared

to the FlatRefract model, the left side of the Rdist+Fadj “full adj” model ap-
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Figure 5.30: Qualitative comparison of the 3D reconstruction results using: (Top)
Rdist+Fadj “full adj,” (Middle) FlatRefract “fixed R,t,” and (Bottom) Rdist+Fadj
“fixed t.” Regions of interest are highlighted.
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Figure 5.31: The 3D reconstruction from the FlatRefract method in yellow,
overlaid with the reconstructions from: (Left) Rdist+Fadj “fixed t,” and (Right)
Rdist+Fadj “full adj.” The difference in scale can be easily seen in both cases.

Figure 5.32: Point cloud distance between the FlatRefract reconstruction and:
(Left) Rdist+Fadj “fixed t”, (Right) Rdist+Fadj “full adj.” These point cloud dis-
tances were computed after ICP alignment. The colors blue, green, yellow, and
red correspond to point distances of approximately≤0.5mm, 1.1mm, 2.1mm, and
≥3.2mm respectively.
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Configuration Mean Dist (mm) σ
Fadj+Rdist (full adj) 0.780 1.564
Fadj+Rdist (fixed t) 0.837 1.227

Table 5.3: Point cloud distance statistics after ICP alignment. Distances are mea-
sured against the point cloud reconstructed with the FlatRefract method.

pears stretched outwards, while the back of the yellow sponge is enlarged. The

Rdist+Fadj “fixed t” model is more similar to the FlatRefract model, but differ-

ences are still visible in the periphery areas which are shifted inward at the upper

left and right and outward at the lower left. We have attempted to illustrate these

differences in Figure 5.32, which shows the closest distance from each point of

the Rdist+Fadj models to the FlatRefract model4. Table 5.3 gives the summary

statistics. Although this does not tell us which of the models being compared

deviates more from the ground truth, we would suspect Rdist+Fadj based on the

theory and our controlled experiments.

In summary, we have demonstrated that our new calibration and 3D recon-

struction methods can be successfully used in a real underwater application, with

favorable results. Several more views of the reconstructed 3D model are available

in Appendix A.

4Point cloud distances were computed using the open-source CloudCompare software [16]
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Chapter 6

Conclusions and Future Work

We began this thesis with an overview of recent developments in refractive geom-

etry and underwater 3D reconstruction. This research area has been gaining pop-

ularity, with the increasing availability of underwater images through initiatives

such as Ocean Networks Canada. A number of different authors have attempted

to tackle the problems of calibration, 3D reconstruction, or both. We noted a

trend toward the use of a flat refraction model as a representation of the physical

imaging process. In Chapter 3, we gave a synthesis of some characteristics of

this imaging model, including forward and back projection, and certain geometric

constraints.

Building upon several insights about the flat refraction model, we were in-

spired to develop a novel calibration method. Our idea was to measure the disper-

sion of light, a side-effect of refraction that is often ignored, yet always present to

some degree with flat port underwater camera housings. In Chapters 3 and 4 we

demonstrated that the dispersion effect is not only measurable with a consumer-

grade camera, but that it also leads to new geometric constraints on the refraction
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model. By combining these constraints with an existing calibration method, we

were able to obtain a new method involving a simpler set of equations. Experi-

ments using simulated data showed that our method consistently achieves better

accuracy for all calibration parameters.

We designed and created a new calibration device for use with our method. It

emits a precise pattern of light in two distinct wavelengths, chosen to maximize

the dispersion effect. We developed the necessary image processing techniques

to decouple and measure the two wavelengths emitted simultaneously. Using this

device and a large water tank, we performed a calibration experiment with real im-

ages. Quantitative evaluation against ground truth data confirmed that our method

yielded better accuracy compared to previous work.

In Chapter 5 we set out to apply our calibration method in 3D reconstruction.

We described a series of modifications to existing reconstruction algorithms, thor-

oughly integrating the flat refraction model in such a way that a fair comparison

could be performed with the perspective camera model. We then detailed a pro-

cedure to calibrate the intrinsic, extrinsic, and refraction parameters of a camera

array using our calibration method together with existing software.

Through a series of experiments with simulated data, we gained a better under-

standing of how the flat refraction model compares with the standard perspective

model. Whereas previous works had been somewhat contradictory as to whether

the perspective model works in underwater 3D reconstruction, we found that a

clear explanation should take the scale factor of the scene into account. Recon-

structions with the perspective model may change the scale factor error by up

to several percent, and this could be construed as a reconstruction error; on the

other hand, if the geometry is scaled to fit the ground truth, then the deviations
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can be small in some situations. We determined that such deviations increase as

the refraction interfaces are tilted with respect to the cameras, and that when the

cameras are angled to view a scene behind a single set of refraction interfaces, the

perspective model fails to give acceptable results. In contrast, the flat refraction

model gave good results in all cases.

Next, we studied the impact of calibration errors and feature detection errors

on 3D reconstruction with the flat refraction model. Both of these factors some-

times caused a discernible reduction in the reconstruction quality, and this was

mainly due to the bundle adjustment optimization being unreliable. In particular,

we discovered that optimizing camera pose and refraction parameters simultane-

ously often yielded poor results, even if scale factor changes were ignored. Nev-

ertheless, with sufficiently many views, known or partially known camera pose

parameters, and a reasonably accurate initial calibration, the bundle adjustment

worked well as expected.

Lastly, we performed 3D reconstruction experiments using real images cap-

tured both in the laboratory and on the ocean floor. Our laboratory results included

a comparison with ground truth data, which indicated that our refractive calibra-

tion and reconstruction methods yielded a highly accurate reconstruction. The

same was not true of the perspective camera model, which did not give acceptable

results.

The reconstruction results with ocean floor images was less clear-cut, due to

a different camera array configuration in which the perspective model performed

better. We compared the reconstructed point clouds visually and numerically to

reveal some structural differences. Although ground truth data was not available in

this case, indirect evidence suggested that the reconstruction using the refraction
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model was likely more accurate and closer to the actual scale. This served to

demonstrate a successful application of our methods in a real usage scenario.

6.1 Future Work

One of the main difficulties that we experienced in performing 3D reconstructions

with real images was with bundle adjustment. Errors arising in the calibration

of camera pose and refraction parameters meant that this was a necessary step,

but our implementation based on Bundler was not always reliable. It would be

useful to investigate new error functions besides reprojection error, perhaps add

soft constraints to various parameters, and tune the optimization options. There

might also be room for improvement in the feature detection, matching, and outlier

rejection processes, as the existing algorithms do not account for refraction. In our

experience, such enhancements would be especially beneficial when using only

two views.

If a reliable bundle adjustment method could be found, it would be interesting

to extend our work to support multiple image sets with a moving camera array.

Currently our method requires a calibrated camera pose for each image, so for

an eight-view reconstruction we used eight cameras mounted rigidly together. A

more flexible approach would be to use, for example, a rig with only two cam-

eras to take multiple images or videos of the scene from different angles, and

combine them in a single 3D reconstruction. This would provide increased scene

coverage, while still reconstructing the scene at the actual scale because of the

fully-calibrated camera rig.

Our calibration method, while offering accurate results, has some obvious lim-
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itations. Most notably, our calibration device is rather bulky and only suitable for

use in controlled environments. It may be possible to create a device similar to a

checkerboard pattern in size by using different optical components such as light

pipes and fiber optics. Conversely, a powered calibration device might not be

needed at all if it could be replaced by a lighting unit, which illuminates a general

scene with two distinct wavelengths.

A second limitation of our method is that precise refractive index values are

needed for each wavelength, and the values must be accurate at least relative to

each other. Further investigation is needed to determine how accurate the values

need to be in absolute terms. One option is to calibrate the refraction parameters in

a controlled environment, since underwater cameras usually do not move within

their housings when deployed.

Lastly, our calibration procedure for an entire camera array is quite involved,

requiring four sets of images for the camera intrinsic and extrinsic parameters,

the refraction model parameters, and chromatic aberration correction. It should

be possible to calibrate both the camera extrinsic (pose) parameters and refraction

model parameters with a single set of images using the calibration device. This

would save time when working with large camera arrays.

Other potential improvements for our calibration and 3D reconstruction meth-

ods include: adding GPU acceleration for refractive forward projection, making

the detection of the calibration pattern points more robust, and correcting for dis-

persion in underwater images using the calibrated refraction model. The last of

these may be useful for underwater photography in general, and not just for 3D

reconstruction.

Finally, we would like to mention two research ideas related to dispersion that
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we did not have time to explore. The first is that 3D reconstruction using a single

view might be possible by illuminating a scene in two different wavelengths, and

imaging it through a refractive interface. The effect is similar to the work of Chen

et al. [11], but using only a single image and without requiring that the refractive

medium be removed.

The second idea relates to the work of Kutulakos and Steger [33] on recon-

structing refractive surfaces. We hypothesize that by using two or three different

wavelengths, additional constraints are imposed that allow more refractive sur-

faces to be recovered, or the same number of surfaces but with fewer views. We

are not sure if this can be made practical, but it seems to be at least of theoretical

interest.
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Figure A.1: Error distribution and scale factor plots for two views, using feature
points detected by Bundler. See Subsection 5.3.2.
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Figure A.2: Error distribution and scale factor plots for four views, using feature
points detected by Bundler. See Subsection 5.3.2.
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Figure A.3: Completeness measure for two views, using feature points detected
by Bundler. See Subsection 5.3.2.
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Figure A.4: Completeness measure for four views, using feature points detected
by Bundler. See Subsection 5.3.2.
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Figure A.5: 3D Reconstruction completeness results for simulated data with vary-
ing amounts of error in the initial refraction model parameters. See Subsection
5.3.2

Initial Calibration After Bundle Adjustment
Camera φ θ d0 φ θ d0

1 16.38 24.34 0.0341 16.02 23.61 0.0207
2 20.80 15.15 0.0213 19.72 15.21 0.0215
3 19.79 -7.26 0.0289 20.23 -7.39 0.0315
4 14.94 -27.54 0.0282 15.09 -27.82 0.0214
5 -3.92 26.84 0.0409 -4.30 26.59 0.0264
6 -1.78 10.79 0.0472 -2.45 10.86 0.0257
7 -4.74 -3.86 0.0447 -4.74 -4.01 0.0247
8 -2.40 -22.42 0.0358 -2.57 -23.06 0.0258

Table A.1: Calibration data for our 3D reconstruction experiments with a water
tank. The cameras are in two rows of four, and numbered left-to-right and top-
to-bottom. The Euler angles φ and θ give the rotation of the axis of refraction
about the X and Y axes respectively, and are specified in a left-handed coordinate
system. See Subsection 5.3.3.
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Figure A.6: 3D reconstruction results for Rdist+Fadj using two views (fixed t),
overlaid on yellow points of the ground truth model. See Subsection 5.3.3.
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Figure A.7: Accuracy of real data 3D reconstructions. See Subsection 5.3.3.
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Figure A.8: Completeness of real data 3D reconstructions. See Subsection 5.3.3.
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Figure A.9: Accuracy of real data 3D reconstructions. See Subsection 5.3.3.
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Figure A.10: Completeness of real data 3D reconstructions. See Subsection 5.3.3.
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Figure A.11: Calibration result for the Folger Passage underwater observation

platform camera array, after bundle adjustment. Each camera is shown as a set of

XYZ axes (red, green, blue), and translucent blue squares represent the refraction

interface closest to it. See Subsection 5.3.4.
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Figure A.12: Additional views of the point cloud reconstructed with the FlatRe-
fract method. See Subsection 5.3.4.
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Initial Calibration After Bundle Adjustment
Camera φ θ d0 φ θ d0

1 1.12 -0.19 0.0275 1.50 -0.81 0.0300
2 0.04 0.14 0.0257 0.30 -0.57 0.0314
3 -0.37 -0.22 0.0280 -0.27 -0.81 0.0313
4 0.02 -0.01 0.0251 -0.00 -0.44 0.0313
5 0.24 -0.67 0.0253 0.15 -0.81 0.0325
6 0.74 0.71 0.0284 0.70 0.85 0.0335
7 0.48 -0.37 0.0306 0.49 -0.04 0.0358
8 0.35 -0.14 0.0289 0.44 0.38 0.0334

Table A.2: Calibration data for the Folger Passage underwater observation plat-
form camera array. The Euler angles φ and θ give the rotation of the axis of
refraction about the X and Y axes respectively, and are specified in a left-handed
coordinate system. See Subsection 5.3.4.

Figure A.13: Reconstructed 3D model with the FlatRefract method, after applying
Poisson Surface Reconstruction. See Subsection 5.3.4.
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