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Abstract

Recognizing dialog acts of users is an essential component in building successful con-

versational agents. In this work, we propose a dialog act (DA) classifier for two of our

open domain conversational agents. For this, we curated a high-quality, multi-domain

dataset with∼24k user utterances labelled into 8 suitable DAs. Our fine-tuned BERT-

based model outperforms the baseline SVM classifier by achieving state-of-the-art

accuracy on the proposed dataset. Moreover, it generalizes well on unseen data. To

address the issue of data scarcity when training DA classifiers, we implemented dif-

ferent data augmentation techniques and compared their performance. Our extensive

experiments show that, in a simulated low data regime with only 10 examples per

label, methods as simple as synonym replacement can double the size of the existing

training data and boost accuracy of our DA classifier by ∼8%. Lastly, we demon-

strate how our proposed classifier and augmentation techniques can be adapted to

effectively detect dialog acts in languages other than English.
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Preface

Parts of Chapter 2 and 4 related to the creation of our dataset with 8

dialog acts and the development of our DA classifier has been submitted to

The 25th International Conference on Big Data Analytics and Knowledge

Discovery (DAWAK 2023) as a long paper titled ‘Exploring Dialog Act

Recognition in Open Domain Conversational Agents’.
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“Courage doesn’t always roar. Sometimes it is the little voice at the end of the day

that says ‘I’ll try again tomorrow’”

-Mary Anne Radmacher
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Chapter 1

Introduction

Human beings are inherently social. We like to exchange our thoughts and ideas

through communication. Without it, the evolution of government, art, clothing and

much more would not have been possible [17]. It is the building block of our rela-

tionships. Through frequent conversations, we convey our intentions, thoughts and

opinions to our peers and get things done [18]. Thus, as humans, we grow accustomed

to the everyday sentences we utter and the dialog acts we perform (assert, inquire,

order, etc.). In linguistics and particularly in natural language understanding, a di-

alog act is an utterance, in the context of a conversational dialog, which serves a

function in the dialog [19]. Types of dialog acts include a question, a statement, or a

request for action. Dialog acts are a type of speech act. In the philosophy of language

and linguistics, speech act is something expressed by an individual that simultane-

ously presents an information and performs an action [20]. For example, the phrase

‘I would like some sugar; could you please pass it to me?’ is considered a speech

act as it expresses the speaker’s desire to acquire the sugar, as well as presenting a

request that someone passes the sugar to them. Effective communication often relies

on recognizing the different dialog acts conveyed by each utterance and responding

accordingly. For example, someone asking a question expects an answer as a response

whereas someone giving an order expects its execution or an acknowledgment. How-

ever, it is not a trivial task given that the form and content of an utterance frequently
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depends on a number of factors. Two utterances might express different intents based

on how the speaker delivers them and on what context. For example: ‘He wants a

job.’ and ‘He wants a job?’ expect very different actions from the interlocutor (first

one is stated as a fact and second one demands a yes/no answer). Moreover, some-

times it becomes relatively difficult to categorize a certain utterance. For example:

‘Let’s go for a walk’ might be a suggestion or an order. Although dialog acts are

essentials of communicative life, they only became a topic of interest in the middle

of the 20th century not only within Philosophy, but also in other scholarly disciplines

like Artificial Intelligence (AI) [21].

The attempt to mimic human conversations using AI dates back to 1966 with the

advent of Eliza, a chatbot that uses pattern matching and substitution methodology

to simulate conversation [22] (see Appendix A for an overview of the history and

types of conversational agents). Although intended to be a mere caricature of human

conversation, users were soon treating ELIZA like a companion- confiding their most

intimate thoughts. Nowadays, with the development in machine learning algorithms,

such as deep learning and neural networks, AI tasks like Natural Language Gener-

ation, Speech Recognition, Text to Speech Synthesis, and Sentiment Analysis have

gained momentum. At present, chatbots are used as virtual assistants in different

fields to enhance productivity and reduce service costs. Recent studies have found

that, users often consider chatbots as friendly companions and not just mere assis-

tants. In fact, over 40% of user requests have been observed to be emotional rather

than informative [23]. How much trust a chatbot gains from its users depends on how

human-like the chatbot is, that is, how efficiently and effectively it can handle natu-

ral language. As a result, recognizing the dialog act of users to generate appropriate

responses has become an integral component in building a successful conversational

agent. As commercial spoken dialog systems became a reality in 1999, research on

classifying dialog acts have increased. A dialog system usually includes a taxonomy

of dialog types or tags that classify the different functions dialog acts can play.
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The Switchboard Dialog Act Corpus (SwDA) [24] is popularly used for training

such dialog systems in open-domain setting. It is a large hand-labeled database of

1155 two-sided telephone conversations with provided topics. It has a total of 43

dialog acts in its taxonomy (e.g, Statement-non-opinion, Statement-opinion, Appre-

ciation, Yes-No-Question, Wh-Question). The tags summarize syntactic, semantic,

and pragmatic information about the associated turns. The second biggest corpus

that is popularly used in this field of research is the ICSI Meeting Recorder Dia-

log Act (MRDA) Corpus [25], which includes over 180,000 hand-annotated dialogs

and accompanying adjacency pair annotations for roughly 72 hours of speech from

75 naturally-occurring meetings among 53 speakers. There are three sets of dialog

acts (DA) included: Basic (collapses all DA into 5 labels: Statement, BackChannel,

Disruption, FloorGrabber, Question), General (uses 12 tags) and Full (uses all 52

tags).

A number of works have used a variety of AI inference models or statistical models

to recognize and classify these fine-grained dialog acts with high accuracy. Formally,

dialog act classification is the task of classifying an utterance with respect to the

function it serves in a dialog. Notably among them, Colombo et al. [26] leveraged a

seq2seq model using a hierarchical encoder, a novel guided attention mechanism and

beam search for DA classification. Their proposed approach achieved an unmatched

accuracy score of 85% on SWDA, and SOTA accuracy score of 91.6% on MRDA. In-

spired by the observation that conversational utterances are usually associated with

both a DA and a topic, Li et. al. [27] proposed a dual-attention hierarchical recur-

rent neural network for DA classification. The model reached an unmatched accuracy

of 92.2% on MRDA and SOTA accuracy score of 82.3% on SWDA. Despite the high

accuracy scores, DA recognition remains a challenging task to accomplish. This is be-

cause, although a few DA annotation schemes have emerged as standards, more often

than not, DA tag-sets are extremely task-specific and need to be adapted accordingly.

This prevents the deployment of standardized DA databases and evaluation proce-
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dures. For example, with the aim of facilitating the development of an automated

dialog system for mental-health counselling, Malhotra et. al. [28] proposed a novel

dataset called HOPE consisting of 12.9K utterances curated from publicly-available

counselling session videos on YouTube. Given how different counselling and standard

conversations are, the authors used 12 carefully designed dialog-act labels that are

completely different from SWDA or MRDA in order to annotate their dataset. They

also proposed a transformer based model (SPARTA) which achieved an accuracy rate

of 64.75% on HOPE, surpassing all other baseline models. Likewise, with the goal

of developing better learning environments and virtual mentors, Gautam et. al. [29]

used 8 completely different DA labels to classify their dataset that comprises of con-

versations among students and mentors in Nephrotex (NTX), a virtual internship.

Quinn et. al. [30] similarly looked into improving their conversational agent, ANA,

by proposing 3 unique DAs: declarative, interrogative, and imperative to annotate

their dataset because they fit into ANA’s definition of a potential user utterance.

These works further prove how different speech acts can be depending on the task/-

domain at hand. As a result, concerns are raised about the generalization ability of

a model trained on an unseen DA dataset even if it achieves SOTA performance on

standard datasets like SWDA and MRDA.

Another challenge with dialog act classification is finding adequate training data

annotated with domain-specific DA tags. This is a universal problem in NLP where

most of the successful applications rely on supervised machine learning, which is no-

toriously data-hungry [31]. Generally speaking, the more labelled data is used to

train a model, the better it gets. Obtaining this data especially for new domains

or low resource languages, is often difficult, expensive, and time-consuming. As a

solution to this issue, a number of researchers have looked into generating new data

from existing ones. This is called data augmentation. More formally, data augmen-

tation are techniques used to increase the amount of data by adding slightly modified

copies of already existing data. The idea here is that the newly augmented dataset
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will be diverse enough to help smooth out machine learning models by reducing

overfitting. Augmentation methods are quite popular in the domain of Computer

Vision. Some of the widely used image augmentation algorithms include geomet-

ric transformations (rotation, flipping, cropping and scaling), colour augmentations

(brightness, contrast, saturation and hue), kernel filters, random erasing and feature

space augmentation [32]. Data augmentation has recently seen an increased interest

in NLP due to more work in low-resource domains, new tasks, and the popular-

ity of large-scale neural networks that require large amounts of training data. One

popular augmentation technique is EDA or Easy Data Augmentation. It uses four

simple approaches (synonym replacement, random insertion, random substitution,

and random deletion) to alter the original texts and generate new ones [33]. Another

technique called Back-translation leverages machine translation to paraphrase a text

while retaining its meaning [34]. This is done by translating the original sentence

to a target language and then translating it back to the source language. The idea

here is that the re-translated text will be a bit different from the original one. More

recently, Kumar et al. [35] proposed fine-tuning large pre-trained language models

(BERT/GPT2/BART) to generate additional training data while preserving the class

label. Upon using data augmentation, a number of researchers have reported improve-

ment in model performance on a wide range of NLP tasks including text classification

[36], summarization [37], and question-answering [38]. To address data scarcity and

lack of diversity in DA classification task, researchers Kumar et al. [35] and Lai et

al. [39] applied augmentation techniques like paraphrasing and substitution and re-

ported improved model performance. Data augmentation was especially found useful

in low-data regimes [35, 36]. However, such techniques must be chosen with extra

caution, for the task of Sentiment Analysis, synonym replacement might work bet-

ter than random deletion since the latter may change the meaning of the sentence

entirely. Adding such a sentence to the training data that no longer preserves the

original label may instead hamper the overall model performance.
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Classifying the general user intent in a conversation, also known as dialog act, is a

cruicial step in NLU for conversational agents. In this work, we propose a dialog act

classifier for open-domain conversational agents. We first identify the relevant dialog

acts for our existing chatbots (MIRA and ANA) and then curate a corresponding

large-scale high-quality dataset of approximately 24K utterances. Each utterance

of the dataset belongs to one of our eight proposed dialog acts, Statement, Factual

Question, Yes/No Question, Direct Order, Indirect Order, Greetings, Feedback, and

Apology. We later used an SVM classifier as a baseline and fine-tuned a pretrained

BERT-base model for our DA classification task. Support Vector Machine (SVM)

is a popular supervised learning algorithm used for classification problems. It works

by creating a decision boundary that best segregates an n-dimensional space into

classes. On the other hand, BERT is a transformer-based architecture which uses

bidirectional training in order to have a deeper sense of language context. It simul-

taneously takes the previous and the next tokens into account and learns the text

representations. Upon training, our BERT-based DA classifier achieves an accuracy

of 99%, outperforming the baseline by 3%. We then address the problem of curating

large-scale datasets by looking into a number of data augmentation techniques suit-

able for DA classification. By creating a low data regime (using only 10 examples per

label), we show how data augmentation techniques as simple as synonym replacement

can help the classifier yield an accuracy of 86%. Furthermore, on a small DA dataset

translated to French, such methods can boost our model performance by 4%.

1.1 Thesis Statement

In this dissertation, we focus on building a classifier for open-domain conversational

agents to accurately predict the dialog acts of users. This is done by addressing the

two major issues related to DA classification: identifying DA tags suitable for our

dialog system and dealing with scarcity of training data. To attain our objective, we

first perform literature survey to identify suitable DA tags for two of our pre-existing
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chatbots (MIRA and ANA). We then automatically extracted subsequent examples

for each tag from rich and diverse data sources to avoid mislabelling and to mini-

mize human-error. The end product is a high-quality, large-scale DA dataset that

spreads across multiple domains. We then fine-tuned the widely used state-of-the-art

BERT-based model for our DA classification task. It outperformed our baseline SVM

classifier and achieved a high accuracy on the proposed dataset. Given how difficult it

is to gather massive amounts of annotated training data, we experimented with aug-

mentation techniques suitable for DA classification and successfully improved model

performance in low data regime. With the aim of building multilingual conversational

agents, we also demonstrated how our classifier can be adopted to effectively detect

dialog acts from French utterances.

1.2 Thesis Contributions

In this dissertation, we look into the use of data augmentation techniques when

classifying dialog acts in conversational agents across multiple domains. In summary,

the key contributions of this work and the new knowledge gained are as follows:

1. We proposed a taxonomy of 8 dialog acts suitable for our open-domain conver-

sational agents and presented a corresponding high-quality, large-scale dataset

of 24k user utterances,

2. We proposed a fine-tuned BERT-based model for the dialog act classification

task and it outperformed our baseline SVM classifier by achieving a high accu-

racy,

3. We experimented with and compared a number of data augmentation techniques

for different NLP tasks and showed how these methods can be successfully used

to improve model performance for dialog act classification in low data regime,

4. We demonstrated how our proposed classifier and augmentation techniques can
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be adapted to accurately detect dialog acts from non-English utterances like

French.

1.3 Thesis Outline

The thesis is organized as follows:

In Chapter 2, we provide an overview of the datasets that are popularly used to

train models for DA classification. We detail how these corpora were developed and

the DA tag-sets that they used. Moreover, we introduce our proposed hierarchical

taxonomy of 8 dialogue acts and present our corresponding dataset of 24k utter-

ances. Details about data collection and preprocessing steps are also provided in this

Chapter.

In Chapter 3, we provide a summary of the state-of-the-art DA classification models

and include details about the model architecture. Next, we give a thorough back-

ground review of deep learning approaches for NLP. In particular, we start by ex-

plaining the basics of neural networks and then we move forward to discuss more

advanced techniques like Recurrent Neural Network and Seq2Seq architectures.

Chapter 4 starts off by explaining in detail the architecture of our Bert-based

classifier and SVM baseline for DA classification. Furthermore, we define several

evaluation metrics for assessing the DA classifiers. Next, we exhaustively evaluate

our machine learning models and analyze the results.

In Chapter 5, we provide a brief overview of some of the most prominent and

the most recent augmentation techniques in the field of NLP. We then present a

comparative analysis by applying a number of data augmentation techniques on a

wide range of NLP tasks to show how much they can improve model performance.

Chapter 6 investigates the benefit of using data augmentation for DA classification

in both English and French dataset. We first look into improving the performance

of our baseline classifier by applying data augmentation for minority classes. Next,

to fully utilize the potential of data augmentation, we create a low data regime and

8



analyze the performance of our classifier with and without it. Lastly, we demonstrate

how these techniques can be adapted to augment non-English datasets to improve

our classifier performance on French utterances.

Finally, in Chapter 7, we summarize the results and the proposed contributions,

address our limitations, and explore future works in the direction of dialog act clas-

sification for open-domain conversational agents.
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Chapter 2

Dialog-Act Identification

Building conversational AI is a long-standing challenge in the field of NLP. Human

conversations are inherently complex and ambiguous. Training a dialog system that

understands the semantic and syntactic nuances and generates natural and engaging

response is still difficult to achieve. However, recent works have shown the promise

of combining dialog acts or speech intents for neural response generation [40]. Dialog

acts can help conversational agents by providing a representation of the underlying

meaning of a user’s utterance. In order to drive the research on building better dialog

systems, a number of conversational corpora have been released in the past. Such

corpora usually consist of annotated dialogs in terms of speech or dialog acts that

typically follow one of two paths [41]. The first path is task-oriented and categorizes

speech acts for accomplishing a specific task in a domain. For example, the ATIS Air-

lines dataset which consists of audio recordings and corresponding manual transcripts

about humans asking for flight information on automated airline travel inquiry sys-

tems [42]. The data consists of 17 unique intent categories related to inquiring about

and/or booking flights. The second path aims for a more general coverage of day

to day conversational dialogues. For example: the SWDA dataset which annotates

speech acts for two-sided telephone conversations among 543 speakers from all areas

of the US [43]. Given that both of our chatbots encourage open-ended conversations

with users, our work mostly focuses on identifying dialog acts that follow the sec-
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ond path of research. This section gives an overview of some of the most prominent

corpora used for classifying dialog acts in open-domain setting.

2.1 Related Works

Switchboard and MRDA are two of the most popular datasets used to train models for

dialog-act detection. The Switchboard Dialog Act Corpus (SwDA) [43] extends the

Switchboard-1 Telephone Speech Corpus, Release 2, with turn/utterance-level dialog-

act tags [24]. The 43 tags used summarizes the syntactic, semantic, and pragmatic

information about the associated turns. The SwDA project was undertaken at UC

Boulder in the late 1990s with the goal of building better language models for auto-

matic speech recognition. Given the minor distinction between some of the tags (like

Statement-Opinion vs Statement-Non Opinion) and the fact that the dataset is highly

unbalanced (Statement Non Opinion has 75145 utterances vs Thanking has only 78

utterances), it prompts a challenge to language models for proper identification of

the dialog acts. Other notable tags in this corpus include Open-Question, Rhetorical

Question, WH-Question, Yes/No Question, Apology, Summarize, and Appreciation.

This corpus also has some tags that are unnecessary, confusing and/or not applica-

ble for other domains (e.g., Non-verbal, Hedge, Conventional-closing, Collaborative

Completion, Downplayer Maybe/Accept-part, etc.). Another famously used dataset

for dialog intent detection is the Meeting Recorder Dialog Act Corpus (MRDA) [25].

The DA tagset for this dataset is just a modified version of the SWBD-DAMSL

tagset. The whole dataset is annotated with three types of information: marking

of the dialog act segment boundaries, marking of the dialog acts, and marking of

correspondences between dialog acts. It consists of about 75 hours of speech from 75

naturally-occurring meetings among 53 speakers. As mentioned previously, the tags

are subdivided into 3 sets: Basic (collapses all DA into 5 labels), General (collapses

all DA into 12 labels), and Full (all 53 DAs). A language model can be trained to

either identify only the basic/the general tags or all 53 tags, depending on the level of
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granularity required. Apart from SWDA and MRDA, a number of authors have also

put forward DA annotated datasets for a wide range of tasks and domains. For ex-

ample: Budzianowski et al. [44] proposed MultiWOZ- a Multi-Domain Wizard-of-Oz

dataset which contains fully-labeled human-human written conversations spanning

over multiple domains and topics. The proposed data-collection pipeline was based

on crowd-sourcing and did not require hiring professional annotators. The authors

show the usability of this dataset by presenting a set of benchmark results for belief

tracking, dialog act and response generation. The 10k dialogues in this corpus are

divided into 13 dialog acts, notable among which are inform, request, select, recom-

mend, not found, welcome, greet and bye. Moreover, the corpus has dialogues that

span over 7 common domains, such as Attraction, Hospital, Police, Hotel, Restau-

rant, Taxi and Train. With the aim of improving the research field of dialog systems,

Li et al. [45] proposed DailyDialog, a high-quality multi-turn dialog dataset of ap-

prox. 13k utterances which resembles casual conversations that human beings have

in their day to day life. The largest three categories of conversations include Rela-

tionship (33.33%), Ordinary Life (28.26%), and Work (14.49%). The dataset is less

noisy and is manually annotated with dialog intents and emotion information. The 4

dialog intents are very straightforward and follow the criteria proposed by Amanova

et al. [46]: Inform (includes statements and questions that provide information),

Questions (includes dialogues that seek information), Directives (includes acts like

request, instruct, suggest and accept/reject offer), Commissive (includes acts like ac-

cept/reject request or suggestion and offer). With the aim of jointly modelling mutual

relationships and integrating intention information, Peng et al. [47] extracted 2046

conversations from DailyDialogue and classified the dialog acts into seven categories:

request, suggest, command, accept, reject, question and inform. Their qualitative

analysis verified the importance of mutual interaction between intention and emo-

tion. As user intents change with the change in domain/topic, proposed schema for

dialog acts need to be adjusted accordingly. This is inconvenient when it comes to
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training a dialog system that generalizes well on multiple domains. To tackle this

issue, Paul et al. [48] proposed a Universal DA schema for task-oriented dialogs to al-

low training a Universal DA tagger for a multitude of dialogs. Their proposed schema

has 20 universal DA tags, including acknowledge, affirm, bye, deny, inform, repeat,

request, restart, thank-you, and user-confirm. To make the transition easier, they

also propose manual and automated approaches for aligning the different schema.

More recently, there has been a rise in the number of conversational agents designed

to provide social and emotional support in healthcare and personal lives [49]. With

the intention of progressing the development of automated dialog system for mental-

health counselling, Malhotra et al. [28] proposed HOPE, a novel dataset curated

for dialogue-act classification in counselling conversations. The authors proposed

12 domain specific dialogue-act labels based on the data they gathered (transcripts

of counselling session videos on YouTube). The 12 DA labels are separated into 3

groups, Speaker initiative labels (Information Request, Yes-No Question), Speaker

responsive labels (Information Delivery, Positive Answer), and General (Greeting,

General Chit-Chat). The authors also proposed SPARTA, a novel transformer-based

speaker and time-aware joint contextual learning model for DA classification on the

HOPE dataset. Similarly, Welivita et al. [40] proposed a large-scale taxonomy for

empathetic response intents in order to help open-domain conversational agents gen-

erate socially acceptable responses. The authors manually labeled 500 utterances

from an empathetic dialog dataset with 15 Empathetic Response Tags, such as Con-

soling, Encouraging, Sympathizing, Wishing, Suggesting, Advising, Expressing care

or concern, and Expressing relief. They hope that the dataset will help chatbots

generate prosocial conversations that are engaging and empathetic to users. Saha

et al. [50] emphasize the influence of non-verbal cues and emotional state of speaker

when classifying dialog acts and propose a new multimodal Emotion aware Dialog Act

dataset called EMOTyDA. It was curated with utterances from the MELD [51] and

the IEMOCAP [52] dataset and used 12 of the 42 intents introduced in the MRDA

13



dataset. Like the previous authors, they also built an attention-based multi-modal,

multi-task Deep Neural Network for joint learning of DAs and emotions. Quinn et al.

[30] similarly proposed 3 dialog acts: Declarative, Interrogative, and Imperative for

their chatbot, ANA, which communicates with the elderly and tries to improve their

quality of life.

A number of conversational agents are also used for online educational games,

courses and interactive virtual internships. As such, the dialog intents for this domain

are very different from the ones discussed previously. Gautam et al. [29] proposed

8 speech acts after analyzing 22k chat utterances in Nephrotex virtual internship in

order to better understand the actions or intents behind each utterance in the conver-

sations between interns and mentors. Notable DA tags include expressive evaluation,

greeting, question, reaction and request. Samei et al. [53] looked into classifying

speech acts in intelligent tutoring systems in order to inform the system’s response

mechanism. The authors extracted 26K mentor-student chat utterances from seven

Land Science games and adjusted the training data to include an even distribution of

30 instances per speech act category. The categories include: Statement, Question,

Reaction, Request, MetaStatements, Greetings, and ExpressiveEvaluation. Upon

experimentation, they discovered the importance of context in automatically pre-

dicting speech acts. Arguello et al. [54] did something similar with massive open

online courses (MOOCs) where students interact with each other and the course staff

through online discussion forums. They categorized 2943 individual messages into

seven speech acts (question, answer, issue, issue resolution, positive and negative ac-

knowledgment, other) to help instructors answer questions, resolve issues, and provide

feedback more efficiently.

Several researchers have also focused on detecting speech acts in emails and online

meetings. For example, the AMI meeting corpus [55] is a multi-modal dataset con-

sisting of 100 hours of meeting recordings annotated with 15 DAs that involve special

classes to allow complete segmentation, information exchange, possible actions, and
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social acts. Cohen et al. similarly [56] presented an ontology of ‘email speech acts’

to capture important properties of emails like negotiating and coordinating joint ac-

tivities. They classified 15K fake emails sent back and forth between MBA students

into 7 speech acts: Request, Deliver, Commit, Propose, Directive, Commisive, and

Meeting. Embar et al. [57] focus on extracting action items from online meetings and

classified them into 4 categories: Commitments, Directives, Acknowledgement, and

Elaborate. They further split Directive and Commitment tags into in-meeting and

post-meeting based on whether those were resolved during the meeting or need to be

resolved afterwards. They trained the RoBERTa model on the annotated dataset of

50,000 sentences and achieved an accuracy of 82%.

Some researchers have also looked into classifying speech acts of conversations

from social websites like Twitter and Stack Exchange. Vosoughi et al. [58] consid-

ered recognising speech acts of Tweets by treating it as a multi-class classification

problem. The authors collected a total of 7563 Tweets relating to 6 topics and 3

types and using Searle’s speech act taxonomy [59], they established a list of 6 speech

act categories: Assertion, Recommendation, Expression, Question, Request, and Mis-

cellaneous. Similarly, Zhang et al. [60] manually annotated a total of 8613 tweets

as Statement, Question, Suggestion, Comment, or Miscellaneous. Using a set of

word-based and character-based features, their model achieved an average F1 score

of nearly 0.70 on the dataset. With the goal of building more generalized conver-

sational models, Penha et al. [61] proposed a large-scale multi-domain information

seeking dialog dataset. They used a total of 9 DA categories for almost 80K con-

versations across 14 domains extracted from Stack Exchange. The conversations are

either questions (Original question, Follow Up Question, and Information Request),

answers (Potential Answer, and Further Details), gratitude (Greeting/Gratitude) or

feedback (Positive Feedback, and Negative Feedback). Their proposed DA taxonomy

was initially coined by Qu et al. [62] for their MSDialog dataset consisting of 10,000

utterances from an online forum on Microsoft products. Wood et al. [63] was more
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specific and addressed the problem of speech act detection in conversations about

bug repair. They conducted a “Wizard of Oz” experiment with 30 professional pro-

grammers and tasked them with solving bugs for two hours while using a simulated

virtual assistant for help. Upon analysing 30 two-hour conversations, they uncovered

26 speech act types like syntaxQuestion, parameterQuestion, unsureAnswer, confir-

mation, instruction and more.

Most of the proposed DA tagsets so far rely upon human-human conversations for

training dialog systems. Given how differently humans interact with other humans vs.

with machines, Yu et al. [64] proposed a dialog act annotation scheme called MIDAS

based on human-machine conversations in open domain setting. MIDAS supports

multi-label annotations, provides context completeness and follows a tree structure.

Figure 2.1 and 2.2 show how the 23 DAs are distributed under the two sub trees-

semantic request and functional request. The authors also collected and annotated

24k segmented sentences with their proposed schema and used transfer learning to

train a multi-label dialog act prediction model on it which achieved an F1-Score of

0.79.

Like the previous works, this thesis aims towards building conversational agents

that respond naturally through accurate detection of user DA. In particular, we focus

on building a DA classifier that is applicable for our pre-existing text-based chatbots-

ANA and MIRA. Apart from answering questions and sending reminders, Automated

Nursing Agent or ANA aims to have a fluent and personalized conversation with the

elderlies [30]. On the other hand, MIRA is a Mental Health Virtual Assistant which

provides mental health resources to health care workers [65]. It also has a module

called ‘Chatty MIRA’ which allows users to have open-ended conversations with the

chatbot. Given the difference in domain and task intents, our goal is to propose a

dialog act schema that is common to both. The next section gives a more detailed

explanation on how the DA tagset was chosen.
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Figure 2.1: Semantic request tree. Scheme types, classes, categories, sub-categories
and dialog act tags are in green, blue, purple, yellow, and red respectively. Most tags
can co-occur in one utterance (exception: tags under opinion, statement non opinion,
question, and answer categories) [64]

Figure 2.2: Functional request tree [64]
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2.2 Initial Taxonomy (Three Dialog Acts)

The first step towards building a DA classifier for a conversational agent is identify-

ing the different dialog acts a user may perform. For this, we reviewed the existing

literature on dialog systems to identify DAs that are common and might be suitable

for our chatbots. Accordingly, we recognized a number of frequently occurring DAs

such as Question (Yes/No, Factual, Tag, WH), Statement (Opinion, Non-Opinion),

Greeting, Apology, Command, Request, Gratitude, Accept, Reject, Wish, and Sug-

gest, and took them into consideration. However, for the purpose of simplification,

we initially took inspiration from the work by Quinn et al. [30] where they had di-

vided the dialog acts into 3 broad categories: Interrogative (e.g., What’s the weather

like today?), Imperative (e.g., Call my doctor) and Declarative (e.g., I am 57 years

old). Although straight-forward, this taxonomy is inclusive and can easily classify

any user utterance under one of the three categories. This also makes the DA tagset

generalized enough to be applied to any domains and easy enough to be aligned with

schema from previous works. With all this in mind, we decided to move forward with

these three dialog acts for both of our chatbots.

The next step towards building a dialog act classifier for our chatbots is curating

a training dataset based on the proposed DA tagset. Intuitively, we decided to use

the dataset proposed by Quinn et al. [30] for training our model. However, this was

not possible because, although the authors had mentioned extracting their data from

a number of websites such as ‘uselessfacts.net’, ‘wikihow.com’ etc., the final training

dataset was too small, with only around 1500 sentences. When trained on such an

insufficient amount of data, their SVM classifier performed poorly, with a reported

accuracy of only 82%. Moreover, upon manual investigation, we found out that the

dataset was very noisy with many mislabelled sentences. As a result, we decided to

extend their work by addressing the limitations and creating a new dataset that has

a large number of examples for each label (Interrogative, Declarative/Statement, and
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Dataset Dialog Act Train Data Test Data Distribution Example

Ours Imperative (I) 9825 2456 27% Complete the photo shoot.

Kevin et al 367 88 31% Throw me the ball.

Ours Question (Q) 11629 2908 31% What are the income taxes in Canada?

Kevin et al 237 61 20% So when are you leaving camp?

Ours Statement/Declarative (S) 15645 3911 42% Residents of Kansas are called Kansans.

Quinn et al 653 73 49% More people are killed each year from bees than from snakes.

Table 2.1: Overview of our proposed training and test dataset

Imperative) and little to no mislabels. The hope is that a larger, cleaner, and more

diverse training dataset will help improve model performance. Last but not the least,

for further yield in accuracy, we train a state-of-the-art BERT-base model for DA

classification and compare it with the performance of a classic SVM classifier.

2.2.1 Data Source

We extensively looked into a number of pre-existing datasets and websites and used

multiple rules to extract suitable examples for each of our dialog acts. Table 2.1

provides details on the number of training and test samples we gathered per class

along with an example. Below, we list down all the data sources we had used for each

DA:

1. Statement: We curated training and test examples from sources that are most

likely to contain statements/opinions. Examples include Wikipedia Articles,

Daily Dialogue [45], Amazon Product Reviews, and IMDB Movie Reviews [66].

During extraction, we made sure the extracted sentences followed the common

subject + verb + object structure (‘She played the role of Annie’) or a varia-

tion of it (‘I am trying very hard.’). More importantly, we ensured that these

sentences do not follow the rules that we had used to identify questions and

imperatives.

2. Imperative: We studied a number of literature to get an idea of the rules that

can be used to accurately identify imperatives. Abdul-Kader et al. [67] in

their work only considered sentences that begin with the base-form of a verb
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(e.g., ‘Play music’). But this leaves out a good portion of imperative sentences

that do not follow this rule, such as ‘Hey Alexa, please tell me a joke’. Mao

et al. [68] in their work, included two more rules that are useful in detecting

imperatives. One of them being identifying sentences that have a verb in its

lemma (base) form and is the root and does not have any subject child in

its dependency structure, ‘Just practice programming thoroughly’. Another

rule involved recognizing the use of a personal pronoun (you) followed by a

modal verb (should, must, and need to) as an imperative, ‘You should study

hard.’ After merging these rules, we identified and extracted training and test

examples from websites and pre-existing datasets Friends TV series subtitles,

Reddit posts, Tweets, Movie Subtitles, and HowTo datasets. However, due to

the limitation of NLP libraries like Spacy, these rules sometimes tag incorrect

sentences as imperatives, so tweaks to the rules were made as per the dataset

in hand.

3. Interrogative: For extracting questions/interrogative sentences, we mostly lever-

aged pre-existing datasets that are widely used for NLP question-answering

tasks, including SQUAD [69], and TREC[70].

In the end we were able to curate a training and test dataset with a total of 37099

and 9275 examples. To put into perspective, our dataset is approximately 31 times

larger than Quinn et al. [30]. Given the size of the dataset and the number of rules

used to extract them, misclassification of examples during extraction is a legitimate

concern. In order to ensure that the extracted dataset is clean and contains minimal

misclassification, we took the help of 5 annotators. The annotators were first provided

with the definition of the three dialog acts and then each of them were given 100

random examples from each label and were asked to check whether the sentences

belonged to the corresponding class. In case of disagreement between annotations, it

was resolved through open discussion that led to the re-evaluation of the definitions
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and coming to a unanimous decision. The experiment was repeated 20 times and

on an average, the data was found to be 91% clean (i.e., only 9% of the data was

mislabelled).

One important thing to note is that, all the sentences in our dataset are stripped

of punctuation marks. This is because most of our users do not use proper punc-

tuation marks when chatting with our chatbots. Without punctuation, the task of

identification becomes much more difficult for the classifier. This is because usually

if a sentence had ended with a question mark, we could assume it is a question. For

the sake of simplicity, like Quin et al., we assume a sentence can only belong to one

class. However, this is not always true in practice. For example, the sentence ‘Do

you have the time?’ can be a request (imperative) or question (interrogative).

We used it to train the SVM baseline as well as our pretrained BERT-based clas-

sifier and evaluated their performance. Both achieved high accuracies (well above

90%), which surpassed that of Quinn et al. More details about the experimental set

up and the results are provided in Chapter 4.

2.3 Proposed Taxonomy (Eight Dialog Acts)

Our newly curated large-scale dataset with three dialog acts (Interrogative, Impera-

tive, and Declarative) fulfilled our initial goal and improved the performance of both

of our DA classifiers. However, we soon realised that our DA tagset was too general

and failed to capture a number of cases that require different responses from the

chatbot. For example, ‘Can penguins fly?’ and ‘What is the name of our galaxy?’

are both questions. However, the first one expects a yes/no answer from the chat-

bot, whereas the second one expects a factual answer. In order to generate better

responses, our chatbots need to learn how to distinguish between the two. In other

words, our proposed DA tagset needs to be more inclusive to handle user acts like

this. Another limitation of our dataset revolves around the data sources themselves.

Upon analysis of the examples for each label, we soon realised that a lot of the sen-
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tences were not reflective of the type of conversations a user would have with our

chatbots. For example, ‘Don’t go out in the sun’ is an imperative sentence but it

is not an order a user would give to a chatbot. Similar is the case with including

too many sentences from Wikipedia or news articles. Although these are convenient

sources of Declarative sentences, the statements are often too long, formal, and not

representative of how human beings converse. To make our chatbots more capable

of recognising user intents, it is necessary to use data sources that have utterances

that a user is more likely to use when chatting with a conversational agent. Taking

all these into consideration, we decided to expand our previous taxonomy and change

our data sources. For this, we first investigated the existing literature and identified

the dialog acts that are common in multiple domains. Next, we looked into the chat

history between our users and chatbots in order to have an idea of the types of dialog

acts to consider. Finally, we had iterative discussions with our cross-functional team

comprising of people from Computer Science, Health Science, and Psychology. In the

end, we selected the following eight dialog acts and categorized them into a hierarchy

for a better understanding. We may extend the number of dialog acts in the future

if deemed necessary. Table 2.2 provides examples for each of the dialog acts and the

later sections talk in depth about our new sources of data.

1. Apology: Includes sentences through which the user expresses apology.

2. Greeting: Includes sentences through which the user greets the chatbot either

at the beginning or towards the end of a session.

3. Informative: Includes queries asked by the user with the intention of gaining

some information. Depending on the type of response, questions can broadly

be of 2 types:

(a) Yes/No: Includes close-ended queries that can be sufficiently answered

with a simple yes or no.
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Dialog Act Sub Category Example

Apology Sorry about that!

My bad.

Greeting Hey, how are you?

Bye, see you soon!

Informative Yes/No Question Is it possible to treat ADHD?

Factual Question What year did Bangladesh achieve their independence?

Name the best therapist in my area.

Directive Direct Order Show me the list of hospitals nearby.

Indirect Order I need help with managing anxiety.

Can you turn on the music please?

Statement I am being bullied at school lately.

I like spending time with my family.

Feedback This is exactly what I was looking for! Thanks.

This not what I wanted. You suck!

Table 2.2: Selected dialog acts with examples

(b) Factual: Includes open-ended queries that seek fact-based answers. A

majority of these questions are WH-questions but utterances like ‘Name

the highest rated therapist in my area’ are also included here due to the

similarity in user intent.

4. Directive: Includes orders given by the user to the chatbot for accomplishing a

task. This again can be of two types:

(a) Direct Order: Includes straightforward orders that are easy to detect, un-

derstand and carry out.

(b) Indirect Order: Includes utterances that indirectly expect or request some

type of action. These are a bit difficult to comprehend and might require
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the chatbot to first make an assumption and then prompt for a confirma-

tion before execution. For example: ‘I need help with managing anxiety’

or ‘Can you help me manage my anxiety?’ can be interpreted as ‘Show me

resources for managing anxiety’.

5. Statement: Includes user utterances that do not request for an action or infor-

mation. Rather, these are dialogs through which the user casually converses

with the chatbot. By analyzing the emotion behind these utterances, the chat-

bot can either choose to give a sympathetic response or ask follow-up questions.

6. Feedback: Includes feedback from the user once the chatbot accomplishes a

task (e.g., carries out an order or answers a question). Feedback can be positive

(when the chatbot is successful) or negative (when the chatbot is unsuccessful).

By detecting the sentiment behind it, the chatbot can either thank the user or

apologize and/or attempt the task again.

2.4 Data Source

Since we plan on developing a DA classifier applicable for both of our chatbots, we

need our training dataset to be both versatile and general. For this, we decided to

include examples that are not only related to mental health (for MIRA) and popular

chatbot commands (for ANA), but also common domains like banking, air lines, or

product reviews etc. The idea here is that the difference in user intents will add

variation in structure and make the dataset more diverse. As for extracting the

examples themselves, we first looked at the popular DA datasets that are available

online. Some of them had examples for tags that are similar to ours whereas for the

rest, we had to scrap various websites and forums. It is to be noted that, during data

collection, we decided to include only those examples that followed our definition

of each of the dialog acts. To avoid dominance of a particular domain or type of

sentence, we made sure not to include too many examples belonging to the same
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Dialog Act Sub Category Train Examples Test Examples % Distribution

Informative Yes/No 3385 847 17.31

Factual 3697 924 18.89

Directive Direct Orders 3125 781 15.97

Indirect Orders 5400 1349 27.60

Statement 3250 812 16.61

Greetings 239 60 1.22

Feedback 392 98 2

Apology 73 18 0.4

Table 2.3: Overview of our proposed training and test dataset

domain or sentence structure. A detailed description of each of the data sources that

were used has been provided in Table 2.4. Below, we give a brief overview of that:

1. Informative: We mostly used popular question-answering datasets, a few task-

completion datasets and mental health FAQ websites.

(a) Yes/No Question: BoolQ [71], SNIPS [72]

(b) Factual Question: SNIPS[72], SQUAD [69]

2. Directive: We used task-completion dialog intent datasets to collect Direct and

Indirect Orders. Simple extraction rules were used to distinguish between the

two. Datasets include Taskmaster [73], SNIPS [72], ATIS [42] and ACID [74]

to name a few.

3. Statement: We mostly used the dataset shared by a mental health forum

called ‘Counsel-Chat’, which consists of anonymous user posts related to men-

tal health. We also included some examples from Wiki-Article, IMDB Movie

Review and Amazon Product Review datasets.

4. Feedback, Apology, and Greeting: We scraped a few basic English learning

websites to extract positive and negative appraisals, apologies and greetings.
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Dataset Description Used In Examples

BoolQ [71] A question answering dataset for yes/no questions containing 15942 examples. The
questions are naturally occurring and were generated in unprompted and uncon-
strained settings

Yes/No Do iran and afghanistan speak the same language?

SNIPS [72] A dataset of over 16,000 crowdsourced queries distributed among 7 task-oriented user
intents of various complexity (SearchCreativeWork, GetWeather, BookRestaurant,
PlayMusic, AddToPlaylist, RateBook, SearchScreeningEvent)

Direct Order

Indirect Order

Factual

Yes/No

Find me the I, Robot television show

I want to book a highly rated restaurant in Paris tomorrow night

What’s the best hotel between Soho Grand and Paramount Hotel?

Is my Airbnb closer than John’s hotel?

SQuAD [69] A reading comprehension dataset consisting of questions posed by crowdworkers on
a set of Wikipedia articles. The answer to every question is a segment of text, or
span, from the corresponding reading passage. There are 100,000 question-answer
pairs on 500 articles

Factual What is the daily student paper at Notre Dame called?

Mental Health FAQ for
Chatbot

A Kaggle dataset consisting of 98 FAQs about Mental Health by scrapping mental
health websites and forums

Factual What does it mean to have a mental illness?

ACID[74] Contains 174 intents collected from customer interactions with the service represen-
tatives at American Family Insurance. Each intent represents a particular course of
action for the chatbot. The training set has 11130 examples and test set has 11042
examples

Direct Order

Indirect Order

Please remove my son from my auto policy and create a separate one for him.

Can you take my son off of my car insurance policy, please ?

CLINC150 A complex intent detection dataset with two separate domains- ‘Banking’ and
‘Credit cards’ with both general and In-Domain Out-of-Scope queries. Each do-
main originally includes 15 intents.

Direct Order

Indirect Order

Tell me how to set up a direct deposit

Can you show me how to set up direct deposit for paycheck to my bank account?

ATIS[42] A dataset consisting of audio recordings and corresponding manual transcripts about
humans asking for flight information on automated airline travel inquiry systems. It
has 17 unique intents. The original split contains 4478, 500 and 893 intent-labeled
reference utterances in train, development and test set

Direct Order

Indirect Order

Show me the flights from Pittsburgh to Los Angeles on Thursday

I need a flight tomorrow from Columbus to Minneapolis

Taskmaster [73] Consists of three datasets, Taskmaster-1, 2 and 3, comprising over 55000 spoken and
written task-oriented dialogues in over a dozen domains (ordering pizza, setting up
ride service, ordering movie tickets etc.). Two procedures were used to create this
collection: the first involves a two-person, spoken ‘Wizard of Oz’ (WOz) approach
while the second is a ‘self-dialog’ approach

Direct Order

Indirect Order

Show me the movies for Boston, Massachusetts.

Hi, I would like to buy 2 tickets for Shazam!

Counsel-Chat A mental health dataset shared by the founders of Counselchat.com, a platform in
which therapists respond to questions posed by clients, and users can like responses
that they find the most helpful

Statement

Factual

Indirect Order

My wife and mother are having tense disagreements.

What can I do to get rid of this addiction?

I need help with issues of abuse as a child, addiction, and abusive men.

WikiArticle A multimodal dataset of ‘good articles’ on Wikipedia containing 36,476 articles and
216,463 images available on Kaggle. It contains the text of an article and also all the
images from that article along with metadata such as image titles and descriptions.
The selected good articles are just a small subset of the available ones, but have
been manually reviewed and protected from edits.

Statement Cooper eventually deduces the patterns were caused by gravity variations and are a
binary code for geographic coordinates.

IMDB Movie Review [66] A binary sentiment analysis dataset consisting of 50000 reviews from the Internet
Movie Database (IMDb) labeled as positive or negative. The dataset contains an
even number of positive and negative reviews. No more than 30 reviews are included
per movie.

Statement This film is just plain horrible.

Amazon Product Review A dataset to tackle the task of identifying the sentiment of a product review (positive
or negative). It includes reviews from four different merchandise categories: Books
(2834 samples), DVDs (1199 samples), Electronics (1883 samples), and Kitchen and
housewares (1755 samples).

Statement However, when I purchased this product from trade concepts, I received the worst
espresso I have ever tasted.

Smalltalk A dataset of casual conversations that was collected to be used with the Rasa Stack.
It includes examples for intents like greetings, good appraisal, bad appraisal etc.

Greetings

Feedback

How’s your day going?

You helped a lot thank you

Table 2.4: Data sources with description and types of examples used

Table 2.3 shows how the examples are distributed per class. Our dataset initially

consisted of 24,450 examples in total. We divide it to create a train and a test dataset.

The split is done in a way to include 25% of the examples for each class in the test

dataset. This was done to tackle the imbalance that exists with the minority classes

(Apology, Greeting, and Feedback). For Yes/No Questions, more examples were taken

from BoolQ [71] and a few from SNIPS [72] dataset. For Factual Questions, apart

from the 90+ mental health related questions collected from different websites, the

rest were taken from SQUAD [69] and SNIPS dataset [72]. For Direct and Indirect

Order, we included many examples from Taskmaster [73] and SNIPS [72] dataset

that fit our definition of the dialog acts. A few were extracted from the ACID [74],
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CLINC150, and ATIS [42] datasets. We also scrapped different websites to obtain

a list of common imperative sentences as well as popular commands/requests given

to Alexa, Siri, and Google Assistant. For Statement class, we included most of the

examples from Counsel-Chat. This was done for two main reasons. Firstly, because

it pertains to mental health and, hence, it would require the chatbot to respond

more emotionally and sympathetically. Secondly, because this is how we assume our

users would talk to our chatbots, by opening up about day to day issues that are

bothering them. This makes the newly curated dataset more authentic and realistic.

We also made sure to included a few examples from product and movie reviews as

well as wiki articles to add some variety to the structure of declarative sentences. As

for minority classes like Apology, Greeting and Feedback, the Smalltalk dataset was

mostly used. Due to the lack of variation in the ways users can greet, apologize and

provide feedback in real life, these three classes have a small number of examples in

comparison. Finally, it is important to mention that, because a majority of examples

for each class was taken from popular datasets, the chance of including mislabelled

sentences in our final dataset is minimal. This makes our proposed DA dataset

extremely reliable and free of errors.

27



Chapter 3

Background

The task of predicting user dialog acts (DAC) during a conversation is a key com-

ponent in building a conversational agent. As a result, a number of researchers have

proposed a wide variety of deep learning models for classifying dialog acts and have

tested their performance on some of the most popular DAC datasets such as SWDA

and, MRDA. In the following section, we will provide a brief overview of some of

these influential works.

3.1 Dialog Act Classification

A number of recent works have treated the task of dialog act classification as a se-

quence labeling problem. Colombo et al. [26] in their work leveraged a seq2seq model

using a hierarchical encoder, a novel guided attention mechanism and beam search

applied to both training and inference. Seq2seq models are widely used in NMT and

are popular for learning complex global dependencies. Unlike other models, theirs

does not require hand-crafted features for training. The proposed model achieved an

unmatched accuracy of 85% on SwDA and 91.6% on MRDA. Raheja et al. [75] used

an amalgamation of self-attention, hierarchical deep learning models and contextual

dependencies to build their DAC classifier. They proved through their experiments

that utterance representations learned at lower levels impact the classification perfor-

mance at higher levels. With the help of self-attention, their model is able to learn
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richer, more effective utterance representations and achieve an accuracy of 82.9% on

SWDA and 91.1% on MRDA. Inspired by the observation that conversational utter-

ances are normally associated with both a DAC and a topic, Li et al. [27] proposed a

dual-attention hierarchical recurrent neural network with a CRF (Conditional Ran-

dom Field) for DAC classification. The novel dual task-specific attention mechanism

helps their model capture information about not only the DACs and topics but also

the interactions between them. They achieved an accuracy of 82.3%, 92.2%, and

88.1% on SWDA, MRDA, and Daily Dialog dataset, respectively.

Apart from SWDA and MRDA, a number of researchers have also proposed DAC

classifiers for other pre-existing as well as self-curated domain-specific datasets. For

example, Ahmadvand et al. [76] proposed a novel contextual DAC classifier that uses

transfer learning to adapt models trained on human-human conversations to predict

dialog acts in human-machine dialogs. The model incorporates lexical, syntactic, and

semantic information as context and was evaluated by first training it on the SWDA

human-human dialog dataset, and later fine-tuning it for predicting DACs in human-

machine conversation data, collected as part of the Amazon Alexa Prize 2018 com-

petition. With the recent success of BERT (Bidirectional Encoder Representations

from Transformers), Saha et al. [77] proposed BERT-Caps, a BERT-based model

that learns traits and attributes by leveraging from the joint optimization of features

from the BERT and capsule layer. Their proposed model attained a benchmark accu-

racy of 77.5%, outperforming several strong baselines and state-of-the-art approaches

for dialog act detection in tweets. Similarly, Wu et al. [78] proposed a context-

aware hierarchical BERT fusion Network for DAC classification in multi-turn dialogs.

Their proposed model not only discern context information within a dialog but also

jointly identify multiple DACs and slots in each utterance. As a result, it was able to

outperformed previous Spoken Language Understanding models that only consider

single utterances for multiple intents and slot filling in two complicated multi-turn

dialog datasets, Microsoft dialog Challenge dataset [79] and Schema-Guided dialog
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dataset [80]. A number of research works [81, 82] have also looked into incorporating

emotion/sentiment of texts as context during DAC classification. Qin et al. [82] pro-

posed a Deep Co-Interactive Relation Network (DCR-Net) that explicitly models the

interaction between the two tasks: dialog act recognition and sentiment classification

by introducing a co-interactive relation layer. Their model outperformed the SOTA

model on Mastodon [83] and Daily Dialog [45] dataset for both the tasks. They also

incorporated BERT in their framework to boost performance. Huber et al. [84] per-

formed DAC classification in a unique domain (Parent-Child Interaction Therapy) to

inform parents about their DAC use. For this, they first created a dataset of 6,022

parent utterances that were annotated by experts with dialog act labels that thera-

pists use to code parent speech. Next, they developed an algorithm that classified

the dialog acts into eight classes with an overall accuracy of 78%. Quinn et al. [30]

also curated their very own dataset with three DACs and utilized an SVM classifier

to achieve an accuracy rate of 82%.

These findings suggest that, when it comes to DAC classification, researchers pro-

pose their models based on the dataset at hand and incorporate different features and

complexities to improve performance. The rest of the chapter is dedicated towards

reviewing the technical background of NLP based deep learning models as well as

exploring the existing dialog systems.

3.2 Artificial Neural Networks (ANN)

An artificial neural network is a computer system modeled around how the human

brain and nervous system functions. ANNs learn tasks automatically by looking into

examples without being explicitly programmed. They do so by deriving meaning from

unstructured data and by capturing high-level representations that are considered too

complex for either humans or other computer techniques. Neural networks were first

proposed in 1944 by Warren McCullough and Walter Pitts [85]. A typical neural

network has neurons, often called units or nodes.
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Figure 3.1: Workflow in Artificial Neural Networks [86]

Figure 3.1 shows the input layer consisting of input units that receive numerical

data from outside. The connection between one unit from input layer and one from

hidden layer is represented by a number called a weight. The weight can be either

positive or negative; corresponding to the way actual brain cells excite or suppress

others. If a unit has a higher corresponding weight, it has more influence on the

output. Although assigned at random initially, the weights are later adjusted through

the training process. McCulloch-Pitts introduced a simplified model of the human

neuron as a mathematical linear function that receives a set of n inputs x1, ..., xn and

linearly transforms them to an output y. This model learns a set of weights w1, ..., wn

and calculates the output y = f(x,w) = x1w1+ ...+xnwn. Their neuron predicts two

different groups of inputs by corresponding to whether f(x,w) is positive or negative.

3.2.1 A Single Neuron

Figure 3.2 shows a network consisting of one hidden layer containing one neuron. The

single neuron receives input from the prior input layer, performs some computation

and sends the result away. The neuron has two inputs, x1 and x2, with weights w1

and w2, respectively. The neuron applies a function f to the dot-product of these

inputs, which is w1x1 + w2x2 + b. Besides the two numerical input values, there is

one input value 1 with weight b, called the bias. It stands for unknown parameters
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Figure 3.2: A single neuron in neural networks [86]

or unforeseen factors. The output Y is computed by taking the dot-product of all

input values and their associated weights into the Activation Function, f . It is used

to produce results in desired ranges (between 0 to 1 or -1 to 1 etc.). Some frequently

used activation functions include:

1. Sigmoid or Logistic: takes a real-valued input and returns an output in the

range [0,1]: δ(x) = 1
1+e−x

2. tanh or hyperbolic tangent: takes real-valued input and produces the results in

the range [-1, 1]: tanh(x) = sinh(x)
cosh(x)

= ex−e−x

ex+e−x

3. ReLU (Rectified Linear Unit): takes a real-valued input and replaces the nega-

tive values with zero: R(x) = max(0, x)

3.2.2 Feed-Forward NN

A feed-forward neural network is a multi-layer network with three layers: input,

hidden and output. It works by feeding the outputs from neurons in one layer to

the next layer. It is a fully connected network in which each layer takes all the

outputs from the previous layer as input. Also, there is no link connecting units in

the same layer. The input layer units are scalar values while the units in the hidden

layer correspond to neural units. These neural units compute a weighted sum of their
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inputs and then apply a non-linear activation function like tanh or sigmoid. Formally,

the output of the hidden layer is as follows:

h = f(wx+ b)

where f = a non-linear activation function, xϵRdin = a vector of real numbers repre-

senting the inputs, din = the number of inputs; bϵRdh = the bias and WϵRdhxdin =

the weight matrix.

Finally, the output layer computes a final output based on the representation value

hϵRdh . Depending on the task at hand, this value can be a real number or probability

distribution across the vocabulary words. Like the hidden layer, the output layer also

has a weight matrix U and often does not have a bias vector. The network multiply

weight matrix U by the hidden vector h to generate an output z as follows:

z = Uh

where zϵdout with dout is the number of output units and UϵRdoutxdh . For classifi-

cation tasks, the output should be a normalized vector of probabilities (vectors that

range between 0 and 1 and sum to 1). Softmax is a widely used function for vector

normalization. It is defined as:

softmax(zi) =
exp(zi)

Σj=1
k exp(zj)

, 1 ≤ i ≤ dout

3.2.3 Training

The goal of training is to learn the optimal weights that can minimize the distance

between the model output, ŷ and the expected output, y. A popular loss function is

the Mean-Squared-Error between ŷ, and y:

E =
1

N

p∑︂
i=1

∥ ŷi − yi ∥2
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where N is the number of class labels and E is the Mean-Squared Error. If it is

a two-way classification problem, then N = 2. For probabilistic classifiers, a com-

monly used loss function is the negative log likelihood J . It ensures that correct

answers are assigned with maximal probability and incorrect ones are assigned with

minimal probability. The loss J is defined as follows where V is the total number of

observations:

J(θ) = −
|V |∑︂
j=1

yjlogŷ

With the goal being minimization of loss function, this becomes an optimization

problem. A number of optimization methods like gradient descent [87] or Adam

[88] are used to find a minimum. This is done by first identifying the direction in

which the function’s slope is increasing the most steeply and then moving in the

opposite direction [89] (See figure 3.3 [90]). In case of Mean-Squared-Error, for the

ith coordinate position, we have the output yi = Wijx
i+ b. Now, after differentiating

both sides with respect to Wij (the only unknown parameter) using chain rule, we

get:

∂

∂Wij

(∥ ŷ − y ∥ 2) = −2(ŷi − yi)xj

where xj is the input value in the ith coordinate position.

This derivative gives us the direction to the maximum, so in order to obtain the

minimum point, we have to follow the opposite direction of this gradient. Moreover,

we need to make sure that this derivative is as close to 0 as possible in order to

obtain the minimum of error. After figuring out which direction to go, we still need

to know how far to go. This is done by a parameter called learning rate η which

moves the gradient towards the minimum value by determining how far each step

should go. However, care must be taken when tuning η because if it is too small, the
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Figure 3.3: θ has been moved in the opposite direction from the slope of the function
in order to find the minimum of the loss function [90]

learning will take too long and if it is too large, the weight updates can over-shoot

the minimum and not converge. Unfortunately, a learning rate for a certain data

set cannot be analytically calculated and can only be known through trial and error.

Typical values for a neural network with standardized inputs (inputs mapped to the

(0,1) interval) are less than 1 and greater than 10−6. The model’s parameters θ are

thus updated as follows:

θt+1 = θ(t) − η∇θ(t)J(θ
(t))

The backpropagation algorithm [91] uses the chain rule of differentiation to com-

pute the gradient. It takes the partial derivative of the loss function with respect to

each parameter in the model. The algorithm first propagates a chunk of the data as

input through the network and then calculates the average of the overall loss. After

computing the gradients, it updates the weights of the output layer. Next, the error

is propagated backwards and the weights of the input and hidden layer is updated.

These steps are repeated with the next chunk of training data. If the loss function J is

within tolerance, the algorithm terminates. Otherwise, it continues with an another
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epoch (a complete presentation of the dataset).

3.2.4 Popular ANN Models

Artificial neural networks are widely used to solve various problems in the fields of

computer vision, speech recognition, machine translation, or medical diagnosis. It

is also very popular in Natural Language Processing (NLP) which deals with the

analysis and use of human languages by a machine. NLP helps computers interact

with humans by typically reading and generating natural text. With growing in-

terests in this field, new NLP techniques are allowing computers to understand the

complexities in grammar, rules, and vocabulary in multiple languages like English,

French, German, or Arabic. A number of ANNs are now utilized to solve tasks like

Question-Answering [92], Text Summarization [93], Dialog Generation [94], or Text

Classification [95]. We will now give a brief summary of some of these neural network

models:

1. RNN: In Recurrent Neural Network (RNN), the output from the previous step

is fed as input to the current step. In traditional NNs, all the inputs and out-

puts are independent of each other. This becomes a problem when dealing with

sequential data, where one data point depends upon the previous data point.

Thus, RNNs came into existence. They have the concept of ‘memory’ that helps

them store the states or information of previous inputs to generate the next out-

put of the sequence. The landscape of chatbots has evolved a lot as a result

of this simple technique [96]. RNNs can help chatbots comprehend the conver-

sational environment for interpreting user’s inputs and delivering contextually

correct responses.

2. Seq2Seq Neural Models: The Sequence to Sequence (Seq2Seq) model consists of

two RNNs, an encoder that processes the input, and a decoder that creates the

output [97]. It is widely used in the industry for response generation [98]. Once
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the model is fed a variety of input sentences, the encoder encrypts the input

text and the decoder decrypts it to produce the desired output. The model is

most commonly employed in language translation, where the input and output

sentences are in two different languages. This approach can also be used to

convert between the inputs and outputs in chatbots [98].

3. LSTM: Long short-term memory networks (LSTM) are a special kind of RNN

[99] capable of handling long-term dependencies. It tackles the vanishing gradi-

ent problem of a typical RNN with the help of memory cells and gates. These

two components allow LSTMs to recall past information for extended periods

of time. Memory cells are like the memory of a computer that can store, write,

and read information. The gates consist of input gates, forget gates, and out-

put gates used to control the flow of information. Even when there is a long

period of gap between major events, a well-trained LSTM network can perform

outstanding categorization, processing, and prediction of time series. Because

LSTMs can regularly refer to a piece of distant information in time, they are

extremely valuable in creating chatbots [99, 100].

4. Transformer: It is a deep learning model that adopts self-attention mechanism

to differentially weight the significance of each part of the input data. Like

RNNs, transformers can process sequential input data. Unlike RNNs, trans-

formers process the entire input all at once instead of processing one word at a

time. This allows for more parallelization and reduces training time [101]. The

attention mechanism provides context for any position in the input sequence.

The additional training parallelization allows training on larger datasets. This

led to the development of pretrained systems like BERT and GPT, which were

trained on large language datasets and can be fine-tuned for specific tasks. Thus,

transformer-based models are achieving SOTA scores on many NLP tasks like

Dialog Generation [102], Question Answering [103], Translation [104] and are
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quickly replacing other RNN based models like LSTMs.

It is to be noted that both of our chatbots, ANA and MIRA, use transformer-

based models to achieve superior performance.

3.3 Popular Classification Algorithms

In the previous section, we only talked about neural networks. In this section, we

discuss some of the popular classification algorithms that are often used as baselines

for a number of NLP tasks.

1. Logistic Regression (LR): It estimates the probability of the occurrence of an

event based on a given dataset of independent variables. It is used to predict

a binary outcome (e.g., whether something happens or does not). In LR, the

independent variables can be categorical or numeric, but the dependent variable

is always categorical. Since the outcome is a probability, the dependent variable

is bounded between 0 and 1. Mathematically,

P (Y = 1|X) or P (Y = 0|X)

Formally, it calculates the probability of dependent variable Y , given indepen-

dent variable X.

2. Naive Bayes: This classification algorithm is based on the Bayes theorem:

P (A | B) =
P (B | A)P (A)

P (B)

Using this theorem, we can find the probability of an event A happening, given

that B has occurred. Here, B is the evidence and A is the hypothesis. Naive

Bayes assumes that all the features are independent and the presence of one

does not affect the other. However, this is not true in most of the events in real

life. Hence, it is called naive.
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3. K-Nearest Neighbors (KNN): It is a simple, supervised ML algorithm used

for classification, regression, and missing value imputation. It is based on the

idea that the observations closest to a given data point are the most ‘similar’

observations in a data set and we can therefore classify unforeseen points based

on the values of the closest existing points. K is the number of nearest neighbors.

By choosing K, the user selects the number of nearby observations to use in the

algorithm. For classification, a majority vote is used to determined which class

a new observation should fall into. Larger values of K are often more robust to

outliers and produce more stable decision boundaries than very small values.

4. Decision Tree: It is a supervised learning algorithm that is used for classification.

It works like a flow chart, separating data points into two similar categories at a

time from the ‘tree trunk’ (root node) to ‘branches’ (decision nodes) to ‘leaves’

(leaf nodes) where the categories become more finitely similar. This creation

of categories within categories, allows for organic classification with limited

human supervision. Random forest algorithm is an expansion of decision tree.

It involves constructing a multitude of decision trees at first with the training

data, then fitting the new data within one of the trees as a ‘random forest’.

It essentially averages the data and then connects it to the nearest tree on

the data scale. Unlike decision tree, Random forest models do not ‘force’ data

points within a category unnecessarily.

5. Support Vector Machines (SVM): SVM uses algorithms to train and classify

data within degrees of polarity. Figure 3.4 shows two tags red and blue with

two data features X and Y. The classifier is trained to output a new X/Y

coordinate as either red or blue. Here, SVM assigns a line as a hyperplane to

best separate the tags. However, as datasets become more complex, a simple

line may not be enough (see Figure 3.5). Using SVM, we can classify complex

data by converting them into linearly separable data in higher dimensions (3D)
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Figure 3.4: SVM classifier on 2D plane [105]

and later project the decision boundary back to the original dimensions (2D).

We will be discussing SVM in more details later.

3.4 Classifiers Used

For our chatbots, we use two types of classifiers to detect the dialog acts of our

users. In AI and ML, classification refers to the machine’s ability to assign labels to

their corresponding examples. A classifier is able to decide how to assign an instance

to its group by learning the patterns of that assignment from the training features

available in a labeled training data set. In NLP, text classification refers to the process

of labeling or organizing text data into groups. Dialog act recognition is a type of

text classification task. Classification can be of two types:

1. Binary Classification: Here, the machine should classify an instance as only

one of two classes: yes or no, 1 or 0, true or false etc. For example: detecting

whether an email is spam or not.

2. Multi-class Classification: Here, the machine should classify an instance as only
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Figure 3.5: SVM classifier on 3D plane mapped into 2D [105]

one of three or more classes. For example: classifying a tweet as positive,

negative, or neutral.

From the above definitions, it is clear that our dialog act detection task is a multi-

class classification problem, meaning, we need to accurately label a given user input

as one of the 8 identified dialog acts: yes/no question, factual question, direct order,

indirect order, statement, feedback, apology, greeting. Based on the related works

discussed previously, we decided to implement two of the most widely used NLP

models for DAC classification: SVM and BERT.

3.4.1 SVM

As briefly discussed earlier, Support Vector Machine (SVM) is a supervised learning

model with associated learning algorithms used for data classification and regression.

It was developed by Vladimir Vapnik at ATT Bell Laboratories with a number of

colleagues (Boser et al. [106], Guyon et al. [107], Cortes and Vapnik [108], Vapnik

et al [109]). The objective of SVM is to find a hyperplane in an N-dimensional space
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(where N is the total number of features) that distinctly classifies the data points.

In other words, it aims to optimize the width of the gap (i.e. the maximum margin

hyperplane) between classes. This provides some reassurance for future data points

to be classified with more confidence. The dimension of the hyperplane depends upon

the number of features. If the number of input features is 2, then the hyperplane is a

line. If the number of input features is 3, then the hyperplane becomes a plane and

so on. The data points closer to the hyperplane are called support vectors. They

influence the position and orientation of the hyperplane. Using support vectors, we

maximize the margin of the classifier.

SVMs are universal learners [110] and one of the most robust prediction methods.

In their basic form, SVMs learn a linear threshold function. However, by a simple

‘plug-in’ of an appropriate kernel function (a function that determines the smoothness

and efficiency of class separation), they can be used to learn polynomial classifiers,

radial basic function (RBF) networks and three-layer sigmoid neural nets. Moreover,

SVM’s ability to learn is independent of the dimensionality of the feature space.

They measure the complexity of hypotheses not based on the number of features

but based on the margin with which they separate the data. Because of this, if our

data is separable with a wide margin using functions from the hypothesis space, we

can generalize even in the presence of many features. As Joachims [110] points out,

SVM is perfectly suitable for text categorization as they are able to efficiently handle

high dimensional input space, few irrelevant features and sparse document vectors.

Moreover, since text categorization problems are mostly linearly separable, SVM is

the perfect candidate.

Although natively SVM does not support multi-class classification, the same prin-

ciple can be utilized after breaking down the multi-classification problem into multiple

binary classification problems. There are two approaches to do so: in One-to-One

approach, data points are mapped to high dimensional space to gain mutual linear

separation between every two class. In other words, a binary classifier is used per
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each pair of classes. Here, the classifier can use m SVMs and each SVM would predict

membership in one of the m classes. In the One-to-Rest approach, the breakdown is

set to a binary classifier per each class and the the classifier can use m(m-1)/2 SVMs.

3.4.2 BERT

Bidirectional Encoder Representations from Transformers (BERT) is an ML model

developed in 2018 by researchers at Google AI Language [111]. It serves as a re-

liable solution to the most common NLP tasks like sentiment analysis and named

entity recognition. It is composed of several transformer encoders stacked together.

Transformers utilize an attention mechanism that learns contextual relations between

words (or sub-words) in a text. In its vanilla form, Transformer includes two separate

mechanisms- an encoder that reads the text input and a decoder that produces a

prediction for the task. Since BERT’s goal is to generate a language model, only

the encoder mechanism is necessary. Further, each Transformer encoder in BERT is

composed of two sub-layers: a feed-forward layer and a self-attention layer. Unlike

directional models (reads input sequentially from left-to-right or right-to-left), BERT

is bidirectional. That is, the Transformer encoder reads the entire sequence of words

at once. This allows the model to learn the context of a word based on all of its

surroundings (left and right of the word), just like humans do.

As opposed to taking a less effective directional approach (predicting the next

word in a sentence) to training, BERT uses two unique training strategies: Masking

and Next Sentence Prediction (NSP). In the Masking approach, before feeding word

sequences into BERT, a certain percentage of the words in each sequence are replaced

with a [MASK] token. The model then attempts to predict the original value of the

masked words, based on the context provided by the other, non-masked, words in the

sequence. The BERT loss function takes into consideration only the prediction of the

masked values and ignores the prediction of the non-masked words. As a consequence,

the model converges slower than directional models, a characteristic which is offset
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by its increased context awareness. In the second training approach, NSP, the model

receives pairs of sentences as input and learns to predict whether the second sentence

in the pair follows the first sentence in the original document. During training, 50%

of the inputs are a pair in which the second sentence is the subsequent sentence in

the original document, while in the other 50% a random sentence from the corpus

is chosen as the second sentence. It is assumed that the random sentence will be

disconnected from the first sentence. When training the BERT model, Masked LM

and NSP are trained together, with the goal of minimizing the combined loss function

of the two strategies.

Google’s BERT has also made headlines for famously introducing the pre-training/fine-

tuning paradigm: after pre-training in an unsupervised manner on massive corpus,

the model can be quickly fine-tuned on a specific downstream task with relatively

fewer labels, because it has already learnt the general linguistic patterns during pre-

training. Devlin et al. [112] in the original paper proposed fine-tuning a pretrained

BERT by simply adding an additional layer after the final BERT layer and training

the network for a few epochs. With this technique, the authors demonstrated strong

performance on standard NLP benchmark problems like GLUE, SQuAD, and SWAG,

after fine-tuning for just 2-3 epochs with the ADAM optimizer, with learning rates

between 1e-5 to 5e-5. Because of its remarkable success, this pre-training/fine-tuning

paradigm has become a standard practice in NLP. However, fine-tuning large pre-

trained language models however is not a new concept. Although language models

usually work well on generic text, often times they do not fit well when used in a

specific domain. For example, using it in a medical or scientific domain which has its

peculiar language. For this purpose, domain adaptation of model is required, which

essentially means training a pre-trained model on a new task specific dataset in order

to obtain more accurate predictions. As a result of the fine-tuning procedure, the

weights of the original model are updated to account for the characteristics of the

domain data. It is an incredibly powerful technique that reduces computation costs,
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carbon footprint, and enables the use of state-of-the-art models without having to

train one from scratch.

3.5 Performance Metrics Used

This section provides a brief overview of the metrics we use to measure the perfor-

mance of our dialog act classifiers.

1. Accuracy: Accuracy is the fraction of correct predictions of our model. It is one

of the most popular metrics to evaluate classification models. It describes how

the model performs across all classes and is useful for balanced classification

tasks. Mathematically,

Accuracy =
Number of correct predictions

Total number of predictions

For binary classification, accuracy can also be calculated in terms of positives

and negatives as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Where TP = True Positives, TN = True Negatives, FP = False Positives, and

FN = False Negatives.

2. Confusion Matrix: In ML, a confusion matrix or error matrix, is a specific

table layout that is typically used to visualize the performance of a supervised

learning algorithm. The matrix rows represent the instances in an actual class

while the matrix columns represent the instances in a predicted class or vice

versa. The name refers to the fact that it is easier to identify whether the system

is confusing between two classes (i.e., commonly mislabeling one as another).

It uses 4 important terms:

(a) True Positives: These are cases in which we predicted YES and the actual

output was also YES.

45



(b) True Negatives: These are cases in which we predicted NO and the actual

output was also NO.

(c) False Positives: These are cases in which we predicted YES but the actual

output was NO.

(d) False Negatives: These are cases in which we predicted NO but the actual

output was YES.

3. F1 Score: F-score or F-measure assesses the predictive skill of a model by

elaborating on its class-wise performance rather than its overall performance

(accuracy). It is the harmonic mean of precision and recall. Precision is the

number of true positive results divided by the number of all positive results,

whereas recall is the number of true positive results divided by the number of

all instances that should have been identified as positive. Mathematically,

F1 = 2 ∗ precision ∗ recall
precision+ recall

F1 =
2TP

2TP + FP + FN

The highest possible value of an F-score is 1.0, indicating perfect precision and

recall, and the lowest possible value is 0, if either precision or recall is zero.

4. Standard Deviation: In statistics, the standard deviation is a measure of the

amount of variation or dispersion of a set of values from the mean value. A low

standard deviation indicates that the values are close to the mean of the set,

while a high standard deviation indicates that the values are spread out over a

wider range. Mathematically,

s =

⌜⃓⃓⎷ 1

N − 1

N∑︂
i=1

(xi − x)2

where xi = value of the ith point in the data set, x = the mean value of the

data set, and N = number of data points in the dataset.
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During cross-validation or bootstrapping, it is a good idea to measure the stan-

dard deviation of the accuracy in order to understand the consistency of the

model on different data samples.

5. Macro Average: It is concerned with aggregations or totals and gives equal

weight to each category. This results in a bigger penalisation when a model

does not perform well on minority classes. It is especially useful for datasets

with class imbalance. We report the macro average precision, recall and F1-score

for each of our classes in all of our experiments using the following formulae:

RecallMacroAvg =
(Recall1 +Recall2 + ...+Recalln)

n

PrecisionMacroAvg =
(Prec1 + Prec2 + ...+ Precn)

n

F1MacroAvg =
F11 + F12 + ...+ F1n

n
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Chapter 4

Experimentation

In this chapter, we discuss in depth the architecture of our DAC classifiers and report

the results obtained through extensive experiments. We further analyze the results

and draw conclusions.

4.1 Experimental Setup

As mentioned earlier, we use two dialog act classifiers for our experiments. The first

one is the SVM model which is our baseline. We used LinearSVC as our classifier. It

is similar to SVC with parameter kernel=‘linear’, but provides more flexibility in the

choice of penalties and loss functions in Scikit-learn [113]. We used a linear kernel

because text classification problems are often linearly separable. Moreover, linear

kernel is good when there is a lot of features [110] and as we know, text classification

has a large numbers of instances (document) and features (words). Training an SVM

with a linear kernel is also much faster than with any other kernels. Last but not

the least, linear kernel in comparison has fewer parameters to optimize. To convert

the text files into numerical feature vectors, we used the Bag-of-Words technique

(CountVectorizer) and later ran the TF-IDF technique (TfidfTransformer) over the

features generated by Bag-of-Words. Next, we trained our classifier and ran it on the

test dataset to measure the rate of accuracy.

Our second DAC classifier is based on the pretrained BERT model [112]. We chose
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Model Dataset Accuracy Precision Recall F1-Score

SVM 3 DA 0.94 0.94 0.94 0.94

BERT 3 DA 0.98 0.98 0.98 0.98

Table 4.1: Performance of our SVM and BERT classifier for detecting the 3 Dialogue
Acts

BERT because it is a very good pre-trained language model which helps machines

learn excellent representations of text with respect to context in many natural lan-

guage tasks and thus outperforms the state-of-the-art. Moreover, because BERT was

pre-trained on a huge corpus, it can easily be fine-tuned on a new dataset and achieve

great results. Before applying BERT, we had to first convert our labels into cate-

gorical data. We then loaded the pretrained ‘bert-base-cased’ model from Tensorflow

and later fine-tuned it on the training dataset. We use the corresponding tokenizer

with a max length set to 70. The Bert layers accept three input arrays, inputIds,

attentionMask and tokenTypeIds. But since tokenTypeIds is necessary only for the

question-answering model, we do not pass the tokenTypeIds and only worked with

two input layers. We used GlobalMaxPooling1D and then a dense layer to build the

CNN layers using hidden states of BERT. These CNN layers yield the output. We

used the Adam optimizer with a learning rate of 5e-05, a decay of 0.01 and ‘Categor-

icalCrossentropy’ as loss since we passed the categorical labels as the target. Once

training is complete, we calculate the accuracy on the test dataset.

4.2 Experiments on 3 DACs

Our initial dataset was massive and comprised of 3 dialog acts, statement, question,

and imperative as proposed by Quinn et al.[30]. Upon training our classifiers on our

training data, we tested their performance on our test data. From Table 4.1, we can

see that our baseline SVM classifier yielded an accuracy of 94%. Moreover, our BERT-

based model outperformed the baseline by achieving an accuracy of 98%. For further

analysis, we take a look at the confusion matrices in Figure 4.1 and notice that, in case
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(a) SVM (b) BERT

Figure 4.1: Confusion matrices of our two classifiers for detecting the 3 Dialogue Acts

of SVM, the accuracy for all 3 classes is above 90% with the highest being Statement

(96%). The model, however, tends to misclassify around 4% of Imperatives (I) and

5% of Questions (Q) as Statements (S). Upon analyzing the misclassified sentences,

we found instances where sentences like ‘So, uh, don’t operate heavy machinery.’, ‘Do

people regret their tattoos often even if it’s a good tattoo?’ would get mislabelled

as Statements. As a result of that, the Imperative and the Question class have an

accuracy of 93%. Our BERT-based model, on the other hand, achieves 98% accuracy

on the Imperative and the Question class and an impressive 99% accuracy for the

Statement class. However, the model too misclassifies a few sentences like ‘Oh, how

little!’, and ‘Why don’t you state it?’ due to their unconventional structure.

4.2.1 Generalizability of Model

The generalizability (or robustness) of a model is a measure of its successful applica-

tion to data sets other than the one used for training and testing. To evaluate the

generalizability of our dialog act classifiers, we decided to test our trained models on

Quinn et al.’s proposed dataset. This is because, although we both share the same
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dialog acts, our datasets were curated from completely different sources. Table 4.2

gives a brief summary of the results were obtained. For a fair comparison of perfor-

mance, we use our proposed classifiers in all the experiments regardless of the dataset

in question.

We start off with our baseline SVM classifier which Quinn et al. had also used

in their work. When the model was trained and later tested on their dataset, we

achieved an accuracy of 72% instead of the reported 82%. This might be due of some

differences in the environmental setup. And since their paper does not provide much

detail on this, we could not replicate it. As previously mentioned, our baseline model

achieves an accuracy of 94% when trained and tested on our dataset. Upon training

the baseline model on our dataset, we run it on Quinn et al.’s test dataset and observe

an accuracy of 82%. Although the drop is almost 12%, from the confusion matrix in

Figure 4.2, we can see that accuracy for classes Question and Statement is still above

70% (74%). Moreover, the Imperative class has the highest accuracy rate of 93%. On

the flip side, upon training the SVM classifier using Quinn et al.’s train dataset and

later testing it on our test dataset, the accuracy of the model drops down to 66%.

The model especially struggles when it comes to identifying Imperatives (49%) and

Questions (60%). From these observations, we can say that, the SVM classifier does

not generalize that well on unseen data and is highly dependent on the data it is

trained on. Despite that, the experiment shows that our curated dataset is so large

and diverse that upon using it to train the baseline model, an accuracy above 80% is

observed on unseen data. The same, however, cannot be said about the dataset and

the corresponding model proposed by Quinn et al.

Next, we repeat the same set of experiments with our BERT-based classifier. We

first fine-tune it with Quinn et al.’s train data and later run it on their test data. An

accuracy of 89% is obtained which is much better than the baseline (a 17% jump from

72%). Repeating the same process with our massive training and test data yields a

high accuracy of 98%. Now comes the more interesting observations where we compare
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Model Train Dataset Test Dataset Accuracy Precision Recall F1-Score

SVM Quinn Train Quinn Test 0.72 0.74 0.71 0.71

Our Train Our Test 0.94 0.94 0.94 0.94

Our Train Quinn Test 0.82 0.82 0.82 0.82

Quinn Train Our Test 0.66 0.69 0.63 0.65

BERT Quinn Train Quinn Test 0.89 0.90 0.88 0.89

Our Train Our Test 0.98 0.98 0.98 0.98

Our Train Quinn Test 0.90 0.91 0.89 0.89

Quinn Train Our Test 0.86 0.90 0.83 0.84

Table 4.2: Comparing the performance of our classifiers for detecting 3 DACs upon
using Quinn et al.’s dataset

the generalizability of our BERT-base DAC classifier. When the model trained on

our dataset is run on Quinn et al.’s test dataset, we observe an accuracy rate of

90%. Although it drops by 8%, nonetheless, an accuracy of 90% on an unseen dataset

curated from completely different data sources is still very impressive. Moreover, from

Figure 4.3, we can observe that the individual accuracy per class is also very high

(Question: 98%, Imperative: 90%, and Statement: 79%). On the flip side, when the

model is trained on Quinn et al.’s dataset and then evaluated on our test dataset, we

observe an accuracy of 86% which does not seem that bad at first. However, if we take

a look at the confusion matrix, we can see that for the Imperative class, the individual

accuracy is only 56% which is not acceptable. This further proves the generalizability

of our BERT-based DAC classifier and validates the high-quality and diverse nature

of our training data. The experiments further suggest that, overall, BERT-based

models are far more generalizable than SVM models for DAC classification on unseen

data. Unlike SVM, BERT is not completely dependent on the training dataset.

4.3 Experiments on 8 DACs

We will now evaluate the performance of our classifiers on our proposed dataset with 8

dialogue acts. From Table 4.3, it is evident that both our baseline SVM and classifier

BERT perform extremely well on the dataset, SVM yielding an accuracy of 96% and

BERT outperforming SVM by 3%, achieving an accuracy of 99%. One of the main
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(a) Our Train Data, Quinn Test Data (b) Quinn Train Data, Our Test Data

Figure 4.2: Confusion matrices of our SVM classifier for identifying 3 DACs on the
two datasets

(a) Our Train Data, Quinn Test Data (b) Quinn Train Data, Our Test Data

Figure 4.3: Confusion matrices of our BERT-base classifier for identifying 3 DACs on
the two datasets
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reasons for such a high accuracy rate might be because of the stark differences in

the structure of sentences for each of the labels. For further analysis of the wrongly

labelled data, we take a look at the confusion matrices in Figure 4.4. The y-axis

shows the true labels of the examples, whereas the x-axis shows the predicted labels.

At first, we take a look at the majority classes that have an average of approxi-

mately 3771 examples per label. For classes like Directive Direct Order (DD), Ques-

tion Factual (QF), and Directive Indirect Order (DI), SVM achieves individual ac-

curacies of 96%, 98%, and 99%, with only a very few instances of misclassification.

For example, 0.2% of Greetings (G) are misclassified as Direct Orders. However,

the accuracy is comparatively low for other majority classes like Statement (S) and

Question Yes/No (QYN) (92%). Upon further analysis, we see that 8% of Feedbacks

(F) are being misclassified as statements. For example, ‘This works well ’, ‘I’m glad

you are my friend’ are all Feedbacks but are misclassified as Statements. This makes

sense given the similarity in sentence structure for both of these classes. In case of

Yes/No questions, however, the low accuracy rate comes from misclassifying a lot of

the Statements (4%) and Feedbacks (2%). For example, ‘My issue is that there is

always drama’ and ‘It is good’ has been misclassified as Yes/No Questions. One of

the reasons for this might be the presence of the helping verb ‘is’ in the beginning of

the sentence, which often represents the structure for a Yes/No Question (‘Is it cold

in here?’). The baseline model fails to learn the difference in some cases.

Now we take a look at the minority classes. Although the class Apology (A) has

a very small number of train examples (73), SVM is able to detect all of them ac-

curately. This might be because of how little the examples of this class vary from

each other. For classes like Greetings and Feedback, however, the accuracy is pretty

low in comparison, 88% and 87%. Upon further analysis, we noticed that a num-

ber of examples labelled as Greetings are misclassified as Direct Orders (‘See ya!’),

Factual Questions (‘What is up, Mira?’), Indirect Orders (‘Top of the morning to

you!’), Feedback (‘It was nice meeting you!’) and even Statements (‘Sira, how’s it go-
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(a) SVM (b) BERT

Figure 4.4: Confusion matrices of the two classifiers for identifying 8 DACs

ing?’). Similar is the case for Feedback. Despite having more training examples than

Apology, they are not enough for the baseline model to learn the specific patterns to

recognize them. Two mainly reasons for this might be because of the high variations

in user feedback as well as their similarity in structure with sentences belonging to

the Statement class. Future work might look into using rules to detect these minority

classes instead and compare the performance.

Lastly, we take a look at our fine-tuned pretrained Bert-base model. Unlike SVM,

BERT does a very good job achieving 99% individual accuracy for almost all of

the classes (Apology, Direct Orders, Factual Questions, Greetings, Indirect Orders,

Feedback, Statement, and Yes/No Question). A slight drop (96%) in performance is

observed for Feedback class- most of which are often misclassified as Statements just

like SVM.

4.3.1 Model Generalizability

One of the biggest issues with building a DAC classifier is making sure that it not

only performs well on the proposed dataset but also generalizes well onto completely
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Model Dataset Accuracy Precision Recall F1-Score

SVM 8 DA 0.96 0.96 0.94 0.95

BERT 8 DA 0.99 0.99 0.99 0.99

Table 4.3: Performance of our SVM and BERT classifier for detecting the proposed
8 Dialogue Acts

unseen datasets. However, as mentioned earlier, researchers propose different DAC

tag-sets based on what they think are suitable for their particular task. As a result,

evaluating the generalizability of a specific DAC classifier becomes incredibly difficult.

This is because, it requires finding a new dataset that is completely different from

the training and test data but also shares the same set of highly specific DACs. To

tackle this, we first selected a pre-existing dataset that was never used for curating

our train or test data. Next, we manually labelled it with our proposed taxonomy of

8 dialog acts. We will be referring to this dataset as ‘generalized dataset’.

We chose the DialogueSum dataset proposed by Chen et al. [114] as the source for

our generalized dataset. It is a large-scale dialogue summarization dataset, consist-

ing of 13,460 dialogues from three public dialogue corpora, namely Dailydialog [45],

DREAM [115] and MuTual [116], as well as an English speaking practice website.

The dataset contains face-to-face high quality spoken dialogues from a wide range of

daily-life topics including schooling, work, medication, shopping, leisure, travel and

so on. Most of the conversations take place between friends, colleagues, and between

service providers and customers. This unfortunately is a downside for us because we

trained our model on a dataset that has conversations that a user would have with a

chatbot, not a person. We mitigated this issue by deciding to only include exchanges

that a user is more likely to have with a chatbot. For example: sentences like ‘Zach,

what’s that on your arm?’, ‘Here, let me help you with your coat and we’ll be on our

way.’ were avoided. Moreover, given how large the dataset is, we only chose a few

samples for each dialog act manually. Fortunately, the dataset had a good number of

examples per class to choose from. This in a way shows that the eight dialogue acts
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that we identified are not only appropriate for our chatbots but are also applicable

for a wide range of domains and tasks. DialogueSum, however, had more examples

for some class than other- with Statement class being the most dominant one. On

the other hand, examples for the class Direct Order were a bit difficult to find. This

is because people do not tend to give orders to each other during casual conversations

and even when they do, the type of order they give to a person is different from the

type of order they give to a chatbot. Regardless, we were able to find examples that

can be considered as orders a user might give to a chatbot. In the end, we curated a

generalized dataset with 8 Apologies, 9 Greetings, 9 Feedback,30 Indirect Orders, 36

Direct Orders, 43 Factual Questions, 45 Yes/No Questions and 47 Statements.

Like before, we first train our baseline SVM model and fine-tune our pretrained

BERT-based classifier on our proposed train data. Next, we evaluate their perfor-

mance by running them on the generalized dataset. Table 4.4 shows the results of

the experiment. It is seen that the performance of both the models drop when tested

on the generalized dataset. As mentioned earlier, given the difference in the two

datasets, this is quite expected. Despite the drop in overall accuracy, both the mod-

els still perform very well. Although our baseline SVM classifier has an accuracy of

86% (a drop of 10 points), our BERT-based model still retains an impressive accuracy

of 96% (a mere drop of 3 points). This proves that both of our models, especially our

fine-tuned BERT-based model, are more or less generalizable and robust on unseen

data.

For further analysis, we take a look at the examples that were mislabelled. Figure

4.5 shows the confusion matrix for both the models. In case of SVM, we notice

that the model struggles the most when it comes to identifying Direct Orders. For

example: sentences like ‘Please wrap it for me and I’ll take it’, ‘Go back to sleep

then but only five more minutes’, ‘Just turn down the TV set a little so that it

wont be so noisy’ etc. are mislabelled as either Statements or Yes/No Questions. A

possible reason for this might be because most of the Direct Orders this model was
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trained on were straightforward and comprised of some very common commands that

chatbots are generally tasked with, e.g playing a song, booking a flight, reserving

a seat etc. As a result, the model has a hard time associating the newer examples

as orders. The baseline model also struggles with classifying a number of Yes/No

questions correctly. For example, sentences like ‘Excuse me, do you speak English?’,

‘Have you turned on the air-conditioner?’, ‘Does she have a job?’ are mislabelled

as Statements or Indirect Orders. A possible reason for this might be because the

training dataset mostly includes Yes/No questions that are usually factual and not

casual (i.e. sentences like ‘Is Canada in the United States of America?’ instead of

‘Do you like to play the piano?’). Moreover, the phrase ‘excuse me’ in our dataset is

associated with the class Apology a number of times which might be the reason for

this misclassification. On the flip side, the accuracy rate for the class Indirect Order

is very high (97%)- pertaining to the fact that most of the requests made in the

DialogSum dataset are similar to the ones one might make to a chatbot e.g: ‘Please

contact Betty Sue’, ‘Tell me the fact please’ etc. Overall, the accuracy rate for all the

classes are above 80%, which is very reasonable.

Now, moving on to our BERT-based DA classifier, we notice the least individual

accuracy in the minority classes Apology (88%) and Greeting (89%) for mislabelling

two sentences ‘I hope you can forgive me’ and ‘Hi, my name is Susan’ as Statement and

Indirect Order. Most probable reason for this is the lack of enough training dataset

for these two classes. As a result, the model is not able to learn all sorts of variations

properly. On the upside, the remaining classes all have an impressive accuracy rate

of over 90%, the best performing class like last time is Direct Orders for the same

reasons. Despite having an accuracy of 93%, the Yes/No Question class struggles a

bit with sentences like ‘Have you turned on the air-conditioner’, ‘Can I exchange it?’

etc. since they resemble the structure of Indirect Orders in the training examples

to an extent (‘Turn on the air-conditioner’, ‘Exchange it’). All in all, both of our

proposed models seem to generalize well on the new dataset despite the slight drop
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Model Dataset Accuracy Precision Recall F1-Score

SVM Test 0.96 0.96 0.94 0.95

Generalized 0.86 0.85 0.87 0.86

BERT Test 0.99 0.99 0.99 0.99

Generalized 0.96 0.92 0.95 0.93

Table 4.4: Performance of our SVM and BERT classifier for detecting the proposed
Dialogue Acts

(a) SVM (b) BERT

Figure 4.5: Confusion matrices of our two classifiers for identifying 8 DACs on the
generalized dataset

in accuracy rate. Like last time, we can draw the same conclusion that BERT-based

models are more generalizable than SVM models.
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Chapter 5

Text Data Augmentation

In the past decade, NLP has achieved tremendous success through the use of neural

networks and deep learning models. This progress has often been associated with the

rule of more: more data, more complexity, and more computing resource. Training or

fine-tuning large dense models for specific domains require substantial amounts of data

which is often time consuming, expensive, and difficult to obtain. Researchers have

successfully explored a number of solutions to address this issue, data augmentation

(DA). Popularized by Computer Vision, DA refers to strategies for increasing the

diversity of training examples without explicitly collecting new data. In other words,

such techniques artificially generate new data points by slightly modifying the existing

data. The idea here is for the augmented data to act as a regularizer and prevent

deep learning models from overfitting [32]. When the training data is augmented with

the synthetic data generated using DA, the model resorts to learning abstractions of

information which are more likely to generalize. Thus, models trained in this way are

expected to be more robust to noise.

Given its significance, DA has been widely applied in Computer Vision where new

images are generated by simple transformations like flipping, cropping, rotating, or

color jittering [117]. However, unlike images, NL is discreet and comprises complex

syntactic and semantic structures. This makes the process of generating new examples

with the desired invariances more difficult. Moreover, the newly generated data has to
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preserve the label of the original data [118]. For example, In sentiment analysis task, if

the original sentence is labelled as negative, the newly generated sentence should also

bear the same sentiment. Otherwise, the quality of data may drop, causing further

deterioration of model performance. Despite these limitations, in the recent years, a

number of researchers have successfully proposed different DA techniques for a wide

range of NLP tasks like text classification, question-answering, summarization and so

on. Wei et al. [36] proposed generating a new sentence from an original sentence in

four easy ways: randomly inserting a new word, randomly deleting a word, replacing

a word with its synonym, and swapping two random words. Upon training classifiers

on this augmented data, significant performance boost on different text classification

tasks was observed. Similarly, Kumar et al. [35] showed how transformer based pre-

trained models like GPT-2, BERT, and BART can be used for conditional DA and

improve model performance. In the recent years, more and more researchers have

successfully proposed different DA techniques for common NLP tasks. Given how

rapidly this area of research is growing, a number of surveys have also come out to

help researchers keep up to date with the existing techniques [119–124].

With the goal of looking into the possibility of using DA techniques to improve

the performance of our dialog act classifiers, this chapter is dedicated to text DA

techniques in NLP. We start off by providing a comprehensive survey of the existing

methods by categorizing them using a novel taxonomy. Next, we conduct a compar-

ative performance study by implementing different DA techniques on a number of

NLP tasks and share our findings.

5.1 Brief Overview of DA techniques in NLP

In the following subsections, we provide a brief overview of different text data aug-

mentation techniques using a novel taxonomy that divides them into three broad

categories, Easy Data Augmentation (EDA), Paraphrase, and Compositional Gener-

ation. Figure 5.1 shows how each of these categories are further broken down into
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Figure 5.1: Our proposed taxonomy for classifying the different text data augmenta-
tion techniques

sub-categories. For a better understanding, Table 5.1 shows examples of the synthetic

data generated by applying different augmentation techniques on a single sentence.

5.2 Easy Data Augmentation (EDA)

Famously proposed by Wei et al. [36], Easy Data Augmentation or EDA uses simple

but powerful operations for generating synthetic data. Inspired by their work, this

category includes DA techniques that are simple and easy to use.

5.2.1 Contextual Replacement

One of the easiest and most popular DA techniques involve generating a new sentence

by replacing n number of words with similar words. As the name suggests, this is done

by taking the contextual information into account. Here, similar words can refer to

synonyms, hyponyms, hypernyms, and words with same Part-Of-Speech (POS) tag.

1. Thesaurus-based: This technique involves finding similar replacement words us-

ing a thesaurus derived from WordNet, VerbNet, etc. Kolomiyets et al. [125]

were one of the first ones to implement this technique by replacing temporal ex-

pression words with potential synonyms from WordNet in order to generate ad-

ditional training examples. Later, a number of authors [126–128] experimented
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Augmentation Technique Category Sub Category Generated Sentence

Original I went to the market and bought some flowers. I had no bags.

EDA Contextual Thesaurus I went to the store and bought some tulips. I had no bags.

Embedding I went to the bazaar and bought a few flowers. I had no bags.

Language Model I went to the store and purchased some flowers. I had no bags.

Random Character-level I went to the mrkt and bought smoe flowers. I had no bags

Word-level I to the market and bought some flowers. I had no bags.

Sentence-level I had no bags. I went to the market and bought some flowers.

Paraphrase Machine Translation Round-Trip I went to the market and bought flowers. I had no bags.

One-Way Je suis allé au marché et j’ai acheté des fleurs. Je n’avais pas de sacs.

Controlled Generation Language Model I went to the supermarket and purchased some flowers. I had no bags.

Generative Model I went the market and have bought flowers.

Rule-based I went to the market and some flowers were bought. I’d no bags.

Compositional Generation Language Model Masking I went to the mall and bought some clothes. I had no money.

Prompting I went to the market to buy a T-shirt from the store.

Generative Model So I went to go to work carefully

Interpolation He had no bags market and bought some garden.

Structural I went to the market and bought some bags. I had no flowers.

Table 5.1: Examples of generated sentences upon using different augmentation tech-
niques

with word replacement for sentiment analysis and toxic comment classification

and reported improvement in model performance. Apart from synonyms, some

authors [118, 129] have also used hyonyms and hypernyms as word replacements.

Xiang et al. [130] looked into replacement using words having the same POS

tag. Their experiment on 8 classification datasets showed improved accuracy in

deep learning models.

2. Semantic Embedding-based: Semantic embedding represents a word in a dense

vector by making sure that similar words are close to each other in the embed-

ding space. As a result, a number of authors [131, 132] have used pretrained

neural word embeddings for word substitution instead of an external thesaurus

[133]. Wang and Yang [134] and Li et al. [135] performed word replacement

with one of the k-nearest-neighbor words using cosine similarity. The method

helped improve model performance in classifying the sentiment of tweets and

product reviews. Madukwe et al. [136] used counter-fitted word embedding

[137] and skip-gram model [138] for improving hate speech detection. Their
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proposed method outperformed the baseline methods on two datasets. Word

embedding replacement, however, suffers from lack of context and struggles to

fetch synonyms for words with multiple meanings and few synonyms.

3. Language Model (LM) based: Large pretrained LMs can be used to predict syn-

onyms that are not only similar in meaning but also fit the context in principle.

Alzantot et al. [139] utilized the Google 1 billion words LM [140] to choose

synonyms that have a high probability of fit. Gao et al. [141] computed a

weighted average of the embeddings of all possible synonyms predicted by LMs

as a replacement. Instead of only relying on synonyms to generate new data,

Sosuke Kobayashi [142] made use of context and replaced words in sentences

with other words having paradigmatic relations. This was done by modifying

a bi-directional LM and making it label-conditional. For example: ‘the actors

are amazing’ gets augmented into ‘the performances are fantastic’, ‘the films

are fantastic’ and so on.

5.2.2 Random

This category involves simple and easy transformations that are usually context inde-

pendent. Such techniques are often used to add data perturbations without changing

the original label. Models trained on this augmented data are often more robust.

1. Character-level: To make NMT models less susceptible to adversarial examples,

Belinkov and Bisk [143] added artificial and natural noise to the training data on

a character level. This includes random switching of single letters (cheese → ce-

hese), randomization of the mid part of a word (cheese → ceehse), the complete

randomization of a word (cheese → eseehc) and the replacement of one letter

with a neighboring letter on the keyboard (cheese → cheeae). Following similar

techniques, Feng et al. [144] reported outperforming their baseline model in

terms of diversity, fluency, semantic context preservation, and sentiment con-

64



sistency. Karimi et al. [145] proposed AEDA which includes random insertion

of punctuation marks and blanks into the original text. On 5 text classification

tasks, model trained on AEDA augmented data outperformed those trained on

EDA [36].

2. Word-level: Wei et al. [36] used a combination of random word-level augmen-

tation techniques like random deletion/insertion of a word or swapping two

random words in a sentence. Miao et al. [146] and Rastogi et al. [147] im-

plemented similar techniques and achieved performance boost in models for

opinion mining and toxic comments classification. Others have looked into re-

placing non-important words with random words [148] and randomly swapping

any two words in a sentence [149, 150] for text classification, and sequence label-

ing. To make models more robust to common spelling mistakes, a few authors

[118, 151] have also introduced a list of the most common English misspellings.

For example, replacing “across” as “accross” to generate an augmented text

containing a misspelling.

3. Sentence-level: Yan et al. [152] performed random deletion, insertion, and

shuffling of sentences in legal documents to increase the training dataset. Simi-

larly, Yu et al. [153] employed an attention mechanism for both word-level and

sentence-level random deletion in their proposed hierarchical data augmentation

technique for text classification.

5.3 Paraphrase

This technique generates new paraphrases by rewording the original sentence while

preserving its meaning.
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5.3.1 Machine Translation (MT)

This is a popular and easy to use method to generate paraphrases by making use of

machine translation.

1. Round-Trip Translation: Here, the original sentence is translated into some

other language using a translation model and re-translated back to the original

language( [34, 154]). If the new sentence is different from the original sen-

tence, it is added to the training dataset. A number of authors [155, 156] have

used NMT-based models to generate paraphrases by translating from English to

German/French and back to English and reported improvement in model per-

formance for intent detection and other text classification tasks. To generate

more diverse paraphrases, some [157–159] have proposed techniques to control

the generated paraphrases using syntactic information and latent variables.

2. One-Trip Translation: For multilingual datasets, a unidirectional approach is

taken to generate a paraphrase in a different language. This is especially useful

for low resource languages which can be generated by translating rich languages

like English or French. Bornea et al. [160] used this technique to augment the

original QA English training data with MT-generated data and created a corpus

of multilingual QA pairs that was 14 times larger than the original dataset.

Once trained on the new corpus, their model outperformed the baselines on

multilingual QA datasets. Others [161, 162] have used similar techniques for

sentiment analysis and text classification of non-English tweets and answers.

5.3.2 Controlled Generation

Deep learning models are often used to generate text through token prediction tech-

niques. However, during paraphrase generation, the generated text must be controlled

in some ways to make sure that the new sentence still preserves the same meaning

and semantics.
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1. Language Model (LM) based: Paraphrase generation through this technique in-

volves masking tokens from the input and tasking the model with recovering and

outputting them in a sequence. Regina et al. [151] randomly masked tokens of

the input sentence and used a pretrained BERT to output a probability distri-

bution over the vocabulary for each masked word. A replacement was made if it

had the same POS tag as the original word and if the cosine similarity between

their embeddings was above a given threshold. The technique significantly im-

proved generalization of machine learning models in low-data regimes. Others

[155, 163–165] have used transformer-based models to generate paraphrases for

boosting the task of intent classification, question-answering etc.

2. Generative Model based: To produce more diverse paraphrases, a number of

authors have taken the advantage of generative models like VAE (Variational

Auto Encoder) and GAN (Generative Adversarial Networks). Malandrakis et

al. [166] proposed a conditional VAE DA technique which improves model

performance in low-data regime for intent classification. Similarly, Cao et al.

[167] proposed a conditional GAN based model which uses a diversity loss term

to encourage the generator to produce more diverse paraphrases. Likewise, the

Diversity-Promoting GAN proposed by Xu et al. [168] assigns low reward for

repeated text and high reward for novel text to prompt diverse outputs.

5.3.3 Rule-based techniques

These are easy to implement techniques that usually follow simple if-else rules to

construct paraphrases. For example, Coulombe [118] proposed transforming verbal

forms from contraction to expansion and vice versa (I’ve → I have). They also

generated paraphrases by changing the active voice of a sentence into passive voice

(and vice versa) using a set of transformation rules. Their method achieved very good

results in a number of text classification tasks. Similarly, Regina et al. [151] generated

paraphrases by abbreviating a group of words or expanding an abbreviation using
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word-pair dictionaries. Ribeiro et al. [169] also proposed a set of rules to generate

paraphrases that were used to perform adversarial attacks on models in order to

improve their robustness on a series of tasks (Machine Comprehension, Sentiment

Analysis, Visual QA). Rules included transformations like: What VBZ → What’s,

What NOUN → Which NOUN.

5.4 Compositional Generation

This includes DA techniques that compose new sentences using deep learning mod-

els or manipulating sentence structure/feature space. Unlike paraphrases, sentences

generated here are label preserving but might not be grammatically correct or carry

the same meaning/semantics of the original text.

1. Language Model (LM) based: Techniques here usually follow 3 steps: prepend

the class label to each text in the training data, fine-tune a large pre-trained LM

on this modified training data (for GPT-2, the fine-tuning task is generation

and for BERT, it is masked token prediction) and finally use the fine-tuned LM

to generate new samples by providing only the class label (for BERT) or the

class label and a few initial words as the prompt for the model (for GPT-2).

(a) Masking: A certain percentage of tokens are masked and the model is

trained to predict the masked tokens by gathering the context from the

surrounding tokens. A number of authors have proposed a variation of

BERT [111] (C-BERT [170], Aug-BERT [171], BAE[172]) to augment the

training data and reported improved model performance on different text

classification tasks. Pantelidou et al. [173] further showed that masking se-

lective words (sentiment words) instead of random words before feeding it

into BERT improves model performance on movie review datasets. Along-

side BERT, Yu et al. [174] also used distil-roBERTa [175, 176] for text
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generation and reported performance boost in financial sentiment analysis

task.

(b) Prompting: Given the first few initial words of the input sentence as

prompt and the label of the original sentence, a model is tasked with

completing the rest of the sentence by predicting the subsequent tokens.

A number of authors [35, 177–179] have reported improvement in model

performance on a wide range of text classification tasks upon training

the classifier on datasets augmented using guided sentences generated by

GPT-2 [102]. Authors like Yoo et al. [180] and Azam et al. [181] have also

successfully utilized GPT-3[182] and MT5[181] model for text generation

using prompting.

2. Generative Model based: A number of authors [183–186] have used GAN and

VAE to generate new sentences that are coherent and have higher quality.

Frédéric et al. [187] received a performance boost in binary classification tasks

upon using a separate VAE per class to generated new data via random sampling

of the latent space. Others have proposed variations like RELGAN [188], GAN+

[189], VGAN [190] etc. for natural sounding text generation. Shehnepoor et.

al. [191] used ScoreGAN to generate reviews with specific semantics by incorpo-

rating review text and review ratings into the loss function and reported major

improvement in model accuracy in fraud review detection task.

3. Structural: Such transformation composes new sentences by utilizing certain

features of an existing sentence structure like dependency tree, POS tag, gram-

mar etc. Motivated by image cropping and rotation, Sahin and Steedman [192]

proposed swapping (rotation) or deleting (crop) the children of the same par-

ent. Similarly, Louvan et al. [193] generated smaller sentences by cropping

fragments of the dependency tree. They also rotated target fragment around

root of the dependency parse tree and produced new sentences. Such techniques
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improved model performance in low resource slot filling and intent classification.

Subject/object inversion by Min et al. [194] also yielded higher generalization

capability of model in NLI.

4. Interpolation: In numerical analysis, interpolation is the process of constructing

new data points from existing points [195]. For text DA, this can be interpreted

in the feature space where given two data-label pairs, virtual data-label pairs

are created through linear interpolations of the pair of data points.

(a) MixUp: Mixup trains a neural network on convex combinations of pairs of

examples and their labels. Inspired by Zhang et al. [196] who combined

two random images in a mini-batch in some proportion to generate syn-

thetic examples, Guo et al. [197] proposed wordMixup and sentMixup for

text data. First, they zero-pad two random sentences to the same length

and either combine their word embeddings in some proportion directly

(wordMixup) or pass the word embeddings through an encoder and then

combine their last hidden state sentence embeddings in a certain propor-

tion (sentMixup). On 5 text classification tasks, this technique improved

the accuracy rate of CNN and LSTM models. Instead of hidden vectors,

Yoon et al. [198] applied Mixup on input text. Their method outperformed

previous hidden-level Mixup methods on multiple NLP tasks.

(b) SMOTE: Synthetic Minority Oversampling Technique [199] is used to fix

class imbalance by generating minority class examples using interpolation

[200]. Unlike Mixup, only instances of the same class get interpolated here.

Curukoglu et al. [201] proposed SMOTE-text for TF-IDF vectorization

by integrating Turkish dictionary for oversampling during text processing

and classification. Wang et al. [202] improved the performance of SVM

classifier on the imbalanced patent document dataset using P-SMOTE

which focuses on the blank spaces along positive borderline of SVM and
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generates pseudo positive examples. Others have achieved good results by

using a variation of SMOTE in classification tasks like detection of toxic

comments [203], emotions [204] and sentiment of scientific citations [205].

5.5 DA methods for NLP Tasks

In this section, we give a brief overview of the DA methods that have been applied

on a wide-range of NLP tasks.

1. Text Classification: It is one of the most popular NLP tasks which involves

assigning a label or class to a given text. Tasks like sentiment analysis, fraud

review detection, and news categorization fall under this category. Most of the

DA techniques discussed in the previous section has been or can be extensively

used for text classification. More authors like Ren et al. [206], Wei et al. [207],

and Liu et al. [208] have proposed different DA techniques and reported boost

in classification accuracy on tasks like irony recognition, offence detection, and

question type classification.

2. Inference: It is the task of determining whether a ‘hypothesis’ is true (entail-

ment), false (contradiction), or undetermined (neutral) given a ‘premise’. Min et

al. [209] applied a number of techniques like Inversion, Passivization, and Ran-

dom shuffling to generate augmented data which improved BERT model perfor-

mance on the MNLI corpus. Singh et al. [210] proposed XLDA, a cross-lingual

DA method that replaces a segment of the input text with its translation in

another language. Training with XLDA achieved state-of-the-art performance

for Greek, Turkish, and Urdu language on the XNLI dataset.

3. Paraphrase Detection: Given two sentences, the task involves determining whether

they have the same meaning. This is helpful for plagiarism detection and du-

plicate question identification. Shakeel et al. [211] generated additional para-

phrase (using reflexivity, symmetry, transitive extension) and non-paraphrase
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(using symmetry, non-paraphrase extension) pairs and improved their model

performance for paraphrase detection. Likewise, Anchiêta et al. [212] used a

back-translation strategy to balance the training dataset for paraphrase detec-

tion in Portugese. Some authors [213, 214] have also applied DA techniques

like rearrangement, back-translation and segment reordering to improve model

performance on Semantic Textual Similarity task.

4. Grammatical Error Correction (GEC): It is the task of correcting different errors

in text like spelling, punctuation, grammatical and word choice errors. Given a

potentially erroneous sentence as input, a GEC system is expected to transform

it to its correct version. Xu et al. [215] used a combination of concatenation,

misspelling, substitution, deletion, and transportation to generate erroneous

data to train their transformer based GEC model and made it more robust.

Others have looked into editing latent representations of original sentences [216]

as well as using error patterns and POS tags [217] to generate synthetic data

to improve performance of GEC models.

5. Neural Machine Translation (NMT): It is the task of correctly translating sen-

tences from one language to another. Nguyen et al. [218] proposed training

multiple models on both backward and forward translation tasks and then us-

ing them to generate data from both lingual sides. The technique achieved a

boost in BLEU score on WMT’14 English-German and English-French trans-

lation tasks. For cross-domain NMT, Peng et al. [219] proposed generating

a large-scale pseudo in-domain (IND) parallel corpora using IND dictionaries

and Out of Domain bi-text. Li et al. [220] showed that exposing model to bad

segmentation during training can improve robustness on the IWSLT English to

German dataset.

6. Summarization: It is the task of producing the summary of one or many docu-

ments. Parida et al. [221] proposed a DA technique where given a summary, the
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model generates the text. The synthetic text-summary pair is then merged with

the original data to train the model on text summarization for German language

and it improved on low resource setting. Zhu et al. [37] proposed DA for query-

focused summarization. They used body text of citation as document, article

title and section titles to form query, and statement as the summary. Fabbri et

al. [222] fine-tuned pretrained models using pseudo-summaries produced from

Wikipedia data containing characteristics of target dataset. This helped models

achieve SOTA zero-shot abstractive summarization performance.

7. Question Answering (QA): It is the task of retrieving the answer to a question

from a given text. Asai et al. [38] generated synthetic data by converting a ques-

tion into an opposite one by replacing words with their antonyms or adding/re-

moving negation words. The corresponding answer was obtained the same way.

The method improved SOTA model performance on three QA datasets. Yang

et al. [223] generated positive and negative data by using passage retrieval

and later finetuned BERT models for open domain English and Chinese QA

datasets. Riabi [224] used DA for cross-lingual QA models by translating the

SQUAD monolingual corpus. Their method achieved SOTA results on four

multilingual datasets.

8. Sequence Tagging: POS tagging is a popular sequence labeling task which marks

up a word in a text corresponding to a particular POS. To improve POS tagging

of ancient Chinese texts, Shen et al. [225] used SikuRoberta [226] to generate

synthetic text by randomly masking verbs and entities in the training sentence

and then used a tagger model to label the generated data. Vania et al. [227]

also applied DA techniques to improve parsers by generating synthetic sen-

tences via dependency tree morphing [192] and nonce sentence generation [228].

Another popular sequence labelling task is Named Entity Recognition (NER)

which involves detecting the entities in the text. Chen et al. [229] proposed an
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instance-level and feature-level DA technique that improved the performance of

Glove and BERT based models for NER in low-resource setting.

9. Task-Oriented Dialogue Systems: These include conversational agents that help

users accomplish a task by identifying the domain, determining the intent and

filling the slots from the conversation. Gao et al. [230] used a paraphrase gen-

eration model to generate additional user utterances which improved the task

completion rate of a dialogue system especially in low resource setting. Oth-

ers have used DA techniques to improve Natural Language Generation (NLG)

which converts structured meaning representation (MR) to NL. Example: Xu

et al. [231] generated synthetic MR annotations consisting of an intent and

slot value pairs from open-domain texts. They combined a self-trained neural

retrieval model with a few-shot learned NLU model for this. Some have also

observed improved model performance using DA methods for dialogue state

tracking [232, 233].

5.6 Experiments and Discussion

In this section, we apply some of the popular text augmentation techniques on a

number of well-known NLP tasks and analyse their significance. The DA techniques

include Random Deletion, Random Insertion, Random Swap, Synonym Replacement,

EDA, Back Translation, Masking with BERT, and Prompting with GPT-2. We use

Kumar et al.’s [35] implementation of these techniques with slight modifications based

on the task at hand. We test them on a variety of benchmark datasets for a wide

range of NLP tasks like (i) Text Categorization using BBC News [234], (ii) Sentiment

Analysis using IMDB Movie Reviews [235], (iii) Emotion Detection using CARER

[236], (iv) Dialogue Slot Filling and Intent Detection using SNIPS [72].

Like Kumar et al., to investigate how effective DA techniques are in the face of data

scarcity, we artificially simulate a low data regime. For each dataset, we experimented
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once with 10 labeled data points per class and second time with 100 labeled data

points per class. We generate one augmented text for each original text, doubling the

size of the initial data points (with the exception of EDA which triples it). We also

experimented with the whole dataset without augmentation for better comparison.

We use the pretrained BERT-base [112] model as our base classifier and use the

same hyper-parameters across all datasets and techniques. The BERT-base model

has 100M parameters. Like Kumar et al., we also use a learning rate of 2e-5, and

dropout ratio of 0.1 for different augmentation methods. We use accuracy as the

evaluation metric for all the NLP tasks except for Slot Filling (which uses F1-score).

Because the performance can be heavily dependent on the specific data points chosen

[237], for each dataset, we sample labeled data from the original dataset 15 times to

form 15 different training sets, and report the average result. Table 5.2 shows the

accuracy and F1 score obtained by the Bert-base classifier upon applying different

augmentation techniques on low resource data setting.

The BBC News dataset has 5 news categories (labels) namely: business, entertain-

ment, politics, sports, technology with approx. 1000 train and 224 test examples.

Our Bert-base classifier achieves an accuracy rate of 95.98% on the whole dataset

without any augmentation. However, in our artificially simulated low data regime,

upon training the classifier on only 50 examples (10 per label), the accuracy drops to

78.92%. Upon applying DA, it is seen that almost all of the techniques achieve an

accuracy of approx. 90% (exception: Prompting using GPT-2). Among the imple-

mented techniques, Random Swap seems to achieve the highest accuracy (91.96 %).

What is surprising however is the fact that on the second setting with 100 examples

per label (500 train examples total), the classifier achieves an accuracy of 94.315%

without any data augmentation. This performance is very close to when the classifier

is trained on the entire dataset. For news categorization, it seems as though text

data augmentation techniques are redundant unless dealing with an extreme data

scarcity. This finding aligns with what was observed by the previous authors [124,
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238]. Similar case is observed with the IMDB Movie Review dataset which has two

labels, positive and negative, for approximately 36000 training examples and 7500

test examples. When trained on the entire training data, the classifier achieves an

accuracy of 85.71%. When trained using only 20 examples (10 per label), an accuracy

of 52.88% is obtained without any augmentation. With augmentation, accuracy of

around 53% to 54% is achieved, the highest being 54.78% with EDA. This increases

to 70.56% when EDA is applied to augment a training dataset of only 200 examples

(20 per label). Without augmentation, it is around 67.19%. Although improvement

is noticed upon applying DA, it cannot be deemed as too significant. Next is the

CARER dataset which is an emotion dataset with 6 different emotions (anger, fear,

joy, love, sadness, surprise) collected from Twitter using hashtags. It has approx

16,000 train and 2000 test examples. Our BERT-base model achieves an accuracy of

92.85% when trained on the whole dataset. However, when only 60 examples (10 per

label) are used, the accuracy drops to approx. 16.83%. Upon using augmentation

techniques, it is improved to around 20% to 25%, the highest being 26.396% using

Random Swap. A significant improvement is observed on the second setting (100 per

label) upon using EDA, which improves the accuracy to 64.15% whereas without any

augmentation, it was just 32.33%.

Lastly, we use the SNIPS dataset for intent detection and slot filling tasks. It has

several crowd-sourced queries of various complexity distributed among 7 user intents

(SearchCreativeWork, GetWeather, BookRestaurant, PlayMusic, AddToPlaylist, Rate-

Book , SearchScreeningEvent) and 74 slots. The complete dataset has approx. 13,000

train and 700 test examples. We perform intent detection and slot filling simultane-

ously by following the framework proposed by Chen et al.[239] using our Bert-base

classifier. When trained on the whole dataset, our classifier achieves an accuracy of

97.7% for intent detection and an F1-score of 94.7% for slot filling. For slot filling

task, a lot of the data augmentation techniques were not applicable given the BIO

tags associated with each word in the sentence. This is why we only used Random
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Deletion (deleting a word and its corresponding BIO tag), Random Swap (swapping

words and their corresponding BIO tags), Synonym Replacement (ensuring a word is

replaced by a one-word synonym to preserve the BIO tags) and EDA (a combination

of the previous three methods) here. When only 70 train examples (10 examples per

intent) were used, the accuracy and F1-score dropped to 75.4% and 0% respectively.

This highlights the fact that a lot more training data is required to train a classifier

when it comes to slot filling. Upon applying data augmentation techniques, accuracy

and F1-score were improved to 90.7% and 38.3% using EDA which is much better

especially for slot filling. On the second setting, without any augmentation, the clas-

sifier already achieves an accuracy and F1-score of 96.5% and 81.7%. Upon applying

augmentation techniques, not much improvement is noticed for accuracy (96.7% us-

ing random swap). F1 score for slot filling, however, increases to 87.3% using random

deletion.

From these experiments, we can conclude that, DA techniques are definitely useful

in improving classifier performance especially in low data regimes. Moreover, how

much improvement will be observed, depends a lot on the type of NLP task at hand,

the quality of the dataset, and the number of labels. Furthermore, simple EDA

technique seems to outperform the rest in most cases. One of the biggest reasons

for this, however, might be because of the fact that the dataset created using EDA

is 1.5 times larger than the size of the dataset generated using other augmentation

techniques. Given the promising results of DA, we decided to apply them to improve

the performance of our dialog act classifiers.
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Task Dataset Data Info No Aug Random Delete Random Insert Random Swap Synonym Replacement EDA Back Translation BERT GPT2

Text Categorization BBC News 10 78.92 ± 5.85 90.35 ± 2.72 91.07 ± 1.95 91.96 ± 1.92 90.77 ± 2.89 90.71 ± 2.18 90.92 ± 2.63 91.54 ± 2.06 88.92 ± 2.68

100 94.31 ± 1.39 94.49 ± 0.97 94.31 ± 1.30 94.97 ± 1.01 94.94 ± 0.841 95.26 ± 1.50 94.96 ± 1.03 94.64 ± 1.08 93.48 ± 1.33

Sentiment Analysis IMDB Movie Review 10 52.88 ± 3.20 53.84 ± 3.76 54.04 ± 3.93 54.52 ± 3.51 54.43 ± 3.51 54.78 ± 3.48 53.56 ± 2.92 53.34 ± 4.03 53.19 ± 3.28

100 67.19 ± 3.87 67.64 ± 4.34 68.83 ± 4.66 67.66 ± 5.79 66.49 ± 5.68 70.56 ± 3.78 68.32 ± 4.37 67.87 ± 7.07 60.38 ± 4.57

Emotion Detection CARER 10 16.83 ± 5.23 25.03 ± 6.74 23.03 ± 7.79 26.39 ± 7.43 23.05 ± 4.82 24.47 ± 7.63 24.49 ± 6.19 22.77 ± 8.16 20.34 ± 6.09

100 32.32 ± 9.42 44.58 ± 10.47 44.43 ± 7.48 44.27 ± 10.13 44.97 ± 9.07 64.14 ± 8.07 44.58 ± 10.47 44.71 ± 9.26 28.7 ± 9.79

Dialogue Slot & Intent Snips (Intent Detection) 10 75.41 ± 2.50 81.68 ± 2.32 - 81.39 ± 3.17 80.25 ± 2.58 90.71 ± 1.85 - - -

100 96.50 ± 0.30 96.73 ±0.42 - 96.65 ± 0.38 96.51 ±0.37 96.63±0.40 - - -

Snips (Slot Filling) 10 0.0 3.73 ± 3.36 - 2.67± 3.02 2.71 ± 2.89 38.30 ± 3.09 - - -

100 81.72±0.91 87.33 ± 0.94 - 83.08 ± 0.71 86.53 ±0.75 87 ± 0.61 - - -

Table 5.2: Average Accuracy (for the rest) and F1 score (for slot filling) with Standard
Deviation of BERT-base classifier after implementing a wide range of data augmen-
tation techniques for different NLP tasks
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Chapter 6

Text Data Augmentation in
Dialogue Act Detection

One of the main foci of our work is looking into the applicability of data augmentation

techniques for dialog act detection. Although our DA dataset has adequate examples

to achieve SOTA results, this is not a common phenomenon. In fact, when working

with a low resource language or in a new domain, it is often difficult, expensive and

time-consuming to curate enough examples. To tackle this, we investigate the success

of augmentation techniques in improving the performance of DA classifiers in two

phases. First, we experiment with boosting the accuracy of the baseline SVM model

by augmenting the original training dataset. Second, we perform similar experiments

for our proposed DA classifier but in a simulated low data regime. This section

discusses some of these experimentation and subsequent results in details.

6.1 Experimentation with Baseline

From the experimental results shared in Chapter 4, we can see that the SVM baseline

had low accuracy rates for two of the minority classes, Greeting and Feedback, as well

as two of the majority classes, Statement and Yes/No Question. From our earlier ex-

perimental results from Chapter 5, we decided to use EDA and Back-translation tech-

niques to create new data from the existing train examples for four of these classes and

see if the baseline accuracy rate for those classes improve with the addition of newly
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Data Augmentation
Method

Greeting Feedback Statement Yes/No Question

None 239 329 3250 3384

EDA 421 713 6460 6859

Back-translation 403 647 5968 6301

Table 6.1: Number of train examples of four classes before and after applying data
augmentation techniques

(a) Without Augmentation (b) With EDA on four classes (G, F, S, QYN)

Figure 6.1: Confusion matrices of the baseline SVM trained on a dataset without
augmentation and with augmentation (EDA)

generated data. For both EDA and Back-translation, we use more or less the same

experimental setup mentioned in Chapter 2 to generate new examples. Since EDA

uses a culmination of 4 techniques (Random Insertion, Random Deletion, Synonym

Replacement, and Random Swap), it creates a dataset larger than Back-translation.

There were also a number of newly generated examples that were exactly the same as

some of the original ones. We made sure not to include those. We trained out SVM

classifier on the newly generated dataset and ran it on our original test dataset. In

other words, our test dataset remained the same in all the experiments. Table 6.1

provides more information on the number of examples per class upon augmentation.

At first we experiment with EDA and discuss its results and findings. Figure 6.1
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shows two confusion matrices: the first one is generated after training the baseline

on the original training dataset (without data augmentation) and the second one is

generated after training it on the dataset augmented using EDA on the previously

mentioned four classes . It is observed that, when the number of training examples

for the minority class Greeting is doubled (increased to 421 from 239), the accuracy

rate jumps from 88% to 93%. Slight improvement (a jump from 92% to 93%) is

also observed for the majority class Yes/No Question when the number of training

examples is made double to 6859 from 3384. However, for the remaining two classes,

Feedback and Statement, no improvement is observed despite doubling the size of their

training examples. In fact, some of the new data generated using EDA caused the

accuracy rate for Feedback class to drop from 87% to 85%. One of the main reasons

for this might be attributed to the poor quality of the generated data for some of

these classes which might not have been label preserving. For example: new training

sentences like ‘assistant name you do have brothers or sisters’ and ‘confirmed supreme

court justices have to be do’ that were generated for the class Yes/No Question using

EDA are wrong and might have contributed to the decline in performance. As for the

Statement class, we assume that, when more augmented data is included, it gets larger

and completely over powers the Feedback class. As a result, a number of feedbacks are

then misclassified as statements. This assumption is further proven by the confusion

matrix in Figure 6.2 where we applied EDA on three classes: Greetings, Feedback,

and Statement. We can see that the number of Feedback examples being misclassified

as Statement increases to 9% from 8%. Moreover, the overall accuracy of the SVM

classifier drops to 95%. Based on these observations, we decided to only apply data

augmentation techniques on the two minority classes of our dataset: Greeting and

Feedback with the hopes of improving the overall performance of the baseline SVM.

From the confusion matrix in Figure 6.2, we can observe that the accuracy rate jumps

from 87% to 89% for Feedback class and from 88% to 93% for Greeting class. Despite

this, the overall accuracy remains the same at 96% and so does the macro average of
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(a) With EDA on three classes (G, F, S) (b) With EDA on two classes (G, F)

Figure 6.2: Confusion matrices of the baseline SVM trained on a dataset augmented
using different classes (EDA)

precision (96%) and F1-score (95%). However, the macro average of recall jumps from

94% to 95%. This means that the baseline classifier can now predict more examples

of each class correctly. For example: sentences like ‘I want to see them beg for me to

stop hurting’, ‘give hindu temples what happened to them a 5 out of 6 stars’, and ‘see

ya’ that were formerly misclassified as Indirect Order, Factual Question, and Direct

Order have now been correctly classified as Statement, Direct Order, and Greeting.

Moreover, the misclassification of feedbacks as statements reduces to only 5% from

8%.

Similar results are observed when we use Back-Translation instead of EDA for

augmenting the dataset. For example, in Figure 6.3 we can see that doubling the

number of training examples for the class Greeting, Feedback, Statement, and Yes/No

Question using BT only improves the accuracy rate for Greeting (from 88% to 92%)

and Yes/No Question (from 92% to 94%). Like EDA, the accuracy rate for Feedback

and Statement remains more or less the same even after augmentation. It is to be

noted that, in case of Back-translation, especially when done in between two high
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(a) Without Augmentation (b) With BT on four classes (G, F, S, QYN)

Figure 6.3: Confusion matrices of the baseline SVM trained on a dataset without
augmentation and with augmentation (BT)

resource languages (English to German and back to English in this case) opens up

the possibility of getting more accurate translation. But the downfall to this is that

some of the re-translated texts are the same as the original sentence and so they

could not be included in the new training set. In Figure 6.2, when we apply BT on

three classes: Greeting (G), Feedback (F), and Statement (S), we do observe slight

improvement in accuracy rate for Feedback (from 87% to 88%) and for Statement

(from 92% to 94%). However, the percentage of feedback examples being misclassified

as statement remains the same (as high as 8%). When BT is applied only on the two

minority classes, Greeting and Feedback, the accuracy of Feedback class jumps to 90%

which is incredible. Moreover, the number of feedback examples being misclassified

as statement reduces to only 5%. However, the inclusive of these augmented data

causes a slight drop in accuracy rate in the Statement class (91%). Despite all this,

unlike EDA, the overall accuracy and macro average of precision, recall and f1-score

of the baseline when trained on data augmented using BT remains the same at 96%,

96%, 95% and 95% respectively.
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(a) With BT on three classes (G, F, S) (b) With BT on two classes (G, F)

Figure 6.4: Confusion matrices of the baseline SVM trained on a dataset augmented
using different classes (BT)

From these observations, we can draw the conclusion that data augmentation tech-

niques work the best for minority classes (i.e., classes with a very low number of exam-

ples). By increasing the train dataset with newly generated examples, we can improve

the accuracy rate of dialog act classifiers especially for minority classes. However, a

lot of the improvement depends on the quality of the generated data. This is because,

given a task, not all data augmentation techniques will generate examples that are of

high quality (i.e., label preserving). Thus, when implementing such techniques, the

data quality and the percentage of label preserved should be taken into consideration.

6.2 Low Resource Setting

To harp on the argument that data augmentation techniques work the best in the

face of data scarcity (i.e., when the number of examples per label is very small) we

carry out another batch of experiments but this time for our proposed DA classifier.

Here, we simulate a low resource data setting by taking only 10 examples for each

class. Then we apply different augmentation techniques to generate one (in case of
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BT, SR, RS, RI, RD) or more (in case of EDA) new sentence(s) from every original

sentence. Like the last time, we make sure to omit newly generated sentences that

are exactly the same as the original sentence. Thus, a new training dataset is created

by including the newly generated unique data points to the randomly sampled small

training dataset with 80 examples (10 per label). We later train our proposed BERT-

base model on this augmented training dataset. The test dataset, however, remains

the same as always. After training, we want to test whether the performance of our

classifier in detecting dialog intents improves in the face of data scarcity. We repeat

the experiment 15 times and report the average accuracy with standard deviation just

as discussed in Chapter 5. We also repeat the same experiment but with 100 examples

per label the second time. These experiments are of utmost importance especially

in the real world. Often times it is difficult to curate enough examples for every

class. Synthetically generating new data points from the existing examples can help

increase the training dataset with ease. But whether it will improve the performance

of the classifier in the task of user act detection is what we want to investigate. Table

6.2 provides a brief summary of our experimental results. We first take 10 examples

per class and train our BERT-based model. When ran on the original test dataset,

it achieves an accuracy of 76.012 ± 7.606 %. However, when the model is trained on

the augmented training dataset, the performance can be improved significantly with

an accuracy ranging between 79.559 ± 4.002 % to 83.812 ± 6.226 %. Moreover, the

model performance becomes very stable (indicated by low standard of deviation) and

achieves an average accuracy of 83.641 ± 4.477% when it is trained on the dataset

augmented using a technique as simple as Synonym Replacement. On the flip side,

when training data augmented using Back Translation is used to train our classifier,

unlike the rest of the techniques, a drop in performance is observed (accuracy rate

becomes as low as 74.465 ± 8.09 %). The most plausible reason for this might be that

the new data generated using this method is of poor quality and might not be label

preserving. Upon further analysis, we in fact noticed that bad translation had led to
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a number of newly generated sentences having a wrong label. For example: Yes/No

Questions like ‘has tampa ever been hit by a hurricane’, ‘can an infinite geometric

series have a sum’ upon undergoing Back Translation generate ‘tampa ever has been

hit by hurricane’ and ‘an infinite geometric series can have a sum’ which are no longer

examples of Yes/No Questions and yet have been tagged as one. This might have led

to the ultimate drop in performance. Another thing to note here is that, when the

number of examples per label is so small, the fluctuations in accuracy rate is very

high from 4 to 8%. As a result, repeating the experiment 15 times gives us a better

idea on the overall expected performance of the model by taking the quality of the

sampled training examples out of the equation.

Next, we take a look at what happens when we have a dataset with only 100 ex-

amples per class. Although small, it definitely is a lot larger than having only 10

examples per class. Without augmentation, our BERT-based model achieves an ac-

curacy of 88.935 ± 5.655 % which is not bad. However, when trained on augmented

data, the performance improves significantly and reaches above 95% in almost all the

cases (exception: Back Translation) which is very impressive. The highest accuracy

is obtained when the model is trained on dataset augmented using Masked Token

Prediction via BERT (96.443 ± 0.605%). Another important thing to note here is

that, in this setting, the performance boost obtained by our classifier remains more

or less consistent (as indicated by the low standard of deviation), which means that

unlike the last time, the classifier improvement is not highly dependent on the quality

of the randomly sampled training data. In fact, for most of these data augmenta-

tion techniques, the newly generated data is able to help our classifier achieve a high

accuracy that is consistent throughout the 15 rounds of random sampling which is

astounding. However, like last time, Back translation does not help much with the

model performance for the same reasons. Thus, from these experiments we can confi-

dently say that for dialogue act classification, almost all the augmentation techniques

can successfully boost model performance in low data regime. Out of them, EDA,
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Data Info No Aug Random Delete Random Insert Random Swap Synonym Replacement EDA Back Translation BERT GPT2

10 76.01 ± 7.6 81.59 ± 6.35 80.58 ± 5.92 79.55 ± 4 83.64 ± 4.47 80.89 ± 5.27 74.46 ± 8.09 82.87 ± 4.17 83.81 ± 6.22

100 88.93 ± 5.65 95.22 ± 1.66 96.23 ± 0.6 95.93 ± 0.91 96.18 ± 0.65 96.22 ± 0.49 87.68 ± 10.11 96.44 ± 0.6 96.07 ± 1.08

Table 6.2: Average accuracy with standard of deviation of our proposed classifier
after implementing a wide range of data augmentation techniques

Masking and Prompting are the top contenders with Back Translation being the one

to avoid. When it comes to using data augmentation techniques using large language

models, one thing to note here is the risk of introducing linguistic conformity in the

training data. So, care must be taken to make sure the augmented data does not

unintentionally induce social biases and stereotypes [240].

6.3 Data Augmentation Techniques for DA Clas-

sification in French

One of our future goals involve making both of our chatbots multilingual. For this, our

DA classifier should be able to identify dialog acts from user utterances in multiple

languages, not just English. Because French is the second most popular language

among our users (right after English), we decided to use our proposed DA classifier

to detect the 8 dialog acts from French utterances. This section discusses in details

the process of building a small French dataset, expanding it using augmentation

techniques and finally training our DA classifier on it. Although we specifically deal

with the French language here, the steps and techniques mentioned can be replicated

for detecting dialog acts in any language.

6.3.1 French Dataset Creation

We decided to translate our English dataset into French for the purpose of training

and evaluating our DA classifier. Given how large our dataset is, we first looked

into translating it automatically using the Google Translate API. However, upon

analyzing the translated French sentences, we noticed that most of them were of poor

quality. A number of these French sentences were incomplete and did not retain the
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Dataset Total Apology Direct Order Factual Question Greeting Indirect Oder Feedback Statement Yes/No Question

Train 234 28 28 27 36 27 31 26 31

Test 150 9 20 20 20 20 20 20 20

Table 6.3: Summary of the sentences translated from English to French for creating
the French training and test dataset

meaning of their original English sentences. As a result, some of the newly translated

sentences were carrying labels that were no longer true for them. For example: when

the English sentence ‘find the cartel vol 2 novel’ with the label Direct Order was

automatically translated, we got ‘trouver le cartel vol 2 roman’ in French which no

longer conveys the same dialog act. A DA classifier trained and tested on this faulty

dataset will surely not give accurate results. To mitigate this issue, we decided to

randomly choose a few English sentences per label from our original dataset and

then manually translate them into French. For translation, we took the help of two

MIRA team members who are fluent in both English and French. For generating

the French train dataset, we randomly chose 40 sentences per label for translation.

However, our translators at times included two versions of French translations for each

English sentence in order to make the French train dataset much larger. Likewise, for

generating the test dataset, we randomly chose around 20 examples per label that are

completely different from the ones chosen for training. Table 6.3 gives a run down of

the distribution of the translated sentences for each dialog act.

6.3.2 Experimentation with BERT and m-BERT

Our proposed DA classifier is based on BERT which is pretrained on monolingual

English dataset. Keeping that it mind, the preprocessing of our French dataset was

handled a bit differently. For example: we mapped all the French accents to their

English counterparts (eg: à → a, â → a, è → e, æ → ae) to make sure the model

recognizes all the symbols. Moreover, instead of removing every single punctuation

mark, we kept the apostrophes and the hyphens intact so that the meaning of the
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Total Number of Epochs Average Accuracy

fine-tuned monolingual BERT fine-tuned multilingual BERT

3 41 68

6 65 78

10 68 80

20 69 80

Table 6.4: Comparison between the average accuracy obtained by fine-tuning BERT
and m-BERT on our French dataset in different epochs

French words do not change. The rest of the experimental setup for our French DA

classifier is more or less the same as discussed in Chapter 4. Upon training our

classifier on this data for 3 epochs, we obtain an average accuracy of 41%, which

is not ideal. Given how small the French training dataset is in comparison to our

English dataset, we decided to increase the number of epochs during training to help

the neural network learn the structure of the data. As expected, just by doubling the

number of epochs from 3 to 6, the accuracy jumps by 24 points and becomes 65%.

We experiment further by increasing the number of epochs during training and report

the results in Table 6.4). Fine-tuning BERT with a small dataset can often lead to

instability in model performance [241]. As a result, we repeated each experiment 5

times and reported an average accuracy of our model to get a better picture. From

the Table, it is seen that, when the number of epochs during training is 20, an average

accuracy as high as 69% is achieved which is not bad at all since our DA classifier

was never pretrained on French corpus.

Given how different French language is from English, we speculate whether using

a model pretrained on large French corpus will yield better results. We put our

hypothesis to the test by deciding to fine-tune m-BERT or multilingual BERT [112] on

this dataset. Like the original English BERTmodel, m-BERT is a 12 layer transformer

but instead of being trained only on monolingual English data with an English-derived
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vocabulary, it is trained on the Wikipedia pages of 104 languages with a shared word

piece vocabulary including French. Using the same experimental set-up and repeating

each experiment 5 times, we achieve the results shown in table 6.4. As expected, upon

using model pretrained on the French corpus we were able to significantly improve

the accuracy rate of our French DA classifier by 10% with the highest accuracy being

80%. This is impressive given how small how fine-tuning dataset is. As future work, it

might be interesting to observe how BERT models pretrained on multi-lingual corpus

will perform once it’s fine-tuned on a multi-lingual DA dataset.

6.3.3 Application of Augmentation Techniques

With the aim of further improving the performance of our French DA classifiers, we

decided to implement the augmentation techniques discussed in Chapter 5 to increase

the size of our training dataset. However, due to the change in language, some modi-

fications were made to each of the methods. For example, for Random Insertion and

Synonym Replacement, we used a French thesaurus instead of an English thesaurus

in order to get a list of synonyms of particular French word(s) in a sentence. Simi-

larly, we applied the Back Translation technique by translating French sentences to

English and back to French. For methods like Masked Token Prediction using BERT

and Prompting using GPT-2, we looked for models that are trained on French cor-

pus for optimal performance and finally decided to use ‘bert-base-multilingual-cased’

[242] and ‘gpt2-wechsel-french’ [243] as substitutes. The former is a BERT model

pretrained on 104 languages (including French) with the largest Wikipedia using a

masked language modeling (MLM) objective, while the latter used the WECHSEL

technique (effective initialization of subword embeddings for cross-lingual transfer of

monolingual language model) to transfer the English GPT-2 model to four languages

(French, German, Chinese, and Swahili). Given that our dataset is already very

small, we did not have to simulate a low resource setting like last time through ran-

dom sampling. Instead, we used the entire French training dataset and augmented
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No Aug Random Delete Random Insert Random Swap Synonym Replacement EDA Back Translation BERT GPT2

No of Examples 234 351 457 461 451 430 398 460 462

Model BERT 68 68 72 70 71 67 71 68 72

Model m-BERT 80 81 84 82 81 81 82 81 81

Table 6.5: Average accuracy of fine-tuned BERT and m-BERT on our French dataset
after implementing a wide range of data augmentation techniques

Technique Example

No Augmentation le cortex préfrontal fait-il partie du lobe frontal

Random Delete le cortex préfrontal du lobe frontal

Random Insert monsieur le cortex préfrontal fait-il partie du lobe frontal

Random Swap le cortex préfrontal fait-il lobe du partie frontal

Synonym Replacement le cortex préfrontal fait-il contribution du lobe frontal

EDA le aboyer cortex préfrontal fait-il partie du lobe frontal

Back Translation est la partie du cortex préfrontal du lobe frontal

BERT le cortex prefrontal fait pour partie du lobe frontal

GPT-2 le cortex prefrontal et le lobe frontal sont bien alimentes

Table 6.6: Examples of synthetically generated French sentences using different aug-
mentation techniques

it by generating a new sentence using each of these methods to more than double

the original size. Upon training our DA classifier on this dataset with number of

epochs=10, we obtain the results highlighted in Table 6.5.

The accuracy of our BERT-based DA classifier increases by 4% and jumps to a

solid 72% when trained on data augmented using Random Insertion technique. Sim-

ilar result is also obtained upon training the classifier on GPT-2 augmented data. A

modest improvement in accuracy is also observed for data augmentation techniques

like Synonym Replacement, Back Translation, and Random Delete. Model perfor-

mance however dips by 1% upon using EDA augmented data during training. Main
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reason for this might be because of the poor quality of the newly generated data.

Similar results are also observed in our m-BERT based DA classifier. When trained

on data augmented using Random Insertion, the model accuracy increases by 4% and

becomes as high as 84% which is quite impressive. Slight improvement in accuracy

is also observed for augmentation techniques like Back Translation and Synonym Re-

placement. All in all, although most of the data augmentation techniques were able

to boost the performance of our DA classifiers on French dataset, low quality of the

generated data may have prevented it from achieving exceptional results. To validate

our claim, we take a look at some of the sentences that were newly generated. Table

6.6 shows how a French sentence with the tag ‘Yes/No Question’ was manipulated to

generate 6 new synthetic examples. However, some of them no longer preserve the

same label (e.g., the sentence using Back Translation is not a Yes/No Question any-

more but a Statement). Such mislabelling in augmented training data may hinder

the model in properly learning the accurate class features during training. Future

work might look into ways to identify and remove newly generated sentences that no

longer preserve the original class label for better model performance.
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Chapter 7

Conclusions, Recommendations, &
Future Work

Dialog systems have gained traction in the recent years by showcasing a great promise

in interacting with humans using natural language text. Classifying the intent of a

user dialog in a conversation, also known as dialog act, is a key component in building

these conversational agents. By identifying the different dialog acts, chatbots can

respond more coherently and assist users in accomplishing their tasks more effectively.

In this work, we have addressed the problem of recognizing user dialog acts by open

domain dialog systems. We have introduced a fine-tuned pretrained BERT-based

dialog act classifier applicable for both of our conversational agents, ANA and MIRA.

For this, we first investigated the current literature and through iterative discussions,

proposed a taxonomy of 8 dialog acts that are suitable to capture the intents of our

chatbot users. We then curated a high-quality, large-scale dataset consisting of ∼24k

user utterances from a wide range of domains like mental health, airlines, banking,

product reviews, insurance, movie reviews and so on. Upon fine-tuning our proposed

classifier on this dataset, it outperformed the baseline SVM model by achieving SOTA

accuracy. Through further evaluations, we prove the generalizability and robustness

of our proposed model on unseen dataset. Given how difficult it is to curate adequate

labelled dataset for domain specific DAs, we look into the feasibility of implementing

a wide range of data augmentation techniques to augment the existing training data
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and improve model performance. We first provide a brief overview of the different

augmentation techniques that are out there for text data by categorizing them into

an easy to understand taxonomy. Next, we compare the effectiveness of some of these

methods by implementing them on a number of NLP tasks like news classification,

sentiment analysis, emotion detection, slot filling and intent detection. Next, we

apply the knowledge gained from these experiments into improving the performance

of our DA classifier in low resource setting. Through extensive experiments, we show

that, in a simulated low data regime with only 10 examples per label, methods as

simple as synonym replacement can double the size of training data and improve

the performance of our DA classifier by ∼8%. Lastly, in the direction of building

multilingual conversational agents, we demonstrated how our proposed classifier and

augmentation techniques can be adapted to effectively detect dialog acts from French

utterances.

As for future work, we suggest investigating the following avenues:

i Although we had structured dialog act recognition as a multi-class classification

problem, there can be instances where a single sentence is used to express multiple

dialog acts. For example, ‘I wonder where he’s going’ can be used to both convey

a Statement and a Question. Structuring dialog act recognition as a multi-label

classification problem to handle such instances would be interesting.

ii When detecting user dialog acts, often times, the previous utterances can provide

important context. For example, ‘So she can’t go’ can be tagged as either a

Question or a Statement depending on the previous dialogs in the conversation.

Although our proposed dataset does not include complete user conversations, this

is definitely something worth exploring.

iii In our work, we had decided to use 8 dialog acts to capture our user intents.

However, it might be necessary to further distinguish between some of them.

For example, an open-ended question from a user can be either Factual (requires
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Wikipedia as a source) or Opinion-based (requires Twitter as a source). Whether

the inclusion of more dialog acts will be beneficial for our DA classifier is an

interesting topic to investigate.

iv Lastly, on the topic of text data augmentation, it would be worth exploring its ef-

fectiveness for improving the performance of DA classifiers by augmenting training

dataset curated in low resource languages like Urdu, Bengali, and Punjabi.
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Slovenia, 2012, pp. 34–37.

[15] R. Raine, “Making a clever intelligent agent: The theory behind the imple-
mentation,” in 2009 IEEE International Conference on Intelligent Computing
and Intelligent Systems, IEEE, vol. 3, 2009, pp. 398–402.

[16] S. Singh and H. Beniwal, “A survey on near-human conversational agents,”
Journal of King Saud University-Computer and Information Sciences, 2021.

115



Appendix A: Chatbot Systems

Chit-chat systems are dialog systems that are designed to mimic human-behaviour.
By producing natural sounding responses, chatbots converse with human beings on
a wide range of events and topics, and help them accomplish multiple tasks.

A.1 Types of Chatbots

Over the years, a number of approaches have been adopted for building dialog systems.

1. Rule-Based: Such chatbots generate a response based on hand-crafted rules en-
gineered by humans. The generated responses often sound unnatural as they
do not take the contextual information in the conversation into account. A
popular example of rule-based chatbot is ELIZA [1]. ELIZA takes user’s ut-
terances as input and processes it by searching for a keyword that occurs in a
predefined dictionary. If the keyword is found, the utterance is mapped to a
rule which then transforms the statement into a response. Otherwise, ELIZA
outputs a generic response or uses an utterance from the conversation history.
Few years later, another chatbot, PARRY [2], was built. Unlike ELIZA, it has
an emotional state that controls the response generation process. For example,
if PARRY detects anger in user input, it chooses to output a response from a
predefined set of hostile responses. While these approaches may seem promis-
ing, they fail to generate an appropriate response in most of the cases. Often
times, they keep repeating the same things which fail to keep the users engaged.

2. Information-Retrieval (IR) based: Given a user input, such chatbots focus on
choosing a response from a pool of unstructured conversational data. Formally,
IR-based systems take a user query, q and a conversational corpus, c as input
and return a response, r that is relevant to q. A number of IR algorithms [3–6]
are used to rank a repository of responses in order to find the most suitable one.
Although the generate response is grammatically correct, it often lacks diversity
and is not within the context of the conversation. As a result, researchers have
turned their attention to neural generative dialog systems.

3. Neural Generative: With the availability of large scale conversational data,
many researchers looked into training and building data-driven dialog systems.
Unlike IR-based systems that copy utterances from a corpus to generate re-
sponse, such systems generate diverse responses by producing utterances word
by word that could have never appeared together in the training dataset. Re-
sponse generation can be deemed as a message-response mapping problem where
the model has to learn a coherent response given previous message utterances
[7].Neural generative dialog systems too have a few disadvantages. Sometimes
the generated response is not semantically correct and the wide range of plau-
sible responses can make generating the appropriate one much more difficult.
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Luckily, the recent success of deep learning methods in multiple NLP tasks has
spurred researchers to further investigate end-to-end dialog models [8].

A.2 History of Conversational Agents

Over the years, a lot of work has been done to transform the basic scripted QA bots
to the self-learning bots we see today.

1. ELIZA: Created from 1964 to 1966 at the MIT AI Laboratory by J. Weizen-
baum [1], it is the first bot that came close to competing with the Turing Test.
Eliza simulated conversation by effectively recording input, rephrasing it, and
matching keywords with a predefined list of responses. Because ELIZA is a
rule-based system, it gave users an illusion of understanding despite having no
built in framework for contextualizing events [9].

2. PARRY: Written in 1972 by psychiatrist Kenneth Colby, then at Stanford Uni-
versity, PARRY attempted to simulate a person with paranoid schizophrenia
[2]. The program implemented a crude model of the behavior of a person with
paranoid schizophrenia based on concepts, conceptualizations, and beliefs. It
also embodied a conversational strategy like ELIZA but was more advanced in
comparison. PARRY demonstrated how technology could assist in replicating
a person with mental health issues [10].

3. ALICE: Introduced by R. Wallace in 1995, Artificial Linguistic Internet Com-
puter Entity (ALICE) is a well-known AIML-based opensource chatbot. In-
spired by ELIZA, it engages in conversations with humans by applying heuris-
tical pattern matching rules to the user input. To make the responses more
relevant and credible, supervised learning is used to track the chatbot’s discus-
sions and to suggest additional AIML content. However, because ALICE is a
preset set of questions and answers, it lacks the robustness to respond to all
queries [11, 12].

4. Watson: Developed by IBM in 2006, it is a retrieval-based chatbot that won the
Jeopardy TV show in 2011. Watson is based on the Hadoop-based ML system
and uses advanced NLP technologies including IR, Knowledge Representation
and Automated Reasoning [13]. Over the past several years, the Watson As-
sistant chatbot has evolved and is now being deployed in different industries
through fine-tuning. It even uses intent classification and entity recognition to
better understand customer needs.

5. Mitsuku: Introduced by Steve Worswick in 2013, it is a rule-based chatbot
written in AIML that can converse with its users with humor and empathy in a
very humane way. This advanced bot won the Loebner Prize five times [14, 15].
Mitsuku’s improvement includes holding long discussions, learning from chats
and recalling personal information about users.

6. Siri: Released by Apple in 2011, it was originally used to assist users to perform
tasks like making a call, responding to messages and managing alarms. The
back-end of Siri uses Automatic Speech Recognition, NLP and other forms of
weak AI to perform these tasks [16]. It also offers customization and configu-
ration of genre, accent and language. Nowadays, it uses voice queries, gesture
based control and focus-tracking to answer questions, make recommendations
and perform actions. With continued use, it can adapt to user’s preferences and
return individualized results.
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7. Alexa: Developed by Amazon in 2014, Alexa is capable of voice interaction,
music playback, making to-do lists, setting alarms, playing audiobooks, provid-
ing real-time information and so on [16]. It can also act as a home automation
device used to control several smart devices. Like Siri, Alexa has a natural voice
and can speak with users in different languages.

8. Cortana: Developed by Microsoft in 2014, Cortana is a virtual assistant that
uses the Bing search engine to perform tasks like setting reminders and answer-
ing questions for the user. With the help of Windows 10 and Windows Mobile,
Cortana can perform the same duties as Siri and Alexa [16]. However, unlike
its competitors, Microsoft slowly began reducing the prevalence of Cortana.

9. Google Assistant: Developed by Google in 2016, Google Assistant is a virtual as-
sistant that is primarily available on mobile and home automation devices. Be-
cause of AI, Google Assistant can engage in two-way conversations with its user.
Although keyboard input is supported, users mostly interact with it through
natural voice. Like Siri and Alexa, it can answer questions, schedule events and
alarms, adjust hardware settings on the user’s device, show information from
the user’s Google account, play games and more [16].

118


	Introduction
	Thesis Statement
	Thesis Contributions
	Thesis Outline

	Dialog-Act Identification
	Related Works
	Initial Taxonomy (Three Dialog Acts)
	Data Source

	Proposed Taxonomy (Eight Dialog Acts)
	Data Source

	Background
	Dialog Act Classification
	Artificial Neural Networks (ANN)
	A Single Neuron
	Feed-Forward NN
	Training
	Popular ANN Models

	Popular Classification Algorithms
	Classifiers Used
	SVM
	BERT

	Performance Metrics Used

	Experimentation
	Experimental Setup
	Experiments on 3 DACs
	Generalizability of Model

	Experiments on 8 DACs
	Model Generalizability


	Text Data Augmentation
	Brief Overview of DA techniques in NLP
	Easy Data Augmentation (EDA)
	Contextual Replacement
	 Random

	Paraphrase
	Machine Translation (MT)
	Controlled Generation
	Rule-based techniques

	Compositional Generation
	DA methods for NLP Tasks
	Experiments and Discussion

	Text Data Augmentation in Dialogue Act Detection
	Experimentation with Baseline
	Low Resource Setting
	Data Augmentation Techniques for DA Classification in French
	French Dataset Creation
	Experimentation with BERT and m-BERT
	Application of Augmentation Techniques


	Conclusions, Recommendations, & Future Work
	Bibliography
	Appendix A: Chatbot Systems
	Types of Chatbots
	History of Conversational Agents


