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In this article, a novel edge-domain decomposition (EDD) method is proposed to solve 3-D nonlinear finite element (FE) problems of
electromagnetic devices and transient field circuit co-simulation. The method applies reduced magnetic vector potential formulation
to discretize the physical problem based on 3-D edge elements, and the solution region is divided into many sub-domains that
only contain one edge unknown. The solution of lightweight nonlinear sub-domain systems can be massively parallelized, and the
neighbor-to-neighbor communication scheme eliminates the need to assemble the global FE matrix. This article also introduces an
indirect coupling scheme to handle large eddy currents to interface the EDD FE system with external circuits. The abovementioned
algorithms are then implemented on a many-core GPU for transient field circuit co-simulation. The result shows an auto-gauging
property, and the comparison with a commercial FE software indicates a speedup of over 43 times with relative error less
than 2%.

Index Terms— 3-D edge element, domain decomposition, Eddy current field, field-circuit coupling, finite element (FE) method,
graphics processors, nonlinear, parallel processing, reduced magnetic vector potential.

I. INTRODUCTION

THE finite element method (FEM) has become one of
the most commonly utilized tools in the modeling and

design of electro-magnetic apparatus, such as transformers and
power inductors, due to its superior precision and ability to
handle complex geometries. Such good accuracy gives raise
to finite element (FE) and circuit co-simulations [1], where
the computation for nonlinear device behaviors is always
encountered.

Traditionally, the physical problem of the device is
converted to a large global FE matrix system. The
Newton–Raphson (NR) method is then implemented to deal
with material nonlinearity in the global matrix. However, the
NR scheme requires repetitive assembling and solution of
the global Jacobian matrix at each iteration step. Moreover,
if the external circuit equations are integrated into the global
Jacobian matrix, the solvability of the matrix system can
be easily damaged [2]. These properties lead to a severe
computational burden.

On the other hand, the development of computation hard-
ware has reached a bottleneck on the increment of single-core
clock speed during the past decade, and the prevalent trend
is to increase the number of processing cores to achieve
better performance. Multi-core CPUs and many-core GPUs are
widely applied for high-performance computing. For example,
the recently released NVIDIA Tesla V100 GPU is equipped
with 5120 Cuda cores and 16 GB HBM2 memory [3], which
encourages researchers to develop massively parallelized algo-
rithms to exploit such computational power [4].
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Under such a trend, many different methods were proposed
to adapt the time-consuming nonlinear FE algorithm for par-
allel architectures. For example, the domain decomposition
methods, including the overlapping Schwartz scheme [5] and
the non-overlapping FETI [6] scheme, divide the global system
into several smaller sub-domain problems so that the lighter
sub-domain matrices can be solved in parallel. To acceler-
ate the solution of those matrices, the super LU/paralleled
conjugate gradient method was introduced. To avoid frequent
updating for nonlinearity in those matrices, the transmission
line modeling method [7] was implemented.

However, the abovementioned methods still need large
matrices, and massive parallelism is hardly achieved since
piecewise information, generated from each domain element,
is integrated into one big system and is solved simultaneously
in a single step. This is a centralized way of thinking. A decen-
tralized thinking pattern, in contrast, could fully unlock the
computational power of massively parallelized architectures.
For example, the GPU-based algorithm achieved element-wise
parallelism to accelerate matrix-vector multiplication [8], and
a decent speedup was observed.

In addition, a novel decentralized scheme called
nodal-domain decomposition relaxation (NDDR) was
introduced recently for 2-D nodal triangular FEM [9]. The
method has the following key features. All sub-domains are
shrunk into a minimum size at a single-node level, and each
sub-domain has only 1 degree of freedom (DOF) that can be
independently solved. Also, each sub-domain only commu-
nicates with its neighboring domains in a distributed manner.
Benefitting from the abovementioned properties, the method
allows the handling of material nonlinearity during iterations,
as well as node-level parallelism and matrix-free computation.

Despite the excellent modularity for massively parallelized
architectures, the abovementioned nonlinear NDDR method
was only developed for 2-D triangular elements. While,
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in field-circuit co-simulations, the geometry of a nonlinear
EM device is always modeled in 3-D for better precision, a
3-D time-domain nonlinear FEM with similar technique is
rarely seen. Furthermore, the abovementioned 2-D NDDR
FEM was designed based on nodal elements in a scalar
form. However, nodal scalar elements may reduce accuracy
around sharp corners of the geometry [10]. If the material
involves large permeability differences, the numerical error
becomes substantially large, regardless of the selection of
the penalty factor. The finite edge elements with vector
interpolation function, in contrast, do not have the above
problems [11]. Based on the aforementioned facts, it has
become critically important to explore new algorithms
to integrate the abovementioned decentralized-domain
decomposition scheme with 3-D edges elements, especially
for nonlinear transient field-circuit co-simulation where a
huge amount of computational resource is needed.

In this article, we extend our former effort of the 2-D
NDDR scheme [9] further to the nonlinear 3-D edge ele-
ments. It shares the similar decentralized idea of applying
domain-decomposition to each node and element. However,
rather than solving a simple 2-D problem with scalar nodal
unknowns, we achieved edge-level parallelism on the reduced
magnetic vector potential (RMVP) for 3-D vector elements
with much larger DOFs. Different convergence and gaug-
ing behaviors are also explored. Furthermore, we purpose a
field-circuit coupling scheme that allows large eddy current
and separate solutions of circuit and FE systems with high
accuracy. Inductor and transformer cases are studied to verify
the accuracy and efficiency of the proposed edge-domain
decomposition (EDD) and field-circuit coupling scheme, and
comparison with Comsol indicates a good accuracy and decent
speedup of over 43.

This article is arranged as follows. Section II introduces the
eddy current RMVP formulation discretized by edge element
interpolation functions. In Section III, the decentralized idea
is extracted from traditional schemes and is extended as
the new EDD method. Section IV proposes the field-circuit
coupling technique, which is then integrated with the EDD
method in the case studies shown in Section V. Finally,
Sections VI and VII give the discussion and the conclusion,
respectively, of the work.

II. FEM FORMULATION FOR EDDY CURRENT ANALYSIS

A. Reduced Magnetic Potential Formulation

Quasi-static Maxwell’s equations describe the physical
restriction of magnetic flux density ( �B) in the eddy current
analysis. However, directly solving the Maxwell’s equations
leads to inconvenience in numerical computation since the
parallel component of �B jumps at material interfaces [12].
To avoid such discontinuity, potential functions ( �A-ϕ for-
mulation) were applied to achieve smooth solution between
different materials [12]. The �A-ϕ formulation can be further
simplified to the reduced �A formulation when edge element is
used, which allows perpendicular jump of �A between different
conductivities

∇ × (υ∇ × �A) + σ
∂ �A
∂ t

− �Je = 0 (1)

Fig. 1. Vector edge interpolation functions.

where υ is the field-dependent reluctivity, σ is the electrical
conductivity, and �Je is the impressed current density.

B. Finite Elements and Discretized Formulation

When the FEM is applied, the abovementioned equation
can be simplified into limited DOFs. To achieve this, the
method divides the whole solution domain into many smaller
elements and represents the unknown field with a linear
combination of known pattern fields (interpolation functions)
inside each element. As shown in Fig. 1, the interpolation
functions ( �Ni ) are fully determined by the coordinates of the
four elemental nodes (known), and �Ni ’s projection is 1 on
edge i while 0 on all other edges. Due to such property, the
linear combination terms (Ai ) are also equal to the projection
of �A on the respective edges. Once these terms (DOFs) are
settled properly, the unknown field is successfully solved in
the element.

The Galerkin weighted residual method can be used to
solve those terms. The residual is defined by discretizing the
left-hand side of (1) through the upper equation in Fig. 1.
If one multiplies the residual with six weighing functions
(chosen to be �Ni ) separately and force the integration of the
resultant product to be zero, the 6 × 6 matrix-form elemental
discretized formulation is obtained

[Kij ]6×6[A j ]6×1 + [Dij ]6×6
∂

∂ t
[A j ]6×1 = I [ fi ]6×1 + [τi ]6×1

(2)

where

Kij =
∫

V e
νe(∇ × −→

Ni ) · (∇ × −→
N j )dV , i, j ∈ [1, 6] (3)

Dij =
∫

V e
σ e−→Ni · −→N j dV , i, j ∈ [1, 6] (4)
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fi =
∫

V e

−→
Ni · −−→

Junit dV , i ∈ [1, 6] (5)

τi =
∫

Se
(ν∇ × �A) × −→

ds · −→Ni , i ∈ [1, 6] (6)

where Ve is the volume, Se is the surface boundary of the
element,

−−→
Junit is the coil current density at 1-A coil current,

and I is the known current in the coil that changes with time.
The time derivative in (2) can also be discretized using the

backward Euler method

[Mij ]6×6 · [A j
t]

6×1 = [bi ]6×1 + [τi ]6×1 (7)

where

[bi ]6×1 = I [ fi ]6×1 + [Dij ]6×6/�t · [A j
t−1]

6×1 (8)

[Mij ]6×6 = [Kij ]6×6 + [Dij ]6×6/�t (9)

where �t is the time-step length, A j
t is the unknowns to

solve for at current time-step, and A j
t−1 is A j at the previous

time-step.
When the element is inside a ferromagnetic material region,

νe become dependent on magnetic flux density �B, and �B is
a function of Ai . This means that (7) becomes a nonlinear
equation of Ai . The common NR iteration can be used to solve
the nonlinear system. According to the method, (7) becomes
a form of the Jacobian matrix and residual. The following
equations are necessary to form the Jacobian matrix:

�B = ∇ × �A =
6∑

i=1

Ai · ∇ × −→
Ni =

6∑
i=1

Ai · 2
−−→∇Li1 × −−→∇Li2

li

(10)
∂νe

∂ Ai
= ∂νe

∂ B2 · ∂ B2

∂ Ai
(11)

where (∂νe/∂ B2) is determined by B–H curve of the material.
However, the abovementioned discussion only gives the

restriction of six local Ai ’s inside a single element. To achieve
solutions over the entire domain, all elements must com-
municate with each other. The communication is subject to
Maxwell’s equations.

1) Every edge has only one global direction and value
Ak . When one edge is shared by multiple elements, all
local Ai ’s of such an edge in different elements are
equal to Ak . All local �Ni ’s adjust signs so that their
components on the edge all point in the global direction.
This ensures the continuity of tangential �A; thus, normal
�B is continuous between elements [11].

2) On a triangular surface shared by two elements, τi ’s in
the two elements are opposite to each other. As a result,
tangential ν∇× �A or �H is continuous between elements.

How to effectively handle the abovementioned elemental
nonlinear equation and inter-element communication consis-
tency presents a challenge to different methods. This will be
discussed in Section III.

III. EDGE-DOMAIN DECOMPOSITION TO SOLVE THE

GLOBAL NONLINEAR SYSTEM

As shown in Fig. 2(a), the traditional method only has
one domain for the whole solution area. The method explic-
itly enforces elemental restrictions and global consistency

Fig. 2. Left: traditional single-domain FEM. Right: overlapping-domain
decomposition method with four sub-domains marked in different colors.

Fig. 3. EDD scheme with sub-domains containing only one unknown edge
element.

through the assembly process. During assembly, one global
matrix system is formed, where each edge only has one
global unknown (the global counterpart of multiple elemental
unknowns sharing the edge). Elemental matrices and vector are
added directly to the global matrices/vector at the position of
the global counterparts, and the surface integration of (6) does
not appear in the system since they are canceled out. Thus,
all local and inter-element restrictions are respected. After
the application of a proper global-domain boundary condition,
the matrix system can be solved. However, the sparse global
matrix may have several millions of unknowns (total number
of edges in the domain). In addition, the matrix system must
be globally assembled and solved at every NR iteration, which
could be computationally expensive even for efficient matrix
solvers.

Such costs can be reduced using a traditional-domain
decomposition method. As shown in Fig. 2(b), the whole
solution region is divided into several sub-domains. A similar
assembly happens in each sub-domain to generate smaller
matrix systems. These sub-domain systems can be solved
in parallel, and different schemes [5], [6] may be applied
to exchange information and reach consistency (inter-element
consistency) on sub-domain interfaces.
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Fig. 4. Detailed formulation within each sub-domain for the EDD scheme.

For example, if the Schwartz scheme [5] is applied,
the parallelism and consistency are ensured by an overlap-
ping/iteration technique. Under this scheme, the interface is a
thin layer of elements, which means any given sub-domain’s
interface boundary locates inside other sub-domains. All sub-
domain’s interface boundary is given a guessed initial value at
the start of the iteration. With global/interface boundary con-
ditions, each sub-domain system is then solved independently
to generate a domestic result on its inner edges, which is used
to update other sub-domain’s Dirichlet boundary condition at
the next iteration step. Such iteration repeats until a consistent
global result is reached.

Due to the reduced problem size and inter-sub-domain
parallelism, the DD method has significantly improved effi-
ciency for some parallel computing architectures (such as
multi-core CPU). However, the sub-domain systems, depend-
ing on the domain partition, can still possibly have thousands
of unknowns [6]. A large nonlinear sub-domain system may
still require expensive and repetitive assembly and solving at
NR iterations. In addition, the extra computation burden may
be caused by special techniques to handle inter-sub-domain
consistency. These properties make the DD implementation
not suitable for GPU architecture, which is designed for
massively parallelism of lightweight tasks.

To expand parallelism and reduce the single-core workload,
a natural idea is to shrink the size of each sub-domain. Fig. 3
shows an extreme situation where each edge has its own
sub-domain and each domain only consists of elements sharing
the edge. In each domain, there is only one internal edge.
This means that the sub-domain system becomes a super light
1×1 equation after the Dirichlet boundary condition is applied.
When one applies the abovementioned overlapping/iteration
scheme, those Dirichlet boundaries are simply the respective
neighbor edges’ values at the previous iteration step. Due to
the overlapping, each edge is updated based on its direct
neighbors and, meanwhile, serves as boundary conditions
when its neighbors are updated at the next iteration step (see
the black and green edge in Fig. 3). A consistent global result
can be reached after iterations. Therefore, each internal edge

can be updated independently by a 1 × 1 equation, and edge
level parallelism is achieved.

Fig. 4 explains how the 1 × 1 equation is formed for the
black example sub-domain. The Hexagonal pyramid domain
includes six elements and 19 edges. Each edge has its global
direction labeled in arrows (upper red and lower blue). For
easier interpretation, the 3-D shape is projected into a plane
with elemental local edge numbers displayed. The only domain
inner edge becomes the center black dot. Each elemental sys-
tem only contributes its inner-edge row into the 1×1 equation.
For example, the inner edge (Ak) is numbered 1 inside element
	k1. Thus, in matrix 	k1, only the first row is valid because the
other five edges’ rows are eliminated as boundary conditions.
The other five elements follow similar pattern. Since tangential
�H continues on all surfaces sharing edge Ak , the sum of black

τi ’s becomes 0. This gives rise to the following equation:
N∑

i=1

Fki (Ak) = 0 (12)

where k is the global index of the edge to be solved, N
is the total number of neighboring elements sharing edge k,
ki is the element index of its i th neighboring element, and
Fki is the inner-edge row of the i th neighboring element.
Note that the equation only has one unknown Ak , and during
its assembly, inter-element consistency is well respected by
explicitly applying the restrictions. When the NR method
is used to solve the nonlinear (12), the increment of Ak is
calculated by

�Ak =
∑N

i=1 Fki (Ak)∑N
i=1

∂Fki (Ak )
∂ Ak

. (13)

Based on the abovementioned discussion, the EDD scheme
handles nonlinearity, inter-element consistency, while simul-
taneously allowing massive parallelism and a lightweight
single-core task. Moreover, no global matrix is needed because
all the information needed for the single-edge calculation
can be drawn from its neighbors. The data arrangement
and the flowchart of EDD calculation program is shown in
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Fig. 5. Data arrangement of the EDD scheme in C language.

Figs. 5 and 6. Each element and edge consumes a fixed
memory space. As a result, the total memory needed is linear
to the problem size.

It is also worth mentioning that the proposed 3-D-EDD
scheme is equivalent to Jacobi iteration under linear cases,
which is similar to the N-scheme in [13]. However, the
3-D-EDD can easily integrate nonlinearity and matrix solution
process without significantly affecting the convergence rate.
Also, since the EDD method is originated from domain
decomposition, replacement or modification of the sub-domain
boundary condition may dramatically increase the convergence
speed.

IV. COUPLING SCHEME FOR FIELD-CIRCUIT

CO-SIMULATION

The abovementioned EDD scheme can provide electro-
magnetic field distribution based on the input coil current
amplitude. However, coil currents in a power device (such as
transformers) are always from a power system circuit, and
a proper field-circuit coupling scheme is still necessary to
interface with the external drive circuit.

There are two types of coupling schemes [2]: direct and
indirect methods. The direct method simultaneously solves the
entire FE and circuit system in one global matrix, which is
intuitive and precise, and a symmetric matrix may be generated
[14]. However, the method requires the FE matrix, and it may
destroy the iteration convergence of the global matrix, which is
not suitable for the matrix-free iterative EDD scheme. On the
other hand, indirect methods allow separate solutions to the
circuit and FE systems. However, some of the previous work
cannot precisely handle strong eddy currents [1].

In this work, we propose an indirect coupling scheme by
observing the time-discretized restrictions on coil current and
voltage through traditional FE matrices. The scheme solves
field and circuit equations separately and can produce accurate
results under strong eddy currents.

The voltage of a 3-D coil results from the electric field at
the direction of coil wire, which is also equivalent to time
derivative of coil magnetic flux ϕ

V = Ncoil

Scoil
·
∫

V coil

∂ �A
∂ t

· −−→ncoil dv = ∂ϕ

∂ t
(14)

where Ncoil is the number of coil windings, Scoil is the wire
intersection area, and −−→ncoil is the unit vector of predefined
coil wire direction. When the �A field is discretized by known

Fig. 6. Flowchart of the EDD scheme.

interpolation functions, (14) becomes

V =
Q∑

k=1

∂Ak

∂ t

(∫
V coil

Ncoil

Scoil
· −→

Nk · −−→ncoil dv

)
(15)

where Q is the total number of edges, Ak is the field unknown
on the kth global edge, and

−→
Nk is interpolation functions

associated with the kth edge. As a result, the voltage becomes
a linear combination of unknowns on each edge noted as

V = A_ϕ · ∂A
∂ t

(16)

where A is a column vector of all edge unknowns, and A_ϕ
is the row vector of the integration terms in (15), which can
be found before FEM solution. Note that A_ϕ also maps A
into coil flux ϕ.

Equaiton (16) and the FEM global matrix system establish
the link between coil current and voltage, with A as bridge.
This relation is used to abstract the FEM model into a circuit
component by several steps
[

K 0
0 −1

]
·
[

A
V

]
+

[
D 0

A_ϕ 0

]
·
[
∂A/∂ t

V

]
=

[
f
0

]
I (t) (17)

where K is the N × N global stiffness matrix, and f is the
N × 1 global excitation column vector of the coil, assembled
by elemental equations (2). When the backward Euler method
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Fig. 7. FE circuit models for circuit coupling: left-hand side is for linear
cases, and right-hand side is for nonlinear ones.

is used to discretize the time derivative, (17) becomes⎡
⎢⎣K + D

�t
0

A_ϕ

�t
−1

⎤
⎥⎦ ·

[
At

V t

]
=

[
f
0

]
I t +

⎡
⎢⎣

D

�t
0

A_ϕ

�t
0

⎤
⎥⎦ ·

[
At−1

V t−1

]

(18)

where the upper index t means the unknowns of current time-
step, and t−1 means known from the previous time-step. After
basic linear algebra operations, one can obtain

V t = ψ(f × I t + D/�t · At−1) − ϕt−1
dt (19)

where ϕt−1
dt = A_ϕ/�t · At−1, and the row vector ψ =

[A_ϕ/�t] · [K + D/�t]−1. Note that multiplying the row
vector ψ with a column vector can be interpreted in another
way: solve the FEM problem with the column vector as
excitation and extract the coil flux term from the solution
vector At . This process is defined as ψ operation to a column
vector. The equation explicitly describes the link between
V t and I t , which directly gives rise to the following circuit
models.

For linear cases, the operator ψ is fixed. Therefore, (19)
degenerates into a pure linear restriction

V t = Leqv/�t × I t + ϕeddy − ϕ�t
t−1 (20)

where Leqv = ψ · f and ϕeddy = ψ ((D/�t) · Ak
t−1).

The FEM system becomes a fixed linear resistor and voltage
sources (extracted from history FEM solution) in the circuit,
as shown in Fig. 7 (left). For nonlinear cases, the operator ψ
changes with its input. However, since At−1 is known from
previous time-step, ψ becomes a nonlinear function (ϕ�t ) of
I t , and (19) degenerates into

V t = ϕ�t (I t ) − ϕ�t
t−1. (21)

Thus, the FE system is regarded as a nonlinear
current-controlled voltage source and a fixed voltage
bias in the circuit shown in Fig. 7 (right).

With the abovementioned FE circuit model, the FE and cir-
cuit systems can be solved separately. From the circuit solver’s
perspective, the complex FEM solution process is abstracted
away as different circuit components, and the FE information
comes back to the circuit as voltages on those components.

Fig. 8. Field-circuit coupling iteration flowchart at time-step t .

On the other hand, the FE solving process only sees current
I t from the circuit as input (operator ψ only sees I t ).

However, despite the convenience of isolation, the model
still needs iterations (usually two to four times) to handle the
nonlinearity. The purpose of the iterations is to find an I t that
leads to consistent voltages on both the FE circuit model and
the circuit connected to it. If the NR scheme is applied, the
circuit solver needs to know ((∂ϕ�t(I t ))/∂ I t ) and ϕ�t (I t )
to calculate the increment of I t . ϕ�t (I t ) can be obtained by
directly solving the FEM problem at coil current I t , and there
are different methods to find ((∂ϕ�t (I t ))/∂ I t ). For simplicity,
the small probing increment method shown in (22) is used in
this work

∂ϕ�t (I t )

∂ I t
= ϕ�t (I t + d I t ) − ϕ�t (I t )

d I t
. (22)

Note that the calculation of ϕ�t (I t + d I t ) and ϕ�t (I t ) can be
parallelized due to independence, and the iteration flowchart
is shown in Fig. 8.

The iteration converges to the same result of the direct
coupling method, regardless of the eddy current strength. The
reason is that the proposed scheme simultaneously enforces
the field, circuit, and the voltage/current consistency equations,
and the same restrictions are explicitly assembled into the
global matrix in the direct coupling methods. Also, note that
although the scheme derives from matrices, it is still valid for
matrix-free EDD FEM due to independent solutions of field
and circuit.

V. CASE STUDIES

To demonstrate the efficiency and precision of the above-
mentioned methods, two case studies were carried out, and
the results were compared with Comsol on the same mesh.
The first one verified the nonlinear handling ability of the
EDD scheme in a deep-saturated static scenario, and the
second one combined field-circuit coupling and EDD in a
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Fig. 9. Geometry of the power inductor in meters.

TABLE I

INDUCTOR PROBLEM DEFINITION

Fig. 10. Saturated static magnetic flux density (T ) of the power inductor.

transient simulation. The algorithm was developed in CUDA-C
language, and the test was implemented on Intel Xeon E5-2698
v4 CPU (Comsol) and NVIDIA Tesla V100-PCIR-16-GB
GPU (EDD scheme).

For the computation parameters, the termination condition
is set to a global relative change of 1e-6 and a global relative
residual of 1e-5, and all domains have the Dirichlet boundary
condition for the tangential component of �A

−→
A‖ = 0. (23)

A. Nonlinear Static EDD Simulation

Fig. 9 shows a power inductor with a blue iron core and a
copper coil. Since it is studied in a static case, the D matrix
in (3) was set to 0. The material and coil parameters are given
in Table I.

After computation and post-processing, the field is displayed
in Fig. 10, and the comparison with Comsol over different
mesh size is shown in Table II. The result shows good accuracy
with an average relative error of less than 2% over the space
domain. Meanwhile, a significant speedup can be seen due to
excellent parallelism and a fast convergence rate over DOFs.
However, readers should notice that the speedup may vary
for different B–H curves and excitation amplitudes since the
convergence rate will be affected by the system spectral radius.

Fig. 11. Geometry of the three-phase transformer in meters.

Fig. 12. Test circuit with the FE model and the equation to calculate current
increment.

Fig. 13. Magnetic flux density (B) field of a three-phase transformer at
0.00733 s.

It is also worth mentioning that the static version of (2) does
not have a full rank because it cannot specify the divergence of
�A. However, the static case study still converges to the correct

solution. This means that the iteration process can auto-gauge
the problem like the conjugate gradient method [15].
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Fig. 14. Comparison of EDD scheme and Comsol results over time (s) for the three-phase transformer.

TABLE II

COMPARISON WITH COMSOL FOR THE STATIC CASE

B. Nonlinear Dynamic Field-Circuit Co-Simulation

As shown in Fig. 11, the studied transformer has three-phase
metal-colored coils and an E-shape blue iron core. The
transformer has six coils, while the abovementioned coupling
scheme only describes the voltage–current relation of a single
coil, which means that further extension should be made.
Six coils, rather than a single one, all contribute to the total
external excitation current in the FE domain. The influence of
six-coil currents is packed into a total column FE excitation
vector

fall =
6∑

i=1

Ii
t × fi (24)

where Ii
t is the current inside the i th coil, and fi is the FE

global excitation vector of the i th coil. fi is then fed into the
FE solver to obtain the field distribution (A), which generates
voltages on all six coils

Vcoil = A_ϕcoil · A. (25)

The abovementioned process establishes a 6 × 6 current-
to-voltage mapping between the coils. Thus, the transformer

TABLE III

TRANSFORMER PROBLEM DEFINITION

FE system becomes a six-port nonlinear current (It )-controlled
voltage source (Vt ), and the Jacobian matrix of the nonlinear
source is obtained by similar small probing increment sepa-
rately superimposed on six coils

∂ϕ�t

∂ I t i j
= ϕ�t (It )i − ϕ�t

(
It ∪ d I t

j
)

i

d I t
j

, i, j ∈ [1, 6] (26)

where d I t
j means small probing increment of current on coil

j , and ϕ�t (It ∪ d I t
j )i means time-discretized flux on coil i ,

generated form reference current It superimposed with d I t
j .

The extended FEM model is connected to the balanced
three-phase circuit shown in Fig. 12. The circuit switch
simulates an open-circuit fault at the secondary loads Rs . The
fault starts at 0.05 s with a duration of 0.05 s.
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Fig. 15. Total EDD iterations versus time (s) with field-circuit interfacing.
Note that the circuit-field iteration count is fixed at 5 for all time-steps.
The figure gives the sum of all coil-parallel EDD iterations involved in five
coil-field iterations.

Based on the model in Fig. 12 and the parameters in
Table III, the simulation was carried out at a fixed mesh
size of 15 006 DoFs. The computation time consumed is
501s vs. 1198s on ComsolTM. The final result is shown in
Figs. 13 and 14, and a comparison with ComsolTM shows a
relative error of less than 2% over time and space domain.
Also, the iterations needed for each time-step are plotted in
Fig. 15.

VI. DISCUSSION

As shown in Table II, the speedup decreases with the
mesh DOFs, which leads to the following question: will the
EDD scheme becomes slower than Comsol for millions of
DOFs? The current performance is hampered by total GPU
cores of 5120. This means that many sub-domain solvers are
still sequentially executed. However, if all sub-domains are
solved in parallel, the time needed will be proportional to the
number of EDD iterations, which is slower than the growth of
mesh DOFs, and this results in an increasing speedup versus
DOFs compared with Comsol (note that, in reality, there might
be some implementation limit, such as communication delay
between a large number of cores).

It is also seen that Comsol is much faster (such as 50 times)
in the time domain compared with the static scenario.
This is possibly because it utilizes a pre-factorize-and-back-
substitution method to save time at the linear time-steps. The
system matrix may be factorized only once, and only the
light back-substitutions are carried out at the time-steps of
the linear material B–H region. Thus, the time consumption is
not comparable with the EDD-circuit scheme since the method
does both factorization and back-substitution at each time-step.

Future research will focus on expending the EDD scheme
on clusters with multiple GPUs to exceed the 5000-core limit.
Also, we will integrate the EDD scheme with the pre-factorize-
and-back-substitution method to gain better speedup for the
time-domain cases.

VII. CONCLUSION

In this article, a novel EDD method was proposed to calcu-
late the 3-D field for nonlinear electromagnetic devices. The
algorithm achieved massive parallelism and was implemented
on GPU architectures.

For the first time, the idea of minimum sub-domain division
is implemented with the time-domain 3-D nonlinear edge
elements based on RMVP formulation. Benefitting from the
extreme sub-domain size, the method simultaneously solves
material nonlinearity and global FE system without having to
assemble the global matrix. Also, the lightweight sub-domain

task and huge sub-domain number result in excellent modu-
larity and massive parallelism, which made the EDD scheme
a perfect choice for many-core GPU implementation.

In addition, for field-circuit co-simulation, a coupling
scheme was developed to interface the EDD scheme with
an external circuit. The scheme can abstract away complex
FE models in controlled sources while maintaining a high
precision at the same time, especially under high eddy current
conditions. The efficiency and accuracy of the EDD-circuit
method were discussed and verified through the GPU imple-
mentation. The comparison with Comsol indicates a significant
speedup of 43.7 with an error of less than 2%.
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