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Abstract

Developing a new drug is a complex, highly structured, and expensive task. The further a

potential drug progresses in the development process, the more costly its failure becomes.

Virtual screening (VS) is the initial stage of a drug discovery process. Its job is to screen

large compound databases for bioactive molecules. Its role is critical to reduce the proba-

bility of late-stage expensive failures. A reliable VS protocol would identify a diversity of

lead compounds that are suitable for further structural optimizations. Most of the current

available protocols fail at integrating target flexibility or suggesting accurate ranking for the

selected top hits. Here, we introduce an improved virtual screening protocol. A protocol

that improves over current methodologies by employing complementary techniques com-

prising molecular docking, molecular dynamics simulations, iterative clustering techniques,

principle component analysis and accurate scoring methods. The implemented VS protocol

identified novel compounds that can bind to a number of important cancer-related targets.

The targets chosen here play critical roles in tumor cell initiation and progression and their

regulation promises for the improvement of current cancer therapy. Two of these important

targets are DNA repair proteins that are linked to the hallmark relapse or drug resistance

phenomena. These are Excision Repair Cross-Complementation Group 1 (ERCC1), and

DNA polymerase beta. The former is a key player in Nucleotide Excision Repair (NER),

while the latter is the error-prone polymerase of Base Excision Repair (BER). The third

target is p53, a guardian of the genome that is inactivated in more than half of all human

cancers. The work presented here has an outstanding significance on both the methods and

their applications. On one hand the implemented protocol is generic and can be used almost



against any target. On the other hand, the compounds we identified have the promise of

being successful potential drug candidates that can progress through the drug discovery

process and improve cancer therapy.
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Chapter 1: Introduction 
 
 
 
 
 
Once, the US General, Ulyses S. Grant, summarized his philosophy on warfare in just four concise 

statements, “The art of war is simple enough. Find out where your enemy is. Get at him as soon as 

you can. Strike him as hard as you can, and keep moving”. Although these overarching statements 

formed the basic premise of modern war strategies, the same concepts have been applied in 

designing new drugs aimed at combating a broad range of diseases. In this context, rational drug 

design has been established as an exciting research approach aimed at developing safer and more 

efficacious drugs. The ultimate goal of this paradigm is to design small organic, non-peptidic, 

compounds that bind to a specific molecular target (typically a protein), and result in the inhibition 

(or less frequently, activation) of a particular protein or enzyme involved in a given cellular 

pathway.  

Without a doubt, developing a new drug is a highly structured and expensive route that 

begins with the identification of the target and concludes with a phase III clinical trial followed by 

marketing. A candidate drug may never materialize into a safe and efficacious medicine due to its 

failure to comply with stringent requirements at any stage of the drug discovery process. The 

further a potential drug progresses in the development process, the more costly its failure becomes.  

Accordingly, it is important to reduce the probability of late-stage expensive failures by 

identifying a diversity of lead compounds that are suitable for structural optimizations. Throughout 

the last three decades, experimental high throughput screening (HTS) and combinatorial chemistry 

formed the principal source for lead identification. However, as these approaches are particularly 

expensive and require considerable resources in terms of equipment and skills of the highly 

qualified personnel, it was vital to search for an alternative or a complementary low-cost 

computational technique that aids in the discovery of new bioactive compounds while maintaining 

the rapidity of HTS. More recently, a new method was developed and named computational 

virtual screening (VS) or in silico screening. 

This new method formed a “change in paradigm” and declared itself as a possible 

replacement for the massive HTS machines.  For one aspect, the basic cost of a typical HTS 

laboratory includes collecting and maintaining screening libraries of thousands, if not millions, of 

compounds. In VS, one does not need do synthesis, or even touch, these molecules. Another 

important aspect is the experimental difficulties that are associated with HTS such as limited 

solubility or aggregate formation, which are not relevant to VS and do not need to be considered. 

All VS predictions are usually achieved in a single computer cluster using a systematic procedure 

that attempts to answer a definite question: Can these compounds bind to a particular target and, 
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hence, induce the desired biological activity? The outcome of such procedure is a set of 

compounds that are predicted to bind to the target with acceptable affinities. This set can be 

directly tested on cells or, as in many cases, can be used to guide HTS by focusing the search on a 

limited collection of similar structures, instead of testing millions of compounds. 

The pioneering efforts of Kuntz and DesJarlais in the late 1990s defined VS as “searching 

for bioactive molecules within large compound databases”. Over the past decade, the method has 

been vastly improved and gained popularity as a result of an exponential increase in the 

performance of computer hardware, methods and enhanced human expertise. Currently, VS is a 

valuable prototype within the rational drug design tool box, helping in prioritizing compounds for 

experimental HTS and aiding in compound progression through lead optimization. However, as 

every new born, VS is still developing, and far from forming a mature field of science. This is 

apparent in the fact that the number of strategies followed in the field is nearly as large as the 

number of reported screening campaigns. 

A drug usually binds to a specific location within the target (a binding site). To be 

biologically active, it must physically fit within the binding site. A century ago, Fischer described 

this event as a lock-and-key fit. However, it is not only the shape and size of the drug that is 

important for binding. The drug must also complement the hydrophobic and polar parts of the 

binding site. Although this binding reaction seems very similar to fitting the little pieces of a 

jigsaw puzzle, what I described so far is, in fact, only a part of the story. There are many additional 

factors that must be taken into account. These include the structural flexibility of the drug and its 

target, solvent effects, entropy contributions and the protonation states of the two molecules. 

This dissertation focuses on building an improved virtual screening protocol. A protocol 

that takes into account most of the factors described above and intends to search for novel 

compounds that can bind to a number of important cancer-related molecular targets. The targets 

chosen here play critical roles in tumor cell initiation and progression and their regulation 

promises for the improvement of current cancer therapy. Two of these important targets are DNA 

repair proteins that are linked to the hallmark “relapse” or “drug resistance” phenomena. These are 

Excision Repair Cross-Complementation Group 1 (ERCC1), and DNA polymerase beta (pol β). 

The former is a key player in Nucleotide Excision Repair (NER), while the latter is the error-prone 

polymerase of Base Excision Repair (BER). The third target is p53, a guardian of the genome that 

is inactivated in more than half of all human cancers.  

Thusly motivated, the research question here was twofold. Is it possible to build an 

accurate VS algorithm that overcomes the limitations of and gaps in previous research? And if this 

is possible, will it be able to identify novel drug candidates that can specifically recognize and 

bind to the aforementioned targets? The answers to these questions are presented in the next few 

chapters. 
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This thesis is based on a set of published articles and book chapters and is organized as 

follows. Chapters 2 and 3 present computational background material covering the state-of-the-art 

of virtual screening and explain the VS protocol that was implemented and used in this work. 

Chapter 4 describes a two-stage-filtering application of the VS protocol on the ERCC1-XPA 

problem. Chapters 5 and 6 switch the gears to a different target, DNA pol β. Chapter 5 reviews all 

currently known pol β inhibitors and chapter 6 applies our VS protocol to its lyase activity. 

Chapter 7 introduces a more perplexing problem, where we identified dual inhibitors for two 

similar p53 binding proteins. Chapter 8 is a follow up to chapter 7’s question. Chapter 8 discusses 

the possibility of restoring the activity of one of the most frequent occurring p53 mutations, 

namely, the R248Q mutant. The important results and their future impacts on cancer research are 

summarized in chapter 9. 

The order of these chapters gives chronological details on the way the VS protocol was 

developed and the accumulation of knowledge that I gained throughout this research. The 

beginning of each chapter includes an introduction of the necessary biology, the motivation behind 

selecting the target, and review of previous research on its targeting. Detailed methodological 

parameters for each problem and part of the mathematical details of the computational methods 

are explained in the appendices. 
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Chapter 2: Virtual Screening: Solving 
a Jigsaw Puzzle(1) 
 
 
 
 
 

2.1 The need for Virtual Screening 
Have you tried to solve a jigsaw puzzle before? Did you ever get to a situation where one little piece is 

missing? This piece would complement an obvious part of the puzzle. If so, I am sure you first looked at 

the boundaries of the absent piece to predict its shape and size. You then looked at the colors of the 

adjacent pieces, the environment, to speculate its colors. Next, you scanned the remaining pieces for a one 

that looked similar to the one you expected. You collected parts that had fitting shapes and suitable colors. 

You placed them one by one in the empty space, until you finally got the one.  

Well, this chapter is not, really, about solving jigsaw puzzles, however, it is about a similar 

process that is repeated again and again inside our cells, and in this thesis, I tried to mimic. This process is 

called molecular recognition.  

 Throughout the last three decades, experimental high throughput screening (HTS) has been the 

main technique playing the role of a “puzzle solver”. Together with combinatorial chemistry it formed the 

front line for discovering new drug candidates (lead compounds). While avoiding the complexity of 

modeling, these methods are particularly expensive and require considerable resources. These shortcomings 

called for the development of an alternative/complementary and economical approach that could recognize 

novel bioactive compounds, while maintaining the yield and rapidity of HTS. More recently, a new method 

was developed that holds great promise of rapid drug candidate identification using computational 

methods. This new methodology has been named computational virtual screening (VS) (or in silico 

screening). 

VS is still in the early stages of evolution. Many strategies are currently developing and several 

aspects are improving.  This chapter provides support for this claim. It is divided into two main parts. The 

first part acts as our guide in the VS “store” and explores the state-of-the-art of this field focusing on its 

cutting-edge “products”. It guides us inside the two main VS branches and explores their different 

algorithms and methods. As we will see in this part, each method by itself is not enough to build a robust 

and perfect VS protocol. The second part of this chapter describes in details the VS algorithm that was 

                                                           
(1) A version of this chapter has been published in Barakat KH, Mane JY, Tuszynski JA (2011) Virtual Screening: An Overview on 
Methods and Applications. In: Liu LA, Wei D, Li Y, Lei H, editors. Handbook of Research on Computational and Systems Biology: 
Interdisciplinary Applications: IGI. 
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implemented in this thesis. Most of it was, essentially, built from the little pieces described in the first part. 

While the first part is a general review of the algorithms, definitions and concepts behind VS, the second 

part is a more detailed discussion on target selection and preparation, compounds used, and how much 

improvement this work added to the methodology of VS. 

Once the structure of a target is available, docking algorithms can be used to place each ligand (i.e. a 

molecule or a molecular fragment included in a typical library of compounds) and predict its most probable 

binding mode (optimal target-drug complex configuration) within the binding site of the target.1,2 Most 

docking programs can rank the activity of each compound by analyzing the different ligand-target 

interactions and estimating the binding affinity of the complex. In addition to docking techniques, one can 

define the essential interactions between the ligand and the binding site of the receptor and translate this 

information into the formulation of binding-site pharmacophore models.3 These models can be used to 

search the available chemical space for compounds that can complement the physico-chemical features of 

the receptor (target). As these two procedures require a comprehensive understanding of the structural 

arrangement of the target, they have been commonly termed as structure-based virtual screening (SBVS). 

On the other hand, and for most of the cases, the three-dimensional structure of the target, the binding site 

or even the target itself are not accurately known, although there may be a number of known active 

compounds that have been identified experimentally. In this case, data mining algorithms can be used to 

screen for compounds that are structurally similar to the known actives (similarity search),4 or that 

comprise the chemical features of these compounds (pharmacophore search),5 in what is called ligand-

based virtual screening (LBVS). Thus, these two fundamental procedures, SBVS and LBVS, form the 

general layout of present-day VS protocols. Figure 2-1 illustrates the different branches and methods that 

are followed in current VS campaigns. Detailed descriptions of these methods are summarized below. 

 

2.2  Structure-based VS (SBVS) 
 

SBVS requires the knowledge of the three-dimensional structure of the target.6 This structure can be 

obtained by experimental techniques such as NMR, X-ray crystallography, electron crystallography or it 

can be predicted computationally using homology modeling. It is also important to identify the relevant 

binding site(s) within the protein that is (are) deemed responsible for its biological activity. Generally, the 

binding site is a pocket, a groove or a protrusion having an assortment of apparent hydrogen bond donors 

and acceptors; hydrophobic features; and it can be associated with molecular adherence surfaces. There 

may be a number of metal ions or water molecules as part of the active site that are essential for the activity 

of the protein and they must be considered during the screening procedure. There are two basic approaches 

for SBVS namely docking,2 and receptor-based pharmacophore modeling.3 
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Figure 2-1: Two main virtual screening approaches.  

Docking or pharmacophore modeling tools are the best alternatives when the target structure is 
available. On the other hand, similarity or pharmacophore search are commonly used when the 
target structure is inaccessible.    

 

2.2.1  Docking 
 

Molecular docking is a standard element of many SBVS studies described in the literature.7 The 

idea of docking and scoring as a VS tool has been proposed since the birth of docking methods.8 The main 

problem which all docking algorithms try to solve can be stated as follows: given two interacting molecular 

structures, what is the most probable binding configuration to form a stable three-dimensional protein-

ligand complex?  In order to address this problem, the docking procedure can be divided into two major 

steps. First, explore the conformational space of the ligand within the binding site of the target. At this 

stage, many conformations are generated for the ligand with a limited number of configurations that can 

actually fit within the binding site. Second, examine all suggested ligand configurations and select the 

optimal target-ligand alignment by scoring their interactions and ranking the docking results (poses) 

according to their predicted binding affinity.   

Today, there are at least 30 docking programs commercially (or freely) available with different 

conformational sampling algorithms and a variety of scoring functions.9 The most commonly used 

programs are AUTODOCK,10 GOLD,11 GLIDE,12 DOCK,8 ICM,13  IFREDA,14 and FlexX.15 These 

programs differ mostly in the way they deal with protein/ligand flexibility or their scoring and ranking 

methods. 

In contrast to the poor representation of target flexibility (see below), most docking methods can 

handle the flexibility of ligands very efficiently.9 In other words, for most of the cases, docking algorithms 
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can reproduce the protein-ligand binding modes that have been observed experimentally using X-ray 

crystallography. As an example (as we will see in details in chapter 7), Figure 2-2 shows the successful 

docking of nutlin, a well-known p53-MDM2 inhibitor, to the p53-binding site within MDM2 using 

AutoDock 4.0.  

 

 

 

 

 

 
Figure 2-2: Comparison between docked and experimental structures for nutlin.  

The binding site within the MDM2 protein is shown in molecular surface representation. Nutlin2 
(the experimental structure) is shown in blue and the docked nutlin3 is shown in green. The 
docking program AutoDock 4.0 was used to carry out the docking calculation and the results are 
in good agreement with the experimental findings (see chapter 7 for more details). 

 

 

 

 

In general, the degree of success for docking methods can be measured by comparing the 

predicted binding mode (pose) to the experimental conformation (the native binding mode).10-11, 14 This 

assessment can be evaluated quantitatively by calculating the root-mean-square deviation (RMSD) between 

the two structures. However, in certain systems, where unexpected flexibility of the receptor is crucial for 

the binding reaction or the interaction of the ligand and protein is mediated by water molecules or metal 

ions, docking may fail to predict the correct binding conformation of the complex, leading to improper and 

unrealistic interactions. Below, we will see in more details, how ligand and target flexibility are considered 

within most docking algorithms. A summary of the different scoring methods will be also introduced. 
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2.2.1.1  Ligand flexibility 
 

The binding reaction between a ligand and a particular target involves numerous conformational 

changes in the two molecules as well as water molecules and ions located in their interface. Each entity in 

this reaction adapts its shape and distribution in order to maximize its interactions with the other entities, 

forcing the whole system to reach the global minimum of their potential energy surface. This binding 

interaction is somehow similar to a folding problem of a protein, comprising a huge number of degrees of 

freedom. Consequently, the majority of docking programs avoid this conformational flare-up problem by 

implementing almost full-flexibility for the ligands while keeping the target completely rigid with no 

flexibility allowed.2, 9According to the nature of the searching method, one can classify the ways by which 

ligand-flexibility was introduced within docking methods into three main categories: (1) systematic search 

routines, (2) stochastic exploration, and (3) simulation techniques. 

 

Systematic search 
 
 

In a typical systematic search, all rotatable bonds in the ligand are gradually rotated in order to 

cover all possible combinations among the dihedral angles. Evidently, the number of generated structures 

using this method increases dramatically with the number of rotatable bonds involved. If not kept under 

control it may lead to the problem of combinatorial explosion. In this way, applying a standard systematic 

search to explore the entire conformational space of a ligand requires massive calculations and considerable 

computational time. The docking program, FLOG,16 gets around this hindrance by limiting the created 

structures to a pre-generated set of conformations recorded in structural databases. Other docking 

algorithms adopt an incremental procedure to reconstruct the ligand within the binding site of the target. 

The main objective of these methods is to limit the number of degrees of freedom for the ligand, allowing 

for a less-expensive and rapid conformational search.  

Essentially, there are two main approaches for the incremental reconstruction methods. First is the 

one that has been employed by LUDI,17 FlexX,15 DOCK,8 ADAM 18 and Hammerhead,19 where the ligand 

is split into a rigid core fragment that is docked first and a number of flexible regions that are subsequently 

and successfully added. This method is commonly referred to as the “incremental approach”. The other 

method, known as “place and join”, is to break the ligand into several fragments, dock them within the 

binding site of the target and finally connect them together in order to rebuild the final ligand conformation. 

  

Stochastic exploration 
 

Stochastic exploration samples the conformational space of a ligand by generating random 

variations in the orientation of all rotatable bonds and in some cases random translations for the whole 
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ligand within the binding site.  This is done mainly to enable crossing of the energy barriers and searching 

for local minima enclosed by the rugged energy surface of the ligand. This procedure can be applied to a 

single ligand or a population of conformations derived from the same molecular structure of the ligand. 

Each resultant conformation is then evaluated according to a probability distribution or by estimating its 

binding affinity with respect to the target. In fact, there are three methods that are derived from this 

technique, namely: Monte Carlo simulations, Genetic Algorithms and Tabu Search methods.1 

Monte Carlo (MC) simulations are one of the most powerful techniques ever developed to allow 

for overcoming potential energy barriers and sampling the conformational space of a typical system. Within 

docking algorithms, the method usually starts with a randomly generated conformation for the ligand by 

arbitrarily changing one or more dihedral angles or even the whole orientation or position of the ligand with 

respect to the target. This new conformation is accepted or rejected according to a Metropolis algorithm 

that follows the Boltzmann probability distribution. Programs like ICM,13 MCDOCK20 and DockVision21 

employ this approach. 

Genetic algorithms (GA) exploit the biological concepts introduced by Darwin in order to explore 

all possible conformations of the ligand and predict its native structure. In contrast to MC-based algorithms, 

instead of manipulating a single ligand, GA generates a random population of the same molecular structure 

of the ligand.10-11 Each member of this population is unique in terms of the internal orientation and the 

global placement and alignment within the binding site. This random population forms the initial 

generation (seed) of a set of non-interacting ligand species. These poses are further subjected to a number 

of biological operators that add up more diversity to the generated structures. Among these operators are 

the mutation operator (generate new ligands from earlier ones by altering a rotatable bond or moving the 

whole ligand to a new position), and the crossover operator (merge two ligands in order to create a new 

structure comprising their common features). The fitness of each newly generated structure is evaluated by 

calculating its binding affinity to the target. The pose that retains the most predominant interactions with 

the binding site survives and becomes the parent of the new generation. This iterative procedure terminates 

after reaching a predefined number of generations or energy evaluations, or if no more improvement to the 

binding affinity has been observed (converged solution). Examples of programs that incorporate genetic 

algorithms in conformational sampling include AutoDock, GOLD and DARWIN.22 

 As a memory-based stochastic exploration method, Tabu Search (TS) prevents the searching 

machinery from revisiting the same conformation more than once. PRO_LEADS is one of the most popular 

programs that employ this searching technique.23 This is generally achieved by creating a list that records 

all previously visited solutions, which acts as a memory for the algorithm. A decision to accept or reject a 

new conformation is made after comparing its RMSD to the other recorded conformations. 

 

 Simulation techniques 
 

Simulation techniques employ a deterministic approach that either: (1) passes through both time 

and space giving rise to an evolving trajectory describing the biological behavior of a typical system, or (2) 
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re-adjusts the system by rearranging its particle composition towards a more stable state. In this context, 

molecular dynamics (MD) simulations and energy minimization methods are the most widely used 

simulation techniques in a number of docking programs. Although the two approaches can handle the full-

flexibility of both the ligand and target, their foremost disadvantage is that they can be readily trapped 

within a local energy minimum, which in turn precludes them from efficiently sampling the conformational 

space of the complex. Therefore, simulation techniques are usually used as a refining step subsequent to 

GA or MC simulations.9  

 

2.2.1.2  Target flexibility 
 
 

Docking a ligand against a crystal or relaxed receptor structure is a commonly used approach in 

structure-based drug design.2 However, in many cases, the degree of success that may be achieved in a 

typical docking simulation depends on the characteristics of the target and how important is the protein 

flexibility in the simulation. Most of the successful cases reported in the literature were either related to 

nearly rigid proteins or proteins having real binding mode of their respective ligands.24 In spite of these 

studies, there are cases where the binding interaction has been shown to induce significant conformational 

changes to the target, ranging from local reorganization of side-chains to hinge movement of domains. 

Sampling these conformational changes during docking is impractical, as they involve a large number of 

degrees of freedom. To address such problems, a number of docking packages like AutoDock, GOLD, 

FlexE and IFREDA, manage to include a modest amount of flexibility in the target during the docking 

simulations. These approaches include soft docking,25 side chain flexibility,1 combined protein grid and 

united descriptors of the target.26 

 

Soft Docking 
  

Soft docking algorithms allow the ligand to penetrate through the surface of the protein in order to 

approximate and predict the dynamical changes that may take place within the active site as a result of 

ligand binding. This is generally achieved by attenuating Lennard-Jones repulsive parameters in the 

potential energy function that describes the system.25  

 

Side Chain Flexibility 
 
 

Another commonly used technique to introduce active site dynamics in the context of docking is 

to allow key side chains that have been shown to mediate the interactions with the ligand to rotate freely 

and search for their preferred conformation. These side chain rotations are usually restricted to a number of 
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pre-defined experimental conformations stored in rotamer libraries or predicted from a prior MD 

simulation. While this method reduces the risks associated with the lack of flexibility to some extent, it 

neglects backbone dynamics, which may affect the ultimate docking results.24 

  

Combined protein grid 
 
 

In order to account for a larger degree of receptor flexibility at a reasonable computational cost, a 

number of dominant protein conformations can be combined simultaneously to generate a comprehensive 

model that describes the essential dynamics of the binding site.26 This approach is generally termed as 

“combined protein grid” and is usually implemented in two steps. First, for each conformation, all possible 

protein-ligand atomic interactions are calculated and recorded in what is called a docking grid. Applying a 

weighted average for all the resulting grids representing the various conformations then creates a combined 

grid. Alternatively, the averaging procedure may be applied to the atomic coordinates to generate an 

average structure for the protein. 

 

2.2.1.3  Scoring Methods 
 

As ranking of the binding modes is crucial in prioritizing and ranking of the compounds, it is 

important to use sensitive and accurate scoring functions that can replicate and predict experimental data. 

This is normally achieved using an objective scoring function that directs the conformational search 

algorithm in predicting the native conformation and ultimately estimates the binding affinity. Nevertheless, 

it has been broadly demonstrated that docking scoring functions are less successful at predicting the actual 

binding affinities and at discriminating true binders from inactive (decoy) compounds.1-2, 27These puzzling 

results are direct outcomes of many factors that have been mistreated while analyzing the binding 

interactions of the resulting poses as a compromise to speed up the docking process. These factors mostly 

include the lack of proper salvation, the neglect of protein flexibility and the bias toward the training set of 

structures that have been used in optimizing the scoring process.24 In fact, developing new scoring 

functions and innovative ranking schemes is a wide-open area of research in the field of docking. Although 

a more precise scoring method can be practically implemented within docking, the large computational cost 

that is associated with such a function will be the actual barrier from using it. In this way, many 

assumptions have been proposed in the currently used docking scoring functions in order to reduce the 

complexity and computational time required to evaluate a particular pose. Overall, a typical scoring 

function includes at least among its ingredients, a descriptor for the hydrophobic effects, van de Waals 

dispersion interactions, hydrogen bonding, electrostatic interactions, and solvation effects. Based on their 

scoring functions, all docking programs that are in use today can be divided into four major categories: 

force field-based, empirical, knowledge-based and consensus methods.9, 24, 28 
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Force Field-Based Scoring Methods 
 
 

According to the energy landscape theory, the native conformation of a ligand within the binding 

site of its target is correlated with a profound deep minimum on the energy surface. Therefore, potential 

energy (force-field) functions have been used to describe protein-ligand interactions and assess their 

binding affinity by exploring the energy surface and locating these minima. Over the past 30 years, 

rigorous efforts have been devoted to build new force field models and make them available for a 

substantial number of applications ranging from molecular docking to molecular dynamics simulations.29 

One of the main problems of such models is the selection of a potential energy functional form and 

adjusting its various parameters to better represent experimental data or quantum mechanical predictions. 

These energy functions are commonly restricted to a number of assumptions and approximations for the 

sake of minimizing their computational time, reducing the efforts of refitting the parameters to more 

complex representations and, aligning them with many applications that are currently running with force 

fields of standard functional forms. An obvious example of such restrictions is the use of atom-centered 

charges in electrostatic calculations. Rationally, a more accurate representation of atomic charges should 

explicitly represent lone pairs on electronegative acceptors such as oxygen and take electronic polarization 

into account. As docking algorithms usually deal with a single target conformation, the internal protein 

interactions are typically neglected. Accordingly, force field methods approximate the ligand-protein 

binding interactions by adding the interaction energy between the protein and the ligand to the ligand 

internal energy. These internal interactions are approximated by harmonic springs that describe the 

vibrations and rotations of the different bonds forming the ligands. The non-bonded interactions between 

the ligand and its target are estimated by van der Waals, hydrogen bonding, and electrostatic terms. For 

example, the potential energy function of the general AMBER force field (known as GAFF) is shown 

below:30 
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θequare equilibrium structural parameters; 
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vn are force constants; n is the 

multiplicity and 
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γ  is the phase angle for the torsional angular parameters. The A, B and q 

parameters represent the nonbonded potentials (charge-charge and van der Waals terms). 
Nonbonded interactions can be obtained from liquid state calculations and available experimental data. 

Other parameters such as stretching, bending, and torsional terms are generally fit to quantum chemical 

calculations. Noticeably, the major drawback of standard force field scoring functions is the lack of 
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solvation and entropy contributions to the binding energy. Examples of force-field-based scoring functions 

include D-Score31 and GoldScore.32 

 

Empirical Scoring Methods 
 
 

Another widely used scoring approach is to hypothesize an empirical scoring function that has 

been optimized to reproduce a collection of experimental data 17. These data may include binding affinities 

or native conformations for known active compounds. Notable examples include F-Score 15, ChemScore 33, 

SCORE 34 and Fresno 35. The basic concept behind this type of scoring functions is that the binding 

energies can be approximated by a summation of unrelated contributions. Each element of this summation 

describes a certain binding interaction such as hydrophobic, hydrogen bonding, electrostatic or solvation 

effects. Some functions may comprise an approximation for the loss of entropy due to binding, which is 

proportional to the number of rotatable bonds included in the ligand. Overall, the terms that build up a 

typical empirical scoring scheme are simple enough to be rapidly evaluated in order to speed up the 

docking process. A fairly accurate estimate for the coefficients pre-multiplying these terms can be obtained 

by performing regression analysis and fit the whole function against the set of experimental data. An 

example of such functions is the AutoDock scoring function 10 (see below), which has an accuracy of ~ ±2 

kcal/mol:  
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here, the five 

€ 

ΔG  terms on the right-hand side are coefficients empirically determined using 

linear regression analysis from the set of protein-ligand complexes with known binding constants. 

The function includes three in vacuo interaction terms, namely, a Lennard-Jones 12-6 

dispersion/repulsion term; a directional 12-10 hydrogen bonding term, where E(t) is a directional 

weight based on the angle, t, between the probe and the target atom; and screened Columbic 

electrostatic potential. In addition, the unfavorable entropy contributions are estimated by a term 

that is proportional to the number of rotatable bonds in the ligand and solvation effects are 

represented by a pairwise volume-based term that is calculated by summing up, for all ligand 

atoms, the fragmental volumes of their surrounding protein atoms weighted by an exponential 

function and then multiplied by the atomic solvation parameter of the ligand atom (

€ 

Si). It should 

be noted that, although several empirical functions like the above-mentioned AutoDock scoring function 

have been successfully used for many cases, they are generally biased toward the experimental data that 
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was used in their optimization and are not efficient at eliminating false binders from a set of tested 

compounds.9, 24 
 

Knowledge-Based Scoring Methods 
 

Knowledge-based scoring methods are Similar to the empirical scoring functions. They attempt to 

reproduce experimentally determined structures using simpler atomic interaction-pair potentials. These 

potentials are based on the frequency of occurrence of all possible interactions between the ligand and its 

target. Using statistical analysis, knowledge-based models implicitly describe binding effects that are hard 

to represent explicitly during docking. Therefore, the accuracy of these methods depends on the extent of 

the used protein-ligand data set and the diversity of atomic interactions included in these complexes. 

Example of such functions is DrugScore.36 

 

Consensus Scoring Methods 
 

A more recent scoring technique is called consensus scoring. It collects assessments from several 

scoring functions in order to evaluate a particular docking result.37 The method is expected to reduce the 

errors that result from the individual scoring functions and improve the probability of selecting true 

binders. Nevertheless, it has been recommended to use different and uncorrelated scoring functions in 

constructing a successful consensus scheme. This is because correlated functions tend to produce similar 

results leading to error amplification and misleading results. Despite these constraints, several studies have 

pointed to the success of a number of consensus scoring functions when compared to using a single scoring 

method.38 These methods include X-CSORE 39 and FlexX 15 scoring functions. 

 

2.2.2 Structure-Based Pharmacophore Modeling 
(SBPM) 

 
Pharmacophores are straightforward models that describe the essential interactions behind the 

binding of a ligand to its target.40The concepts behind pharmacophore modeling dates back to 1909, when 

Ehrlich defined a pharmacophore model as "a molecular framework that carries (phoros) the essential 

features responsible for a drug’s (pharmacon’s) biological activity". These features are generally classified 

into two major categories, namely, chemical-based and shape-based features. The former include hydrogen 

bond acceptors or donors, charge centers, metal binding regions, aromatic rings and hydrophobic regions, 

while the latter mainly include volume-excluded regions and geometrical constraints like distances, angles 

and dihedral angles. By allocating the different features and including their three-dimensional distributions 

within the binding site, one can understand the essential properties required for bioactivity of known true 
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binders.41  

Currently, there are two approaches to generate a pharmacophore model depending on the 

accessibility of the target structure. If the structure of the target is available, one can build a pharmacophore 

hypothesis that would complement the chemical features within the binding site of the target.5 These 

pharmacophore models can be further improved if there is any active compound that has been co-

crystallized with the target. This approach is called “binding sites-based pharmacophore models” or 

“structure-based pharmacophore models”. The second approach, that is more widely used, relies only on 

the known active compounds and no information about the target is required. This technique is commonly 

referred to as “ligand-based pharmacophore modeling” and will be explained in detail later in this chapter. 

In this section, we will focus on the “structure-based pharmacophore models”. 

The most straightforward approach in designing a SBPM is to analyze the experimentally 

determined crystal structures of protein-ligand complexes. For example, the program LigandScout42  

introduced by Wolber and co-workers is very effective at manipulating these structures and automatically 

interprets the various interactions between a particular macromolecule and its co-crystallized ligands into 

functional pharmacophore models. The program starts by cleaning up the structures of the ligands by 

assigning hybridization states and bond characteristics that are missing in the crystal structure. This is 

accomplished by using an extended heuristic approach combined with template-based numeric analysis. 

Following this step, pharmacophore models are created by analyzing the atomic interactions between the 

ligand and all residues located within the binding site of the target. These interactions are classified into 

complementing groups in terms of hydrogen bonding, electrostatic charges and hydrophobic contacts. 

Moreover, by aligning several bound confirmations of the ligand, one can, partly, incorporate the flexibility 

of the complex to generate what is called a common-feature pharmacophore model.  

When only the structure of the active site is available, programs like structure-based focusing 

(SPF) can suggest its complementing pharmacophore hypotheses.43 The process starts by mapping 

favorable regions or “hot spots” for protein-ligand interactions within the binding site of the target. These 

regions are then clustered into hydrogen bond donating and hydrogen bond accepting vectors and 

hydrophobic interaction sites. The clustered groups are then used to build the pharmacophore model. Other 

algorithms that can construct SBPMs in addition to LBPMs (see below) are Unity (Tripos. 

http://www.tripos.com/) and MOE (Molecular Operating Environment; http://www.chemcomp.com/). Once 

a pharmacophore hypothesis is created, the model can be converted to a query that is used to screen 

chemical databases for molecules that satisfy these proposed hypotheses. 

 

2.3  Ligand Based Virtual Screening (LBVS) 
 

Despite the advances in macromolecular structure prediction methods, the number of protein 

structures that have been determined experimentally is still lagging compared to that of their sequenced 



 16 

counterparts.  In this case, homology modeling plays a key role in understanding and predicting the three-

dimensional structure of the target. However, homology modeling has its own limitations and the degree of 

success of incorporating the method within the context of VS depends mainly on the quality of the 

predicted structure44. Therefore, it is important to seek alternative routes that depend merely on known 

active compounds and in which no information about the target is required. These ligand-based filtering 

techniques have played a significant role in discovering potent inhibitors for many targets. In fact, ligand-

based screening methods use known active and inactive compounds as templates and employ comparative 

algorithms to identify new compounds that are similar to these templates. Overall, one can classify the 

different LBVS methods into two main approaches, namely, similarity search,4 and pharmacophore 

search.41 

 

2.3.1  Similarity search 
 

The fundamental theory behind this approach is Maggiora’s “similar property principle”, which 

states that similar molecules are more than likely to have similar properties.  While not universally correct, 

there are many cases where this simple idea showed great success and helped in the discovery of novel 

active molecules.45 According to this concept, one can use known active compounds as reference structures 

and filter a given chemical library for ligands that are structurally similar to the active molecules. The 

filtered compounds are expected to display some activity that in some cases could be greater than the 

original reference structures. In fact, there are mainly two ways to assess the similarity between two 

molecular structures. These methods include molecular alignment and molecular descriptors algorithms 46. 

 

Molecular alignment algorithms 
  

 Molecular alignment algorithms such as FlexS 47 or GASP 48 typically align the filtered 

compounds with the reference structure and rank them according to their degree of similarity. During the 

superimposition process, the two aligned molecules can be treated either as rigid or flexible. Similar to 

docking methods, flexibility can be introduced by employing an incremental construction approach (FlexS) 

or a genetic algorithm procedure (GASP). Other algorithms like Fflash 49 apply fragment-based techniques 

to incorporate ligand flexibility during the filtering process. Other algorithms incorporate Gaussian 

functions as in the program MIMIC,50 or constructing interaction potential grids around molecules.51 

 A major drawback of molecular alignment techniques is that the time required for a single 

molecule comparison is long enough to discourage a user from employing the method in screening large 

databases.4 As a result, more efficient and accurate techniques have been developed to describe the 

information inherited in the molecular structure of a given ligand along with its physiochemical and 

topological properties. These are molecular descriptors methods. 
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Molecular descriptors algorithms 
 

Molecular descriptors are generated on-the-fly and are compared to the reference structure very rapidly. 

Based on the dimension of the information that is used, molecular descriptors can be classified into 1D-, or 

2D-descriptors. Evidently, the higher the dimension of the descriptor approach, the longer its computational 

time will be and the higher the accuracy one can expect from the searching protocol. Generally speaking, 

bulk properties like molecular weight, molar refractivity or log P values are adequate to construct a 1D-

molecular descriptor.52 However, since there is no information about the structural properties or chemical 

features of the ligand, it is impossible to only rely on such descriptors in filtering a typical chemical library 

for active molecules. Consequently, one should draw on a higher level of information and include structural 

properties as an additional descriptor in order to increase the accuracy of the method. This introduced 

molecular fingerprints as the most successful and widely used similarity search approach in LBVS. 

Molecular fingerprints are bit-string representations that reflect structural features and other 

properties of a molecule given its chemical structure.4 Key advantages of this approach over direct 

comparisons of molecules are that it is very simple to implement, remarkably fast to calculate and the final 

outcome is expressed as a single number that quantifies the degree of similarity. According to the 

complexity level and design scheme, one can recognize two basic approaches in generating a molecular 

fingerprint for a specified structure.  The first approach is what is known as “keyed” representation. In this 

case, an individual bit within the string can be set as “on” or “off” reflecting the presence or absence of a 

pre-defined functional group (pattern) in the sub-structural space of the ligand. While the order of the bit-

string map is the same for each molecule, the individual bits are turned on or off if their representative 

substructure exists or not. A widely used VS algorithm that employs this procedure is MACCS whose bit-

strings may include up to 166 bits representing commonly known fragments. The second approach is 

known as the “hashed” representation. This method resembles human fingerprints by not restricting the 

definition of bits to describe a pre-specified set of patterns. That is, like human fingerprints, which are very 

characteristic of individuals, a pattern’s fingerprint characterizes the pattern, but the meaning of any 

particular bit is not well defined. To do so, a typical hashed representation algorithm starts with generating 

a pattern for each atom. Then it creates a pattern representing each atom and its nearest neighbors in 

addition to the bonds that join them. This hierarchal construction evolves to include higher order nearest 

neighbors until the complete structure is recovered.  

In the heart of these similarity-based VS techniques lays a similarity measure, usually termed a 

similarity coefficient that is used to quantify the degree of resemblance between two molecules. In fact, the 

most commonly used parameter is Tanimoto (Jaccard) coefficient (described in equation 2).4 To understand 

the concept behind this parameter, let us consider the case of 2D fingerprints representing two molecules A 

and B that have a and b bits that are set as true, respectively.  Now, if there are c common bits that are 

mutually set as true in the two molecules, where c is the intersection subset of a and b, one defines their 

Tanimoto coefficient as: 
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EQ. 2-3 

 
  

The Tanimoto coefficient gives values between zero (no similarity) and one (maximum similarity). This 

coefficient is the most popular choice for both in-house and commercial screening packages. 

 

2.3.2  Pharmacophore search 
 

While the basic concepts behind the pharmacophore search approach have been introduced in 

previous sections, in this part of the chapter we will focus on pharmacophore modeling techniques that 

have been broadly followed in the literature if no target structure is available 40-41, 53. In this case, the only 

information that can be exploited is a set of known active compounds that are recognized experimentally 

and the general procedure can be summarized in two fundamental steps.  First, this set of molecules is 

analyzed in order to identify all chemical features within their structures. Then, for each molecule an 

ensemble of different conformations is generated and used to produce the best alignment between the 

different compounds to overlay their corresponding features. Although the main approach seems feasible 

and simple to implement, searching the conformational space is the most important and most difficult part 

of the method. This is because it is hard to predict the active conformer of a given ligand without 

understanding how it interacts with the target, with the solvent molecules and other elements of the binding 

environment. Nevertheless, there are several programs that have been successfully used in building ligand-

based pharmacophore models for many targets. These programs differ mostly in the way they handle ligand 

flexibility and the method of searching a typical chemical database for promising hits. The most popular 

programs are Catalyst 53, DiscoTech,45b and GASP.48  

Catalyst introduces ligand flexibility very efficiently and, in the mean time, is extremely fast in 

searching 3D chemical databases 53. In brief, the program extensively explores the conformational space of 

a ligand by using a random search algorithm along with a poling function that creates a large number of 

low-energy conformations. Catalyst follows two alternative algorithms in building up pharmacophore 

models. The first algorithm, HypoGen, is a quantitative approach in which each chemical feature allocated 

to the ligand structure is associated with a particular weighting factor that is related to its relative 

importance in describing the bioactivity of the molecule. Following this procedure, the algorithm builds up 

a number of pharmacophore hypotheses and ranks them based on their ability to explain available 

experimental data. In the other approach, Catalyst follows a qualitative procedure that is termed the 

HipHop algorithm. In this process, for each ligand, the algorithm checks for the surface accessibility for 

receptor interactions. Then, chemical features are defined based on their absolute coordinates in the 

different conformations of the molecule rather than by their inter-feature distances. This procedure usually 
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starts with the most active compounds in the training set followed by highlighting their matching features 

from other less-important molecules. This results in a considerable number of proposed pharmacophore 

hypotheses that is significantly reduced by rejecting models that cannot explain the bioactivity of these 

molecules. Regardless of which approach is used, Catalyst can merge different models in order to generate 

a more comprehensive pharmacophore hypotheses.  

Disco not only suggests pharmacophore models that demonstrate the important features in a 

ligand, but it also predicts their potential complementary regions that should be located within the binding 

site.45b This is accomplished by breaking up a pharmacophore to groups of ligand points and binding pocket 

interaction sites. Ligand points include atoms with hydrogen bonding properties, charge centers and 

hydrophobic characteristics. Binding pocket interaction sites are predicted to be complementary regions 

within the target and are calculated using the coordinates of the heavy atoms of the ligand. Similarly to 

Catalyst, the conformational flexibility of the ligands is explored using a set of pre-calculated 

conformations for each ligand in the training set. However, one pitfall of using Disco is that all chemical 

features that make up the final pharmacophore model must be identified in every molecule, which may 

result in the exclusion of talented models. 

In contrast to both Catalyst and Disco, the program GASP handles the ligand conformational 

flexibility in a very sophisticated manner.48 Instead of using a pre-calculated set of ligand conformations, 

the program uses a genetic algorithm to explore the conformational space of the ligand during the 

pharmacophore generation process. GASP algorithm starts by detecting all possible chemical features in 

the structure of each ligand. The molecule with the least number of features is selected as a reference 

structure. Every structure in the training set is then fitted to the reference structure using a genetic 

algorithm that is similar to what is used in docking programs (see above). However, in this case, the fitness 

of a particular model is measured based on a combination of similarity, the number of overlaid features and 

the volume integral of the overlay.  One more advantage for GASP over DISCO and Catalyst is that, 

models generated by GASP account for the steric clashes between the ligands in generating the final 

pharmacophore model. On the other hand, the other two programs propose their models by only matching 

the chemical features of the ligands without taking their overall shape into account.    

No matter which approach is used to generate a pharmacophore model, which includes SBPM, 

there are two main ways to screen chemical libraries for compounds that satisfy the constraints of the 

pharmacophore hypotheses.40-41 First, one can use a database file format that includes a set of pre-defined 

conformers for each compound in the database. Although this approach remarkably speeds up the search 

process, it requires massive storage of the different conformations. Alternatively, a single conformation can 

be used as a precursor for generating an ensemble of conformations followed by fitting these structures to 

the pharmacophore query during the screening process. While this procedure eliminates the need for 

substantial storage, it is much slower than the former method. 
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2.4 Conclusion 
 
The present chapter introduced us to the world of computational virtual screening (VS). It showed that VS 

tries to solve the same problem as its experimental high throughput-screening counterpart. They both 

attempt to complement a given binding site of a particular target with a small ligand that would block or 

provoke the target biological activity. VS is cheaper, faster and sometimes more yielding than the 

experimental approach. Nevertheless, there are also so many cases where the computational VS showed 

very low success due to mistreatment of various factors during the simulations. Although VS can employ 

two independent computational alternatives, namely, SBVS and LBVS, it is important to think about these 

two methods as two arms in the same body. They hold the same problem together and complement each 

other. For example, as was implemented in this work (see next chapter), LBVS can enrich the used ligand 

VCC with similar compounds to the known actives. The enriched VCC is then used for SB screening in 

order to identify more active compounds and suggest them for experimental testing. The protein flexibility 

and scoring are still persisting as the two main problems facing ranking of hit compounds in VS. 
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Chapter 3: The Implemented Virtual 
Screening Workflow(1) 
 
 
 
 
 
 
 

After reviewing all VS methods and concepts that have been used and developed during the last two 

decades, it is time to describe the VS protocol that was implemented to carry out this work. Figure 3-1 

illustrates the essential steps that construct the overall workflow of the VS procedure. In a nutshell, the 

developed protocol employs molecular docking, molecular dynamics simulations and clustering techniques 

to filter any given library of compounds for inhibitors of a particular target. The detailed description and 

rationale behind each step are summarized below. Except for a few steps that need careful preparation, the 

whole process has been automated. It starts with a collection of 3D structures of ligands and a well-

prepared target structure. It finally yields a set of top hit structures in their preferred binding modes to the 

target. Although the following steps were applied to the few problems described in the following chapters, 

the procedure is general and the same method is applicable for almost any target. 

 

3.1 Target preparation 
 

All the targets that were studied in this work are proteins. Their structures can be downloaded 

easily from the protein data bank (PDB) database.1 However, it is not a good practice to use the 

downloaded structures directly in simulations. The target structures should be cleaned up and prepared 

carefully prior to any computational work. Although, the following target preparation steps can be 

automated within the screening procedure, it is not recommended to automate them, as they need careful 

visual examination, which takes into account all possibilities and individual differences among them. 

 

3.1.1  Primary assessment of target structure 
 

In general, the downloaded “crude” crystal structure of a target contains many details that must be 

taken into account. This includes nonstandard amino acids; cofactors; other small molecules that are there 

                                                           
(1) A version of this chapter has been published in Barakat K, H, Tuszynski J (2011) Virtual Screening for DNA Repair Inhibitors. In: 
Storici F, editor. DNA Repair - On the Pathways to Fixing DNA Damage and Errors. 1 ed. Rijeka: InTech. 
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due to the crystallization process; ions and co-crystallized water molecules. At this stage, an 

important decision must be made on whether to keep these extra molecules or delete them before 

carrying out the simulations. For most of small molecules like polyethylene glycol, it is better to 

remove them from the structure, as they are not included in the native form of the target, however, 

they were required for the crystallization process. Nonstandard amino acids must be assessed and 

modeled. In many protein structures, these unusual amino acids lack several atoms because most 

structure handling packages don’t check on them automatically. Their parameters must be 

appended to the used Force Field (FF) before starting any type of simulation.  Cofactors, ions and 

co-crystallized water molecules should be included within the structure. This conclusion has been 

strongly recommended in the literature and was necessary to study the DNA-p53 binding 

characteristics shown in figure and introduced latter in chapter 8. 

 
Figure 3-1: The implemented VS protocol. See text for details. 
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Figure 3-2: Hydrogen bond network at the DNA-p53 binding interface at 300K. 

 Water molecules played an important role in maintaining the binding stability between the protein and 
DNA (see chapter 8 for more details).     

 

Water molecules that are located close to or within the binding site can mediate several 

interactions with the ligands. However, it is important to find out which water molecules are conserved 

within these regions. Any unpreserved (misplaced) water molecule can obstruct the docking simulation and 

lead to wrong results. One way to identify important water molecules is to compare several crystal 

structures of the same target (if applicable) and choose which water molecules to keep during the docking 

procedure. Another “tedious” way if only a limited number of target structures are available is to run 

different docking exercise by removing/keeping these water molecules and select the ones that lead to 

realistic and favorable binding modes. A final way to decide on these water molecules is to use prediction 

software packages (e. g. ConSolv 1.0)2 that check whether a bound water molecule is likely to be conserved 

or displaced in other, independently-solved crystallographic structures of the same target.  

One other aspect in target preparation is that sulfur atoms of two neighboring cysteine residues can 

covalently bind and form disulfide bonds. This information should be included within the crystal structure 

text file (pdb-file) and must be visually inspected before simulation. Usually, a disulfide bond will form 
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between two adjacent cysteine residues if they have the proper geometry and the distance between the two 

sulfur atoms is around 2 Å.  Finally, it is necessary to verify that no parts of the protein structure are 

missing. These missing residues are usually mentioned at the header of the pdb-file and must be added and 

relaxed within the target structure. Regarding the targets that were studied in this work, all missing amino 

acids were distant away from the binding site. Nevertheless, we added and relaxed them using molecular 

dynamics simulations before running the docking experiments (see below). 

  

3.1.2  Identifying the binding site 
The starting point of any VS protocol is the identification of the binding site within the target 

protein. This portion of the protein is directly related to the biological activity that needs to be regulated. At 

this stage, it is important to consult previously published work and determine if there are any known active 

compounds and to ascertain their location of binding. If the binding site is not exactly known, however, 

there is a set of active molecular structures that exist, one should run a series of blind docking experiments 

until a suitable and experimentally verified binding site is recognized. Regarding the other three targets in 

this work, only two, namely MDM2-p53 and pol β, had previously identified inhibitors. Moreover, for the 

three proteins, the binding sites were accurately known, mainly because they are protein-protein interaction 

sites (e.g. ERCC1-XPA and p53-MDM2/MDMX), or protein-DNA binding sites (e.g. DNA-pol β) where 

crystal structures of the interacting subunits are available.  

Typically, the binding site is defined as “all target atoms that are located within 6-10 Å from any 

atoms of the bound ligand/peptide”. The selection of the cutoff is crucial and is essentially done on a try 

and error basis during the initial docking optimization step. If the cutoff is too small (i.e. less than 6Å of 

ligand atoms) it may bias the docking results toward the binding mode of the known inhibitor and generate 

a few number of ligand conformations that does not represent all possible binding modes for the other 

ligands. On the other hand, if it is too large (i.e. greater than 10Å) the docking simulation can produce 

enormous solutions that are hard to be clustered into definitive binding modes. A more accurate way to 

choose the residues constructing the binding site is to perform binding energy analysis between the co-

crystallized ligand/peptide and the target using molecular dynamics simulations and break the predicted 

energy into residue contributions. This strategy was used to define the binding site within ERCC1 that 

interacts with the XPA protein (see chapter 4).  

 

3.1.3  Protonation states of charged residues 
The proper adjustment of the protonation states “the assignment of Hydrogen atoms” of the 

ionizable groups contained by the target structure is important for any successful VS simulation. These 

residues play key roles in interaprotein, protein-solvent and protein-ligand interactions. The protonation 

states can be determined by predicting the pKa values of charged residues and compare it to the pH value in 
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which the simulation takes place. In this work, all protonation states of ionizable residues were calculated 

using the software PROBKA and adjusted at physiological pH of 7.0.3 PROBKA is a very fast and accurate 

method that relates the structure and environment of the charged residues to the change of the pKa values 

from their intrinsic ones. Again, visual inspection of the location of these residues is necessary to validate 

the predictions of PROBKA, especially, for histidine residues, which possess complicated protonation 

characteristics. An example for such predictions is shown in Figure 3-3 for the Zinc binding domain of p53. 

Once the protonation states have been decided, all hydrogen atoms are then added to the system according 

to a given force field (FF). For this work the AMBER99SB FF was used. By the end of this phase, the 

protein structure is ready for docking or molecular dynamics simulations. 

 

3.2  Ligand Collection Preparation 
 

Parallel to target preparation is the organization and cleaning up of the set of compounds with 

which to screen. Currently, there are many suitable, easy to access compound databases that contain 

millions of molecules spanning various structural families. These databases resulted from the combined 

efforts of the pharmaceutical industry and many research groups all over the world. Prior to any screening 

campaign, one should decide on which set of compounds that will be filtered and build up his virtual 

compound collection (VCC) of compounds. This collection will be repeatedly used against many targets. A 

typical VCC should include marketed drugs, lead-like compounds, fragment structures, commercially 

available chemicals and other high-activity molecules. It is also important to represent these molecules in 

different protonation, stereo and conformational states. An effective VCC should be constructed from 

molecules that are suitable for further lead optimizations, after they show biological activity.  

 

 
Figure 3-3: The protonation states for the residues constituting the Zinc binding site in p53.  

All charged atoms that are facing Zinc (shown in red) are deprotonated (has no hydrogen atoms).  
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3.2.1  Construction Of The VCC 
In this work, 4 different databases comprise the core of our VCC. They are the National Cancer 

Institute diversity set (NCIDS),4 the DrugBank database,5 subsets of the ZINC database6 and finally, the 

French national chemical library “la Chimiothèque Nationale” (CN).7 Some of them are used in the first 

iteration of VS and others are retained for the higher order searching rounds. 

  The NCIDS is a collection of approximately 2,000 compounds that are structurally representative 

of a wide range of molecules, representing almost 140,000 compounds that are available for testing at the 

NCI. A number of its ligands contain rare earth elements and cannot be properly parameterized for docking 

experiments, leaving us with 1,883 compounds that can be actually used. This work exploits a cleaned 3D 

version of the NCIDS formatted for use in AutoDock (the main docking program to produce this thesis) 

and was prepared by the AutoDock Scripps team. What makes the NCIDS so valuable and extensively 

screened by many groups (even in HTS) is that its individual molecules have distinctive structures and are 

the cluster representatives of their parent families. Once screened and a number of its molecules rank high 

in the hit list, one can return back and screen the whole family of the representative structure, instead of 

screening the actual NCI set of compounds.  

The DrugBank database is not only a set of molecules representing FDA-approved dugs, but also 

it is a unique bioinformatics and cheminformatics resource. It relates each drug to its target(s). It includes 

details about the different pathways, structural information and chemical characteristics of these targets and 

the way they take part in inducing a particular disease. This information is stored in a free available website 

that is linked to other databases (KEGG, PubChem, ChEBI, PDB, Swiss-Prot and GenBank) and a range of 

structure displaying applets. The DrugBank collection includes ~4,800 drug structures including >1,350 

FDA-approved small molecule drugs, 123 FDA-approved biotech (protein/peptide) drugs, 71 nutraceuticals 

and >3,243 experimental drugs. Once a hit is identified from this library, it is simply a drug. This means it 

overcomes many barriers of preclinical and clinical experiments and can be tested directly for its novel 

biological activity. Moreover, a hit from this collection may explain a mysterious side effect that would not 

be discovered before its identification as a regulator for the examined target. 

ZINC is a free database dedicated to VS.  It includes more than 13 million purchasable compounds 

most of them are “drug-like” or “lead-like”. The compounds are available in several 3D formats and 

compatible with several docking programs. The ZINC database has many other interesting features. For 

example, one can easily create a subset of the whole database with any given set of properties such as 

functional groups, molecular weight, and calculated logP. Most of the compounds also exist in multiple 

protonation states suitable for different pH values, several tautomeric forms, all possible stereochemistries, 

and different 3D conformations. The database is also organized so that the origin for each molecule is 

known. That is, one can determine the vendor and original catalog number for each commercial source of 

that compound. Similar to the DrugBank database, a molecule can be annotated for its function or activity. 

It also has a powerful web server that helps in searching, browsing, creating subsets, and downloading 
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some or all of the molecules of the database.  

 The CN chemical library (~50,000 compounds) is a repository of all synthetic, natural compounds 

and natural extracts in the existing French public laboratories. The whole database is divided into two main 

categories. The first part includes information about all synthetic products, while the second contains the 

natural compounds and extracts. In this work, we used the whole CN database in our screening. Contrary to 

the previously mentioned databases, compounds in this library are represented by 2D SDF structures with 

no hydrogen atoms attached. This required a number of cleaning and preparation steps before using them in 

VS simulations (see below). 

 

3.2.2  Enriching the VCC Core 
This is where ligand-based methods come to play a significant role in the pre-screening process. 

Any molecule that is known to bind to the target-binding site can serve as a positive control. Such 

molecules can be identified through published articles or previous patents. Besides their function in 

directing and verifying the simulation parameters, they can be used as seeds for searching for similar 

chemical structures to enrich the VCC. This step is crucial and should be done even if the identified similar 

structures have been previously removed from the VCC in its early construction steps. As previously 

mentioned in section 2.3.1: Similar molecules are more than likely to have similar properties, these 

compounds can bind with comparable affinity to their parent seeds.   

 Following this strategy, we used known inhibitors for the p53-MDM2 interaction (see chapter 7) 

and DNA pol β (see chapter 6) to enrich their representative VCCs.  For the ERCC1-XPA interaction 

(chapter 4), initially, there was no active compound that was confirmed to bind to the ERCC1 pocket. 

Hence, for the first round of VS, we started from scratch and didn’t apply this enrichment method. 

However, it was used in the second round of screening, after the first iteration identified a list of novel 

binders to the ERCC1 target. 

  

3.2.3  Cleaning Up the VCC 
After deciding on which collection of compounds to be used in the screening process, one should 

spend time and effort to assure the quality of the used ligand structures. As mentioned before, it is 

important to have proper protonation and conformational states for the ligands. For example, the original 

CN library of compounds is a collection of 2D structures with no hydrogen atoms. Ligands in this state are 

not suitable for docking using many of the popular docking programs. These software packages require 3D 

structures with proper placement of hydrogen atoms. One solution to this problem, which was followed in 

this work, is to use conversion software that can translate the 2D information into its 3D representative 

structure.  Many of such programs are available (e.g. Open Babel8 and LigPrep from Schrödinger9). We 

prefer LigPrep for this task because it produces structures with fewer errors compared to Open Babel, 
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especially in bond connection and hydrogen atoms assignment. LigPrep has strong and consistent 

capabilities in handling of chemical structures. Besides the conversion from 2D to 3D configurations, it can 

generate variants of the same ligand with different tautomeric, stereochemical, and ionization properties. It 

also includes energy minimization protocols that can relax the generated structures into their preferred 

configurations. Moreover, it includes flexible filters that can be used to clean the processed structures from 

any ligand with no desirable properties. 

 

3.3  Generation of an Ensemble of Target 
Structures 

 

Proteins are dynamical entities in nature. Their dynamical behavior is essential to recognize and 

bind to other molecules inside the cell. As we have seen in section 2.2.1.2, although many attempts have 

been done to partly include the flexibility of the target within docking algorithms, there are many barriers 

and challenges that preclude the progress of this field. One major challenge is the enormous number of 

conformations that are accessible to the target under equilibrium conditions. The range of these 

conformations is wide and includes many local and global movements within the structure of the protein. 

These dynamics can be as small as little rotations of the side-chains or as large as the complete dislocation 

of domains within the same target. There are many crystal structures in the Protein Data Bank (PDB) that 

give evidence to this bizarre dynamic behavior. These conformational changes can be illustrated by 

comparing different crystal structures of the same target, especially, between its bound and unbound forms. 

Depending on the time-scale of such movements, one should employ the right method to detect it. For 

small movements such as side-chain rotations or little loop movements, X-ray crystallography and standard 

MD simulations can be used. However, NMR crystallography and multiple trajectories MD (e.g. Replica 

Exchange MD) or Coarse Grained computations would be appropriate for understanding larger motions. 

  

 

3.3.1  “Induced Fit” vs. “Conformational Sampling” 
 

The existence of different structures and the diversity of their conformations for the same target, 

pose an important question. Is it the interaction between the ligand and its target that induces these 

conformational changes for the two interacting molecules? If so, why then some bound proteins acquire 

large movements that may extend to distant locations from the binding site, instead of changing the local 

environment of the ligand? Certainly, the “lock and key” principle proposed by Fischer, cannot answer 

either of the two questions. Hence, two models were proposed to explain this inconsistency.  

The first was Koshland’s theory of “induced fit”.10 This theory answered the first question. Yes, it 
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is the ligand-binding that changes the structure of the binding site in order to maximize its interactions and, 

hence, its binding affinity to the bound ligand. But the “induced fit” principle can explain the local 

movements around the ligand, including side-chain rotations or even tiny loop movements. However, it is 

hard to apply the same principle to account for larger dynamics that can rearrange considerable regions of 

the target.  To explain this behavior, Monod, Wyman and Chaneux suggested their “MWC” model, or the 

“conformational selection model”.11 Any particular unbound target conformation is in equilibrium with 

many other conformations. A ligand can only “select” and bind to one of these structures, hence the name, 

“conformational selection”. Figure 3-4 describes the difference between the three proposed concepts of 

target-ligand binding. 

 

3.3.2  Single Structure Vs. Multiple Structures 
During Docking 
 

Introducing protein dominant dynamics during docking experiments can indentify new scaffolds 

that exploit the newly opened (or closed) regions in the binding site. The importance of protein flexibility 

during docking was demonstrated in many studies since the late 1990 and shown to have a remarkable 

influence on the final results. For example, Bouzida et al.(1999) investigated the docking of sb203386 and 

skf107457 inhibitors to HIV-1 protease using MC simulations.12 Their work compared docking against a 

single protein conformation to using an ensemble of protein structures. It was not a surprise to conclude 

that using multiple conformations of the same target was better than using a single structure.  In another 

study by Murray et al. (1999) only 49% of the ligands were cross-docked correctly to another target that 

was co-crystallized with a different ligand. This showed that inducing small movements of the side chains 

(not only the backbone) in the binding site resulted in large variations in the predicted binding affinities. 

These early studies have drawn the attention of docking research groups to the importance of target 

flexibility and motivated them to implement various techniques to include this factor in the context of 

docking. 
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Figure 3-4: Three concepts of target-ligand binding. 

A) Lock and key. B) Induced fit. C) Conformational selection followed by induced fit. (Adopted 
from Tobi et al.13)  

 
 

3.3.3  Hybrid MD-Docking Methods   
One way to accommodate receptor flexibility and allow for using of more accurate scoring 

techniques is to implement a hybrid between docking and MD simulations. Originally, the use of MD 

simulations in VS studies was intended to create a set of receptor conformations.14 However, it was always 

debatable whether to use structures derived from MD simulations or NMR data. For example, 

Philippopoulos et al. suggested NMR structures as the most effective source for protein conformations.15 A 

set of 15 NMR conformations for ribonuclease HI was compared to a trajectory obtained from a 1.7ns MD 

simulation. The NMR data explored the conformational space of the protein more efficiently than the 

conventional MD simulation. In spite of their findings, it should be noted that Philippopoulos used a 

standard single trajectory MD simulations for a relatively short simulation time. As was noted before, in 

generating such ensembles, one should employ multiple trajectory MD simulations (REMD), or run the 

simulation over longer times. In this thesis, we think that if a practical ensemble of NMR structures exist, 

one should consider using it all, instead of running long MD simulation. However, if the VS exercise is 

departing from a single X-ray crystal structure, it is important to generate such ensemble using MD 

simulation.  

In this context, a successful approach, reported by McCammon and his team, is the relaxed 

complex scheme (RCS).16,17 The method, illustrated in Figure 3-5, forms the foundation of the VS protocol 

presented in this thesis. In the RCS approach, all-atom MD simulations (e.g., 2-5 ns simulation) are applied 

to explore the conformational space of the target, while docking is subsequently used for the fast screening 

of drug libraries against an ensemble of receptor conformations. This ensemble is extracted at 

predetermined time intervals (e.g., 10 ps) from the simulation, resulting in hundreds of thousands of protein 

conformations. Each conformation is then used as a target for an independent docking experiment. 
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Figure 3-5. Basic idea behind the relaxed complex scheme developed by McCammon et al. 

 

 

 

 

The RCS methodology has been successfully applied to a number of cases. An excellent example is an HIV 

inhibitor, raltegravir,18,19 which became the first FDA approved drug targeting HIV integrase. MD 

simulations played a significant role in discovering a novel binding site, and compounds that can exchange 

between the two binding sites have formed a new generation of HIV integrase inhibitors. Other successful 

examples include the identification of novel inhibitors for acetylcholine binding protein,20 RNA-editing 

ligase 1,21 the influenza protein neuraminidase,22 Trypanosoma brucei uridine diphosphate galactose 4'-

epimerase,23and many others described in the literature. 

These applications employed alternative ways to solve two main problems with the method, 

namely, reducing the number of extracted target conformations and deciding on how to select the final set 

of hits after carrying out the screening process. For the first problem, a number of studies suggested 

extracting the structures at larger intervals of the MD simulation (e.g. every 5ns or so),20 condensing the 

structural ensemble generated from MD simulations using QR factorization,21 or clustering the MD 

trajectory using root-mean-square-deviation (RMSD) conformational clustering,22,23 On the other hand, to 

rank the screened compounds and suggest a final set of top hits, some studies used only docking 

predictions,20,21,22while others suggested (as in this thesis) using a more accurate scoring method (e.g. 

MM/PBSA (Molecular Mechanics/Poisson Boltzmann Surface Area)) to refine the final selected hits.24 All 

of these approaches, similar to the work presented here, were aiming at keeping the balance between 

significantly reducing the number of target structures and, in the meantime, retaining their capacity to 

describe the conformational space of the target.  

The following steps represent the approach that was used to put together and improve the RCS 
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method in this thesis. Our implementation follows the same guidelines of the method. We first use MD 

simulations and generate large enough trajectories that can progress through the phase space of the binding 

site. The length of the MD simulations (usually in the order of 100ns) is determined through applying 

metrics that employ principal component analysis (PCA). Once the trajectory reaches an adequate sampling 

of target conformations, clustering analysis extracts representative structures that describe the dominant 

dynamics of the binding site. The extracted structures are then used as rigid targets to screen the whole 

library of compounds and suggest models for the most preferred ligand-protein complexes, hence, utilizing 

the “conformational sampling” model. These bound structures are then solvated and used to run all-atom 

MD simulations to relax the two molecules and generate new trajectories that represent their “induced fit” 

models. MM-PBSA method finally ranks the newly generated structures and suggests a set of top hits for 

experimental testing.  

 

3.3.4  Principal Component Analysis And 
Convergence Of Sampling 

 

A typical MD trajectory displays how the atomistic Cartesian coordinates are traveling in time. 

Although the duration of the whole trajectory is very short (at best, in the order of 100s of ns) compared to 

real life biological dynamics, it involves a huge number of snapshots that contain a mixture of fast and slow 

modes of motion. It is impossible to segregate or understand these mixed dynamics through simple analysis 

(e.g. visual inspection). However, covariance, or principle component, analysis (PCA) can break up these 

two types of motions and extract the essential dynamics (ED) spanned by the protein structure. These 

essential dynamics are the collective movements that are directly linked to the function of the protein and 

are essential for its role. In fact, PCA transforms the original space of correlated variables from a large MD 

simulation into a reduced space of independent variables.25,26 For a typical protein, the system’s 

dimensionality is thereby reduced from tens of thousands to fewer than fifty degrees of freedom.  

To perform PCA for a subset of N atoms, the entire MD trajectory is RMSD fitted to a reference 

structure, in order to remove all rotations and translations. The covariance matrix can then be calculated 

from their Cartesian atomic coordinates as (see Appendix A for more details): 

€ 

σ ij = ri − ri( ) rj − rj( )   EQ. 3-1 

where 

€ 

ri  represents the three Cartesian coordinates (

€ 

x, y,z ) and the eigenvectors of the covariance matrix 

constitute the essential vectors of the motion. It is generally accepted that the larger an eigenvalue, the more 

important its corresponding eigenvector in the collective motion. PCA can also be employed to predict the 

completeness of sampling during the MD simulation. This step is critical and was used in this study to 

answer a very important question: when to stop the simulation and start extracting the dominant 

conformations of the protein? In this, we follow a method proposed by Hess27 that divides an MD trajectory 
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into separate parts, and their normalized overlap (see appendix A for details) is calculated using the 

covariant matrices for each pair of parts: 

€ 

Normalized overlap (C1,C2) = 1−
tr C1 − C2( )

2 
 
 

 
 
 

tr C1( ) + tr C2( )
 

 

EQ. 3-2 

 

where C1 and C2 are the covariant matrices, and the symbol tr denotes the trace operation. If the overlap is 

0, then the two sets are considered to be orthogonal, whereas an overlap of 1 indicates that the matrices are 

identical. In this context, for the three targets studied in this thesis, the individual whole trajectories were 

divided into three parts and the normalized overlap between each pair was calculated to determine the 

completeness of sampling. 

  

 

3.3.5  Iterative Clustering To Extract Dominant 
Conformations 
 

Once a sufficient sampling is confirmed through the aforementioned PC calculations, clustering 

analysis are then used to extract a set of target structures that represent its dominant conformations. 

Unfortunately, there is no universally accepted clustering algorithm or parameters that can be used to 

extract all of the information contained within the MD simulation. However, recent studies suggest that a 

number of clustering algorithms, such as average-linkage, means and self-organizing maps (SOM) can be 

used accurately to cluster MD data.28 In this work, the clustering quality was anticipated by calculating a 

number of clustering metrics. These metrics can reveal the optimal number of clusters to be extracted and 

their population size. These are the Davies-Bouldin index (DBI)29 and the "elbow criterion".28 A high-

quality clustering scheme is correlated with high DBI values. On the other hand, using the elbow criterion, 

the percentage of variance explained by the data is expected to plateau for cluster counts exceeding the 

optimal number of clusters. Using these metrics, by varying the number of clusters, one should expect for 

adequate clustering, a local minimum for DBI and a horizontal line for the percentage of variance explained 

by the data. Figure 3-6 describes an example of such calculations. 
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Figure 3-6: Clustering Analysis.  

The DBI and SSR metrics against the number of clusters for the MDM2 target (chapter 7). A high-
quality clustering is obtained when a local minimum in DBI correlates with saturation in the 
SSR/SST ratio. This is clear at cluster count of 60 for the apo-structure and 30 clusters for the 
holo-structure. 

 

This work employs an iterative clustering algorithm using the abovementioned hypothesis. The procedure 

is implemented as an in-house code using the PTRAJ utility of AMBER10. A modified version of the code 

is also used to cluster the docking results (see section 3.4.2). MD trajectories’ clustering runs the average-

linkage algorithm for a number of clusters ranging from 5 to 150 clusters. Structures are extracted at 2 ps 

intervals over the entire simulation times. In order to remove the overall rotation and translation, all 

€ 

Cα  

atoms are fitted to the minimized initial structure. RMSD-clustering is performed on the residues contained 

in the investigated binding sites. These residues are clustered into groups of similar conformations using 

the atom-positional RMSD of the entire amino acid, including side chains and hydrogen atoms, as the 

similarity criterion. The centroid of each cluster, the structure having the smallest RMSD to all members of 

the cluster, is chosen as the cluster representative structure and the most dominant structures are used as 

rigid templates for the ensemble-based docking experiments (see below). 
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3.4  Docking Ligands To The Ensemble Of 
Target Structures 

 
As stated above, the outcome of the iterative clustering step is an ensemble of protein structures 

that are used as targets for docking. The main docking program that was used throughout this thesis is 

AutoDock version 4.30 AutoDock is one of the most popular docking packages that utilize different 

conformational search methods, including Simulated Annealing (SA), traditional Genetic Algorithm (GA), 

and Lamarckian Genetic Algorithm (LGA). Here, we used the LGA approach. The LGA method is a hybrid 

between classical GA (described in section 2.3.1.1.2) and local minimization search. The approach is well-

described in the original paper by Morris et al.30 and is compared to the classical GA below. 

 

3.4.1  Classical Vs. Lamarckian GA 
 

AutoDock represents the state of the ligand within the binding site (i.e. position and orientation) 

with a set of parameters and defines them as the ligand’s “state variables”. These state variables are the 

genome of the ligand. Genomic state variables are subject to change by mutations or crossover during the 

evolution “docking” process. The atomic coordinates of the ligand represent its phenotypic features. LGA 

is based on Jean Baptiste de Lamarck’s ideas. That is, phenotypic features that are gained during an 

individual’s lifetime can be inherited in its genome and passed to the newly generated offspring. This is the 

main difference between classical and Lamarckian GAs. While the former explores only the phenotype side 

of the problem and has a one-way translation (mapping) from genotype codons into phenotype features (see 

Figure 3-7), the latter can search and exchange information between the two realms. LGA follows the same 

concepts of the classical algorithm except for two essential parts. First, when evaluating the fitness 

(scoring) of the individual conformations, classical GA uses only the scoring function (Error! Reference 

source not found.), while LGA, do that by first evaluating the scoring function, minimizing the 

coordinates of the ligand and search for the closest minimum. Second, this local search takes place in the 

phenotypic features of the ligand “coordinates” and then translates it into a new set of genomic information 

“state variables” which can be inherited in the new generation of offspring, if the resulting conformation is 

strongly fitted to the environment. 
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Figure 3-7: Difference between classical and Lamarckian genetic algorithms. (adopted from 
Garrett et al.30 )   

 

3.4.2  Automated Clustering of Docked Poses 
 

The previously described virtual screening experiments involve millions of conformations of each 

ligand bound to its target. AutoDock can cluster these output poses into subgroups depending on their 

RMSD values referred to a reference structure. Although this approach is widely used, however, similar to 

clustering of MD trajectories (section 3.3.5), the number of clusters and the population size for each cluster 

depends heavily on the RMSD cut-off used. Consequently, it is impossible to expect the optimal cut-off for 

the RMSD in order to produce a clustering pattern with the highest confidence. This motivated us to use an 

alternative approach when clustering the docked ligand structures.  Here, we extended and automated the 

clustering methodology that was used in section 3.3.5 to couple the elbow criterion,31 with the clustering 

module of PTRAJ ( a well-known utility in AMBER10). This method exploits the fact that the percentage 

of variance exhibited by the data (λ), is expected to plateau for cluster counts exceeding the optimal 

number.  

The percentage of variance is defined by:  

€ 

λ =
SSR
SST

 
           

EQ. 3-3 

 

where (SSR) is the sum-of-squares regression from each cluster summed over all clusters and (SST) is the 

total sum of squares. Here, we used the SOM algorithm to cluster the docking results. This modified 

clustering program increases the number of clusters required until the percentage of variance exhibited by 
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the data (λ) plateaus. The convergence of clustering can be determined by calculating the first and second 

derivatives of the percentage of variance with respect to the clusters number (
dN
dλ

 and 2

2

dN
d λ

) after each 

attempt to increase the cluster counts. The clustering process then stops at an acceptable value for these 

derivatives that is close to zero. In this way, the clustering procedure depends only on the system itself and 

adjusts itself to arrive at the optimal clustering pattern for that specific system. 

 

3.4.3 Preliminary Ranking of Docking Results 
 

The VS protocol then sorts the docking results by the lowest binding energy of the most populated 

cluster. The compounds can also be ranked using their weighted average binding energies according to the 

following formula:  

€ 

Weighted Average Binding Energy (WABE)   =  percent distribution(i) ×binding energy(i)
i

M
∑         EQ. 3-4 

 

where i is the index number of each ensemble cluster whose percent distribution sums up to 100% and M is 

the number of different structures included in the target ensemble. The VS protocol only considers a 

compound among the top hits if the most populated cluster from any of the VS experiments includes at 

least 25% of all docked conformations. The top N hits of the combined docking runs construct an 

irredundant set of promising compounds that are used for further analysis. In this work, a typical 

preliminary set (N) includes from 200 to 500 compounds. 

 

3.5   Visual Inspection And Selection Of A 
Focused Set Of Hits 

 

Visual inspection to the preliminary set of hits is necessary before proceeding to the later 

computationally rigorous steps. Although this step involves more human intervention, it assures the quality 

of the docking results, which are not precise in terms of ranking or the final suggestion of binding 

geometries. Moreover, even with the exhaustive preparation of the VCC in the initial steps of the screening 

process, some compounds may include mistakes that were not noticed in the earlier steps. It is also 

important to perform this visual inspection step as a post-filtering approach to select compounds that have 

specific interactions with the target. For example, if a hydrogen bond(s) with a particular residue(s) or a 

hydrophobic interaction with a portion of the binding site is required. In this work and during this stage, it 
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was important to return back to the original clustering results for a number of ligands and select additional 

binding modes that were ignored during the filtering step but showed promising binding energies. These 

post-filtering investigations act as a refining step for the previous high throughput docking steps in order 

not to waste the computational resources on improbable successful hits during the next steps. 

 

3.6  Molecular Dynamics Simulations on 
Selected Hit-target Complexes 

 
As was mentioned in the previous sections, there are many factors (e.g. water, protein flexibility, 

etc.) that are not well characterized within the docking context. During this step, the VS protocol aims at 

accounting for these factors through performing MD simulations. Each simulation starts from the final 

docked structure. The important aspect at this stage is the solvation of the docked models. Based on our 

knowledge from this work, for a number of cases, water molecules were not only involved in 

solvation/desolvation of the protein-ligand complexes, but also they mediated their interactions and helped 

in generating more suitable binding modes. MD simulations relax the structures, rearrange water and ion 

molecules and generate trajectories that are used during the next step for binding energy calculations. The 

output from this step is a set of snapshots representing the trajectory of the MD simulations for each 

complex. Although this procedure requires extensive computational resources, it tends to improve the 

protein–ligand interactions and enhance their molecular complementarity. In fact, during this stage it 

simulates their induced fit model and allows the binding-site environment to inflict the requirements to be 

met by the selected ligand. Moreover, the stability of the complexes over the simulation time is a direct 

measure of the consistency of binding, since improperly docked structures are expected to produce unstable 

trajectories. The MD simulation protocol depends on the system studied and the details of these 

calculations and their set up will be presented in the next chapters. 

 

3.7  Rescoring of Hits Using the MM-PBSA 
Method 

  

Besides using MD simulations to refine the docked structures, another essential constraint for a 

successful VS experiment is to accurately predict their binding energies. To correctly fulfill this task, we 

need to move far from the simple docking scoring methods. However, we are also restricted by the need to 

have a fairly fast method that can be applied to many systems at a reasonable time. At this stage, it is also 

the time to consider the factors that were ignored or mistreated during the initial docking scoring, such as 

solvation and entropic terms. In this context, the VS protocol utilizes a fast and efficient scoring method to 
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suggest the final ranked set of top hits. It is the molecular mechanics Poisson-Boltzmann surface area 

(MM-PBSA) technique. The method was initially proposed by Kollman et al.32 and it combines molecular 

mechanics with continuum solvation models. The method has been extensively tested on many systems and 

shown to reproduce, with an acceptable range of accuracy, experimental binding data. It was also validated 

as a VS refining tool and revealed excellent results in predicting the actual binding affinities and in 

discriminating true binders from inactive (decoy) compounds 33. Its main advantages are the lack of 

adjustable parameters and the option of using a single MD simulation for the complete system to determine 

all energy values. 

In this work we used the MM-PBSA method as implemented in AMBER. The total free energy is 

the sum of average molecular mechanical gas-phase energies (EMM), solvation free energies (Gsolv), and 

entropy contributions (-TSsolute) of the binding reaction: 

€ 

G = EMM +Gsolv − TSsolute  EQ. 3-5 

The total molecular mechanical energies can be further decomposed into contributions from electrostatic 

(Eele), van der Walls (Evdw) and internal energies (Eint): 

€ 

EMM = Eele + Evdw + E int  EQ. 3-6 

Furthermore, the solvation free energy can be expressed as a sum of non-electrostatic and 

electrostatic contributions: 

€ 

ΔGsolv ≈ ΔGsolv
nonele + ΔGsolv

ele    EQ. 3-7 

 

The non-electrostatic part was approximated by a linear function of the (SASA). That is: 

€ 

ΔGsolv
nonele = γ × SASA,   where γ =  7.2 cal/mol/A2    EQ. 3-8 

 

where  

€ 

γ = 7.2 cal/mol/Å2. 

In this work, the molecular mechanical (

€ 

EMM ) energy of each snapshot is calculated using the 

SANDER module of AMBER with all pair-wise interactions included using a dielectric constant (ε) of 1. 

The solvation free energy (

€ 

Gsolv ) is estimated as the sum of electrostatic solvation free energy, calculated 

by the finite-difference solution of the Poisson–Boltzmann equation (see appendix B) in the Adaptive 

Poisson-Boltzmann Solver (APBS) program.  The non-polar solvation free energy is directly proportional 

to the solvent-accessible surface area (SASA) of the target. The solute entropy is approximated using 

normal mode analysis. As has been reported earlier by other groups, the most computationally demanding 

step is the calculation of the solute entropy. Although this component can be neglected if only relative 

binding (relative ranking) of compounds is required,32for all of the three studied systems we calculated the 

entropy contribution to the binding energies. The binding free energy can be approximated by: 
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€ 

ΔGo = ΔGgas
protein− ligand + ΔGsolv

protein− ligand − {ΔGsolv
ligand + ΔGsolv

protein }  EQ. 3-9 

 

Here, (

€ 

ΔGgas
protein− ligand ) represents the free energy per mole for the non-covalent association of the ligand-

protein complex in vacuum (gas phase) at 310 K, while (

€ 

−ΔGsolv ) stands for the work required to transfer 

a molecule from its solution conformation to the same conformation in vacuum at 310 K (assuming that the 

binding conformation of the ligand-protein complex is the same in solution and in vacuum). 

 

3.8 Conclusion 
 

 

This chapter introduced the virtual screening workflow that was implemented in this thesis. The VS 

protocol prepares ligand collections for docking and extracts dominant confirmations of the target through 

MD simulations combined with clustering analysis and PCA.  The VS algorithm introduced in this chapter 

tried to improve over the well-known RCS technique. The main improvements are the reduction of the 

number of target structures used and the employment of a more accurate scoring method than that of 

AutoDock. In the next chapters, the VS protocol introduced here will be applied to different problems. 
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Chapter 4: Discovering Inhibitors 
for the ERCC1-XPA interaction: 
The First Puzzle(1) 
 
 
 
 
 

4.1 Introduction 
 

Nucleotide excision repair (NER) can be considered as an old friend, but is in fact a new enemy in 

the context of cancer. In normal cells, NER removes many types of DNA lesions, protecting cell 

integrity.1 However, in cancer cells exposed to DNA damaging agents that distort the DNA helix 

or form bulky injuries to the genome, NER comes into play and removes the damage, thus 

protecting cancer cells from death.1-2 A striking example of this mechanism is represented by the 

use of platinum compounds such as cisplatin, the backbone for many treatments of solid tumors 

including testicular, bladder, ovarian, head and neck, cervical, lung and colorectal cancer 3. It has 

been demonstrated that NER is the major DNA repair mechanism that removes cisplatin-induced 

DNA damage, and that resistance to platinum-based therapy correlates with high expression of 

specific elements of the NER machinery.4 Accordingly, a novel strategy to reverse resistance and 

potentiate the efficacy of cisplatin is to regulate the NER pathway. However, as we will see below, 

the NER pathway is very complex and many proteins are involved and necessary to fulfill its 

function. Nevertheless, there are many clues described in the literature that suggest a few of these 

proteins as targets for chemotherapy. Therefore, before describing the targets that we chose in this 

thesis to selectively inhibit the NER pathway and, hence, sensitize tumor cells to platinum 

chemotherapy, a brief listing of the essential steps comprising the NER pathway will be given 

below. 

 

4.1.1 The NER pathway 
The Nucleotide excision repair, shown in Figure 4-1, occurs in a stepwise mechanism and 

involves more than 30 different proteins. It is a “cut-and-paste” mechanism that replaces a ~30 

nucleotide DNA strand that contains the lesion with a correct one. The pathway has been 
                                                           
(1) A version of this chapter has been published in Barakat KH, Torin Huzil J, Luchko T, Jordheim L, Dumontet C, 
Tuszynski J. J Mol Graph Model. 2009 Sep; 28(2): 113-30. 
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extensively studied so that all the genes that are involved in it have been cloned and expressed as 

recombinant proteins.  

 

 
Figure 4-1: Steps of the nucleotide excision repair pathway.  

See text for details (adopted from the KEGG database.5)  

 

The main players within NER includes the seven Xeroderma Pigmentosum (XP) complementation 

groups, XPA to XPG proteins; the Excision Repair Cross Complementing group 1 protein 

(ERCC1); the human Homolog of yeast RAD23 (hHR23B), the Replication Protein A (RPA), the 
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subunits of Transcription Factor that possess Helicase activity (TFIIH), and the Cockayne 

Syndrome proteins A and B (CSA and CSB).6 Depending on the location of the DNA damage 

within the genome, one can recognize two NER sub-pathways. First is the transcription-coupled 

repair (TCR-NER), if the DNA damage is located within the actively transcribed genes of the 

genome. The second is the global genome repair (GGR-NER), if the damage is located within the 

whole genome. The two types are thought to be identical except for the initial damage recognition 

step. The two mechanisms involves 5 sequential steps.7 

The foremost step is the detection of the damage. As mentioned above, the recognition 

step is the only difference between TCR and GGR. In the GGR subpathway the XPC-hHR23B-

XPE complex continuously scans the genome for bulky DNA damages until it recognizes a lesion 

and, consequently, initiates the rest of the NER sequence. On the other hand, a stalled RNAPII and 

Cockayne syndrome proteins, CSA and CSB, recognize the damage and activate the TCR-NER 

pathway. Once the damage is recognized the second step starts by recruiting the TFIIH complex in 

order to unwind the DNA helix surrounding the lesion. TFIIH is composed of two major sub-

complexes. The core is formed from the association of a large number of proteins including XPB, 

XPD, p62, p52, p44, p34 and p8. The rest of TFIIH is the cdk-activating kinase sub-complex, 

which contains cdk7, cyclin H and MAT1. Interestingly, TFIIH possesses both 3’-5’ and 5’-3’ 

helicase activities through the two ATP-dependent helicases XPB and XPD respectively.8 It opens 

the DNA structure forming a ~30 base pair bubble around the lesion. The two proteins RPA and 

XPA stabilize the opened DNA structure and recruit the two endonucleases that are necessary for 

the subsequent incision step. The interaction of XPA with the 34-kDa subunit of RPA (RPA34) 

activates XPA to recruit the other components of NER. 

The Damaged strand-incision is the rate-limiting step for the whole pathway. The two 

endonucleases XBG and XPF-ERCC1 cut the two ends of the strand that contains the damage. The 

correct location of XPA is crucial for the recruitment of the XPF-ERCC1 heterodimer 

endonuclease.  XPG cuts the 3’ end of the damage, while XPF-ERCC1 cuts the 5’ end.9 The 

damaged strand is then released. DNA polymerases fill the single strand gap using the 

complementary intact strand as a template and DNA ligase I closes the 3’ nick as a final step.7 

 

4.1.2 ERCC1 Over expression Correlates With 
Cisplatin Resistance 

 
ERCC1 is a 33-kDa protein that forms a tight heterodimer endonuclease complex with 

XPF. As described above, this endonuclease cleaves the DNA strand at the phosphodiester bonds 

on the 5′ side of the damage. It is important to mention that the ERCC1-XPF complex has 

additional functions in other DNA repair pathways including interstrand cross-link repair, double-
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strand break repair, and homologous recombination. Many studies has shown a considerable 

correlation between resistance to cisplatin and the over expression of ERCC1.10 This spectacular 

conclusion has been reached from several independent clinical trial investigations on ovarian,11 

colorectal,12 and non–small cell lung cancer.13 For example, a study on ~750 patients who suffer 

from late stages of lung cancer revealed that patients with low levels of ERCC1 and who received 

platinum therapy had better survival rates than those with the same levels of the protein but did not 

receive the platinum treatment.14 A more recent study on 444 patients who experienced non-small 

lung cancer showed that non-platinum-containing chemotherapy is more effective than platinum-

based therapy on patients with high ERCC1 levels.15 Very recently, Stefanie and coworkers 

performed a retrospective study investigating the correlation of ERCC1 expression with patients' 

survival in ovarian cancer after platinum-based treatment.16 Their work revealed that patients with 

ERCC1-negative ovarian cancer had significant better survival rates than those with ERCC1-

positive. They concluded that ERCC1 protein over expression was a marker for poor survival of 

high-grade ovarian cancer even in patients operated with residual disease. All of these 

investigations lead to the conclusion that ERCC1 is not only a gene that is usually activated when 

utilizing platinum-based therapy but also it may act as a predictive criterion for who could benefit 

from platinum treatments.17,18 This latter role of ERCC1 as a biomarker is important because it can 

guide clinicians in their therapeutic decision-making and select the best treatment approach for a 

particular group of patients. 

 

4.1.3 The ERCC1-XPA Interaction Is Essential 
For a Functional NER Pathway 

 

Regardless of the type of NER that is initiated, the XPA protein is equally essential to 

fulfill both pathways.19 It plays a vital role in DNA lesion recognition and attraction of many other 

NER repair proteins. For example, prior to the incision step in NER, the ERCC1-XPF 

endonuclease is recruited to the damaged DNA site through a secondary interaction between 

ERCC1 and XPA.20,21,22  Therefore, this protein-protein interaction is necessary for a functional 

NER mechanism. The NMR crystal structure was resolved by Tsodikov’s group23 and the critical 

residue-residue interactions were determined through our binding energy predictions (Figure 4-2) 

(see below). A 14-residue peptide from XPA that includes three essential consecutive glycines 

(residues 72–74) is buried within a hydrophobic cleft within the central domain of ERCC1. This 

peptide has two critical characteristics. First, it is necessary and sufficient for binding to ERCC1. 

Second, and more importantly, it can compete with the full-length XPA protein in binding to 

ERCC1 and disrupting NER in vitro. 
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Figure 4-2: XPA-ERCC1 protein-protein interaction.  

The binding between ERCC1 (teal) and XPA (red) is primarily mediated by 5 residues 
from XPA peptide, namely; G72, G73, G74, F75 and I76. On the other hand, the 
contribution from the ERCC1 binding site is distributed among 10 residues; R106, Q107, 
G109, N110, P111, F140, L141, S142, Y145 and Y152. 

 

 In a recent study, Barbara et al. reported mutations in the central domain of ERCC1 that 

had a significant impact on NER activity in vitro and in vivo.24 These mutations occur at the XPA 

binding site within ERCC1, preventing the interaction between the two proteins. Due to these 

mutations, the ERCC1-XPF nuclease was not recruited to the damaged DNA sites after exposing 

cells to ultra violet (UV) radiation. Consequently, the last incision step that is performed by 

ERCC1-XPF was never completed leading to a dysfunctional NER mechanism in these cells and, 

hence, a hypersensitivity to UV radiation. These results agree with previous findings on the 

importance of XPA in NER, where no cellular function beyond NER has been observed for 

XPA.25 Interestingly, these mutations didn’t affect the activity of ERCC1-XPF in other DNA 

repair pathways leading to two distinctive conclusions. First, the XPA-ERCC1 interaction is only 

necessary for NER but not for other DNA repair pathways that ERCC1-XPF is important for their 

activity. Second, the involvement and recruitment of ERCC1-XPF to the different DNA repair 

pathways is coordinated through different and not overlapping protein-protein interactions 

mediated by ERCC1. Based on these findings, one can selectively disrupt the activity of ERCC1-
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XPF within these DNA repair pathways by inhibiting its interactions with the recruitment factors 

to the damaged sites. These observations, coupled with the available crystal structure of this 

interaction make ERCC1 and XPA an extremely attractive target for computationally based 

development of small molecule inhibitors that are targeted for use in combination therapies 

involving cisplatin. And this protein-protein interaction was the one we chose in this thesis. 

 

4.1.4 Known NER Inhibitors 
 

Although the NER pathway has been recognized as one of the most important factors that 

increase the resistance against platinum-based therapy little work has been done on regulating its 

activity.  Here, I will point out to the three major studies that identified inhibitors for the NER 

mechanism. First is the work done by Jean-Marc Barret et al. and their discovery of F11782.26 

Second are the findings of Jiang and Yang on the effects of the cell cycle checkpoint abrogator 

UCN-01  (7-hydroxystaurosporine) on NER.27 Finally, is the DNA damaging agent Et743.28 

 

F11782 
 
 Using the 3D(DNA Damaged Detection) assay (first proposed by Wood et al.29 and then 

modified by Salles’s team30), Barret et al. screened for NER inhibitors and identified F11782. The 

compound was already known as an inhibitor for both the topoisomerases II and I.31 Moreover, 

F11782 did not show any activity toward other enzymes such as DNase I or T4 polynucleotide 

kinase, indicating that the compound targets one of the proteins that are involved in NER. Further 

investigations on F11782 limited its NER inhibitory activity to one of the earlier steps of the 

pathway, specifically either the helicase or the incision steps, with more preference to the incision 

step.26 

 

UCN-01 
 

Jiang and Yang analyzed the effects of UCN-01 (a well-known protein kinase C inhibitor 

and cell cycle checkpoint abrogator32) on the NER pathway.27 Their findings showed that UCN-01 

inhibited the repair of cisplatin-induced DNA damage both in vitro and in vivo and indicated that 

UCN-01 has a dramatic inhibitory effect on the interaction of NER proteins. The drug enhanced 

the activity of cisplatin only in NER-proficient cells, but not in the deficient ones. However, they 

did not report any direct binding of UCN-01 to any of these proteins and speculated that the 

observed inhibitory activity may result from UCN-01-mediated regulation of the signaling 

pathway that involves posttranslational modifications of repair proteins. Although Jiang and Yang 
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attributed the lose of NER activity to an attenuation in the ERCC1-XPA protein-protein 

interaction, their carfeul and detailed binding analysis of the compound to the two proteins 

revealed that UCN-01 did not interact directly with either of them. However, in this work I used 

UCN-01 as a positive control, assuming it can bind to the XPA binding site within ERCC1, 

particularly because the drug can fit within the binding pocket despite its limited interactions with 

the protein (see Figure 4-3). 

 

 

 

 

 

 
Figure 4-3 UCN01 within the ERCC1 pocket.  

The docked structure can fit within the XPA binding site in ERCC1. 
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Ecteinascidin 743 
 

A final compound that have been shown to interfere with NER is Ecteinascidin 743 

(Et743).28 Et743 is currently in phase II/III clinical development and its main mode of action is as 

a DNA damaging agent. The drug seems to specifically obstruct the TCR-NER sub-pathway, 

however, it does not act as an inhibitor for any of the proteins that are involved in the NER 

mechanism. A model proposed by Gregory et al. suggests that the DNA adducts formed by Et743 

are more efficient than those of cisplatin in dealing with NER.28 They suggest that the Et743-

guanine adducts trap the TCR-NER pathway at the incision or ligation steps, preventing the 

pathway from being completed. 

4.2 Results And Discussion 
 
Here, we have utilized the RCS technique (section 3.3.3) to construct a dynamic pharmacophore 

model (section 2.2.2) targeting the ERCC1-XPA interaction. We utilized a minimized model of 

the XPA binding site within ERCC1 to employ flexible residue docking as implemented in 

AutoDock 4.0. This was then followed with RCS docking, where MD simulations and RMSD 

conformational clustering were used to generate a set of forty-four representative conformations of 

the binding site within ERCC1. AutoDock was then used to screen the National Cancer Institute 

Diversity Set (NCIDS) and DrugBank compounds (section 3.2.1) against a set of seven target 

conformations, composed of the six most dominant cluster-representative structures along with an 

equilibrated folded conformation for the binding site produced by employing principal component 

analysis on the ERCC1 trajectory. Top hits were rescored by docking them to the whole set of 

cluster-representative structures and ranked by their weighted average binding energy (section 

3.4.3).  The non-redundant hits from these screens were then used to identify a dynamic binding-

site pharmacophore that target the ERCC1-XPA interaction. The pharmacophore model was then 

compared to docking results for the weak inhibitor of NER, UCN-01 (7-hydroxystaurosporine) 

(section 4.1.4).  

 

4.2.1 Molecular Dynamics Simulations Of The 
ERCC1-XPA Interaction  
To obtain a minimized model for library screenings and a set of flexible residues for 

docking, the central domain of ERCC1 was subjected to MD simulation, in both its free and XPA 

bound states.23 The proper equilibration of these systems was essential in order to perform VS on a 

set of rigid receptor models that represent, approximatly the whole conformatioal space of the 

XPA binding site within ERCC1. Moreover, it is generaly required to start with adequately 
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sampled, energetically minimized models in order to eliminate unfavorable atom contacts that may 

have been introduced as a result of crystal packing in the original structure. 

 

4.2.2 PCA and Completeness of Sampling 
 

As described in section 3.3.4, PCA is used to transform the original space spanned by the 

MD trajectory into a reduced set of independent variables comprising the essential dynamics of the 

system. PCA was performed over the entire 50 ns simulation using atoms comprising the 22 

residues contained in the ERCC1 binding site with the backbone atoms RMSD fitted to the 

minimized crystal structure. Covariant analysis of the trajectories from the ERCC1-free MD 

simulations, successively divided into thirds, was performed using the same procedure used for the 

PCA (see Methods). Normalized overlaps calculated between each of these thirds are reported in 

Table 4-1. The high overlap between the thirds indicates that each part of the simulation samples 

approximately the same conformational space, and it is unlikely that there are unexplored regions 

missed earlier in the run. Although there is no guarantee that complete equilibrium sampling is 

given, we have concluded that the observed overlap is acceptable and that adequate sampling 

within the MD trajectory for the binding site had been obtained. 

 

 

 

1st vs. 2nd 0.87 

1st vs. 3rd 0.86 

2nd vs. 3rd 0.87 

 

Table 4-1: PCA normalized overlap for the binding site within ERCC1. 

 
 

 

 

Plots of the RMSDs for the backbone atoms from the initial co-ordinates of the XPA 

peptide and ERCC1 free and bound to XPA for the last 10 ns of the simulation illustrate the 

inherent stability of the complex (Figure 4-4). For the XPA-free simulations, the protein backbone 

RMSD fluctuated about a mean of 1.8 Å. When XPA was bound to ERCC1, the protein backbone 

RMSDs fluctuated about a mean of 1.6 Å, indicating a stabilizing effect induced by XPA 

interactions within ERCC1. Relative to values calculated for the ERCC1 backbone, the XPA 
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backbone RMSD fluctuated around a higher mean of 3.5 Å, illustrating the greater mobility of the 

XPA peptide as compared to the ERCC1 protein. This observation was also confirmed by results 

presented in Figure 4-5-a, where unbound ERCC1 main-chain B-factors (averaged over heavy 

atoms) are generally higher than the corresponding bound values. This, again, suggests the relative 

flexibility of the model in this region, especially residues 105-119, 140-160 and 168-177, which 

constitute the XPA binding site. Within the XPA-ERCC1 model, residues 178-183 were shown to 

have more flexibility than those in the free model suggesting that they are not involved in the 

protein-protein interaction. Overall, the 22 residues defining the binding site seem to be relatively 

rigid during the MD simulation in the XPA-ERCC1 models. In particular, residues 72-75 of XPA 

(see Figure 4-5-b) are more rigid than other XPA residues, suggesting their critical participation in 

binding to ERCC1. 

 

 

 

 

 
Figure 4-4: RMSD analysis for the ERCC1-XPA MD simulations.  

Plot of the RMSD of the backbone atoms from the reference structure as a function of 
simulation time in XPA-peptide, ERCC1-free and XPA-ERCC1 complex. 
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Figure 4-5: Atomic fluctuations (Beta factor).  
Plot of the B-factors averaged over the protein backbone atoms as a function of residue 
number in the simulations of (a) ERCC1-free and ERCC1-bound and (b) XPA peptide. 
The solid and dotted lines correspond to ERCC1-free and ERCC1-bound, respectively. 

 
  

4.2.3 Energy Decomposition Of The XPA-
ERCC1 Interaction 
Current docking methodologies provide a mechanism for the inclusion of flexible 

receptor side chains within the docking grid (section 2.2.1.2). However, without a clear 

understanding as to which residues should be introduced as flexible, this can quickly 
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become an intractable problem. As there was no specific information with regards to 

which residues contribute to the ERCC1-XPA binding interaction, we have calculated the 

free energy of binding for each residue in ERCC1 that has been shown to interact with 

XPA. Equilibration of both the holo and apo forms of the ERCC1 binding site allowed us 

to obtain free energy profiles for each of the amino acids involved in the ERCC1-XPA 

interaction (Table 4-2 and Figure 4-2).  

 

Residue i 

€ 

ΔGi  

€ 

ΔEi.gas
ele  

€ 

ΔEi.gas
vdw  

€ 

ΔGi.sol
ele  

€ 

ΔGi.sol
nonele  

ARG106 -1.71 -7.16 -2.16 8.01 -0.41 

GLN107 -2.51 -0.98 -1.76 0.35 -0.12 

GLY109 -1.27 -0.63 -2.11 1.93 -0.46 

ASN110 -1.96 -0.72 -2.50 1.13 -0.13 

PRO111 -1.36 -0.78 -1.23 0.94 -0.29 

PHE140 -1.66 -0.72 -1.95 1.17 -0.16 

LUE141 -1.90 -1.56 -1.17 0.85 -0.02 

SER142 -1.98 -2.59 -0.82 1.53 -0.10 

TYR145 -5.58 -5.19 -2.92 3.12 -0.57 

 

ER
C

C
1 

TYR152 -1.19 -3.61 -1.14 3.68 -0.12 

GLY72 -3.03 -10.72 -1.15 9.28 -0.44 

GLY73 -3.18 -2.52 -3.33 3.06 -0.39 

GLY74 -4.56 -5.02 -4.62 5.78 -0.70 

PHE75 -6.15 0.54 -8.17 2.24 -0.76 

 

X
PA

 

ILE76 -3.82 -0.79 -4.10 1.86 -0.79 

Total energy (Kcal/mol) ~ -42 -42.45 -39.13 44.93 -5.46 

 

Table 4-2: Binding energy decomposition into key residues mediating the XPA-
ERCC1interaction. 
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The binding between the ERCC1 binding site and the XPA peptide is due mainly to the favorable 

solute-solute electrostatic and hydrophobic interactions (

€ 

ΔEgas
ele ≈ −42  kcal/mol, 

€ 

ΔEgas
vdW ≈ −39  

kcal/mol), which outweighed the unfavorable solute-solvent electrostatic interaction (

€ 

ΔGsolv
ele ≈ 45  

kcal/mol) by 

€ 

≈ −36  kcal/mole. Although the non-polar contribution to the solvation energy 

(

€ 

ΔGsolv
nonele ≈ −6 kcal/mol) is favorable for binding, it does not contribute significantly to the binding 

affinity. The most significant binding contributions between ERCC1 and XPA were determined to 

be mediated primarily by five residues from the XPA peptide, G72, G73, G74, F75 and I76, 

contributing approximately 50% of the total binding energy. Within the ERCC1 binding site, Y145 

contributed approximately -5 kcal/mol to the binding energy with the remainder of the -42 

kcal/mol being distributed among other 8 residues (R106, Q107, G109, N110, P111, L141, S142 

and Y152). Overall, the main contributors to the binding energy were Y145 from ERCC1 and F75 

from XPA, which stacks against N110 from ERCC1, which contributed ~-2 kcal/mol (see Figure 

3c). In our model, the hydroxyl group of Y152 in ERCC1 also forms two hydrogen bonds with the 

backbone carbonyl of G72 in XPA. Two hydrogen bonds were also observed between S142 of 

ERCC1 and G72 of XPA, and Q107 of ERCC1 and G73 of XPA. An intramolecular hydrogen 

bond was observed between T71 and G73 within XPA and is in agreement with experimental 

findings detailing critical residues mediating the XPA-ERCC1 interaction24. All of these residues 

therefore explicitly define the binding site within ERCC1 and therefore the conformation of the 

potential inhibitor that should mimic the XPA peptide (see Figure 4-2). 

 

4.2.4 Flexible Docking Virtual Screening 
 

Decomposition of the total binding energy from our models into individual residue contributions 

allowed us to identify key residues that mediate the ERCC1-XPA interaction. As Y145 

contributed about 26% of the total ERCC1 binding energy (see Table 4-2), for our initial docking 

runs, we have used the minimized crystal structure of the ERCC1-XPA complex, with Y145 being 

the only flexible residue during the virtual screening procedure. 

 

4.2.5 Ensemble-Based Virtual Screening 
 

An obvious drawback when considering only the flexibility of restricted protein 

fragments is that the collective motion of the complete receptor backbone is neglected.  To 

overcome this deficiency we have used an ensemble of protein conformations as a target for 

docking as an alternative approach to introduce a feature of global protein flexibility. Such an 

ensemble at the extreme, is capable of describing the entire conformational space of the binding 
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site, yet must still be represented by a set of limited conformations in order to save computational 

screening time. 

To generate a reduced set of representative models of the ERCC1 binding site, we applied 

root-mean-square difference (RMSD) conformational clustering to the apo-binding site trajectory 

obtained from the MD simulation. Using the average-linkage algorithm, we obtained a total of 44 

clusters that represent the complete MD trajectory (see Figure 4-6). Of these 44, the six most 

dominant clusters represented approximately 48%, 8%, 6%, 5.5%, 4% and 3.8% of the entire 

ensemble. We concluded that these six dominant clusters were sufficient to describe the collective 

conformational changes in the apo-ERCC1 trajectory for subsequent screening experiments.  

 

 
Figure 4-6: Forty-four representative structures for the ERCC1 binding site. The 
binding site is in green. 

 
The accumulation of approximately half of the MD trajectory conformations into the first 

dominant cluster motivated us to use PCA in order to extract the lowest energy conformation of 

the binding site. This conformation was then appended to the six dominant structures to perform 

an ensemble-based virtual screening against the full set of ligand compounds. Figure 4-7 

represents the spatial distributions of occupancies for the conformational states over the planes 

spanned by the dominant principal components of the binding site. The grouping of conformations 

into a single cluster suggests the presence of a global minimum and a significant basin of 

attraction, indicative of a low energy conformation for the binding site. A representative structure 

for the folded conformation was then calculated by collecting all conformations contained within 

the three minima. The backbone atoms of the binding site of these conformations were then RMS 

fit to the reference structure and the centroid of the RMS fit was used as an additional 

representative conformation to the six dominant structures in virtual screening experiments. It is 

noteworthy that, while the two equilibrated structures were produced through two different 
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methods, the RMSD between the two models was only 1.12 Å, which is quite low when compared 

to values calculated previously (see Figure 4-4).  

 

 

            

Figure 4-7: PCA of the ERCC1 binding site.  

Projections of the ensemble of conformations onto the planes of the three most important 
principal components. The first and second, the first and third and the second and third 
principal components are plotted on the x and y axes, respectively. The histograms 
represent the occupancies of the corresponding conformation states, with lighter colors 
indicating more frequently visited areas. The three histograms reveal a global minimum 
indicating the convergence of sampling and folding of the ERCC1 binding site. 
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4.2.6 Pose Clustering 
 

In this study, we performed eight screening experiments against the full set of database 

compounds. The first was against the minimized crystal structure with a flexible Y145, while the 

other seven constituted the ensamble based screen. Screening of all 3450 compounds  contained in 

the NCDIS and Drugbank databases, against the eight target structures, produced a total of 2.76 

million distinct poses that required classification. While AUTODOCK is capable of clustering 

these poses into subgroups depending on RMSD, the total number of clusters and population for 

each cluster is mostly dependent on the RMSD cutoff that is initially chosen. As such, there is no 

adequate means to anticipate an optimum cutoff for the RMSD to produce the best quality result. 

As we are dealing with a diverse set of input ligands, this clustering method does not provide an 

accurate means of comparing resulting populations and binding energies between ligands, making 

it difficult to score compounds accurately. 

Following the iterative clustering procedure described in chapter 3 (section 3.4.2), 

docking results were clustered to produce optimal clustering patterns. This is illustrated in Figure 

4-8, where the elbow criterion for the top three hits from ensemble screening suggested different 

cluster counts for the different poses.  

 

 

 
Figure 4-8: Percentage of variance for the top 3 hits from RCS VS experiment. The 
SSR/SST is expected to plateau for cluster counts exceeding the optimal number of 
clusters. 

 

 

This clustering methodology proposed three clusters with three different representative 

conformations for the planar molecule characterizing the top hit (see), while 14 clusters were 

suggested for the third hit which includes more torsional degrees of freedom. We propose this 
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clustering method as an alternative dynamic technique to be used for virtual screening as opposed 

to clustering all the poses with a single RMSD value for all the docked compounds. 

 

4.2.7 Pose Ranking 
For each virtual screening experiment, we have ranked significant poses for each of the 

3450 molecules contained in the database by using the results from the elbow criterion and the 

lowest energy that corresponds to the most populated cluster. Once all poses from each ligand 

entry were clustered, we then filtered all of the clusters so that only those containing at least 25% 

of the total population are considered as top hits. For the flexible screening experiment, top hits 

were ranked by their binding energies of the largest cluster. Top hits from the ensemble-based 

screening experiments were collected from the seven experiments by first extracting the largest 

cluster from each individual screening flowed by ranking the clusters by their binding energies. 

This produced a set of non-redundant hits ranked by their binding energies of the most populated 

cluster. 

Table 3 shows the top ten hits from the ensemble-based screening ranked by their binding 

energies and compared to their docking results from the flexible run. It is clear that the two 

methods produce dissimilar ranking for most of the compounds, with several hits being excluded 

from the flexible screening due to the 25% cut off on the largest cluster population. Although the 

flexible docking showed low binding energies, even lower than the ensemble based calculations, 

the poor clustering of these hits suggested that they didn’t fit properly into the binding pocket. 

This observation indicates the importance of backbone dynamics and side-chain movement as 

compared to allowing only one residue to be flexible during docking. In order to refine the 

ensemble based screening results and consider all possible target conformations, we docked the 

top 50 hits obtained from the ensemble docking results to the complete set of receptor 

representative structures and applied the relaxed complex scheme to re-score the poses. 

 

4.2.8 Rescoring Using The RCS 
The non-redundant 50 hits obtained from the ensemble-based screening experiments were 

re-docked into all of the 44 clusters representing the apo-ERCC1 MD ensemble. For each 

compound (see Figure 4-9) the RCS weighted average and minimum binding energies were 

compared to the ensemble screening average and minimum binding energies. To compare how 

these ligands were docked to the crystal structure, we also included the binding energies of the 

most populated cluster from the flexible screening.  
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ENS Rank FLEX Rank ENS mean 

Kcal/mol 

FLEX BE 

Kcal/mol 

ID Structure 

 

1 

 

1 

 

-8.79 

 

-11.67 

 

NSC # 51535  

 

2 

 

EXCLUDED 

 

-8.21 

 

-9.28 

 

NSC # 93352  

 

3 

 

17 

 

-7.55 

 

-9.83 

 

NSC # 181486 
 

 

4 

 

7 

 

-7.51 

 

-10.24 

 

ZINC03861599 
 

 

5 

 

57 

 

-7.49 

 

-9.11 

 

ZINC03927200 
 

 

6 

 

15 

 

-7.49 

 

-9.88 

 

NSC # 13987 
 

 

7 

 

EXCLUDED 

 

-7.46 

 

-9.34 

 

NSC # 36387 

 

 

8 

 

76 

 

-7.41 

 

-8.98 

 

NSC # 259969 
 

 

9 

 

13 

 

-7.39 

 

-9.95 

 

NSC # 372060 
 

 

10 

 

8 

 

-7.38 

 

-10.19 

 

ZINC03784182  

Table 4-3: Top ten hits from the Ensemble screening.  

The ranking and binding energies are compared to the Flexible screening. 
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For most of the compounds, the RCS weighted-mean and the ensemble-mean differ by less than 

0.7 kcal/mol, indicating that our selection of only the first six representative structures was 

sufficient to describe the conformational space of the binding site (see Figure 4-9). Furthermore, 

those compounds which ranked very low when docked to a number of target structures including 

the most dominant conformation (-3.52 Kcal/mol), could be excluded in the RCS scoring. 

 

 

 
Figure 4-9: Binding energy statistics for the irredundant top 50 hits suggested by 
the ensemble-based screening.  

The RCS weighted-average (RCS WABE) and the ensemble average binding energies 
(ENS ABE) showed similar behaviour for most of the compounds. The RCS minimum 
energy (RCS MBE) and the ensemble minimum binding energy (ENS MBE) plateau with 
small number of hits show lower BE for the RCS screening indicating their binding to 
infrequent conformations. The Flexible screening binding energies fluctuated around -9 
kcal/mol showing lower binding energies than the other methods. The RCS excluded the 
ZINC06036333 compound from the top hits suggesting that it is not a true binder. 

 

While each conformation in the ensemble screening contributed one seventh of the total 

binding energy, the relaxed complex scheme evaluates the total energy by scaling individual 

energies by the percentage population of the docked structures. In this context, for a compound to 

be ranked high in the RCS score, it must be docked properly against most of the target ensemble, 

particularly, against the most dominant structures. This scoring technique enables the RCS method 

to identify and eliminate decoy compounds from the list of ligands.  Some hits showed lower RCS 
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minimum-binding energies than their representative values calculated using the ensemble 

approach, suggesting their binding to a more accepting representative structure. This is the main 

advantage of using RCS to re-score the top hits; as some compounds may bind to a rarely visited 

receptor conformation. 

Figure 4-10 shows the average clustering of the top hits for the three different methods. 

Once more, the RCS and the ensemble methods showed the same results for most of the ligands. 

The average cluster populations for the two methods are more than 30 poses for about 56% of the 

top hits, indicating their binding for most of the representative conformations. It is noteworthy to 

indicate that more than 50% of the ensemble screening’s hits were excluded from the flexible 

screening due to the 25% cutoff criterion on the largest cluster population. 

 

 

 
Figure 4-10: Clustering of the irredundant top 50 hits suggested by the ensemble-
based screening.  

The RCS weighted-average (RCS WAV) and the ensemble average (ENS AV) 
population showed the same clustering for most of the top hits. For more than 50% of the 
hits, the flexible largest cluster population (FLEX LC) is lower than the 25% cut off, 
indicating that they have been excluded from the flexible-screening ranking. 

 

4.2.9 Electrostatic Surface Calculations 
The binding mode for three selected top hits within their most favored binding site 

conformations is shown in Figure 4-11. Electrostatic surface maps are included to provide an 
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additional perspective of the charge distribution in the ERCC1 cavity. The binding cleft is mainly 

positively charged with small negatively charged spots on boundaries of the binding site. This 

electrostatic potential distribution indicates that the binding site may exhibit a weak positive 

electrostatic potential. Although, the charge distribution changed slightly between the two 

representative binding sites indicating the perseverance of its over all shape, the positive potential 

is apparent in the closed conformation. Moreover, the charge complementarities between the 

binding site and the top hits is apparent from Figure 9 and is indicative of a proper binding mode. 

 
Figure 4-11: Three selected hits within their preferred binding site conformations.  

The binding cleft within ERCC1and the top hits are colored by residue electrostatic 
potential with coloring scale of -10 kT/e (red) to +10 kT/e (blue). The closed structure (a 
and b) is more positive than the open structure (c). 

 

4.2.10 Pharmacophore Characterization 
Having obtained a comprehensive description of the ERCC1-XPA binding interaction 

and a diverse set of ligand interactions, we turned our attention to the creation of a model 

describing key chemical features of both the binding site and ligands. These models are commonly 

known as pharmacophores and represent chemical functions (see section 2.2.2 for more details), 

valid not only for a currently bound molecule, but also for the putative binding characteristics of 

unknown molecules. Due to its overall simplicity, this method can be extremely computationally 

efficient and is exceptionally well suited for interpreting the virtual screening results of large 

compound libraries. In general, a single ligand bound to a protein’s active site is able to provide 

sufficient information to start the construction of a pharmacophore model. This approach is 

generally used in the analysis of a known X-ray or NMR structure of a ligand-receptor complex. It 

is also possible to develop a pharmacophore from a set of ligands that bind to the same region 

within the target. In the first, structure-based approach, critical chemical features are recognized 

from the known complex. The second, ligand-based approach extracts a common set of chemical 

features by exploring properties of the bound ligands. The top hits from NCI diversity set included 

in the scored compounds were filtered for drug likeness and recorded in Table 4-4 along with the 

DrugBank top poses.   
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RCS Rank ENS Rank RCS WABE Kcal/mol ID Structure 

3 8 -7.66 259969 

 

6 3 -7.37 7520 

 

8 14 -7.21 93354 

 

15 10 -6.93 ZINC03784182 

 

17 22 -6.76 121304 

 

18 4 -6.66 ZINC03861599 

 

19 27 -6.62 37641 

 

20 5 -6.57 ZINC03927200 

 

21 23 -6.51 35489 

 

23 28 -6.40 86008 

 

Table 4-4: Drug-like compounds from the NCI set and top hits from the DrugBank 
ranked by their RCS score and compared to the ensemble screening rank. 
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RCS Rank ENS Rank RCS WABE Kcal/mol ID Structure 

25 41 -6.37 121855 

 

27 16 -6.35 45583 

 

28 19 -6.31 ZINC03876186 

 

30 33 -6.24 23904 

 

31 30 -6.24 ZINC03914809 

 

33 25 -6.24 ZINC03973334 

 

34 32 -6.11 ZINC11616036 

 

36 40 -6.07 5069 

 

37 35 -6.07 ZINC03782599 

 

40 42 -5.99 134244 

 

Table 4-4 Continued. 
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RCS Rank ENS Rank RCS WABE Kcal/mol ID Structure 

42 45 -5.82 56681 

 

43 47 -5.82 121860 

 

45 46 -5.79 16211 

 

46 34 -5.76 ZINC12503210 

 

47 49 -5.70 12492 

 

49 48 -5.11 ZINC04097451 

 

Table 4-4 Continued. 

 

The binding energies for the hits ranged from -7.66 to -5.11 Kcal/mol. Note, at this 

energy range, the UCN-01 compound is not selected among the top hits since its RCS score was -

4.81 Kcal/mol (see Figure 4-9).  The top hits showed an overall similar structure including planer 

hydrophobic rings mostly located on the two edges of the ligands with hydrogen bond donors and 

acceptors on the middle of the structures. These hits generally mimic the XPA peptide (see Figure 

4-2) in its interaction with the ERCC1 binding site. Most of the filtered compounds showed almost 

the same ranking in the ensemble based calculations. This is a confirmation that the six 

representative structures were sufficient to substitute the full set of the 44 representative 

conformations. To further reduce the complexity of the pharmacophore generation, those ligand 

atoms that did not fall within a cut off of 25% occupancy were removed and remaining atoms were 

used to construct the excluded shell describing the ligands as bound to ERCC1 (see Figure 4-12-

a).  
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Figure 4-12: Pharmacophore determination. (a) The equilibrated ERCC1 (grey 
surface) showing the excluded volume occupied by atoms from ligands obtained in the 
virtual screening experiments (green surface). Atoms included in this image were 
obtained by clustering the top ligands, from virtual screening experiments, and omitting 
those that were outside of a 90% RMSD cutoff. (b) Pharmacophores from each of the top 
30 ligands were created with their interactions in the ERCC1 binding site. The type of 
pharmacophore interactions, with each residue were scored and are represented 
schematically. Yellow patches indicate hydrophobic interactions with the pocket, red and 
blue patches represent hydrogen bond acceptor and donors respectively, while green 
patches indicate aromatic interactions. Orientation of the binding site is the same as in 
panel a. Tyrosine 145 and Histidine 149 (indicated by an asterisk *) do not lie on the 
bottom of the pocket but are observed within a lip that overhangs the pocket (see panel a). 
(c) The averaged pharmacophore model obtained from the docked poses from virtual 
screening Each sphere represents a specific chemical entity with the size being 
representative of the overall contribution at each position.  Coloring is identical to that 
described for panel a. (d) The chemical structure of UCN-01. 
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The ERCC1 binding site pharmacophore model (see Figure 4-12-b) consists of two spatially 

separated areas of hydrophobic interaction encompassing residues R108, F140, L141, Y152 and 

I153.  In addition to the hydrophobic interactions, there are also two regions of possible aromatic 

stacking with residues Y145 and Y152.  We note that residue Y145 was identified as a critical 

interaction in the ERCC1-XPA binding energy calculations and was set as flexible in the virtual 

screening experiments.  A critical observation was that the Y154 side chain occupies a position on 

the floor of the binding pocket, while the Y145 side chain sits above the binding pocket, resulting 

in the formation of a shallow cavity. This configuration of tyrosine side chains presents the 

likelihood for forming an aromatic sandwich, a feature that is observed in the active site of 

monoamine oxidases.  In addition to hydrophobic and aromatic features, the binding pocket is also 

defined by three hydrogen bond acceptor regions  (residues R108, R106, N110 and S142) and, two 

smaller hydrogen bond donor regions (residues P105, R106 and a small region of F140).  

One of the most interesting findings of this exercise was that the majority of ligands from 

the virtual screening experiments were extremely symmetrical, a feature that is reflected in the 

pharmacophore model  (see Figure 4-12-c). The most significant chemical feature within the 

pharmacophore is the naphalene group, which forms an aromatic sandwich between Y145 and 

Y152 within the ERCC1 binding site.  The positioning of hydroxyl groups within the napthalene 

group also results in the formation of favorable hydrogen bonding interactions with R106 and 

S142 in ERCC1.  The hydrocarbon linker region between the two hydrophobic ring functionalities 

spans the 6Å seperating hydrophobic patches in the ERCC1 binding site and also provides 

additional rotational flexibility required for proper ring orientation. 

 

4.3 Conclusion 
 

NER removes bulky DNA damage induced by UV irradiation or by UV-mimetic DNA 

damaging agents such as cisplatin 33. One way to target NER is to inhibit the interaction between 

two of the NER essential elements, ERCC1 and XPA. To date, only one such compound, UCN-01, 

has been characterized and tested pre-clinically.27 As a consequence, it is expected to potentiate 

cisplatin toxicity based on its suspected effect on ERCC1. Accordingly, the purpose of this study 

was to undertake a computational search for potential inhibitors of this pathway by inhibiting the 

XPA-ERCC1 protein-protein interaction that is involved in the final stages of this pathway.  

Using MD simulations and binding energy analysis we identified the key residues 

constituting the binding pocket within ERCC1 for its interaction with XPA. Subsequently, we 

have used conformational RMSD clustering to extract 44 different representative structures that 

describe the whole conformational space of the ERCC1 pocket. Using the dominant ERCC1 

structures, we run eight screening experiments that employed the NCIDS library and DrugBank 
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small-molecules as the set of putative ligands and AutoDock as the docking engine. The docked 

poses were clustered using a proposed dynamic technique that adapts the number of clusters to the 

optimal clustering pattern. Ranked by the binding energy of the most populated cluster, the non-

redundant top 50 compounds resulted from the ensemble-based screening were rescored using the 

RCS by re-docking them to the 44 structures that describe the whole MD trajectory. Top hits were 

used to construct a pharmacophore model that can be used in the subsequent identification of 

novel ERCC1-XPA inhibitors. This pharmacophore model points out to the important features that 

must be present for an active ERCC1-XPA inhibitor. It can be employed as the basis for the 

rational design of specific inhibitors for the XPA-ERCC1 interaction that would ultimately result 

in the development of a cisplatin-based combination therapy for a broad range of cancers.  

Aside from the target presented here, we recently employed the same methodology to 

identify inhibitors for the XPF-ERCC1 interaction. That is targeting the enzyme heterodimer to 

eradicate its activity as a direct way of regulating the NER pathway.34 
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Chapter 5: DNA polymerase beta 
(pol ß) inhibitors: a comprehensive 
overview (1) 
 
 
 
 
 
 

5.1 Introduction 
 

Similar to the problem we discussed in Chapter 4, the target presented here is an important 

determinant of cancer cells’ sensitivity to anticancer agents and is a major mean of acquiring 

antitumor drug resistance. It is DNA polymerase beta (pol ß), the error-prone polymerase of base 

excision repair (BER). Here, I will review all currently known inhibitors for pol ß and set the stage 

for the next Chapter, where the developed VS protocol identified lead compounds that target pol ß 

activity. 

 

5.1.1 Base Excision Repair As A Therapeutic 
Target 
Among known DNA repair mechanisms, base excision repair (BER) is the major cellular 

pathway that is responsible for the recovery of single strand breaks (SSB) and removal of damaged 

bases such as oxidized-reduced, alkylated and deaminated bases.1 These DNA modifications can 

occur spontaneously by exposing cells to environmental mutagens, a process that has been 

estimated to take place at a rate as high as 10,000 alterations per day in a typical mammalian cell.2 

Besides, such modifications can be induced synthetically as a result of anticancer treatments using 

alkylating agents or ionizing radiation. However, in the latter case, BER constitutes a prevailing 

way that is usually adopted by cancer cells to reduce the efficacy of and to promote resistance 

against a growing list of DNA damaging agents including bleomycin,3 monofunctional alkylating 

agents,4 cisplatin5 and other platinum-based compounds. Therefore, it has been broadly proposed 

that regulating the BER pathway via small molecule inhibitors can reduce the required dosage of 

such DNA damaging agents while potentiating their efficacy in eradicating cancer cells.6 

Fortunately, most of the proteins involved in and coordinating the BER process have been 
                                                           
(1) A version of this chapter has been submitted to Drug Discovery Today, Jan, 2012. 
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identified, cloned and crystallized allowing the rational design of small molecule inhibitors for 

their activity.7 One of these proteins, DNA polymerase beta (pol ß), has been recognized as a vital 

element in completing the BER pathway.8,9  

 

5.1.2 DNA Polymerase And BER  
DNA pol ß, the smallest naturally occurring DNA polymerase enzyme, belongs to the X-

family of DNA polymerases, a family that also includes terminal deoxynucleotidyl transferase and 

DNA polymerases lambda and mu.10 The uncomplicated small structure of the protein (39 kDa) 

made it a standard model that helped in understanding the functional mechanisms of other DNA 

polymerases. In addition, there is a large body of evidence that pol ß plays an important role 

throughout cell’s life. For example, a “knock-out” of the gene that encodes for pol ß in mice 

results in embryonic lethality, confirming the importance of the protein during fetal 

development.11 More importantly, pol ß plays a significant role in chemotherapeutic agent 

resistance, as its over-expression reduces the efficacy of anticancer drug therapies including 

cisplatin.5,12Furthermore, small-scale studies on different types of cancer showed that pol ß is 

mutated in approximately 30% of tumors, which in turn reduces pol ß fidelity in DNA synthesis 

exposing the genome to serious and often deleterious mutations.13,14 Based on the these findings, 

pol ß, the error-prone polymerase of BER, has been seriously considered as a promising 

therapeutic target for cancer treatment. 

 Many inhibitors of DNA pol ß have been identified during the last two decades. To name 

but a few, this list includes polypeptides,15 fatty acids,16 triterpenoids,17 sulfolipids,18 polar lipids,19 

secondary bile acids,20 phenalenone-derivatives,21  anacardic acid,22 harbinatic acid,23 flavanoid 

derivatives,24 and pamoic acid.25 However, most of these inhibitors are not potent enough or lack 

sufficient specificity to eventually become approved drugs. 

  

5.2 Base Excision Repair (BER) 
 

A typical mammalian cell is frequently exposed to many factors that can cause severe 

damage to its genome integrity. For example, reactive oxygen species, alkylating agents and 

ionizing radiation are generally correlated with the formation of non-bulky damaged nucleotides, 

abasic sites and single-strand breaks within the DNA molecule.1,26 Nevertheless, the cell has been 

endowed with a robust and conserved defense mechanism, namely BER pathway (shown in Figure 

5-1) that specifically removes these types of damage and restores the cell to normality.27,28,29 
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Figure 5-1: Base excision repair (BER). See text for details (adopted from KEGG 
database).30 

 

 

In fact, BER is a sequential process that is coordinated and processed using at least 30 different 
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proteins. Normally, there are two different types of BER mechanisms that can take place 

depending on the type of nucleotide modification and the number of incorporated nucleotides 

within the damaged DNA structure. First is the more frequent single nucleotide BER in which, as 

the name implies, a single damaged nucleotide is removed and replaced by a new nucleotide 

satisfying Watson–Crick rules. On the other hand, other studies have identified a sub-BER 

pathway that can generate repair patches greater than one-nucleotide and is referred to as long-

patch BER (see below).   

Single nucleotide BER generally starts with damage-specific DNA glycosylases, an 

assorted family that includes about 11 different species.29 These enzymes recognize and cleave the 

N-glycosylic bond between the irregular base and the sugar–phosphate backbone. The outcome of 

this step is a nucleotide that lacks its base, which is commonly referred to as an abasic or apurinic / 

apyrimidinic (AP) site. Certainly, an AP site that is generated by the action of a DNA glycosylases 

enzyme or through a spontaneous hydrolysis of the N-glycosylic bond is considered to be highly 

mutagenic and risky factor during DNA replication.31 The next performer in the BER process 

depends on whether the used DNA glycosylase catalyzes strand incision at the AP site after 

removing the damaged base (bifunctional glycosylase), or if it can only remove the damaged base 

(monofunctional glycosylase). In the former case, the lyase activity of pol β removes the 5´-sugar-

phosphate residue, creating a one-nucleotide gap and leaving a 5´-phosphate on the downstream 

DNA strand. While in the latter, the incision step is performed by AP endonuclease, which 

generates a one-nucleotide gap with 3´-hydroxyl and 5´-deoxyribose phosphate (dRP). It is 

important to observe that at this stage, single strand breaks (SSB) that may occur within the DNA 

structure as a result of reactive oxygen species or ionizing radiation are identical to the current 

BER intermediates that arose form the incision step. Consequently, SSB are commonly repaired 

through BER and for that reason, the SSB repair mechanism can be considered to be a sub-

pathway emerging from the larger BER process.28 During the next step of BER, the polymerase 

activity of pol β fills the generated gap with the correct nucleotide leaving the final step to DNA 

ligase I or III to ligate the nicked DNA termini.32  

It should be noted that the aforementioned steps simply demonstrate the essential routes 

that are generally followed during BER. Hence, there are many other enzymes that participate in 

the process in order to coordinate or modify the DNA termini, making them suitable substrates for 

pol β or DNA ligases. For example, if a bifunctional DNA glycosylase was employed in the 

incision step, the 3´-margin of the gap is usually blocked with a sugar-phosphate group. In this 

case, and because the polymerase activity of pol β requires a 3´-hydroxyl terminus, additional 

enzymatic activities such as polynucleotide kinase or AP endonuclease are required to modify the 

3´-margin and generate a 3´-OH instead.33 Another example is XRCC1, which acts as a 

scaffolding protein and interacts with most of the enzymes that are involved in the BER pathway 

drawing them into the lesion site.28,34 
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Finally, BER can also adopt a different strategy, known as long patch BER,35 when faced 

with abnormal modifications within the damaged DNA. These modifications generally occur in 

the 5´-dRP moiety, which is not a substrate for the lyase activity of pol β, leading to a blockage of 

the repair process. Examples of such modifications include reduced AP sites, C1 oxidized AP 

sites36 or adenine opposite 8-oxoGs.37,38 In this case, pol β starts the process by adding a single 

nucleotide to the repaired gap and then is replaced by Pol δ/ε, which extends the repair patch and 

displaces several nucleotides to create a 50-flap junction.39The flap is then detached from the 

structure with the help of flap endonuclease-1 (FEN1). Alternatively, the modified 5´-dRP group 

can be removed by FEN1 before the action of pol β takes place. In this case, the generated one-

nucleotide gap makes up a perfect substrate for pol β to perform its job. It is also worth mentioning 

that, under conditions of low energy, poly(ADP-ribose) polymerase 1(PARP1) catalyzes the 

poly(ADP)ribosylation of proteins and stimulates long-patch BER.40, 41 

 

5.3 Structure of DNA pol β 
 

The faithfulness of BER is dependent on the polymerization step, where the major BER 

DNA pol β, must incorporate the correct Watson–Crick base paired nucleotide into the one-

nucleotide repair gap. The enzyme has been identified as a 39-kDa protein with 335 amino acids in 

its sequence (see Figure 5-2).8 Its small size compared to other polymerases, made it the smallest 

and simplest cellular DNA polymerase found. Although pol β lacks the proofreading 3'- or 5'-

exonuclease activities, which usually are found in high fidelity enzymes, it possesses 5'-dRP lyase 

and AP lyase activities instead.9, 42 The active pol β enzyme is a stable monomer in solution, 

folded into distinct domains and subdomains that exhibit a variety of functions essential for its 

activity. These functions include single-stranded (ss) and double-stranded (ds) DNA binding, 

nucleoside triphosphate (dNTP) binding, and the dRP lyase and nucleotidyl transferase catalytic 

activities.43 

Essentially, the full-length enzyme consists of an amino-terminal lyase domain (8 kDa), 

connected by a short protease-sensitive fragment to a carboxyl-terminal polymerase domain (31 

kDa). The 31-kDa domain is further subdivided into C-(catalytic), D- (duplex DNA binding), and 

N- (nascent base pair binding) subdomains. Interestingly, similar to other DNA polymerases, the 

overall structure of pol β resembles the shape of a right hand, with fingers (C-subdomain), thumb 

(D-subdomain) and palm (N-subdomain) arrangements (see Figure 2).8, 44 The active enzyme 

requires a single-stranded DNA template and divalent metal ions for its polymerase activity. 

Moreover, it employs two major substrates, namely, a 2'-deoxynucleoside 5'-triphosphate (dNTP) 

and a template-primer DNA. Accordingly, the C-subdomain contributes three aspartate residues, 

namely Asp190, Asp192 and Asp256, which coordinate two divalent metal ions (Mg2+). 
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Nevertheless, it should be noted that the presence of the nucleotide-binding metal ion as part of the 

protein structure has been shown to depend on the existence of DNA and the dNTP substrate 

within their related binding sites in the enzyme.45 

 

 

 

 
Figure 5-2: Structure of DNA polymerase beta. See text for details. 

 

 

 

Several crystal structures of pol β at different stages of the catalytic cycle have been 

resolved. Considerably, these structures revealed the significant conformational changes that take 

place within the various subdomains of the protein.10 These conformational dynamics processes 

are obvious when comparing the structure of the apo-enzyme46 to other structures that encompass 

DNA and the two substrates of the enzyme.47 The fully loaded pol β structure implied that the 8-

kDa domain interacted with the downstream duplex, where the 5'-phosphate on the downstream 

strand is located close to the dRP lyase active site. Furthermore, the lyase domain cooperates with 

the N-subdomain in order to form a doughnut-shaped structure that surrounds the DNA molecule 

(see Figure 2). These notable interactions and functions of the lyase domain indicate that, a small 

molecule that can bind to the lyase active site, especially, within the ssDNA binding pocket should 
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be able to affect the polymerization activity of pol β as well. Besides the lyase domain dynamics, 

the N-subdomain seems to exhibit considerable movements once the correct dNTP substrate is 

bound to the enzyme.47Additionally, as illustrated in Figure 2, there is a major conformational 

change within the structure of the DNA substrate.  

Analogous to most DNA-binding proteins, pol β utilizes the well-known helix-hairpin-

helix (HhH) motifs that unspecifically interact with the DNA backbone. These HhH motifs are 

located within the lyase domain (residues 55-79) and the D-subdomain (92-118) and interact with 

each end of the incised DNA strand, namely, the downstream and primer strands. In addition, like 

other HhH motifs, they encompass monovalent metals, which in the case of pol β have been 

identified to be Na+ ions. However, as mentioned above and similar to the nucleotide-binding 

metal Mg2+ ion, their presence within the structure of the protein is mainly dependant on the 

existence of the bound DNA substrate.48  

 

5.4 DNA pol β inhibitors  
 

In fact, the first attempt to inhibit and understand the activity of pol β employed portions 

of the protein itself.15 This earliest in vitro study by Husain and his coworkers tried to examine the 

enzyme as a potential therapeutic target by investigating its interaction with various pol β domains. 

Interestingly, by evaluating the influence of the 8-, 14-, 27- and 31-kDa N-terminal domains on 

the active full-length enzyme, they showed that, only the 14-kDa fragment specifically inhibited 

pol β activity. Although this inhibitory behavior on the isolated protein was eradicated by 

increasing the concentrations of its substrates, the 14-kDa domain was able to prevent the progress 

of a BER assay in vitro. While this study utilized a large peptide as a potential pol β inhibitor, 

which may seem to be an impracticable and unreasonable drug candidate, this work provided the 

much-needed proof of concept that a pol β inhibitor can impede the BER pathway. This, in turn, 

can provide a means for potentiating therapeutically related DNA damaging agents. 

In parallel to this pioneering effort, many attempts were made to isolate and identify a 

small molecule inhibitor that can specifically bind to pol β. In regard to these endeavors, one can 

recognize at least two research groups that contributed to a large extent to the discovery of more 

than sixty molecules that can bind to DNA polymerases in general with a few of them that can 

target pol β in particular. The main source of these compounds was the screening of natural 

products for their ability to inhibit the activity of pol β or other polymerases and little work has 

been done on synthesizing new medicinal chemistry compounds to solve this problem. More 

surprisingly, despite the large number of crystal structures that have been deposited into the 

structural databases, the authors could not identify a single study that exploited these structures in 

building de novo small-molecule inhibitors or applying virtual screening techniques to uncover 

small molecules that can target specific domains of pol β. Table 5-1 and Figure 5-3 list the 
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structure and activities of a selected number of the identified inhibitors (see text below for more 

details). 

 In fact, the origin of the studies that were focused on screening for small molecule pol β -

inhibitors can be attributed to Mizushina and his co-workers in the mid 1990.16 This team 

represents collaboration among research groups in Japan, and their first study was the screening of 

microbial fermentation for structures that can inhibit DNA polymerases activity. During their 

analysis, they isolated linoleic acid (LA) (1), a well-known fatty acid as an inhibitor for calf 

thymus DNA pol α and cloned purified rat DNA pol β. They also examined the effect of a number 

of commercially available fatty acids on the activity of DNA polymerases. Their findings sat up an 

important concept; several fatty acids, particularly long chain fatty acids with a cis-configuration, 

interact with DNA polymerases and strongly suppress their activities. More importantly, the same 

group completed a more detailed study to understand the mode of inhibition of two different fatty 

acids that showed promising interaction with pol β, namely LA and nervonic acid (NA) (2).49 

Interestingly, NA showed more inhibitory activity than LA with Ic50 values of 5.8 and 38 µM, 

respectively.  Comparing the effects of NA and LA on the two DNA polymerases  and, the two 

compounds exhibited different interactions with the two enzymes. That is, the two fatty acids 

compete with both the dNTP substrate and template-primer for pol β, whereas they bind to pol β 

without competing with these substances. Moreover, their analysis of the effects of NA and LA on 

the proteolytic fragments of pol β revealed that the two compounds bind to the 8-kDa DNA-

binding domain suppressing its binding to the template-primer DNA. Their results also showed 

that the binding of the two compounds to the lyase active site of pol β is much stronger than their 

binding to the polymerase site, to such a degree that ~10 000 times more of either fatty acid was 

required to inhibit the DNA polymerase activity.49 Later, in a separate study, Mizushina and his 

co-workers identified an ergosterol peroxide derivative that can enhance the efficacy of LA in 

inhibiting the activity of pol β.50 

Similarly, Tanaka reported the discovery of four triterpenoid compounds isolated from 

the mycelium of a basidiomycete and found that these compounds selectively inhibit the activities 

of mammalian DNA polymerase α and β in vitro.17 The four compounds have been termed 

fomitellic acid (FA) A (3), B (4), C and D and two of them, namely FAs A and B were easier to 

produce in abundant quantities than the other FAs which were minor components and particularly 

hard to separate. Accordingly, the authors focused on these FA A and B in a more rigorous study 

in order to investigate their mode of inhibition of the proteins.  Similar to fatty acids, on DNA 

polβ, the fomitellic acids competed with both the substrate and the template-primer, however, on 

DNA pol α, their mode of action was not competitive with either the template primer or the 

substrate. In fact, they found that the two FAs bind strongly to the lyase active site of polβ, but not 

to the 31-kDa fragment.51 
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Figure 5-3: Structures of DNA polymerase beta inhibitors listed in Table 5-1. 
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Figure 5-3 continued. 
 

 

A comprehensive study of the mode of interaction of breMP with pol β showed that the 

drug not only competed with the substrate of the polymerase active site but also with the template-

primer.52 These findings were confirmed by examining the interaction of breMP with the 

individual active sites of pol β, which revealed that the compound essentially binds to the 

polymerase catalytic domain and could not bind to the template-primer-binding site. These results 

suggest that breMP directly binds to the substrate-binding site of the catalytic domain, and 

indirectly, perturbs the template-primer incorporation into its binding domain.52  

As a continuation of their efforts to isolate novel DNA polymerase inhibitors, Mizushina 

and his co-workers isolated three sulfolipid compounds from a pteridophyte, Athqrium niprmicum 

(6 is their most potent structure).18 They reported these compounds as potent inhibitors of the 

activities of calf DNA polymerase  and rat DNA polymerase  with IC50 values in the range 

from 1.5 to 3 µg/mL. Analogously to fatty acids, the three inhibitors competed with the DNA 

template and substrate of DNA pol , and acted non-competitively on DNA pol . More 

importantly, these compounds did not affect the activity of a number of other proteins including 

calf thymus terminal deoxynucleotidle transferase, prokaryotic DNA polymerases such as the 
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Klenow fragment of DNA polymerase I, T4 DNA polymerase and Taq polymerase, the DNA 

metabolic enzyme DNase I and the human immunodeficiency virus type 1 reverse transcriptase.18 

 

ID Given name Binding site and affinity  Other targets Ref 
1 Linoleic acid (LA) 8-kDa domain (IC50=38µM) Pol  16, 49-50 
2 Nervonic acid (NA) 8-kDa domain (IC50=5.8µM) Pol  16, 49-50 
3 Fomitellic acid (FA) A  8-kDa domain (IC50=125µM) Pol  17, 51 
4 Fomitellic acid (FA) B 8-kDa domain (IC50=90µM) Pol  17, 51 
5 BreMP 31-kDa domain (IC50=20µM) Pol  52 
6 Sulfolipid-derivative 1 Not identified (IC50=3 µg/mL) Pol  18 
7 KN-208 Not identified (Ki=0.05µM) Pol , E. coli pol I, HIV RT 19 
8 Lithocholic acid (LCA) 8-kDa domain (IC50=11µM) Pol  20, 53 
9 Solanapyrone A 8-kDa domain (IC50=30µM) Pol  54 
10 SCUL-A Not identified (IC50=17µM) Pol , Pol  21 
11 DRB 8-kDa domain (IC50=28µM) Polymerases and 

glycosidases 
55 

12 Anacardic acid Not identified (IC50=9µM) Not studied 22 
13 Oleic acid Not identified (IC50=25µM) Not studied 22 
14 Bis-5-alkylresorcinols 

derivative 
Not identified (IC50=5.8µM) Not studied 56 

15 Triterpenoid-derivative Not identified (IC50=5.6µM) Not studied 57 
16 Koetjapic acid (KJA) 8-kDa domain (IC50=20µM) Not studied 25, 58 
17 Pamoic acid (PA) 8-kDa domain (KD =9µM) Not studied 25 
18 Harbinatic acid Not identified (IC50=2.9µM) Not studied 23 
19 Betulinic acid Not identified (IC50=14µM) Not studied 59 
20 3-cis-p-coumaroyl 

Maslinic acid 
Not identified (IC50=15µM) Not studied 59 

21 3-trans-p-coumaroyl 
Maslinic acid 

Not identified (IC50=4.2µM) Not studied 59 

22 Oleanolic acid Not identified (IC50=7.5µM) Not studied 60 
23 2- hydroxyursolic acid Not identified (IC50=12.6µM) Not studied 61 
24 Lupane triterpenoids 

derivative 
8 kDa-domain (IC50=3.8 µM) Not studied 62 

25 (-)-epicatechin 8 kDa-domain (IC50=18.5 µM) Not studied 63 
26 Edgeworin 8 kDa-domain (IC50=22.5 µM) Not studied 64 
27 Neolignan-1 8 kDa-domain (IC50=15.5 µM) Not studied 65 
28 Neolignan-3 8 kDa-domain (IC50=18.6 µM) Not studied 65 
29 Myristinin A Not identified (IC50=2.8µM) DNA 24 
30 Stigmasterol 8 kDa-domain (IC50=60.2 µM) Not studied 66 
Table 5-1: Selected inhibitors of DNA pol. (The structures are shown in Figure 5-3.) 

 

 

In a similar study, Mizushina extracted prunasin as a weak inhibitor of pol  with an 

IC50 value of 150 µM.67 The inhibition mode of pol  by the compound was competitive with the 

substrate, dNTP. This inhibitory behavior was improved to about 40 µM in the presence of fatty 

acid, indicating that the fatty acid allowed easier access of the compound to the substrate-binding 

site. 

Ogawa et al. isolated sulfated glycoglycerolipid (KN-208) (7), a polar lipid, from an 

archaebacterium and identified it as an inhibitor for both DNA polymerase  and .19 In fact, the 

same compound also targets Escherichia coli DNA polymerase I Klenow fragment (E. coli pol I) 
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and human immunodeficiency virus reverse transcriptase (HIV RT), indicating that KN-208 does 

not selectively inhibit pol  and  as the previously mentioned inhibitors.19 Moreover, its mode 

of action on these polymerases was only competitive with the binding of the DNA template primer 

and not competitive with the binding of the substrate. Although KN-208 can bind to several 

targets, its binding to pol  was 10-fold stronger than that for pol , 60-fold stronger than for 

HIV RT and 140-fold stronger than for E. coli pol I, with the sulfate group at the 68-position of the 

compound was important in its inhibitory activity.19  

In an important investigation, Ogawa et al. also studied 17 different kinds of bile acids 

with respect to their inhibition of mammalian DNA polymerases.20 Intriguingly, their findings 

revealed that only Lithocholic acid (LCA) (8), one of the major components amongst secondary 

bile acids, was able to suppress the activity of DNA polymerases. Again, although LCA can bind 

to several DNA polymerases, its effectiveness against the activity of pol  was the strongest 

compared to other enzymes. However, in contrast to KN-208, LCA competes with the substrate of 

pol  and dose not compete with the DNA template-primer binding. Moreover, by comparing the 

effect of structural variations of LAC to its derivatives, Ogawa and his co-workers found that the 

C-7 and C-12 positions in the sterol skeleton are important for the inhibitory activity of LCA.20 

The mode of action and specific interactions between LCA and pol  were comprehensively 

investigated in a different study by Mizushina et al.53 In this study, the full-length pol  was 

separated proteolytically into two fragments, namely, the lyase active site (template-primer 

binding domain 8-kDa) and the polymerase active site (catalytic domain 31-kDa). Binding 

analysis revealed that LCA tends to bind strongly to the 8-kDa domain, and not to the 31-kDa 

domain. This important finding was confirmed using NMR analysis, where the 8-kDa domain was 

shown to associate with LCA as a 1:1 complex with a dissociation constant (KD) of 1.56 mM. 

Moreover, NMR chemical shifts were observed only in residues mainly found in helix-3, helix-4, 

and the 79-87 turn of the same face. Interestingly, the three residues Lys60, Leu77, and Thr79 of 

pol  exhibited profound interactions with the LCA. It should be also noted that, in this study, 

Mizushina and his co-workers used molecular docking to understand and illustrate the binding 

mode of LCA within the NMR-detected binding site and to compare its binding to that of NA, 

another fatty acid that inhibits pol  (see above).49 Docking analysis revealed that the binding sites 

of the two different compounds comprised the DNA binding pocket within pol  as an essential 

component for their binding. However, the two inhibitors interacted with different residues within 

the surface of the protein. These residues were close to the DNA binding site on pol  with the 

two residues Lys35 for NA and Lys60 for LCA showing an important role in the binding of the 

two compounds, respectively.53 

Another study by Mizushina et al. identified solanapyrone A (9) as an inhibitor for both 

DNA polymerase  and  with IC50 values of 30 µM for pol  and 37 µM for pol .54 Since 
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pol  and  are two similarly structured proteins that are descended from the same family of 

DNA polymerases, Mizushina focused on pol  in order to examine its interaction with 

solanapyrone A. Interestingly, solanapyrone A competed with both the DNA template and the 

nucleotide substrate. They also found that the compound could bind selectively to the N-terminal 

8-kDa domain of pol . In fact, the Mizushina group showed that solanapyrone A inhibits the 

binding of DNA to the single-stranded DNA-binding site within pol  and does not affect the 

other two activities of the 8-kDa domain, namely, recognition of the 5'-phosphate in gapped DNA 

structures and AP lyase activity. Moreover, similarly to the LCA case, the binding interactions 

between solanapyrone A and the ss-DNA binding region on the surface of pol  were confirmed 

using molecular docking simulations. According to their results, the two ketone groups of the 

compound bound strongly to the hydrophilic residue Lys60, and the benzene groups interacted 

with the hydrophobic amino acids in both helix-3 and helix-4.54  

In a different screening study conducted by the same group, Perpelescu et al. tested the 

effects of two phenalenone-skeleton-based compounds, sculezonone-B (SCUL-B) and 

sculezonone-A (SCUL-A) (10), upon the activity of a number of DNA polymerases.21 

Interestingly, the two compounds were found to exhibit diverse interactions with the different 

tested polymerases. That is, while both SCUL-B and SCUL-A strongly inhibited bovine pol  and 

, the two compounds weakly interacted with pol , and had almost no effect on HIV reverse 

transcriptase and an E. coli DNA polymerase I Klenow fragment. More importantly, SCUL-A was 

found to be more selective against pol  than SCUL-B. This is apparent by comparing the IC50 

values of the two compounds with respect to their interaction with pol  (17 µM for SCUL-A and 

90 µM for SCUL-B). Similarly to this study, Mizushina and his co-workers showed that a 

pyrrolidine alkaloid, termed as DRB (11), was able to suppress the activity of a number of 

eukaryotic DNA polymerases with IC50 values of 21–35 µM.55 Although such compounds are 

widely known to inhibit other enzymes such as glycosidases, DRB had almost no effect on the 

activities of prokaryotic DNA polymerases, nor DNA metabolic enzymes such as human 

immunodeficiency virus type 1 reverse transcriptase, T7 RNA polymerase, and bovine 

deoxyribonuclease I. Furthermore, the mode of inhibition of DRB against pol  was competitive 

with both the substrate and the DNA template-primer, while, for pol , DRB competed only with 

the substrate. Although the structure of DRB resembles that of dNTP, the affinity of the compound 

was observed to be higher at the template-primer binding site than at the dNTP substrate-binding 

site.  

More recent studies by the same group revealed a number of compounds that can target 

DNA polymerases and in some cases interact with a number of other enzymes as well. Examples 

of such compounds include isosteviol, which targets mammalian polymerases and human DNA 

topoisomerase II (topo II);68 a number of sulfolipid derivatives that can interact with both pol  
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and ;69 epolactaene derivatives that can target DNA polymerases and topo II;70 catechin 

derivatives that can target pol  and ;71 and finally the two azaphilone derivatives,  kasanosins 

A  and B  that specifically found to target pol  and .72 

Starting from the late nineties, one can recognize the emergence of a new team 

representing the National Cancer Institute-sponsored National Cooperative Drug Discovery 

Groups (NCDDG) that has entered the field of screening for novel inhibitors of pol  (see ref. 73 

for an early review of their work). Similar to the aforementioned attempts, the NCDDG group 

continued the screening of natural products to search for small molecules that can regulate the 

activity of pol  and sensitize the cells for several DNA damaging agents. As far as the authors 

can ascertain from the literature, the first study focusing on pol  inhibitors performed by this 

group was the work by Chen et al., who isolated five compounds that showed inhibitory activities 

against pol  with IC50 values ranging from 9 to 72 µM.22 The five compounds were extracted 

from the plant Schoepfia californica using bioassay-guided fractionation techniques and four of 

these molecules were shown to be anacardic acid (12) and structurally related derivatives, while 

the fifth was oleic acid (13). In a different study, Deng et al. isolated three bis-5-alkylresorcinols 

compounds from Panopsis rubescens.56 the three compounds showed strong binding to calf 

thymus pol , with IC50 values ranging from 5.8 to 7.5 µM (14 is the most potent structure). 

Moreover, Deng et al. used the same fractionation procedure against Baeckea gunniana to separate 

a methyl ethyl ketone extract, which was identified as a potent inhibitor of rat pol .57 This study 

revealed four active ursane and oleanane triterpenoid compounds that can bind to pol , with IC50 

values ranging from 5.3 to 8.5 µM in the presence of bovine serum albumin (BSA) and from 2.5 to 

4.8 µM in the absence of BSA (15 is the most potent structure).  

Sun et al. isolated three active natural products with IC50 values ranging from 20 to 36 

µM.58 They also generated ten more derivatives and examined their interactions with the protein. 

Only three derivative compounds were active against pol . What makes this study distinctive 

from the previous work done by this group is its focus on the mode of action of these inhibitors of 

pol . The authors found that the compounds exhibited a mixed-type inhibition pattern for both 

the substrate, dNTP, as well as the DNA template-primer. That is, when altering the 

concentrations of both dNTP and the DNA template-primer separately, the inhibition pattern was 

intermediate between competitive and noncompetitive inhibition for the two substances. 

Comparing the performance of the three compounds along with their derivatives, one can notice 

that one of these molecules, known as koetjapic acid (KJA) (16), showed reasonable activity in 

interacting with pol  and was the subject of a later study that was carried out by Hu and his co-

workers from the same NCDDG team.25 In this study, Hu et al. used NMR analysis to identify the 

binding interface between KJA and the 8-kDa domain of pol  and decompose its residue 
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contributions. Their findings suggest that the binding pocket of the compound within the surface 

of pol  is located between the two helices, helix-2 and helix-4 of the 8-kDa domain. 

Interestingly, the same region has been recognized in different studies to be essential in the DNA 

binding and deoxyribose phosphate lyase activities of the enzyme47. Hu also examined nine 

structurally related synthetic compounds that are similar to KJA for their activity against pol . 

The structures of these compounds involved different categories of functional groups that varied 

between aromatic and other hydrophobic chains in combination with two carboxylate groups. 

Intriguingly, these compounds were found to bind to the same or a very similar region on the 

surface of the enzyme. Moreover, the compounds also were able to enhance the efficacy of methyl 

methanesulfonate (MMS), a monofunctional methylating agent that targets the DNA whose 

induced damage is mainly repaired by BER. More importantly, the most potent compound, one of 

the tested derivatives, also known as pamoic acid (PA) (17), was found to be an inhibitor of the 

deoxyribose phosphate lyase and DNA polymerase activities of purified pol  on a BER substrate. 

It should be noted that the inhibition of these two activities of pol  by PA was only observed 

when the compound has been pre-incubated with the enzyme before initiation of the BER 

reactions. Moreover, PA was not an effective pol -inhibitor when pre-incubated with DNA 

alone. These observations may indicate that the binding reaction between pol  and PA is very 

slow and requires an apo-enzyme to be completed. These interesting findings were further pursued 

by a different group from the Centre National de la Recherche Scientifique (CNRS) in France, to 

understand and identify the precise interactions between PA and the 8-kDa domain of pol .74 In 

this study, Hazan et al. used a combination protocol of blind docking and NMR analysis to 

identify the binding site of PA within the surface of the lyase domain of pol  and to suggest its 

binding conformation. These results confirmed the earlier findings of Hu et al.25 and revealed that 

PA binds to a site formed by helix 2 and helix 4, which also corresponds to the single-stranded 

DNA binding site.47 Particularly, The aromatic groups of pamoic acid formed favorable 

hydrophobic interactions with the residues Tyr39, Ala42, Gly64 and Gly66 within the identified 

binding site. Furthermore, the presence of many lysine residues in the binding pocket allowed 

favorable electrostatic interactions for the two carboxyl groups of PA. In their proposed model, 

one of the carboxyl groups is oriented towards His34 and Lys35 making close contacts with Ile69 

amide proton, while the other carboxyl group formed hydrogen bonds with the amide proton of 

Lys68 and with the hydroxyl group of Thr67. 

In a series of similar studies and using bioassay-guided fractionation techniques, the 

NCDDG group identified a considerable number of pol  inhibitors that can bind to the enzyme 

with reasonably high affinities. This list includes harbinatic acid (18) with IC50 of 2.9 µM;23 the 

three triterpenoid compounds betulinic acid (19), 3-cis-p-coumaroyl maslinic acid (20) and 3-

trans-p-coumaroyl maslinic acid (21) with IC50 values ranging from 4.2 to 15µM;59 an additional 
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six pentacyclic triterpenoids compounds extracted from Freziera sp. with IC50 values ranging from 

7.5 to 16µM (22 is the most potent structure );60a sesquiterpenoid derivative with IC50 of 45.2 µM 

targeting the lyase activity of pol ;75four lyase inhibitors comprising a triterpene, ursolic acid, 

hydroxyursolic acid, and -sitosteryl- -D-galactoside with IC50 values ranging from 12.6 to 

26.5µM (23 is 2- hydroxyursolic acid, their most potent inhibitor);61 four lupane triterpenoids 

with IC50 values ranging from 3.8 to 21.5µM targeting the lyase activity of pol  (24 is their best 

inhibitor) ;62 the lyase-inhibitor, (-)-epicatechin (25), with IC50 values of 18.5µM which also 

potentiated the efficacy of monofunctional methylating agent in cultured human cancer cells;63 the 

biscoumarin derivative, Edgeworin, which inhibited the lyase activity with IC50 of 22.5µM (26);64 

and finally, two neolignan lyase inhibitors with IC50 values ranging from 15.3 to 18.6 µM (27, 28). 

However, for all of these listed inhibitors, the exact binding locations, mode of inhibition against 

pol , or the possibility of targeting other DNA polymerases or enzymes within the cell were not 

identified. 

In another important study, Maloney et al. investigated the synthesis of three flavanoids 

derivatives, namely myristinin A (29), B and C, which exhibited a distinctive characteristic 

besides their ability to inhibit the activity of pol .24 That is, these compounds can also cleave and 

induce a considerable damage to the DNA, allowing one to exploit their dual-activity as an 

innovative therapeutic strategy in cancer treatments. As myristinin A showed more potent Cu2+-

dependent DNA-damaging activity and pol  inhibition (with IC50 values of 2.8 µM) than the 

inseparable mixture of myristinin B and C, Maloney et al. focused only on the synthesis of the 

former compound. However, the synthesis of the two other structures B and C has been revealed 

in a more recent study by the same group.76 Similarly to the interesting behavior of the 

abovementioned flavanoid derivatives, Starck et al. identified a number of 5-alkylresorcinols that 

also mediated Cu2+-dependent DNA damage and also suppressed the ability of pol  to restore the 

DNA damage that they cause.77 Interestingly, one of these alkylresorcinols, namely 

bis(dihydroxyalkylbenzenes), showed potent activity both as an inhibitor for pol  and as a DNA-

damaging agent. This compound resulted in the reduction of the number of viable cells when 

incubated in the presence of bleomycin and a further decrease in the number of viable cells in the 

presence of both bleomycin and Cu2+.77 

In their most recent study, the NCDDG group used bioassay-guided fractionation to 

isolate four pol  inhibitors, namely oleanolic acid, edgeworin, betulinic acid, and stigmasterol.66 

Interestingly, although stigmasterol (30) was not as strong as the other compounds, it was the most 

specific structure for the lyase activity, which inhibited both the lyase and polymerase activities of 

the enzyme. More importantly, Gao et al. showed that, the four inhibitors potentiated the efficacy 

of the anti-cancer drug bleomycin in cultured A549 cells, without any influence on the expression 

of pol  in these cells. These results were confirmed using an unscheduled DNA synthesis assay, 
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which suggested that that the potentiation of bleomycin cytotoxicity by these compounds was a 

direct result of an inhibition of DNA repair synthesis.66  

This concludes the summary of the current state-of-art regarding the search for inhibitors 

of DNA pol  activity. However, it seems that, in spite of more than twenty years of extensive 

research in this area and regardless of the high number of various structures that have been 

isolated and extracted, there is no single molecule that can be pointed out as a pol -specific 

inhibitor. This keeps the door wide-open for innovative work that can employ novel techniques 

such as de novo drug design or virtual screening for molecular structures that can target specific 

domains of the enzyme. Particularly with the considerable number of crystal structures that have 

been added to the protein data bank database, this can be used to illustrate the various states of the 

catalytic activity of the protein.   

 

5.5 Conclusion 
 

BER is the primary pathway that removes damaged DNA bases and repairs single strand breaks 

that are generated spontaneously or produced by many DNA damaging agents.6 Accordingly, this 

pathway has been recognized as an important determinant of cancer cells’ sensitivity to many 

anticancer agents including ionizing radiation, bleomycin, monofunctional alkylating agents and 

cisplatin. Therefore, several investigations have considered the proteins that are evolved in this 

pathway as promising therapeutic targets.4, 6  

Family-X of DNA polymerases and pol  in particular are the foremost elements of 

BER.42 This is mainly due to their ability to fill short gaps within the damaged DNA molecule. 

Fortunately, a lot of structural data and biological information about pol  are currently available, 

making it the first DNA polymerase enzyme whose structural description is complete.10, 78 These 

observations attracted researchers to look for regulators of BER through the discovery of inhibitors 

of the polymerization step of the pathway. The fundamental principle behind this objective is to 

preserve the ionizing radiation or chemotherapeutic-induced damage within the genome in order to 

potentiate the efficacy of these DNA-damaging agents and hence, force the cell to undergo 

apoptosis.73 Although, these efforts resulted in a large number of DNA pol -inhibitors listed here 

in this review, these inhibitors are not specific or potent enough to be persued as drug candidates. 

This is mainly because most of the identified compounds target other polymerases or enzymes and 

a considerable number of them cannot enter the cell due to solubility problems.  

Therefore, we decided to take an alternative drug discovery avenue that has been only 

slightly touched upon in a few of the above-mentioned studies. In the next chapter, I will present 

the outcomes of applying the VS protocol discussed in this thesis and search for novel inhibitors of 

pol . 
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Chapter 6: DNA Polymerase Beta  
Inhibitors: The Last Puzzle(1) 
 
 
 
 
 
 
 
 

6.1  Introduction 
This chapter builds upon the information presented in the previous chapter. As was 

described in chapter 7, DNA pol  is the major DNA polymerase of BER. It plays an important 

role in chemotherapeutic agent resistance, as its over-expression reduces the efficacy of anticancer 

drug therapies including bleomycin and cisplatin.1,2 The enzyme is mutated in approximately 30% 

of tumors, which in turn reduces pol fidelity in DNA synthesis exposing the genome to serious 

mutations.3,4 The previous chapter also described the history of considering pol  as an anticancer 

target. It listed all DNA-pol -inhibitors discovered so far and reached the conclusion that most of 

these inhibitors are not potent enough or lack sufficient specificity to eventually become approved 

drugs.  

 

6.1.1 Pamoic acid as a promising pol -inhibitor 
 

Among the compounds listed in Table 5-1, pamoic acid (PA) was one of the few 

compounds that had promising activity against pol  and a well-defined binding mode. The 

structure of the compound is shown in Figure 5-3-compound 17, and was initially discovered by 

Hu and his co-workers.7 Their NMR analysis revealed that PA binds to the 8-kDa domain of pol  

and suggested that the binding pocket is located between the two helices, helix-2 and helix-4 of the 

8-kDa domain. Interestingly, the same region has been recognized in different studies to be 

essential in the DNA binding and deoxyribose phosphate lyase activities of the enzyme.5 The 

precise interactions between PA and the lyase domain of pol were further investigated in a 

different study.6 In this study, Hazan et al. used a combination protocol of blind docking and NMR 

analysis to confirm the earlier findings of Hu et al (see Figure 6-1).7  

                                                           
(1) This chapter has been published in Barakat K, Tuszynski J. J Mol Graph Model. 2011 Feb;29(5):702-16.  
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6.2 Results And Discussion 

In the present work, we focused our search space on the binding site of PA, using it as a 

positive control. The aim was to discover more potent drug candidates through filtering a library 

of ~12,500 structures via the VS protocol described in chapter 3. The molecules we tested 

included the NCI diversity set, the DrugBank set of small-molecules and more than 9,000 

fragment structures with drug-like properties extracted from ZINC database (see section 3.2.1). 

The top 300 hits that showed strong affinity for pol have been validated and rescored using a more 

robust scoring function, the MM-PBSA method.  

 

 

 
Figure 6-1: Docked structure of PA within the lyase active site of polβ.  

Our docking analysis confirmed the two studies by Hu7 and Hazan.6  

 

6.2.1  MD Simulations On The Lyase Domain  
To generate an ensemble of equilibrated pol-models for chemical library screenings, the 

8-kDa domain of polβ (PDB code 1DK3)8 was subjected to MD simulations. The proper 

equilibration of these systems was essential in order to perform virtual screening on a set of rigid 

receptor models that represent approximately the whole conformational space of  the PA binding 

site (which concides with the DNA binding site)5 within the lyase domain of polβ. It should be 

noted that, as we used docking as a preliminary filtering step in screening the full set of 

compounds for polβ-inhibitors, it was essential to generate an ensemble of polβ structures in order 

to partly incorporate protein flexibility during docking. In this context, we selected the top 300 
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compounds that can bind to their appropriate polβ conformation for post-docking analysis using 

MD simulations to introduce the full flexibility for both the ligand and its selected target structure. 

6.2.2  PCA and completeness of sampling  

As described in section 3.3.4, we used PCA to transform the MD trajectory into a reduced 

set of independent variables comprising the essential dynamics of the system.9,10 PCA was 

performed on the coordinates of the residues forming the binding site (residues 30 to 35; 37 to 43; 

and 63 to 70). Resulting eigenvectors were sorted by descending eigenvalues, which represent the 

variance of the motion along the principal components. The ten dominant eigenvalues are shown 

in Figure 6-2-a. The first eigenvalue has a magnitude that is significantly higher than those of the 

other eigenvalues. The components with the largest eigenvalues represent correlated motions of 

the binding site with the most significant standard deviations of the motion along the 

corresponding orthogonal directions. 

 

 
Figure 6-2: PC analysis.  

(a) The ten most dominant eigenvalues. (b) Projection of the MD trajectory of the 
dominant three eigenvectors. 

 

The PA (DNA) binding site within pol β adopted limited conformations throughout the 

MD simulations, indicating the rigidity of the protein (see Figure 6-2-b). The grouping of MD 

trajectories into a limited number of clusters suggests the presence of favored folded 

conformations with significant basins of attraction. This observation was also confirmed by results 

presented in Figure 3, where the main-chain B-factors (averaged over heavy atoms) for almost all 
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residues constructing the 8-kDa domain being rigid except for a number of residues that are 

located on the protein termini or which have no direct influence on the binding site. These are 

residues 1 to 9; 28 to 31; and 80 to 87. 

 

 

 
Figure 6-3: Plot of the B-factors averaged over the protein backbone atoms as a 
function of residue number in the simulations of pol β. 

 

 

Normalized overlaps calculated between each of these thirds are ranged from 0.79 to 

0.81. The high overlap between the thirds indicates that each part of the simulation samples 

approximately the same conformational space, and it is unlikely that there are unexplored regions 

missed earlier in the runs. Although there is no guarantee that complete equilibrium sampling is 

given, we have concluded that the observed overlap is acceptable and adequate sampling within 

the MD trajectories for the binding site had been obtained. 

 

6.2.3  Ensemble-based Virtual Screening  

Following the iterative clustering described in section 3.3.5, we generated a reduced set of 

representative models of the PA(DNA) binding site. Figure 6-4 shows the evaluation of the 

Davies-Bouldin index (DBI) and the percentage of variance explained by the data (SSR/SST) for 
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different cluster counts (see Methodology). DBI for the apo-system exhibited local minima at 

cluster counts of 45, 60, 80 and 105. However, as the percentage of variance explained by the data 

started to plateau after 35 clusters, we concluded that 45 clusters is a reasonable cut-off for pol  

structures. 

 

 

 
Figure 6-4: Clustering analysis for the pol β trajectory. A high-quality clustering is 
obtained when a local minimum in DBI correlates with saturation in the SSR/SST ratio 
(cluster count of 45). 

  

Therefore, in this study, we constructed an ensemble of eleven distinct conformations to 

perform ensemble-based virtual screening on pol β against the full set of ligand compounds. This 

(a) 

(b) 
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ensemble incorporated the ten most dominant structures that comprised ~85% of trajectory in 

addition to the relaxed NMR polβ conformation. The ultimate goal was to reduce the number of 

representative structures included in the ensemble-based screening and concurrently comprise 

most of the conformational space of the binding site. Figure 4 represents the eleven structures used 

in this work. The 8-kDa structure adopted different conformational changes demonstrating the 

significance of introducing receptor flexibility during the docking procedure. 

 

 

 
Figure 6-5: Eleven dominate conformations for pol β. This ensemble comprised the 
NMR structure (blue) and ten structures extracted from the MD trajectory (yellow). 

 

 

6.2.4  Pose Clustering  

Clustering of docked poses followed the same strategy as described in sections 3.4.2 and 

4.2.6.  

6.2.5  Preliminary Ranking Of Hits  

For each virtual screening experiment, we have ranked significant poses for each of the 

molecules contained in the database by using the results from the elbow criterion and the lowest 

energy that corresponds to the most populated cluster. Once all poses from each ligand entry were 
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clustered, we then filtered all of the clusters so that only those containing at least 25% of the total 

population were considered as top hits. Top hits were collected from the 11 experiments by first 

extracting the largest cluster from each individual screening followed by ranking the clusters 

according to their binding energies. This produced a set of non-redundant hits ranked by their 

binding energies of the most populated cluster.  

The apparent KD value for PA binding to pol β is 9 µM.7 Using the AutoDock scoring 

function, we obtained a value of -6.2 kcal/mol for the binding energy of PA to the 8-kDa domain. 

Although this value is in excellent agreement with the experimental value (-6.9 kcal/mol) as 

calculated using KD value, it has been widely reported in the literature that empirical scoring 

functions including the AutoDock scoring function (see 2.2.1.3), are not efficient in discriminating 

false positives in VS experiments and are biased toward their training set of compounds.11,12 

Consequently, in this work, the top 300 hits were rescored using the MM-PBSA method (see 

below) to validate their docking results and confirm their binding to the protein. 

 

6.2.6  Ranking Using The MM-PBSA Scoring 
Function 

Following the discussion in section 3.7, we used the MM-PBSA method, introduced by 

Kollman et al.13 to measure the binding energies of the top 300 hits relative to that of the positive 

control, i.e. PA, and compare their MM-PBSA-ranking to that of AutoDock calculations. As has 

been reported earlier by other groups who used the method, the most computationally demanding 

step is the calculation of the solute entropy using the normal mode (NMODE) method (see section 

3.7). Although this component can be neglected if only relative binding (relative ranking) of 

compounds is required,13 we calculated the entropy contributions for all the top 300 hits using 200 

snapshots extracted from their 2ns MD trajectories (see Methodology). In our calculations, this 

part ranged from 10 to 15 kcal/mol, indicating its significance in predicating the overall binding 

energies. The top 34 hits according to MM-PBSA calculations are shown in Table 6-1. As 

expected, the MM-PBSA analysis predicted the binding energy of PA more accurately than the 

AUTODOCK scoring function. Furthermore, AutoDock ranking of the top hits has been partially 

altered when compared to MM-PBSA calculations (see Table 6-1). These results also illustrate the 

limitations of the AutoDock scoring function in eliminating from the set of active compounds false 

positive ligands, i.e. compounds that are predicted to bind the target but fail to do so in validation 

assays. We noticed this in our calculations where a number of compounds highly ranked by 

AutoDock exhibited very low, and in some cases positive, binding energies using the MM-PBSA 

analysis, indicating their weak binding to the protein (see Table 6-1). The identified binding mode 

of PA is shown in Figure 6-1. The atomic distances between PA and the two residues ALA42 and 
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ILE69 are in excellent agreement with what was shown by Hu et al.7 and Hazan et al.,6confirming 

the successful docking of PA within the DNA binding site of pol β.  

 

 
Figure 6-6: Binding modes of selected hits.  

The binding mode of PA (A) and the top three hits from the MM-PBSA ranking (B-D). 
Pol β is shown in yellow, important protein residues are shown in blue, and the different 
atoms of the bound compounds are shown by their representative colors (carbon in gray, 
oxygen in red, nitrogen in blue and hydrogen in white). 
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Figure 6-6 demonstrates the binding modes of the top three hits of the MM-PBSA ranking. Similar 

to a substantial number of our suggested top hits, the shown compounds are small in size, 

however, they are occupying a considerable portion of the DNA-binding pocket. These lead 

compounds can be employed as the basis for a further fragment-based drug design step, in order to 

construct potent and more specific pol β inhibitors. 

 

MM-PBSA scoring Ensemble-based scoring 

Rank BE ± 1.5 

(kcal/mol) 

Rank BE ± 2.2 

(kcal/mol) 

ID Chemical structure 

 
 

1 

 
 

-12.5 

 
 

180 

 
 

-7.2 

 
 

ZINC19229065 

 
 
 

2 

 
 

-12.4 

 
 

263 

 
 

-7.0 

 
 

ZINC00020243 

 
 
 

3 

 
 

-11.9 

 
 

33 

 
 

-8.2 

 
 

ZINC04102187 

 
 
 

4 

 
 

-11.3 

 
 

24 

 
 

-8.4 

 
 

NSC#372280 
 

 
Table 6-1: Top 30 hits according to MM-PBSA ranking. Compounds are ranked 
by their binding energies as were calculated using the MM-PBSA method and compared 
to their ranking using the AUTODOCK scoring function. 
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5 

 
 

-10.6 

 
 

5 

 
 

-9.6 

 
 

NSC#210627 
 

 
 
 

6 

 
 

-10.4 

 
 

19 

 
 

-8.6 

 
 

NSC#327705 
 

 
 
 

7 

 
 

-9.9 

 
 

14 

 
 

-8.8 

 
 

NSC#116654 
 

 
 
 

8 

 
 

-9.8 

 
 

40 

 
 

-8.1 

 
 

NSC#12363 
 

 
 
 

9 

 
 

-9.6 

 
 

23 

 
 

-8.4 

 
 

NSC#254681 
 

 
 
 

10 

 
 

-9.3 

 
 

22 

 
 

-8.5 

 
 

NSC#299137 

 
  Table 6-1 Continued. 
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11 

 
 

-9.2 

 
 

202 

 
 

-7.2 

 
 

NSC#117198 
 

 
 
 

12 

 
 

-9.2 

 
 

88 

 
 

-7.6 

 
 

NSC#150289 

 
 
 

13 

 
 

-9.0 

 
 

77 

 
 

-7.7 

 
 

NSC#3354 

 
 
 

14 

 
 

-8.9 

 
 

264 

 
 

-7.0 

 
 

ZINC01530992 

 
 
 

15 

 
 

-8.8 

 
 

13 

 
 

-8.8 

 
 

ZINC05368838 

 
 
 

16 

 
 

-8.6 

 
 

245 

 
 

-7.0 

 
 

ZINC20596577 

 
 
 

17 

 
 

-8.4 

 
 

87 

 
 

-7.6 

 
 

ZINC11616579 

 
  Table 6-1 Continued. 
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MM-PBSA scoring Ensemble-based scoring 

Rank BE (kcal/mol) Rank BE (kcal/mol) ID Chemical structure 

 
 

18 

 
 

-8.2 

 
 

226 

 
 

-7.1 

 
 

NSC#686365 

 
 
 

19 

 
 

-7.9 

 
 

6 

 
 

-9.5 

 
 

NSC#201873 

 
 
 

20 

 
 

-7.8 

 
 

79 

 
 

-7.7 

 
 

NSC#371688 
 

 
 
 

21 

 
 

-7.7 

 
 

160 

 
 

-7.3 

 
 

NSC#100858 
 

 
 
 

22 

 
 

-7.6 

 
 

258 

 
 

-7.0 

 
 

ZINC03812992 

 
 
 

23 

 
 

-7.5 

 
 

9 

 
 

-9.0 

 
 

NSC#123420 
 

 
Table 6-1 Continued. 
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24 

 
 

-7.5 

 
 

214 

 
 

-7.1 

 
 

NSC#125908 

 
 
 

25 

 
 

-7.5 

 
 

123 

 
 

-7.4 

 
 

ZINC16958839 

 
 
 

26 

 
 

-7.4 

 
 

3 

 
 

-9.7 

 
 

NSC#125908 

 
 
 

27 

 
 

-7.1 

 
 

18 

 
 

-8.7 

 
 

NSC#255980 

 
 
 

28 

 
 

-7.0 

 
 

142 

 
 

-7.3 

 
 

ZINC20395500 

 
 
 

29 

 
 

-7.0 

 
 

155 

 
 

-7.3 

 
 

NSC#16211 
 

 
  Table 6-1 Continued. 
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30 

 
 

-6.9 

 
 

143 

 
 

-7.3 

 
 

ZINC03978033 

 
 
 

31 

 
 

-6.9 

 
 

139 

 
 

-7.3 

 
 

NSC#64814 
 

 
 
 

32 

 
 

-6.8 

 
 

4 

 
 

-9.6 

 
 

NSC#45583 
 

 
 
 

33 

 
 

-6.7 

 
 

28 

 
 

-8.3 

 
 

ZINC03875417 

 
 
 

34 

 
 

-6.7 

 
 

278 

 
 

-6.2 

 
 

PA 

 
  Table 6-1 Continued. 

  
6.3 Conclusions 

Building upon the information presented in the previous chapter, we applied the RCS 

technique to account for the full receptor flexibility in screening for inhibitors of the lyase activity 

of DNA polβ. Our library of screening compounds comprised of the National Cancer Institute 



 111 

(NCI) diversity set, DrugBank small molecules and a set of ~9,000 small fragments with drug-like 

properties. The full set of compounds (~12,500) has been screened against ten polβ structures. 

AutoDock was used to place the compounds within the specified binding site and to search for 

their minimal energy conformations. Then, the irredundant top 300 hits from AutoDock screening 

were rescored using the MM–PBSA method. We used pamoic acid (PA), a well-known polβ-

inhibitor, as our positive control. This is because it was the subject of recent extensive studies and 

the information on its binding to polβ has been determined with a high degree of accuracy. 

Although, more than 12,500 compounds have been screened in this study, we suggest a future use 

of larger libraries (on the order of 100,000 to 1,000,000 compounds) may be even more successful 

in discovering higher affinity hits.  

Our results confirmed the experimental findings concerning the binding of PA to the DNA 

binding cleft within the 8-kDa domain of polβ with an affinity that is close to the reported 

experimental data. Furthermore, we suggested a set of compounds that can target the DNA-

binding site within the 8-kDa with higher affinity than PA.  
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Chapter 7: Dual-Inhibitors For The 
P53-MDM2/MDM4 Interactions: 
Solving Two Puzzles At Once(1) 
 
 
 
 
 

7.1  Introduction 
 

For the last two decades, the tumor suppressor protein p53 has been called the “guardian of 

the genome”. P53 earned this character due to its vital roles in cell cycle, apoptosis, DNA repair 

and senescence1,2,3,4 In these processes, p53 responds to cellular stresses, such as hypoxia and 

DNA damage, by accumulating in the nucleus and activating various pathways to maintain the 

cell’s functional normality.5 As such, tumor cells have developed numerous ways to disable its 

function. Inactivation of the p53 pathway occurs in most human cancers. Certainly, The gene 

TP53, encoding for p53, is mutated or deleted in ~50% of human cancers.6 In the rest of human 

cancers, although p53 retains its wild type structure, its activity is eradicated by its main cellular 

inhibitors, murine double minute 2/4 (MDM2/4).7,8,9 The potential to restore the p53 activity, and 

hence annihilate cancer, made the p53 protein a viable therapeutic target.10 

7.1.1  A brief history of p53 research 
Almost two decades of careful research has been focused on the nature and function of 

p53.  The story began in 1979, when Lane and Crawford reported a 53 kDa polypeptide forming a 

complex with a viral protein.11 The newly discovered peptide named protein 53 (p53) became the 

subject of many subsequent studies.12 The complex studied by Land and Crawford was initially 

noticed only in cancer transformed cells, indicating that p53 has a certain rule in tumor 

development.13 Their findings along with others’ placed p53 as a possible oncogene.14 This 

observation was supported by further studies that showed over-expression of p53 in many tumor 

cells. In the 1980s new complexes were identified involving p53 and many viral proteins. By that 

time, it became clear that forming these complexes is a common strategy for tumor transformation, 

especially, when the same procedure was followed with the tumor suppressor protein, 

retinoblastoma (Rb).14 In the mid 1990s the missing parts of the puzzle were completed. Levine’s 

                                                           
(1) A version of this chapter has been published in Barakat K, Mane J, Friesen D, Tuszynski J. J Mol Graph Model. 2010 
Feb 26;28(6):555-68. 
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group made the first step toward the currently accepted paradigm of p53.15 Their experiments on 

p53 cDNA clones suggested that the wild type protein suppresses tumors, while mutants are 

transforming normal cells into cancerous ones. The second large step was the discovery of many 

frequent point mutations of p53 in various tumors that lack the other p53 allele.16 These findings 

led to one conceivable conclusion that p53 is, in fact, a tumor suppressor protein.  

 In the years that followed, the whole picture for the different functions of p53 was 

constructed piece by piece. P53 is no longer considered a solitary protein. This protein is at the 

heart of the cellular network that protects cells from cancer. It plays a pivotal role in controlling 

cell cycle progression and inducing cell death by apoptosis. It is a transcription factor that is 

normally activated by stress signals that may harm the cell.17 Depending on the type of damage, it 

binds specifically to precise locations in the genome and activates several genes. The transcribed 

proteins may stop the cell cycle, giving the cell time to fix the damage, or lead to apoptosis when 

the damage is severe. As a result of these critical roles and capabilities, the p53 protein is under 

continued supervision by its two cellular inhibitors MDM2 and MDM4, and many other proteins, 

most of which have not been identified yet.10 Therefore it is not surprising that p53 is inactive in 

most human cancers. The pathway is mostly disabled by genetic mutations or deletions;6 defective 

components in post-translational modification; and finally, over-expression of the two proteins, 

MDM218 and MDM4.9  

 

7.1.2  MDM2 and MDM4 Regulate P53 
 

Originally, MDM2 was discovered as the main regulator for p53. Looking at the critical 

functions of p53, this regulation is important to allow normal cell proliferation and/or maintenance 

of cell viability. In this context, MDM2 and p53 regulate each other through a feedback loop (see 

Figure 7-1).7 In this mechanism, p53 transcribes for MDM2, while MDM2 acts as an E3 ubiquitin 

ligase that exports p53 out of the nucleus and promotes its degradation. Moreover, by binding to 

the transactivation domain of p53 within the nucleus, MDM2 inhibits p53 function as a 

transcription factor for other proteins. Thus, when p53 is activated, the transcription of MDM2 is 

also induced, resulting in higher MDM2 protein levels and more control on p53 functions. 

Consequently, MDM2 is envisaged as an effectual inhibitor for p53. Over-expression of MDM2 

reduces the cellular ability to activate the p53 pathway under stress conditions. This abnormality 

of p53 regulation was initially discovered in sarcomas retaining wild-type p53, and it was later 

observed in several cancers as a common mechanism to disable p53 activity.19,20,18 In fact, MDM2 

over expression has been reported in ~10% of 8000 human cancers from various sites, including 

lung or stomach (for a review, see 21 ). 

Structurally related to MDM2, MDM4 (also known as MDMX or HDMX) is a second 
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cellular regulator of p53.9 Although MDM4 lacks the intrinsic E3 ligase activity of MDM2,22 

current models suggest that it acts as a major p53 transcriptional antagonist independent of 

MDM2.23 The two proteins form a heterodimeric complex through their C-terminal RING domain 

interaction which, in turn, increases the ability of MDM2 to promote p53 degradation.24 In fact, 

the MDM4-MDM2 interaction can also lead to ubiquitination and degradation of MDM4 leading 

to the elimination of MDM4 during DNA damage response.25 MDM4 is also over expressed in 

many types of cancer.21 In some cases, MDM4 was identified as a specific chemotherapeutic target 

for many tumors, for example for the treatment of retinoblastoma.26 The binding domains of p53 

within MDM2 and MDM4 are very similar,27offering promise for the discovery of new small 

molecule compounds that can target the two proteins simultaneously. Surprisingly, although 

MDM2 and MDM4 share similar structures (see below) and functions, MDM4 is not a target gene 

of p53 transcriptional activities. 

 

 
Figure 7-1: p53-MDM2 feedback loop. Adopted from Hardcastle.28  

 

By noting that p53 binds to the same region within MDM2/4, and only MDM2 can 

promote for p53 degradation, one can reach a possible conclusion regarding their distinct 

functions. That is, MDM4 regulates p53 activity and MDM2 regulates p53 stability. Recently, 

Toledo et al. supported this idea by showing that the loss of MDM4 increased the levels of 

MDM2, which, in turn reduced the concentration of p53.21 On the other hand, the loss of MDM2 

increased the levels of p53, but did not have a significant effect on p53 activity. Francoz also 

speculated that MDM2 and MDM4 might have these separate but cooperative duties in regulating 

p53.29  
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7.1.3  Structural similarities between MDM2 and 
MDM4 

 

MDM2 and MDM4 have similar structures. The two proteins are 492 and 490 

polypeptides, respectively. As shown in Figure 7-2, their structures possess three conserved 

domains: an N-terminal domain that interacts with p53, a Zinc finger domain and finally, a C-

terminal ring domain. The unconserved parts within MDM2 and MDM4 are comprised of regions 

of acidic residues. Earlier genetic and biochemical studies on the p53-MDM2 complex limited 

their interaction to the 106-N terminal domain of MDM2 and the N-terminus of the transactivation 

domain of p53.8 

 

 

 
Figure 7-2: Schematic representation of the domains of Mdm2, Mdm4. Adopted 
from Waning et al.30 

 

 

The high-resolution crystal structure of the complex (see Figure 7-3) demonstrated the 

essential interacting regions located in the MDM2-p53 interface.8 Essentially, p53 forms an 

amphipathic-helix peptide (residues 15-29) that is partly buried inside a small but deep, 

hydrophobic groove on the surface of the MDM2 N-terminal domain (residues 19-102). This 

interaction involves four key residues from p53, namely F19, L22, W23 and L26 and at least 13 

residues from MDM2 (L54, L57, I61, M62, Y67, Q72, V75, F86, F91, V93, I99, Y100 and 

I103).31 Interestingly, 10 out of the 13 most important MDM2 residues described above are 

conserved in MDM4, which indicates that the binding site of p53 within the surface of MDM4 is 

similar to, but not identical with, that of MDM2. 
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7.1.4  Current Inhibitors for the MDM2/4-P53 
Interaction  

 

As MDM2 was discovered first, most of the preceding efforts have been exclusively 

focused on uncovering small molecule MDM2-inhibitors and little work has been done on 

targeting MDMX. The main concept was that a small molecule that mimics the p53-hot spot 

residues would ultimately disrupt this interaction and is assumed to completely re-activate the p53 

pathway and restore the cell’s functional normality. No one was thinking about MDM4, 

especially, when several studies verified the original concept of targeting the p53-MDM2 

interaction. These studies showed that it is possible to activate p53 in cancer cells that retain the 

wild type structure and promised for an ultimate therapeutic strategy for many cancers.32,33,34  

 

 

 
Figure 7-3: P53-MDM2 interaction.  

The p53-binding site within MDM2 is shown in molecular surface representation with the 
residues constituting the binding site are highlighted in purple.   P53 (orange) is shown in 
ribbon representation. The interaction is mainly hydrophobic. P53 residues F19, W23 and 
L26 point together toward a cleft at the surface of the MDM2 protein. The three p53 
residues are surrounded by hydrophobic MDM2 residues L54, L57, I61, M62, Y67, V75, 
F86, F91, V93, I99, Y100 and I103 (shown in purple). 

 

In particular, the last decade has witnessed the identification of an increasing number of 

non-peptide, small-molecule MDM2 inhibitors with promising binding affinities.35 These are 

analogs of cis-imidazoline (Nutlins),36 spiro-oxindole (MI-63 and MI219),37,38,39,37 

benzodiazepinedione (TDP665759),40,41,42 terphenyl,43 quilinol,44 chalcone,45 and sulfonamide.46 

Of these molecules only three compounds, namely, Nutlin-3, MI-219 and TDP665759 showed 
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sufficiently high binding affinity, and desirable pharmacokinetic profiles in cells.32 However, these 

compounds are more highly selective for MDM2 than for its homolog MDM4. In particular, MI-

219 showed a greater than10,000-fold selectivity for MDM2 relative to MDM4. These findings 

were very unexpected and disappointing for many research groups. Because after looking into the 

similarities between MDM2 and MDM4, it was assumed that inhibitors that target the MDM2-p53 

interaction should function in the same way to disrupt the MDM4-p53 binding. Surprisingly, this 

was not the case, as most of MDM2-inhibitors, including Nutlin-3 have been shown to be inactive 

in cancer cells overexpressing MDM4,47 opening a new avenue in p53 research and requiring a 

new generation of MDM2-inhibitors that can target its homolog, MDM4, as well. 

Based on the abovementioned discussion, it is clear that the development of novel 

compounds that are MDM4-specific or optimized for dual-inhibition of MDM2 and MDM4 is a 

necessary step to achieve full activation of p53 in tumor cells. Recently, Pazgier et al. reported the 

development of a potent peptide inhibitor, termed PMI (p53-MDM2/MDM4 inhibitor) that can 

target the interactions of p53 with both MDM2 and MDMX.48 This peptide inhibitor provided the 

proof of concept for this strategy and opened the door for the discovery of novel small molecule 

inhibitors that can mimic its function. And from here, we start. 

 

7.2 Results And Discussion 
 

Here, we screened the NCI diversity set, the DrugBank set of small-molecules (see section 

3.2.1) and more than 3,168 derivative structures extracted from the known MDM2- inhibitors 

against twenty-eight different MDM2 models that represent the apo- and holo-structure’s 

collective conformational dynamics. The top 300 hits that showed strong affinity for MDM2 have 

been used in a second round of screening against the p53 binding-site within MDM4 Figure 7-4 

depicts the basic strategy that was followed in this work. Results described herein represent the 

identification of dual-inhibitors that are predicted to disrupt the MDM2/MDMX- p53 interaction 

and allow for the full activation of the p53 pathway. 

 

7.2.1 MD Simulations of MDM2-p53 and PMI-
MDM4 
 

The N-terminal domain of MDM2 was subjected to MD simulations, in both its free and 

p53-bound states. We also used MD simulations to generate an equilibrated model for the PMI-

peptide/MDM4 complex introduced by Pazgier et. al to filter the top hits from the MDM2 

screening for those compounds that can mimic the characteristics of this peptide inhibitor. It 
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should be noted that, as we used docking as a preliminary filtering step in screening the full set of 

compounds for MDM2-inhibitors, it was essential to generate an ensemble of MDM2 structures in 

order to partly incorporate protein flexibility during docking. In this context, we selected the top 

300 compounds that can bind to their appropriate MDM2 conformation for post-docking analysis 

using MD simulations to introduce the full flexibility for both the ligand and its selected target 

structure. On the other hand, we did not generate such ensemble of structures for the MDM4 

screening exercise because of the following reasons; First, docking runs were not used to filter the 

compounds for best binders, they were used to place each ligand from the 300 MDM2-top hits 

within the MDM4 pocket and assemble a minimum energy protein-ligand conformation required 

for MD simulations.  Second, the full flexibility of this complex will be established using a fairly 

long MD simulations (2ns) that can reasonably explore the conformational space of the protein-

ligand complex and simulate their induced fit interaction. 

 

 
Figure 7-4: Searching strategy for dual MDM2/MDM4 inhibitors. In this work, we 
first screened the compound databases for MDM2-inhibitors, The results from this search 
were screened against MDM4. Inhibitors that can bind to the two proteins are represented 
by the intersection of the two groups.  

 

 

7.2.2  PCA and Convergence  
 

As described in section 3.3.4, PCA was performed over the entire MD simulations of 

both the holo- and apo-MDM2 structures using atoms comprising the 18 residues contained in the 
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MDM2 binding site (residues numbered: 25, 26, 50, 51, 54, 58, 61, 62, 67, 72, 73, 93, 94, 96, 97, 

99, 100, 104) with the backbone atoms RMSD fitted to the minimized crystal structure of the two 

starting configurations. We defined the binding site as comprised of the MDM2-residues that are 

located within 10 Å from p53-atoms. Resulting eigenvectors were sorted by descending 

eigenvalues, which represent the variance of the motion along the principal components. The ten 

dominant eigenvalues for the two simulated systems are shown in Figure 7-5-a. The first 

eigenvalue has a magnitude that is significantly higher than those of the other eigenvalues. The 

components with the largest eigenvalues represent correlated motions of the binding site with the 

most significant standard deviations of the motion along the corresponding orthogonal directions. 

 

 

 
Figure 7-5: PCA for the MDM2 binding site.  

a) The dominant ten eigenvalues for the apo and holo trajectories. b) Projections of the 
ensemble of conformations onto the planes of the three most important principal 
components.  
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Figure 7-5-b represents the spatial distributions of occupancies for the conformational 

states over the planes spanned by the three dominant principal components of the binding site for 

the two systems. The p53-binding site within MDM2 adopted several conformations throughout 

the MD simulations, indicating the flexibility of the protein. The grouping of MD trajectories into 

a limited number of clusters suggests the presence of favored folded conformations and significant 

basins of attraction.  

Covariant analysis of the trajectories from the holo- and apo-MD simulations, 

successively divided into thirds, was performed using the same procedure used for PCA. 

Normalized overlaps calculated between each of these thirds are reported in Table 7-1. The high 

overlap between the thirds indicates that each part of the simulation samples approximately the 

same conformational space, and it is unlikely that there are unexplored regions missed earlier in 

the runs. Although there is no guarantee that complete equilibrium sampling is given, we have 

concluded that the observed overlap is acceptable and adequate sampling within the MD 

trajectories for the binding site had been obtained.  

 

 

 

 

 

Table 7-1: PCA normalized overlap for the p53-binding site within MDM2. 
Covariance analysis has been performed for the three thirds of the MD trajectories for the 
apo (free) and holo (bound) systems followed by calculating the overlap between their 
covariance matrices. 

 

The two different systems were stable during the MD simulations as indicated by the 

plots of the RMSDs for the backbone atoms from the initial co-ordinates for the last 10 ns (see 

Figure 7-6). For the apo-MDM2 simulations, the protein backbone RMSD fluctuated about a mean 

of 1.9 Å. On the other hand, the holo-system fluctuated around lower RMSD values for both 

MDM2 and the p53-peptide of 1.3 Å and of 1.5 Å, respectively, indicating a mutually stabilizing 

effect induced by protein-protein interactions. Atomic fluctuations predicted the key residues that 

are important for binding (see Figure 7-7). The main-chain B-factors (averaged over heavy atoms) 

for the residues constructing the p53-binding site within MDM2 (residues 68-73, 85-102 and 104-

105) are higher than the corresponding holo-MDM2 values. This suggests the relative flexibility of 

the model in this region where the 18 residues defining the binding site seem to be relatively rigid 

during the MD simulation in the p53-MDM2 models. On the p53 side, residues 19-26 (see Figure 

7-7-b) are more rigid than other p53 residues, suggesting their critical participation in binding to 

MDM2. 

apo-MDM2 holo-MDM2  
0.761 0.754 1st and 2nd  
0.732 0.811 1st and 3rd  
0.734 0.792 2nd and 3rd  
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Figure 7-6:  RMSD analysis.  

Plot of the RMSD of the backbone atoms from the reference structure as a function of simulation 
time in p53-peptide, MDM2-free and MDM-p53 complex. 

 

 
 
 

7.2.3  Ensemble-based Virtual Screening  
As discussed in chapter 2 (section 2.2.1.2), protein flexibility is crucial and must be 

introduced during the docking process. In this context, we have used an ensemble of protein 

conformations for docking as a practicable alternative to introduce a feature of global protein 

flexibility. To generate a reduced set of representative models of the MDM2 binding site, we 

applied the RMSD conformational clustering to the apo-MDM2 and holo-MDM2 binding site 

trajectories. Figure 7-8 shows the evaluation of the Davies-Bouldin index (DBI) and the 

percentage of variance explained by the data (SSR/SST) for different cluster counts (see 

methodology). DBI for the apo-system exhibited local minima at cluster counts of 10, 20 and 60. 

However, as the percentage of variance explained by the data started to plateau after 45 clusters 

for the apo-system, we concluded that 60 clusters is a reasonable cut-off for the free-MDM2 

structures. On the other hand, the correlation between these two criteria nicely occurred at a cluster 

count of 30 for the holo-structure. 
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Figure 7-7: Atomic fluctuations.  

Plot of the B-factors averaged over the protein backbone atoms as a function of residue 
number in the simulations of (a) MDM2-free and MDM2-bound and (b) p53 peptide. The 
solid and dotted lines correspond to MDM2-bound and MDM2-free, respectively. 

 

 

(a 

(b 
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Figure 7-8: Clustering analysis for the two MDM2 trajectories.  

A high-quality clustering is obtained when a local minimum in DBI correlates with 
saturation in the SSR/SST ratio. This is clear at cluster count of 60 for the apo-structure 
and 30 clusters for the holo-structure. 

 
 In this study, we constructed an ensemble of twenty-eight distinct conformations to 

perform ensemble-based virtual screening on MDM2 against the full set of ligand compounds. 

This ensemble incorporated the most dominant twenty-two structures that comprised ~75% of apo-

trajectory, the most dominant five holo-structures that represented ~80% of the bound 

conformations (data not shown) and finally the MDM2 conformation extracted from the p53-

bound crystal structure. The ultimate goal was to reduce the number of representative structures 

included in the ensemble-based screening and concurrently comprise most of the conformational 

space of the binding site. 
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7.2.4  Pose Clustering  
 

As mentioned above, twenty-eight independent virtual screening experiments were 

performed against the full set of database compounds. Screening of the full set of compounds 

contained in the NCIDS, DrugBank and the inhibitor-derivatives databases (more than 6,000 

molecules), against the twenty-eight target structures, produced a total of ~ 19 million distinct 

poses that required classification. Using the iterative clustering technique described in chapter 3 

(see section 3.4.2 for details), all docking results were automatically clustered to properly extract 

their optimal clusters.  

 

7.2.5 Preliminary Ranking 
 

Following the procedure described in section 3.4.3, we ranked significant poses for each 

of the 6,617 molecules contained in the database by using the results from the elbow criterion and 

the lowest energy that corresponds to the most populated cluster. Once all poses from each ligand 

entry were clustered, we then filtered all of the clusters so that only those containing at least 25% 

of the total population were considered as top hits. Top hits were collected from the 28 

experiments by first extracting the largest cluster from each individual screening followed by 

ranking the clusters according to their binding energies. This produced a set of non-redundant hits 

ranked by their binding energies of the most populated cluster. Top 300 hits were rescored using 

the MMPBSA method (see below) and were used in the subsequent MDM4-screening. 

 

7.2.6  MM-PBSA Ranking 
 

The apparent IC50 values for Nutlin3, MI-219, TDP665759 and PMI in binding to MDM2 

are 90 nM18, 5 nM18, 704 nM18,29 and 3.4 nM35 at 250C, respectively. We did not find explicit 

values for the binding affinities of the three non-peptide molecules regarding their binding to 

MDMX, hoverer, it has been experimentally confirmed that these compounds are weak binders to 

MDMX18,29,35. The IC50values can be converted to the observed free energy change of binding 

using the relation: 

 

€ 

ΔG = RT ln Ki  Equ. 7-1 

 

where R is the gas constant, R =1.987  and T is the absolute temperature. Table 2 lists the 
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estimated binding energies for the three compounds compared to the experimentally expected 

values. Due to the vast number of torsional degrees of freedom in the peptide structure, we did not 

use AUTODOCK scoring function to calculate its binding energies to the two proteins. However, 

we used the MM-PBSA method (see section 3.7) to rescore the top 300 hits from the MDM2 

screening along with the PMI peptide and compare the predicted binding energies to AUTODOCK 

scoring and the experimental values.  

 

 

 

 

 

 

MDM2 Ranking (kcal/mol) MDMX Ranking (kcal/mol) Compound 
MM/PBSA AUTODOCK Experimental MM/PBSA AUTODOCK Experimental 

MI-219 -10.6 ± 1.5 -9.1 ± 2.2 -11.432 -5.3  ± 1.5 -6.8 ± 2.2 -5.932 
Nutlin-3   -9.3 ± 1.3 -8.2 ± 2.2 -9.732,48 -6.1  ± 1.6 -5.8 ± 2.2 Negligible48 

TDP665759   -9.5 ± 1.5 -9.1 ± 2.2 -8.432,42  -5.6  ± 1.4 -8.2 ± 2.2 Negligible42 
PMI -10.4 ± 1.6 N/A -11.648 -12.8 ± 1.5 N/A -11.548 

 
Table 7-2: Relative ranking of positive controls using the two scoring methods 
compared to experimental data. 

 

 

 

 

 

Although the discrepancy in the MM-PBSA calculations for the interactions of the four 

inhibitors with MDM2 is about 1 kcal/mol, the predicted values are in an excellent agreement with 

the experimental data compared to the values obtained by AutoDock scoring function (see Table 

7-2). This observation is evident in the calculated values for their interactions with the MDM4 

target, predicting their weak binding to the protein. These results also illustrate the limitations of 

AutoDock scoring function in eliminating false positive ligands, i.e. compounds that cannot 

practically bind but predicted to bind, from active compounds. This is shown in Table 7-2, where 

the TDP665759 compound is predicted to bind to MDM4 with a relatively high binding energy 

compared to the rest of the compounds. On the other hand, the MM-PBSA approach selected the 

real binders for the two protein targets. For MDM2, the four ligands can bind strongly to the 

protein, while, for MDM4, only the PMI peptide can bind with a very high binding energy. This 

also explains the variations between the two scoring methods in ranking the compounds (see tables 

Table 7-3 to Table 7-5).  
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MM-PBSA scoring Ensemble-based scoring 

Rank BE (kcal/mol) Rank BE (kcal/mol) 

ID 

1 -14.1 97 -9.2 ZINC08552001 

2 -14.1 101 -9.2 NSC#82892 

3 -14.0 42 -9.7 Pub#11952783 

4 -13.8 187 -9.0 Pub#11375913 

5 -13.2 285 -8.5 Pub#10312264 

6 -13.0 175 -8.9 Pub#25055003 

7 -12.8 191 -8.8 NSC#59276 

8 -12.6 293 -8.5 Pub#456323 

9 -11.7 110 -9.1 Pub#11855975 

10 -11.4 80 -9.3 Pub#11952782 

11 -11.3 115 -9.1 Pub#22721132 

12 -11.3 150 -9.0 NSC#409664 

13 -11.3 81 -9.3 Pub#21060012 

14 -11.0 232 -8.7 Pub#20726116 

15 -10.9 127 -9.0 Pub#22632481 

16 -10.9 267 -8.6 Pub#11272250 

17 -10.8 62 -9.5 Pub#22720968 

18 -10.8 180 -8.8 NSC#77037 

19 -10.6 109 -9.1 MI-219 

20 -10.6 93 -9.2 Pub#22721012 

Table 7-3: MDM2 top hits. The top 20 hits from MDM2 screening ranked by their 
binding energies as were calculated using the MMPBSA method and compared to their 
ranking using the AUTODOCK scoring function. 
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MM-PBSA scoring Ensemble-based scoring 

Rank BE (kcal/mol) Rank BE (kcal/mol) 

ID 

1 -13.2 277 -5.5 ZINC12503171 

2 -13.1 74 -7.8 NSC#72254 

3 -12.9 178 -7.1 Pub#20726118 

4 -12.8 N/A N/A PMI 

6 -11.6 111 -7.5 Pub#11455269 

7 -11.5 13 -8.5 Pub#22721034 

8 -11.3 69 -7.8 Pub#10196974 

9 -11.0 100 -7.6 Pub#22720998 

11 -10.7 43 -8.1 Pub#10290053 

13 -10.4 130 -7.4 Pub#22721115 

16 -9.9 30 -8.2 Pub#22721175 

17 -9.9 50 -8.1 Pub#11541499 

18 -9.8 226 -6.7 Pub#11614489 

19 -9.7 41 -8.2 Pub#22721095 

21 -9.5 19 -8.4 Pub#22721184 

22 -9.53 25 -8.3 Pub#216345 

23 -9.41 191 -7.0 Pub#24788704 

24 -9.35 121 -7.5 Pub#20726117 

25 -9.29 57 -7.9 ZINC08552003 

29 -9.19 184 -7.1 Pub#17754804 

 

Table 7-4: MDM4-specific top hits. Compounds are ranked by their binding 
energies as were calculated using the MMPBSA method and compared to their ranking 
using the AUTODOCK scoring function. The listed compounds have been predicted to 
bind to MDMX and not to MDM2 
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As the MM-PBSA confirmed the experimental findings, our subsequent step was to use this 

technique to re-score the top hits obtained by AutoDock scoring function. Table 7-3 shows the top 

20 hits obtained from the ensemble-based screening after rescoring their interactions using the 

MM-PBSA method.  Although Nutlin-3 and TDP665759 are not shown in this table, the ranks of 

the two compounds were 41 and 36, respectively. It should be also mentioned that a considerable 

number of the compounds showed positive binding energies after rescoring them using the MM-

PBSA method (data not shown), supporting the ability of this technique to discriminate inactive 

compounds from the AutoDock suggested hits. Although most of the top 20 hits are derivatives of 

the three positive controls, in particular the benzodiazepinedione scaffold (TDP665759), 5 

compounds from both the NCI diversity set and DrugBank libraries showed strong binding 

energies compared to the positive controls.  

 

7.2.7 Identifying MDM2/4 dual inhibitors 

The top 300 hits that resulted from the MDM2-ensemble-based screening were then 

docked to an equilibrated MDM4 structure that was extracted from the PMI/MDMX complex (see 

methodology). The docking step was essential in order to place the compounds within the p53-

binding site with their minimum energy conformation. Following the procedure described above, 

we used the MM-PBSA method to predict the absolute binding energies for each compound. 

Reassuringly, our calculations confirmed the experimental findings, where the three non-peptidic 

positive controls showed weak binding to MDM4 compared to MDM2 while the PMI peptide 

showed very high binding energy (see Table 7-2). Analogously to the experimental results 

concerning the high specificity of these molecules to the MDM2 target, our calculations predict 

that a number of compounds can also bind more strongly to MDM4 than to MDM2. The top 20 

hits selected from these compounds are expected to be specific MDM4 inhibitors and are shown in 

Table 7-4.  

Table 7-5 lists the compounds that are suggested to function as dual-MDM2/MDM4 

inhibitors obtained from screening the top MDM2 hits against the p53-binding site within the 

MDM4 target. Here, we used MM-PBSA energies to compare the binding of these hits to the two 

target proteins. As we are only interested in compounds that can bind to MDM2 with affinities as 

good as those of the known MDM2-inhibitors, we limited our selection to the 16 compounds 

shown below (see Table 7-5). 

Although the binding sites are fairly similar, the MDM4 pocket seems to be more 

compact than that of MDM2. This is mainly due to the three residues Pro95, Ser96 and Pro97 in 

MDM4 that have been replaced by His96, Arg97 and Lys98 in MDM2. These substitutions are 

located on one of the alpha helices that comprise the p53 binding site within the two proteins. 

Consequently, the proline residues (Pro95 and Pro97) in MDM4 shift this helical domain in 
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MDM4 relative to MDM2 and cause Lys98 and Tyr99 to protrude into the p53-binding cleft 

within MDM4, making it shallower and less accessible to many of the MDM2 top hits we found. 

Moreover, we noticed very minor differences in the electrostatic potential distributions around the 

surfaces of the two proteins (data not shown), where MDM2 is more positively charged in certain 

regions deeply located within the binding site. 

 

MDMX rank MDM2 rank 

Rank BE (kcal/mol) Rank BE (kcal/mol) 

ID Structure 

 

5 

 

-12.5 

 

11 

 

-11.3 

 

Pub#11952782 

 

 

10 

 

-10.9 

 

45 

 

-8.8 

 

Pub#5039349 

 

 

12 

 

-10.5 

 

67 

 

-7.5 

 

Pub#11284279 

 

 

14 

 

-10.2 

 

69 

 

-7.4 

 

Pub#24788253 

 

 

15 

 

-10.0 

 

62 

 

-7.7 

 

ZINC04629876 
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20 

 

-9.6 

 

10 

 

-11.7 

 

Pub#11855975 

 

 

26 

 

-9.3 

 

50 

 

-8.3 

 

Pub#11953191 

 

 

28 

 

-9.2 

 

45 

 

-8.7 

 

NSC#73109 

 

 

31 

 

-9.0 

 

39 

 

-9.0 

 

Pub#11952569 

 

 

32 

 

-8.7 

 

65 

 

-7.5 

 

Pub#10240227 

 

Table 7-5: MDMX/MDM2 Inhibitors. The listed compounds are predicted to bind 
to the MDM2 and MDMX proteins. The compounds are ranked by their binding energies 
as were calculated using the MMPBSA method. 

 

 

These slight variations in both shape and electrical properties of the two proteins played a 

considerable role in governing the final conformation adopted by the ligands. This observation is 

clear when comparing the binding modes of nutlin within the two pockets (see Figure 7-9-a). 

While Tyr100 and Leu99 of MDM2 extend the binding site allowing nutlin to intimately bind to 

MDM2, the same residues in MDMX clash with the drug preventing it from taking the normal 

conformation that was adopted within MDM2. On the other hand, Figures 6b-c show how two 

compounds from the list of proposed MDM2/MDMX inhibitors were able to tolerate the structural 

variations between the two binding sites (see Figure 7-9).  
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Figure 7-9: Structural variations between MDM2 (yellow) and MDMX (red) and 
their effect on the binding modes of nutlin-3 (a) and two selected hits form the predicted 
MDM2/MDMx inhibitors (b and c). Tyr100 and Leu99 of MDM2 and the same residues 
in MDMX are shown in Licorice representations with the same color as that of the two 
proteins. For each compound, the binding mode within MDM2 is shown in green and 
within MDMX is shown in gray. Tyr99 and Leu98 prevent nutlin-3 from binding to 
MDMX with the same binding conformation adopted by nutlin-2 within the MDM2-
pocket (blue). The conformation of nutlin-2 was extracted from the MDM2-nutlin crystal 
structure 1RV1. On the other hand, compounds Pub#11952782 (b) and ZINC04629876 
(c) from the suggested MDM2/MDMX inhibitor list can tolerate the structural variations 
in the two binding sites in order to maximize their interactions with the proteins. 

(a 

(b 

(c 
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7.3 Conclusion 
 

The tumor suppressor p53 is one of the most frequently inactivated proteins in human 

cancers. Direct gene modifications in p53 gene, Tp53, or the interaction between p53 and its two 

major cellular inhibitors, MDM2 and MDM4, are two fundamental mechanisms employed by 

cancer cells to block the p53 pathway.1,2,3,4 Over a number of years, leading efforts in p53 research 

have been focused on restoring the activity of the mutant protein as a precursor to developing a 

novel cancer treatment. Although these studies revealed the prospects of inducing tumor cell 

death, the development of a non-peptide small-molecule p53-activator is still a particularly 

challenging problem.49,50 Other significant efforts in this area have been aimed at the discovery of 

small-molecule inhibitors that can disrupt the interaction of p53 with its main cellular regulator, 

MDM218-21. This led to the development of Nutlin336 and MI-219,51 the most potent and specific 

non-peptide MDM2-inhibitors discovered so far.  

Recently, MDM4, a protein homologous to MDM2, was found to reduce the efficacy of 

MDM2-inhbitors including Nutlin3.32,47 This suggested MDM4 as a new attractive therapeutic 

target and indicated a need to develop MDM4-specific or MDM2/MDM4-dual inhibitors to fully 

activate the p53 pathway in tumor cells expressing wild type p53.  

Here, we used an improved relaxed complex scheme by combining MD simulations and 

molecular docking with binding energy analysis to filter a set of 6,617 compounds for effective 

inhibitors of MDM2 and MDM4. These compounds included the NCI diversity set, DrugBank 

small molecules and a newly generated set of ~ 3000 derivative structures similar to known 

MDM2-inhibitors. The derivative library of compounds was included among the docked structures 

because the structural similarity between the two proteins would imply that an MDM4-inhibitor 

should be a derivative structure based on one of the known MDM2-inhibitors. Although, more 

than 6,000 compounds have been screened in this study, we suggest the use of larger libraries (in 

the order of 100,000 to 1,000,000 compounds) will be more effectual in discovering more active 

hits in future work. In this context, we used MD simulations, principle component analysis and an 

iterative clustering technique to generate an ensemble of 28 MDM2 structures that characterize the 

collective dynamics of the MDM2 protein. Then, we used molecular docking to explore the 

conformational space of the ligands and to search for their minimal energy configuration within 

the MDM2 binding site. All docking poses were clustered using the same iterative procedure that 

we used in extracting the protein structures and then sorted with the minimal energy of the largest 

cluster. The top 300 hits were rescored using the MM-PBSA procedure and prepared for a second 

round of screening against the MDM4 target. Following the docking of MDM2-hits to MDMX4 

we used the MM-PBSA technique to rescore their binding affinities to MDM4 and suggest a set of 

MDM2/MDM4 dual inhibitors.  
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Our results confirmed the experimental findings concerning the weak binding of the 

MDM2 inhibitors Nutlin-3, MI219 and TDP to its homolog structure MDM4. Moreover, as we 

anticipated, the top hits from our screening are primarily derivative structures of the three known 

inhibitors. However, we also suggested a few structures from the NCI diversity set and DrugBank 

compounds. The molecules we have proposed in the present study, can fit within the two binding 

sites and adopt different conformations to maximize their interactions with the two proteins. We 

have also validated our top hit list by comparing their estimated binding energies to the PMI 

peptide, an MDM2/MDM4 dual-inhibitor proposed by Pazgier et. al. and, reassuringly, our top 

hits are predicted to have comparable performance to this peptide. It is hoped that our findings will 

facilitate the development of a new generation of MDM2/MDM4 dual inhibitors that would fully-

activate the p53 pathway and aid in the offer new hope in the fight against a broad range of 

cancers. 
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Chapter 8: Toward The Activation 
Of The R248Q P53 Mutant: A 
Never Solved Puzzle(1) 
 
 
 
 
 
 
 
 
 

8.1 Introduction 
 

This chapter extends the preceding p53-exercise to a further complicated problem. As 

p53 is the most mutated protein in human cancers,1 and mutations of p53 alone account for more 

than half of invasive types of cancer,2 a simple idea to cure these types of cancer is to reactivate 

the mutated p53 variants. However, realizing this idea has turned out to be far more complicated. 

According to the latest version (R15) of the TP53 mutation database,3 27 580 different somatic 

mutations have been identified in the full-length protein and the overwhelming majority of 

alterations are located within the core DNA-binding domain (DBD). More importantly, ~75% of 

the resulting mutants are, fundamentally, full-length proteins with single amino acid substitutions 

in the DBD.  In addition, about 40% of the DBD mutations are concentrated at six particular hot-

spots: Arg-175, Gly-245, Arg-248, Arg-249, Arg-273 and Arg-282.4  

 

8.1.1 Contact Vs Structural Mutations 
Of the six hot-spot residues listed above, alterations at Arg-248 and Arg-273 are 

classified as DNA contact mutations whereas substitutions at the remaining sites are structural 

mutations. Contact mutants are characterized by the direct loss of the sequence–specific 

transactivation activity while retaining the wild-type (WT) conformation.5 Structural mutations, on 

the other hand, involve residues primarily responsible for maintaining the conformational integrity 

of the DBD and stabilizing the p53 DNA–binding surface. Such alterations generate local 

structural defects, which in turn transfer to critical regions of the DBD, causing indirect loss of 

                                                           
(1) A version of this chapter has been published in Barakat K, Issack BB, Stepanova M, Tuszynski J. PLoS One. 2011; 
6(11): e27651. 
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DNA binding.6 Failure to bind DNA prevents p53-dependent transcription and hence inhibits p53-

mediated tumor suppression. 

 

8.1.2 Successful P53 Activators 
More than 50% of human tumors exist because of a defect in p53 as a result of single-site 

mutations. Most of these mutations are enormously frequent. Is it possible to develop a small 

molecule activator that reverses this misfolding behavior in tumors? A number of experimental 

studies suggest that tumor cells would be highly sensitive to such activators. On one hand, mutants 

are more stable and highly abundant than wild type protein.7 Except for Li-Fraumeni patients who, 

essentially carry germline p53 mutations, mutant p53 proteins are not abundant in normal cells, 

however they are over-expressed in tumor cells. This is due to the occurrence of p53-activating 

signals in cancer cells and inability of mutants of p53 to induce expression of their own inhibitors 

MDM2 and MDM4. On the other hand, mere synthesis of p53 in normal cells does not activate the 

p53 pathway, while restored mutants in tumor cells activate the pathway. This indicates that 

cancer cells have a particular mechanism that is ready to activate newly expressed wild type p53.8 

Based on these facts, one can regard p53 mutants as a “loaded gun”, whose trigger is obstructed by 

genetic alterations.9 Consequently, inhibiting mutant proteins using small molecules would be 

specific and effective in treating cancers, while avoiding the most damaging and unfavorable 

effects associated with the majority of current cancer therapies which harm normal cells. Many 

research groups attempted to devise small peptides or molecules that could restore the activity of 

mutant p53. These results are summarized below. 

 

8.1.2.1 9-hydroxy-ellipticine (9HE) 
 
 Ellipticine (EPC) is a relatively old anti-cancer agent extracted from Aspidosperma williansii 

(Apocynaceae) and purified in the late 1960s. The compound is too toxic to be used clinically. In 

1999, Sugikawa and his team discovered 9-hydroxy-ellipticine (9HE), a derivative compound of 

ellipticine, as an activator for mutants on the three sites 143, 175 and 273.10 The compound 

induced G1 arrest and triggered G1 phase-restricted apoptosis in several tumor cells. The exact 

restoration mechanism of 9HE is still unknown. 

 

8.1.2.2 CP-31398 
 

The profound proof-of-concept for the mutant reactivation strategy was first introduced 

by Foster and collaborators.11 Foster, experimentally, screened a chemical library of compounds 

against the DBD of p53 and the two monoclonal antibodies PAB1620 and PAB240. They 
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identified CP-31398, a small molecule that restored mutants at the two sites 173 and 249, up-

regulated p53 target genes and suppressed tumor growth in mice. Further studies by Demma et al. 

showed that CP-31398 is specific to p53 and does not target its homologous proteins p73 and 

p63.12No precise information exists on how CP-31398 induces its activity and restores these 

mutants.  

 

8.1.2.3 CDB3 
 

Fersht’s group made another advance toward discovering activators for p53 mutants.13 

They proposed a rational strategy to identify such molecules, called the chaperone strategy. Their 

theory states that: “conformationally compromised oncogenic mutants of the tumor suppressor 

protein p53 can, in principle, be rescued by small molecules that bind the native, but not the 

denatured state”. Based on this idea, they derived a nine-residue peptide from a p53 binding 

protein, CDB3. Interestingly, the peptide activated the R249S mutant. What was unique to this 

project is that NMR data showed that CDB3 binds approximately around the edge of the p53 

binding surface, stabilizes the complex and increases its melting temperature. Fersht also 

speculated that CP-31398 has the same chaperone mechanism as CDB3. Perhaps it binds to the 

same location as their peptide. 

 

8.1.2.4 PRIMA-1     
 
P53 reactivation and induction of massive apoptosis (PRIMA-1), is a small molecular 

activator for the His273 mutant.14 Bykov et al. ran a cell-based screening assay on a cell line that 

possesses the His273 mutation, using the NCI diversity set as their tested compounds. This led to 

PRIMA-1, a compound that inhibited cell growth in a mutant p53-dependent manner. It also 

inhibited cell growth in cell lines that have a His175 mutation. Recently, Lambert et al.15 

suggested that PRIMA-1, covalently, forms adducts with thiols in mutant DBD, which in turn 

could be the reason for reactivating the mutant protein and inducing apoptosis in tumor cells.  

 

8.1.2.5 MIRA-1 
 
Mutant p53-dependent induction of rapid apoptosis or MIRA-1 was identified from the 

same screening assay that discovered PRIMA-1.16 However, it was more potent and structurally 

different than PRIMA-1. The compound retained DNA binding, mended the mutant conformation 

in vitro and restored the p53 trans-activation ability in living cells. One interesting observation 

from this work is that DNA binding assays showed that MIRA-1 stimulated DNA binding of some 

but not all mutant forms of p53. They noticed also that for one mutant, Gln248, MIRA-1 activated 



 141 

DNA binding in Namalva cells but not in BL41 cells. Likewise, for the His273 mutant, DNA 

binding was retained in Saos-2 or SKOV cells, while no effect of the compound was found in the 

SW80 cell. These finding lead to the conclusion that many cellular factors are involved in the 

ability of MIRA-1 to reactivate mutant p53. 

 

8.1.2.6 PhiKan083 
 

The work presented in this study is, in fact, more supportive and similar to our proposed 

research. Fersht’s team targeted the Y220C mutant as a rational drug design case. This mutation 

forms a cavity on a non-functional site of the protein, reducing the protein stability by ~4 kcal/mol. 

Consequently, they used virtual screening to identify compounds that can complement this cavity 

in terms of shape, charge and other chemical and physical properties. This search led to a number 

of small complementing molecules. One of them, PhiKan083, was a potent binder to the cavity. It 

increased the melting temperature of the mutant and slowed down its rate of degradation. They 

also confirmed the biding of PhiKan083 through X-ray crystallography showing how the 

compound interacted with the cavity and induced a conformational change in the protein structure. 

 

8.1.3 Thermodynamic Stability Of The DBD 
 Investigations of the thermodynamic stability of the DBD have revealed the destabilizing 

nature of hot-spot mutations relative to WT p5317,18,19 and highlighted the temperature-dependence 

of their DNA-binding affinity.18,20 Other studies focused on different thermodynamical parameters 

that can determine the ultimate stability of the protein and its mutants. Such experiments included 

measuring pressure-stability at different temperatures 21,22,23, different pHs24 and studying the 

effect of DNA-binding on the core domain stability.25 

The first insightful evidence for the importance of temperature in proper DNA binding 

was reported by Zhang and collaborators in 1994 for Ala-143, which was considered a hot-spot 

mutation at the time.20 The mutant p53 exhibited high DNA-binding affinity at temperatures of 

306 K and below, as well as stronger transcriptional activity than WT p53.  At physiological 

temperature both the DNA-binding and transcriptional activation functions of the mutant were 

significantly reduced. These observations were rationalized in terms of a two-conformational state 

model: a mutant conformation at physiological temperatures, and a wild-type conformation at 

lower temperatures. Friedlander et al. examined the effects of temperature on a wide range of p53 

mutants.26 This included Ala-143, His-175, Trp-248, Ser-249 and His-273. With the exception of 

His-175, all mutants were able to bind DNA at sub-physiological temperatures (298-306 K).  At 

310 K, however, their binding to DNA was defective. Numerous other temperature-sensitive 

mutations were later identified and targeted for restoration.27 Ishioka’s group alone assessed a 
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collection of over 2,000 p53 mutants for temperature sensitivity and identified 113 mutants with 

activity at 303 K.28 This represents about ~10% of all reported single amino acid alterations of the 

DBD in human cancers.3 Here, we focused on the R248Q mutant, which is the most frequently 

occurring mutation in human cancer. It is mostly associated with breast, colon, head, neck and skin 

cancers. Moreover, it ranks as the second most mutants in esophageal, gastric, lung, ovarian, and 

prostate cancers. 

 

8.1.4 Temperature-Dependence  of the Arg-248 
Mutants 

 

Mutations at the Arg-248 residue of p53 have been of substantial interest to a large group 

of cancer researchers. Many experiments were conducted in order to better understand their roles. 

With the objective of restoring the activity of mutated p53 proteins, many researchers employed 

various experimental and theoretical techniques aimed at understanding why they are inactive in 

cancer cells. The work presented here was inspired by many experimental studies that focused on 

the effects of temperature on the stability, structure and transcriptional activity of p53 and its Arg-

248 mutants. For example, Bullock et al. investigated the wild-type stability along with a number 

of its mutants including R248Q at both low and high temperatures 17. Their work revealed that the 

R248Q mutant is stable at sub-physiological low temperatures. The R248Q stability was less than 

that of the wild-type protein by ~2 kcal/mol. The mutant structure also retained a two-stage 

unfolding transition, similar to the wild-type protein 21, which indicated well-defined structures at 

low temperature. Interestingly, the addition of a 22-mer double-stranded DNA p53 consensus 

sequence raised the melting temperature of the tested proteins, signifying a stabilizing effect due to 

DNA-binding 17. The effect of DNA on stabilizing the core domain was recently confirmed by 

Ishimaru et al. 25. An interesting study by Wong et al. investigated the structural changes 

introduced by five hot spot mutations including R248Q at low temperature using chemical shift 

changes 29. Their findings indicate that the R248Q mutation induces structural changes in L2 and 

L3 regions of the core domain at 310 K. That is, the R248Q mutation has the dual capacity of 

being both a contact and a structural mutation. These structural changes lower the binding affinity 

to the DNA without significantly destabilizing the protein 30. In fact, at high pressure and low 

temperature, WT p53 can adopt the R248Q mutant structure 21. Benoit et al. investigated the 

transcriptional activation of cyclooxygenase-2 (Cox-2) by p53 at low temperature 31. They also 

examined Cox-2 transcription induced by different p53 mutants including the R248Q variant. 

Cooperating with nuclear factor-kappaB (NF-kappaB), R248Q produced a significant increase in 

Cox-2 expression similar to the wild-type protein. 
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Other common mutations of the Arg-248 residue (e.g. R248W and R248A) also 

expressed a profound dependence on temperature. The most perceptible behavior was noticed in 

the case of R248W 26, 28. Friedlander et al. [22] showed that R248W can effectively bind to DNA 

at low temperatures and this binding activity is significantly diminished at physiological 

temperatures. A kinetic stability experiment on a number of different p53 mutants revealed that 

R248A had a half-life time (t1/2) of 128 minutes at low temperature compared to less than 3 

minutes at 310 K. The analysis in this study revealed an important concept in understanding the 

stability of p53 mutants. Namely, there is a remarkable correlation between the thermodynamic 

and kinetic instability of the mutants. The more unstable the mutant, the shorter its half-life time. 

This means that R248A is more stable at low temperatures than at physiological temperatures. All 

of the above-mentioned experimental data reveal a clear connection between temperature and the 

stability and activity of p53 R248 mutants in general and the R248Q mutant in particular. 

 

8.2 Results And Discussion 
 

In this chapter, we report on the results of molecular dynamics (MD) simulations that 

have been carried out for the DBD of WT and R248Q p53 molecules in the presence or absence of 

a DNA duplex at 300, 305 and 310 K. A comprehensive assessment of the influence of 

temperature on p53-DNA intermolecular interactions has been performed in terms of structural, 

dynamical and thermodynamic properties. The main aims of this work are to determine the effects 

of temperature on the conformations of WT and mutant p53 complexes and to identify key 

residues or regions of the complexes, which modulate changes in DNA-binding at the different 

temperatures. Our results indicate that temperature plays an essential role in the stability of the 

hydrogen bond network and binding properties of p53-DNA complexes over both short and long 

time-scales. The outcome of our study provides new insights into the way towards restoring 

apoptosis in the above-mentioned types of cancer cells by activating the p53 pathway of 

tumorigenic R248Q mutants. 

 

8.2.1 MD Simulations of the Wild Type And 
Mutant Structures 

 

The root mean square deviations (RMSD) of backbone atoms of the DBD and DNA 

duplex (for the p53-DNA complexes) were computed over the final ns of each trajectory. The 

results are shown in Figure 8-1 for the wild type at 300 K. In the rest of the cases the behavior was 

similar (data not shown). The RMSDs of DNA are significantly higher and are associated with 
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larger fluctuations than those of the protein in all trajectories. The higher mobility of the DNA 

backbone relative to the protein backbone in both complexes at all temperatures can be attributed 

to the dynamics of the terminal residues of the double helix that are not bound to the DBD.  The 

RMSD plots of DNA-bound and DNA-free proteins are generally similar.  The mean RMSD of 

the DBD is slightly smaller in the p53-DNA complexes than in the apo-structures for both p53 

variants.  Similar observations were reported by Noskov et al.32 for the same protein at 300 K.  In 

general, the backbone RMSDs appear to be relatively stable to temperature changes over the range 

investigated.  

 

8.2.2 Hydrogen Bonding & Water Distribution 
  

Several reports of the crystal structure of the p53-DNA complexes have highlighted the 

central roles of water molecules and hydrogen bonds in stabilizing interactions between the two 

biomolecules. In some of these investigations, the failure of p53 to bind DNA has been correlated 

with the loss of one or two hydrogen bonds mediated by a single residue within the DBD. For 

example, the mutations of the hot-spot residue Arg-27333 or Arg-2492 into histidine or serine 

respectively, induces a sequence of hydrogen bond disruptions that ultimately lead to the loss of 

DNA binding. For these two mutations, the hydrogen bond network could be restored or 

compensated by means of an additional single mutation. Changing the 284-residue to arginine 

conferred DNA-binding ability to the R273H mutant.  Similarly, substitution of the residue at 

position 268 by arginine partially restored the activity of the R249S mutant. The influence of 

hydration on p53 folding has been studied by Silva et al. and revealed that water interactions with 

both p53 and the DNA were essential for proper folding and enhanced stability of the complex 23. 

The presence of a DNA molecule augmented the stability of the DBD within p53 25. Below we 

confirm these concepts by investigating the dynamical character of the hydrogen bond network. 

We also compare the different connections among the protein, DNA and water residues for both 

the wild type and the R248Q mutant at all temperature ranges investigated. 
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Figure 8-1: Plots of backbone RMSD for the DNA-bound and DNA-free WT p53 
at 300 K over the final ns of 10 ns trajectories.   

The black, blue and red lines correspond to RMSD values of the DBD bound to DNA, in 
absence of DNA, and of DNA only, respectively. 

 
       

Figure 8-2 and Figure 8-3 describe the complicated hydrogen bond networks formed by 

interfacial atoms in the dominant structures extracted from clustering of the MD simulations.  In 

Figure 2-A, several direct contacts can be identified between the DBD of WT p53 and DNA 

nucleotides at 300 K. Arg-248 from the loop L3 protrudes into the minor groove of the DNA 

molecule resulting in favorable electrostatic interactions between the positively charged 

guanidinium group of Arg-248 and the negatively charged DNA backbone. The minor groove 

adjacent to Arg-248 is compressed and its bases are buckled so that the side chain of Arg-248 

makes three direct contacts with the DNA. Likewise, the side-chains of Cys-242, Lys-120 and Ser-

116 directly interact with DNA. Within the protein structure, Cys-277 is hydrogen-bonded to the 

side chain of Lys-120.  In addition to direct p53-DNA contacts, seven ordered water molecules are 

located at the interface. Among these water molecules are conserved crystallographic water 

molecules present in the original crystal structure, thus supporting their inclusion in the starting 

structures for MD simulations. For clarity, only water molecules participating in the hydrogen 

bond network and which act as linkers between the different interacting residues are depicted in 

the figures. Water molecules appear to have a stabilizing role on the direct p53-DNA contacts. W1 

and W2 connect Arg-248 to DNA through three different hydrogen bonds. W3 mediates an 
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interaction between the side chain of Asp-281 and the backbone of Ala-276 while at the same time 

connecting them to the guanine base of DG-303.  W4 and W5 are involved in water-bridged 

hydrogen bonds linking Asn-239 to Cys-277 and Ala-276 to Cys-277, respectively. W6 and W7, 

on the other hand, are responsible for maintaining a hydrogen bond network through which Ser-

121 interacts with the DNA molecule via two different hydrogen bonds. Among the residues 

identified in the vicinity of DNA, Lys-120 and Ser-121 have been suggested as key participants in 

DNA binding in a crystallographic analysis of DNA-bound and DNA-free forms of the WT 

DBD.34 In addition, p53 DBD lacking residues 100-120 displayed reduced binding during 

antibody binding experiments.35  

Raising the temperature to 305 K does not significantly alter the overall structure of the 

protein-DNA binding interface or its hydrogen bond network (see Figure 2-B). Arg-248 has 

retained one of the direct contacts and two water-bridged hydrogen bonds (W1, W2) with the 

DNA molecule. A direct contact between DNA and Ser-241, that was absent at 300 K, is present 

at 305 K alongside nucleotide-interactions with Asn-239, Cys-277 and Lys-120. Moreover, the 

water molecules W3, W4 and W5 mediate interactions between Asn-239, Cys-275 and DNA.  At 

310 K, interactions between Arg-248 and DNA amount to four hydrogen bonds and no water-

bridged linkages are present, as shown in Figure 2-C. However, W1 is involved in connecting 

Arg-248 and Ser-241, which in turn interacts with DNA nucleotides through W2 and W3.  Cys-

275 is connected to DNA through its side chain and through W4.  Cys-277 is involved in an 

extensive hydrogen bond network via backbone interactions with the side chain of Asn-239 

mediated by W5, W6 and W7 and side-chain interactions with DNA and Lys-120.  Moreover, Ser-

121 and Ser-116 are connected to DNA through the two water molecules; W8 and W9. Finally, 

similar to the previous cases, Lys-120 maintains its direct connection to DNA and to Cys-277.  

These strong interactions and persistence of the native fold of p53 DBD confirmed the fact that the 

wild type is stable at all three temperatures 17. Interactions with the DNA molecule are extremely 

favored by the protein. They enhance its stability and prevent it from misfolding or aggregating.25  

Armed with the validation of our protocol in reproducing the native p53 conformation 

and constructing a fine grid of detailed hydrogen bonding interactions, we proceeded to investigate 

in detail the R248Q case. Switching to the mutated p53 structure has yielded interesting findings. 

Figure 3-A illustrates the hydrogen bond network at 300 K. Glu-248 is connected to DNA through 

a direct hydrogen bond and a water-mediated hydrogen bond. This water molecule, W1, also 

connects Glu-248 to Asn-247, which was absent in WT p53 at any of the three temperatures. Once 

more, water molecules play a major role in coordinating a number of hydrogen bonds at the DNA-

p53 binding interface. For example, W2 connects Ser-241 to the DNA molecule. W3 and W5 

connect Asn-239 to Cys-275. W4 and W6 connect the backbone of Ala-276 to the guanine residue 

DG-303 and its side chain to the cytosine residue DC-304, respectively. W8 mediates a superior 

interaction between the backbone of Lys-120 and guanine residue DG-318. 
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Figure 8-2: Hydrogen bond network for the wild type at three different temperatures. (A) 
300 K, (B) 305 K and (C) 310 K. 
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In addition, the side chain of Ser-241 is hydrogen bonded to the side chain of Asn-239, and as 

observed for WT p53, Cys-277 preserves its hydrogen bond with Lys-120, which maintains direct 

contact with DNA. At 305 K (see Figure 3-B) an important modification takes place. Glu-248 

loses its direct contact with the DNA molecule as the distance between the side chain of Glu-248 

and the closest DNA residue is greater than 4 Å. This results in a large gap between the protein 

and DNA and leads to a distortion in the minor groove close to Glu-248. Despite this deviation, 

Glu-248 participates in two hydrogen bonds with DNA through two water molecules, W1 and W4. 

A fine hydrogen bond network connects guanine DG-324 through four water molecules (W2, W3, 

W4 and W5) to guanine DG-303 in the middle of the DNA.  This final guanine residue is directly 

connected to Ser-241, Asn-239 and Ala-276. Surprisingly, Cys-276 maintains its interaction with 

Lys-120, which was connected to DNA through a water molecule, W9, unlike the previously 

mentioned cases where Lys-120 had a direct contact to the DNA. Finally, Ser-121 is connected to 

DNA through W10.  A huge difference is found to occur at 310 K (see Figure 3-C).  The 

separation between Glu-248 and  DNA is more than 6 Å. No direct hydrogen bonds are established 

to connect Glu-248 to DNA. The DNA terminal near Glu-248 is completely distorted and 

separated from the protein. However, Glu-248 is connected to the center of the DNA duplex 

through a water-mediated hydrogen bond (W1) that also links Ser-241 to DNA.  Cys-275 is 

connected to DNA through W3. Ala-276 is hydrogen bonded to Lys-120 while Ser-241 is attached 

to DNA via two water-mediated hydrogen bonds.    

The aforementioned atomistic details of the DNA-contact geometry reveal a reasonable 

dependence on temperature.  The L3 loop was directly linked to the minor groove of the bound 

DNA via Arg-248 at three different temperatures for the wild type, or via Glu-248 at 300 K for the 

R248Q mutant. During the six different simulations, the conformations of R/Q248 side chain were 

fully extended and contacted the DNA nucleotides either directly or indirectly through water 

molecules. It has also become apparent that the L3 loop plays a dual role in DNA binding.  

Besides contacting DNA through Arg-248, it is also an essential part of the DBD of p53 by aiding 

in the stabilization of the zinc-binding site and hence can affect other regions of the protein. 

Although the minor groove area is largely affected upon the mutation at physiological 

temperatures, the major groove contacts, i.e., Lys-120, Ala-276 and Cys-277 maintain their 

interactions with DNA even after Arg-248 was mutated to glutamine. In addition to the well-

documented stabilizing roles of water-mediated interactions in biological complexes, hydration 

can also have a destabilizing effect, as recently described by Silva et al.25 The authors attributed 

the enhanced stability of cognate DNA-WT p53 complexes to the exclusion of unfavorable water-

mediated interactions from the protein surface. Conversely, infiltration of water inside mutant 

complexes would be responsible for their destabilization and promote aggregation of p53 

molecules.  
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Figure 8-3: Hydrogen bond network for the Q248 mutant at three different 
temperatures. (A) 300 K, (B) 305 K and (C) 310 K. 
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The above reasoning suggests that the lower stability of the R248Q p53 complex at high 

temperatures is a result of structural changes in its hydration networks, as evidenced by the 

formation of an interfacial water-filled cavity at 305 K and the transformation of direct DNA 

contacts into water-mediated interactions at 305 and 310 K. Therefore, alterations in the hydrogen 

bond network provide an effective structural framework for understanding changes in DNA 

binding for the R248Q mutant p53 at physiological temperatures. 

8.2.3 Binding Energy Analysis 
MD simulations of the p53–DNA complexes and the hydrogen bonding analysis provided 

valuable insights into the dynamics of their interactions and the role of water at the interface of 

complexes. Our next step was to investigate the influence of temperature on the stability of the p53 

variants.  To this end, the thermodynamics of p53-DNA binding were evaluated using the 

molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method, a well-established 

technique that takes into account the effects of solvation, ionic concentrations, entropy and 

molecular mechanics interactions. It has been previously employed in many similar studies36,37
,
38 

and has produced accurate free energy estimates at a reasonable computational cost. Its main 

advantages include the lack of adjustable parameters and the possibility of using a single MD 

simulation for the complete system to determine all energy values.  

The binding energy calculations are listed in Table 8-1 for the two p53 structures at three 

different temperatures. It should be mentioned that binding energies are reported relative to the 

WT binding energy at 300 K, which was estimated as -12 kcal/mol. Our calculations indicate that 

binding to DNA is maintained by the WT protein both at 305 and 310 K. This is supported by 

experimental evidence that WT p53-complex has a melting temperature of 322 K, indicating that 

the complex is stable at 310 K.17 While our results indicate that the binding affinity is enhanced at 

physiological temperature, in vitro measurements showed a decrease in the binding affinity of WT 

p53 at 310 K.26,39 The conflicting observations may be related to experimental conditions and 

techniques. It has been shown that the stability of p53 and DNA binding affinity is highly sensitive 

to ionic strength, DNA sequence and pressure.40,26 Nonetheless, the results agree on the qualitative 

aspects of binding, i.e., WT p53 DBD can bind to the DNA at all three temperatures and also 

validates the MM-PBSA method as an adequate binding energy evaluation technique.26 At 300 K, 

the binding energy of R248Q is decreased by ~3 kcal/mol compared to the WT at the same 

temperature, signifying its possible binding to DNA. When the temperature is raised to 305 K and 

310 K, the binding energy of the mutant p53 increases by 12 and 15 kcal/mol, respectively, 

relative to the WT.  These observations indicate that binding of R248Q to DNA becomes highly 

unfavorable with increasing temperature.  Taken together with our observations from hydrogen 

bond analysis, changes in the binding energy of the mutant p53 may be interpreted as a significant 
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weakening of DNA-binding at 305 and 310 K while WT p53 retains its binding characteristics at 

these same temperatures.  

 

 

 

Type T (K) BET-BEWT300K (kcal/mol) ± 1 
300 0 
305 3 

 
WT 

310 -12 
300 3 
305 12 

 
R248Q 

310 15 
Note: BEWT300K = -12 kcal/mol 

Table 8-1: Binding energy changes between DNA and the p53 core domain due to 
temperature alterations. All binding energies are relative to that of the WT at 300 K. Our 
calculations predict that the WT p53 maintains its DNA binding at all temperatures. On 
the other hand, while the Glu-248 mutant (R248Q) does not lose its DNA binding activity 
at 300 K, binding is highly unfavorable at 310 K. 

   
 

 

To further identify the regions of the protein that cause the loss of DNA binding, we 

decomposed the binding energy into residue contributions. Table 8-2 lists the individual 

contributions of residues that amount to at least ±1 kcal/mol of the binding energies, computed at 

300, 305 and 310 K for the WT and R248Q p53.  Again, the reported binding energies are relative 

to the WT at 300 K. Comparing the WT to the mutant p53, as expected, the substitution of 

arginine to glutamine carries the largest penalty which is associated with a cost of ~ 8 kcal/mol at 

all temperatures. The residues Ser-241 and Asn-239, which are close to the mutation site, reduce 

the binding energy by ~ 4 kcal/mol. This loss of binding energy is balanced by gains at the 119, 

120, 276 and 277 sites. 

Comparing these findings to the hydrogen bond analysis mentioned earlier reveals an 

outstanding correspondence. The stability of the hydrogen bond network at the three different 

temperatures in the wild-type protein indicates an unremitting binding to DNA. On the other hand, 

the lack of strong hydrogen bonding in the mutant variant at higher temperatures, namely 305 K 

and 310 K, causes a parallel effect on the binding affinity to DNA. In general, our analysis reveals 

that temperature-sensitive residues are located in the three loops and in the C-terminal region. The 

substitution of arginine by glutamine at residue 248 leads to changes in binding far from the 

mutation site, particularly in loop L1.  This is consistent with differences observed in the major 

groove contacts during hydrogen bond analysis, and with the proposed classification of the R248Q 

as a dual structural/contact mutant.[14],29  In addition, the zinc ion contributed significantly to the 

overall binding energy between the protein and DNA in all simulations. These energies ranged 
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from -7 kcal/mol for the WT to -8 kcal/mol for the mutant p53 at 300 K. These results are 

consistent with the findings of Butler et al. that zinc is crucial for proper DNA binding, and that 

the stability of the zinc ion within the R248Q mutant is quantitatively comparable to that of the 

WT protein.30 

 

 

 

  

BEWT-BEWT300K (kcal/mol) BERQ-BEWT300K (kcal/mol) 
Temperature (K) Temperature (K) 

 
Residue 

300 305 310 300 305 310 
119 0 -3 -5 -5 -1 -4 
120 0 1 -4 -3 2 -1 
122 0 1 0 2 1 2 
174 0 0 1 0 0 1 
180 0 -1 -1 0 0 -1 
184 0 0 -1 0 -1 -1 
239 0 2 3 0 -1 2 
240 0 0 0 0 0 1 
241 0 0 0 1 1 2 
243 0 0 0 -2 -1 0 
248 0 1 -2 8 9 8 
273 0 0 0 1 3 1 
275 0 0 -1 -2 -1 0 
276 0 -1 -2 -1 -2 -1 
277 0 -2 -1 -2 -1 -2 

ZN+2 0 0 0 -1 -1 0 
DNA300 0 0 0 1 0 0 
DNA301 0 -1 0 0 1 0 
DNA302 0 2 2 1 3 3 
DNA303 0 2 0 0 -1 2 
DNA304 0 0 -3 -2 -2 -2 
DNA315 0 -1 -1 -1 -1 -2 
DNA306 0 -1 1 0 0 -1 
DNA317 0 -1 -3 2 1 2 
DNA318 0 2 3 3 2 3 
DNA319 0 0 0 0 1 0 
DNA320 0 -2 0 -2 -1 -2 
DNA324 0 1 1 3 2 2 
DNA325 0 2 1 2 1 1 
DNA326 0 1 0 0 0 1 

 

Table 8-2: Binding energy decomposition per residue for WT and R248Q p53-
DNA complexes at 300, 305 and 310 K.  Binding energies are given relative to the energy 
of the DNA-bound WT p53 complex at 300 K. Residues 119, 120, 248 and 277 from p53 
contributed the most to temperature-induced changes in binding energy. At least eight 
DNA residues involved in close contacts with the protein contributed significantly to 
binding. 
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8.3 Conclusion 
In about half of human cancers, p53 is inactivated by mutations located primarily in it’s 

DNA binding domain (DBD).41,1 More than 1,300 distinctive carcinogenic single amino-acid 

alterations in the core domain of the protein have been reported. Of these, the R248 into Q mutant 

is one of the most frequently encountered in human cancers. The rescue of DNA-binding and 

subsequent restoration of activity in mutant p53 is a challenging strategy in developmental cancer 

therapy. The viability of the approach relies on designing small molecule drugs that reactivate p53 

mutants upon binding which requires a thorough understanding of both the effects of p53 

mutations and the molecular basis of the resulting inactivation.  

Experiments have revealed that the mutation of R248, among others, possesses 

temperature-induced DNA-binding characteristics. In particular, R248-p53 mutant was defective 

for binding to DNA at 37°C although it was able to bind specifically to several p53 response 

elements at sub-physiological temperatures (25–33°C)18,20,26. 

In this work, MD simulations of the p53–DNA complexes and the hydrogen bonding 

analysis provided valuable insights into the structure and short-time dynamics of p53-DNA 

interactions and revealed the central role of water at the interface of the complexes.   Hydrogen 

bond networks involving major groove contacts are retained in the R248Q hot-spot mutant at 300, 

305 and 310 K.  However, direct minor groove contacts involving the mutated residue were 

disrupted above 300 K.  Accordingly, estimates of binding energy show that interactions between 

DNA and the R248Q mutant become increasingly unfavorable above 300 K. By decomposing the 

calculated energies into individual contributions, the mutated residue Q248 together with residues 

in loop L1 and the short loop preceding H2 were identified as key participants in DNA-binding. 

These findings highlight the critical nature of the R248-DNA interactions and suggest that 

targeting the mutated residue may bring about restoration of the p53 activity in contact mutations. 

 The protocol employed in the present work can be applied to other mutant structures in 

order to compile a new data set of p53 structural information. The resulting data set together with 

existing structural data can form the basis for developing a novel class of chemotherapeutics, 

targeting the most frequently occurring p53 mutations, with the intent of restoring their WT 

functionality and providing new clinical tools for the treatment of a broad range of cancers. 
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Chapter 9: Summary And Future 
Work 
 
 
 
 
 
 
 
 
 
 

This dissertation discussed the implementation of an improved virtual screening protocol and its 

application to discover inhibitors for a number of important cancer-related molecular targets. Two of these 

targets are DNA repair proteins that are related to the “drug resistance” phenomena. These are Excision 

Repair Cross-Complementation Group 1 (ERCC1), and DNA polymerase beta (pol β). The third target is 

p53, a guardian of the genome that is inactivated in more than half of all human cancers. The thesis also 

discussed the possibility of activating an otherwise inactive protein (R248Q p53 mutant). 

The thesis started by a detailed introduction to the realm of virtual screening as a background for 

the coming chapters. Applications of these methods were then presented for: identifying inhibitors for the 

ERCC1-XPA interaction; identifying inhibitors for DNA polymerase beta; identifying dual inhibitors for 

the p53-MDM2/4 interactions; and probing the atomistic alternations that took place in the interaction of 

p53 to DNA due to the R248Q p53 mutation at different temperatures. Thus, this thesis investigated four 

interesting problems. Each problem has its own impact on the field of cancer research. Here, I will 

summarize the results we found and indicate the directions that should be followed in the future for every 

case. 

 

9.1 ERCC1-XPA Inhibitors 
Nucleotide excision repair (NER) is the major DNA repair mechanism that removes cisplatin-

induced DNA damage, and that resistance to platinum-based therapy correlates with high expression of 

ERCC1, an essential element of the NER machinery.1 Accordingly, a novel strategy to reverse resistance 

and potentiate the efficacy of cisplatin is to regulate the NER pathway, through targeting the interactions of 

ERCC1 with other proteins involved in NER. One solution is to inhibit the ERCC1-XPA protein-protein 

interactions. XPA plays a vital role in DNA lesion recognition and attraction of many other NER repair 

proteins. Its interaction with ERCC1 is necessary for a functional NER pathway. 

This study utilized the RCS technique (section 3.3.3) to screen two compound databases for 

inhibitors of the ERCC1-XPA interaction and construct a pharmacophore model demonstrating the crucial 
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features necessary for their inhibition. The databases included the National Cancer Institute Diversity Set 

(NCIDS) and DrugBank compounds (section 3.2.1). The study utilized a minimized model of the XPA 

binding site within ERCC1 to employ flexible residue docking as implemented in AutoDock 4.0. This was 

then followed by RCS docking, where MD simulations and RMSD conformational clustering were used to 

generate a set of forty-four representative conformations of the binding site within ERCC1. AutoDock was 

then used to screen against a set of seven target conformations, composed of the six most dominant cluster-

representative structures along with an equilibrated folded conformation for the binding site produced by 

employing principal component analysis on the ERCC1 trajectory. Top hits were rescored by docking them 

to the whole set of cluster-representative structures and ranked by their weighted average binding energy 

(section 3.4.3).  The non-redundant hits from these screens were then used to identify a dynamic binding-

site pharmacophore that target the ERCC1-XPA interaction. The pharmacophore model was then compared 

to docking results for the weak inhibitor of NER, UCN-01 (7-hydroxystaurosporine) (section 4.1.4). 

Comparing the methodology that was used here to the workflow discussed in the background 

material, one can make three observations. First, the virtual screening methodology depended mainly on 

docking scoring to rank the compounds. Second, the clustering analysis that was used to extract dominant 

conformations of the target were not iterative, it used a cut off RMSD value that is commonly employed in 

the literature. Finally, no post-docking refinements were performed on the final set of compounds. These 

shortcomings were properly adjusted in a subsequent study.2The new study screened CN chemical library 

(~100,000 compounds) (see section 3.2.1) and exactly followed the screening protocol described in this 

thesis. The hit rate of the new study was higher than that of the one described here, indicating the 

importance of utilizing more accurate scoring, performing iterative clustering and refining the docked 

structures using MD simulations. 

Recently, we carried out a second VS round against the ERCC1-XPA interaction and following 

the procedure outlined in chapter 3 using the French national chemical library (section 3.2.1). A Promising 

hit was discovered and validated on a UV radiation sensitivity cell-based assay (compound 12 in Figure 

9-1).3 The validated hit is effective in sensitizing colon cancer cells to UV radiation, which induces the 

same type of damage as cisplatin and its lesions are removed by ENR. The compound is termed NER 

inhibitor 01 (NERI01) and its binding mode is shown in Figure.  

Furthermore, an additional screening exercise was carried out targeting a different interaction 

related to ERCC1. This was the ERCC1-XPF interaction (Figure 9-3).4The full virtual screening 

methodology described in chapter 3, was used to screen the CN chemical library, NCI set and DrugBank 

compounds for inhibitors of this interaction. A number of promising hits were experimentally validated and 

were very effective in disrupting the NER pathway and potentiating cisplatin efficacy (Figure 9-4). 

Future directions of this problem include identifying more novel inhibitors of the two different 

interactions, namely ERCC1-XPA and ERCC1-XPF, optimizing the discovered lead structures for better 

drug-like properties and advancing them through pre-clinical and clinical drug trails. 
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Figure 9-1. Sensitivity of cancer cells to UVC irradiation alone or in combination with potential 
inhibitors of the interaction between ERCC1 and XPA. IC50 values (J/m²). Compound 12 showed 
promising effect on cancer cells and was termed NERI01. 

 
 
 
 
 
 
 

 
Figure 9-2. Binding modes and hydrogen bonding of the two selected hits (compounds 12 and 14 
in Figure 9-1). Binding mode of NERI01 (A) and of 14 (B). 
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Figure 9-3. The ERCC1-XPF complex. 

 
 

 
Figure 9-4. Combination index 95 of inhibitors and different anti-cancer drugs in A549 and 
HCT116 cells. Results are mean values from at least seven experiments with various ratios of 
compounds and error bars are standard error of means. Dotted horizontal lines indicate limits for 
synergy (<0.9), additivity (0.9 < CI95 < 1.1) and antagonism (>1.1). 
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9.2 DNA Pol Beta Inhibitors 
Base Excision Repair (BER) is the major cellular pathway that is responsible for the recovery of 

single strand breaks (SSB) and removal of damaged bases such as oxidized-reduced, alkylated and 

deaminated bases.5 However, it also constitutes a prevailing way that is usually adopted by cancer cells to 

reduce the efficacy of and to promote resistance against a growing list of DNA damaging agents including 

bleomycin,6 monofunctional alkylating agents,7 cisplatin8 and other platinum-based compounds. Therefore, 

regulating this pathway has been proposed in the cancer research community as a way to reduce resistance 

to these DNA damaging agents. One way to do that is to inhibit its major DNA polymerase, pol β. 

Chapters 5 and 6 focused on this problem. Chapter 5 provided a comprehensive literature review of 

existing inhibitors of pol β. While chapter 6 discussed the application of virtual screening to find inhibitors 

for the lyase active site of pol β. 

Following the same virtual screening procedure discussed earlier, this study focused the search 

space on the binding site of PA (a well-validated pol β-inhibitor) using it as a positive control. The aim was 

to discover more potent drug candidates through filtering a library of ~12,500 structures. The molecules we 

tested included the NCI diversity set, the DrugBank set of small-molecules and more than 9,000 fragment 

structures with drug-like properties extracted from ZINC database. The top 300 hits that showed strong 

affinity for pol β have been rescored using a more robust scoring function, the MM-PBSA method. 

Similar to ERCC-XPA case and following the NER study, a future direction of this exercise is to 

validate the identified hits experimentally. Once active compounds are identified, we will start developing 

derivative structures for the identified hits and optimize them for better drug-like properties. 

 

9.3 P53-MDM2/4 inhibitors 
P53 play vital roles in cell cycle, apoptosis, DNA repair and senescence9,10,11,12 As such, tumor 

cells have developed numerous ways to disable its function. In the about 50% of human cancers, although 

p53 retains its wild type structure, its activity is eradicated by its main cellular inhibitors, murine double 

minute 2/4 (MDM2/4).13,14,15MDM2 and MDM4 are two structurally related proteins that regulate p53 

activity.15 the two proteins are over expressed in many types of cancer, reducing the activity of p53 and 

allowing cancer cells to survive and polifirate.16 The last decade has witnessed the identification of an 

increasing number of non-peptide, small-molecule MDM2 inhibitors with promising binding affinities.17 

However, these compounds are more highly selective for MDM2 than for its homolog MDM4, meaning 

that they have no effect on MDM4. Therefore, developing new compounds that are MDM4-specific or 

optimized for dual-inhibition of MDM2 and MDM4 is a necessary step to achieve full activation of p53 in 

tumor cells. 
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 This study screened the NCI diversity set, the DrugBank set of small-molecules and more than 

3,168 derivative structures extracted from the known MDM2- inhibitors against twenty-eight different 

MDM2 models that represent the apo- and holo-structure’s collective conformational dynamics. The top 

300 hits that showed strong affinity for MDM2 have been used in a second round of screening against the 

p53 binding-site within MDM4 depicts the basic strategy that was followed in this work. This procedure 

identified dual-inhibitors that are predicted to disrupt the MDM2/MDM4- p53 interaction and allow for the 

full activation of the p53 pathway. 

 The future directions of this study would follow two independent but complementary paths. First 

is to experimentally validate the predicted hits and focus the search space on the compounds that show 

biological activity. These compounds will be used to enrich the screened ligand collection by creating 

derivatives of their structure and use similarity search methods to locate similar compounds in available 

databases. Second, is to follow the same path that was used in the previous NER exercise and screen large 

compounds libraries such as the CN chemical library or Zinc database. 

9.4 Toward R248Q p53 activation 
This study was a continuation to the research problem discussed in the previous chapter. As p53 is 

the most mutated protein in human cancers,18 and mutations of p53 alone account for more than half of 

invasive types of cancer,19 a simple idea to cure these types of cancer is to reactivate the mutated p53 

variants. Therefore, this study investigated the key structural changes that were induced on the wild type 

p53 due to one of its most frequent mutations, R248Q. Upon understanding of these changes, one can 

suggest a mechanism by which p53 returns to its active state. This study was inspired by two facts. First, 

there are a few successful stories that managed to activate mutant p53 and cure certain types of cancer. 

Second, the R248 mutant along with some other hot spot mutant variants has a very interesting property. 

They possess temperature-dependence on their binding to the DNA. That is, at temperature below the 

physiological range they act similarly to the wild type protein, however, at physiological temperatures they 

lose their DNA binding capacity. Consequently, the current study analyzed the association of p53 both in 

its mutated and wild type states to the DNA at different temperature ranges.  

The study identified those changes that took place in the hydrogen bond network between the 

DNA and the core domain of p53. There was a direct correlation between the loss of hydrogen bonds at the 

R248 site at physiological temperatures and the reduction in the binding energy between p53 and the DNA 

molecule. This hydrogen bonding was preserved at low temperatures but was lost at higher temperatures. 

This loss induced local structural changes around the mutated residue. An activator of p53 should bind 

close to the mutated R248 and try to restore the hydrogen bonding interactions that were lost due to 

mutation. 

A future direction for this study is to design a set of small molecules that can establish a few 

hydrogen bonds between the DNA and the mutated protein structure. These structures will be docked to the 
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cavity between the core domain and the DNA close to the R248 location and designed so that the hydrogen 

bonding would be maintained at physiological temperatures. 

This concludes the work described in this thesis and I hope it would benefit humanity by using it to 

improve cancer therapy.  
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Appendix A: Principal 
Component Analysis (PCA) 

 

 

 

 

 

The covariance matrix of atomic coordinates is defined by: 
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           Equ. A.1 

Where M is a diagonal matrix that has its diagonals are equal to the atomic masses of the N atoms or are 

equal to ones. 

€ 

M =

m1 0 0 0 0 0 0 0 0 0
0 m1 0 0 0 0 0 0 0 0
0 0 m1 0 0 0 0 0 0 0
0 0 0 m2 0 0 0 0 0 0
0 0 0 0 . 0 0 0 0 0
0 0 0 0 0 . 0 0 0 0
0 0 0 0 0 0 mN −1 0 0 0
0 0 0 0 0 0 0 mN 0 0
0 0 0 0 0 0 0 0 mN 0
0 0 0 0 0 0 0 0 0 mN

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

           Equ. A.2 

€ 

σ  is a symmetric matrix and can be diagonalized with an orthogonal transformation matrix R.  

€ 

RTσR = diag(λ1,λ2,λ3,.,.,.,.,λ3N ) where λ1 ≥ λ2 ≥ ....≥ λ3N  
 

           Equ. A.3 

The columns of R are the eigenvectors of 

€ 

σ , while 

€ 

λ iare the eigenvalues of the covariance matrix. The 

principle components of the system (

€ 

pi t( )) can be calculated by projecting the actual MD trajectory onto 

the eigenvectors of the covariance matrix using the transformation: 

€ 

p t( ) = RTM
1
2 x t( ) − x( )  

 

           Equ. A.4 

The MD trajectory can also be filtered along one or more principle component. For example, for filtering 

on one principle component:  

€ 

X filtered = X +M
−
1
2R* i pi t( )  

 

           Equ. A.5 

Since for a typical symmetric matrix A, one can calculate its square root as follows:  
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           Equ. A.6 

Now, define the difference between two matrices A and B as: 
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           Equ. A.7 

Where tr is the trace of the matrix. This gives: 
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           Equ. A.8 

Now, define the overlap between the two matrices as:  

€ 

Normalized overlap = s(A,B) = 1− d (A,B)
trA + trB

 
 

           Equ. A.9 

The overlap is one if and only if the two matrices are identical and is 0 if they are orthogonal. 
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Appendix B: Linearized Poisson‐
Boltzmann Equation (LPBE) 

 

 

 

 

Poisson equation states that: 

€ 

−∇⋅ε r( )∇ψ r( ) = 4πe2ρ r( )  
 

           Equ. B.1 

where e is the elementary charge, 

€ 

ρ  is the charge distribution,

€ 

ψ  is the potential to be solved, 

€ 

ε  is a 

position dependant dielectric constant (

€ 

ε= 2 inside the protein and 

€ 

ε  = 80 outside), k is Boltzmann constant 

and T is the temperature. 

For ionic solutions, the Poisson Boltzmann equation is used:     

€ 

−∇⋅ε r( )∇ψ r( ) = 4πe2ρ r( ) − qicie
−qiψ r( )−φi r( )

kT

i

n

∑  
 

           Equ. B.2 

where q is the ionic charge, c is the ionic concentration, 

€ 

φ is steric interaction with the fixed solute, and n is 

the number of ions within the solution.  

A typical MD simulation comprises two types of ions with equal concentration but opposite charges (e.g 

Na+ and Cl-), meaning that:  

€ 

−qψ r( ) −φ r( ) << kT      and     q = q1 = q2;c = c1 = c2  
 

           Equ. B.3 

and leading to the approximation:  

€ 

qce
−qψ r( )−φ r( )

kT

i=1

2
∑ = qcsinh

−qψ r( ) −φ r( )
kT

 

 
 

 

 
 ≈ qc

−qψ r( ) −φ r( )
kT

 

 
 

 

 
  

 

           Equ. B.4 

Substituting into Equ. B.2 leads to the linearized Poisson-Boltzmann equation (LPBE): 

€ 

∇⋅ ε r( )∇ψ r( )[ ] = −4πe2ρ r( ) + qc
qψ r( ) +V r( )

kT
 

 

           Equ. B.6 

The equation is commonly solved numerically using a multigrid finite difference approach. 
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Appendix C: Methods For 
Chapter 4  

 

 

 

 

Chapter 2 introduced in details most of the methods described below. However, here I will describe the 

specific parameters that were used and the precise workflow that was applied to the ERCC1-XPA case. 

 

C.1. Molecular Dynamics Simulations 

The central domain of ERCC1 (residues 99-214), both free and bound to an 11-residue fragment 

of XPA (residues 67-77) was taken from PDB entry 2JNW.1 Molecular Dynamics (MD) simulations were 

carried out using the NAMD program,2 at a mean temperature of 300K and physiological pH (pH 7) using 

the all-hydrogen AMBER99SB force field.3 Protonation states of all ionizable residues were calculated 

using the program PDB2PQR. Following parameterization, the ERCC1 protein alone or in complex with 

the XPA peptide was immersed in the center of a TIP3P water cube after adding hydrogen atoms to the 

initial protein structure. The cube dimensions were chosen to provide at least a 20-Å buffer of 16596 

(15323) water molecules around the systems. To neutralize and prepare the XPA-bound or (free systems) 

under a physiological ionic concentration, 32 (29) chloride and 30 (27) sodium ions were respectively 

added by replacing water molecules having the highest electrostatic energies on their oxygen atoms. The 

fully solvated protein was then minimized and subsequently heated to the simulation temperature with 

heavy restraints placed on all backbone atoms. Following heating, the system was equilibrated using 

periodic boundary conditions for 100 ps and energy restraints reduced to zero in successive steps of the MD 

simulation. The simulations were then continued for 50 ns during which atomic coordinates were saved to 

the trajectory every 2 ps. The root-mean-square deviation (RMSD) and B-factors for the protein backbone 

were then computed over the last 10 ns of the MD simulation using the PTRAJ utility within AMBER10. 

Hydrogen bond analysis was performed by computing the average distance between donor and acceptor 

atoms. A hydrogen bond was defined by a heavy donor – heavy acceptor distance greater than 3.4 Å, a light 

donor-heavy acceptor distance greater than 2.5 Å, and a deviation of less than 60o from linearity. 

 

C.2. Principal Component Analysis 

Following the procedure described in section 3.3.4, PCA was performed on the entire MD 

trajectory. First, the trajectory was RMSD fitted to a reference structure, in order to remove all rotations 
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and translations. The covariance matrix was then calculated from their Cartesian co-ordinates as in EQ. 3-1. 

The eigenvectors of the covariance matrix constituted the essential vectors of the motion. Convergence of 

sampling was predicted using the normalized overlap method (EQ. 3-2).  That is, the MD trajectory was 

divided into three parts and the normalized overlap between each pair was calculated to determine the 

completeness of sampling (see results). 

 

C.3. Extracting Representative Structures 

To generate a reduced set of representative models of the ERCC1 binding site, we performed root-

mean-square difference (RMSD) conformational clustering with the average-linkage algorithm as 

implemented in the PTRAJ utility of AMBER10 using a critical distance of 1.3 Å. For the apo-ERCC1 

simulation, structures were extracted at 2 ps intervals over the entire 50 ns simulation. All 

€ 

Cα atoms were 

RMSD fitted to the minimized initial structure in order to remove overall rotation and translation. RMSD-

clustering was performed on the 22 residues that line the XPA binding site, namely those numbered: 106 -

112, 129, 140-146, 148, 149, 152, 153, 156, 172, and 174. These residues were clustered into groups of 

similar conformations using the atom-positional RMSD of the entire amino acid, including side chains and 

hydrogen atoms, as the similarity criterion. The cutoff was chosen after evaluation of the dependence of 

cluster populations against the total number of clusters using a range of 0.9-1.4 Å. Forty-four clusters were 

obtained and the six most dominant clusters represented approximately 48%, 8%, 6%, 5.5%, 4% and 3.8% 

of the whole ensemble, respectively. The centroid of each cluster, the structure having the smallest RMSD 

to all members of the cluster, was chosen as the cluster representative structure and was used as rigid 

template for docking experiment. 

 

C.4. Equilibrated ERCC1 Model 

A detailed representation of the conformational dynamics can be obtained by projecting the 

trajectory onto the planes spanned by the most dominant eigenvectors of the covariance matrix. The higher 

the occupancy of a conformational state in this projection, the lower the free energy of that state.4,5 

Therefore, by observing the regions at which many conformations cluster, one can predict the minimal 

energy conformations visited by an MD trajectory and estimate a representative conformation for these 

structures. The entire MD trajectory was projected onto the planes spanned by the first and second, the first 

and third and the second and third principal components (see results). The conformations residing within 

the global minimum region were used to predict an equilibrated binding site template.  The equilibrated 

model was compared to the most dominant cluster representative structure and has been appended to the set 

of conformations used in VS experiments. 
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C.5. Energy Evaluation of the ERCC1/XPA Interaction 

The trajectory of the ERCC1/XPA MD simulation was analyzed using the MMPBSA utility of 

AMBER10 to calculate the individual binding energies between residues within the XPA peptide and the 

ERCC binding site. The binding energy was further divided into individual residue contributions to 

recognize the key residues in the interaction between the two proteins. Following the identification of the 

significant residues, we carried out alanine scanning on these residues by performing MD simulation on 

substituted models and calculating the resultant binding energies. Consequently, residues essential for the 

interaction between ERCC1 and XPA were determined for subsequent flexible docking. 

 

C.5.1. Binding Free Energy 

Binding free energies between the ERCC1 and XPA peptides were calculated using the MM–

PBSA method as implemented in AMBER10.48 Following the equations described in section 3.7, binding 

energy analysis and energy decomposition for each snapshot was calculated using the SANDER module of 

AMBER10. The binding free energy between the XPA67-77 and the ERCC199-214 binding site can be 

approximated by:  

€ 

ΔGo = ΔGgas
ERCC1•XPA + ΔGsolv

ERCC1•XPA − {ΔGsolv
ERCC1 + ΔGsolv

XPA}  EQ. C-1 

 

C.6. Selection of Ligand Database 

For this study, the VCC was comprised of two main libraries, namely, the National Cancer 

Institute Diversity Set (NCDIS) and DrugBank-small-molecules. The two databases are described in 

chapter 3 (section 3.2.1). In addition, UCN-01, a compound that has been previously demonstrated to 

weakly inhibit the ERCC1-XPA interaction (see above), was used as a comparison during the screening 

experiments and for subsequent pharmacophore validation.6 

 

C.7. Ligand Screening 

Virtual screening on the ERCC1 binding site was performed using AutoDock, version 4.0. 

Hydrogen atoms were added to ERCC1 and ligands and partial atomic charges were then assigned using 

the Gasteiger-Marsili method.7 Atomic solvation parameters were assigned to the protein atoms using the 

AUTODOCK 4.0 utility ADDSOL. A docking grid map with 70x70x70 points and grid point spacing of 

0.375 Å was then centered on the XPA binding site within the ERCC1 receptor using AUTOGRID4.0 

program. Rotatable bonds of each ligand were then automatically assigned using AUTOTORS utility of 
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AUTODOCK4.0. Docking was performed using the Lamarckian Genetic Algorithm (LGA) method with an 

initial population of 150 random individuals; a maximum number of  energy evaluations; 100 trials; 27,000 

maximum generations; a mutation rate of 0.02; a crossover rate of 0.80 and the requirement that only one 

individual can survive into the next generation. A total of eight independent virtual screening runs were 

performed against the full set of docked ligands. The first used the minimized holo crystal structure of the 

ERCC1-XPA binding site with key residues, determined from previous MD experiments, set as flexible 

during the docking experiment. The other seven experiments utilized the six representative conformations 

of the dominant clusters produced from the clustering analysis along with the equilibrated model of the 

ERCC1 binding site as determined using principal component projections. 

 

C.8. Clustering of Docked Poses 

Following the procedure described in section 3.4.2, all docking results were iteratively clustered in 

order to identify the optimal number of clusters and their best clustering pattern (see results). 

 

C.9. RCS and Receptor Flexibility 

As described in chapter 3 (section 3.3), the relaxed complex scheme (RCS) is a hybrid technique 

that combines the rewards of docking algorithms with dynamic structural information provided by 

molecular dynamics (MD) simulations, therefore explicitly accounting for the flexibility of both the 

receptor and the docked ligands. To apply the RCS approach to the ERCC10-XPa case, we performed 7 

independent screening runs against rigid templates of the binding site within ERCC1. This set of 

conformations comprised of the central member cluster structures of the 6 dominant clusters that constitute 

about 75% of the whole MD trajectory along with the equilibrated model produced from PCA. Docking 

results were sorted by the lowest binding energy of the most populated cluster using the proposed ligand 

clustering technique. We only considered a compound among the top hits if the most populated cluster 

includes at least 25% of all docked conformations. The top 50 hits from each system were combined to 

produce an irredundant set of promising compounds. To validate and refine the virtual screening results, re-

docking experiments were performed on the combined hits into the rest of the 44 clustering representative 

structures, to accounts for 100% of the ensemble of the apo MD trajectory. Following the same docking 

procedure and parameter set described in the previous sections, docking poses were ranked using their 

weighted average binding energies (EQ. 3-4) and were used for further analysis.  
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C.10. Electrostatic Surface Calculations 

Electrostatic potentials for ERCC1 were calculated using the APBS program8 and mapped onto a 

reduced molecular surface with the VMD visualization program.9 ERCC1 was treated as a low dielectric 

medium surrounded by a high dielectric solvent (for water). The ionic strength was set to 0.1 M. The low-

dielectric region of the protein was defined as the region inaccessible to contact by a 1.4 Å sphere rolling 

over the molecular surface, defined by atomic co-ordinates of the MD structure and vdW radii taken from 

the all-hydrogen AMBER99SB force field. The electrostatic potential calculations employed a 

200x200x200 grid with a spacing of 0.5 Å. 

 

C.11. ERCC1-XPA Binding Site Pharmacophore 

To produce a final pharmacophore (section 2.2.2) for the XPA ERCC1 binding interaction, we used 

Accelrys Discovery Studio 2.1 (Accelrys Inc., 2008) to construct models for the top 30 poses collected 

from each of the top seven screening simulations. Pharmacophore generation involved using the 

catalyst/HipHop program to generate feature-based 3D pharmacophore alignments.10 This was 

accomplished by examining each separate pose for the presence of certain chemical features, followed by 

the determination of a three-dimensional configuration of the chemical features. Catalyst provides a 

predefined dictionary of chemical features found to be important in drug-enzyme/receptor interactions. 

These are hydrogen bond donors, hydrogen bond acceptors, hydrophobic group, ring aromatic and 

positive/negative ionizable groups. For the pharmacophore modeling runs, common features selected for 

the run were ring aromatic, hydrogen bond donor and acceptor, hydrophobic group and ionizable groups. 

Since we do not have access to any activity data for any of the compounds being screened, we adopted a 

strategy, where HipHop assumes that differences in activities will be related to the differences in other 

relevant factors like conformational energies, but not due to the absence of any important features required 

for binding. Merging and overlaying of each of the resulting pharmacophores was then accomplished using 

the clique detection algorithm combined with the Kabsch alignment approach.11 However, due to the vast 

structural dissimilarity of each of the ligands obtained from the docking stage, chemical features associated 

with each residue found within the ERCC1 binding site were tabulated and a pattern of interaction was then 

determined manually. 
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Appendix D: Methods For 
Chapter 6 

 
 

D.1. Molecular Dynamics Simulations 

The 8-kDa domain of polβ (residues 1-87) was taken from the PDB entry 1DK31. MD simulations 

were carried out using the NAMD program,2 at a mean temperature of 310K and physiological pH (pH 7) 

using the all-hydrogen AMBER99SB force field.3 Protonation states of all ionizable residues were 

calculated using the program PDB2PQR.4 Following parameterization, the protein was immersed in the 

center of a TIP3P water cube after adding hydrogen atoms to the initial protein structure. The cube 

dimensions were chosen to provide at least a 20Å-wide buffer of 17605 water molecules around the 

systems. To neutralize and prepare the simulated system under a physiological ionic concentration, 41 

chloride and 32 sodium ions were respectively added by replacing water molecules having the highest 

electrostatic energies on their oxygen atoms. The number of counter ions for each case was calculated by 

first estimating the amount of ions that is needed to set up the solvated system under normal physiological 

conditions (pH 7), followed by adding the number of chloride ions required to bring its net charge to zero. 

The fully solvated protein was then minimized and subsequently heated to the simulation temperature with 

heavy restraints placed on all backbone atoms. Following heating, the system was equilibrated using 

periodic boundary conditions for 100 ps and energy restraints reduced to zero in successive steps of the MD 

simulation. The simulations were then continued for 92 ns during which atomic coordinates were saved to 

the trajectory every 2 ps. The total simulation time was determined by visualizing the quality of sampling 

as predicted by PCA (see below). The RMSD (data not shown) and B-factors (see Figure 3) for the protein 

backbone were then computed over the last 10 ns of the MD simulation using the PTRAJ utility within 

AMBER10.5 Hydrogen bond analyses were performed by computing the average distance between donor 

and acceptor atoms. A hydrogen bond was defined by a heavy donor – heavy acceptor distance 

€ 

≤ 3.4  Å, a 

light donor-heavy acceptor distance 

€ 

≤ 2.5 Å, and a deviation of less than 

€ 

±60o  from linearity. 

Following the MD protocol mentioned above we prepared 300 MD simulations for each top hit 

that resulted from the ensemble-based screening (see Results). Parameters for ligands were assigned using 

the generalized AMBER force field6 and partial charges were calculated with the AM1-BCC method7 using 

Antechamber in the AMBER 10 package. Following parameterization, the protein/ligand complexes were 

subjected to MD simulations for a production phase of 2 ns. Snapshots were extracted every 2 ps and used 

for the MM-PBSA binding energy analysis. 
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D.2.  Clustering Analysis  

To generate a reduced set of representative polβ models, we performed RMSD conformational 

clustering with the average-linkage algorithm as implemented in the PTRAJ utility of AMBER10 using 

cluster counts ranging from 5 to 150 clusters. Structures were extracted at 2 ps intervals over the entire 

simulation times. All 

€ 

Cα
-atoms were RMSD fitted to the minimized initial structure in order to remove 

overall rotation and translation. RMSD-clustering was performed on the 21 residues contained in the PA 

(DNA) binding site (residues numbered: 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 63, 64, 65, 66, 67, 

68, 69 and 70). These residues were clustered into groups of similar conformations using the atom-

positional RMSD of the entire amino acid, including side chains and hydrogen atoms, as the similarity 

criterion. The optimal numbers of clusters were chosen after evaluation of the two clustering metrics, 

described in section 3.3.5, for different cluster counts (see Results). A total of 45 clusters were extracted 

from the trajectory. The centroid of each cluster, the structure having the smallest RMSD to all members of 

the cluster, was chosen as the cluster representative structure and the most dominant structures were used as 

rigid templates for the ensemble-based docking experiments (see Results). 

  

D.3.  Principal Component Analysis  

PCA was performed according to the same concepts and procedure described in chapter 3 (see 

section 3.3.4) 

 

D.4.  Selection of Ligand Database  

The National Cancer Institute Diversity Set (NCDIS),8 DrugBank-small-molecules,9 and a set of 

9,135 fragment structures were used as our test libraries of compounds. For more information about the 

NCI and DrugBank compound libraries see section 3.2.1. In addition, we included a set of 9,135 clean-

fragments compounds, downloaded from the ZINC database. These fragments have a Tanimoto coefficient 

of 70% (see section 2.3.1), molecular weight lower than 250 Da, xlogP lower than 2.5, number of rotatable 

bonds less than 5 and only a single stereoisomer and protonation state for each compound. 

  

D.5.  Ligand Screening  

Virtual screening on the PA binding site (which coincides with the DNA binding site)10 within 

polβ was performed using AutoDock, version 4.0.11 Hydrogen atoms were added to the protein and ligands 

and partial atomic charges were then assigned using the Gasteiger-Marsili method.12 Atomic solvation 

parameters were assigned to the atoms of the protein using the AutoDock 4.0 utility ADDSOL. Docking 
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grid maps with 118x98x104 points and grid point spacing of 0.26 Å was then centered on the PA binding 

site within polβ using AutoGrid4.0 program.11 Rotatable bonds of each ligand were then automatically 

assigned using the AUTOTORS utility of AutoDock 4.0. Docking was performed using the Lamarckian 

Genetic Algorithm (LGA) method with an initial population of 400 random individuals; a maximum 

number of 10,000,000 energy evaluations; 100 trials; 50,000 maximum generations; a mutation rate of 

0.02; a crossover rate of 0.80 and the requirement that only one individual can survive into the next 

generation. A total of eleven independent virtual screening runs were performed against the full set of 

docked ligands with all residues of the receptors set rigid during docking experiments. This set of polβ 

models comprises one structure that represents the minimized NMR conformation of polβ and ten 

conformations that represent ~85% of the MD trajectory (see Results).  

 

D.6.  Clustering of Docked Poses  

Clustering of docked poses followed the same procedure described in section 3.4.2. 

 

D.7.  Rescoring Of Top Hits Using MM-PBSA 

Binding free energies were calculated using the molecular mechanics Poisson-Boltzmann surface area 

(MM–PBSA) method13 as implemented in AMBER10 and described in section 3.7.  
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Appendix E: Methods For 
Chapter 7 

 

E.1. MD Simulations 

The amino-terminal domain of MDM2 (residues 25-109) bound to a 13-residue transactivation 

domain peptide of p53 (residues 17-29) was taken from PDB entry 1YCR.1 MD simulations were carried 

out using the NAMD program at a mean temperature of 310K and physiological pH (pH 7) using the all-

hydrogen AMBER99SB force field. Protonation states of all ionizable residues were calculated using the 

program PDB2PQR. Following parameterization, the MDM2 protein alone (subsequent to removing the 

p53-peptide from the p53-MDM2 crystal structure) or in complex with the p53 peptide was immersed in 

the center of TIP3P water cube after adding hydrogen atoms to the initial protein structure. The cube 

dimensions were chosen to provide at least a 20Å buffer of 12724 (12653) water molecules around the 

systems. To neutralize and prepare the p53-bound or (free) systems under a physiological ionic 

concentration, 30 (28) chloride and 23 (23) sodium ions were respectively added by replacing water 

molecules having the highest electrostatic energies on their oxygen atoms. The number of counter ions for 

each case was calculated by first estimating the amount of ions that is needed to set up the system in normal 

physiological conditions (pH 7), followed by adding the number of chloride ions required to bring its 

charge to zero. The fully solvated protein was then minimized and subsequently heated to the simulation 

temperature with heavy restraints placed on all backbone atoms. Following heating, the system was 

equilibrated using periodic boundary conditions for 100 ps and energy restraints reduced to zero in 

successive steps of the MD simulation. The simulations were then continued for 55 (78) ns during which 

atomic coordinates were saved to the trajectory every 2 ps. The total simulation time was determined by 

visualizing the quality of sampling as predicted by PCA (see below). The RMSD and B-factors for the 

protein backbone were then computed over the last 10 ns of the MD simulation using the PTRAJ utility 

within AMBER10. Hydrogen bond analyses were performed by computing the average distance between 

donor and acceptor atoms. A hydrogen bond was defined by a heavy donor – heavy acceptor distance 

€ 

≤ 3.4  Å, a light donor-heavy acceptor distance 

€ 

≤ 2.5 Å, and a deviation of less than 

€ 

±60o  from linearity. 

Following the same MD protocol mentioned above we prepared two equilibrated models for the 

PMI/MDM2 (PDB entry: 3EQS) and PMI/MDMX (PDB entry 3EQY) complexes.2 Parameters for ligands 

were assigned using the generalized AMBER force field and partial charges were calculated with the AM1-

BCC method using Antechamber in the AMBER 10 package. Following parameterization, the 

protein/ligand complexes were subjected to the same MD protocol we used before (see above) for a 

production phase of 2 ns. Snapshots were extracted every 2 ps and used for the MM/PBSA binding energy 

analysis. 
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E.2.  Extracting Representative Structures  

 
Following the procedure described in chapter 3 (section 3.3.5), clustering analysis was performed 

on the trajectories of the free and bound MDM2 MD simulations. To generate a reduced set of 

representative MDM2 models, we carried out RMSD conformational clustering with the average-linkage 

algorithm as implemented in the PTRAJ utility of AMBER10 using cluster counts ranging from 5 to 100 

clusters. For the two MDM2 simulations, structures were extracted at 2 ps intervals over the entire 

simulation times. All 

€ 

Cα -atoms were RMSD fitted to the minimized initial structure in order to remove 

overall rotation and translation. RMSD-clustering was performed on the 18 residues that line the p53 

binding cleft within MDM2, namely those numbered: 25, 26, 50, 51, 54, 58, 61, 62, 67, 72, 73, 93, 94, 96, 

97, 99, 100, 104. These residues were clustered into groups of similar conformations using the atom-

positional RMSD of the entire amino acid, including side chains and hydrogen atoms, as the similarity 

criterion. The optimal numbers of clusters for the two systems were chosen after evaluation of the two 

clustering metrics, described above, for different cluster counts (see results). Sixty clusters were obtained 

for the apo-MDM2, while thirty clusters were extracted for the holo-MDM2. The centroid of each cluster 

was chosen as the cluster representative structure and the most dominant structures were used as rigid 

templates for the ensemble-based docking experiments (see results).  

 

E.3.  Principal Component Analysis  

PCA analysis as described in chapter 3 (section 3.3.4) reduced the original Cartesian coordinates’ 

space of the MDM2 simulations into a reduced set of independent variables comprising that represent its 

essential dynamics. The same analysis was used to reassure the quality of sampling of the MD simulations 

(see results). 

 

E.4. Selection of Ligand Database 

The National Cancer Institute Diversity Set (NCDIS), DrugBank-small-molecules and a set of 

3,168 derivative structures for Nutlin-3, MI-219 and TDP665759 were used as our test libraries of 

compounds. The description of the NCIDS and DrugBank-small molecule libraries are presented in chapter 

2 (section 3.2.1). We also appended the set of derivative structures of MDM2-inhibitors to the docked 

compounds for two reasons. First, we wanted to build upon the intensive efforts that have been previously 

done and incorporate variations in the original structures for these inhibitors in order to improve their 

performance in binding to MDM2 and MDMX. Moreover, since we search for dual-MDM2/MDM4 

inhibitors, we expect that due to the structural similarity of the p53-binding sites within the two proteins, an 
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MDM4-inhibitor should be a derivative structure of the known MDM2-inhibitors. Based on this 

assumption, we created a library of 3,168 derivative structures similar to Nutlin-3, MI-219, and 

TDP665759 by searching the PubChem database and then extracting the results using a similarity that is 

greater than or equal to 90%.3 Compounds similar to the query structure are measured using the Tanimoto 

score (see section 2.3.1). A Tanimoto score of 100% represents an "exact match" to the provided chemical 

structure query, while a value of 0% means return all chemical structures deposited in the PubChem 

database. The threshold of >=90% is chosen for efficiency of search since similarity links in PubChem are 

pre-computed at this value. Also, at this threshold, the compounds that are returned by the search would not 

be very close from the original query structure and yet provide reasonable number of chemical structures 

for this work. Therefore, the full set of ligands used in this study comprised 6,617 different compounds.  

  

E.5.  Ligand Screening  

Virtual screening on the p53 binding sites within MDM2 and MDM4 was performed using 

AutoDock, version 4.0. Hydrogen atoms were added to MDM2, MDM4 and ligands and partial atomic 

charges were then assigned using the Gasteiger-Marsili method. Atomic solvation parameters were 

assigned to the atoms of the protein using the AutoDock 4.0 utility ADDSOL. Docking grid maps with 

€ 

126 ×108 ×126 points and grid point spacing of 0.21 Å was then centered on the p53 binding site within 

the MDM2 and MDMX receptors using AUTOGRID4.0 program. Rotatable bonds of each ligand were 

then automatically assigned using AUTOTORS utility of AutoDock. Docking was performed using the 

Lamarckian Genetic Algorithm (LGA) method with an initial population of 400 random individuals; a 

maximum number of 

€ 

10 ×106  energy evaluations; 100 trials; 50,000 maximum generations; a mutation 

rate of 0.02; a crossover rate of 0.80 and the requirement that only one individual can survive into the next 

generation. A total of twenty-eight independent virtual screening runs were performed against the full set of 

docked ligands with all residues of the receptors set rigid during docking experiments. This set of MDM2 

models comprises one structure that represents the minimized holo-crystal conformation of MDM2, 

twenty-two conformations that represent ~80% of the apo-MDM2 trajectory and five models that constitute 

~ 75% of the holo-MDM2 trajectory (see results). We also performed a VS run on an equilibrated model 

for MDMX using the top 300. 

 

E.6.   MDM2-Hits Resulted From The Ensemble-Base 
Screening  

 
Following the procedure described in section 3.4.2, all docking results from the MDM2 screening 

were iteratively clustered in order to identify the optimal number of clusters and their best clustering 

pattern (see results). The primary ranking of docking results employed the same criteria that were followed 
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for the ERCC1 case. That is, a ligand was considered as a top hit if the largest cluster of docking has at 

least 25% of the population of all docking solutions.  

 

E.7.  Rescoring Of Top Hits Using MM-PBSA 

 
All binding free energy analysis was calculated using the molecular mechanics Poisson-Boltzmann surface 

area (MM–PBSA) method as implemented in AMBER10. The equations and description of the method is 

illustrated in chapter 3 (section 3.7).  
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Appendix F: Methods For 
Chapter 8 

 

F.1. Generation Of The Mutated Structure 

Starting from Cho’s 1TSR1 wild type p53 crystal structure we used the software DeepView (Swiss 

PDB Viewer)2to create different mutant configurations. The program suggested different orientations for 

the side chain of the mutated residue. These side chain rotations are usually restricted to a number of pre-

defined experimental conformations stored in rotamer libraries. After exploring the rotational degrees of 

freedom for each generated structure we selected the most favorable configuration that had less satiric 

clashes and more hydrogen bonds with the surrounding residues. The most favorable mutant generated 

model was then handed to subsequent molecular dynamics simulations for its heating and equilibration at 

the targeted temperatures. 

 

F.2. Molecular Dynamics Simulations 

The wild-type and mutant structures both with (holo) and without (apo) the DNA were subjected 

to different molecular dynamics simulations over a temperature range of 25-370C employing the software 

NAMD3 at physiological pH (pH 7) using the all-hydrogen AMBER99SB force field.4 Protonation states of 

all ionizable residues were calculated using the program PDB2PQR.5 The three cysteine residues along 

with the histidine residue that are coordinating the Zn+2 ion were deprotonated. Following parameterization, 

and keeping co-crystallized water molecules in their locations in the initial 1TSR structure, the newly 

generated systems were immersed in the center of TIP3P water cube after adding hydrogen atoms to the 

original protein, DNA and water structures. The cube dimensions were chosen to provide at least a 20Å 

buffer of water molecules around the systems. To neutralize and prepare the protein-DNA complexes with 

a physiological ionic concentration, chloride and sodium ions were respectively added by replacing water 

molecules having the highest electrostatic energies on their oxygen atoms. The number of counter ions for 

each case was calculated by first estimating the number of ions that would be needed to set up the system at 

normal physiological conditions (pH 7), followed by adding the number of chloride (sodium) ions required 

to bring the net charge to zero. The fully solvated systems were then minimized and subsequently heated to 

the simulation temperatures with heavy restraints placed on all backbone atoms. Following heating, the 

systems were equilibrated using periodic boundary conditions for 100 ps and energy restraints were 

reduced to zero in successive steps of the MD simulations. The simulations were then continued for ~10 ns 

and for the last 1 ns, atomic coordinates were saved to the trajectory every 0.1 ps for subsequent collective 

dynamics analysis and binding energy calculations. 
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F.3. Clustering Analysis Protocol 

 

Clustering analysis followed the procedure described in section 3.3.5. 

 

F.4. Hydrogen Bonding Analysis 

Hydrogen bond analyses were performed using the visualization software VMD6 on the dominant 

structures extracted from clustering analysis. A hydrogen bond was defined by a cutoff distance of 3.5Å 

between a donor and acceptor atom and an angular deviation less than 500 from linearity. 

  

F.5. Binding Energy Analysis And Energy Decomposition 

Binding energy and it’s decompositions into residue contributions were calculated using the same 

procedure described in section 3.7 with the DNA molecule was considered as the ligand. 
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