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Abstract

Magnetization dynamics in lithographically patterned thin-film permalloy (Ni8oFe2o) 

microstructures are studied using time resolved scanning Kerr microscopy (TR-SKEM). 

This is a technique combining ultrafast lasers with scanning probe microscopes to 

observe repetitive non-equilibrium dynamic magnetization states. These observations are 

compared to a finite element micromagnetic simulation based on the Landau-Lifshitz- 

Gilbert (LLG) equation. This is a stringent test for the LLG equation, as it will show how 

well it can reproduce experimental micromagnetics.

Micromagnetic dynamic experiments tested fall into two classes ferromagnetic 

resonance and magnetization reversal. Ferromagnetic resonance is a low amplitude 

excitation where the magnetic spins are saturated in one direction and then caused to 

oscillate at their resonance frequency by a transient magnetic field perpendicular to their 

saturation direction. Magnetization reversal is a large amplitude excitation where the 

spin direction in the ferromagnet changes by 180°. The same simulation with the 

parameters measured with our system (47iMs= 10.8 kOe and a=0.008) is quite successful 

in reproducing experimental behaviour.

Convergence between experimental and numerical micromagnetics is seen in many 

problems. One large cause o f discrepancy, the non-repeatability o f dynamics due to 

Brownian motion o f magnetization vectors is studied with simulation. These simulations 

can be used as a guide to understand the magnetization dynamics experiments in cases 

where the dynamics are not repetitive.
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Doring mass
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y-component o f magnetization
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surface
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scanning electron microscope
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sim simulation
S i02 silicon oxide
SLAC Stanford Linear Accelerator Center
t time
t thickness
tw Neel time
T temperature
T switching time
t , , t 2 Bloch-Bloembergen relaxation times
TEM transmission electron microscope
Ti titanium
TR-SKEM time resolved scanning Kerr effect microscopy
V velocity
V voltage
V volume
V l o r velocity o f electrons due to Lorentz force
w width
w volume energy density
wd volumed demagnetizaing energy density
W ex volume exchange energy density
W u volume anisotropy energy density
W z volume Zeeman energy density
X Cartesian coordinate
y Cartesian coordinate
YAG yttrium aluminum garnet
z Cartesian coordinate
z number o f nearest neighbors
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1. Magnetism

The most significant trend in electronics in the past half century is the reduction in 

size and increase in speed of devices. This has lead to a great deal o f interest in micro 1 

and nano 2 electronics and magnetism.3 This trend is pushing our physics knowledge. 

Advances in fundamental magnetism research has lead to new phenomena such as giant4 

and colossal 5 magnetoresistance (GMR and CMR respectively - large changes in 

electrical resistance depending upon magnetization directions in the device) and 

oscillatory magnetic coupling (between ferromagnetic and antiferromagnetic) o f ultrathin 

films.6 This has opened the possibility for many new magnetoelectronic devices 7 which 

use the new freedom in functionality from combining both spin (magnetic) and charge 

(electronic) information.

1.1 Fundamental Motivations

The advances touched upon in the preceeding paragraph (GMR, CMR and oscillatory 

magnetic coupling) are o f huge fundamental importance and each has spawned a new 

sub-field in physics. These are examples o f the major advances that are occurring in 

magnetism today.

Magnetism is a phenomenon that is often studied on the mesoscale. It is an
o

inherently quantum mechanical phenomenon (Bohr -van Leeuwen theorem) but occurs 

in systems which are too large to give a full quantum mechanical treatment. Most o f the 

current theoretical framework in magnetism is semi-classical. The push toward the 

nanoscale will test the semi-classical framework and cause it to break down in many 

instances. It will force the development o f a newer, richer theoretical framework and it 

will lead to new phenomena as we see quantum mechanics on a macroscopic scale. 

Examples o f this, which are already being studied, include spin injection 9, spin 

coherence 10, and quantum entanglement.11

Many very conceptually simple problems which still exist in magnetism. This thesis 

is partly devoted to the problem of how ferromagnets reverse magnetization direction.

1
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This simple question has largely remained unanswered over the last 50 years and is an 

example o f one o f the fundamental issues remaining in magnetism.

Magnetism is a rich and often non-linear theory, with lots o f possibility for 

advancement. Techniques used to study it often have broad application to solid state 

physics and material science as a whole, but are often first attempted in the "test-bed" of 

magnetism.

For all these reasons and more, magnetism is an area o f physics which is very active 

and is likely to have fundamental advances in the future.

1.2 Applied Motivations

Magnetoelectronics is making a wide impact in industry. Ultrahigh density and high 

speed magnetic recording exist today.12 They are being improved at very quick rates to 

make computer hard drives smaller, faster and able to store more information.

The read portion o f a magnetic recording head has undergone significant modification 

recently. It has gone from an inductive reading device, to an anisotropic 

magnetoresistance (AMR) device, to a giant magnetoresistance (GMR) device in less 

than a decade. All the time it has been shrinking in size while maintaining the same 

absolute sensitivity.

On the write side, the challenges are material issues (for example finding high 

magnetic moment materials) as well as magnetic dynamic problems (such as head 

switching characteristics). The density of information storage (bits per square inch) has 

not only maintained a Moore's Law pace (shrinking in size and doubling in complexity 

every 18 months), it has improved from that pace due to the introduction of a GMR 

reader in 1997-98. Currently, 48.8 Gb/in2 has been demonstrated in a commercial 

product.13 As information gets written into smaller and smaller bits, fundamental limits 

are looming on the horizon. The magnetic elements in which information is stored will 

reach the superparamagnetic limit around 100-150 Gb/in2’, where thermal fluctuations are 

a dominant enough energy term to switch magnetization thus destroying recorded 

information. In order to solve this problem, work is underway to use patterned media, 

media with higher anisotropy or media with increased saturation magnetization using

2
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higher moment writers, or “perpendicular” recording which allows a larger volume bit at 

the same areal density.

New devices like magnetic tunnel junctions (MTJ) may soon be available in magnetic 

RAM to challenge traditional silicon memory. MTJs are a sandwich o f two 

ferromagnetic layers with a thin insulating layer between them, serving as a tunnelling 

barrier. The resistance in the tunnel barrier depends upon the magnetic arrangement of 

the two ferromagnetic layers. When the spins are aligned, the resistance is smaller than 

when they are anti-aligned. In this geometry, the currents will run perpendicular to the 

plane, as opposed to parallel to the plane as in traditional magnetic recording, making 

higher density possible. Work is also being done to adapt traditional GMR memory to 

use current perpendicular to the plane. The development o f new memory devices 

involves many pressing issues regarding uniformity, reliability, reproducibility and 

integration into silicon processing steps,.

Fundamental changes in computer architecture may occur if  magnetic memory and 

semiconductor logic can be better integrated into spintronic devices. Topics such as spin 

transport, spin injection and possibly spin transistors 14 must be addressed for this to 

happen.

1.3 Ferromagnetism

Ferromagnets have a spontaneous magnetic moment, even in zero applied magnetic 

field. The spontaneous magnetic moment suggests that electron spins and magnetic 

moments are arranged in a regular manner. Weiss 15 gave the first explanation o f this 

using the mean field approximation. He proposed that each magnetic atom experiences a 

field proportional to the magnetization

B =XM  (1.1)
e

where A, is a constant, independent o f temperature. This is the earliest formulation of 

what today is known as the exchange field. This formulation is very successful in 

explaining the saturation magnetization o f the ferromagnet as a function o f temperature.

3
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Above a critical temperature, known as the Curie temperature, the spontaneous 

magnetization vanishes and the sample “separates” into a disordered paramagnetic state.

Weiss also postulated that a ferromagnetic material breaks up into microscopic 

domains where each domain has a spontaneous magnetization but is oriented in different 

directions, so that on the macroscale the magnetization is lower than the saturation 

magnetization. This is due to the competition between the energy of the free magnetic 

poles on the sample surface (known as demagnetization) and the exchange interaction 

that tends to align spins. The demagnetizing energy terms depend upon volume, so it 

takes a larger number o f spins for them to become important. Thus on the microscopic 

scale, the magnetization tends to be aligned, but on the macroscopic scale it tends to be 

demagnetized. In a full micromagnetic analysis, other energy terms are also relevant. 

Energy minimization is what determines in which static state a ferromagnetic material 

will be found.

The Weiss theory is semi-classical and is necessary in part due to the Bohr- van 

Leeuwen theorem.8 This theorem is rather technical and uses Maxwell’s equations and 

statistical mechanics (the grand canonical ensemble) for classical non-relativistic 

electrons. It shows that at any finite temperature and in all finite applied electrical or 

thermal fields, the net magnetization o f a collection o f electrons vanishes identically. 

This is an example o f a large conflict between experiment and theory. It is resolved only 

with quantum mechanics, as the quantized nature o f the electron’s orbital magnetic 

moments allows for magnetization to exist. However, ferromagnetic samples are 

sufficiently complex that the problem becomes far too large to treat purely quantum 

mechanically, hence the need for a mesoscopic semi-classical theory.

1.4 Micromagnetization Dynamics

The semi-classical theory used to solve micromagnetization dynamics problems 

uses Newtonian physics with only as much quantum mechanics as necessary to capture 

the underlying mechanisms. As a starting point we have Newton’s second law:

—  = T (1.2)
dt

4
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where L is angular momentum, t is time and t is torque. In a magnetic system this can be 

written as

(1.3)

Here M is the magnetization which is constant in magnitude but may vary in direction, H 

is the effective magnetic field and y is the gyromagnetic ratio. This equation will lead to 

an infinite precession o f spins in the magnet, so it must be modified to include damping. 

The simplest possible assumption is that the damping is linear and isotropic. This 

assumption has been used successfully in many aspects o f magnetoelectronics. This 

leads to a damping term proportional to change in magnetization dM/dt with a strength 

given by a , a linear damping constant. This leads to an equation o f form 

dM  / x a  dM
 = - y ( M x H ) + -------------- M x   (1.4)
dt M  dts

here Ms is the scalar value o f the magnetization, known as the saturation magnetization. 

This is the form of the Landau-Lifshitz-Gilbert (LLG) 16 equation that is usually given in 

publications. An equivalent form is the original Landau-Lifshitz 17 equation.

—  = ^ ' ( M x H )  M x ( M x H )  (1.5)
dt M

s

These equations are equivalent if  we make the following substitutions

o t = - A -  y = y ' ( l + c t 2 ) (1.6)
y M  ' s

The original equation was initially derived assuming low damping without the

substitution for y. This equation is not physical for higher damping. The correspondence
18between the two forms o f the equation was discovered later.

In order to do calculations it is often necessary to write H in terms o f the 

magnetization M. This is easily accomplished by noting that H is the energy variational 

with magnetization

H = - - ^  (1.7)
8 M

5
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where w is the volume energy density, and this derivative is a functional derivative which 

is defined by

8w dw _  dw
 =  V *   (1.8)
8M dM  5VM v 7x x  x

When the LLG equation is written in this way, the problem of which energy terms are 

part of w becomes clear. Typically four terms are used. They are Zeeman, exchange, 

demagnetizing and anisotropy energy terms. A fifth term, thermal energy in the system, 

is described later on in this thesis.

This equation is complex and non-linear. Except in special cases, exact calculation is 

not possible. Since it has four competing energy terms, none of which can be neglected, 

approximate analytical calculation is also not possible. Thus, this problem must be 

solved by a numerical simulation.

1.4.1 Zeeman energy

Zeeman energy is the energy from the coupling o f spins within the magnet to the 

external magnetic field. It is more energetically favourable for spins to align with applied 

field than to point in other directions. This term is 

- j M . H d V
w = -----------------  (i.y)

z v

1.4.2 Exchange energy

The exchange interaction is a quantum mechanical interaction that arises from the 

overlap of electronic charge distributions. Depending upon the material, the exchange 

interaction is due to electronic orbital overlap of neighbouring atoms directly or mediated 

by conduction electrons 19 (this is called the RKKY interaction or indirect exchange), or 

mediated by intervening non-magnetic ions (called superexchange) . In general the 

exchange interaction can be written as

w = - -  Z J  S *S (1.10)
ex v  / \ mn m n(m,n)

6
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where Jmn is a quantum mechanical coefficient known as the exchange integral and Sm 

and S„ are the spin directions o f the mth and nth atoms and V is the volume of the 

material. This is known as the Heisenberg Hamiltonian.20 Much work has been done 

solving it in many body situations, although mesoscopic magnetism involves too many 

bodies to approach it in this manner. The magnitude and sign o f the exchange integral 

Jmn is in general a function o f the electronic structure o f the ions and the distance between 

them. Two simple cases can be considered. The case where Jmn is everywhere positive 

will lead to a minimization in energy where all spins point in the same direction. This is 

the case of a ferromagnet. When Jmn is everywhere negative, the energy minimization 

will have all spins pointing anti-parallel to their nearest neighbours. This is the case of an 

antiferromagnet.

Often to do micromagnetic calculations, it is cumbersome to evaluate exchange 

energy because it involves a discrete calculation and not a continuous one. This problem 

is solved by assuming that all vectors and properties o f the sample are continuous. Then 

we can write

• £  J  S «S. . mn m n
{ m , n )

- J S  £  cos(|)
(m,ri) m,n (1.11)

where cpm,n is the angle between the mth and nth spins. In a ferromagnet where spins are 

mostly aligned, we can assume (p is small so that coscp —» l-l/2cp2. Since we will 

eventually take the derivative o f the energy we can neglect the constant term giving us

( 1.12)J S 2 £  (j) 2mnm,n

We can make further assumptions about (pmn as shown 

2 _
$ mn M  - M

2
r • VM 2 = VM 2 + V M  2 + V M  2

m n mn —
1

(1.13)

where a is the mean distance between atoms (the lattice constant) and M is the direction 

of (classical) magnetization o f the spins. This gives us an exchange energy density

J S 2k
w = ■ ex

neighbour VM 2 + V M  2 + V M  2 x y  z (1.14)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where k nejghbour is the number o f nearest neighbours each atom has. Usually the quantity 

JS knejghbour/a is defined as an exchange constant A.

Now that we have a semi-classical continuum model for exchange we can include 

several empirical effects into it, such as crystallinity. Local exchange values will 

decrease around grain boundaries. Usually when exchange is reported in the literature 

both a crystalline and an (average) polycrystalline value are quoted. In the simulation we 

generally use a polycrystalline value as our samples are polycrystal.

In the ensuing simulation, exchange will be calculated with nearest neighbours only. 

Other cells are taken as being far enough apart to make it negligible. Also, since this 

thesis deals with ferromagnets, Jmn is taken to be everywhere positive with a constant 

value.

1.4.3 Demagnetizing Energy

Demagnetizing energy is the self-energy of the sample. It is the energy of each spin 

due to the presence o f all the other spins. It is mathematically complex to calculate and 

most o f the computation time in simulations is spent computing it. This is because one 

needs to know the spin configuration of the entire sample to calculate this term for any 

one spin, thus making the problem non-local. In general, this term is calculated by 

solving Maxwell’s equations. If we start from the equation

V • B = V • (P 0H  + M) = 0 , (1.15)

and we define the demagnetizing field H j to be the field generated by a magnetization M 

then
f  \

M (1.16)

The sources and sinks o f the magnetization act like positive and negative “magnetic 

charges” for the stray field. This field can be calculated the same way an electric field is 

calculated in electrostatics, with the only difference being that magnetic charges never 

appear isolated, since they are always balanced by opposite charges.

The energy o f the demagnetizing field can be written down as

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Wj = ^ V L J H , 2dV = ~ —  j H • M d V  (1.17) d  2V °  „ d 2V , d v ’all -  space sample

The first integral shows that demagnetizing field energy is always positive, unless H d is 

everywhere zero (in which case the demagnetizing field energy is also zero). The second 

integral, which is mathematically equivalent for a finite sample, is usually easier to 

evaluate, since it extends over a finite region. However, calculating these integrals is not 

simple, and will be discussed in detail later in chapter three.

1.4.4 Anisotropy Energy

Real crystals have directions that are energetically favourable for spins to be aligned 

and other directions that are unfavourable. This effect is called magnetocrystalline 

anisotropy. This may be induced or due to spin-orbit coupling. Usually, the induced 

anisotropy is the larger o f the two, and can be controlled by the film growth. This 

anisotropy is induced by strain in the film or by directional growth (possibly caused by 

growing the film in a magnetic field). Phenomenologically, this anisotropy is fitted to an 

energy relation. Most commonly, when a sample has uniaxial anisotropy (one axis that is 

energetically favourable over all others) the relation used is

W = K  sin2 0 (1.18)u u

where Ku is a uniaxial anisotropy constant and 0 is the angle from the preferred direction 

o f magnetization or the “easy axis”.

1.5 Magnetostatics and Dynamics -  a history

Magnetic switching was first studied statically or quasi-statically. Work in this field
• • • 21has always had industrial pressure pushing it. A good treatise on the subject is Doyle , 

and much o f this is also summarized in Hiebert.22 It has always been an interesting 

fundamental problem. Much o f the work has attempted to answer the question "What 

happens the instant that the magnetic field is too strong and equilibrium is overcome?" It 

turns out that this question is complex and still cannot be fully answered today.

9
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Analytic calculation has had some limited success in answering this question.23 

Among the possible reversal mechanisms, only the lowest energy trajectory will happen. 

This can be illustrated with the calculation of the magnetization reversal o f an infinite 

cylinder initially magnetized along its length. Two modes o f rotation of the 

magnetization are found to be possible. There is the coherent rotation mode (“rotation in 

unison”) where the magnetization in the cylinder rotates in the same angle everywhere, 

and the “curling” mode where the magnetization reversal nucleates by developing a small 

component along the azimuthal direction o f the cylinder. At a critical radius in the 

cylinder, there is a crossover in the nature of the lowest energy mode. The curling mode 

occurs for larger radius cylinders and the coherent mode for smaller radius ones. Further 

nucleation calculations have been done in other geometries.24 These are “static” 

magnetization calculations. Gyrotropic effects (dynamic magnetization effects) must be 

taken care o f to get a full picture o f magnetization reversal.

One well-studied example o f a localized gyrotropic effect is domain wall motion. 

Sixtus and Tonks 25 first investigated domain wall motion in a ferromagnetic wire. Their 

idea was that reversal occurred through domain walls sweeping through a material.

Domain walls have long been studied theoretically. One of the first uses of the 

Landau-Lifshitz equation 16 was to derive a domain wall mobility formula given by

v = — H (1.19)
a

where v is the velocity o f the wall and A is the domain wall width. This formula assumes 

that the shape o f the wall does not change over time. It provides a method for the 

measurement o f the damping constant a  by measuring the ratio o f v to H. In the case 

where the domain wall shape is allowed to change with time, this value is an upper bound 

to the domain wall mobility (syA/a). Since field is proportional to velocity, switching 

time will be proportional to field when switching is driven by domain wall movement. 

An effective domain wall mass can also be derived using energy considerations. The 

motion of the wall can be viewed as an effective inertial object moving viscously through 

the spins in the sample, where the wall has a mass
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( 1.20)

where mo is called Doring mass.26 This calculation is only applicable in the case of low

velocity. The velocity o f a domain wall can increase up to a critical velocity known as 

the Walker breakdown velocity (or the Walker limit 27 )

For fields that exceed this limit, the domain wall is believed to begin oscillations, 

although this has not been directly observed.

More complex dynamics studies began in earnest in the late 1950’s. In depth “first 

looks” at magnetic switching began at this time. People began to explore the situation 

where the sample was subjected to fields that were so strong that domain wall motion 

alone was too slow to bring about the new equilibrium conditions. Coherent and

Figure 1.1 The Stoner-Wohlfarth astroid. The curve dineates the crossover from stable to 
unstable equilibria. For any field outside the curve there is one stable equilibrium position.
For any field inside the curve there are two unstable equilibria values. Point B has two 
equilibria, M t and M 2. Point A only has one equilibria, Mi.

vTT. = 2nyAM W ' ( 1.21)

Hy

2Ku/Ms

2Ku/Ms Hx
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incoherent rotation were first studied experimentally. Coherent rotation was considered 

to be just a variant upon the rotation in unison that had been analyzed in the cylinder 

problem. Incoherent rotation was a more complicated, non-equilibrium magnetization 

pattern where some spins rotated in one direction and others rotated in another direction.

The Stoner-Wohlfarth theorem 28 was constructed for analysis o f the coherent 

reversal of a single domain symmetric object with uniaxial anisotropy. These 

simplifications allowed for the neglect o f complex energy terms, since there is no spatial 

variation in them across the sample. Symmetry allows for demagnetizing energy to be 

neglected and the single domain nature allows exchange energy to be neglected. 

Including only the Zeeman and anisotropy terms, in the case of a two dimensional thin 

film, the total volume energy density could be written as

w = - M  H  cosQ - M  H  sin0+AT sin2 0 (1-22)s x  s y  u

where 0 is the angle between the easy axis and the magnetization. This can be minimized 

with respect to 0 and set to zero to give the equilibrium angle

—  = M  H  sinQ - M  H  c o s 0 + 2 K  sin0 cos0 = 0 (1-23)
qq s x  s y  u

The second derivative is set to zero to give the transition between stable and unstable

minima to give

2
—  = M  H  cos0 + M  H  s i n 0 + 2 K  (cos2 0 - s i n 2 0)  = 0 (1.24)
^0 2 s x  x  y  u

if  we eliminate 0 from these two equations we get the Stoner-Wohlfarth astroid

(1.25)H  2 I 3 + H  2 /3
' 2*  ^2 /3

y M  
V s J

This astroid shows the critical values o f the external field where the magnetization has a 

stable equilibrium value and is shown in Fig 1.1. The line 5w/50=O is always tangent to 

this curve. To find the equilibrium position for a given field (Hx,Hy) plot the point for 

these coordinates. Draw the line(s) which go through that point and are tangent with the 

astroid. For points outside the astroid there is one stable equilibrium position. For points 

inside the astroid there are two unstable equilibria. Which one the sample holds at a

12
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given time depends upon history. The direction of the tangent line gives the 

magnetization direction. This astroid is often used to explain the hysteresis curve in a 

ferromagnet. This astroid does explain magnetic switching, but only quasi-statically. 

The equilibrium condition can be found for a given field, but it contains no information 

about how it gets from one equilibrium to another when fields change.

Several experiments found that when inverse switching time (1/t) is plotted against 

magnetic field 30 there is a line with two slopes (see Fig 1.2). For smaller applied fields, 

the linear region is interpreted as being a reversal due to domain wall motion. At higher 

fields when the curve becomes steeper it is interpreted as being due to a faster coherent 

rotation. In the region between domain wall motion and coherent rotation, a regime of

Fig 1.2 Inverse switching time 1/T as a function o f longiudinal magnetic 
field Hl  with the transverse magnetic field HT as a parameter (from Olson 
and Pohm)29

F I L M  1 6 ?

Hr *0.7

HT * 0 .3 i  
O E R S T E D  

Ht * 0 . 19
OERSTED

OERSTED

SA 30
IN OERSTEDS
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incoherent rotation was proposed by Gyorgy.31 He produces a model where he assumes

that decoherence o f spins cause demagnetizing and exchange energy to be everywhere 

the same and thus not necessary to include in the calculation. Only the applied field 

needs to be taken into account in this case. He derives the following equation for the 

switching time:

where xs is the switching time and A is a constant related to the initial magnetization 

angle. Note that inverse switching time and field are still linear in this regime, although 

the constant o f proportionality has changed. Also note that no spatially resolved 

experiments existed at this time (the 1950’s) to verify that motion was indeed an 

incoherent reversal.

The next fundamental concern to address is the risetime of the switching pulse itself. 

This governs when switching goes from quasi-static reversal to dynamic reversal. The 

major difference is that in dynamic switching there are nonequilibrium magnetization 

states which are not available quasistatically. Experimental access to these states is 

allowed using time resolved scanning Kerr effect microscopy (TR-SKEM), as is shown 

in this thesis. Unlike previous methods, it watches the magnetization change in response 

to a high bandwidth magnetic field instead o f sitting at a critical field and viewing final 

equilibrium states, or waiting for thermal switching. The magnetization does not respond 

the same as it would in equilibrium, because it is not in equilibrium. This puts dynamic 

switching outside the realm o f phenomena that can be addressed by looking at a static 

hysteresis loop. After a high bandwidth change in magnetization, the magnetization takes 

on many values as it gyrotropically oscillates to equilibrium. Different bandwidth steps 

will lead to different final states.

1
x

(1.26)

5 2a 1 +
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1.6 Spin Wave Dynamics

At the same time as the quasi-static switching work was going on considerable 

advances were made in the study o f spin waves. Much o f this progress was spurred on by 

industrial developments with radar and microwaves. This work will have to be unified 

with the quasi-static work to truly understand magnetization dynamics. This discussion 

is largely summarized in Stancil.

Analytic spin wave calculations can be done by linearizing the Landau-Lifshitz- 

Gilbert equation. This immediately confines spin waves to small angle magnetic motion. 

In much of the work in this thesis, that assumption is untrue, thus making this theory a 

starting point, but with acknowledged limitations in applicability.

The first step in discussing analytic spin wave dynamics is to linearize the LLG 

equation (without damping)

We assume that the time varying parts o f the field are small and can be written as

where M0 and H0 are large, static components o f the magnetization and fields, and m and 

h are small time varying portions. Thus the torque equation becomes

M0 and H0 are parallel so they produce no torque. Neglecting small terms this becomes

(1.27)

M = M +m  o H = H +ho (1.28)

(1.29)

If we assume that the solutions are oscillatory with time dependence e'1C0t and we set M0

and H0 to be along the symmetry (z) axis, then the torque equation becomes

-  /com = -yz x [M^h -  //^mj 

If we solve for the various components o f h we get

(1.31)

yH m + mm 1 o x yH  m -  m m  o y  x h = 0 (1.32)zX  y M
S

y  yM s
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We can write this as a matrix equation

~h
X 1 [y H

0

s
1

m
X

1

ym 5

i
I S
'

1
o

1

5
i

and then invert this to obtain a susceptibility tensor 

m = x * h

where % is called the Polder susceptibility tensor,

X = 

where

X =
y 2M  H  s o

y 2 H  2 - c o 2  o

(1.33)

( 1 .3 4 )

(1.35)

ycoM
K

y 2H  2 - c o 2 o

(1.36)

To go further we will need to include equations for magnetostatics. We start with 

Maxwell’s equations which deal with magnetism

V »B  = 0 V x H - - — = — J
c dt c

(1.37)

and in the static case take the time derivative and the current J  to be zero. So these 

equations become

V «B  = 0 V x H = 0 (1.38)

For these equations to hold in general, they must hold for the small time varying portions 

b and h. Therefore

V « b  = 0 V x h  = 0 (1.39)

where b is

b = h + 47tm = h + 4ti /  h = n • h 

and p is defined as

1 +  A%% -  4tu 'k  0

471 IK 1 +  47TX 0

0

(1.40)

0 1

(1.41)

We can define a scalar potential \|/ such that h=-Vi|/ since that will automatically satisfy 

the Gauss’s Law equation. Then we have
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(1.42)

which gives

'  d_ d_ d_ '

Kdx dy dz /

( l  + 4nx  - 47t / k  0̂ 1 dx

•  47i / k  1 + 4n% 0 • —  q/ = 0 (1.43)

\ d z )

Which reduces to

(1 + 4tix) (1.44)

This is Walker’s equation for magnetostatic modes in a homogenous medium in cgs 

units. In SI units the equation is

In general, this equation is tough to solve except in simple geometries. Walker 33

complicated geometries numerical work is usually needed. This is the classical 

derivation o f spin waves starting from Maxwell’s equations. Although this derivation is 

explicitly done for small angle waves, the classical derivation probably best approximates 

what is seen in experiment.

Spin waves can also be obtained starting from a quantum mechanical problem. In 

these problems, spin waves are quasi-particles o f flipped magnetization (roughly 

analogous with phonons) called magnons.

This calculation is mathematically involved (for complete details see White 35). One 

can start with the Holstein-Primakoff Hamiltonian 36 which is a second quantized 

Hamiltonian that includes Zeeman, exchange and dipole-dipole demagnetizing energy. 

One can develop raising and lowering (creation and anhihilation) spin operators to 

diagonalize this Hamiltonian. The frequency dispersion for wavevector k=0 is found to

(1.45)

solved it in a spheroid. Damon and Eshbach 34 solved it in a thin layer. In more

be:

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CO
M (1.46)

where Hj-H0-47iNzMs, (0m-4 tiyMs, H0 is the external field, Nx,y,z are demagnetizing 

factors that depend upon sample geometry and are defined as

H
- N *  M

(1.47)d 4n

where in a diagonalized geometry Nx+Ny+Nz= l. Thus, one can by symmetry arguments 

“guess” the demagnetizing factors (for example in a sphere, by symmetry, 

Nx=Ny=Nz=l/3).

We can look at this formula in the special case where we have an infinite planar thin 

film with the external field directed along one o f the axes in the plane. Thus we have the 

x and z (magnetic field direction) in plane and the y axis out of plane. Since the film is 

infinite in both x and z, it will have zero demagnetizing factor in those directions. Hence 

we get Nx=Nz=0 and Ny=T, and the frequency dispersion is

<i>=yy[ H o (H o +4nMs ) (1.48)

This is the Kittel formula which gives the ferromagnetic resonance frequency as a 

function of applied field in a thin film sample.

In the case where k^O the frequency dispersion is far more complex.

co - . + 2zjsi)  - y  k  I  Irff. -  2 z j s ( \ - y  J + co „ , sin 0 M  I (1.49)

where z is the number o f interacting nearest neighbor sites, J is the exchange constant 

between neighboring spins, S is the spin quantum number, 0k is a spherical coordinate 

1 '1̂  ftand y , = — * where 8 is the vector between exchange coupled nearest neighbors.
* z 8

In the one dimensional case, we assume that there are two nearest neighbors (z=2) then

1- Y^ = 1 -  cos ka 

where a is the lattice constant. For small k we have

(1.50)

1 -  cos ka & 1 - 1 - k 2a 2 ' (1.51)

18
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thus

cc>£ = + JSk^a^ + JSk^a^ + A n M sin2 ©  ̂j (1-52)

Note that this dependence is nearly quadratic and has a non-zero offset near k=0. 

Looking at the angular dependence, the frequency will be highest perpendicular to the 

symmetry axis (0k=9O°) and lowest for propagation along that direction (0k=O°)

1.7 Spin Wave Example -  Damon-Eschbach Modes

Damon and Eschbach calculated the magnetostatic modes for a thin layer 

magnetized in plane.34 Since this approximates our experimental case, it is instructive to 

look at.

We need to solve the Walker equation inside the material. To start we can assume a 

trial wave function T  inside the material

ik » r
(L53)

where kt is a wave vector in the plane. Outside the material we must satisfy the Laplace 

equation

V 2y = 0  (1.54)

Here we will have a trial solution like

l|/  ~  e ik‘--‘ ,r±t' - ' 2 (1.55)

Since we want T7 to vanish at infinity, we have to choose the signs of the exponent 

correctly. Above the film we have

ii/ , (r) = Ceikr’°“,'r~ir’0U'2 (1.56)T abovev 7

and below the film we have

The boundary conditions on the fields require that the tangential h be continuous, 

assuming the absence of any sheet currents, and that the normal b be continuous. The
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condition on h is equivalent to requiring continuity o f 'F  across the boundary. This 

requires that C=D and that kt,out~kt and

k fd

Ce w cosT o
' k  d \  z

V

(1.58)
/

where d is the thickness o f the film and the z-axis origin is at the center o f the thickness. 

Continuity o f the normal component o f b at z=±d/2 gives

Ce
kt d 

2A = ur smT o
( k  d x z (1.59)

Thus we have

tan
k dz k.

(1.60)

Substituting our trial function into the Walker equation we get

(1+ x \ * x 2 + k y 2 + k  z = 0z (1.61)

Thus if  we have kt2=kx2+ky2 then we can relate kt and kz by

1
(1.62)

When this gives a real solution (i.e., l+x<0) we have allowed modes within the spin 

manifold. If  we combine these results and eliminate kz then we will get a dispersion 

relation giving kt as a function o f frequency © (which is buried within x)

tan
k  d 1

(1.63)

This equation can be solved graphically. It gives multiple solutions which are numbered 

n-0,2,4 etc. We can repeat the same process for a sine-wave trial solution and get odd 

solutions in n=l,3,5 etc. where n corresponds to the number o f nodes through the film 

thickness. These two can be combined into one full solution
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tan (1.64)

The first few o f these modes are shown in Fig 1.3 with constants chosen to represent 

permalloy. H0 is taken to be 500 Oe and the sample thickness is taken to be 15 nm in this 

example. Note that the spin wave manifold (range o f  real solutions) runs from yH0, the

magnetic resonance frequency o f a free spin, up to y J M  H  + H  2 . For this example
s o  o 

that gives values o f 88 to 145 1/s.

This calculation is merely a starting point for a comparison with any o f our 

experiments. It is important to keep in mind the assumption o f low amplitude spin 

waves. Also, the thin layer is assumed to be infinite in dimension. Storey et a l 38 have 

taken the Damon-Eschbach modes one step further by “quantizing” them. They allow 

only wavelengths that fit evenly within the finite length and width o f the material to 

occur. This method is an improvement, but it still does not take into account edge 

effects, demagnetizing fields and non-uniformity within the slab. However, their 

calculation does agree well with their experimental results. Bryant et al 39 take into 

account edge effects and demagnetization using a variational method. They also discuss 

the merits o f this approximate approach. Another drawback is the assumption that there 

are no sheet currents in the layer. In conductors such as permalloy we can have eddy 

currents. However, this has not prevented permalloy from being used for experimental 

comparisons in the past, although the impetus to study permalloy stems from its industrial 

relavance.
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Fig 1.3 Dispersion relation for first five Damon-Eschbach modes in 
permalloy. Lowest mode is n=0. Next lowest is n= l etc up to n=5.

Example of dispersion relation 
for Damon-Eshbach Modes

5e+7

4e+7

^  3e+7

2e+7
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Using micromagnetic simulation one can generate spin waves (although non- 

analytically) for comparison with experiment. In some ways, this is done in this thesis, 

although only with moderate success because the spin waves generated in experiment are 

often not fully resolved spatially. These results are shown in chapter five. This is one 

way in which the form of damping in the simulation can be checked definitively. The 

damping form that gives the appropriate spin waves will likely be the correct form.

1.8 Modern Works in Magnetism

A good summary o f some pertinent modem works in magnetism is found in 

Hiebert.21

A large amount of work has been done imaging static magnetic domains in thin film 

permalloy. Hubert and Schaffer 40 contains several images and discussions about this 

topic. A large variety o f domain stmctures are possible. For example, domain wall 

structure varies with film thickness. For thin samples (~10 nm) domain walls are largely 

symmetric Neel walls (where magnetization rotates in the plane o f the sample). For 

thicker samples (90 nm or greater) domain walls are usually Bloch walls (where 

magnetization rotates in the plane of the wall). In intermediate regimes, walls are an 

intermediate cross-tie wall (where magnetization rotates in both senses), with increasing
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cross-tie density as thickness increases. Labyrinth patterns can also occur. This is likely 

due to demagnetizing field coupling across grain boundaries in a polycrystal sample. 

This is known as a magnetization ripple.41 Stray field coupling will be locally stronger in 

either the lateral or transverse direction and will thus lead to symmetry breaking in 

experimental results.

Static imaging is not necessarily limited to surfaces. Techniques exist to probe 

buried layers in magnetic multilayers. Buhrman et al 42 use Ballistic Electron Magnetic 

Microscopy (BEMM) where they use a sharp tip scanned across a sample to inject “hot” 

electrons. The top magnetic layer will act as a polarizer, as only those electrons with the 

same spin direction as those in the top magnetic layer will travel through the layer. When 

current is measured in lower layers, those layers will act as an analyzer, since the 

polarized electrons from the top layer will be scattered unless the lower layer has the 

same magnetization direction. Pollmann et al 43 use a polarized x-ray microprobe to 

image buried layers. This uses intermediate energy x-rays (5-10 keV) which allow for 

penetration o f the top layers o f the structure to obtain information from buried layers. 

This method has the further benefit that it allows for element specific information, as x- 

rays can be tuned to the chemical composition o f the layers. Techniques such as 

magnetic resonance force microscopy 44 also show promise to allow imaging of buried 

layers.

In some experimental works on dynamic magnetization switching, thermal switching 

is studied. A sample is held near its coercive field, such that thermal switching becomes 

probable. Lederman et al 45 show thermal activation work on single domain y-l^C b 

particles. They find the thermal energy barrier to be more complex than just a single 

Neel barrier. Below a 30° switching field a curling mode is seen. Above a 30° switching 

field, uniform rotation is observed. Koch et a l 46, after experiment and modeling, discuss 

an energy ladder containing several Neel barriers to be crossed, each with a probability o f 

crossing forwards or backwards. Switching occurs when all of the energy barriers have 

been surmounted.

Gyrotropic switching has been studied by Bach et al 47 using the Stanford Linear 

Accelerator Center (SLAC) test beam, which is capable o f producing local fields up to 

several Tesla with 2-4.4 ps length in time, by driving an electron bunch through a thin
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film sample. In these excitations, there is not sufficient time available for thermal 

activation to play any significant role, so thermal effects are removed from gyrotropic 

switching. Co/Pt multilayers were analyzed post-excitation in their final equilibrium 

state, and the domains observed are consistent with coherent rotation in the different 

fields.

Using magnetic modeling, the gyrotropic nature o f reversal has been studied further. 

For example Hillebrands et al have used Stoner-like magnetic particles to model their 

response to field pulses o f varying strength, direction, length and shape. Longer pulse 

data is governed by magnetic damping, and shorter pulses are dominated by gyrotropic 

effects. The differences can be huge as is shown in Fig 1.4 48 which shows switching 

astroids with different pulses. Fig 1.4a corresponds to a square field pulse o f 2.75 ns 

duration, while in figure 1.4b it is 250 ps long. In the long pulse limit (a pulse lasting 

long enough that the system reaches a new equilibrium and with a long enough risetime 

to remove the precessional effects), we expect that the result is the Stoner-Wohlfarth 

astroid. Although the longer pulse more closely resembles it than the shorter one, both 

show oscillatory behavior. The sample initially has its magnetization pointed in the left 

direction. A pulse is applied that has components Hx and Hy as shown by the axes on the 

plot. If the sample remains unswitched after the pulse the region is shown in dark grey. 

If it switches, the region is shown in lighter grey. In general, if  a pulse is applied to the 

left, no switching occurs. If  a pulse is applied to the right, which is strong enough to 

overcome coercivity, switching occurs. If the pulse is short enough, it can start 

gyromagnetic oscillations, which may or may not induce switching. Switching is 

dependant upon which of the two magnetization directions the spin is pointing along 

when the oscillations damp out. Hence, it is possible to induce switching with a field 

pointing to the left (such as point a) depending upon the length o f the pulse and a field 

exceeding coercivity, but pointing to the right will not necessarily induce switching.
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Figure 1.4 Switching astroids for square-pulse magnetic field inputs. I f  a 
pixel is displayed in light grey the sample switched. If  it is dark grey it did 
not. (a) Longer pulse o f 2.75 ns causes only slight deviation from regular 
Stoner-Wohlfarth switching (b) Short field pulse o f 0.25 ns causes much 
larger deviations (from Bauer et a l48)

pulse:
0.0/2.75/0.0

pulse:
0.0/0.25/0.0

The theory o f the magnetic damping constant is discussed by Suhl 49 . He discusses 

different damping mechanisms: relaxation to the lattice, and “indirect” relaxation via 

excitation o f spin wave modes. He concludes that two distinct damping RATES might be 

seen during a switching process. The first portion will be a rapid damping governed by 

spin wave excitations, and the second portion slower and governed by damping to the 

lattice. Silva et a l 50 have taken this one step further by explaining experimental work, 

assuming (in an ad-hoc manner) two different damping CONSTANTS for the different 

portions of the dynamical motions. This is probably not justified since many simulations 

show apparent two rate damping for just one damping constant (as in chapter 5 o f this 

thesis).

25
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Safonov and Bertram 51 look at magnetization reversal as a nonlinear multimode 

process. They simulate magnetization reversal in a single grain sample, where the grain 

is treated as a small system of subgrains that are exchange coupled and have uniaxial 

anisotropy. Their gyromagnetic equations were solved without damping. The 

magnetization follows Suhl’s discussion and shows a non-linear spin wave excitation on 

short timescale. The spatially averaged magnetization over the grain significantly 

decreases during the reversal. Bertram et a l 52 go further in applying similar calculations 

to a thin film. They find that excess Zeeman energy is transferred to magnetostatic and 

exchange coupled spin waves allowing the average magnetization to “relax” even in the 

absence of damping.

Experimentally, several groups are studying dynamic magnetization processes. 

Results from our group 53 are discussed in many places in this thesis. Silva and Rogers 50 

have done work using a permalloy bar on a microstrip line. The bar is placed on top of a 

center conductor strip with step and impulse excitations sent down it along the hard axis 

(transverse direction). An inductive sampling technique is initially used. Rotation times 

as short as 200 ps are reported. It is in some of the step data that they observe anomalous 

transient damping and introduce two separate values o f the damping constant a . This 

work is done without spatial resolution.

Using the second harmonic magneto-optic Kerr effect (SHMOKE), Silva et al 50 

have added spatial resolution. The frequencies o f underdamped precessional response 

from the inductive measurement and the SHMOKE measurement are slightly different. 

This is attributed to slightly different responses from the sample’s bulk and surface 

properties, as second harmonic probes are principally sensitive to surfaces due to the 

symmetry breaking there.
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Figure 1.5 Simulated reversal in a 5 nm thick 1.6 x 0.8 pm Ni6oFe40 element, (a) 
Reversal with a 70 Oe easy axis field. The times of the images are 0, 0.25, 1.42, 1.59, 
1.75, 1.90, 2.07, 2.32 and 6.61 ns after the application o f the pulse, reading left to right, 
(b) Reversal with a hard axis field o f 50 Oe and an easy axis field o f 80 Oe. The times 
o f the images are 0, 159,279,399,519,639,849,969 and 1089 ps after the application of 
the pulse, reading left to right.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Koch et al 54 measure and simulate dynamical magnetization reversal in a 5 nm 

thick, 1.6 x 0.8 pm thin film Ni6oFe4o sample. The magnetization is measured by using 

the element as the top layer o f a spin polarized tunnel junction and measuring the 

tunnelling resistance across it. The switching time is measured as a function of pulse 

amplitude with times ranging from 10 ns down to 500 ps and the pulse amplitude 

increasing from the coercivity (14 Oe) to 100 Oe. This method does not allow for any 

spatial resolution. These results were compared to the simulation which is shown in Fig 

1.5. This simulation is quite reminiscent o f many that will be shown further into this 

thesis. Here there is a 70 Oe easy axis field pulse 10 ns in length (with a 40 ps rise time). 

In Fig 1.5 (a), the hard axis field (across the short dimension in plan) is zero. The edge 

domains grow and meet in the center o f the film. The center then quickly rotates to align 

with the applied field and then nucleates reversal on the top and bottom edges o f the film. 

In part b o f the figure, a 50 Oe hard axis field is added. The reversal becomes more 

coherent. The magnetization vector rotates around the 80 Oe, 200 ps pulse. They found 

that most of there experimental observations could be accounted for with this simulation.

1.9 Summary of this Chapter

This first chapter is intended to give the reader a theoretical background to be able to 

understand the main ideas in micromagnetism and to give a broader context for this work. 

Motivation for this thesis research from both a fundamental and applied is presented. 

Ferromagnetism and magnetization dynamics are explored, introducing the Landau- 

Lifshitz-Gilbert equation. A history of work in magnetization statics and dynamics is 

presented along with an introduction to a complimentary body of work studying k-space 

spin wave dynamics. Finally, a survey of contemporary research in magnetism is 

provided.
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2. Time-Resolved Scanning Kerr Effect Microscopy

This chapter discusses the experimental technique of time-resolved scanning Kerr 

effect microscopy (TR-SKEM). It is a combination o f ultrafast laser techniques and 

optical microscopy to allow the observation of repetitive magnetization dynamics. This 

technique has been detailed in several places.21,53 Those are more definitive references, 

while this chapter is intended as a general overview and a discussion o f issues specific to 

the present experiments which are not fully covered in other reference material. The 

following describes background to the technique and the specific set-ups used to gather 

the data in this thesis.

The pump-probe experiment

pump*
SYSTEM t = 0

probe

SYSTEM

Nonequilibrium 
response profile

equil. 2
equil. 1

t — 0  t —A t (variable)

Figure 2.1 Cartoon showing a generic pump-probe experiment. A system is pumped out 
o f equilibrium at time t=0. At a variable time (t=At) later the system is probed to acquire 
the nonequilibrium response o f  a parameter (p

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.1 Ultrafast laser techniques

Ultrafast lasers produce trains o f very short optical pulses and are well suited to the 

study o f transient phenomena. Two good reviews o f ultrafast lasers and their 

applications are Diels and Kaiser.55 Since the TR-SKEM system is an ultrafast 

microscopy system, general pump-probe ultrafast laser exeriments will first be described.

In pump-probe experiments, ultrafast lasers are used to stroboscopically observe 

repetitive phenomena. A cartoon o f such an experiment is shown in Fig 2.1. A laser 

pulse is used to somehow excite, or pump, a sample at time t=0. At some later instant in

Quadrant 
Photodector Differential

Amplifier

Thomson 
Polarizing 

Beam Splitter Quadrant 
Photo dector reference in.

Laser Pulse Polarization 
Rotator Polarizer

Beam Splitter reference out

Microscope
Objective pulses out

Lock-In
Amplifier

Gated, Variable 
Delay Triggered 

Pulser

Sample & Stage

Figure 2.2 Schematic o f  Time-Resolved Scanning Kerr Effect Microscopy system used for 
magnetization reversal experiments. Sample is pumped with a pulser that is triggered by the pulse 
picker or cavity dumper o f the laser. It is probed later with the laser beam itself. The rotation in the 
polarization plane o f  the reflected light gives access to the magnetization.
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time At, the laser is used to probe the state o f the sample giving a value o f a parameter (|) 

which is excited from equilibrium by the pump. The interval At can be varied by 

repeating this procedure to measure the entire non-equilibrium profile o f the parameter <|>. 

In principle, these techniques can have temporal resolution limited only by the width of 

the ultrafast laser pulse.

The heart o f any ultrafast microscopy system is the laser itself. In the experiments in 

this thesis, the pulsed light source used is either a cavity-dumped dye laser or a Ti:Sapph 

laser that is run with or without a pulse picker.

The dye laser is pumped by a mode-locked frequency doubled Nd:YAG laser and 

cavity dumped at a rate between 0.5 and 4 MHz. Its pulse width is about 2 ps. The 

output of the dye laser is noisy and is the limiting factor in the signal in experiments 

using it. This is even after treatment with an electro-optic intensity stabilizer and filtering 

with either a pin hole spatial filter or a single mode polarization preserving optical fiber.

The Ti:Sapph system is far more stable. When pulse picked it has a repetition rate of 

400 Hz to 4 MHz. It produces femtosecond pulses at around 800 nm (this value is 

tunable). When not pulse picked the pulses repeat at 80 MHz. The fundamental beam 

has RMS amplitude noise o f well under one percent. This allows for the signal to noise 

to be limited by the detection instead of the laser.

2.2 Time-Resolved Scanning Kerr Effect System

The time resolved scanning Kerr effect microscopy system is the experimental system 

used in the work in this thesis. It uses an ultrafast laser to stroboscopically image 

dynamics using a homemade scanning optical microscopy system. Magnetic information 

is gathered using the Kerr effect, a rotation o f the polarization plane o f reflected light 

which is proportional to magnetization. A block diagram of a TR-SKEM system is 

shown in Fig 2.2.

To detect an image, we need to detect the change in the polarization direction o f the 

light after reflection by the sample. A Thomson polarizing beam splitter is used to split 

the reflected beam into two perpendicular components. These components are calibrated 

to be equal when there is no magnetic signal (ie before time zero). The out of plane
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signal is the difference in intensity, measured by two silicon photodetectors placed after 

the Thomson beam splitter. The in-plane components are harder to detect, but can be

In Plane info

In Plane Components 
A+B-C-D andA+C-B-D  
Out of Plane Component 

A+B+C+D
Figure 2.3 Quadrant detection system. A high numerical aperature objective will receive 
information from a cone o f  light foccused to a diffraction limited spot. Light scattered on 
either side o f the cone will carry away information on the magnetization state in the plane of 
the sample. By adding and subtracting appropriate components in a quadrant detection 
system, one can isolate this in plane information from the out o f plane information.

done using quadrant detection. There is an asymmetry in the reflected light scattered 

from the sample. This asymmetry can be magnified by using a high numerical aperature 

objective. Light reflected on the left side of the beam will carry away in plane 

information (as well as the out o f plane information). Light reflected on the right side of 

the beam will carry away the same in plane information, but with opposite sign (as well 

as the same out o f plane information). By adding the left side and subtracting the right 

side, gathered with quadrant photodetectors, we can separate the in-plane signal from the 

out o f plane signal. The other in plane component can be gathered by adding the top and 

subtracting the bottom half o f the signal. Fig 2.3 shows this is done. Calibration o f the 

relative strength o f the various components is still a problem. The out o f plane 

component uses the polar Kerr effect while the in plane ones use the longitudinal Kerr
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effect. The difference is discussed more in section 2.3 where the Kerr effect is discussed 

in detail.

In the set-up shown in Fig. 2.2, which was used for magnetization reversal 

measurements, a gated, variable delay electronic pulser is used to excite the system. It is 

delayed electronically and excites a transient magnetic field which flows through a 

transmission line near the sample. The pulser is gated in the kHz regime. This allows the 

magnetic signal to be gathered using off the shelf kHz electronics using a lock-in

Fhotodector^^p Differential
Amplifier

Thomson 
Polarizing 

Beam Splitter
— ( ^ p  Lock-In

Photodector

Polarizer reference in

Laser Pulse Polarizatio
BeamSphtter Rotator

Polarization

Beam Splitter

Microscope
Objective

Photodiode

Sample & StageMagnetic field 
to pump system

Variable Optical Delay

Figure 2.4 Experimental system used for ferromagnetic resonance experiments. The pump 
beam is shot through a variable delay line and then used to excite a fast magnetic field created 
by a photo-voltaic photodiode. At a point later the probe beam gathers magnetization 
information upon its change in polarization direction upon reflection from a magnetic sample.
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amplifier. This system allows for detection over a delay range o f tens o f ns, with 50 ps 

temporal resolution.Ferromagnetic resonance experiments require better than 50 ps 

temporal resolution, so a different setup is used. Figure 2.4 shows this experimental set­

up used for ferromagnetic resonance experiments. The main modification from the 

previous setup is in the sample pumping. The laser pulse is split into two beams. The 

probe beam is sent into an optical delay line, a retro-mirror that can be mechanically 

moved by a stepper motor to increase or decrease delay. The light is then shot back onto 

a photo-voltaic diode which provides the current for the transient magnetic field. The 

probe beam is also delayed by a constant amount so that it arrives after the pump beam.

Different experimental set-ups are used for different experiments due to the 

differing time scales over which the experiments must measure. In the magnetization 

reversal experiment, a sample is reversed with a 10 ns magnetic field pulse, reversal 

times are typically hundreds o f picoseconds to a few nanoseconds. It is necessary to 

probe time differences longer than the transient magnetic field pulse, so a dynamic time 

range of more than 10 nanoseconds is needed. This can be accomplished using an 

electronic delay. The drawback o f electronic delay is that jitter in the electronics limits 

temporal resolution to about 50 picoseconds at best, but this is acceptable because it is 

smaller than the reversal times. There is a trade off between the temporal resolution and 

the length o f time that can be studied in an experiment. In a ferromagnetic resonance 

experiment better temporal resolution is needed. The period o f oscillation may be a 

couple hundred picoseconds or less, and we wish to study what is happening within an 

oscillation period. The sample is pumped by as quick a transient field as possible. The 

pulse from the photodiode is nominally symmetric. It has a roughly 100 ps rise time and 

a 100 ps fall time (limited by the speed of the photodiode) -  which contrasts to the 10 ns 

excitation in the reversal experiment. The sample will continue to oscillate for a few 

nanoseconds if  the field conditions are correct. Using a mechanical delay line, the 

problem of electronic jitter is removed leaving the width o f the laser pulse as the factor 

that limits temporal resolution o f the observation. One picosecond delay corresponds to a 

moving the mirror 0.15 mm (c=2d/t) which can be easily done with off the shelf 

components. A delay line that allows for 90 cm of motion for the mirror (as is used for 

the ferromagnetic resonance experiment) will have a range of 6 ns. It is possible to make
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delay lines longer and longer to keep this better temporal resolution, but the arrangement 

quickly becomes unmanageable. The longer the line is, the more critical the alignment of 

the optics becomes. In the ferromagnetic resonance experiment, we can have a sub 

picosecond temporal resolution, but are limited to about a 6 nanosecond range in time.

The other major difference between the two configurations is the repetition rate. 

Both experiments can be run simultaneously using the pulse picked light for the reversal 

experiment and the non-pulse picked light for the resonance experiment. The non-pulse 

picked light will have an 80 MHz repetition rate leaving 12.5 nanoseconds between 

stroboscopic events. This is long enough for the sample to return to equilibrium in the 

resonance experiment, but not in the reversal experiment, which is typically run at 800 

kHz.

In both systems, a transient electrical current pulse is generated which will create a 

magnetic field pulse to drive the sample out o f equilibrium. To excite a sample out of 

plane, the sample should be situated beside the current carrying line. To excite a sample 

in plane, it should be situated on top o f the current carrying line.

The imaging is stroboscopic. It must be triggered repetitively and synchronously 

with the laser pulses. To build up sufficient signal, the interaction o f numerous laser 

pulses and repeated events are averaged and built up into a signal. Because o f this, it is 

possible to extract picosecond temporal information using kHz bandwidth electronics and 

detectors.

2.3 Magneto-optic Kerr Effect

To make our measurements we use the magneto-optic Kerr effect (MOKE) to 

measure the magnetization state o f a sample. Two good references on this topic are the 

Hubert and Mansuripur textbooks.40,56 The Kerr effect is the rotation o f the polarization 

plane o f light when it is scatterered (reflected) by a magnetic material. Mathematical 

analysis o f the Kerr effect depends o f the relative geometry o f the incident light and the 

magnetization direction in the material. There are three basic geometries. For 

magnetization out o f plane o f the sample, the geometry is known as the polar Kerr effect. 

For in plane magnetization, parallel to the plane o f incidence of the reflected light, it is
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b )  l o n g i t u d i n a l
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c )  l o n g i t u d i n a l  _L
 t  LOR--------

d )  t r a n s v e r s e
Figure 2.5 Geometries for the various Kerr effects. E is the incident light’s direction o f polarization, 

which has an angle o f  incidence 9 0' Rn is the regularly reflected electric field amplitude. RK is the 
magneto-optical Kerr amplitude. This amplitude can be conceived as being generated by the Lorentz 
motion VLOr. which is due to current density J. a) shows the polar Kerr effect (in this case with E 
parallel to plane o f incidence). The effect is the same for E perpendicular, b) shows longitudinal 
Kerr effect for E parallel to the plane o f incidence, c) shows the longitudinal effect for E 
perpendicular to the plane o f incidence. This is the same effect as in b) but opposite in sign d) shows 
the transverse Kerr effect. Only polarization perpendicular to the plane of incidence yields an effect

known as the longitudinal Kerr effect. For in plane magnetization, perpendicular to the 

plane o f incidence, it is known as the transverse Kerr effect. These geometries are shown 

in figure 2.5. There are differences in the mathematical analysis o f each Kerr effect.

The Kerr effect derivation is done well in Freisen.57 The complete derivation is 

algebraically complicated and will be left to this reference. It involves solving the 

Helmholtz equation to find the allowed modes o f propagation in the material and then 

using Maxwell’s equations to find the electric and magnetic field components in these 

modes, matching boundary conditions at the interface between the material and free
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space and then solving for reflection coefficients. In a homogeneous medium uniformly 

magnetized along the z-axis, the dielectric tensor may be written as:

8 =

8 8 '  0 

-S ' 8 0  

0  0  8
(2 .1)

Here the diagonal element o f the tensor 8 represents the normal interaction between light 

and the medium, while the off-diagonal term s ’ is due to magneto-optic activity. Using 

this dielectric tensor, one can proceed with the mathematically complex calculation. 

Only the results are reported in this thesis.

For the polar Kerr effect the reflection coefficients are :

R
I

R

ny - y  
ny + y 1

n

s
n

(y + ny ')• {ny + y ')

y -  ny'

(2 .2)

(y +ny ')-(ny + y ') y + n y '

where n = Vs", y = cos0 , y ' = V 1 -  sin 9 /«  ̂  , where 0 is the angle o f incidence of the 

light.

For the longitudinal Kerr effect we have:

R
I

R

y(3e'

* P - P '
«p + p' 

ype'
( p + » P ' H » P  + P')P'  

P - « P '
(p + » P ' ) - ( » p + p ')P' P + « p '

(2.3)

where n = Ve", y = sin0 , P = cos0 , P ' = Vl -  sin^ 0 / .

Finally for the transverse Kerr effect we have:
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where n = . Since there are no cross-terms in this reflectivity matrix, one will see no

rotation of polarized light with pure p state or pure s state incident upon a surface. 

However if a mixed state is used, some rotation will be observed because s and p light are 

reflected differently.

It is also informative to think about the Kerr effect from a materials standpoint. If 

we include the Zeeman effect in the theory o f dispersion, magneto-optical effects can be 

calculated. This can be seen from the following qualitative argument. Linearly polarized 

light will induce electrons to oscillate parallel to their plane o f polarization -  the plane of 

the electric field E in the light The regularly reflected light will have the same 

polarization plane as the incoming light, but a secondary electron motion due to the 

Lorentz force light, proportional to m x E, where m is the magnetization within the 

sample, will generate secondary amplitudes o f reflected light. The superposition o f the 

regularly reflected light with the secondary light will lead to a magnetization dependent 

polarization rotation. This argument shows that if  the polarized light is in the same plane 

as the sample magnetization no Kerr rotation will be observed. This can be seen by the 

zero cross terms in the transverse Kerr effect matrix.

2.4 Summary of the Chapter

This chapter is intended to give the reader a basic understanding o f the time resolved 

scanning Kerr effect microscopy system used to gather the experimental data in this 

thesis. Although not a definitive source, many references are given to papers that spell 

out the development and more precise details o f the system. ’ An introduction to basic 

pump-probe experiments and the ultrafast lasers used in our experiments is given. The 

time-resolved scanning Kerr effect microscopy system is introduced, along with the
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quadrant detection system. Special attention is given to a discussion on issues that 

influence this the work in this thesis that are not otherwise published in literature. Finally, 

the magneto-optical Kerr effect is discussed.
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3. Micromagnetic Simulation

This chapter discusses the technique used to do micromagnetic simulation, including 

the background, the algorithm used, as well as other potential variants that one could use. 

The micromagnetic simulation code is based upon pioneering simulation work from 

Hayashi, Mansuripur, Zhu and Bertram.58 It solves the Landau-Lifshitz-Gilbert equation 

o f micromagnetic dynamics using finite element methods. Our particular code was 

initially developed by Andrzej Stankiewicz, but its final form was a large part o f the work 

in this thesis.

3.1 Landau-Lifshitz-Gilbert Equation

Magnetism is inherently quantum mechanical as is shown by the Bohr-van Leeuwen 

theorem,8 however it is not tractable to solve quantum mechanical problems with billions 

o f atoms as is the case in micromagnetics. Thus an approximate theory is needed that is 

more tractable. The phenomenolgical Landau-Lifshitz-Gilbert theory, as derived and 

discussed in section 1.3 o f this thesis, is such an option. It has been a very reliable theory 

(see the successes in the magnetic recording field as examples!), and is the best starting 

point for a comparison with the experimental micromagnetic dynamic observations. This 

will be one o f the most stringent tests o f the LLG theory. Eventually, it is hoped that this 

comparison will push LLG beyond its limitations. Possibly it will show that a single 

damping constant is not enough to describe the dynamics, or that the Newtonian 

approximations involved are invalid. In this case, it may become necessary to go beyond 

the LLG theory.

3.2 Methods of Demagnetizing Energy Calculation

Since this is the most complex part o f a micromagnetic simulation special attention 

will be devoted to this problem. A general solution o f this problem can be found by 

noting the parallels with electrostatics using potential theory. This derivation is from 

Aharoni.23
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If we define a reduced magnetization

M  M(r) m (r) = — ^
v 7 M

(3.1)

and we further define a reduced volume charge density Xy and a surface charge density a s

- V • m  and CJ = m * n
*3

(3.2)

where n is the outward directed surface normal, the potential from the demagnetizing 

field at position r  can be found by the integral

J X (r ')  a  (r')
W-y— d v + S T ^ d s '

r - r r  - r
(3.3)

where Hd(r)=-V Od(r). With another integration we obtain

w , = J  a s 1 K  ( * > , ,  ( r )dV + # o  (r>D , (r)dS (3.4)

As beautiful as this closed solution may be, it is only calculable in the most trivial cases 

since it is a sixfold integral (three to calculate O d(r) and three more to calculate Wd). To 

go beyond simple cases we need another form to evaluate numerically.

The approach in a finite element simulation is to compute as many steps o f the 

problem analytically as possible. This approach can be traced back to Rhodes and 

Rowland.59 The argument shown here is similar to that o f Hayashi.60 A dipole magnetic 

field that would be required to generate the known magnetization M  is superimposed 

upon the center o f each cell. Thus the demagnetizing field can be calculated as follows

(3.5)
cell V' r

where integrations are carried out in the source cell V ’ and the distance vector Q ’ runs 

from the center o f the cell to the observation point and its magnitude is denoted by r. If 

we further assume magnetization to be constant within each cell we can write this as a 

matrix equation as shown
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V K
XX

K
xy

K
xz M

X
= 1 K K K Ma

Q
yx yy yz y

H  z K K K M
d ^ zx zy zz _ z _

(3.6)

where Ky are purely geometric terms called demagnetizing coefficients (note that these 

are slightly different from the demagnetizing factors N deiscussed in section 1.5. In 

vector notation this is

H = Z M (Q K (r -Q ) (3.7)
Q

Ky can be calculated as follows

2 2 
K  = dV'

xx p  r

K  = K  = W '
*y yx  p  r 5

(3.8)

The other demagnetizing coefficients can be found by cyclic permutation on x,y or z. 

These integrals can be performed to yield demagnetizing coefficients in the form below

1 i i i + j  + k 
K  = £  S  l ( - l )  tan

i = 0 j  = 0 k  = 0

-1
(  PK  + k - -
l  2

( r  • P  J  + J “  “
I  2)

AzAy

rijk
( T - 0  I  + I ----
I 2J

Ax
(3.9)

1 1 1 i + j  + k

*  = - Z  £  X ( - 0  i"
W  i = 0 j  = 0 k  = 0

K  + k ~ Az  + r ..t ijk

where r^  is defined as

c

rijk I  + i -  
v 2

Ax;2 + J  + j  -  - Ay2 + K  + k  —  
2
P 2 Az" (3.10)

Ax,Ay and Az are the dimensions o f each cell with indices I,J,K. The other 

demagnetizing coefficients can be found by permuting x,y,z along with I,J,K and 

Ax,Ay,Az.

This is a starting point for demagnetizing calculations, but it alone is not enough. 

The assumption that the point dipole is at the center o f every cell in this calculation is 

insufficient when the angle between adjacent spins is large (see for example
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McMichael61). It is necessary to further improve the demagnetizing coefficients by 

volume averaging them (or calculating an average value for a point dipole at all positions 

within the cell). This has been done by Fukushima et al.62 These volume averaged 

demagnetizing coefficients are (in a compact computational form)

K xx
1

/+j+ k-1

V i , j , k  = 1
2  ( - 1) sn{i)sn(j)sn(k)Fl[x + ax(i), y  + a y ( j ), z + az(k))

i'+j+ k-1 (3.11)

^ / 17 ^  l) sn(i)sn(j)sn(k)F2{z + az(k), x  + ax(i), y  + a y ( j))
i , j , k  = 1

where the arrays ax,ay,az and sn are defined as follows 

ax( 1) = -Ax ax{ 2) = 0 ax{ 3) = Ax

ay(Y) = -Ay ay{ 2) = 0 ay( 3) = Ay

az( 1) = -A z az( 2) = 0 az( 3) = Az

5«(1) = 1 sn( 2) = 2 sn( 3) = 1

and the functions FI and F2 are defined as

1  ̂VZ ^ 1  ^
F \(x ,y ,z )  = x y z tan-  —  + — y(z - x  ) ln |d - y | +

Vxd )  2

— z ( y 2 -  x 2 )\n\d -  z\ + - ( y 2 -  z 2 -  2x2 )d

(3.12)

(3.13)

F2(x, y, z) = -xy z  lnld  + z| + — y (y 2 -  3z2) lnld + x| + —x(x2 -  3z2) lnld + y| +
6 6

—x2ytan  ' ( —  
2 I x d

1  2 + -1  + —y z tan 
2

/  Axz
yd

+ —z tan 
6 zd

+—xyd 
3

and J  is defined as

J  = (3-14)

As before other formulas come from permutations o f the coordinates.

There are a number o f general features o f this calculation that can aid in its 

computation. Regardless o f which set o f demagnetizing coefficients are used, note that 

they only depend upon the distance between two cells and not their absolute position. 

Thus, the coefficients can be stored in a much smaller portion of the memory.
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Note also, that the form in eqn 3.7 has an inner sum, which amounts to a discrete 

convolution, as long as the cell positons are periodic. This sum can be computed by Fast 

Fourier Transform techniques, greatly increasing its computation speed (Hayashi58). The 

drawback is that with periodic cells you cannot have an adaptive cell size. Adaptive 

cell size would allow you to have small cells only where necessary (for example domain 

walls) and larger cells where they can be allowed (for example domains) thus speeding 

up calculation as less cells are needed. In our simulation we have chosen to use FFT 

techniques instead o f adaptive cell size. This gives us the benefit o f faster simulations, 

which is especially important in our case o f magnets several micrometers in size, but 

prevents the use o f odd shaped cells for non-rectangular boundaries (ie circular samples).

3.3 Coordinate Systems

One of the first problems in solving the LLG equation is determining which 

coordinate system to use to represent the magnetization components. The two common

M e

M

M y

M x

x

Figure 3.1. Coordinate systems in which micromagnetic simulation can be carried out. 
Magnetization can be specified by Cartesian coordinates (x,y,z) or by spherical angles (0,(|>)
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ones are Cartesian and spherical coordinates. See figure 3.1 detailing both coordinate 

systems. Both have advantages and drawbacks.

In spherical coordinates there are only 2 degrees o f freedom in the LLG equation and 

this can easily be captured in the coordinate system. Since the length o f all magnetization 

vectors are constant, only the magnetization angles 0 and (j) are needed for each point. 

The constraint o f constant magnetization (see section 1.3) is unconditionally satisfied by 

this choice. The drawback is that when the polar angle 0 approaches 0 or 7t, the 

azimuthal angle ((> is no longer uniquely defined. This prevents any LLG calculations in 

this regime. By carefully choosing the orientation o f the problem to be solved, this issue 

can usually be avoided. If it cannot it may become necessary to use multiple coordinate 

systems within the same problem (Nakatani 59), which becomes quite cumbersome. To 

date we have not encountered any problems that cannot be solved within a carefully 

chosen single coordinate system.

In Cartesian coordinates, the problem of § being undefined is non-existent. This is a 

significant convenience. However, the constraint o f constant magnetization is not as 

easily satisfied. Due to round off error it is possible that the length of the magnetization 

vector in a cell will change over time. If this becomes significant, one solution (Nakatani 

59) is to independently calculate two magnetization vector components and use the

to determine the third component. Since this only determines the absolute value of a 

component, it is necessary to choose this component when its value is sufficiently far 

from zero that its sign can be assumed.

In our simulation we use both sets of coordinate systems. Most o f the calculation is 

done using the spherical magnetization angles, but it is much easier to calculate FFTs in 

Cartesian coordinates so we convert for the FFT and then convert back.

constraint

(3.15)
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3.4 Form of Landau-Lifshitz-Gilbert Equation used in Simulation

In order to efficiently solve the LLG equation it is necessary to get it into the 

simplest form possible. We start with it in the form 

c/M m „  a  _ _ dM = -yM x H i  M x   ( 3 . 1 6 )
dt M  dts

In spherical coordinates we can obtain the equations 

dM dM.
 0- = - y H . M  - a  ^-sinG (3.17)

dt $ * dt

dMb dM
-sinG =yHa M  +<x- 00 5dt ‘ 0 5  dt

where and H q are effective magnetic field components in those directions. Solving 

these equations for dM^/dt and dMe/dt yields 

dM% a yM s He

1 + a ^  1 + a ^

dM yM  H  «TM  H
-sinG =■ 5 °  Y

(3.18)

dt 1 + a ^  1 + a ^

We can now define a dimensionless variable t* where

* tyM ,
t =  *r (3.19)

1 + a

This will transform these equations to

dMQ dM A

dt * = - a H a - H  ,  -sinG  = H ,  - a / L  (3.20)
0 cp dt

These are the equations used in the simulation.

3.5 Simulation Algorithm

The complete simulation code is listed in Appendix A. Two and three dimensional 

simulation codes are given. Most o f the work was done using the two dimensional code
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sim

init

rk
deriv demag

demforanisot
rksuite

NO
time to

YES

output

Figure 3.2 Flowchart for simulation program

since we use thin film samples which are well approximated by the two dimensional 

simulation and will run much faster. The program is broken up into several different 

files. The global variables are kept in global.inc. This is a file which is included in the 

major subroutines to pass global variables from one routine to another. In this routine, 

information like the size o f the sample and the number o f cells to be used is set. Sim is 

the programmable driver. In it, information such as the names of input and output files 

and the time that the problem is integrated over are set. Init is used to initialize variables 

such as the sample mask and demagnetizing coefficients. The most important o f the 

initialized variables is the sample mask, which is a three dimensional array. In the two 

dimensional simulations, the first index runs from -2  to 2 and the second and third from 1 

to nxmax and 1 to nymax respectively. If a cell (x,y) is contained within the sample, then
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mask(0,x,y) will be one, if  that cell is outside the sample, then it is zero. The other 

elements are used for exchange calculations, mask(-l,x,y), specifies if  the cell to left of 

(x,y) is in the sample for exchange calculations; mask(l,x,y) is to the right; mask(-2,x,y) 

is the cell below; and mask(2,x,y) is the cell above. This allows for odd shaped samples 

to be used in simulation. Rk is used to condition the program for using the 4th order 

variable stepping Runge-Kutta solver rksuite, which was written at Southern Methodist 

University64. Output is done in the output routine. Various components o f the magnetic 

field are calculated in the other routines. Demag calculates the demagnetizing field (as 

well as exchange) using FFTs. Code is written to use both the built in FFTs on the SGI 

system and to use FFTW (the fastest FFT in the west) which was written at MIT 65. 

Demfor contains the formulae used for demagnetizing coefficients. Anisot calculates 

anisotropy fields. Deriv calculates the derivatives dMe/dt and dM^/dt as required for 

rksuite. Interrupt is used to restart the program whenever the queue is reset on Aurora, a 

Silicon Graphics SGI-Origin 2000, located at the University o f Alberta.

The program begins in sim to figure out what problem is being done and then goes to

200 nm 32 cells

-400nm 64 cells -

initial spin direction

5 ns
100 Oe

Initial State

100 Oe 

then 5 ns zero field

\
6.25 nm 1 cell

closure domains from initial state

2 ns
25 runs 

0,50,100,150 or 200 Oe

0,50,100,150 or 200 Oe 
then 3 ns zero field

Figure 3.3 Initial test problem ran with Roger Koch to test our micromagnetic code
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init to initialize variables. It then goes into rk to set up to take a Runge-Kutta step and 

calculates the various magnetic fields using demag, demfor and anisot before stepping 

forward with rksuite solving the equations defined in deriv. The time steps are done with 

a variable stepper. The code measures the change in the magnetization angles (0,c|)) and 

accepts a step if  this change is below a specified tolerance (which can be set in the sim 

routine using the variables tol and thres). If a step is sufficiently far below the error limit, 

it will attempt a larger time step next time,. If a step exceeds error limits, it will discard 

that step and attempt a smaller step in time. Periodically it saves the output using output. 

The flowchart is shown in figure 3.2

3.6 Benchmarking the code

The first test when the micromagnetic simulation code was written was to ensure 

that its calculations were correct. The National Institute o f Standards and Testing (NIST) 

has a series o f standard problems66 that can be used to test magnetostatic simulations, but 

they do not address dynamic problems. They are a starting point, but do not directly 

apply to our code. Our code was run on the same problems as Roger Koch’s 

micromagnetic simulation code.54 This was the same series of problems which has been 

run using several major micromagnetic simulation programs. In these problems, the 

sample is 400 nm x 200 nm x 6.25 nm. It is divided into cubic cells with linear 

dimension 6.25 nm to make a grid o f 64 x 32 x 1 cells. Material parameters used are 

saturation magnetization 47tMs=10 kGauss, exchange constant 10'6 erg/cm and damping 

constant a=0.01. To calculate an initial state, we start with all spins pointing in the 

negative x direction (see figure 3.3). There is a field o f-1 0 0  Gauss in the x direction and 

100 Gauss in the y direction. The sample has 5 ns to equilibrate. Then it is left in zero 

external field for 5 ns. With this initial state, we have a zero risetime DC magnetic field 

pulse of 0, 50, 100, 150 and 200 Gauss along the y axis and 0, 50, 100, 150 and 200 

Gauss along the x axis for 2 ns. Then the sample is allowed to equilibrate in 0 Gauss for 

3 ns. This makes for twenty-five runs in total. We expect to see small details that are 

different due in a large part to exchange energy. The exact theory o f exchange holds on 

the atomic level and we must make assumptions to implement it with larger cells.
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Figure 3.4 Roger Koch’s simulation comparison. Runs with 0 Gauss along the X axis
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Figure 3.5 Our simulation for comparison with Roger Koch. Runs with 0 Gauss along the X axis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M
x/

M

50 Gauss X 0 Gauss Y 50 Gauss X 50 Gauss Y

-0.65-0.85

-0.70 -
-0.87 -

-0.75 -

-0.80 -

-0.90 - -0.85 -
-0.91 -

-0.90 --0.92 -

-0.95-0.93
1e-9 2e-9 3e-9 4e-9 5e-9 6e-9 1e-9 2e-9 3e-9 4e-9 5e-9 6e-90

time (s)
50 G auss X 100 G auss Y

time (s)
50 G auss X 150 G auss Y

2

1

o

■1
0 1e-9 2e-9 3e-9 4e-9 5e-9 6e-9

time (s)

2

1

0

■1
0 1e-9 2e-9 3e-9 4e-9 5e-9 6e-9

time (s)

50 G auss X 200 G auss Y

2

1

o

■1
0 1e-9 2e-9 3e-9 4e-9 5e-9 6e-9

time (s)

Figure 3.6 Roger Koch’s simulation comparison. Runs with 50 Gauss along the X axis
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Figure 3.7 Our simulation for comparison with Roger Koch. Runs with 50 Gauss along the X axis
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Figure 3.8 Roger Koch’s simulation comparison. Runs with 100 Gauss along the X axis
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Figure 3.10 Roger Koch’s simulation comparison. Runs with 150 Gauss along the X axis
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Figure 3.11 Our simulation for comparison with Roger Koch. Runs with 150 Gauss along the X axis
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Figure 3.12 Roger Koch’s simulation comparison. Runs with 200 Gauss along the X axis
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Figure 3.13 Our simulation for comparison with Roger Koch. Runs with 200 Gauss along the X axis
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A comparison between Koch’s results and ours is shown in figures 3.4-3.13, with five 

plots each with the same magnetic field along the long axis o f the sample, but with 

varying magnetic fields along the short axis. Plotted on the y-axis is the magnetization in 

the x-direction (the long axis) integrated over the entire sample, normalized by the total 

magnetization o f the sample. Time is plotted along the x-axis. In each of the twenty-five 

cases, similar dynamics is seen. The large scale sample behavior (whether it switches or 

doesn’t switch) is the same in both cases. Rise times and oscillations have similar 

periods and shapes. This comparison is successful. It shows that our simulation behaves 

the same as other existing magnetization dynamics simulations on a simple problem.

These simulations show a wide cross-section o f what is possible in magnetization 

dynamics. If a magnetic field larger that the coercive field o f a sample is applied along 

its long axis (the initial direction o f magnetization), it will switch its direction of 

magnetization by 180 degrees. If, in addition, another magnetic field is applied along the 

short axis o f the field, the long axis field required to switch magnetization direction is 

reduced.58 The change in magnetization when a sample switches magnetization direction 

is accomplished in this zero temperature simulation by precession o f the various spins 

within the sample. This precession can be coherent throughout the sample, or incoherent 

between different domains. When it is coherent, periodic resonance oscillations can be 

observed within the sample. This is the magnetization o f the spins undergoing a damped 

ferromagnetic resonance. A coherent rotation is usually faster than an incoherent one, so 

often a short axis field is added to speed up the reversal. When coherent rotation is 

observed, if  it is caused by a short pulse the final equilibrium state (whether or not it
ARswitches) can be determined by pulse length alone as in the work o f Hillebrands.

3.6.1 Speed of Computation Comparison

The simplest comparison to make is the time needed to run a problem. One way to 

look at this is in terms of “expansion time”, this is the ratio o f the time o f computation to 

the time the actual magnetic dynamical event will take. Koch reports an expansion time 

o f 6.4 * 1010 using a 450 MHz pentium for this set o f problems. On other slower IBM

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



machines, he reports that it this can slow to ~ 2 * 1011. We find a 1.15 x 1011 expansion 

time using a 233 MHz pentium, which is in this ballpark.

3.6.2 Issues Uncovered While Benchmarking

This good comparison in the standard problem run with Roger Koch was not simple 

to achieve. It took several tries to get the same parameters between our simulation and 

Koch’s one. There are other runs with slightly varying parameters stored on CDs. The 

major difference between the different attempts is the way exchange is handled on 

boundaries. In order to explain this issue and the different options, we need to look 

further at exchange energy and how it relates to other energy terms.

O f the energy terms we are considering as important to magnetism, on the 

interatomic scale, exchange will dominate. It will be the largest energy term and will 

tend to align all the atoms spins as long as the region o f interest remains small enough. 

How small a region we need to look at depends upon the other energy terms involved. 

Two different length parameters can be found. Both are known as exchange lengths. 

One exchange length is found by comparing anisotropy energy with exchange energy. 

This exchange length is given by

length of about 70 nm.

One can get another exchange length by comparing demagnetizing energy with 

exchange energy. This exchange length is given by

taking the saturation magnetization Ms to be 860 Oe. This gives an exchange length 

slightly below 5 nm.

(3.24)

where A is the exchange constant and Ku is anisotropy constant. If  we take A as 10'6 

erg/cm and Ku as 104 erg/cm3 which are typical values for permalloy, we get an exchange

(3.25)
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cell a) n eglect exchange at edge 
cell has exchange calculated with 3 neighbors only

'cell cell
b )  duplicate cell at edge 

cell has exchange calculated with 4 neighbors

— C) duplicate n earest neighbor cell
cell 3  cell has exchange calculated with 4 neighbors

Figure 3.14 Various methods o f handling the exchange interaction at boundaries.
W ith sufficiently small cells they will all give same result, a) is the traditional (Zhu) 
method, b) and c) are departures from it that help ensure Maxwell’s equation 
boundary conditions are satisfied for larser than ontimal cell size.

As long as the cell size is sufficiently small with respect to the exchange lengths, it is 

expected that the simulation will produce results that are independent o f cell size. This 

statement is somewhat vague, and it required some amount o f trial and error to determine 

in practice what size o f were needed (see chapters 4 and 5).

When cells become large with respect to exchange lengths, the simulation begins to 

misrepresent the physical situation. There is less energy in exchange in the simulation 

then there should be in the experimental case. Only exchange energy is dependant upon 

cell size, other energy terms maintain their value. This eventually leads to discrepancy in 

the simulation by underestimating exchange energy. In cases where other energy terms 

are much larger than exchange, the simulation can still produce meaningful results with 

cells much larger than the exchange length. However, another problem can start to occur 

at the boundary o f the sample. We know from Maxwell’s equations that the derivative of 

the magnetization M  normal to a boundary is constant across that boundary. Since there 

is no material outside the ferromagnet that means this derivative is zero on the magnet’s 

edge. With sufficiently small cells this condition is trivially satisfied. Larger there 

introduce error in this boundary condition. This error can be corrected by carefully 

treating exchange at boundaries. Three options were tried. If a cell is outside the sample, 

it can be neglected for exchange calculation. This is the most traditional approach and 

the one advocated by Jimmy Zhu.69 However, this leads to boundary condition problems 

when cell sizes are large. Two other options (see Figure 3.14 for a schematic
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representation o f these) include replicating edge cells (3.14.b) or nearest neighbor cells 

(3.14.c). These will better fit the boundary conditions for larger cells. It was found that 

replicating edge cells gave very similar features to neglecting exchange at boundaries, but 

helped boundary conditions to better satisfy the boundary conditions. Using nearest 

neighbor cells, although boundary conditions are satisfied, does not always give the same 

dynamics. Switching is faster when nearest neighbor cells are used for exchange on 

boundaries. This is because the closure domains on the edge o f the sample are not 

parallel with the applied magnetic field, whereas in general the spins in the center o f the 

sample are. They will feel a larger torque from an external magnetic field and thus will 

switch first. The sample with nearest neighbor exchange will “drag” both the edge cell,

100 Gauss X 100 Gauss Y 
Various methods of handling exchange on boundaries

2

1

o

■1

■2
14000 1600010000 11000 12000 13000 150009000

time (ps)

time vs Mx no ex boundaries 
time vs Mx edge boundaries 
time vs Mx nn boundaries 
time vs Mx small

Figure 3.15. Effect o f different boundary conditions on standard problem simulation with 100 
Gauss in X and 100 Gauss in Y. Note there is little difference between no exchange along sample 
boundaries and repeating edge cells. Using nearest neighbor cells speeds up the reversal.
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as well as the nearest neighbor, together when they begin to switch due to stronger 

exchange coupling. This starts the switch faster in the nearest neighbor sample and leads 

to artificially fast dynamics (ie faster rise times etc). This effect may arise slightly when 

edge cells are replicated for exchange, but it is far less significant. As an example we can 

use the case o f 100 Gauss in X and in Y. Figure 3.15 shows the integrated Mx vs. time 

curves for each. Note that the nearest neighbor switch is significantly faster, but the other 

two switches take nearly the same amount of time.

Theoretically, the question o f how to handle boundaries is even more complicated 

due to surface anisotropy.23 This is the realization that a spin on the surface has a nearest 

neighbor on one side but none on the other and this affects exchange. Calculations have 

been done for a few atomic layers 70 that show that surface anisotropy can affect the 

atoms that are a few layers inward from the surface. Thus, there is some room for 

uncertainty on how best to handle exchange at surfaces in micromagnetic simulation.

3.7 Conservation of Energy

Another important test for the simulation code is to check that it conserves energy 

when there is no damping. A stringent test for this is a large angle magnetic motion, such 

as a magnetic reversal because it will be a more complex computation. A sample of the

Energy in trial simulation vs. time without damping
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Figure 3.16. Energy in a trial simulation plotted against time. The sample loses about 2.5% of 
its total energy during the reversal. Energy loss is during the large angle motion at the start of 
the reversal and slows when this motion is complete
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same size, shape and initial state and with the same parameters as in the previous 

benchmarking is used. It is then given a 300 Oe field along the x-axis so that it switches 

quite rapidly. This is a large “boost” o f Zeeman energy, which as the sample switches is 

converted into exchange and demagnetizing energy. The sample does not reach an 

equilibrium, as there is no damping. The spins precess about an axis in the reversal 

direction with energy being converted between exchange and demagnetizing energy. A 

plot o f the total energy vs. time is shown in figure 3.16. Throughout over 2 ns o f motion, 

approximately 2.5% of the energy within of the sample is lost. The energy is lost most 

quickly during the rapid switch in magnetization and when the sample motion slows, the 

energy stays far more constant. In lower driving fields, it is expected that energy is better 

conserved.

3.8 Other Simulation Possibilities

Landau-Lifshitz-Gilbert micromagnetic simulations are not the only possible way to 

try to solve micromagnetic problems. Other methods exist, but they tend to be better 

suited for static problems or use a more complicated and experimentally unsupported 

damping term. Static simulations tend to be based upon the La Bonte iteration.71 This is 

discussed in the upcoming section. More complex damping term simulations such as 

Bloch-Bloembergen72 and B ar'yaktar73 are discussed in the following sections.

3.8.1 La Bonte Iteration

If the problem is to determine the equilibrium magnetization configuration, the 

fastest method is likely the La Bonte iteration.71 It is known to converge significantly 

faster than an LLG simulation.

In equilibrium, the magnetization in any cell will be aligned with the effective field 

in that cell. The La Bonte iteration is to make a reasonable guess for the magnetic field 

H (Only the external field would be known exactly. Exchange, anisotropy and 

demagnetizing fields are guesses.) and then align the magnetization M  with H. This 

magnetization will change the overall field H, so a new H can be calculated with this M.
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To iterate M  is replaced by MH/H where H is calculated from the assumed M. 

Eventually, this technique converges to a solution but it is slow. In order to speed up the 

convergence, the correction from one term to the next 

M B  „
SM =  M (3.21)

H

is multiplied by a scalar factor w, which is chosen by how quickly it can make the 

calculation converge to a solution.

This technique will lead to an equilibrium configuration but is very poor for 

dynamics. It is very hard to pull a time scale o f motion out o f this technique. Also, all 

motion would have to be quasi-static as equilibrium values would be calculated 

throughout the motion. Likely the assumption of quasi-static motion breaks down.

3.8.2 Bloch-Bloembergen Equation

Another common form of damping is the Bloch-Bloembergen equations,72 they 

assume that the longitudinal and transverse components o f magnetization have different 

relaxation rates, thus allowing for change in the length o f the magnetization vector. 

These equations are

dM
dt

dM
dt

= -y M x H eff

M  - Mz  1 1 (3.22)

=  - y M x H eff

1

M x ,y
x , y  2 r oJ* , y  2

Here relaxation is a two stage process. The magnetization is reduced along a preferred 

axis, the direction o f magnetization (in this case the z direction). Its precessional motion 

is slowed along the directions perpendicular to this preferred axis. Ti is called the 

longitudinal relaxation time. It is the time the magnetization takes to shrink along the 

preferred axis. Processes that lead to change in magnitude of the magnetization vector 

are generally spin-lattice interactions. Ti is also often called the spin-lattice relaxation 

time. Transverse components relax differently. This relaxation maintains absolute value 

of the magnetization. They do so with a relaxation time T2. At this point, there is no
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convincing data that suggests that this approach is any better than an LLG simulation, 

although it is more complicated and has more free parameters (Ti and T2 replace a). 

With the success o f LLG in magnetoelectronic applications, it makes sense to begin with 

an LLG simulation.

3.8.3 Bar’yaktar damping

Bar’yaktar 73 is far more general in his equation o f motion allowing for directional 

dependence due to crystal symmetry (and its effect on for example exchange). He 

derives a magnetization dynamics equation as shown

y  = - y M x H + y J l f s {if t f / . e k  - a e « 2 V 2 H} (3.23)

Here aik is a damping tensor which comes directly from the Dirac equation and a e is 

damping due to exchange, a is the lattice constant o f the material, ek is a unit vector and 

summation on repeated indices is assumed. This equation does not conserve the length of 

the magnetization vector. Also, because the dissipative function in this equation is quite 

complicated in how it relates to the effective magnetic field H, the analysis o f relaxation 

in the system is quite complicated. Ten damping parameters are needed to numerically 

solve this equation (vs 1 in LLG). It would be quite difficult to isolate and measure these 

different parameters, likely leaving many free parameters to simulation. It appears that 

no Bar’yaktar simulations have been carried out successfully and no values for the 

associated damping parameters exist. The only work to date 57 has been analytic 

calculation, which is perturbative in nature, relying upon the fact that the damping 

constants are small and can be viewed as perturbations. Results are similar to those from 

more traditional techniques. No definitive prediction or explanation o f experiment 

appears to exist that shows Bar’yaktar damping is any better than the damping constant in 

the LLG equation. This may become possible with better experiments. Because the LLG 

equation is far more tractable and has not been shown to be inadequate, it is used for 

simulation and not Bar’yaktar.
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3.9 Summary of the Chapter

In this chapter, the micromagnetic simulation is introduced. A short discussion on the 

Landau-Lifshitz-Gilbert equation (derived in chapter one) is given. The mathematically 

complex task o f calculating demagnetizing energy is introduced with a few different 

methods for how it can be done. The problem of which coordinate system to use in a 

simulation calculation is given. The mathematical form o f the LLG equation used in 

simulation is derived. The algorithm of the simulation code is explained. The two 

dimensional code is in Appendix A and the three dimensional code in Appendix B. The 

first trials to validate the code, by checking for energy conservation and by solving a 

standard problem and comparing our results to an established code are presented. The 

results are given, and a discussion o f the issues encountered during the comparison is 

given. Alternative methods to a micromagnetic LLG simulation are introduced, with a 

brief discussion on their strengths and weaknesses. These methods are La Bonte’s 

iteration, the Bloch-Bloembergen equation and Bar’yaktar damping. It is hoped that after 

reading the chapter, the reader will be familiar with the issues regarding micromagnetic 

simulation and understand the choices made in writing our code. This detailed 

comparison with experiment could not have been performed without the code 

development reported here.
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4. Ferromagnetic Resonance

In this chapter we will look at the ferromagnetic resonance experiments that were 

used first as a check o f the simulation and later as a significant test. This is a good first 

test because it is a small angle excitation. This is a favorable condition for a single 

damping constant Landau-Lifshitz-Gilbert simulation because motion will be strongly 

driven by long wavelength magnetostatic modes, which the simulation captures well. 

Because the motion does not have small features (such as domain walls) possibly larger 

cells can be used. The first tests were done using the simulation to reproduce data from 

Wayne Hiebert’s master’s thesis. Later results are from experiments done by Miro 

Belov and the author to find the influence o f a patterned defect in ferromagnetic 

resonance.

4.1 Experimental Details

The first set o f data was obtained by Wayne Hiebert. Experimental details can be
e-j 'l'y

found in Freeman et al. The data was gathered with the dye laser and the system 

discussed in chapter two. The sample was excited with a biased photoconductive switch 

74 made o f GaAs with gold interdigitated leads patterned on it. A schematic o f the switch

Figure 4.1 Schematic o f a sample positioned in a gold coil with a GaAs 
photoconductive switch (PC) for pumping as in first ferromagnetic resonance 
experiments. The probe beam shines on the magnetic sample within the coil.
SI is the sample containing the photoconductive switch that is mounterd on S2, 
the patterned ferromagnet inpositioned inside a gold coil.
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with a sample is shown in Fig 4.1. When light is shined on the switch, it conducts due to 

electron-hole pair creation in the GaAs. Typically, under these conditions it has a time- 

averaged resistance of 10 kOhms. Electron-hole recombination exponentially raises the 

resistance after the pump pulse ends. The current pulse has a half-life around 400 ps. 

When there is no light on the switch, its resistance is greater than 30 MOhms. When the 

switch was illuminated with the pump beam and thus turned on, current flowed through 

the coil exciting the permalloy sample inside it. The permalloy sample is biased by a DC 

magnetic field in the plane. The current in the coil tips the magnetization, making it 

precess about the bias field. It oscillates at its resonance frequency. This is detected at 

some time later with the probe beam. The detection is done with a lockin amplifier at the 

frequency o f the AC bias voltage on the photoconductive switch. Time delay of the 

probe pulse is varied with an optical delay line.

The later results were gathered using the set-up described is section 2.2 and pictured 

in Fig 2.4. Te experimental system with a photovoltaic cell is easier to operate because 

there is no need to use a photoconductive switch. Photoconductive switches are difficult 

to use because they can overload and be damaged quite easily if  too much laser power 

shines upon them, if  they are subject to an electrostatic discharge or if  too much current 

flows in them. Also, it is very hard to shape the current pulse because electrical 

reflections can occur at the bonds between the sample and the switch. It is almost 

unavoidable to have some reflections in the system. Reflections can be minimized by 

keeping the distance between the switch and the sample to a minimum. This is hard to do 

because the probe beam is focused with a microscope objective and the pump beam must 

also be focussed on the switch with a lens. They can only be brought a certain distance 

apart without the objective clipping the pump beam or the lens clipping the probe beam. 

The major benefit o f using a photoconductive switch comes in temporal resolution. The 

switch responds very quickly to its illumination and, effectively, no temporal resolution is 

lost in this conversion, so the ultimate limit in temporal resolution remains the width of 

the incident laser pulses. When the sample is triggered by a photovoltaic cell, the 

temporal resolution is limited by the reaction time of the cell. The photovoltaic cell can 

be thought o f as a pre-packaged photoconductive switch, thus making it more user- 

friendly.
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4.2 Experimental Results with Photoconductive Switch

The first ferromagnetic resonance investigations were done to determine material 

constants to be used in micromagnetic simulation. These results are reported in detail in

where y is the gyromagnetic ratio, H is the external DC magnetic field and Ms is 

saturation magnetization o f the permalloy, a value for the saturation magnetization was 

measured. It was found to have a value o f 47iMs=10.8kOe. Then the time resolved 

ferromagnetic resonance curve were fitted with that value o f saturation magnetization to 

find the damping constant. It was found that a=0.008 was the best fit value for the 

curves. Spatial snapshots o f the magnetization were taken at various increments in time, 

in various DC magnetic fields. The most complex case was that o f a circular permalloy 

element 8 pm with a thickness o f 100 nm. It is in a 250 Oe external magnetic field and 

given a transient magnetic field with a large reflection in it. This reflection makes for a 

more complex interaction, leading to more complex spatial magnetization profiles. Only 

three spatial images were taken. They are shown in Fig 4.2. All three images are after 

the double excitation peak. The excitation is mostly symmetric from left to right but is 

clearly spatially non-uniform.

4 .3  S im u la tio n  o f  th e s e  r e s u l ts

Because the system in 4.2 is a relatively simple system with high spatial non­

uniformity, it is a good place to begin with real world tests o f the simulation. It should be 

noted that the sample is relatively large and in order to have comparison results in a 

reasonable amount o f time, we are forced to use a two dimensional simulation and cells 

that are larger than the exchange length o f permalloy. Whether or not these lead to

Hiebert et al 52,73 and are merely summarized here. By measuring the dependence o f the 

resonant frequency with DC field and fitting it to the Kittel formula

(4.1)
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Figure 4.2 Spatial structure in an 8 micron circle after a “double kick” ferromagnetic resonance excitation. 
Notice spatial richness o f  excitation. Top left shows an SEM micrograph of the sample, top right a cartoon 
o f spatial and temporal transient magnetic field.
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spatio-temporal transient 
mannelio liold description

Figure 4.3 Simulation o f 8 micron ferromagnetic resonance with double kick excitation. 256 x 256 cells. 
Agreement appears to be very good.
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problems are issues that can be further addressed, partially by how well the simulation 

agrees with experiment.

Initial simulations were done with 256 x 256 cells. This makes for a cell size o f 31 x 

31 x 100 nm. This is large with respect to the exchange length. However, at first glance 

it appears to give reasonable results. The simulation results for this initial comparison are 

shown in Fig. 4.3.

The experimental spatial resolution is limited to about 700 nm, so features in the 

simulation will be washed out in experiment, but they are in very good agreement. 

Maxima and minima appear in the same places.

With this positive result we went to smaller cells. We found that in order to 

reproduce these good comparisons it was necessary to have a spatially varying magnetic 

field as well as one that is temporally varying. In order to do this, one must accurately 

know the pulse profile in both space and time. The fact that a good agreement is possible 

with larger cells, but without the spatial variation in the transient magnetic field is an 

interesting result. This may be partially because the dynamics is mostly driven by 

magnetostatics and exchange energy is only a small correction. This correction becomes

0 1000 2000 3000

Time (ps)
Figure 4 .4  Detailed representation o f the spatial and temporal representation o f the 
“double kick” ferromagnetic resonance exicitation. Temporal profile found magneto- 
optically. Spatial profile found with Biot-Savart law. The circles shows spatial variation 
is the field within the 8 micron disk.
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less significant with large cells, so less effort must be taken to ensure it is correct. Thus, 

one can succeed with simulation with an average transient magnetic field (which is 

assumed to be uniform throughout the sample) instead o f the actual spatially varying one.

The pulse’s profile in time can be found magneto-optically 75,76. At high enough DC 

magnetic fields, the magnetization response to the transient field mimics the transient 

field. This response can be filtered to remove any small remaining resonance 

oscillations, leaving a transient field H(t) that is accurate up to the cutoff frequency of the 

filter. This field is spatially non-uniform because it is caused by a coil which is only a 

partial loop and because the sample diameter is not small compared to the diameter of the 

coil. Using the Biot-Savart law, an effective field as a function o f position is calculated. 

A rough sketch o f the temporal profile o f the pulse is shown in Fig 4.2. A more accurate 

representation is in Fig.4.4.

With these tools in place, it is possible to calculate the FMR images with smaller 

cells (512 x 512 cells) as is shown in Fig.4.5. There was still concern that these cells may 

be too large and this simulation was repeated with 1024 x 1024 cells. The results of the 

largest simulation (1024x1024 cells) are shown in Fig. 4.6. These results show that the 

simulation converges to a pretty similar answer with both of the largest two cell sizes.

In theory, we could run the simulation with arbitrarily small cells to guarantee that 

we have not lost features due to large cell size, but there is a trade off in the amount of 

time it takes to run the program. Since the simulation scaling is dictated largely by the 

FFT which scales as N log N where the log is to the base 2. Since the FFT has its best 

performance when the number o f cells in each direction is 2n for some integer n, it is 

most feasible to increase the number o f cells in the x and y direction both by a factor of 

two in order to try smaller cells. Assuming the simulation program scales exactly as N 

log N (where the log is to the base 2), this will increase processing time by a factor of 8. 

Thus it can become prohibitively difficult to run a simulation with too many cells. One 

solution to this is to try parallel computation. We have only found this moderately 

successful. With four CPUs an increase in speed by a factor o f roughly two (vs. one 

CPU) occurs and adding more CPUs adds little (and depending on the problem can slow 

it down). The 256 x 256 run takes about 10 hours to complete, the 512 x 512 run about 3 

days and the 1024 x 1024 run takes about 26 days. Thus, this largest run is too large to
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%

1100 ps

1320 ps

1520 ps

Figure 4.5 FMR in an 8 micron disk with a “double kick” excitation. 512 x 512 cells. In order to keep 
good agreement with experiment, Biot-Savart law is required to calculate a spatially varying magnetic 
field.
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1520 ps

Figure 4.6 FMR in an 8 micron disk with a “double kick” excitation. 1024 x 1024 cells. In order to keep 
good agreement with experiment, Biot-Savart law is required to calculate a spatially varying magnetic 
field. Notice how similar it appears to the simulation with 512 x 512 cells.
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routinely execute, however it is valuable to see that results between it and the smaller 512 
x 512 run are very similar.

4.4 Experimental Results with fast photodiode

Further experimental data was gathered using the setup where the sample was 

pumped using a fast photodiode. The samples used were 4 pm squares with and without 

a patterned defect at the center o f the square. They are shown in Fig. 4.7. Montages of

Squares used

10 pm
Figure 4.7 Optical microscope photo o f sample used in photodiode FMR experiments. The gold 
coil is 20 microns wide with a 20 micron opening. The 4 micron squares used are inside the coil on 
the right. The - 1 5 0  micron pinhole in the center o f the rightmost one cannot be resolved.
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4 micron square in 45 Gauss DC
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Figure 4.8 FMR in a 4 micron square in a 45 Gauss DC field. Time scan at the center o f the sample and 
spatial scans. First spatial scan frame is taken at t=1900ps. Each additional frame 120 ps later reading 
across rows from left to right
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65 Gauss 4 micron Square FMR
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Figure 4.9 FMR in a 4 micron square in a 65 Gauss DC field. Time scan at the center o f  the sample and 
spatial scans. First spatial scan frame is taken at t=1900ps. Each additional frame 120 ps later reading 
across rows from left to right
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45 Gauss 4 micron square+pinhole FMR
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Figure 4.10 FMR in a 4 micron square with a pinhole in its center in a 45 Gauss DC field. Time scan at 
the center o f the sample and spatial scans. First spatial scan frame is taken at t=1900ps. Each additional 
frame 120 ps later.
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65 Gauss 4 micron square + pinhole FMR
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Figure 4.11 FMR in a 4 micron square with a pinhole in its center in a 65 Gauss DC field. Time scan at 
the center of the sample and spatial scans. First spatial scan frame is taken at t=1900ps. Each additional 
frame 120 ps later.
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Ferromagnetic Resonance Curves from Spatial Data
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Figure 4.12 Ferromagnetic resonance curves reconstructed from spatial data. This shows spatial data 
can reproduce time scans.

.the experimental data are shown in figures 4.8 and 4.9 for the square without a defect. 

4.8 is in 45 Gauss DC and 4.9 in 65 Gauss DC. The same data for a square with a 

pinhole in its center is in figures 4.10 (45 Gauss) and 4.11 (65 Gauss). All of these 

figures show the square in the center o f the region oscillating in damped resonance. In 

general, the sample without a pinhole shows “cleaner” oscillations. The spatial traces are 

also more uniform for the sample without a pinhole. As a first check o f the data, one can 

use the spatially resolved profiles to generate time curves to see if  they agree with one 

another. Pseudo-time traces generated by averaging the central 700 nm region in the 

spatial traces are shown in Fig. 4.12. These show that this data is internally consistent. 

Times are relative to the start o f the delay line, and due to realignments o f optics etc. time 

zero moves slightly between some of the runs.

The pinhole in the center o f one o f the squares can be viewed as a scattering center 

which will serve to disrupt the coherent damped oscillation in the sample. Thus we
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should see additional structure in the center o f the sample, made up mostly o f high 

frequency spin waves. This structure will be mostly too small for our spatial resolution. 

It appears as a “stripe” around the middle o f the sample (where the pinhole is). We are 

able to detect the presence o f a pinhole which is far below the resolution limit o f our 

microscope system.

Simulating this is a test o f our micromagnetic simulation program. We have 

significantly more data in this run to match, and all material parameters keep the same 

values as before.

4 .5  S im u la t io n  o f  th is  d a ta

Micromagnetic simulation is done o f 4 pm squares with a 15 nm thickness. The 

sample is broken up into 512 x 512 cells (thus cells are -7 .8  nm a side). This data is 

shown in Fig. 4.13 & 4.14 for the DC fields of 45 and 65 Gauss respectively.

For the most part, the square samples oscillate coherently for the first couple of 

oscillations. This breaks up with time. Stripes from the top and bottom ends of the 

sample start to appear and travel toward the sample center. These break up the coherent 

oscillation. They leave behind them some high frequency oscillations that would be hard 

to spatially resolve in experiment. The stripes that appear in simulation match well 

features seem in experiment.

Getting good agreement in simulation with a patterned defect in the sample center 

will be quite difficult. The defect’s exact size and shape will have a strong influence on 

scattering in its proximity, and thus dynamic properties as a whole. Meaningful 

comparisons have not been run. With a small round defect feature, the limitations of 

square pixels are exposed. The central (defect) region o f the sample will be pixelated in a 

staircase manner which will produce further artificial high frequency features from the 

pixelation. In order to fix this problem, the demagnetizing calculation will have to be 

reformulated using circular cells. This will remove periodicity o f the cells and prevent 

FFT’s from being used to speed up the demagnetizing calculation, so it is a significant 

task. In preliminary attempts to simulate this problem, this high frequency artifact from
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Simulated 45 Oe Ferromagnetic R esonance
4 micron square
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Figure 4.13 Simulated FMR in a 4 micron square in a 45 Gauss DC field. Time scan at the center o f the 
sample and spatial scans. First out o f plane spatial scan frame is taken at t=33 ps. Each additional frame 
120 ps later. Initial state (t=0 s) subtracted from all frames
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Simulated 65 Oe Ferromagnetic Resonance
4 micron square
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Figure 4.14 Simulated FMR in a 4 micron square in a 65 Gauss DC field. Time scan at the center o f the 
sample and spatial scans. First out o f plane spatial scan frame is taken at t=33 ps. Each additional frame 
120 ps later. Initial state (t=0 s) subtracted from all frames
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defect pixelation is far to significant to lead to any results which yield any confidence. 

More work is required to accurately model small defects o f arbitrary shape. It is far too 

dependent upon exact pixalation o f the defect to be taken seriously. The effect o f a 

defect can be quite significant (see section 5.7) for this problem addressed in a 

magnetization reversal situation- however this defect is several pixels large so pixelation 

becomes a larger issue.

Comparing ferromagnetic resonance time scans is quite complex. The frequency 

and envelope o f the oscillations can vary with position in a sample. This requires the 

ability to know the sample position with sub micrometer accuracy to ensure that a 

comparison is valid. This is shown in Fig. 4.17 where a ferromagnetic resonance 

oscillation curve is plotted from the simulation for several different positions within the 

sample. The 4 micron square in 65 Oe DC is chosen as an example. Three different 

regions are chosen to construct FMR curves. Each region is circular with a 700 nm 

diameter (to simulate a laser spot). The regions are in the sample centre, displaced along

Simulated Ferromagnetic resonance 
curves in different 

700 nm circular regions 
within the sam e sample

0.0010

0.0005

0.0000

-0.0005

- 0.0010

1000 2000 30000

position 1 
position 2 
position 3

time (ps)

• 3
# 2 # 1

Figure 4.15 Simulated ferromagnetic resonance curves at different points withing a 4 
micron square in 65 Oe DC field. Each curve averages a 700 nm circular region. The 
frequency and shape o f  the curve is dependent upon position within the sample
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one axis only from the sample centre and displaced along both axes from the sample 

centre. They each lead to very different FMR curves. Thus, only the spatial comparison 

offered is going to be valid, without strong control on position within the sample.

4.6 Summary of this chapter

In this chapter, the ferromagnetic resonance problem is introduced. Experimental 

details for carrying out these investigations are presented. Experimental results and 

simulation with both a photoconductive switch and a photovoltaic diode are presented. 

The agreement between simulation and experiment shows that the problem is well 

understood. Care must be taken to properly model small defects o f arbitrary shape. This 

is still an open problem. It also leads to new insight, such as how the FMR time curves 

are strongly position dependent within the same sample. This chapter shows that the 

simulation does a good job o f capturing dynamics in a low amplitude excitation.
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5. Magnetization Reversal

Our lab has done a significant amount of pioneering work in spatially resolved 

magnetization reversal experiments using time-resolved scanning Kerr effect microscopy 

(TR-SKEM). This work has been published in many places.52 This chapter discusses 

specific experiments and attempts to simulate the results. It concludes with further 

simulations into the effect o f various magnetic field configurations, risetimes and defects 

in the sample as explorations o f how to modify and control the magnetization reversal 

and exploration o f how rich magnetization dynamics can be.

5.1 Experimental Details

The method o f time resolved scanning Kerr effect microscopy (TR-SKEM) is 

discussed in chapter 2. In order to do in-plane magnetization reversal experiments, a 

sample geometry is needed in which a transient magnetic field will be produced that will

f i *  '̂ r ' ‘S ' 1-

Figure 5.1 Schematic o f current (and associated induced magnetic field) through a stripline. 
Magnetic samples are placed on or near the stripline to be influenced by the associated magnetic
field.
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be parallel to the sample. This can easily be done, by placing a sample on top of a 

stripline through which current will be passed. This is shown schematically in Fig. 5.1. 

In practice, often a spacer layer o f SiC>2 is placed in between the stripline and the 

permalloy magnet. This is to prevent current in the stripline from also passing through 

the magnet itself and leading to a more complicated magnetic field geometry. Choi’s 52,70 

results do not use this spacer layer. This is a minor correction. Using Ohm’s Law, one 

can see this

J = a E  (5.1)

We assume that the electric field E is the same everywhere, which is true when we 

neglect finite size effects in the conductor and the magnet. Since magnetic fields depend 

on currents and not current densities we will re-write this as

I= o Ewf (5.2)

where w is the width o f the layer and t is its thickness. Typical numbers from our 

samples with gold striplines and permalloy magnets tgoid=300 nm tpermaiioy= 15 nm 

wgoid=20 pm and wpcrmanoy=10 pm. Using o g0id ~ 450 l/mohm*cm 77 and opermaiioy ~ 20 

l/pohm*cm we find a ratio o f 900 thousand(!) between the current flowing in the 

stripline to the current flowing in the magnet. Thus any correction to the total magnetic 

field allowing current to flow in the magnet is very small.

With sample pumping understood, repeatably resetting the sample to its intial state 

after a pump pulse must also be addressed. This is done with a permanent magnet which 

has a field large enough to return the permalloy magnet back to its initial magnetization 

state, yet smaller than the magnetic field produced by the pulser that is flowing through 

the stripline. This geometry is shown in figure 5.2.

In this chapter, first the example o f a 10 x 4 pm element (actual size after outsourced 

optical litho; nominally this element was designed to be 1 0 x 2  microns and is referred to 

as a “ 10x2” sample) that has imperfect lithography leading it to be oval in shape is 

discussed. The case o f a 100 Oe DC bias field with a 160 Oe transient reversal pulse is 

first studied. Then the cases o f different bias fields are systematically studied, followed 

by different sample shapes. All o f these will have comparisons between simulation and 

experiment. In order to begin this comparison, the TR-SKEM result on this sample is 

presented. In figure 5.3 we show a time traces o f Mx, My and Mz versus time for this
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Figure 5.2 a) Cross-section o f microstructure studied. Permalloy sample is on a gold line with S i0 2 
spacer layer in between, b) SEM micrograph o f samples on a stripline. c) Blowup o f “ 10x2” sample which 
we first studied.
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H dc =  100 Oe

m -

5 time (ns) 100 15

“ 1 0 x 2 ”
* First image is at +0.75 ns. Each following image 

is 0.25 ns later. One full line renresents 2.50 ns.

Figure 5.3 Spot trace and montage data for the “ 10x2” sample in a 100 Oe field. There is 250 ps spacing 
between frames. The front reversal starts on the left and right edges and proceeds in a stripelike pattern. 
The back reversal is more uniform. Front is driven largely by magnetostatics. Back is due to averaging of 
stochastic thermal fluctuations over a few different metastable reversal states.
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sample along with spatial images o f all three throughout the reversal process. Because 

the Mz traces rely on the polar Kerr effect and the Mx and My traces rely upon the 

longitudinal Kerr effect, it is hard to calibrate their relative amplitudes. As can be seen in 

section 2.3 Kerr effect intensities are quite complicated.

They depend upon angle o f incidence and thus the objective used, therefore, ratios of 

Mz to the other two components are not offered with full confidence. Also due to angular 

dependence on the strength o f Kerr effects, there is some uncertainty assigning absolute 

magnitudes to any component. Experimentally, one obtains the difference in 

magnetization between the state at the time in question and a reference state (the 

magnetization at t=0 on the time axis chosen in Fig. 5.3). Thus, the coloring in the Mx 

direction is a false color. It is calibrated such that the maximal signal in the sample 

center is the saturation magnetization o f the sample pointing in the direction o f the 

transient field. The initial zero is the magnetization pointing in the direction of the DC 

field, antiparallel to the transient field. The zero point is merely the halfway point on this 

colorscale. In the My and Mz traces, since there is no reason to assume a component in 

either direction, the initial zero point is taken to be zero. The fact that the signal does not 

return exactly to zero when the sample is reversed implies that this assumption may not 

be fully correct. It is possible that there is some remnant domain structure in the “zero 

state” of the sample (this question will be addressed further as we look into the 

simulation o f the results in section 5.2), or that there is a small non-zero magnetic field in 

the y and/or z directions during the experiment to which the sample is responding, thus 

explaining the non-zero signal in the reversed state.

We see that initially, the reversal occurs at the sample edges and propagates into the 

center in a stripe-like instability, that is visible in all three magnetization components. 

The reversal proceeds by pushing to the long edges o f the sample. The difference in rise 

and fall times o f the sample is explained by the asymmetry in the magnetic fields 

involved. Note that the back reversal is different from the front one. The sample “grays” 

roughly uniformly in the Mx direction and there is significantly less signal in the y or z 

directions. This is a complex scenario that is likely explained in terms o f stochastic 

switching processes. This is a topic that will be developed further in chapter 6. At any
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Figure 5.4 Spot trace and montage data for a simulated rectangular 10 x 2 micron sample in a 100 Oe 
field. There is -100  ps spacing between frames. The front reversal starts on the left and right edges and 
proceeds in a stripelike pattern. The back reversal is similar but has a different periodicity o f the stripelike 
structure.
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rate, these excitations are clearly large angle excitations. The magnetization direction 

between adjacent cells may vary by as much as 180°. It is a real test for the same LLG 

equation with the same parameters to reproduce this motion as in the FMR case.

5.2 Simulation attempts

The first simulation attempt was with a rectangular sample 1 0 x 2  pm (the orignally 

intended size). We need an initial magnetization state in which the sample is in at the 

beginning o f the reversal. We can calculate an initial state by starting a sample with all 

spins pointing along the long axis and allowing it to relax into equilibrium in the 100 Oe 

DC magnetic field. Then we can switch it with the 160 Oe pulse antiparallel to it. The 

pulse is based on the parameters measured from the pulser. It has a 10.5 ns full width at 

half maximum with a 500 ns rise time and a 1 ns fall time included in the 10.5 ns. An Mx 

vs. time curve is shown for comparison with the experimental one in Fig. 5.4. The 

sample is broken into 512 x 128 cells leaving a cell size o f 19.5 x 15.6 nm. There is 

some reason to worry about cells being too large to fully capture the dynamics, but due to 

positive results in the ferromagnetic resonance work (in chapter 4) we will proceed. The 

spacing between spatial images is -200 ps and resolution is reduced to 128 x 32 pixels 

per frame because it is much easier to handle than the full data set produced by the 

simulation which has sixteen times as many pixels. Initially, the sample is fully 

magnetized in the x-direction, except for small closure domains at both ends o f the long 

axis. Due to interaction between them, one will be oriented so it is largest on one short 

end of the sample, and the other will be oriented so it is largest on the other short end of 

the sample. We add to this the finite size effects o f the stripline. There will exist a 

magnetic field in z coming out o f the plane on one side o f the sample and into the plane 

on the other. This gradient in magnetic field can be calculated to be roughly linear with a 

value of about 4 Oe/pm. This can be calculated using the Mathematica program in 

Appendix C, which does Biot-Savart law calculations. Due to the gradient, both closure 

domains have magnetization pointing in the same direction (this is the so called “S- 

state”).

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Starting from these closure domains, magnetization begins to propagate toward the 

sample center in a stripelike pattern that is very reminiscent o f the Concertina structure 78. 

When the magnetization meets in the middle o f the sample, it begins to push toward the 

sample’s long edges, expelling vortices along the way. The 10 ns reversal pulse is not 

long enough to fully saturate the sample. Its edges remain somewhat unswitched. This 

produces nucleation sites for the back reversal, which can happen much more quickly 

over the sample. There is a stripelike instability also observed along the back reversal 

(especially in the y magnetization), but it is far shorter lived. This comparison is the 

subject of Ballentine et al.52 Although there are differences, due in part to a different 

sample size and shape from the experiment, there are a lot o f similarities. Further, the 

magnetic field gradient serves to reduce symmetry in the sample. It is no longer fully 

symmetric from left to right. The biggest impact o f the gradient is to speed up the 

reversal slightly. By including magnetic fields in all directions that are produced by the 

transmission line, we increase the available energy as we increase the Zeeman energy and 

we provide an out o f plane magnetization component which will experience more torque. 

This leads to an increase in reversal speed. The spatial magnetization patterns are quite 

similar with and without a gradient, although those without gradient ones are slightly 

more symmetric from left to right. Hiebert’s Ph.D thesis 21 discusses this nearly ideal 10 

x 2 pm reversal simulation (“nearly” ideal due to the existence o f the magnetic field 

gradient in the z direction) from a spin wave point o f view. Magnetostatic waves exist 

across the sample and are quite evident in the y magnetization in the spatial frames.

A better agreement is possible using the actual sample shape. The sample shape was 

measured with a scanning electron microscope. It was masked onto an appropriate 

pixelated simulation sample and this simulation was again run. The agreement here is 

better still. It is shown in Fig. 5.5. Because this sample is shaped, and not rectangular, 

the oval sample is shown within a rectangular area. This forces it to be shown on a 

smaller scale than the 10 x 2 pm rectangles. This size difference is shown with scale bar 

in the figure.

The primary difference between the reversal in the shaped sample, when compared 

to the rectangular one, is that the amount o f time required to switch magnetization 

directions significantly increases in the shaped sample. The stripelike instability is still
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Figure 5.5 Spot trace and montage data for a simulated shaped “10x2” sample in a 100 Oe field. There 
-200  ps spacing between frames. The front reversal starts on the left and right edges and proceeds in a 
stripelike pattern. The back reversal is similar but has a different arrangement o f  stripes in the reversal 
structure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10 m icron s □ + 1
Figure 5.6 Selected frames in the experimental and simulation comparison o f  the “ 10x2” sample. External 
field is 100 Oe. This reversal is incoherent. The sample breaks up into several stripelike domains.
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seen, although the positioning o f stripes is now somewhat dependent upon sample shape. 

The reversal response starts earlier because there are more closure domains around the 

sample edges since they occur at any point of curvature o f the edge, instead o f only along 

the two long edges. This allows for more nucleation sites for the magnetization reversal 

to begin. The end o f the reversal also occurs more slowly because the demagnetizing 

fields from all o f these closure regions tend to reduce the local effective magnetic field 

around the sample edges, thus slowing the dynamics. This curvature o f the sample edges 

increases the switching time significantly. It also reduces the degree o f saturation that the 

sample manages to achieve during the 10 ns reversal pulse. The back reversal is quite 

similar with stripes developing in roughly the same places.

5.2.1 Comparison with experiment

There are strong similarities between experiment and simulation. To better look at 

this Fig. 5.6 shows the experimental and simulation reversals with several frames side to 

side. These frames are chosen at the same percentage reversal, though not necessarily at 

exactly the same time. The issue o f reversal rates is discussed in section 5.3. In this 

reversal, the rates are quite similar. The comparison shows that the reversal mechanism 

is quite similar along the front reversal. Both reversals begin along the left and right 

edges of the sample, and develop in a stripelike instability, which call dynamic domain 

stripes and meet the center near the curved edge. The back reversal, however, behaves 

differently. Stripes are not as clear (especially in the y and z magnetizations). In the 

experimental back reversal, the magnetization “disappears” and then “reappears” in the 

reversed direction. Possibly this is due to a handful o f reversals with stripes appearing in 

different positions which average to wash out these features.This shows that the Landau- 

Lifshitz-Gilbert simulation is quite successful even in the case o f large angle, strongly 

driven excitation.
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5.2.2 Finite spatial resolution issues

One major discrepancy between simulation and experiment is the finite spatial 

resolution o f the experiment. The data is taken with a 0.75 numerical aperture air 

objective with 0.7 pm resolution. This means that small spatial features in the simulation 

cannot be captured in experiment. In order to mimic this, the simulation data is 

convolved with a Gaussian o f diameter 0.7 pm and every 16th data point is chosen, in 

order to prevent oversampling. These results are shown in Fig. 5.7. The spatial 

frequencies in the simulation are lowered by this process. They now match reasonably 

well to experiment. The back reversal still does not agree as well, indicating that its 

reversal is different in nature. Fig. 5.7 shows that the front reversal is very well captured 

by simulation.

5.2.3 Crystalline and thermal effects

Some further differences are due to effects that further complicate the experimental 

case and are not accounted for in simulation. The simulation does not take into effects 

such as polycrystallinity in the sample and thermal fluctuations o f the spin vectors in the 

sample. We know the sample is polycrystal. This is shown from transmission electron 

microscope (TEM) snapshots of the permalloy (This is sputtered permalloy which was 

lifted off the substrate when making a patterned film.) such as Fig. 5.8. It is not possible 

to know the actual polycrystalline structure o f our sample. Even if we did know it, a 

simulation with a sample as big as the ones we have used in our experiments with as 

many crystal grains as would exist, with appropriate shapes and sizes would be 

prohibitively difficult. Smaller samples are needed in order to solve this problem. This 

problem could be avoided with a single crystal sample, but thus far none have been 

available. There are reduced exchange coupling and varying anisotropy axes across grain 

boundaries. This would pin magnetization in certain regions. The polycrystalline nature 

o f the sample would serve to smooth out and slow down the magnetization reversal. 

Evidence for this pinning is presented in section 5.3. These crystals further complicate 

the energy landscape giving access to more metastable states in experiment.
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10 m icron s □ + 1

Figure 5.7 Selected frames in the experimental and simulation comparison o f the “ 10x2” sample. 
External field is 100 Oe. This reversal is incoherent. The simulation frames are Gaussian convolved and 
every 16th point is selected to better match the scanning algorithm. The magnetostatics dominate this 
reversal, leading to a good agreement.
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Crystallinity further complicates things. Initially, the crystalline sample will be in a
70state with a “magnetization ripple” in the x-component of magnetization which is 

caused by the magnetization in some crystal grains being misaligned with the external 

field due to differing properties (ie. anisotropy axes) in different grains. In “saturation” 

the sample is not fully saturated due to this effect. This allows for some initial torque 

withing the sample. This likely leads to an earlier magnetization response within the 

centre o f the sample, as there are spins which are not perfectly aligned with the magnetic

Figure 5.8 Transmission electron micrograph o f polycrystal permalloy showing 
complex crysal structure with nano-sized crystal grains.
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field. This helps to explain why the response o f the experiment starts earlier in the 

sample center than it does in simulation.

Because cell sizes used in simulation are larger than the crystal grains, some of the 

permalloy properties are those o f an “effective” medium of several crystal grains and not 

that o f single crystal permalloy. The exchange constant and anisotropy constants used 

are averages over several grains. In order to attempt a simulation with single crystal 

permalloy, or with cells that were as small as crystal grains, this would have to be 

corrected.

Metastability is more o f a problem in this comparison when thermal fluctuations are 

not taken into account, but the experiment is done at finite temperature. Because the 

experiment is done at room temperature, there will be Brownian motion o f the 

magnetization vectors within the sample. This is addressed in chapter 6. Random 

thermal fluctuations o f the magnetization vector can be added by solving the Fokker- 

Planck equation.80 In the real world experimentation, since it is stroboscopic, only the 

repetitive portion o f the dynamics is captured. The reversal would have to be simulated 

many times with different thermal fluctuations and averaged to give a “stroboscopic” 

signal. Unfortunately, this is prohibitively hard to do with a sample as big as this one. 

Thermal fluctuations will serve to average out stroboscopic signals. They make 

magnetization curves look more exponential after averaging. When lots o f metastable 

states exist, this wash out features in the experimental sample. This appears to be what is 

seen on the back reversal in the experimental sample. This is understandable because the 

sample is driven by 60 Oe on the back reversal (vs. 100 Oe on the front). It will be more 

strongly pinned, and it will have more metastable reversal paths that may become 

stroboscopically averaged.
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Figure 5.9 Vector maps o f “ 10x2” front reversal. The arrows represent the direction o f M and their 
length its magnitude. Grey scale also shows magnitude o f M. Where it is darkest grey, M is reduced due 
to averaging o f simulation o f finite spatial resolution o f experiment.
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Figure 5.10 Line-scans and line scan averages vs. time (x-component) for “10x2” permalloy element as a 
function of DC magnetic field. A similar envelope “V” or “U ” shape is seen in both experiment and 
simulation. In both cases the onset is later and the reversal time is longer with lower driving field. At 
higher driving field both agree well. At lower driving field, simulation is faster. This implies pinning of 
domain walls etc. on crystal boundaries in experiment.
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5.2.4 Vectorial representation

We have enough information in the previous figures to represent the experimental 

magnetization profile in a vector map and enter the realm of “experimental 

micromagnetics”, in the sense that experiment can produce results that are directly 

comparable to that o f micromagnetic simulation. The problem of calibrating the polar 

and longitudinal Kerr effects can be neglected, as almost all o f the action occurs in the xy 

plane and is captured by the longitudinal Kerr effect. Because o f spatial averaging, some 

vectors will be significantly shortened from the saturation magnetization length. A 

comparison of the rising switch (with best agreement) is shown in a vector map in Fig. 

5.9. A greyscale in the background indicates where the magnetization vector is reduced 

in length due to spatial averaging. This also occurs in the simulation because the 

Gaussian blurred data is used for this comparison. Both o f these vector plots show 

vortices that enter and are expelled from the sample in similar places along the sample 

top and bottom edges (reminiscent o f Bertram and Z h u 57).

5.3 Magnetization Reversal with other DC fields

We can now investigate magnetic reversals with varying DC fields in order to see 

the effect o f driving field on the reversal process. We look at “x-t” data across the 

sample to get an idea o f what is going on. Due to symmetry o f the sample, one only 

needs to take data on one horizontal spatial line across the sample and scan it in time. 

This is far more telling than one spatial spot on the sample. Experimental and simulation 

comparisons are shown in Fig 5.10. The line scan average curves show relatively similar 

features. There tends to be a fast rise or fall in magnetization when the driving field is 

large and a much slower one under a smaller driving field. When driving fields are low, 

the increase or decrease in magnetization is not smooth, there can be bends in the 

magnetization curves. Some o f the extra “noise” in the experimental curves may be 

thermal fluctuations in the sample, leading to small changes in magnetization even when 

the external magnetic field is constant.
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Looking at the x-t scans, we can see further agreement. A reversal always happens 

first at the edges o f the sample and happens later in the sample middle. This is shown in 

the U or V shaped envelopes o f the reversal data on both the front and back slopes. 

There are similar notches (spatial stripes) along both the experiment and simulation. 

These appear to be long wavelength standing spin waves which are magnetostatic in 

origin34.

The most telling difference is the sharpness o f switching that occurs. In simulation 

the switch may take a while in a low driving field (i.e. front slope at 130 Oe DC field), 

but when it does occur, it is a complete switch. In the experiment the switch is not as 

sharp. Metastability enters the picture. The experimental sample is more metastable due 

to crystallinity, possible non-magnetic defects, variation in the thickness, and other things 

that will serve to make the energy landscape more complex. When thermal fluctuations 

are also considered, a more complex energy landscape will lead to non-repetitive 

switching. Even worse, it may lead to non-repetitive initial conditions for each reversal. 

All this will tend to reduce the sharpness o f the switch in the experimental data. This 

difference is most telling in the experimental data when the driving magnetic field is 

small. A larger magnetic field will be able to reduce the effects o f these imperfections in 

the experimental sample.

This is consistent with the line-scans. The switches occur at similar rate in high 

driving fields but are slowed in lower fields, due in part to pinning in the sample. In 

experiment, when the sample becomes highly metastable, the dynamic domain structure 

o f the reversal is washed out and magnetization vectors shrink significantly. This is what 

is seen in the back reversal. The crossover from repeatable reversals to metastable ones 

with this sample appears to occur with driving fields around 85 Oe.
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This can be more clearly seen by looking at the switching times shown in Fig. 5.11. 

Switching times are defined here as the time a sample takes to go from 20% reversed to 

80% reversal. These values are chosen because they tend to be within the fast rise on the 

switching curves. Similar results are seen with other definitions o f switching time, as 

long as they avoid the slow exponential rolloff near saturation that occurs often in 

experimental traces. For higher driving fields (below about 100 Oe DC on the front 

reversal and above 80 Oe DC on the back reversal), the switching times agree well. 

Discrepancy occurs for lower driving field, where pinning is more significant. On the 

front reversal, the simulated switching time is larger than the experimental one for low 

driving fields. This suggests that imperfections in the experimental sample, such as 

crystal boundaries, provide extra nucleation sites allowing the reversal to proceed faster 

at the center o f the sample. On back reversals, the experimental sample switches faster. 

This is because the same imperfections that slow the front reversal prevent the sample
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Rise and Fall Times
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•  Magnetic Field vs exp front
O Magnetic Field vs exp back
t  Magnetic Field vs sim front
v  Magnetic Field vs sim back
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Figure 5.11 Rise and fall times for magnetic reversals in both experiment and 
simulation. Times are defined as the time to go from 20% to 80% reversed. Good 
agreement in high driving fields. Discrepancy in low driving fields where pinning 
becomes significant
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from reaching a fully saturated state, so it does not take as long to switch back. 

Presumably, metastability in switching also occurs in these cases.

5.4 Magnetization Reversals with other sample shape

Further investigations were done with a sample 7.7 x 16.5 pm (“6x15”) sample with 

a long axis perpendicular to the external field direction. Experimental traces and 

snapshots are shown in Fig. 5.12. The experimental snapshots only show part o f the 

structure because the piezo range is too small to scan the whole sample. The simulation 

traces and snapshots are in Fig. 5.13. It is obvious that this reversal occurs by different 

mechanisms than the dynamic domain reversal we saw in the “ 10x2” sample. First we 

will focus on the back reversal. In both cases it occurs quickly and oscillations are seen 

in the y and z magnetizations. There is also a hint o f some oscillations present in the x 

component which are washed out due to temporal jitter in the measurement and “lost” in 

the large switch in magnetization o f the sample. The precession in the x component is at 

twice the frequency o f the precession in y or z component. In the yz plane, the 

oscillations in y are out o f phase with those in z. The spin points in the positive z 

direction, then the negative y, then negative z and finally positive y directions before 

repeating. However, in the x direction, when it switches it only points in one direction in 

x so it will produce maxima in x twice during each rotation. It will produce maxima as it 

passes through zero along the y axis and once as it passes through zero along the z axis. 

This is a near-ideal precessional reversal.81 This can better be seen with vector images 

that are shown in Fig 5.14 for experiment and Fig 5.15 for simulation.
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Figure 5.12 Spot trace and montage data for 7.7 x 16.5 micron element in 100 Oe field. The differing 
aspect ratio from “ 10x2” sample leads to more oscillatory behavior.
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Figure 5.13 Simulated magnetization reversal o f 7.7 x 16.5 micron sample in 100 Oe. The differing 
aspect ratio than the “ 10x2” sample leads to more oscillatory behavior
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Figure 5.14 Experimental back reversal o f “ 15x6” sample cast into a vector map to better show the 
coherent rotation. Top left comer shows path of the magnetization vector in the sample center as it rotates 
coherently. There is uncertainty calibrating strengths o f out-of-plane signal to in-plane signal. This is 
ignored and raw signal strengths are plotted.
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Figure 5.15 Simulated back reversal o f  “ 15x6” sample cast into a vector map to better show the coherent 
rotation. Top left comer shows path o f  the magnetization vector in the sample center as it rotates 
coherently. Because o f the problem calibrating the relative strengths o f in and out o f plane Kerr signals in 
experiment, Z signal is multiplied by 5 in this rendering to better match the experimental data.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



There is some uncertainty in how large the z component of magnetization should be, 

since it relies upon polar Kerr effect instead of longitudinal effects. In this comparison, 

the experimental data is used “as is” and the z component in the simulation is multiplied 

by five to roughly mimic the increased sensitivity to the polar Kerr effect. In both cases a 

precessional reversal 82 is seen. A precessional reversal is a half cycle o f uniform 

ferromagnetic resonance rotation. A transverse magnetic field pulse will send the 

magnetization out o f plane. An out-of-plane demagnetizing field is then created, around 

which the magnetization in the plane can precess.

There is discrepancy on the front slope o f the reversal, where the coherent 

oscillations in the experimental sample are less evident. Since the driving field is 60 Oe 

on the front slope and 100 Oe on the back slope, the main reason for this discrepancy 

increased metastability leading to increased importance o f thermal fluctuations.

115ns 5J)ns

initial state 
10% reversed 
20% reversed 
30% reversed 
40% reversed 
50% reversed 
60% reversed 
80% reversed

Figure 5.16 10x2 micron sample in 100 Oe DC with 160 Oe reversal pulses o f varying rise times. There is 
significant difference in the dynamics in the intermediate states by changing only pulse risetime.
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5.5 Magnetization Reversals with different switching field risetimes

A fundamental issue throughout this work is the fact that these reversals are 

dynamic. Quasi-static magnetization reversals have been studied extensively in the 

1950s and 1960s (Doyle 20 gives a good summary). This work tends to neglect the 

gyrotropic nature o f the magnetization vector and, thus, only look at the magnetization in 

equilibrium states during the reversal. O f course this begs the question o f how it gets 

from one equilibrium state to the next. In this work, the motion is assumed to be quasi­

static, only out o f equilibrium by an infinitesimal amount at any given time. It is the non­

equilibrium nature o f  dynamic motion that makes this work new and interesting. Just 

how different quasi-static and dynamic reversals are is a somewhat open question that 

can be addressed by simulation. Using a rectangular 10 x 2 pm sample we can run 

simulations with different rise times o f the switching magnetic field. These results are 

shown in Fig. 5.17. The rise time o f the reversal pulse is varied. Like the experiment, the 

sample is held in a field o f 100 Oe, and a 160 Oe reversal pulse that is antiparallel is 

applied to switch it. Runs are done with switching field risetimes o f 500ps, 1.25 ns, 5.0 ns 

and 16.0 ns. Naturally, the switching time is dependent upon the rise time of the reversal 

pulse (i.e. it takes longer than the length o f the reversal pulse to switch). States are 

compared by percentage reversal and not time. It is clear that with different rise times, 

the sample will attain different magnetization states. With fast enough switching, the 

switch nucleates at the demagnetized ends o f the sample and propagates into the sample 

center in a stripelike pattern. It meets in the sample center and then pushes out to the 

short edges o f the sample. When there is sufficiently slow switching there is time for 

nucleation in the center o f the sample to occur. It occurs first as a continuation of the 

stripelike spin wave pattern. Energetics in the center o f the sample can be quite complex. 

The pattern in the sample center is very dependent upon exactly how it nucleates. This 

difference could easily be detected in a TR-SKEM experiment as long as it is repetitive. 

There is concern that because the energetics are so complex, there may be metastability 

that will make this detection more complicated. It is clear that there are noticeable 

differences between quasi-static and dynamic reversals.
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5.6 Magnetic reversal with different orientation of transient and DC

fields

The dynamic domain reversal that we see in most o f these reversals is a consequence 

o f the fact that initially there is no torque on most o f the sample. M x H is zero when M 

and H are anti-parallel, so the reversal is driven mostly by magnetostatics starting from 

the two end closure domains. This situation can be avoided by providing a transient field 

which is not completely anti-parallel to the DC field (and thus the initial magnetization). 

This will speed up the reversal, making it more o f a precessional reversal. An example of 

this is shown when the transient field is canted so that it is 150° with respect to the DC 

(as opposed to 180° in the anti-parallel case) in Fig 5.17. This rotation is quite coherent. 

Large oscillations in the magnetization are seen. When the field mismatch is 10° (170° 

canting), the oscillations are gone, but the spatial pictures show that the reversal is much 

more o f a coherent rotation. This is shown in Fig. 5.18. When the field mismatch is 5° 

(175° canting), the spatial pictures reveal that the sample breaks up into stripelike 

domains that reverse both clockwise and counterclockwise. There is still a significant 

difference between the 5 degree mismatch and zero mismatch as a non-reversed domain 

remians trapped in the sample centere and takes a long time to reverse. The rotation 

becomes much more incoherent (as is the case with zero field mismatch, seen in section 

5.2). These examples show that by merely varying the angle between the field, wide 

changes in behavior are possible. Combining these effects with varying rise times and 

varying sample shapes provide a huge range of magnetic reversal behavior that can be 

studied. Some experimental exploration into this area is provided by Choi et al 52,70 .
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Figure 5.17 Simulated magnetization reversal o f  10 x 2 micron sample in 100 Oe with a 160 Oe reversal 
pulse directed 30 degrees from anti-parallel. A coherent rotation occurs due to the hard axis pulse breaking 
symmetry
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Figure 5.18 Simulated magnetization reversal o f 10 x 2 micron sample in 100 Oe with a 160 Oe reversal 
pulse directed 10 degrees from anti-parallel. Rotation is more coherent but oscillations are not seen.
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Magnetic reversal with DC field
at 5 degrees to sample

1

o

1

■2
0 4000 8000 12000 16000

time (ps) Front reversal

20x5 |im
Figure 5.19 Simulated magnetization reversal o f 10 x 2 micron sample in 100 Oe with a 160 Oe reversal 
pulse directed 5 degrees from anti-parallel. Rotation is more incoherent. Striplike domains are seen.
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5.7 Magnetic reversal in samples with defects

The effect o f a defect can also be checked with simulation. One or more cells within the 

sample can be masked such that they have a saturation magnetization that is zero or less 

than the saturation magnetization in the rest o f the sample. One defect can have 

significant effect on the magnetic reversal in the sample. This will be shown through 

several examples. The 1 0 x 2  pm sample is simulated again with a 1 cell defect in the 

center, a 1 x 3 cell defect in the center, a 3 x 3 cell defect in the center and two 1 cell 

defects at thirds along the center line o f the long axis. These can have significant effect 

upon reversal rates. A graph o f this is shown in Fig 5.20. Larger defects tend to have 

closure domains around them, which can serve as nucleation sites during the reversal, 

thus reducing the pinning effect o f the defect. Smaller defects are not large enough to 

create closure domains and merely pin magnetization around them, thus the simulations 

with one cell defects are the slowest to reverse. As defect size becomes small when 

compared to the exchange length o f the material, this trend probably reverses, as the 

defect is less significant. The simulation code is not capable o f exploring that scale with 

samples o f that size, so that remains speculation. This is a possible explanation for the 

simulation reversals being faster than the experimental ones. The experimental ones may 

have small defects. These defects may not be points where magnetization is zero as in 

these simulations, but there may be a significantly reduced magnetization in these regions 

of the sample. This would serve to slow magnetization reversal as well as complicate the 

energy landscape. Adding defects is yet another variable that can be explored in 

magnetization dynamics experiments.
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Figure 5.20 Simulated magnetic switches o f  various 10x2 micron samples in 100 Oe DC with patterned 
defects. Defects slow reversal, due to pinning.
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1024 x 256 cells

512 x 128 cells

Figure 5.21 Simulated initial switch o f magnetization reversal o f 10 x 2 micron sample in 100 Oe with a 
160 Oe reversal pulse with smaller cells (1024 x 256 cells) compared to the switch with 512 x 128 cells. 
Since this is very similar to previous simulations, we have confidence cell size is not an issue.
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5.8 Cell size test

These reversal simulations have all used cells approximately 15 nm in size. Since 

this is larger than demagnetizing exchange lengths, there is concern that it may not be an 

accurate result. Its correspondence with experimental results puts this issue somewhat to 

rest, however repeating a simulation with even smaller cells and finding the results to be 

almost identical is more convincing. The 10 x 2 pm reversal is repeated with 1024 x 256 

cells (making for cells o f dimension 9.77 x 7.81 nm). This is shown in Fig. 5.21. It looks 

very similar to the previous simulation in Fig. 5.4 with larger cells. Thus we can 

conclude that cells used in these simulations are small enough to capture the dynamics.

5.9 Energy in Magnetic Reversal

With these simulation and experimental results, it is possible to analyze the various 

energy terms during the reversal. We will look at the 10 x 2 pm reversal that has been 

studied before. Fig. 5.22 shows the major energy terms, exchange, demagnetizing and 

Zeeman in this reversal (Since anisotropy energy, averaged over the whole sample, does 

not change much during the reversal it is omitted from this graph.). The simulation with 

1024 x 256 cells is used to generate this graph. During the changes in magnetic field, 

there is a large spike in the total energy of the sample, and in its components. This 

energy is dissipated quickly due to damping. Because it is in a different magnetic field, 

the sample will come to a different equilibrium in energy during the magnetic field pulse, 

than when it is in outside o f it. When the pulse is removed, the sample returns to its 

initial energy values. There is not enough spatial resolution in the experiment to make a 

meaningful energy plot. Both the exchange and demagnetizing energy will be 

significantly underestimated because the higher frequency magnetization changes are 

lost.
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Figure 5.22 Energy plot during 10x2 micron reversal. Energy terms peak when external 
magnetic field changes and damp back to equilibrium afterward. In this plot the zero point is 
chosen arbitrary so that initial state has zero energy.

5.10 Summary of this Chapter

In this chapter the magnetization reversal problem is explored. Experimental results 

and micromagnetic simulations o f several problems are introduced and compared. The 

details of the experimental time resolved scanning Kerr effect microscopy (TR-SKEM) 

method is reviewed and the sample geometry is discussed. Experimental results o f an 

incoherent rotation in a magnetic reversal in the “10x2” sample are given as well as the
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micromagnetic simulation o f the same problem. The issue o f the differing spatial 

resolution between experiment and simulation is addressed. The reversal is cast into a 

vectorial representation, showing the full power o f the experimental micromagnetic 

techniques and the detailed experimental comparisons that are possible. Reversal results 

in other magnetic fields are shown to help give a systematic understanding o f the 

problem. Data from other sample shapes are presented, showing coherent rotation is 

possible by merely changing geometry. Through simulation, reversal with different 

risetimes o f transient magnetic fields are addressed, highlighting the dynamic nature of 

these reversals. Simulation results with different orientation o f magnetic fields are 

presented. These too can dramatically effect reversal. Dramatic risetime differences are 

found by adding non-magnetic defects into the sample, further highlighting the range of 

possibility in magnetization reversal. As a test of these results, the 1 0 x 2  pm incoherent 

rotation simulation is repeated with smaller cells to give very similar results. This data is 

used to plot the various energy terms as a function o f time during a reversal. This section 

shows the complexity o f magnetization reversal, in that minor changes o f many 

parameters can dramatically effect results. It also shows that despite these issues, good 

correspondence between experiment and simulation has now been achieved in some 

cases.
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6. Thermal Fluctuations

The biggest assumption in any stroboscopic experiment such as a TR-SKEM 

experiment is that the dynamics are repeatable from event to event. Does this assumption 

hold in micromagnetics? The Landau-Lifshitz-Gilbert (LLG) theory as presented in 

chapter one is fully deterministic, but reality is not so simple. The largest reason for non- 

deterministic, non-repeatable behavior in micromagnetic systems is thermal fluctuation of 

the magnetization vectors within the sample. The experiments occur at room 

temperature, although this is far below the Curie temperature o f permalloy (869 K), 

thermal energy is large enough to affect dynamics. In this chapter, we present the 

Fokker-Planck theory o f thermal fluctuations and use it to calculate the statistical 

properties o f fluctuating magnetization vectors necessary for micromagnetic simulation 

with thermal fluctuation o f magnetization vectors taken into account. We show 

preliminary tests o f the thermal fluctuation simulation code and show examples of 

stochastic behavior in simulation. Scaling behavior o f the thermal code is discussed to 

show that it is not practical to run simulations that are larger than a couple o f micrometers 

big. Unfortunately, no statistical analysis o f thermal switching in a 10 x 2 pm sample is 

possible at this time.

6.1 Theory of Thermal Fluctuations

Thus far we have assumed that micromagnetic dynamics is purely deterministic. 

This is rarely true. The system is often not in equilibrium and rarely proceeds exactly as 

proscribed by the LLG equation along the least energy pathway. The magnetization 

vectors oscillate due to thermal energy. This fluctuation is orders o f magnitude faster 

than the micromagnetic dynamical motion. Because o f this, it can be treated as a 

stochastic noise term added into the LLG equation.

Stochastic activation is introduced as a thermal magnetic field H th which is added to 

the effective magnetic field. It accounts for all thermally driven interactions of the 

magnetization vector with phonons, conduction electrons, nuclear spins, etc. and, thus,
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has many degrees o f freedom. These interactions can also be responsible for damping 

since these fluctuations o f the magnetization vector can lead to magnetization energy 

being dissipated in the environment. This treatment o f thermal fluctuations roughly 

follows Scholz.83

Since there are a large number o f microscopic degrees o f freedom in this 

mechanism, the thermal field can be assumed to be a Gaussian random process with zero 

mean.

This means that the thermal field on average vanishes in each direction. A much 

more involved calculation is required to calculate the variance o f this distribution. We 

will assume that each Cartesian component o f the thermal field is uncorrelated both in 

space and in time. On the time scale we are sampling the thermal field, this is likely a 

very good approximation. We can write the variance for now as

Here D is a constant that we have not yet determined. The Kronecker 8 expresses 

the fact that different components o f the thermal field are uncorrelated, and the Dirac 8 

shows the fact that the autocorrelation time o f the thermal field is much shorter than the 

response time o f the system, and, thus, it can be viewed as uncorrelated in time. Hence, 

this is a source o f white noise.

6.1.1 Gaussian White Noise

Since it is assumed that thermal activation processes are of a much higher frequency 

then the sample response time (precession frequency o f the magnetization vector), the 

fluctuating field used to simulate thermal activation is a stochastic process. Any 

stochastic process o f zero mean with a two time covariance function given by

where r\ is the stochastic variable, is called Gaussian white noise. This is because the 

Fourier transform of the stationary two time covariance function is

(6.1)

(6 .2)

(n(0) =  o ( n ( 0 n ( t + T ) ) = a 28 (x ) (6.3)
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F(co) = J Jx(r|(t)r|(f + x ))e l'®T = a ^  

which is independent o f frequency.

(6.4)

6.1.2 Stochastic Integrals

Integration o f stochastic processes is somewhat mathematically complex. The 

theory is covered in books such as van Kampen and Gillespie.84 As an example, let us 

consider a one dimensional stochastic differential equation with multiplicative noise. 

(This is a simplified version o f the Langevin equation.)

= a{X{t) ,t) + b(X { t \ t ) ^ { t )  (6.5)
at

Thus, the increment dX during a short time interval dt is given by

dX(t)  = a(X(t) ,  t)dt + J/ + dt b(X(t'),  t')q (t')dt' (6.6)

The second term is a stochastic integral and needs to be looked at in more detail. We can 

evaluate the integrand at the beginning o f the interval [t, t+dt] and multiply it by the 

length o f the interval dt and use this result as the increment for dX

However, we could also evaluate the integrand at any other time t+pdt in the 

interval [t,t+dt]. Hence p is on the interval [0,1]. Then the mean value o f X is given by 

X(t)  = (1 -  p )X{t)  + pX ( t  + dt) = X( t )  + $dX(t)  (6.7)

In this general case dX is given by

dX(t) = a(X(t) , t ' )dt  + b(X(t)  +adX(t), t 'yr\(t)Jdi  (6.8)

We can Taylor expand the second term to get dX(t)

dt + b(X(t),ty\(t)yfdt  (6.9)dX(t) = o  + p 2 (o
oX

Depending upon the choice o f a  we get different drift terms. If we set P=0 we get the Ito 

interpretation o f the stochastic differential equation.

X ( t )  = a ( X  ( t) , t)d t  + b{X( t ) , tyc \{ t )4d t  (6.10)

For P=l/2 we get the Stratanovich interpretation.
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1 db(X(t), t)
2 dX

b(X(t) ,t) dt + b(X(t),t)r\(t)y[di (6.11)

Thus, we have to be careful to distinguish between the interpretation o f a stochastic 

differential equation. Different versions can, in principle, give different dynamical 

properties. In this work, the Stratanovich interpretation is selected because it gives the 

appropriate noise properties. The white noise in our case is actually an idealization of a 

“colored” noise in which the two time covariance function is given by

with a short time constant 1/m.

The Wong-Zakai theorem 85 states that in the Stratanovich interpretation, as m —» co 

this colored noise becomes white. Therefore, in most physical applications, Stratanovich 

calculus is preferred.

This example with the Langevin equation is not a truly trivial example, as the LLG 

equation with thermal noise can be written as a form o f the this equation. The stochastic 

LL equation (the Landau-Lifshitz version is used because it is easier to isolate the 

functions Aj(M,t) and Bjk(M,t) at the end of the derivation we return to LLG) is

Thus we have written the stochastic LLG equation as the general form of a system of 

Langevin equations.

(n(On(/+T)) = | —<> (6 .12)

s

This can be rewritten (in component form) as

dM  ,
(6.14)

where the functions Aj(M,t) and B;k(M,t) are defined as

(6.15)
s

s

where we are using the Einstein summation convention and s p  is the Levi-Civita symbol.
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6.1.3 Fokker-Planck Equation

The Fokker-Planck equation describes the non-equilibrium probability distribution 

P(M,t) of a set o f Langevin equations. It is one method to obtain the variance o f the 

thermal fluctuations required for micromagnetic simulation. In the Stratanovich 

interpretation the Fokker-Planck equation is given by

dP
dt dM.i

/
dB

A. +DB  — &- 
i j k  dM . 

V J

+ ■
dM .dM . 

* J
D V j k 1p

(6.16)

Any probability distribution calculated will have to be normalized by the requirement that 

\Pdt = 1.

We can transform eqn 6.16 into a continuity equation to get

dP d
dt dM.i

f  dB k d '
A. + DB .j — - - D B . ,  B 

i ih dM . lk Jk dM .
(6.17)

J J

Substituing the results from the stochastic LLG equation (eqn 6.15) we find

= 8 . . M +5  . ,M .  - 2 5 . . M  = M ,  (6.18)
dM . lj k  M  \  lJ k  A  i ik j )  m  k

and

B.

J

dB
 jk_

ik dM . 
J

-y ' s . . j  M  . + * L - ( m .M,  - d . , M 2A  J M  \  1 k ik
s

l a y M ,

M
= 0 (6.19)

Thus the second term on the right hand side o f the equation is zero. The third term is

B bB k  = 7ik jk  dM .
J

— s M a  ( M . M ,  - 8  M 2
ilk I m  v i k ik 

s

a  1M  . M . - 5  M 2

(6.20)

' jp k  p  M  \  j  k jk
s

dP
dMj

= y ' 2 ( a 2 +1
r

M x M x dP
dMj
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Thus our version of the Fokker-Planck equation is

dP
dt dM

ay
- y M x H  -

eff M

D y ' 2 ( 1 + oc2 ) M x

•Mx
s
'  d A M x
V dM

(6 .21)

The first two terms are dynamical terms from the original LLG equation and the third is 

an additional term due to thermal fluctuations. We will only look at this term for now.

dP d 9 9
L f l  =  _ •  Z > y ' ^ ( 1 + a  A m  X

dt dM 

After a vector identity this is

—  = J L  •  Dy ,2fl  +cc 2 V  x 
dt dM

r d }M x   P
v dM

(6.22)

M x- d
v dM

P - V 2 ( JDy ,2f l + a 2 W 2P  I (6.23)

In the case that the sample is in equilibrium except for thermal fluctuations, M is nearly 

constant. Therefore, even though P is a function of M, it can be assumed to be roughly 

constant for fluctuations near equilibrium. Thus the equation simplifies to

f - ^ + a 2 y

The solution to this equation is

(6.24)

P = Ce 2DY ,2 (l +a-2 )t (6 25)

and we have an exponential with a time constant (called the Neel time).

1
*N = 2Dy , 2 ( l + a 2 )

(6.26)

We must ensure that the stationary properties o f the stochastic LLG equation and the 

statistical properties o f the thermal field coincide with the appropriate properties in 

thermal equilibrium. We must have the stationary state solution of the Fokker-Planck 

equation correspond to the Boltzmann distribution.

P(M) = PQe

M H  „ V  
eff

kT (6.27)

So we can get
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dP ef f
dM kT

We need to look at the stationary Fokker-Planck equation

(6.28)

0 = - ? - .
dM

U x H  „  _,)p +v eff > m  V eff “

Z)y'2F ( l+ a 2) M x (m x H )
kT  v eff

We can look at the first term in this equation as

dP ^

(6.29)

d ' U x H  X - ^ T 8 «[mx-
V e f f  / d t /dM v e f f ' P V  dM V 5M 

One component o f the vector triple product is

(6.30)

dM
M x dP

dM
= S„l (cmM Jdu p )=  0 (6.31)

Thus, this term is zero, so the Fokker-Planck equation with the stationary solution 

becomes

.’2 r,n  , „.2>
-1VI V llVT V ¥\

eff0 =  -

ay
2 2

M x  M x H  J p  + ^ L Z i l l i M x  M x H  _ ) p  (6.32) M v eff “ fcr v eff “ v 7

Hence, the coefficients must be equal, 

a y ' Dy ' 2 F(1 + a 2 )
M

Hence we get

D =

kT
(6.33)

a k r

y W  (1+a )
(6.34)

Recalling the definition of y' (Thus, we return to the LLG equation.), this is 

a K T
D =

Y VM

So the correlation o f the thermal field is thus

a KT

(6.35)

H t h , i ^ H t h , j 2 yVM 8 (/8<7 ^
(6.36)
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This result could also be obtained from the fluctuation dissipation theorem.86 Therefore, 

we now have the variance in the thermal field.

6.2 Preliminary runs of Thermal Code

The first thing to do with thermal code is to devise a test to ensure that it is working 

properly. The main problem is that thermal fluctuations introduce a stochastic element 

into the simulation and thus can only be tested statistically. Therefore, several events are 

necessary, with statistical properties being checked. One test that will give some idea of 

how well the code performs is to compare its results to those predicted by the Arrhenius- 

Neel Law. This law is simple.87 It states that for a particular small sample the 

magnetization will fluctuate around an energy minimum. From time to time reversal 

processes will occur when the magnetization crosses the energy barrier and switches to 

the other energy minimum. The probability per unit time that the magnetization jumps 

over the energy barrier in thermal equilibrium is given by the Boltzmann distribution and 

is proportional to:

exp
kB T ,

(6.37)

If we consider a single energy barrier model in a square sample (thus only crystalline 

anisotropy creates the energy barrier), then the reciprocal o f the switching probability is 

the relaxation time t and can be written in the form of the Arrhenius-Neel law

1 /•-  = A  exp
KV
*  r

(6.38)

where f0 is a characteristic dynamic frequency which is a material parameter.
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The only barrier to thermal switching comes from the sample’s induced anisotropy 

magnetic field. In order to make the number o f thermal switching events manageable, it 

is necessary to increase the anisotropy magnetic field of the sample from its experimental 

value o f 8.6 Oe (in our permalloy), by a factor o f ten, to 86 Oe. This makes the energy 

barrier more significant, thus reducing the number o f switching events. With lower 

anisotropy, the sample switches so frequently that it is almost always switching. Then 

the time spent in either the switched or unswitched state is only dependent upon the 

gyromagnetic properties o f the sample, as it would be continuously switching. The 

sample for this trial is chosen to be a square sample, so as to remove shape anisotropy. It 

is 32 x 32 nm and 4 nm thick. It is broken up into a grid o f 8 x 8 cubic cells. The sample 

is in zero external field and left only to thermal fluctuations at 300 K to provide dynamic 

motion. It will have two metastable equilibria. One with magnetization directed along

Arrhenius Neel Law test 
of thermal fluctuation code

2 ------------------------------------------------------------------------

0 20000  40000  60000

time (ps)

Figure 6.1 Arrhenius-Neel test o f thermal fluctuation code. 32 x 32 nm sample is at 300 K 
with no external field is left to switch thermally to test the stochastic nature o f switching in the 
micromagnetic code.
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the positive easy axis (x axis) and one with magnetization directed along the negative 

easy axis (- x axis). It will randomly switch back and forth between these states 

according to the Arrhenius-Neel Law. A plot o f such a run is shown in Fig. 6.1.

In order to analyse this plot, one must define what it means to “switch”. In this 

section, a switch will be defined as any time that the sample goes from a value of Mx/M = 

0.75 to Mx/M=-0.75 or vice versa. This removes from consideration times when a 

sample may partially switch, but return to its initial equilibrium without completing a full 

switch. By this switching definition, there are 10 switching events in this simulation. It 

is interesting that many o f the switching events happen in relatively quick succession 

after one another. Presumably, these are times when the sample has lots o f excess energy 

which has not yet had time to be damped from the system. There is an average of 6620 

ps spent in either the switched or unswitched state in between switching events in this 

simulation. Sticking this value in eqn. 6.38, f0 is found to be 2.5 * 10n 1/s. This value 

compares well with the values in Scholz82.

6.3 Magnetization Reversal with Thermal Fluctuations

In order to test the effects that thermal fluctuations can have in a magnetization 

reversal, a simulation can be run upon a case where there is high metastability because 

driving fields barely exceed coercivity. One such situation is the case of a 1 pm x 200

Mx thermal runs

M
£
■R
£ 251)005000 40QQQ-4-i^50W

-1.5

time (ps)

Figure 6.2 16 magnetization reversal with thermal fluctuation mns at 300 K. Sample is 
1000 x 200 x 15 nm. Sometimes sample switches, and sometimes it doesn’t. Sometimes 
sample switches back, and sometimes it doesn’t. Sometimes it starts from an already 
switched state. Even when it does switch, there is a wide range in switching times.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



nm x 15 nm permalloy sample broken up into 64 x 16 cells in a two dimensional 

simulation. The sample is in a 300 Oe DC magnetic field, with a 580 Oe antiparallel 

transient switching field. A plot o f 16 runs under these conditions is shown in Fig. 6.2.

A wide range of switching behaviours is seen. Sometimes the sample switches under 

the transient pulse; sometimes it does not. Sometimes it switches back when the transient 

pulse ends; other times it does not. Sometimes it begins in an unswitched state, because 

it had not switched back on the previous pulse. Even when the sample does switch, the 

time it takes to switch may be widely varied from one event to the next. This trial shows 

how important thermal fluctuations can be when the sample is in a highly metastable 

situation. If we average these runs, and the associated spatial images, we see what would 

theoretically be seen in a TR-SKEM experiment, if  thermal fluctuation is the only source 

of non-repetitive motion. An average o f these runs is shown in Fig. 6.3.

1.0

0.5

Jj 0.0
ra
N

'%
c -0.5
CD

■ 1.0

0 5 10 15 20

Time (ns)
Figure 6.3 The 13 runs in the previous figure that started from an unswitched initial 
state. The average magnetization profile is the solid line. Dotted lines show extreme 
cases o f a switching and non-switching run. Inset is three pictures showing average 
spatial images. Features are not as sharp due to stochastic averaging. This causes an 
apparent drop in spatial resolution.
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Thermal Fluctuation run

2

1

0

■1
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Figure 6.4 Reversal in a 1 pm  x 200 nm  sample with thermal fluctuations. Symmetry is broken, but there 
is still evidence o f  a stripelike instability and incoherent rotation.
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Thermal Fluctuation run
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0 10000 20000

time (ps)

Front reversal

Back

-1 +1
Figure 6.5 Reversal in a 1 pm  x 200 nm  sample with thermal fluctuations. Symmetry is broken, but there 
is still evidence o f a stripelike instability and incoherent rotation. In this case, the back reversal nucleation 
is significantly delayed.

20x5 |im 2
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Thermal fluctuations serve to increase the switching time of a stochastic average 

over that o f a single event. They serve to reduce the change in magnetization observed, if  

the sample remains unswitched on occasion. They cause an apparent reduction in spatial 

resolution in spatial images because what is imaged is an average o f several different 

reversals.

In order to get an idea o f what variation may occur in different reversals where 

thermal fluctuations dominate, a couple o f these thermal runs are presented. In Fig. 6.4, 

one reversal is shown. In this reversal, the sample switches and switches back reasonably 

quickly. This reversal is less symmetric than those presented before. The domain on the 

right grows faster than the domain on the left in this case. In this run, thermal 

fluctuations may be evident, although there is still evidence of a dynamic domain 

reversal.

In Fig. 6.5, another run with thermal fluctuations is shown. The major difference 

between these reversals is that the back reversal is much slower to nucleate. It is only 

beginning to switch, at the time when the previous switch was completed.

These examples show that in certain circumstances, thermal fluctuations can make a 

huge difference in the magnetization reversal. In these cases, stroboscopic experiments 

will not be particularly fruitful. Stroboscopic experiments work best in the repetitive, 

deterministic reversals where thermal fluctuations are smaller. These are the cases where 

the coercivity o f the sample is exceeded significantly by the driving magnetic field.

6.4 Prospects for a “10x2” Thermal Fluctuation run

All runs with thermal fluctuations shown in this thesis are on samples much smaller 

than the “10x2” sample which has been shown in much o f this thesis. This is because, at 

this point, it is not possible for one run on a 10 x 2 pm sample to conclude in any 

reasonable amount o f time. To gather any information about the effect o f thermal 

fluctuations on a sample, many runs are needed to determine an average effect. The runs 

on a 1 pm x 200 nm sample took approximately three days each to run. They had 64 x 16 

cells. In order to scale up to 512 xl28  cells, an increase by 64 times the total number of 

cells in the simulation, keeping cells the same size, one would expect the run to take 512
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(!) times as long. This is likely an underestimate because returning to the cell size used in 

the previous “10x2” simulations would mean there would be larger cells. Increasing cell 

size may lead to the simulation departing from a physically meaningful situation. If this 

is not a problem increasing cell size will lead to a decrease is the possible time steps that 

can be taken throughout the simulation because the random thermal fluctuations in each 

cell will be larger due to its increasing size. This problem may be avoidable by running a 

simulation in a situation where other terms (such as Zeeman energy) drive the dynamics. 

There is little point to this because one would be studying thermal fluctuations in a region 

where thermal fluctuations are often negligible. In order to have meaningful 

experimental comparison with thermal fluctuation micromagnetic simulation, it is 

necessary to have smaller samples (on the order o f 1 pm x 200 nm). This leads to a loss 

of resolution in TR-SKEM experiments, so this remains an unresolved problem.

6.5 Summary of the Chapter

In this chapter, the theory of thermal fluctuations is introduced. After discussing 

stochastic integrals, a Fokker-Planck equation is introduced, which leads to a variance in 

the distribution o f thermal fluctuations that can be incorporated into simulation. Initial 

tests are done to see that this code corresponds with the Arrhenius-Neel law. Runs are 

done with a smaller sample than those used in experiment to understand the effect of 

thermal fluctuation upon magnetization reversal. Runs with a larger sample cannot be 

done at this point, as they would take too long to run. A discussion o f why this is and 

how long such a run might take concludes this chapter.
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7. Summary and Future Prospects

7.1 Conclusion of this work

In this thesis, some o f the initial work using a time-resolved scanning Kerr effect 

microscopy (TR-SKEM) system is presented. Data in both ferromagnetic resonance and 

magnetization reversal experiments are presented. Micromagnetic simulation results are 

compared to these experiments, showing very good agreement. This has allowed for a 

considerable understanding o f micromagnetic dynamics processes in the time domain.

In chapter one, the background theory required to understand this thesis is introduced. 

The context surrounding this work in light o f historical developments and contemporary 

work is discussed.

Chapter two outlines the experimental technique o f TR-SKEM. Combining the sub­

micrometer resolution o f scanning optical microscopy and the picosecond temporal 

resolution of ultrafast laser optics, this technique is able to provide much information 

about micromagnetic dynamics that has previously been too fast to image.

Chapter three outlines the micromagnetic simulation details. It explains the technique 

of solving the Landau-Lifshitz-Gilbert equation with a finite element simulation and the 

numerical issues surrounding it. It gives an overview o f the micromagnetic simulation 

code used in this thesis. It gives a broader context o f micromagnetic simulations, 

introducing other techniques used to simulate similar magnetic dynamic problems. 

Finally, it explains the standard problem run to prove that our code is correct with 

complete simulation data presentation.

Chapter four outlines the ferromagnetic resonance problem, a low angle 

micromagnetic dynamic excitation, and presents TR-SKEM data. Simulations o f this 

data are provided showing good agreement, with a discussion o f the issues surrounding 

these simulations.

Chapter five outlines the magnetization reversal problem, a high angle micromagnetic 

dynamic excitation, and presents TR-SKEM data. Various methods o f reversal are 

observed. This is followed with simulation of these results. Further simulation of
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magnetic reversal problems shows that possible dynamic behaviour is very rich. Large 

changes in reversal can be observed by making small changes to the sample or its set-up.

Chapter six discusses the problem of thermal fluctuation o f the magnetization vector. 

It addresses how this problem can be tackled in simulation. Runs o f simulated reversals 

with thermal fluctuations on small samples are provided to give an idea o f what effect 

they can have. A discussion is presented o f why simulations with thermal fluctuations of 

the larger samples shown earlier in the thesis is not possible. It is possible to get an idea 

of what effect thermal fluctuations have in experimental data, and many o f these effects 

are seen.

This work shows that TR-SKEM magnetization dynamics experiments can be 

understood with a time domain LLG simulation. Good agreement can be obtained in 

both low angle ferromagnetic resonance excitations and in higher angle magnetization 

reversal experiments. The magnetization reversal experiments are the more complex 

problem and lead to hints o f where this comparison may break down. This is addressed 

partially by studying thermal fluctuation of the magnetization vector.

The most significant point to this work is the beginning o f a convergence between 

experimental and simulated micromagnetic dynamics. More work needs to be done to 

come to a full convergence, but this process has begun. This process will lead to a much 

better understanding o f micromagnetics.

7.2 Future Work

Future possibilities to extend this research include the following. The technique of 

TR-SKEM can be advanced; other microscopy techniques can be time resolved to give 

better spatial resolution; other problems can be looked at experimentally; other problems 

can be simulated, and the micromagnetic simulation code can be advanced. The strategy 

of using simulation in tandem with experiment to understand the problem is a good one.

Advances to the TR-SKEM technique would include increasing spatial resolution by 

using near field optics. Oil immersion and solid immersion lenses 88 are two relatively 

easy additions to increase spatial resolution. Another method is to decrease the 

wavelength of the light by frequency doubling the laser, although this makes optics a
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problem, as most standard optics are not transparent in the ultraviolet. Using a coated 

fibre, as in a near field optical microscope 89 to increase spatial resolution is probably not 

possible since it will significantly increase the time required to gather a signal. Detection 

schemes can be improved, in part by using photomultiplier tubes, as it will increase 

sensitivity and allow for a better range o f frequency o f light that can be used. Another 

issue o f concern is reducing the number of events that have to be averaged to build up a 

stroboscopic signal. This will limit the effect o f stochastic processes in individual images 

and allow for a better understanding of them. Stroboscopic noise imaging 90 is one step 

along that direction.

Other microscopy techniques can be time resolved leading to the possibility of 

observing magnetization dynamics in other situations. These include ultrafast, 

stroboscopic x-ray techniques 91 which allow for magnetic detection using circular 

dichroism 92 and photoemission electron microscopy.93 Using electrons for detection, 

one can use stroboscopic electron beam tomography,94 ballistic electron magnetic 

microscopy,42 scanning electron microscopy with polarization analysis 95 and spin- 

polarized scanning tunneling microscopy.96

New problems exist that can be looked at in experiment. Magnetic reversals with 

patterned defects, varying magnetic field rise times, and canting of the reversal magnetic 

field with respect to the DC magnetic field can be explored. Local sample excitation 

using, for example, a magnetic recording head to launch spin waves can be done. This 

work can be expanded to use other materials, as long as coercive fields can be overcome 

to cause switching. Experimentally, more industrially relevant structures can be looked 

at including magnetic multilayers, Hall cross devices and magnetic recording heads.97

In simulation, many o f these above problems can also be looked into. As well, it will 

be fruitful to continue to speed up the micromagnetics code. It still does not scale well as 

more processors are added. It may be fruitful to try using an adaptive cell size, so that 

only regions o f highly changing magnetization use small cells, but this requires 

completely changing the demagnetizing field calculation method. In order to improve the 

comparison between simulation and experiment, smaller samples are needed in order to 

allow more complex simulations that take into account effects such as polycrystallinity 

and thermal fluctuations. However, spatial resolution needs to be improved to handle this
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in experiment. Thus a tandem approach o f improving the experimental apparatus along 

with the simulation is needed. A further tandem effort can be carried out in the spin wave 

domain. It is probably going to be a harder effort to get the higher frequency 

spatiotemporal features imaged and simulated. This work suceeded with the larger 

features. Ideally, there will come a time when this comparison can definitively show a 

breakdown o f the LLG theory and provide insight into what physics is needed beyond it. 

This will lead to a definitive test o f the damping function in micromagnetic dynamics. 

Micromagnetics will grow beyond its existing phenomenological framework. Exactly 

how to go beyond LLG in mesoscale magnetic systems is a hot topic o f interest in both 

industry and academia today.
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Appendix A: Two Dimensional Micromagnetic Simulation Code

This first appendix contains an example o f the micromagnetic code used for two 
dimensional simulations used in this thesis. This code is meant to be modified by the 
user, so take this only as an example of sample size, magnetic fields it is in etc.

In order to run simple simulations, simply modify the number o f cells and filenames 
in global2d.inc, the time of integration (tl, t2 and dxsav (frequency program saves)) in 
sim2d and the magnetic field asa function of time in the hfun routine in init.

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
C M A G N E T I C  D Y N A M I C S  S I M U L A T O R  2 D
C
c Version 4.0 (January 30, 2002)
c
c Global2d.inc
c
c Greg Ballentine
c
c University of Alberta, Edmonton, Alberta, Canada
c
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c Global definitions of parameters. Globalization is achieved by 
c including this file in every subroutine and function. Be aware: 
c this method does not allow for any communication between units, 
c unless variables are placed in COMMON declaration, 
c
c Values of global parameters can be changed to define a new problem 
c This is merely an example.

implicit none
integer*4 nxmax,nymax,Nmax,nx2,ny2, kmax 
real*8 sizx,sizy,thick,un,Pi,dux,duy,duz,d2x,d2y,d2z 

! Working array size

parameter(kmax=1000) 
parameter(nxmax=32,nymax=64) 
parameter(nx2=2*nxmax,ny2=2*nymax) 
parameter(Nmax=2*nxmax*nymax)

! Dimensions of the rectangular grid in nm.
parameter(sizx=200.dO, sizy=400.d0, thick=6.25)

! un is a length unit in nm (=sqrt(2*A/M*2), where A is an exchange 
! constant and M is magnetization) assumes A =1.05 *10 -6 erg/cm 
! and 4 Pi M = 10.8 kGauss

parameter(un=16.85043807696d0,Pi=3.14159265358979324d0)

! Relative size of the cell
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parameter(dux=sizx/nxmax/un,duy=sizy/nymax/un,duz=thick/un) 
parameter(d2x=l/(dux*dux), d2y=l/(duy*duy), d2z=l/(duz*duz))

! Masking array: defines shape of the sample. See ishape.f 
integer*l mask(-2:2,0 :nxmax+l,0 :nymax+l) 
integer*1 maskp(-2:2,-1:nxmax,-1:nymax) 
common /maskl/mask 
equivalence (mask,maskp)

! damping constant. Defined this way it is possible to have it vary 
! with time

real*8 alpha
common /param/ alpha

! filenames for input and output of data 
Character*32 datini 

c ! ini file: input for 4, output for 0-3 
CHARACTER* (*) dat3d 

c ! records progress in the calculation 
CHARACTER*32 datlast 

c ! last calculated state, can be used later as ini 
CHARACTER * 3 2 datint

parameter(datini="data_last.ini") 
parameter(dat3d="data_3d.fmr") 
parameter(datint="400x200ini") 
parameter(datlast="data_last400x200.ini")

c ! to have program restart properly when queue restarts need 
c ! datini = datlast

c
c
c Version 4.0 (January 30, 2 0 02)
c
c Sim2d.f
c
c Greg Ballentine
c
c University of Alberta, Edmonton, Alberta, Canada
c
Qicicic'k'k'kif'kieie'ie'k'kieitie'k'kicieifieie'kit'k'kirieieitieitif'k'kie'kieieieit'kieie'k'k'kic'k'kieie'kitieieie'k'kie'k'kicie'kir'k

PROGRAM sim2d
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c Program traces the dynamical development of magnetization process 
c in arbitrarily shaped sample with space- and time-dependent external 
c field. The main program is a customizable driver, the code below is 
c just an example.

INCLUDE 1global2d.inc1
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c Paramaters & procedures for timing 
CHARACTER*24 the_time 
REAL*4 tarr(2),ttot,ETIME

c Parameters for RKSUITE 
integer cstep 
common /cstep/ cstep
INTEGER*4 method,lenwrk,total,cost,stepok 
PARAMETER(1enwrk=10 *Nmax)
CHARACTER*1 task
LOGICAL errass, message, ex
REAL*8 work(lenwrk),thres(Nmax),wast,hnext
REAL*8 eps,hi
external sigterm, sigusrl, sigusr2

REAL * 8 t p (2,nxmax,nymax) 
c ! stores angles of magnetization distribution

REAL*8 rx,ry 
c ! ellipse size

REAL*8 tl,t2 
c ! range of integration

c Saving arrays and variables 
INTEGER*4 kount,i,j
REAL*8 x m (0:kmax),ym(0:kmax),zm(0:kmax),t (0:kmax),dxsav 
COMMON /PATH/kount,dxsav,xm,ym,zm,t

call randinit ! initialize random seed variable 

cstep=0

c RKSUITE parameter initialization (see RKSUITE documentation) 
eps=0.0002 

c ! relative accuracy 
hl=0.0

c ! guess for initial step (0 - auto) 
method=l

c ! method of Runge-Kutta integration 
task='u ' 

c ! integration procedure 
errass=.false. 
message=.true.
DO j=l,Nmax 

c ! absolute accuracy 
thres(j)=0.01 

END DO

! Set signal handler to catch soft kill signal (SIGUSR2,
! signal number 15,16 and 17) Restart signals that may be
! used on aurora
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call signal(15, sigterm, -1) 
call signal(16, sigusrl, -1) 
call signal(17, sigusr2, -1)

c Gilbert damping constant definition - defined here to 
c escape BLOCK DATA and still keep the possibility to 
c change it during calculations 

alpha=0.008

c 0.8 dimensionless time steps is 52 ps

dxsav=0.8

c ! period of savings 
tl=0.0

c ! range of integration 
t2 = 50.0

c Ellipsoid definition. rx*ry*rz<l -> rectangular prism 
C 4000 nm divided by units to make it dimensionless 
!rx=237.38255 
!ry=237.38255

10 FORMAT(a)

c Don't want program to be interactive when running a batch job 
c so hardwire in the correct way to find initial state

1000 i=4

c WRITE (* ,* ) 'How t o  f i n d  i n i t i a l s t a t e ? 1
c WRITE (* ,* ) 0 - c a l c u l a t e f ro m x - u n i f o r m
c WRITE(* , *) 1 - c a l c u l a t e f ro m y - u n i f o r m
c WRITE(* ,* ) 2 - c a l c u l a t e f ro m z - u n i f o r m
c w r i t e  (* ,* ) 3 - c a l c u l a t e f ro m ra n d o m '
c WRITE (* , *) 4 - r e a d  f ro m f i l e 1
c READ ( * ,*) i

c Calls to timing procedures 
CALL FDATE(the_time) 
write(*,*)the_time 
ttot=ETIME(tarr)

CALL initdem
c initialization of demagnetizing field calculation

IF (i .eq. 4) THEN 
c Information on shape and initial condition are read from file
c this can be used to run a program over several days
c if the file does not exist it starts from i=l.
c if file does exits it reads the state that it got to and
c the time and begins from there

c most commonly ran in this branch. If a file exists it uses 
c that file for an initial state. If not it calculates from
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c for a rectangle (if shape is active) 
c a file to define a mask (if abmask is active) 
c or it reads a mask from an existing binary file

inquire(file=datini, exist=ex) 
if (ex .eqv. .TRUE.) then 
OPEN(10,FILE=datini,F0RM=1 unformatted')
READ(10)mask,tp,tl,kount 
CLOSE(10)

else
CALL shape(rx,ry)
!call abmask
!OPEN(10,FILE='mask.bin1,FORM='unformatted') 
iread (10) mask 
!close(10)

CALL iniuni(tp,l) 
end if

c Perform integration
CALL SETUP(Nmax,tl,tp,t2,eps,thres,method, task, 

& errass,hl,work,lenwrk,message)
CALL ODEINT(tp,tl,t2,work)

else if (i.eq.3) then 
OPEN(1,FILE=datint)
WRITE(1,*)
CLOSE (1)

c Calculation from initial random distribution 
call shape(rx,ry)

! define shape
call inirand(tp)

! set-up random distribution

c Perform integration
CALL SETUP(Nmax,tl,tp,t2,eps,thres,method,task, 

& errass,hi,work,lenwrk,message)

CALL ODEINT(tp,tl,t2,work) 
c Save final condition as ini file

OPEN(1,FILE=datini,F0RM='unformatted')
WRITE(1)mask,tp 
CLOSE(1)

ELSE IF (i .eq. O.OR.i .eq. l.OR.i .eq. 2) THEN

c Calculation from initial uniform distribution 
OPEN(1,FILE=datint)

WRITE(1,*)
CLOSE (1)

CALL shape(rx,ry)
Icall abmask

CALL iniuni(tp.i) 
c Perform integration
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CALL SETUP(Nmax,tl,tp,t2,eps,thres,method,task, 
& errass,hl,work,lenwrk,message)

CALL ODEINT(tp,tl,t2,work) 
c Save final condition as ini file

OPEN(1,FILE=datini,FORM='unformatted')
WRITE(1)mask,tp 
CLOSE(1)
ELSE 

GO TO 1000 
END IF
CALL FDATE(the_time)
WRITE(*,*)the_time
write(*,*)'Execution time: ', ETIME(tarr),1 sec1
CALL STAT1(total,cost,wast,stepok,hnext)
WRITE(*,*)total,cost,stepok 
WRITE(*,*)wast,hnext

END

subroutine randinit 

c initializes random seeds
c 4 values must be odd numbers between 0 and 4095 

integer iseed(4) 
common /rands/ iseed

iseed(l) = 3123 
iseed(2) = 745 
iseed(3) = 1061 
iseed(4) = 85

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

M A G N E T I C  D Y N A M I C S  S I M U L A T O R  2 D

Version 4.0 (January 30, 2002)

Init2dbc.f

Greg Ballentine 
University of Alberta, Edmonton, Alberta, Canada

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE hfun(t,i,j ,hx,hy,hz) 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Definition of space- and time-dependences of the external magnetic 
field. This is supposed to be custom-defined procedure, the code 
below is just an example. It reflects the situation for 300 nm thick, 
40 micrometers wide transmission line. The sample is expected to be 
very close to the line (spacer << 300 nm) and centered.

The field is normalized to magnetization M (not 4*PI*M !!!), while 
field gradient to M/un, where un=SQRT(2*A/Ma2); A - exchange const.
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! This can be modified for other field geometries
J  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INCLUDE 'global2d.inc'

REAL*8 t ,hx,hy,hz,theta 
INTEGER*4 i,j
REAL*8 mag,hbias,himp,grad_abs,grad,delta_t,tjpulse 

! Magnetization in Oe
PARAMETER(mag=860)

! Biasing y-field
PARAMETER(hbias=-3 00.0/mag)

! Absolute gradient in Oe/nm
PARAMETER(grad_abs=0.000)

! Rise time and y-amplitude and z-gradient of the pulse field 
PARAMETER(delta_t=8.0,himp=1000.dO/mag,theta=0.0*Pi/l80) 
PARAMETER(grad=grad_abs*un/mag,t_j?ulse=28.0) 
hx=0

!Assumed 0 x-component 
! hx=0

IF (t .le. 0.dO .or.t .ge. 167.71) THEN 
hy=hbias 
hx=0 
hz = 0 

RETURN

ELSE IF (t -It. delta_t) THEN
hy = (hbias+himp*t/delta_t)*cos(theta)
hx = (hbias+himp*t/delta_t)*sin(theta)
hz=0
RETURN

ELSE IF (t .gt. 151.71 .and.t .It. 167.71 ) THEN
hy=(hbias+(1.0-(t-151.71)/16.d0)*himp)*cos(theta) 
hx=(hbias+(1.0-(t-151.71)/16.d0)*himp)*sin(theta)

! hz has a gradient along y that 
hz = 0

! Assumed non-zero x-component 
! hx=0.1*hy

RETURN

ELSE
! During the pulse

hy=(hbias+himp)*cos(theta) 
hx=(hbias+himp)*sin(theta) 
hz=0.0

! Assumed non-zero x-component 
! hx=0.1*hy

RETURN 
END IF 

END

SUBROUTINE shape(rx,ry)
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

! Procedure prepares a mask defining the shape of
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! the sample
! - interior: mask(0,i,j)=1
! - exterior: mask(0,i,j)=0

! Other components are used for data branching in 
! exchange energy calculation 
! - internal sites:
! mask(-1,i,j)=-1 mask(1,i,j)=1 (for x-direction)
! mask(-2,i,j)=-1 mask(2,i,j)=1 (for y-direction)
! - boundary sites: sign changes to maintain 
! proper boundary conditions

! Parameter rx*ry defines the shape:
! <1 - full rectangle nxmax x nymax 
! >=1 - ellipse with axes 2*rx and 2*ry,
! overlapped on the original rectangle

INCLUDE 1global2d.inc'

REAL*8 rx,ry ! ellipse radiuses
INTEGER*4 i,j
REAL*8 xl,yl,rxl,ryl

IF (rx*ry .It. l.dOO) THEN

! Calculation for full rectangle 
DO j =1,nymax 

DO i = 1,nxmax
mask(-2,i,j)=-1.0 
mask(-1,i,j)=-1.0 
mask(0,i ,j)=1.0 
mask(1,i ,j)=1. 0 
mask(2,i,j)=1.0 

END DO 
END DO

ELSE

! Calculation for ellipsoid 
xl=(nxmax+1)/2.

! position of the ellipse center 
yl=(nymax+1)/2. 
rxl=rx-0.5 

! effective radiuses of the ellipse 
ryl=ry-0.5

! Defining an interior 
DO j=l,nymax 

DO i=l,nxmax 
! Checking if the cell belongs to ellipse

IF (((i-xl)/rxl)**2+((j-yl)/ryl)**2 .le. 1.) THEN 
mask(0,i,j)=1.0 

ELSE
mask(0,i,j)=0.0 

END IF 
END DO 

END DO
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! Filling +/- components with boundary detection 
! for rectangle interior 

DO j=2,nymax-l 
DO i=2,nxmax-l

IF (mask(0,i-1,j) .eq. 0.) THEN 
mask(-1,i,j)=0.0 

ELSE
mask(-l,i,j)=-1.0 

END IF

IF (mask(0,i+1,j) .eq. 0.) THEN 
mask(1,i ,j)=0.0 

ELSE
mask(1,i,j)=1.0 

END IF

IF (mask(0,i,j-1) .eq. 0.) THEN 
mask(-2,i,j)=0 . 0 

ELSE
mask(-2,i,j)=-1.0 

END IF

IF (mask(0,i ,j+1) .eq. 0.) THEN 
mask(2,i ,j)=0.0 

ELSE
mask(2,i,j)=1.0 

END IF

END DO 
END DO

! Filling + /- tangential components with boundary 
! detection for rectangle edges 

DO i=2,nxmax-l

IF (mask(0,i-1,1) .eq. 0.) THEN 
mask(-1,i ,1)=0.0 

ELSE
mask(-l,i,l)=-1.0 

END IF

IF (mask(0,i+1,1) .eq. 0.) THEN 
mask(1,i ,1)=0.0 

ELSE
mask(1,i ,1)=1. 0 

END IF

IF (mask(0,i-1,nymax) .eq. 0.) THEN 
mask(-1,i,nymax)=0.0 

ELSE
mask(-1,i,nymax)=-1.0 

END IF

IF (mask(0,i+1,nymax) .eq. 0.) THEN 
mask(1,i ,nymax)=0.0
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ELSE
mask(1,i ,nymax)=1.0 

END IF

END DO

DO j=2,nymax-1

IF (mask(0,1,j-1) .eq. 0.) THEN 
mask(-2,1,j)=0.0 

ELSE
mask(-2,1,j)=-1.0 

END IF

IF (mask(0,1,j +1) .eq. 0.) THEN 
mask(2,1,j)=0.0 

ELSE
mask(2,1,j)=1.0 

END IF

IF (mask(0,nxmax,j-1) .eq. 0.) THEN 
mask(-2,nxmax,j)=0.0 

ELSE
mask(-2,nxmax,j)=-1.0 

END IF

IF (mask(0,nxmax,j+1) .eq. 0.) THEN 
mask(2,nxmax,j)= 0.0 

ELSE
mask(2,nxmax,j)=1.0 

END IF

END DO

END IF

! Calculation common for both: imposing boundary conditions 
! at edges of the rectangular grid - normal component 

DO i=l,nxmax
mask(-2,i,1)=0 . 0 
mask(2,i,nymax)=0.0 

END DO

DO j=l,nymax
mask(-1,1,j)=0.0 
mask(1,nxmax,j)=0.0 

END DO

! Test of cells having magnetization in between 0 and 1

END

SUBROUTINE iniuni(tp,idir)
J  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Procedure fills tp matrix with in-plane uniform 
distribution (idir=0 - x-direction, idir=l - y, 
idir=2 - z ) .
Grid sites outside the sample borders are filled 
formally with z orientation. “

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INCLUDE 'global2d.inc'

REAL * 8 t p (2,nxmax,nymax)
INTEGER*4 idir 
INTEGER*4 i,j

IF (idir .eq. 2) THEN 
DO j =1,nymax 

DO i=l,nxmax 
t p (1,i,j)=0.do 
t p (2,i,j)=0.dO 

END DO 
END DO

ELSE
DO j=l,nymax 

DO i=l,nxmax
Cells outside the sample mask(0,*)=0 has added a small theta 
deviation. It is exclusively to help map rendering with 
Mathematica

if (mask(0,i,j) .eq. 0.0) then 
t p (1,i,j)=0 . 0 

else 
t p (1,i,j)=-Pi/2 
t p (2,i,j)=idir*Pi/2 

end if 
END DO 

END DO 
END IF

END

SUBROUTINE inirand(tp) 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Procedure fills tp matrix with xy-plane random 
distribution.
Grid sites outside a sample borders are filled 
formally with perpendicular orientation. 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INCLUDE 1global2d.inc'

REAL * 8 t p (2,nxmax,nymax)
INTEGER*4 i,j 
REAL*8 test!,DRAND

test=DRAND(100)
DO j=l,nymax 

DO i=l,nxmax
t p (1,i,j)=mask(0,i,j)*Pi/2+(1-mask(0,i,j))*0.0001 

CALL DRAND(0)
t p (2,i,j)=DRAND(0)*2 *Pi *mask(0,i,j)
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E N D  DO
E N D  DO

END

SUBROUTINE initdem
I'k-k'k'k'kiritit-kiriririeif-kieieir'kie'kieififkit'k'kieicitif'k'kieicie-kieie'k'kie'kicieieieie'k'kic'kieie'kif'kifie'k'k'k'kif'k'kie

! Initializes FFTW and calculates Fourier transforms of demagnetizing 
! coefficients matrices. It should be done only once per program 
! execution.
! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

INCLUDE 'global2d.inc'

INTEGER*4 i,j ,Nnorm 
PARAMETER (Nnorm=2*Nmax)

REAL*8 dmxx,dmyy,dmzz,dmxy ! demagnetization functions (see 
form_free.f)

! demagnetization matrices
REAL*8 kxx(0:nx2+l,0 :ny2-l)
REAL*8 kyy(0:nx2+l,0 :ny2-l)
REAL*8 kzz(0:nx2+l,0 :ny2-l)
REAL*8 kxy(0:nx2+l,0:ny2-1)
REAL*8 table(((15+nx2)+2*(ny2+15)))
REAL*8 tab2(((15+nx2)+2*(ny2+15)))
REAL*8 work(nx2+4*ny2)
COMMON /dcoef/kxx,kyy,kzz,kxy,table,tab2,work

! Demagnetization matrices are filled with the respective values 
! of the demagnetizing coefficients.

DO j=0,nymax-1 
DO i=0,nxmax-1

kxx(i,j)=dmxx(i,j ,0,dux,duy,duz) 
kyy(i,j)=dmyy(i,j ,0,dux,duy,duz) 
kzz(i,j)=dmzz(i,j ,0,dux,duy,duz) 
kxy(i,j)=dmxy(i,j,0,dux,duy,duz)

END DO
END DO

DO j=0,nymax-1
DO i=nxmax+l,2*nxmax-l

kxx(i,j)=dmxx(i-2*nxmax,j ,0,dux,duy,duz) 
kyy (i, j ) =dmyy (i - 2 *nxmax, j , 0, dux, duy, duz) 
kzz(i,j)=dmzz(i-2*nxmax,j,0,dux,duy,duz) 
kxy(i,j)=dmxy(i-2 *nxmax,j,0,dux,duy,duz)

END DO
END DO

DO j=nymax+l,2 *nymax-1 
DO i=0,nxmax-1

kxx(i,j)=dmxx(i,j-2*nymax,0,dux,duy,duz) 
kyy(i , j)=dmyy(i,j-2*nymax,0,dux,duy,duz) 
kzz(i,j)=dmzz(i,j-2*nymax,0,dux,duy,duz) 
kxy(i,j)=dmxy(i,j-2*nymax,0,dux,duy,duz)
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END DO
END DO

DO j=nymax+l,2*nymax-l 
DO i=nxmax+l,2*nxmax-1

kxx(i,j)=dmxx(i-2 *nxmax,j-2*nymax,0,dux,duy,duz) 
kyy(i,j)=dmyy(i-2*nxmax,j-2*nymax,0,dux,duy,duz) 
kzz(i,j)=dmzz(i-2*nxmax,j-2*nymax,0,dux,duy,duz) 
kxy(i,j)=dmxy(i-2*nxmax,j-2*nymax,0,dux,duy,duz)

END DO 
END DO

! Middle planes (lines) are padded with 0 to keep 2*n size 
DO i=0,2*nxmax-l 

kxx(i,nymax)=0 
kyy (i,nymax)=0 
kzz(i,nymax)=0 
kxy(i,nymax)=0 

END DO

DO j=0,2*nymax-l 
kxx(nxmax,j)= 0 
kyy(nxmax,j)=0 
kzz(nxmax,j)=0 
kxy(nxmax,j)=0 

END DO

! Transform normization 
DO j=0,ny2-l 

DO i=0,nx2-l
kxx (i, j)=kxx(i,j)/Nnorm 
kyy(i , j)=kyy(i,j)/Nnorm 
kzz(i,j)=kzz(i,j)/Nnorm 
kxy(i,j)=kxy(i,j)/Nnorm 

END DO 
END DO

i FFTW initialization
CALL DZFFT2D(0,nx2,ny2,1.do,kxx,nx2+2,kxx,nxmax+1,table,work,0) 
CALL ZDFFT2D(0,nx2,ny2,1.do,kxx,nx2+2,kxx,nxmax+1,tab2,work,0)

! Conversion to Fourier space
CALL DZFFT2D(1,nx2,ny2,1.do,kxx,nx2+2,kxx,nxmax+1,table,work,0) 
CALL DZFFT2D(1,nx2,ny2,1.dO,kyy,nx2+2,kyy,nxmax+1,table,work,0) 
CALL DZFFT2D(1,nx2,ny2,1.do,kzz,nx2+2,kzz,nxmax+1,table,work,0) 
CALL DZFFT2D(1,nx2,ny2,1.dO,kxy,nx2+2,kxy,nxmax+1,table,work,0)

END
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

! M A G N E T I C  D Y N A M I C S  S I M U L A T O R  2 D

! Version 4.0 (January 30, 2002)

! Rk2d.f
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Greg Ballentine 
University of Alberta, Edmonton, Alberta, Canada

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE ODEINT(y,xl,x2,work) 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Intermediate driver for RKSUITE solver. Integrates system of ODEs 
from xl to x2 with initial condition y, in steps of dxsav.
The stepping procedure do not take into account any physical 
organization of cells.
See RKSUITE documentation for details of UT (or CT) usage. 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
INCLUDE 'global2d.inc'

REAL*8 y(Nmax),xl,x2,work(*)
INTEGER*4 i,flag,j,lenwrk 
REAL*8 X
REAL*8 xmag,ymag,zmag ! functions calculating magnetic moment

! arrays transfering condition of the system between consequtive 
! calls to UT

REAL * 8 d y (Nmax),ymax(Nmax)

! Saving parameters
INTEGER*4 kount
REAL*8 dxsav,xm(0:kmax),ym(0:kmax),zm(0:kmax),t (0:kmax) 
COMMON /PATH/kount,dxsav,xm,ym,zm,t

EXTERNAL derivs

x=xl+dxsav

! Initial condition statistics (kount=0) 
t(kount)=xl*66.118 
xm(kount)=ymag(y)/ (nxmax*nymax) 
ym(kount)=xmag(y)/ (nxmax*nymax) 
zm(kount)=zmag(y)/(-nxmax*nymax)
WRITE(*,300)t(kount),xm(kount),ym(kount),zm(kount)

! This is a general, custom defined saving procedure.
CALL sav(kount,y)

! Stepping loop
DO WHILE (x.It.x2)
CALL UT(derivs,x,xl,y,dy,ymax,work,flag)

! force theta phi to be in appropriate quadrants

do j=l,Nmax
if (y(j) .gt. 2*Pi) then
y(j)=y(j)-2*pi

else if (y(j) .It. -2*Pi) then 
y(j)=y(j)+2*Pi
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end if 
end do

! Recording of intermediate states 
IF(kount .le. kmax-l)THEN 

kount=kount+l 
t(kount)=xl*66.118 
xm(kount)=ymag(y)/ (nxmax*nymax) 
ym(kount)=xmag(y)/ (nxmax*nymax) 
zm(kount)=zmag(y)/(-nxmax*nymax)
WRITE(*,3 0 0 ) t(kount),xm(kount),ym(kount),zm(kount)

! This is a general, custom defined saving procedure.
CALL s a v (kount,y )

! Recording of the full state of the system. Allows to
! continue calculations if the program execution is broken 

OPEN(1,FILE=datlast, F0RM='unformatted')
WRITE(l)mask,y,xl,kount 
CLOSE (1)

END IF 
x=xl+dxsav 
END DO

x=x2

! Final call to UT
CALL UT(derivs,x,xl,y,dy,ymax,work,flag)

! Recording of final state (see details above) 
kount =kount+1 
t(kount)=xl * 66.118 
xm(kount)=ymag(y)/ (nxmax*nymax) 
ym(kount)=xmag(y)/ (nxmax*nymax) 
zm(kount)=zmag(y)/(-nxmax*nymax)
WRITE(*, 3 0 0 ) t(kount),xm(kount),ym(kount),zm(kount)

CALL s a v (kount,y )

OPEN(1,FILE=datlast, F0RM='unformatted')
WRITE(1)mask,y,xl,kount 
CLOSE(1)

21 FORMAT(4(f15.8))
22 FORMAT(4(f15.8))
300 FORMAT(4(' ',fl2.6))

RETURN
END

I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
J
! M A G N E T I C  D Y N A M I C S  S I M U L A T O R  2 D
i
! Version 4.0 (January 30, 2002)
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Deriv2d.f

! Greg Ballentine
! University of Alberta, Edmonton, Alberta, Canada
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE derivs(x,tp,dtp) 
! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
! Procedure calculates theta- and phi- components
! of the effective magnetic field and finds
! respective time derivatives dtp(l,i,j,k) and dtp(2,i,j,k)
! Attention: for time-dependent field its components 
! will have to be given as functions of t.
J * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INCLUDE 1global2d.inc'

REAL*8 x ! independent variable (time)
REAL * 8 t p (2,nxmax,nymax),dtp(2,nxmax,nymax)
REAL*8 h d (2,nxmax,nymax) ! demagnetizing & external field 

!AUTOMATIC hd

INTEGER*4 i,j
REAL*8 hth,hph ! exchange field; overall effective field

CALL hdem(x,tp,hd) ! demagnetizing and external field calculation 

! Calculation of the effective field

DO j=l,nymax 
DO i=l,nxmax

! Exchange field + sum of external and demagnetizing fields
hth= -((SIN(tp(1,i,j))*COS(tp(1,i+mask(-1,i,j),j)) 

& -COS(tp(1,i,j))*SIN(tp(1,i+mask{-1,i,j),j))
& *COS (tp (2, i, j ) - tp (2, i+mask (-1, i, j ) , j )) )
& + (SIN (tp (1, i, j ) ) *COS (tp (1, i+mask (1, i, j ) , j ) )
& -COS (tp (1, i, j ) ) *SIN (tp (1, i+mask (1, i, j) , j ) )
& *COS(tp(2,i ,j)-tp(2,i+mask(1,i,j),j))))*d2x
& -((SIN(tp(1,i,j))*COS(tp(1,i,j+mask(-2,i,j)))
& -COS(tp (1,i ,j))*SIN(tp(1,i,j+mask(-2,i,j)))
& *COS(tp(2,i,j)-tp(2,i,j+mask(-2,i,j))))
& + (SIN(tp(1,i,j))*COS(tp(1,i,j+mask(2,i,j)))
& -COS(tp(1,i,j))*SIN(tp(1,i,j+mask(2,i,j)))
& *COS(tp(2,i,j)-tp(2,i,j+mask(2,i,j)))))*d2y
& +hd(1,i,j)

hph= - (SIN(tp(1,i+mask(-l,i,j),j))
& *SIN(t p (2,i,j)-t p (2,i+mask(-1,i,j),j))
& +SIN(tp(1,i+mask(1,i,j),j))
& *SIN(tp(2,i,j)-tp(2,i+mask(1,i,j),j)))*d2x
& - (SIN(tp(1,i,j+mask(-2,i,j)))
& *SIN(tp(2,i,j)-tp(2,i,j+mask(-2, i, j)))
& +SIN(tp(1,i,j+mask(2,i,j)))
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& *SIN(tp(2,i,j)-tp(2,i,j+mask(2,i,j))))*d2y
& +hd(2,i,j)

! Calculation of theta- and phi- derivatives
dtp(1,i ,j) = (alpha*hth+hph)*mask(0, i, j) 
if (SIN(tp(1,i,j)) .eq. 0) then 
write(*,*) 'bad coordinate system' 

end if
dtp(2,i,j)=((alpha*hph-hth)/SIN(tp(1,i,j)))*mask(0,i,j) 

END DO 
END DO

END
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

M A G N E T I C  D Y N A M I C S  S I M U L A T O R  2 D  

Version 4.0 (January 30, 2002)

Demfor2d.f

Greg Ballentine 
University of Alberta, Edmonton, Alberta, Canada

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Functions describing demagnetizing tensor components. i,j,k 
define relative position of two cells, while dx,dy,dz define 
their sixe
See: Y.Nakatani, Y.Uesaka, N.Hayashi, "Direct Solution of the 
Landau-Lifshitz-Gilbert equation for micromagnetics",
Jap.J.Appl.Phys., 28 (1989) 2485-507.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

REAL*8 FUNCTION dmxx(i,j,k,dx,dy,dz)

INTEGER*4 i,j,k
REAL*8 dx,dy,dz

dmxx= ATAN((dy*dz*(-0.5 + j)* ( — 0.5 + k))/
& (dx*(-0.5 + i)*SQRT(dx**2*(-0.5 +i)**2 + dy**2*(-0.5 +j)**2 
& dz**2*(-0.5 +k)**2))) - ATAN((dy*dz*(-0.5 +j)*(-0.5 +k) )/
& (dx*(0.5 + i)*SQRT(dx**2*(0.5 +i)**2 + dy**2*(-0.5 +j)**2 +
& dz**2*(-0.5 +k)**2))) - ATAN((dy*dz*(0.5 +j)*(-0.5 +k))/
& (dx*(-0.5 + i)*SQRT(dx**2*(-0.5 +i)**2 + dy**2*(0.5 +j)**2 
& dz**2*(-0.5 + k)**2))) + ATAN((dy* dz *(0.5 +j)*(-0.5 + k))/
& (dx*(0.5 + i)*SQRT(dx**2*(0.5 +i)**2 + dy**2*(0.5 +j)**2 +
& dz**2*(-0.5 +k)**2))) - ATAN((dy*dz*(-0.5 +j)*(0.5 + k))/
& (dx*(-0.5 +i)*SQRT(dx**2*(-0.5 +i)**2 + dy**2*(-0.5 +j)**2 
& dz**2*(0.5 + k)**2))) + ATAN((dy*dz*(-0.5 +j)* (0 . 5 +k) )/
& (dx*(0.5 +i)*SQRT(dx**2*(0.5 +i)**2 + dy**2*(-0.5 +j)**2 +
& dz* *2 *(0.5 + k)**2))) + ATAN((dy*dz*(0.5 + j)*(0.5 +k))/
& (dx*(-0.5 +i)*SQRT(dx**2*(-0.5 +i)**2 + dy**2*(0.5 +j)**2 +
& dz**2*(0.5 + k)**2))) - ATAN((dy*dz*(0.5 + j)*(0.5 + k) )/
& (dx*(0.5 + i)*SQRT(dx**2*(0.5 + i)**2 + dy**2*(0.5 + j)* *2
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Sc dz**2* (0.5 + k) **2) ) ) 
END

REAL*8 FUNCTION dmyy(i,j ,k,dx,dy,dz)

INTEGER*4 i,j,k 
REAL*8 dx,dy,dz

dmyy= ATAN((dx*dz*(-0.5 + i)*(-0.5 + k))/
Sc (dy* (-0.5 +j) *SQRT(dx**2* (-0.5 + i) **2 + dy**2*(-0.5 +j)**2 +
& dz**2*(-0.5 + k)**2))) - ATAN((dx*dz*(0.5 + i)*(-0.5 + k))/
Sc (dy* (-0.5 + j ) *SQRT (dx**2 * (0.5 + i) **2 + dy**2*(-0.5 +j)**2 +
Sc dz**2* (-0.5 + k) **2) ) ) - ATAN ( (dx*dz* (-0.5 + i)*(-0.5 + k) ) /
Sc (dy* (0.5 + j) *SQRT(dx**2* (-0.5 + i) **2 + dy**2*(0.5 + j)**2 +
Sc dz**2* (-0.5 + k) **2) ) ) + ATAN ( (dx*dz* (0.5 + i)*(-0.5 + k) ) /
Sc (dy* (0.5 + j ) *SQRT (dx**2* (0.5 + i) **2 + dy**2*(0.5 + j)**2 +
Sc dz**2* (-0.5 + k) **2) ) ) - ATAN ( (dx*dz* (-0.5 + i)*(0.5 + k) ) /
Sc (dy* (-0.5 + j ) *SQRT(dx**2* (-0 .5 + i) **2 + dy**2*(-0.5 +j)**2 + 
& dz**2*(0.5 + k)**2))) + ATAN((dx*dz*(0.5 + i)*(0.5 + k))/
Sc (dy* (-0.5 + j) *SQRT(dx**2* (0.5 + i)**2 + dy**2*(-0.5 + j)**2 + 
Sc dz**2* (0.5 + k) **2) ) ) + ATAN ( (dx*dz* (-0.5 + i)*(0.5 + k) ) /
Sc (dy*(0.5 + j ) *SQRT (dx**2* (-0 . 5 + i) **2 + dy**2*(0.5 + j)**2 +
Sc dz**2* (0.5 + k) **2) ) ) - ATAN ( (dx*dz* (0.5 + i)*(0.5 + k) ) /
Sc (dy* (0.5 + j) *SQRT (dx**2* (0.5 + i) **2 + dy**2*(0.5 + j)**2 +
Sc dz**2* (0 . 5 + k) **2) ) )
END

REAL*8 FUNCTION dmzz(i,j ,k,dx,dy,dz)

INTEGER*4 i,j,k 
REAL* 8 dx,dy,dz

dmzz= ATAN((dx*dy*(-0.5 + i)*(-0.5 + j))/
Sc (dz*SQRT (dx**2* (-0.5 + i) **2 + dy**2*(-0.5 + j)**2 +
Sc dz**2* (-0.5 + k) **2) *(-0.5 + k) ) ) -
Sc ATAN ( (dx*dy* (0.5 + i)*(-0.5 + j))/
Sc (dz*SQRT (dx* *2 * (0.5 + i) **2 + dy**2*(-0.5 + j)**2 +
Sc dz**2* (-0.5 + k) **2) * ( -0 . 5 + k) ) ) -
Sc ATAN ( (dx*dy* (-0.5 + i)*(0.5 + j))/
Sc (dz*SQRT(dx**2* (-0.5 + i) **2 + dy**2*(0.5 + j)**2 +
Sc dz**2 * (-0.5 + k)**2)*(-0.5 + k) ) ) +
Sc ATAN ( (dx*dy* (0 . 5 + i)*(0.5 + j))/
& (dz*SQRT(dx**2*(0.5 + i)**2 + dy**2*(0.5 + j)**2 +
Sc dz**2*(-0.5 + k)**2)*(-0.5 + k) ) ) -
Sc ATAN ( (dx*dy* (-0.5 + i)*(-0.5 + j))/
Sc (dz* (0.5 + k) *SQRT(dx**2* (-0.5 + i) **2 + dy**2*(-0.5 +j)**2 + 
Sc dz**2* (0.5 + k) **2) ) ) + ATAN ( (dx*dy* (0.5 + i)*(-0.5 + j))/
Sc (dz* (0.5 + k) *SQRT (dx**2* (0.5 + i) **2 + dy**2*(-0.5 + j)**2 +
Sc dz**2* (0 . 5 + k) **2) ) ) + ATAN ( (dx*dy* (-0.5 + i)*(0.5 + j))/
Sc (dz* (0.5 + k) *SQRT(dx**2* (-0.5 + i) **2 + dy**2*(0.5 + j)**2 +
Sc dz**2* (0.5 + k) **2) ) ) - ATAN ( (dx*dy* (0.5 + i)*(0.5 + j))/
Sc (dz* (0.5 + k) *SQRT(dx**2* (0.5 + i) **2 + dy**2*(0.5 + j)**2 +
Sc dz**2* (0.5 + k) **2) ) )
END
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REAL*8 FUNCTION dmxy(i,j,k,dx,dy, dz)

INTEGER*4 i,j,k 
REAL*8 dx,dy,dz

dmxy= -LOG(ABS(SQRT(dx* *2 *(-0.5 + i)**2 + dy**2*(-0.5 + j)**2 +
Sc dz**2*(-0.5 + k)**2) + dz*(-0.5 + k))) +
Sc LOG(ABS(SQRT(dx**2*(0.5 + i)**2 + dy**2* (-0.5 + j)**2 +
Sc dz**2 * (-0.5 + k)**2) + dz*(-0.5 + k))) +
Sc LOG(ABS(SQRT(dx**2*(-0.5 + i)**2 + dy**2*(0.5 + j)**2 +
Sc dz**2*(-0.5 + k)**2) + dz*(-0.5 + k))) -
Sc LOG(ABS(SQRT(dx**2*(0.5 + i)**2 + dy**2*(0.5 + j)**2 +
Sc dz**2* (-0.5 + k)**2) + dz*(-0.5 + k))) + LOG (ABS (dz* (0.5 + k) +
Sc SQRT(dx**2*(-0.5 + i)**2 + dy**2*(-0.5 + j)**2 +
Sc dz**2* (0.5 + k)**2))) -
Sc LOG(ABS(dz*(0.5 + k) + SQRT(dx**2*(0.5 + i)**2 +
Sc dy* *2 *(-0.5 + j)**2 +
Sc dz**2*(0.5 + k)**2))) - LOG(ABS(dz*(0.5 + k) +
Sc SQRT(dx**2*(-0.5 + i)**2 + dy**2*(0.5 + j)**2 +
Sc dz**2*(0.5 + k)**2))) +
£c LOG(ABS(dz*(0.5 + k) + SQRT(dx**2*(0.5 + i)**2 +
Sc dy* *2 *(0.5 + j)**2 +
Sc dz**2* (0.5 + k)**2)))
END

£*★*********************★★**********★***★*****************★**********
C
C M A G N E T I C  D Y N A M I C S  S I M U L A T O R  2 D
C
c Version 4.0 (January 30, 2002)
c
c anisot2d.f
c
c Greg Ballentine
c University of Alberta, Edmonton, Alberta, Canada
c

c This is the first version to calculate anisotropy fields 
c We assume a uniaxial anisotropy with the easy axis along 
c the y (actually x - we change coordinates later) axis 
c From Wayne Hiebert's data we have Hk=8-10 Oe 
c a value which may change with new deposition conditions, 
c In this routine Hk is normalized by Ms (not 4 Pi Ms) 
c this gives Hk = 8.594366927 Oe

Real*8 Function hanis(i,j,tp) 

INCLUDE 1global2d.inc1

REAL* 8 t p (2,nxmax,nymax),Hk
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integer*4 i,j 
parameter(Hk=0.01)

hanis = Hk * (SIN (tp (1, i, j ) ) *SIN (tp (2, i, j) ) *mask (0, i, j ) ) **2 
& * sign (1, SIN(t p (1,i,j))* SIN(tp (2,i,j)))

end

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

M A G N E T I C  D Y N A M I C S  S I M U L A T O R  2 D  

Version 4.0 (Januray 30, 2002)

Otput2dbig.f 

Greg Ballentine 

University of Alberta, Edmonton, Alberta, Canada 
********************************************************************

REAL*8 FUNCTION xmag(tp) 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Function calculates x-component of the sample 
magnetic moment in arbitrary units 
******************************************************

INCLUDE 'global2d.inc'

REAL * 8 tp (2,nxmax,nymax)
INTEGER*4 i,j

xmag=0
DO j=l,nymax 

DO i=l,nxmax
xmag=xmag+SIN(tp(1,i,j))*COS(tp(2,i,j))*mask(0,i,j)

END DO 
END DO

END

REAL*8 FUNCTION ymag(tp) 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Function calculates y-component of the sample 
magnetic moment in arbitrary units 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INCLUDE 'global2d.inc'

REAL * 8 tp (2, nxmax, nymax)
INTEGER*4 i,j

ymag=0
DO j=l,nymax 

DO i = 1,nxmax
ymag=ymag+SIN(tp(1,i,j))*SIN(tp(2,i,j))*mask(0,i,j) 

END DO
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END DO

END

REAL*8 FUNCTION zmag(tp) 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Function calculates z-component of the sample 
magnetic moment in arbitrary units 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INCLUDE 'global2d.inc1

REAL * 8 tp (2,nxmax,nymax)
INTEGER*4 i,j

zmag=0
DO i=l,nxmax 

DO j =1,nymax
zmag=zmag+COS(tp(1,i,j))*mask(0,i,j)

END DO 
END DO

END

SUBROUTINE s a v (kount,y ) 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Procedure saves a current distribution of Mx, My 
and Mz components in Mathematica input format.
The respective matrices are called tpx[[kount]], 
tpy[[kount]] and tpz[[kount]] and appended to the 
previous results.
Resolution is reduced to 64x*, keeping an original 
aspect ratio.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INCLUDE 'global2d.inc'

INTEGER*4 kount
REAL*8 y (2,nxmax,nymax)
INTEGER*4 i,j ,il,j1,ired,nxnew 
REAL*8 res(0:63,0:63),xml, yml,zml

character*14 itoa

xml(i,j)=SIN(y(1,i ,j))*C0S(y(2,i,j)) 
yml(i,j)=SIN(y(l,i,j))*SIN(y(2,i,j)) 
zml(i,j)=COS(y(1,i,j))

)

OPEN(1,FILE=datint//"."//itoa(kount),form=1 formatted', 
& status=1 unknown')
DO i=nxmax,l,-l

write(1,610)(yml(i,j),j=l,nymax)
END DO
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DO i=nxmax,l,-l 
WRITE(1,610) (xml(i,j),j =1,nymax) 

END DO

DO i=nxmax,1,-1
WRITE(1,610)(-zml(i,j),j=l,nymax) 

EN D  DO

CLOSE (1)

510 FORMAT(1{',63(fl2.6,','),fl2.6,'},')
511 FORMAT('{',63 (fl2.6, ' , ') ,fl2.6, '}};')

512 FORMAT('{',511(fl2.6,','),fl2.6,'},1)
513 FORMAT('{',511(fl2.6, ', '),fl2.6, '}};')

610 FORMAT(1024(f12.6))

END

! itoa -- convert integer to character array (string)

character*14 function itoa(value)
implicit none
integer value
integer number
character*14 string
logical minus

number = value 
minus = .FALSE. 
if (number .It. 0) then 

minus = .TRUE. 
number = -number 

endif
string = char(ichar('01)+mod(number, 10)) 
number = number / 10 
do while (number .ne. 0)

string = char(ichar(10 1)+mod(number, 10))//string 
number = number / 10 

end do
if (minus .eqv. .TRUE.) then

string = char(ichar('-'))//string 
endif

itoa = string
return
end

I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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M A G N E T I C  D Y N A M I C S  S I M U L A T O R  2 D

Version 4.0 (January 30, 2 0 02)

Demag2d.f

Greg Ballentine 
University of Alberta, Edmonton, Alberta, Canada

********************************************************************

SUBROUTINE hdem(x,tp,hd)
i e i c i e ' k ' k ' k ' k i e ' k ' k ' k ' k ' k i r ' k ' k ' k ' k ' k ' k ' k i c ' k ' k ' k ' k ' k i e ' k ' k i e i e i e ' k i e ' k i f k i e i t ' k i c i e ' k ' k ' k ' k i c i e ' k ' k i f ' k ' k ' k ' k ' k ' k ' k i e ' k i e i e ' k ' k ' k i t ' k

Calculates the demagnetizing field.

INCLUDE 1global2d.inc1 

REAL*8 x, hanis
REAL*8 t p (2,0:nxmax-1,0:nymax-1) !Spherical components of M
REAL*8 h d (2,0:nxmax-1,0:nymax-1)

INTEGER*4 i,j ,nmaxc
PARAMETER(nmaxc=2*(nxmax+1)*nymax) ! the transform size

! Forier images of demagnetizing matrices 
COMPLEX *16 kxx(nmaxc)
COMPLEX*16 kyy(nmaxc)
COMPLEX*16 kzz(nmaxc)
COMPLEX *16 kxy(nmaxc)
REAL*8 table(((15+nx2)+2*(ny2+15)))
REAL*8 tab2(((15+nx2)+2*(ny2+15)))
REAL*8 work(nx2+4*ny2)
COMMON /dcoef/kxx,kyy,kzz,kxy,table,tab2,work

! Cartesian components of M
REAL*8 xm(0:nx2+l,0 :ny2-l)
REAL*8 ym(0:nx2+l,0 :ny2-l)
REAL*8 zm(0:nx2+l,0 :ny2-l)

! Fourier images of Mx,My,Mz, as calculated by real->complex transform 
COMPLEX*16 xmc(nmaxc)
COMPLEX*16 ymc(nmaxc)
COMPLEX*16 zmc(nmaxc)

! These matrices are equivalenced to save space 
EQUIVALENCE (xm,xmc),(ym,ymc),(zm,zmc)

!AUTOMATIC xm,ym,zm

REAL*8 hx,hy,hz

! Cartesian components of Hd
REAL*8 xml(0:nx2+l,0 :ny2-l)
REAL*8 yml(0:nx2+l,0 :ny2-l)
REAL*8 zml(0:nx2+l,0 :ny2-l)

! Fourier images of Hx,Hy,Hz, as calculated by real->complex transform 
COMPLEX*16 xmlc(nmaxc)
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COMPLEX*16 ymlc(nmaxc)
COMPLEX*16 zmlc(nmaxc)

! These matrices are equivalenced and automatic to save space 
EQUIVALENCE (xml,xmlc),(yml,ymlc), (zml,zmlc)

!AUTOMATIC xml,yml,zml

! The first octant (quadrant) of Cartesian M components is 
! filled with the respective values. The rest is zero-padded, 

write(*,*) 'hdem'
DO j=0,nymax-1 
DO i=0,nxmax-1

x m (i+nxmax,j +nymax)=0 
ym(i+nxmax,j +nymax)=0 
zm(i +nxmax,j +nymax)= 0

x m (i +nxmax,j)= 0 
ym(i+nxmax,j)=0 
zm(i+nxmax,j)=0

x m (i,j +nymax)=0 
ym(i,j +nymax)=0 
zm(i,j +nymax)=0

xm(i,j)=SIN(tp(1,i,j))*COS(tp(2,i,j))*maskp(0,i, 
ym(i,j)=SIN(tp(1,i,j))*SIN(tp(2,i,j))*maskp(0,i, 
zm (i, j ) =COS (tp (1, i, j ) ) *maskp (0 , i, j )

END DO 
END DO 

write(*,*) 'pre ffts'
! Conversion of M components to Fourier space

CALL DZFFT2D(1,nx2,ny2,1.dO,xm,nx2+2,xmc,nxmax+1,
& table,work,0)

CALL DZFFT2D(1,nx2,ny2,1.dO,ym,nx2+2,ymc,nxmax+1,
& table,work,0)

CALL DZFFT2D(I,nx2,ny2,1.dO,zm,nx2+2,zmc,nxmax+1,
& table,work,0)

write(*,*) 'post ffts1 
Fourier images of M are multipled by demagnetizing 
coefficients transform - this is a convolution in 
the Fourier space, that produces image of Hd field.

DO i=l,nmaxc 
xmlc(i)=kxx(i)*xmc(i) + kxy(i)*ymc(i) 
ymlc(i)=kxy(i)*xmc(i) + kyy(i)*ymc(i) 
zmlc(i)=kzz(i)*zmc(i)

END DO

! Conversion of Hd to real space
CALL ZDFFT2D(-1,nx2,ny2,1.dO,xmlc,nxmax+1,xml,nx2+2,

& tab2,work,0)
CALL ZDFFT2D(-1,nx2,ny2,1.dO,ymlc,nxmax+1,yml,nx2+2,

& tab2,work,0)
CALL ZDFFT2D(-1,nx2,ny2,1.dO,zmlc,nxmax+1,zml,nx2+2,

& tab2,work,0)
! Calculation of spherical components of demagnetizing 
! and external fields.

DO j = 0,nymax-1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



DO i=0,nxmax-1

! external field
CALL hfun (x, i , j , hx, hy, hz)

xml(i,j)=xml(i,j)+hx
yml(i,j)=yml(i,j)+hy+hanis(i,j,tp)
zml(i,j)=zml(i,j)+hz

! Conversion to spheric coordinates
h d (1,i,j)=((xml(i,j)*COS(tp(1,i,j))*COS(tp(2,i,j))+ 

& yml(i,j)*COS(tp(1,i,j))*SIN(tp(2,i,j))-
& zml(i,j)*SIN(tp(1,i,j))))

h d (2,i,j)=(-xml(i,j)*SIN(tp(2,i,j))+
& yml(i, j)*COS(tp (2,i,j)))

END DO 
END DO

END

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

M A G N E T I C  D Y N A M I C S  S I M U L A T O R  2 D

Version 4.0 (January 30, 2002)

Interrupt.f

Greg Ballentine 
University of Alberta, Edmonton, Alberta, Canada

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Signal handler 
subroutine sigtermO

Exit and resubmit program to queue 
stop 99

return
end

subroutine sigusrlO

Exit and resubmit program to queue 
stop 99

return
end

subroutine sigusr2()

Exit and resubmit program to queue 
stop 99
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return
end

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

M A G N E T I C  D Y N A M I C S  S I M U L A T O R  2

Version 4.0 (January 30, 2002)

Hol2Mask.f

Greg Ballentine 
University of Alberta, Edmonton, Alberta, Canada

**************************************************************

Subroutine abmask

Procedure to do an abnormal mask for a sample.

This should be viewed as an example. This makes two one cell 
defects at thirds along the sample long axis

INCLUDE 'global2d.inc'

integer*4 i,j ,bounds

! set boundary conditions hardwired into program 
! bounds=0 is edge BCs bounds =1 is nearest neighbor

bounds=0

do j=l,nymax 
do i = 1,nxmax

mask (0,i,j)=l

end do 
end do

set coordinates of defects in the sample here 
only need to set zeroth element of array 
code will find other elements below

mask(0,16,21)=0 
mask(0,16,43)=0

! Filling +/- components with boundary detection

! for rectangle interior

DO j=2,nymax-1 
DO i=2,nxmax-1
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IF (mask(0,i-1,j) .eq. 0.) THEN 
mask(-1,i,j)=bounds

ELSE 
mask(-1,i,j)=-1

END IF

IF (mask(0,i+1,j) .eq. 0.) THEN 
mask(l,i,j)=-l*bounds 

ELSE 
mask(1,i,j)=1

END IF

IF (mask(0,i,j-1) .eq. 0.) THEN 
mask(-2,i,j)=bounds 

ELSE
mask(-2,i,j)=-1 

END IF

IF (mask(0,i,j +1) .eq. 0.) THEN 
mask(2,i,j)=-l*bounds 

ELSE
mask(2,i,j)=1 

END IF

END DO 
END DO

! Filling +/- tangential components with boundary 
! detection for rectangle edges

DO i=2,nxmax-1

IF (mask(0,i-1,1) .eq. 0.) THEN 
mask(-1,i ,1)=bounds 

ELSE
mask(-1,i,1)=-1 

END IF
IF (mask(0,i+1,1) .eq. 0.) THEN 

mask(1,i,1)=-l*bounds 
ELSE

mask(1,i,1)=1 
END IF

IF (mask(0,i-1,nymax) .eq. 0.) THEN 
mask(-1,i,nymax)=bounds 

ELSE
mask(-1,i,nymax)=-1 

END IF

IF (mask(0,i+1,nymax) .eq. 0.) THEN 
mask(l,i,nymax)=-l*bounds 

ELSE
mask(1,i,nymax)=1 

END IF
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END DO

DO j=2,nymax-1
IF (mask(0,1,j-1) .eq. 0.) THEN 

mask(-2,1,j)=bounds 
ELSE

mask(-2,1,j)=-1 
END IF

IF (mask(0,1,j+1) .eq. 0.) THEN 
mask(2,1,j)=-1*bounds 

ELSE
mask(2,1,j)=1 

END IF

IF (mask(0,nxmax,j-1) .eq. 0.) THEN 
mask(-2,nxmax,j)=bounds 

ELSE
mask(-2,nxmax,j)=-1 

END IF

IF (mask(0,nxmax,j+1) .eq. 0.) THEN 
mask(2,nxmax,j)=-1*bounds 

ELSE
mask(2,nxmax,j)=1 

END IF 
END DO

! Calculation common for both: imposing boundary conditions 
! at edges of the rectangular grid - normal component

DO i=l,nxmax
mask(-2,i,1)=bounds 
mask(2,i,nymax)=-l*bounds 

END DO

DO j=l,nymax
mask(-1,1,j)=bounds 
mask(1,nxmax,j)=-l*bounds 

END DO 
END
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Appendix B: Three Dimensional Micromagnetic Simulation Code

This second appendix contains an example o f the micromagnetic code used for three 
dimensional simulations used in this thesis. This code is meant to be modified by the 
user, so take this only as an example o f sample size, magnetic fields it is in etc.

}********************************************************************
I

! M A G N E T I C  D Y N A M I C S  S I M U L A T O R  3 D
I
! Version 3.0 (February 4, 2002)
i

! Global3d.inc
!
! Greg Ballentine
! University of Alberta, Edmonton, Alberta, Canada
!
i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

I********************************************************************
! Global definitions of parameters. Globalization is achieved by 
! including this file in every subroutine and function. Be aware:
! this method does not allow for any communication between units,
! unless variables are placed in COMMON declaration.

implicit none

integer*4 nxmax,nymax,nzmax,Nmax,nx2,ny2,nz2
real*8 sizx,sizy,thick,un,Pi,dux,duy,duz,d2x,d2y,d2z

! Working array size
parameter(nxmax=128,nymax=128,nzmax=8) 
parameter(nx2=2*nxmax,ny2=2*nymax,nz2=2*nzmax) 
parameter(Nmax=2 *nxmax*nymax*nzmax)

! Dimensions of the rectangular grid in nm.
parameter(sizx=700.dO, sizy=700.d0, thick=25.d0)

! un is a length unit in nm (=sqrt(2*A/Ma2 , where A is an exchange 
! constant and M is magnetization)

parameter(un=16.85 043 807696d0,Pi=3.14159265358979324d0)

! Relative size of the cell
parameter(dux=sizx/nxmax/un,duy=sizy/nymax/un,duz=thick/nzmax/un) 

parameter(d2x=l/(dux*dux), d2y=l/(duy*duy), d2z=l/(duz*duz))

! Masking array: defines shape of the sample. See ishape.f 
integer*1 mask(-3:3,nxmax,nymax,nzmax) 
integer*l maskp(-3:3,0:nxmax-l,0 :nymax-l,0 :nzmax-l) 
common /maskl/mask 
equivalence (mask,maskp)

! damping constant. Defined this way it is possible to have it vary 
! with time
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real*8 alpha
common /param/ alpha

! filenames for input and output of data 
Character*32 datini 

c ! ini file: input for 4, output for 0-3 
CHARACTER* (*) dat3d 

c ! records progress in the calculation 
CHARACTER*32 datlast 

c ! last calculated state, can be used later as ini 
CHARACTER * 3 2 datint

parameter(datini="data_last.ini") 
parameter(dat3d="data_3d.fmr") 
parameter(datint="400x200ini") 
parameter(datlast="data_last400x200.ini")

c ! to have program restart properly when queue restarts need 
c ! datini = datlast
J * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
t
! M A G N E T I C  D Y N A M I C S  S I M U L A T O R  3 D
!
! Version 3.0 (February 4, 2002)
I
! Demag3d.f
!
! Greg Ballentine
! University of Alberta, Edmonton, Alberta, Canada
i
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE initdem
i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

! Initializes FFTW and calculates Fourier transforms of demagnetizing 
! coefficients matrices. It should be done only once per program 
! execution.
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INCLUDE 'global3d.inc'

INTEGER*4 i,j,k,Nnorm 
PARAMETER (Nnorm=4*Nmax)

REAL*8 dmxx,dmyy,dmzz,dmxy,dmxz,dmyz 
! demagnetization functions (see form_free.f)

! demagnetization matrices
REAL*8 kxx(0:nx2 + l,0 :ny2-l,0 :nz2-l)
REAL*8 kyy(0:nx2+l,0 :ny2-l,0 :nz2-l)
REAL*8 kzz(0:nx2 + l,0 :ny2-l,0 :nz2-l)
REAL*8 kxy(0:nx2+l,0 :ny2-l,0 :nz2-l)
REAL*8 kxz(0:nx2+l,0 :ny2-l,0 :nz2-l)
REAL*8 kyz(0:nx2+l,0 :ny2-l,0 :nz2-l)
REAL*8 table ((15+nx2)+2*(15+ny2)+2*(15+nz2))
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REAL*8 tab2 ((15+nx2)+2*(15+ny2)+2*(15+nz2))
REAL*8 work (nx2*ny2*nz2)

COMMON /dcoef/kxx,kyy,kzz,kxy,kxz,kyz,table,tab2,work

! Demagnetization matrices are filled with the respective values 
! of the demagnetizing coefficients.

DO k=0,nzmax-1 
DO j=0,nymax-1 

DO i=0,nxmax-1
kxx (i, j , k) =dmxx (i, j , k, dux, duy, duz) 
kyy(i,j,k)=dmyy(i,j,k,dux,duy,duz) 
kzz(i,j ,k)=dmzz(i,j ,k,dux,duy,duz) 
kxy (i, j , k) =dmxy (i, j , k, dux, duy, duz) 
kxz (i, j , k) =dmxz (i, j , k, dux, duy, duz) 
kyz(i,j ,k)=dmyz(i,j,k ,dux,duy,duz)

END DO 
END DO 

END DO

DO k=0,nzmax-1 
DO j=0,nymax-1

DO i=nxmax+l,2 *nxmax-1
kxx(i,j,k)=dmxx(i-2 *nxmax,j ,k ,dux,duy,duz) 
kyy(i, j ,k)=dmyy(i-2*nxmax,j,k,dux,duy,duz) 
kzz(i,j ,k)=dmzz(i-2*nxmax,j,k,dux,duy, duz) 
kxy(i,j ,k)=dmxy(i-2*nxmax,j,k,dux,duy,duz) 
kxz(i,j ,k)=dmxz(i-2 *nxmax,j ,k ,dux,duy,duz) 
kyz(i,j,k)=dmyz(i-2 *nxmax,j ,k ,dux,duy,duz) 

END DO 
END DO 

END DO

DO k=0,nzmax-1
DO j =nymax+l,2*nymax-1 

DO i=0,nxmax-1
kxx(i,j,k)=dmxx(i,j-2*nymax,k,dux,duy,duz) 
kyy(i,j,k)=dmyy(i,j-2*nymax,k,dux,duy,duz) 
kzz(i, j,k)=dmzz(i,j-2*nymax,k,dux,duy,duz) 
kxy(i,j,k)=dmxy(i,j-2*nymax,k,dux,duy,duz) 
kxz(i,j ,k)=dmxz(i,j-2*nymax,k,dux,duy,duz) 
kyz(i,j,k)=dmyz(i,j-2*nymax,k,dux,duy,duz) 

END DO 
END DO 

END DO

DO k=nzmax+l,2*nzmax-l 
DO j=0,nymax-1 

DO i=0,nxmax-1
kxx (i, j,k)=dmxx(i,j,k-2*nzmax,dux,duy,duz) 
kyy(iij , k)=dmyy(i,j,k-2*nzmax,dux,duy,duz) 
kzz(i,j ,k)=dmzz(i,j,k-2*nzmax,dux,duy,duz) 
kxy(i,j ,k)=dmxy(i,j ,k-2*nzmax,dux,duy, duz) 
kxz(i,j,k)=dmxz(i,j,k-2*nzmax,dux,duy,duz) 
kyz(i,j ,k)=dmyz(i,j ,k~2*nzmax,dux,duy,duz) 

END DO
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END DO 
END DO

DO k=0,nzmax-1
DO j=nymax+l,2*nymax-l 

DO i=nxmax+l,2*nxmax-1
kxx(i,j ,k)=dmxx(i-2 *nxmax,j 
kyy(i,j,k)=dmyy(i-2*nxmax,j 
kzz(i,j ,k)=dmzz(i-2*nxmax,j 
kxy(i,j ,k)=dmxy(i-2 *nxmax,j 
kxz(i,j ,k)=dmxz(i-2*nxmax,j 
kyz(i,j ,k)=dmyz(i-2‘nxmax,j 

END DO 
END DO 

END DO

-2 *nymax,k ,dux,duy,duz) 
-2*nymax,k,dux,duy,duz) 
-2 *nymax,k,dux,duy,duz) 
-2 *nymax,k,dux,duy,duz) 
-2 *nymax, k , dux, duy, duz) 
-2*nymax,k,dux,duy,duz)

DO k=nzmax+1,2‘nzmax-1 
DO j=0,nymax-1

DO i=nxmax+l,2*nxmax-l
kxx(i,j ,k)=dmxx(i-2*nxmax,j,k- 
kyy (i,j ,k)=dmyy(i-2*nxmax,j,k- 
kzz(i,j ,k)=dmzz(i-2*nxmax,j,k- 
kxy(i,j ,k)=dmxy(i-2‘nxmax,j,k- 
kxz(i, j , k)=dmxz(i-2*nxmax,j,k- 
kyz(i,j ,k)=dmyz(i-2*nxmax,j,k- 

END DO 
END DO 

END DO

2*nzmax,dux,duy,duz) 
2*nzmax,dux,duy,duz) 
2*nzmax,dux,duy,duz) 
2 *nzmax,dux,duy,duz) 
2 ‘nzmax, dux, duy, duz) 
2*nzmax,dux,duy,duz)

DO k=nzmax+l,2*nzmax-l 
DO j =nymax+1,2 * nymax-1 

DO i=0,nxmax-1
kxx(i,j ,k)=dmxx(i,j 
kyy(i,j,k)=dmyy(i,j 
kzz(i,j ,k)=dmzz(i,j 
kxy(i,j,k)=dmxy(i,j 
kxz(i,j ,k)=dmxz(i,j 
kyz(i,j ,k)=dmyz(i,j 

END DO 
END DO 

END DO

-2*nymax,k-2*nzmax,dux,duy,duz) 
-2*nymax,k-2*nzmax,dux,duy,duz) 
-2*nymax,k-2*nzmax,dux,duy,duz) 
-2*nymax,k-2*nzmax,dux,duy,duz) 
-2*nymax,k-2*nzmax, dux,duy,duz) 
-2*nymax,k-2‘nzmax,dux,duy,duz)

DO k=nzmax+l,2*nzmax-l 
DO j=nymax+l,2*nymax-l 

DO i=nxmax+1,2* nxmax-1
kxx(i,j ,k)=dmxx(i-2*nxmax,j-2*nymax,k- 

2‘nzmax,dux,duy,duz)
kyy (i,j ,k)=dmyy(i-2*nxmax,j-2*nymax,k- 

2‘nzmax,dux,duy,duz)
kzz(i,j ,k)=dmzz(i-2*nxmax,j-2*nymax,k- 

2‘nzmax,dux,duy,duz)
kxy(i,j,k)=dmxy(i-2*nxmax,j-2*nymax,k- 

2*nzmax,dux,duy,duz)
kxz(i,j ,k)=dmxz(i-2*nxmax,j-2*nymax,k- 

2*nzmax,dux,duy,duz)
kyz(i, j , k)=dmyz(i-2*nxmax,j-2*nymax,k- 

2*nzmax,dux,duy,duz)
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END DO 
END DO 

END DO

! Middle planes (lines) are padded with 0 to keep 2An size 
DO j=0,2*nymax-l 

DO i=0,2*nxmax-l 
kxx(i,j ,nzmax)=0 
kyy(i, j < nzmax)=0 
kzz(i,j ,nzmax)=0 
kxy(i,j ,nzmax)=0 
kxz(i,j,nzmax)=0 
kyz(i,j ,nzmax)=0 

END DO 
END DO

DO k=0,2*nzmax-l 
DO i=0,2*nxmax-l 

kxx(i,nymax,k)=0 
kyy(i,nymax,k)=0 
kzz(i,nymax,k)=0 
kxy(i,nymax,k)=0 
kxz(i,nymax,k )= 0 
kyz(i,nymax,k)=0 

END DO 
END DO

DO k=0,2*nzmax-l 
DO j=0,2*nymax-l 

kxx(nxmax,j,k)=0 
kyy(nxmax,j,k)=0 
kzz(nxmax,j,k)=0 
kxy(nxmax,j,k)=0 
kxz(nxmax,j,k)=0 
kyz(nxmax,j,k)=0 

END DO 
END DO

! Transform normization 
DO k=0,nz2-l 

DO j=0,ny2-l 
DO i=0,nx2-l

kxx(i,j ,k)=kxx(i,j ,k)/Nnorm 
kyy(i,j,k)=kyy(i,j,k)/Nnorm 
kzz(i,j,k)=kzz(i,j,k)/Nnorm 
kxy(i,j ,k)=kxy(i,j ,k)/Nnorm 
kxz(i,j ,k)=kxz(i,j ,k)/Nnorm 
kyz(i,j ,k)=kyz(i,j ,k)/Nnorm 

END DO 
END DO 

END DO

i FFT initialization
CALL DZFFT3D(0,nx2,ny2,nz2,1.dO,kxx,nx2+2,ny2,kxx, 

& nxmax+1,ny2,table,work, 0)
CALL ZDFFT3D(0,nx2,ny2,nz2,1.dO,kxx,nx2+2,ny2,kxx, 

& nxmax+1,ny2,tab2,work, 0)
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! Conversion to Fourier space
CALL DZFFT3D(1,nx2,ny2,nz2,1.dO,kxx,nx2+2,ny2,kxx, 

& nxmax+1,ny2,table,work, 0)
CALL DZFFT3D(1,nx2,ny2,nz2,1.dO,kyy,nx2+2,ny2,kyy, 

& nxmax+1,ny2,table,work,0)
CALL DZFFT3D(1,nx2,ny2,nz2,1.dO,kzz,nx2+2,ny2,kzz, 

Si nxmax+1,ny2 , table, work, 0)
CALL DZFFT3D(1,nx2,ny2,nz2,1.do,kxy,nx2+2,ny2,kxy, 

Sc nxmax+1, ny2 , table, work, 0)
CALL DZFFT3D(1,nx2,ny2,nz2,1.dO,kxz,nx2+2,ny2,kxz, 

Si nxmax+1,ny2, table, work, 0)
CALL DZFFT3D(1,nx2,ny2,nz2,1.dO,kyz,nx2+2,ny2,kyz, 

Si nxmax+1,ny2, table, work, 0)

END

SUBROUTINE hdem(x,tp,hd)
J  A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

! Calculates the demagnetizing field.
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INCLUDE 'global3d.inc'

REAL*8 x
REAL*8 t p (2,0:nxmax-l,0 :nymax-l,0 :nzmax-l) !Spherical 

components of M
REAL*8 hd(2,0 :nxmax-l,0 :nymax-l,0 :nzmax-l)

INTEGER*4 i,j,k,nmaxc
PARAMETER(nmaxc=4*(nxmax+1)*nymax*nzmax) ! the transform size

! Fourier images of demagnetizing matrices 
COMPLEX *16 kxx(nmaxc)
COMPLEX*16 kyy(nmaxc)
COMPLEX*16 kzz(nmaxc)
COMPLEX*16 kxy(nmaxc)
COMPLEX*16 kxz(nmaxc)
COMPLEX*16 kyz(nmaxc)
REAL*8 table ((15+nx2)+2*(15+ny2)+2*(15+nz2))
REAL*8 tab2 ((15+nx2)+2*(15+ny2)+2*(15+nz2))
REAL*8 work (nx2*ny2*nz2)
COMMON /dcoef/kxx,kyy,kzz,kxy,kxz,kyz,table,tab2,work

! Cartesian components of M
REAL*8 xm(0:nx2+l,0 :ny2-l,0 :nz2-l)
REAL*8 ym(0:nx2+l,0 :ny2-l,0 :nz2-l)
REAL* 8 zm(0:nx2 + l,0 :ny2-l,0 :nz2-l)

! Fourier images of Mx,My,Mz, as calculated by real->complex transform 
COMPLEX*16 xmc(nmaxc)
COMPLEX *16 ymc(nmaxc)
COMPLEX*16 zmc(nmaxc)

! These matrices are equivalenced to save space 
! EQUIVALENCE (xm,xmc),(ym,ymc),(zm,zmc)
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! AUTOMATIC xm,ym,zm

REAL*8 hx,hy,hz

! Cartesian components of Hd
REAL*8 xml(0:nx2+l,0 :ny2-l,0 :nz2-l)
REAL*8 y m l (0:nx2+l,0 :ny2-l,0 :nz2-l)
REAL*8 zml(0:nx2+l,0 :ny2-l,0 :nz2-l)

! Fourier images of Hx,Hy,Hz, as calculated by real->complex transform 
COMPLEX*16 xmlc(nmaxc)
COMPLEX*16 ymlc(nmaxc)
COMPLEX*16 zmlc(nmaxc)

! These matrices are equivalenced and automatic to save space 
! EQUIVALENCE (xml,xmlc),(yml,ymlc),(zml,zmlc)
! AUTOMATIC xml,yml,zml

! The first octant (quadrant) of Cartesian M components is 
! filled with the respective values. The rest is zero-padded.

DO k=0,nzmax-l 
DO j=0,nymax-l 

DO i=0,nxmax-l

xm
ym
zm

xm
ym
zm

xm
ym
zm

xm
ym
zm

xm
ym
zm

xm
ym
zm

xm
ym
zm

xm (i, j , k) =SIN (tp

i+nxmax,j +nymax,k+nzmax)=0 
i+nxmax,j+nymax,k+nzmax)=0 
i+nxmax,j +nymax,k+nzmax)=0

i+nxmax,j +nymax,k)=0 
i +nxmax,j +nymax,k)= 0 
i+nxmax,j +nymax,k)=0

i+nxmax,j,k+nzmax)=0 
i+nxmax,j,k+nzmax)=0 
i+nxmax,j,k+nzmax)=0

i,j +nymax,k+nzmax)=0 
i,j +nymax,k+nzmax)=0 
i,j +nymax,k+nzmax)= 0

i+nxmax,j,k)=0 
i+nxmax,j,k)=0 
i+nxmax,j,k)=0

i,j ,k+nzmax)=0 
i,j ,k+nzmax)=0 
i,j,k+nzmax)=0

i ,j +nymax,k)=0 
i,j +nymax,k)=0 
i,j +nymax,k)=0

1,i,j,k))*C0S(tp(2,i,j,k))*maskp(0,i,j,k)

ym(i,j ,k)=SIN(tp 
zm 

END DO 
END DO

1,i,j,k))*SIN(tp(2,i,j,k))*maskp(0,i,j,k) 
i,j,k)=C0S(tp(1,i,j,k))*maskp(0,i,j,k)
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END DO

! Conversion of M components to Fourier space
CALL DZFFT3D(1,nx2,ny2,nz2,1.dO,xm,nx2+2,ny2,xmc,

& nxmax+1,ny2,table,work, 0)
CALL DZFFT3D(1,nx2,ny2,nz2,1.dO,ym,nx2+2,ny2,ymc,

& nxmax+1,ny2,table,work, 0)
CALL DZFFT3D(1,nx2,ny2,nz2,1.dO,zm,nx2+2,ny2,zmc,

& nxmax+1,ny2,table,work,0)

! Fourier images of M are multipled by demagnetizing 
! coefficients transform - this is a convolution in 
! the Fourier space, that produces image of Hd field.

DO i=l,nmaxc
xmlc (i) =kxx (i) *xmc (i) + kxy (i) *ymc (i) + kxz (i) *zmc (i)
ymlc (i) =kxy (i) *xmc (i) + kyy (i) *ymc (i) + kyz (i) *zmc (i)
zmlc(i)=kxz(i)*xmc(i) + kyz(i)*ymc(i) + kzz(i)*zmc(i)

END DO

! Conversion of Hd to real space
CALL ZDFFT3D(-1,nx2,ny2,nz2,1.dO,xmlc,nxmax+1,ny2,xml,

& nx2+2,ny2,tab2,work,0)
CALL ZDFFT3D(-1,nx2,ny2,nz2,1.do,ymlc,nxmax+1, ny2 , yml,

& nx2+2,ny2,tab2,work, 0)
CALL ZDFFT3D(-1,nx2,ny2,nz2,1.dO,zmlc,nxmax+1,ny2,zml,

& nx2+2,ny2,tab2,work, 0)

! Calculation of spherical components of demagnetizing 
! and external fields.

DO k=0,nzmax-l 
DO j=0,nymax-l 

DO i=0,nxmax-l

! external field
CALL hfun(x,i,j,k,hx,hy,hz)

xml(i,j ,k)=xml(i,j ,k)+hx 
y ml(i,j ,k)=yml(i,j ,k)+hy 
zml(i,j ,k)=zml(i,j ,k)+hz

! Conversion to spheric coordinates
hd(l,i,j,k)=((xml(i,j ,k)*COS(tp(1,i,j,k))*COS(tp(2,i,j,k))+

& yml(i,j,k)*COS(tp(1,i,j,k))*SIN(tp(2,i,j,k))-
& zml (i, j , k) *SIN (tp (1, i, j , k) ) ) )

h d (2,i,j,k)= (-xml(i,j,k)*SIN(tp(2,i,j,k))+
Sc yml (i, j ,k) *COS (tp (2, i, j ,k) ) )

END DO 
END DO 

END DO

END
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
|
! M A G N E T I C  D Y N A M I C S  S I M U L A T O R  3 D
I
! Version 3.0 (February 4, 2002)
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Demfor3d.f

Greg Ballentine 
University of Alberta, Edmonton, Alberta, Canada

Functions describing demagnetizing tensor components. i,j,k 
define relative position of two cells, while dx,dy,dz define 
their sixe
See: Y.Nakatani, Y.Uesaka, N.Hayashi, "Direct Solution of the 
Landau-Lifshitz-Gilbert equation for micromagnetics",
Jap.J.Appl.Phys., 28 (1989) 2485-507.

REAL*8 FUNCTION dmxx(i,j ,k,dx,dy,dz)

INTEGER*4 i,j,k 
REAL*8 dx,dy,dz

dmxx= ATAN((dy*dz*(-0.5 + j)*(-0.5 + k))/
& (dx*(-0.5 + i)*SQRT(dx**2*(-0.5 +i)**2 + dy**2*(-0.5 +j)**2 + 
& dz**2*(-0.5 +k)**2))) - ATAN((dy*dz*(-0.5 +j)*(-0.5 +k))/
& (dx*(0.5 + i)*SQRT(dx**2*(0.5 +i)**2 + dy**2*(-0.5 +j)**2 +
Sc dz**2*(-0.5 +k)**2))) - ATAN((dy*dz*(0.5 +j)*(-0.5 +k))/
Sc (dx*(-0.5 + i)*SQRT(dx**2*(-0.5 +i)**2 + dy**2*(0.5 +j)**2 +
& dz**2*(-0.5 + k)**2))) + ATAN((dy*dz*(0.5 +j)*(-0.5 + k))/
Sc (dx* (0.5 + i) *SQRT(dx**2* (0.5 +i) **2 + dy**2*(0.5 +j)**2 +
Sc dz**2* (-0.5 +k)**2))) - ATAN ( (dy*dz* (-0.5 +j)*(0.5 + k) ) /
Sc (dx* (-0.5 +i) *SQRT(dx**2* (-0.5 +i) **2 + dy**2*(-0.5 +j)**2 +
& dz**2*(0.5 + k)**2))) + ATAN((dy*dz*(-0.5 +j)*(0.5 +k))/
Sc (dx* (0.5 +i) *SQRT (dx**2* (0.5 +i) **2 + dy**2*(-0.5 +j)**2 +
Sc dz**2* (0.5 + k) **2) ) ) + ATAN ( (dy*dz* (0.5 + j)*(0.5 +k) ) /
Sc (dx* (-0.5 +i) *SQRT(dx**2* (-0.5 +i)**2 + dy**2*(0.5 +j)**2 +
& dz**2* (0.5 + k)**2))) - ATAN((dy*dz*(0.5 + j)*(0.5 + k) )/
Sc (dx* (0.5 + i) *SQRT(dx**2* (0.5 + i) **2 + dy**2*(0.5 + j)**2 +
Sc dz**2* (0.5 + k) **2) ) )

END

REAL*8 FUNCTION dmyy(i,j,k,dx,dy,dz)

INTEGER*4 i,j,k 
REAL* 8 dx,dy,dz

dmyy= ATAN((dx*dz*(-0.5 + i)*(-0.5 + k))/
Sc (dy* (-0.5 +j) *SQRT(dx**2* (-0.5 + i) **2 + dy**2*(-0.5 +j)**2 +
& dz**2* (-0.5 + k)**2))) - ATAN((dx*dz*(0.5 + i)* (-0.5 + k) )/
Sc (dy* (-0.5 + j) *SQRT(dx**2* (0.5 + i) **2 + dy**2*(-0.5 +j)**2 +
Sc dz* *2 * (-0.5 + k) **2) ) ) - ATAN ( (dx*dz* (-0.5 + i)*(-0.5 + k) ) /
Sc (dy* (0.5 + j) *SQRT(dx**2* (-0.5 + i) **2 + dy**2*(0.5 + j)**2 +
Sc dz**2* (-0.5 + k) **2) ) ) + ATAN ( (dx*dz* (0.5 + i)*(-0.5 + k) ) /
Sc (dy* (0.5 + j) *SQRT (dx**2* (0.5 + i) **2 + dy**2*(0.5 + j)**2 +
& dz**2*(-0.5 + k)**2))) - ATAN((dx*dz*(-0.5 + i)*(0.5 + k) )/
& (dy*(-0.5 + j)*SQRT(dx**2*(-0.5 + i)**2 + dy**2*(-0.5 +j)**2 + 
Sc dz**2* (0.5 + k) **2) ) ) + ATAN ( (dx*dz* (0 . 5 + i)*(0.5 + k) ) /
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Sc (dy*(-0.5 + j)*SQRT(dx**2*(0.5 + i)**2 + dy**2*(-0.5 + j)**2 + 
Sc dz**2*(0.5 + k)**2))) + ATAN((dx*dz*(-0.5 + i)*(0.5 + k) )/
& (dy*(0.5 + j)*SQRT(dx**2*(-0.5 + i)**2 + dy**2*(0.5 + j)**2 +
& dz**2*(0.5 + k)**2))) - ATAN((dx*dz*(0.5 + i)*(0.5 + k) )/
& (dy*(0.5 + j)*SQRT(dx**2*(0.5 + i)**2 + dy**2*(0.5 + j)**2 +
& dz**2*(0.5 + k)**2)))

END

REAL*8 FUNCTION dmzz(i,j ,k,dx,dy,dz)

INTEGER*4 i,j,k 
REAL*8 dx,dy,dz

dmzz= ATAN((dx*dy*(-0.5 + i)*(-0.5 + j))/
& (dz*SQRT(dx**2* (-0.5 + i) **2 + dy**2*(-0.5 + j)**2 +
& dz**2*(-0.5 + k)**2)*(-0.5 + k) )) -
Sc ATAN ( (dx*dy* (0.5 + i)*(-0.5 + j))/
Sc (dz*SQRT(dx**2* (0.5 + i)**2 + dy**2*(-0.5 + j)**2 +
Sc dz**2* (-0.5 + k) **2) *(-0.5 + k) ) ) -
Sc ATAN ( (dx*dy* (-0.5 + i) * (0 . 5 + j))/
Sc (dz*SQRT (dx**2* (-0.5 + i) **2 + dy**2*(0.5 + j)**2 +
Sc dz**2* (-0.5 + k)**2)*(-0.5 + k) ) ) +
Sc ATAN ( (dx*dy* (0.5 + i) * (0 . 5 + j))/
Sc (dz*SQRT (dx**2* (0.5 + i)**2 + dy**2*(0.5 + j)**2 +
Sc dz**2* (-0.5 + k) **2) * (-0.5 + k) ) ) -
Sc ATAN ((dx*dy* (-0.5 + i)*(-0.5 + j))/
Sc (dz* (0.5 + k) *SQRT(dx**2* (-0.5 + i) **2 + dy**2*(-0.5 +j)**2 + 
& dz**2*(0.5 + k)**2))) + ATAN((dx*dy*(0.5 + i)*(-0.5 + j))/
Sc (dz* (0.5 + k) *SQRT (dx**2* (0.5 + i)**2 + dy**2*(-0.5 + j)**2 + 
Sc dz**2* (0.5 + k) **2) ) ) + ATAN ( (dx*dy* (-0.5 + i)*(0.5 + j))/
Sc (dz* (0.5 + k) *SQRT(dx**2* (-0.5 + i) **2 + dy**2*(0.5 + j)**2 + 
Sc dz**2 * (0.5 + k) **2) ) ) - ATAN ( (dx*dy* (0.5 + i)*(0.5 + j))/
Sc (dz* (0.5 + k) *SQRT(dx**2* (0.5 + i) **2 + dy**2*(0.5 + j)**2 +
Sc dz**2* (0.5 + k) **2) ) )

END

REAL*8 FUNCTION dmxy(i,j ,k,dx,dy,dz)

INTEGER*4 i,j,k 
REAL*8 dx,dy,dz

dmxy= -LOG(ABS(SQRT(dx**2*(-0.5 + i)**2 + dy**2*(-0.5 + j)**2 +
& dz**2*(-0.5 + k)**2) + dz*(-0.5 + k))) +
Sc LOG (ABS (SQRT (dx**2* (0.5 + i) **2 + dy**2*(-0.5 + j)**2 +
Sc dz**2* (-0.5 + k)**2) + dz* (-0.5 + k))) +
& LOG(ABS(SQRT(dx**2*(-0.5 + i)**2 + dy**2*(0.5 + j)**2 +
Sc dz**2*(-0.5 + k)**2) + dz*(-0.5 + k) ) ) -
Sc LOG (ABS (SQRT (dx**2* (0.5 + i) **2 + dy**2*(0.5 + j)**2 +
Sc dz**2*(-0.5 + k) **2) + dz*(-0.5 + k) ) ) + LOG (ABS (dz* (0 . 5 + k) +
& SQRT(dx**2*(-0.5 + i)**2 +
Sc dy**2* (-0.5 + j ) * *2 + dz**2* (0.5 + k)**2))) - 
Sc LOG (ABS (dz* (0.5 + k) +
Sc SQRT (dx**2* (0.5 + i)**2 + dy**2*(-0.5 + j)**2 +
Sc dz**2* (0.5 + k) **2) ) ) - LOG (ABS (dz* (0 . 5 + k) +
& SQRT(dx**2*(-0.5 + i)**2 + dy**2*(0.5 + j)**2 +
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& dz**2*(0.5 + k)**2))) +
& LOG(ABS(dz*(0.5 + k) + SQRT(dx**2*(0.5 + i)**2 + 
& dy**2*(0.5 + j)**2 +
& dz**2*(0.5 + k)**2)))

END

REAL*8 FUNCTION dmxz(i,j ,k,dx,dy,dz)

INTEGER*4 i,j,k 
REAL*8 dx,dy,dz

dmxz= -LOG(ABS(dy*(-0.5 + j) +
& SQRT(dx**2*(-0.5 + i)**2 + dy**2*(-0.5 + j)**2 +
Sc dz**2* (-0.5 + k) **2) ) )
Sc +  LOG (ABS (dy* (-0.5 + j) + SQRT (dx**2 * (0 . 5 + i) **2 +
Sc dy**2* (-0.5 + j) **2 +
Sc dz**2* (-0.5 + k) **2) ) ) + LOG (ABS (dy* (0.5 + j) +
Sc SQRT(dx**2* (-0.5 + i) **2 + dy**2*(0.5 + j)**2 +
Sc dz**2* (-0.5 + k) **2) ) )
Sc -  LOG (ABS (dy* (0.5 + j) + SQRT (dx**2* (0.5 + i) **2 +
Sc dy**2* (0.5 + j ) **2 +
& dz**2*(-0.5 + k)**2))) + LOG(ABS(dy*(-0.5 + j) +
Sc SQRT (dx**2* (-0.5 + i) **2 + dy**2*(-0.5 + j)**2 +
Sc dz**2* (0.5 + k) **2) ) )
Sc - LOG (ABS (dy* (-0 . 5 + j) + SQRT (dx* *2 * (0 . 5 + i) **2 +
& dy**2*(-0.5 + j)**2 +
Sc dz**2 * (0.5 + k) **2) ) ) - LOG (ABS (dy* (0 . 5 + j) +
Sc SQRT(dx**2* (-0.5 + i)**2 + dy**2*(0.5 + j)**2 +
Sc dz**2* (0.5 + k) **2) ) )
Sc +  LOG (ABS (dy* (0.5 + j) + SQRT (dx* *2 * (0 . 5 + i) **2 +
Sc dy**2* (0.5 + j) **2 +
Sc dz**2* (0.5 + k) **2) ) )

END

REAL*8 FUNCTION dmyz(i,j ,k,dx,dy,dz)

INTEGER*4 i,j,k 
REAL*8 dx,dy,dz

dmyz= -LOG(ABS(dx*(-0.5 + i) +
Sc SQRT (dx**2* (-0 . 5 + i)**2 + dy**2*(-0.5 + j)**2 +
Sc dz**2* (-0.5 + k) **2) ) ) +
Sc LOG (ABS (dx* (0.5 + i) + SQRT (dx**2 * (0 . 5 + i) **2 +
Sc dy**2*(-0.5 + j)**2 +
Sc dz**2* (-0.5 + k) **2) ) ) + LOG(ABS (dx* (-0 . 5 + i) +
Sc SQRT (dx**2* (-0.5 + i)**2 + dy**2*(0.5 + j)**2 +
Sc dz**2* (-0.5 + k) **2) ) )
Sc - LOG (ABS (dx* (0.5 + i) + SQRT (dx**2* (0 . 5 + i) **2 + 
Sc dy**2*(0.5 + j ) * *2 +
Sc dz**2* (-0.5 + k) **2) ) ) + LOG (ABS (dx* (-0.5 + i) +
& SQRT(dx**2*(-0.5 + i)**2 + dy**2*(-0.5 + j)**2 +
Sc dz**2* (0.5 + k) **2) ) )
& - LOG(ABS(dx*(0.5 + i) + SQRT(dx**2*(0.5 + i)**2 + 
Sc dy**2* (-0.5 + j ) **2 +
Sc dz**2* (0.5 + k) **2) ) ) - LOG (ABS (dx* (-0.5 + i) +
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& SQRT(dx**2*(-0.5 + i)**2 + dy**2*(0.5 + j)**2 +
& dz**2*(0.5 + k)**2)))
& + LOG(ABS(dx*(0.5 + i) + SQRT(dx**2*(0.5 + i)**2 +
& dy**2*(0.5 + j)**2 +
& dz**2*(0.5 + k)**2)))

END

f* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
I
! M A G N E T I C  D Y N A M I C S  S I M U L A T O R  3 D
I
! Version 3.0 (February 4, 2002)
i

! Deriv3d.f
I
! Greg Ballentine
! University of Alberta, Edmonton, Alberta, Canada
1
i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE derivs(x,tp,dtp)
i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

! Procedure calculates theta- and phi- components
! of the effective magnetic field and finds
! respective time derivatives dtp(l,i,j,k) and dtp(2,i,j,k)
! Attention: for time-dependent field its components 
! will have to be given as functions of t.
i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INCLUDE 'global3d.inc'

REAL*8 x ! independent variable (time)
REAL*8 t p (2,nxmax,nymax,nzmax),dtp(2,nxmax,nymax,nzmax)
REAL*8 h d (2,nxmax,nymax,nzmax) ! demagnetizing & external field
!AUTOMATIC hd

INTEGER*4 i,j,k
REAL*8 hth,hph ! exchange field; overall effective field

CALL hdem(x,tp,hd) ! demagnetizing and external field 
calculation

! Calculation of the effective field
DO k=l,nzmax 

DO j=l,nymax 
DO i=l,nxmax

! Exchange field + sum of external and demagnetizing fields
hth= -((SIN(tp(1,i,j,k))*C0S(tp(1,i+mask(-l, i, j ,k),j ,k))

& -COS(tp(1,i,j,k))*SIN(tp(1,i+mask(-1,i,j ,k) , j ,k))
& *C0S(tp(2,i,j,k)-tp(2,i+mask(-1,i,j ,k),j ,k)))
& + (SIN (tp (1, i, j , k) ) *COS (tp (1, i+mask (1, i, j , k) , j , k) )
& -COS (tp (1, i, j , k) ) *SIN (tp (1, i+mask (1, i, j , k) , j , k) )
& *COS(tp(2,i,j,k)-tp(2,i+mask(1,i,j,k),j ,k))))*d2x
& -((SIN(tp(1,i,j,k))*COS(tp(1,i,j+mask(-2,i,j,k),k))
& -COS(tp(1,i,j,k))*SIN(tp(1,i,j+mask(-2,i,j,k),k))
& *COS(tp(2,i ,j ,k)-tp(2,i,j+mask(-2,i,j,k),k)))
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& + (SIN(t p (1,i,j ,k))*COS(tp(l,i,j+mask(2,i,j,k),k))
& -COS(tp(1,i,j,k))*SIN(tp(1,i,j+mask(2,i, j , k) , k))
& *COS(tp(2,i,j,k)-t p (2,i,j +mask(2,i,j,k),k))))*d2y
& - ( (SIN (tp (1, i, j , k) ) *COS (tp (1, i, j , k+mask (-3 , i, j , k) ) )
& -COS(tp(1,i,j,k))*SIN(tp(1,i,j,k+mask(-3,i,j,k)))
& *COS(tp(2,i,j,k)-tp(2,i,j,k+mask(-3,i,j ,k))))
& + (SIN(tp(1,i,j,k))*COS(tp(1,i,j,k+mask(3,i,j,k)))
& -COS (tp (1, i, j , k)) *SIN (tp (1, i, j , k+mask (3, i, j , k) ) )
& *COS(tp(2,i,j ,k)-tp(2,i,j,k+mask(3,i,j,k)))))*d2z
& +hd(l,i,j,k)

hph= - (SIN(tp(1,i+mask(-1,i,j ,k),j ,k))
& *SIN(tp(2,i,j,k)-tp(2,i+mask(-1,i,j ,k),j,k))
& +SIN(tp(1,i+mask(1,i,j ,k),j ,k))
& *SIN (tp (2 , i, j , k) - tp (2 , i+mask (1, i , j , k) , j , k) ) ) *d2x
& - (SIN(tp(1,i,j +mask(-2,i,j,k),k))
Sc *SIN (tp (2 , i , j , k) - tp (2 , i , j +mask (-2,i,j,k),k))
Sc +SIN (tp (1, i, j +mask (2 , i, j , k) , k) )
Sc *SIN(tp (2 , i, j , k) - tp (2 , i, j+mask (2, i, j , k) , k) ) ) *d2y
Sc - (SIN (tp (1, i, j , k+mask (-3 , i, j , k) ) )
Sc *SIN (tp (2 , i, j , k) - tp (2, i, j , k+mask (-3, i, j , k) ) )
Sc +SIN (tp (1, i, j , k+mask (3 , i,j , k) ))
Sc *SIN(tp(2,i,j,k)-tp(2,i,j, k+mask (3 ,i,j,k))))*d2z
& +hd(2,i,j,k)

! Calculation of theta- and phi- derivatives
dtp (1, i, j ,k) = (alpha*hth+hph)*mask(0,i,j ,k) 

dtp (2, i, j , k) = ( (alpha*hph-hth) /SIN (tp (1, i, j , k) ) ) *mask (0, i, j , k) 
END DO 

END DO 
END DO

END
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

! M A G N E T I C  D Y N A M I C S  S I M U L A T O R  3 D

! Version 3.0 (February 4, 2002)

! Init3d.f

! Greg Ballentine
! University of Alberta, Edmonton, Alberta, Canada
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE hfun(t ,i,j,k ,hx,hy,hz)
i* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

! Definition of space- and time-dependences of the external magnetic 
! field. This is supposed to be custom-defined procedure, the code 
! below is just an example. It reflects the situation for 300 nm thick, 
! 40 micrometers wide transmission line. The sample is expected to be 
! very close to the line (spacer << 300 nm) and centered.

! The field is normalized to magnetization M (not 4*PI*M !!!), while
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! field gradient to M/un, where un=SQRT(2*A/Ma2); A - exchange const.
j* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INCLUDE 1global3d.inc'

REAL*8 t,hx,hy,hz 
INTEGER*4 i,j,k

REAL*8 mag,hbias,himp,grad,delta_t
! Magnetization in Oe

PARAMETER(mag=8S0.)
! Biasing y-field

PARAMETER(hbias=100.0/mag)
! Rise time and y-amplitude and z-gradient of the pulse field

PARAMETER(delta_t=8.do,himp=-160.do/mag,grad=0.004*un/860)

! Assumed 0 x-component 
hx=0

IF (t .le. 0.dO .and. t .gt. -75.0) THEN 
! For negative t assumed uniform y-directed field 

hy=0.0 
hx=0.0 
hz=0. 0 
RETURN

Else IF (t .le. -75.0) THEN 
! For negative t assumed uniform y-directed field 

hy=hbias 
hx=-hbias 
hz=0.0 
RETURN

Else IF (t .le. delta_t) THEN 
! Rise of the pulse field:
! hy rises linearly from 0 to himp 

hy=hbias+himp*t/delta_t 
! hz has a gradient along y that

hz=grad*(j-nymax/2-0.5)*t/delta_t 
RETURN

Else IF (t .gt. delta_t) THEN 
! During the pulse

hy=hbias+himp 
hz=grad*(j-nymax/2-0.5) 
RETURN 

END IF

END

SUBROUTINE shape(rx,ry,rz)
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Procedure prepares a mask defining the shape of 
the sample
- interior: mask(0,i,j ,k)=1
- exterior: mask(0,i,j,k)=0

Other components are used for data branching in 
exchange energy calculation
- internal sites :

mask(-1,i,j ,k)=-1 mask(1,i,j ,k)=1 (for x-direction) 
mask(-2,i,j ,k)=-1 mask(2,i,j,k)=1 (for y-direction) 
mask(-3,i,j,k)=-1 mask(3,i,j,k)=1 (for z-direction)

- boundary sites: sign changes to maintain 
proper boundary conditions

Parameter rx*ry*rz defines the shape:
<1 - full rectangle prism nxmax x nymax x nzmax 
>=1 - ellipsoid with axes 2*rx, 2*ry and 2*rz, 

overlapped on the original rectangle 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INCLUDE 'global3d.inc'

REAL*8 rx,ry,rz ! elipsoid radiuses
INTEGER*4 i,j,k
REAL*8 xl,yl,zl,rxl,ryl,rzl

IF (rx*ry*rz .It. l.dOO) THEN

! Calculation for full rectangle 
DO k=l,nzmax 
DO j=l,nymax 
DO i=l,nxmax

mask(-3,i,j,k)=-l 
mask(-2,i,j,k)=-l 
mask(-1,i,j ,k)=-1 
mask(0,i,j ,k)=1 
mask(1,i,j,k)=1 
mask(2,i,j,k)=1 
mask(3,i ,j ,k)=1 

END DO 
END DO 

END DO

ELSE

! Calculation for ellipsoid
xl=(nxmax+1)/2. ! position of the ellipsoid center
yl=(nymax+1)/2. 
zl=(nzmax+1)/2.
rxl=rx-0.5 ! effective radiuses of the ellipsoid 
ryl=ry-0.5 
rzl=rz-0.5

! Defining an interior 
DO k=l,nzmax 

DO j=l,nymax
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DO i = 1,nxmax 
! Checking if the cell belongs to ellipsoid

IF (((i-xl)/rxl)**2+((j-yl)/ryl)**2+
& ((k-zl)/rzl)**2 .le. 1.) THEN

mask( 0 ,i,j,k)=1 
ELSE 

mask( 0 ,i,j,k)=0  
END IF 

END DO 
END DO 

END DO

! Filling +/- components with boundary detection 
! for rectangle prism interior 

DO k=2,nzmax-1 
DO j=2,nymax-1 

DO i=2,nxmax-1

IF (mask(0,i-1,j,k) .eq. 0.) THEN 
mask(-1,i,j,k)=0 

ELSE
mask(-l,i,j,k)=-l 

END IF

IF (mask(0,i+1,j,k) .eq. 0.) THEN 
mask(1,i,j,k)=0  

ELSE
mask(1,i,j,k)=1 

END IF

IF (mask(0,i,j-1,k) .eq. 0.) THEN 
mask(-2,i , j , k)=0 

ELSE
mask(-2,i,j,k)=-l 

END IF

IF (mask(0,i,j+1,k) .eq. 0.) THEN 
mask(2,i,j,k)=0 

ELSE
mask(2,i,j,k)=1 

END IF

IF (mask(0,i,j,k-1) .eq. 0.) THEN 
mask(-3,i,j,k)=0 

ELSE
mask(-3,i,j,k)=-l 

END IF

IF (mask(0,i,j,k+1) .eq. 0.) THEN 
mask(3,i,j,k)=0 

ELSE
mask(3,i,j,k)=1 

END IF

END DO 
END DO 

END DO
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! Filling +/- tangential components with boundary 
! detection for rectangle prism surfaces 

DO k=2,nzmax-l 
DO i=2,nxmax-1

IF (mask(0,i-1,l,k) .eq. 0.) THEN 
mask(-l,i,l,k)=0 

ELSE
mask(-l,i,l,k)=-l 

END IF

IF (mask(0,i+1,l,k) .eq. 0.) THEN 
mask(1,i,1,k)=0 

ELSE
mask(l,i,l,k)=1 

END IF

IF (mask(0,i,l,k-l) .eq. 0.) THEN 
mask(-3,i,1,k)=0 

ELSE
mask (- 3 , i, 1, k) = -1 

END IF

IF (mask(0,i,1,k+1) .eq. 0.) THEN 
mask(3,i,1,k)=0 

ELSE
mask(3,i,1,k)=1 

END IF

IF (mask(0,i-1,nymax,k) .eq. 0.) THEN 
mask(-l,i,nymax,k)=0 

ELSE
mask(-l,i,nymax,k)=-1 

END IF

IF (mask(0,i+1,nymax,k) .eq. 0.) THEN 
mask(1,i,nymax,k)=0 

ELSE
mask(1,i,nymax,k)=1 

END IF

IF (mask(0,i,nymax,k-1) .eq. 0.) THEN 
mask(-3,i,nymax,k)=0 

ELSE
mask(-3,i,nymax,k)=-1 

END IF

IF (mask(0,i,nymax,k-1) .eq. 0.) THEN 
mask(3,i,nymax,k)=0 

ELSE
mask(3,i,nymax,k)=1 

END IF

END DO 
END DO
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DO k=2,nzmax-1 
DO j=2,nymax-1

IF (mask(0,1,j-1,k) .eq. 0.)
mask(-2,1,j,k)=0 

ELSE
mask (-2 ,1, j , k) =-1 

END IF

IF (mask(0,1,j+1,k) .eq. 0.)
mask(2,1,j,k)=0 

ELSE
mask(2,1,j,k)=1 

END IF

IF (mask(0,1,j,k-1) .eq. 0.)
mask(-3,1,j,k)=0 

ELSE
mask(-3,l,j,k)=-l 

END IF

IF (mask(0,1,j,k+1) .eq. 0.)
mask(3,1,j,k)=0 

ELSE
mask(3,1,j,k)=1 

END IF

IF (mask(0,nxmax,j-1,k) .eq.
mask(-2,nxmax,j,k)=0 

ELSE
mask(-2,nxmax,j,k)=-1 

END IF

IF (mask(0,nxmax,j+1,k) .eq.
mask(2,nxmax,j,k)=0 

ELSE
mask(2,nxmax,j , k)=1 

END IF

IF (mask(0,nxmax,j,k-1) .eq.
mask(-3,nxmax,j,k)=0 

ELSE
mask (- 3, nxmax, j , k) = -1 

END IF

IF (mask(0,nxmax,j,k+1) .eq.
mask(3,nxmax,j,k)=0 

ELSE
mask(3,nxmax,j,k)=1 

END IF

END DO 
END DO

DO j=2,nymax-1 
DO i=2,nxmax-1

THEN

THEN

THEN

THEN

0.) THEN

0.) THEN

0.) THEN

0.) THEN
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IF (mask(0,i,j-1,1) .eq. 0.) THEN 
mask(-2,i,j,1)=0 

ELSE
mask(-2,i,j,1)=-1 

END IF

IF (mask(0,i,j+1,1) 
mask(2,i,j,1)=0 

ELSE
mask(2,i, j,1)=1 

END IF

.eq. 0.) THEN

IF (mask(0,i-1, j , 1) 
mask(-1,i,j,1)=0 

ELSE
mask(-1,i,j,1)=-1 

END IF

,eq. 0.) THEN

IF (mask(0,i+1,j,1) .eq. 0.) THEN 
mask(1,i,j,1)=0 

ELSE
mask(1,i,j,1)=1 

END IF

IF (mask(0,i,j-1,nzmax) .eq. 0.) THEN 
mask(-2,i,j,nzmax)=0 

ELSE
mask(-2,i,j,nzmax)=-1 

END IF

IF (mask(0,i,j+1,nzmax) .eq. 0.) THEN 
mask(2,i,j,nzmax)=0 

ELSE
mask(2,i,j,nzmax)=1 

END IF

IF (mask(0,i-1,j,nzmax) 
mask(-l,i,j,nzmax)=0 

ELSE
mask(-1,i,j,nzmax)=-1 

END IF

.eq. 0.) THEN

IF (mask(0,i+1,j,nzmax) .eq. 0.) THEN 
mask(1,i,j,nzmax)=0 

ELSE
mask(1,i,j,nzmax)=1 

END IF

END DO 
END DO

END IF

! Calculation common for both: imposing boundary conditions 
! at surfaces of the rectangular grid - normal component 

DO k=l,nzmax 
DO i=l,nxmax
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mask (-2, i, 1, k) =0 
mask(2,i,nymax,k)=0 

END DO 
END DO

DO j=l,nymax 
DO i = 1,nxmax
mask(-3,i,j,1)=0 
mask(3,i,j,nzmax)=0 

END DO 
END DO

DO k=l,nzmax 
DO j=l,nymax
mask(-l,1,j,k)=0 
mask(1,nxmax,j,k)=0 

END DO 
END DO

END

SUBROUTINE iniuni(tp,idir) 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Procedure fills tp matrix with in-plane uniform 
distribution (idir=0 - x-direction, idir=l - y, 
idir=2 - z).
Grid sites outside the sample borders are filled 
formally with z orientation.

'kicic'kie'k'kicitieit'k'k'k'k'k'kicicieir'kiele'k'k'kit'k'k'k'k'k'k'k'k'kif'kieie'k'k'kie'kieititieie

INCLUDE 'global3d.inc'

REAL * 8 tp(2,nxmax,nymax,nzmax)
INTEGER*4 idir 
INTEGER*4 i,j,k

IF (idir -eq. 2) THEN 
DO k=l,nzmax 
DO j =1,nymax 

DO i=l,nxmax
tp (1, i, j,k)=0.dO 
tp (2, i, j,k)=0.dO 

END DO 
END DO 

END DO 
ELSE
DO k=l,nzmax 
DO j=l,nymax 

DO i=l,nxmax
Cells outside the sample mask(0,*)=0 has added a small theta 
deviation. It is exclusively to help map rendering with 
Mathematica

tp (1, i, j , k) =mask (0, i, j , k) *Pi/2 
& + (1-mask(0,i,j,k))*0.0001D0
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tp(2,i,j,k)=idir*Pi/2 
END DO 

END DO 
END DO 

END IF

END

SUBROUTINE inirand(tp)
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

! Procedure fills tp matrix with xy-plane random 
! distribution.
! Grid sites outside a sample borders are filled 
! formally with perpendicular orientation.
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INCLUDE 'global3d.inc'

REAL*8 tp(2,nxmax,nymax,nzmax)
INTEGER*4 i,j,k 
REAL*8 test

! test=DRAND(100)
DO k=l,nzmax 

DO j=l,nymax 
DO i=l,nxmax

tp (1,i,j,k)=mask(0,i,j,k)*Pi/2+(1-mask(0, i,j,k))*0.0001 
! CALL DRAND(0)
! tp(2,i,j,k)=DRAND(0)*2*Pi*mask(0,i,j , k)

END DO 
END DO 

END DO

END
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

! M A G N E T I C  D Y N A M I C S  S I M U L A T O R  3 D

! Version 3.0 (February 4, 2002)

! Output3d.f

! Greg Ballentine
! University of Alberta, Edmonton, Alberta, Canada
I 'k'k'k'k'kie'k'kie'kie'k'kie'kie'kide'k'k'kic'k'kie'kicieieie'k'kieie'kidck'k'k'k'kic'k'kie'kie'k'kif'k'k'k'kieif'k'kieificick'k'kic

REAL*8 FUNCTION xmag(tp)
J  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

! Function calculates x-component of the sample 
! magnetic moment in arbitrary units
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INCLUDE 1global3d.inc'

REAL*8 tp(2,nxmax,nymax,nzmax)
INTEGER*4 i,j,k

xmag=0
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DO k=l,nzmax 
DO j=l,nymax 

DO i=l,nxmax
xmag=xmag+SIN(tp(1,i,j,k))*COS(tp(2,i,j,k))*mask(0,i,j,k) 

END DO 
END DO 

END DO

END

REAL*8 FUNCTION ymag(tp) 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Function calculates y-component of the sample 
magnetic moment in arbitrary units 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INCLUDE 1global3d.inc'

REAL*8 tp(2,nxmax,nymax,nzmax)
INTEGER*4 i,j,k

ymag=0
DO k=l,nzmax 
DO j=l,nymax 

DO i=l,nxmax
ymag=ymag+SIN(tp(1,i,j,k))*SIN(tp(2,i,j,k))*mask(0,i,j,k) 

END DO 
END DO 

END DO

END

REAL*8 FUNCTION zmag(tp) 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Function calculates z-component of the sample 
magnetic moment in arbitrary units 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INCLUDE 1global3d.inc'

REAL * 8 tp(2 , nxmax,nymax,nzmax)
INTEGER*4 i,j,k

zmag=0
DO k=l,nzmax 

DO i=l,nxmax 
DO j=l,nymax 
zmag=zmag+COS(tp(1,i,j,k))*mask(0,i,j,k) 

END DO 
END DO 

END DO

END
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SUBROUTINE sav(kount,y) 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Procedure saves a current distribution of Mx, My 
and Mz components in Mathematics input format.
The respective matrices are called tpx[[kount]3, 
tpy[[kount]] and tpz[[kount]] and appended to the 
previous results.
Resolution is reduced to 64x*, keeping an original 
aspect ratio.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

INCLUDE 'global3d.inc1

INTEGER*4 kount
REAL* 8 y (2,nxmax,nymax,nzmax)
INTEGER*4 i,j,k,il,j1,ired,nxnew 
REAL*8 res(0:63,0:63),xml,yml,zml

character*14 itoa

xml(i,j,k)=SIN(y(1,i,j,k))*C0S(y (2 , i, j , k) 
yml(i,j,k)=SIN(y(1,i,j,k))*SIN(y(2,i,j,k) 
zml(i,j,k)=COS(y(1,i,j , k))

OPEN(1,FILE=datint(1:3)//"."//itoa(kount),form=1 formatted', 
& s t atus ='unknown')

Do k=l,nzmax 
DO i=nxmax,l,-l
WRITE(1,128)(yml(i,j,k),j=1,12 8)

END DO

DO i=nxmax,l,-l
WRITE(1,12 8) (xml (i,j,k),j=l, 12 8)

END DO

DO i=nxmax,l,-l
WRITE(1,12 8)(-zml(i,j,k),j=1,128) 

END DO

end do

CLOSE(1)

128 FORMAT(127(f12.6,1,'),f12.6)
510 FORMAT(1{',63(fl2.6,','),fl2.6,1},')
511 FORMAT('{',63(fl2.6, ', ') ,f12 . 6, ' } } ; ')

END
i -----------------------------------------------------------------------------------------------------
! itoa -- convert integer to character array (string)

character*14 function itoa(value)
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implicit none 
integer value 
integer number 
character*14 string 
logical minus

number = value 
minus = .FALSE. 
if (number .It. 0) then 

minus = .TRUE. 
number = -number 

endif
string = char(ichar('01)+mod(number, 10)) 
number = number / 10 
do while (number ,ne. 0)

string = char(ichar('0')+mod(number, 10))//string 
number = number / 10 

end do
if (minus .eqv. .TRUE.) then

string = char(ichar(1 - 1))//string 
endif

itoa = string
return
end

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

M A G N E T I C  D Y N A M I C S  S I M U L A T O R  3 D

Version 3.0 (February 4, 2002)

Rk3d.f

Greg Ballentine 
University of Alberta, Edmonton, Alberta, Canada

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE ODEINT(y,xl,x2,work) 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Intermediate driver for RKSUITE solver. Integrates system of ODEs 
from xl to x2 with initial condition y, in steps of dxsav.
The stepping procedure do not take into account any physical 
organization of cells.
See RKSUITE documentation for details of UT (or CT) usage. 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INCLUDE 1global3d.inc'

REAL* 8 y(Nmax),xl,x2,work(*)
INTEGER*4 i,flag 
REAL*8 x
REAL*8 xmag,ymag,zmag ! functions calculating magnetic moment

! arrays transfering condition of the system between consequtive 
! calls to UT
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REAL*8 dy(Nmax),ymax(Nmax)

! Saving parameters
INTEGER*4 kmax,kount
REAL*8 dxsav,xm(0:kmax),ym(0:kmax),zm(0:kmax),t (0:kmax)
COMMON /PATH/kmax,kount,dxs av,xm,ym,zm,t

Character*32 datini ! ini file: input for 4, output for 0-3
CHARACTER*32 dat3d ! records progress in the calculation
CHARACTER*32 datlast ! last calculated state, can be used

later as ini
CHARACTER*32 datint ! custom file, can be used by procedure

sav
COMMON /names/ datini,dat3d,datlast,datint

EXTERNAL derivs

x=xl+dxsav

! Initial condition statistics (kount=0)
kount=0
t(kount)=xl*66.118 
xm(kount)=xmag(y) 
ym(kount)=ymag(y) 
zm(kount)=zmag(y)
WRITE(*,300)t(kount),xm(kount),ym(kount),zm(kount)

! This is a general, custom defined saving procedure.
CALL sav(kount,y)

! Stepping loop
DO WHILE (x .It. x2)
CALL UT(derivs,x,xl,y,dy,ymax,work,flag)

! Recording of intermediate states 
IF(kount .le. kmax-l)THEN 
kount=kount+1 
t(kount)=xl*66.118 
xm(kount)=xmag(y) 
ym(kount)=ymag(y) 
zm (kount) =zmag (y)
WRITE(*,300)t(kount),xm(kount),ym(kount),zm(kount)

! This is a general, custom defined saving procedure.
CALL s av (kount, y)

! Recording of the full state of the system. Allows to 
! continue calculations if the program execution is broken 

OPEN(1,FILE=datlast, F0RM='unformatted')
WRITE(1)mask,y,xl,kount 
CLOSE (1)

END IF 
x=xl+dxsav 
End Do

x=x2
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! Final call to UT
CALL UT(derivs,x,xl,y,dy,ymax,work,flag)

! Recording of final state (see details above) 
kount=kount+1 
t(kount)=xl*66.118 
xm(kount)=xmag(y) 
ym(kount)=ymag(y) 
zm(kount)=zmag(y)
WRITE(*,300)t(kount),xm(kount),ym(kount),zm(kount)

CALL sav(kount,y)

OPEN(1,FILE=datlast, F0RM='unformatted') 
WRITE(1)mask,y ,xl,kount 
CLOSE(1)

21 FORMAT('{',3(f15.3, ', ') ,f15 . 3, ' } , ' )
22 FORMAT('{’,3(fl5.3, ', ') ,fl5 .3, '}};')
300 FORMAT(4(' ’,fl0,3))

RETURN
END

J * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

{

! M A G N E T I C  D Y N A M I C S  S I M U L A T O R  3 D
j
! Version 3.0 (February 4, 2002)
i
! Sim3d.f
i
! Greg Ballentine
! University of Alberta, Edmonton, Alberta, Canada

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

PROGRAM sim3d
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Program traces the dynamical development of magnetization process 
in arbitrarily shaped sample with space- and time-dependent external 
field. The main program is a customizable driver, the code below is 
just an example.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

INCLUDE 'global3d.inc'

! Paramaters & procedures for timing 
CHARACTER*24 the_time 
REAL*4 tarr(2),ttot,ETIME

! Parameters for RKSUITE
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INTEGER*4 method,lenwrk,total,cost,stepok 
PARAMETER(1enwrk=10*Nmax)
CHARACTER*1 task
LOGICAL errass, message, ex
REAL*8 work(lenwrk),thres(Nmax),wast,hnext
REAL*8 eps,hl
external sigterm, sigusrl, sigusr2

REAL*8 tp(2,nxmax,nymax,nzmax) ! stores angles of magnetization 
distribution

REAL*8 rx,ry,rz ! ellipsoid size 
REAL*8 tl,t2 ! range of integration

! Saving arrays and variables
INTEGER*4 kmax,kount,i,j
REAL* 8 xm(0:kmax),ym(0:kmax),zm(0:kmax),t (0:kmax),dxsav 
COMMON /PATH/kmax,kount,dxsav,xm,ym,zm,t

! RKSUITE parameter initialization (see RKSUITE documentation) 
eps=0.0002 ! relative accuracy 
hl=0.0 ! guess for initial step (0 - auto) 
method=l ! method of Runge-Kutta integration 
task='u' ! integration procedure 
errass=.false. 
message=.true.

DO j=l,Nmax ! absolute accuracy
thres(j)=0.01 

END DO

! Gilbert damping constant definition - defined here to 
! escape BLOCK DATA and still keep the possibility to 
! change it during calculations 

alpha=0.1

! Set signal handler to catch soft kill signal (SIGUSR2,
! signal number 15,16 and 17)

call signal(15, sigterm, -1) 
call signal(16, sigusrl, -1) 
call signal(17, sigusr2, -1)

dxsav= 0.25! period of savings 
tl=-76.5 ! range of integration
t2=0.0

! Ellipsoid definition. rx*ry*rz<l -> rectangular prism 
rx=66 
ry=45 
rz = 0

! Reseting datint file
OPEN(1,FILE=datint)
WRITE(1,*)
CLOSE(1)
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1 0 0 0  i = 4

! Calls to timing procedures 
CALL FDATE(the_time) 
write(*,*)the_time 
ttot=ETIME(tarr)
CALL initdem ! initialization of demagnetizing field 

calculation
IF (i .eq. 4) THEN 

! Information on shape and initial condition are read from file 
inquire(file=datini, exist=ex) 

if (ex .eqv. .TRUE.) then 
OPEN(10,FILE=datini,FORM='unformatted')
READ(10)mask,tp,tl,kount 
CLOSE(10)

else
!CALL shape(rx,ry,rz) 
call abmask
!OPEN(10,FILE='mask.bin',F0RM='unformatted') 
!read (10) mask 
'close(10)

CALL iniuni(tp,l) 
end if

! Perform integration
CALL SETUP(Nmax,tl,tp,t2,eps,thres,method,task, 

& errass,hi,work,lenwrk,message)
CALL ODEINT(tp,tl,t2,work)

else if (i.eq.3) then 
! Calculation from initial random distribution 

call shape(rx,ry,rz) ! define shape 
call inirand(tp) ! set-up random distribution 

! Perform integration
CALL SETUP(Nmax,tl,tp,t2,eps,thres,method,task, 

& errass,hi,work,lenwrk,message)
CALL ODEINT(tp,tl,t2,work)

! Save final condition as ini file
OPEN(1, FILE=datini,FORM='unformatted')
WRITE(1)mask,tp 
CLOSE (1)

ELSE IF (i .eq. O.OR.i .eq. l.OR.i .eq. 2) THEN 
! Calculation from initial uniform distribution 

CALL shape(rx,ry,rz)
CALL iniuni(tp,i)

! Perform integration
CALL SETUP(Nmax,tl,tp,t2,eps,thres,method,task, 

& errass,hi,work,lenwrk,message)
CALL ODEINT(tp,tl,t2,work)
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! Save final condition as ini file
OPEN(1,FILE=datini,FORM='unformatted') 
WRITE(1)mask,tp 
CLOSE (1)

ELSE
GO TO 1000 

END IF

CALL FDATE(the_time)
WRITE(*,*)the_time
write(*,*)'Execution time: ETIME(tarr),1

CALL STAT(total,cost,wast,stepok,hnext)
WRITE(*,*)total,cost,stepok 
WRITE(*,*)wast,hnext

STOP

END

sec'
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■ Appendix C: Mathematics program for calculation of magnetic 
field in the vicinity of an infinite transmission line

The line has rectangular crossection 2 xaby 2 ya (all dimensions are given in cm, 
the coefficient urn allows to give arguments expressed in micrometers); 
the currant is equal to i (in amps); x and y  are spatial components in the plane 
perpendicular to the line axis (the system origin is located on the line axis). 
Assumed uniform distribution o f  the current density over the line crossection. 
Result is given in Oersteds: 
hx - x-component o f  the field, 
hy - y-component o f the field, 
h - the field vector, 
hm - the field module.

1
Needs["Graphics PlotEield " 1; urn= ------10*

JC•y* (x - xO )2 + (y - yO )2
<HyOy- yo  

i)2 + (y

2 2 2 2 2-Log[x - 2 x xO + xO + (y - ya) ] Log[x - 2 x xO + xO + (y + 
  + ---------------------------------------------------

ClearAll[hxl, hyl];

kxl[x_, xa_, y_, ya_] : = Nlntegrate[------Log[(x-x0)2 + (y-ya)2] +

— Log J (x-xO)2 + (y + ya)2 ] , {xO, -xa, xa} ];

1
hyl[x_, xa_, y_, ya ] := -Nlntegrate [ Log[(y-yO) + (x - xa) ]

i  Log[(y-y0)2 + (x +xa)2 ], |{y0, -ya, ya}];

i  hxl[x, xa, y, ya] hx[i_, X_, xa_, y_, ya ] := —

2' +

20 xaya
ihyl[x, xa, y, ya]

hy[i_, J£_, xa_, y_, ya_] := ----------------------------------
20 xaya

h[i_, x_, xa_, y_, y a ]  :={hx[±, x, xa, y, ya], hy[x, x, xa, y, ya]};

2
Ya) ]
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h[i_f x_, *a_, y_, y a ]  :={hat[i, x, xa, y, ya], hy[i, x, xa, y ,  ya]}-, 

hm[i_, x _ t y_, ya_] : = V xa, y, ya]2+hy[i, x, xa, y ,  ya]2 ;

Exemplary calculations: 2 xa=40 um, 2 ya=0.3 urn.

Assume 0.025 urn isolating layer between the line 
and a sample:y=0.15 um+0.025 um=0.175um.

l tx [0 .9 ,  1 .5  urn, 20 um, 0.175 urn, O.ISum]

N In tegrate:: slwcon:
Numerical in teg ra tio n  converging too slow ly; suspect 

one of the fo llow ing: s in g u la r ity , value of the 
in teg r a tio n  being 0 , o s c i l la to r y  integrand, or 
in s u f f ic ie n t  NorkingPrecisijon. I f  your integrand i s  
o s c i l la to r y  try  u sin g  the option M ethod->0scillatory  
in  N Integrate.

N Integrate::ncvb:
N Integrate fa i le d  to converge to prescribed  accuracy 

a fter  7 recursive b ise c t io n s  in  xO near xO =
0.000140625.

140.61

ListPlot [Table [luc[0. 9, xiim, 20 inn, 0.175 urn, 0.15um], 

{x, -10, 10}], PlotRaxge-» All ];
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Assume 0.05 urn th ic k  m agnetic sam ple;
i t*  c en tre  y=0.15 un+0.025 wi +O.OS5 ums 0.2 um

Plot[hx[0.9, * m , 20 um, 0.2um, O.ISum], {x, -10, 10}, PlotRange -4 Jill] ;

140.35

140.3

A;.'wie 0.05 um th i c k  m agnetic sam ple;
i t*  upper .surface y s 0.15 um+0.025 w  +0.05 um=0.££5 un

Plot[hx[0. 9, xmo, 20 um, 0.225 urn, O.ISum], {x, -10, 10}, PlotRaxge -4 M.1 ] ;

.35

140.3

140.15

-10
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T h e re  i s  a g n d i e n t  o f p e r p e n d i c u l a r  component- o f th e  f i e l d
( c a l c u l a t e d  a t  th e  sam ple c e n t r e )  :

Plot[hy10.9, x um, 20 um, 0.2 urn, O.ISum], {x, -10, 10}, PlotRaxuje -+ JU.1 ] ;

40

-10 10

-40

Ttii!re f i e ld  in  fclie ; ample v ic iriifcy :

ListPlotVectorField[Table[h[0.9, xum, 20m, (y*0.005 + 0.2) um, 0.15um], 
{x, -10. , 10.), (y, -5, 5}], Frame ->True]

PlotVectorField[h[0, 9, xum, 20 um, (y 0.005 + 0.2) um, 0.15 um],
{x, -10. , 10.}, {y, -5, 5},

ScaliiujFactor -> 0.7, Frame -> True]
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- i

-4

-10 -s

-Graphics-

Shov[%, FrameTicks -> None];

?? PlotVectorField
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E xem plary  c a l c u l a t i o n s :  £ xas SO vrn, 2: y a * 0 .5  -um.

PlotVectorField[h[0.3, x, 2511m,. y, 0.25um], {x, -5m, Sum}, {y, -5 m, 5xm}]

t i i i

-Graphics-

Asstme 0 .1  um is o la t in g  la y e r  between t be l in e  and a sample :y=0.25 twrfO.l um=0.25 um.
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37.3

-Graphics-

A; .'■urn': 0 .05  w i t h i c k  m ag n e tic  sam p le ; i t ;  tip p er j-u rface  :y s 0 .25  u n r H - O . l  uri+0.05 tiri= 0 .4  urn.

Plot[hx[0. 3, x, 25 um, 0.4uik, G.25um.], {x, -2 lim, 2-uin.}]

37.315

-0 .00005 0 . 0 0 0 1- 0 . 0 0 0 1

-Graphics-

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



T h e re  i s  a  g r a d i e n t '  o f  p e r p e n d i c u l a r  co m p o n en t o f  t h e  f i e l d  ( c a l c u l a t e d  a t  t h e  ja m p le  c e n t r e ) :

Plot[hy[D.3, x, 25 um, O. 375 urn, 0.25um], {x, -2 um, 2um}]

- 0 . 0 0 0 1 0 . 0001

-Graphics-

There f i e ld  in  th e  sample v i c in i t y :

ElotVectorEield[h.[0.3, x, 25 um, y ,  0.25um], {x, -um, lum.}, { y ,  0. um, linn.}]

-Graphics-
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Appendix D: CD library listing

1. Masked 1 Ox 3.5 microns. Edge cell boundary conditions. lOOOeDC. 5 12x 256 cells. Data saved as 
real*4. Gradient direction matches experiment. Day 2 of run.
2. First masked data 10x3.5. Various fields and BCs. Saved as 64 x32.
3. 10 x 3.5 microns. Gradient wrong direction. 81-160
4. 10x2 microns. Trying different damping constants. Saved as 64x16
5. Data used by Roger Hunt to make movie of 10 x 3.5 micron sample where gradient matches experiment.
6. 10x3.5 microns. Nearest neighbor BCs. Saved as 64x32
7. 10x3.5 microns. Gradient matches experiment. Saved as 64x32.
8. Data used by Roger Hunt to make movie of 10 x 3.5 micron sample.
9. 10x2 micons 100 Oe. Rising edge data.
10. 10x2 microns. lOOOeDC. Reversing back data.
11. 1 Ox 2 reversal runs in several DC fields. Not every point saved. Saved as 64 x 16 points
12. 10x2 micron sample reversal sample reversing back, plus Early FMR run saved as 64 x 64 points
13. 10x2 micron reversal runs in several DC fields. Saved as 64x32 points. Gradient wrong direction. 
Plus runs with BC Choi
14. 10x2 micron reversal runs in several DC fields. Saved as 64x32 points. Gradient matches experiment. 
15 10x2 microns. 100 Oe DC. Last Reversing back data
16. 10x2 microns. Various fields. Nearest neighbor BCs. Saved as 64x32 points.
17. 10x2 microns. Various different rise times of field. Saved as 64 x 16 points.
18. 10x3.5 microns. Gradient matches experiment. Saved as 64x32 points
19. 10x2 microns. 100 Oe. Saved 81-160.
20. 10x2microns. lOOOeDC. 512-128 cells, 
end.
21. 10x2microns. lOOOeDC. 512-128 cells.
341.
22. 10x2 microns with one cell hole in middle.
23. 10x2 microns with one cell hole in middle.
24. 10x2 microns with one cell hole in middle.
25. 10x2 microns with one cell hole in middle.
34-end
26. 10x2 microns with one cell hole in middle.
34
27. 10x2 microns with one cell hole in middle, 
added. Saved time steps 341-end.
28. 10x2 microns with one cell hole in middle, 
added. Saved time steps 1-314
29. 10x2 microns with 3x3 cell hole in the middle 100 Oe. Saved time steps 341-end.
30. 10x2 microns with 1x3 cell hole in the middle. 100 Oe. Saved time steps 1-341
31. 10x2 microns with 1 cell hole in the middle. 100 Oe. Saved 1-342
32. 10x2 microns with 3x3 cell hold in middle. 100 Oe Saved 1-341.
33. 10x2 microns no hole. 115 Oe 30 degrees to sample Saved 1-340.
34. 10x3.5 microns with 1 cell hole in middle. 100 Oe. Saved 1-80.
35. 10x2 microns. 2 holes. 100 Oe. Saved 1-341
36. 10x2 microns. 2 holes. 100 Oe Saved 341-end.
37. 10x2 micron control run. 100 Oe 81-160
38. 10x2 micron with 1 cell hole in middle. 100 Oe. Saved 161-240
39. 10x2 micron run with no hole.
40. 10x2 micron with 1 cell hole in middle. 100 Oe 81-160.
41. 10x2 micron with 3 cell hole in middle. 100 Oe. 341- end.
42. 10x3.5 micron with 1 cell hole in middle. 100 Oe. 161-240
43. 10x2 micron control run. 100 Oe 1-80
44. 10x3.5 microns. Edge cell BCs. Reversed.
45.10x3.5 microns. Gradient matches experiment. Reversed back.
46. 10x3.5 microns. Gradient matches Experiment. Rising edge of pulse

215

“Control” run. No holes in sample, saved time steps 341-

“Control” run. No holes in sample, saved time steps 1-

FFT’s fixed. Saved time steps 1-341 
Saved time steps 1-341 
Saved time steps 342-end.
115 Oe field 30 degrees to the sample. Saved time steps 

115 Oe field 30 degrees to the sample. Saved time steps 1- 

100 Oe. Initial state same as “control” run except with hole 

100 Oe. Initial state same as “control” run except with hole
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47. 10 x 3.5 microns with 1 cell hole in middle. 81-160
48. 10 x 3.5 microns with one cell hole. 241-300
49. lOx 3.5 microns with one cell hole. 161-240
50. 10x2 microns. 30 degrees between Hdc & Htrans. Saved 80-160.
51. 10x2 microns. 30 degrees between Hdc & H trans. Saved 160-240
52. 10x2 microns. 30 degrees between Hdc & H trans. Saved 1-80
53. 10x2 microns. 30 degrees between Hdc & Htrans. Saved 81-160
54. 10x2 microns. 30 degrees between Hdc & Htrans. Saved 161-240
55. 10x3.5 microns. 30 degrees between Hdc & Htrans. Saved 1-80
56. 10x2 microns. 30 degrees between Hdc & Htrans. Saved 1-80
57. 10x2 microns. 2 degrees between Hdc & Htrans. 360-end.
58. 10x2 microns. 2 degrees between Hdc & Htrans. 1-360
59. 10x2 microns. 30 degrees between Hdc & Htrans. 361-end
60. Failed attempt at 10x2 polycrystal. 10 degree variance between anisotropy axis in each cell. 342-end
61. Failed attempt at 10x2 polycrystal. 10 degree variance between anisotropy axis in each cell. 1-341
62. Failed attempt at 10x2 polycrystal. 10 degree variance between anisotropy axis in each cell. 34-end
63. Failed attempt at 10x2 polycrystal. 10 degree variance between anisotropy axis in each cell. 1-34 
64: lOx 2 microns with two holes 1-309
65. 10x2 microns. 2 degrees between Hdc & Htrans. 1-360
66. 10x2 microns. 2 degrees between Hdc & Htrans. 360-end
67. 10x2 microns 2 degrees bewteenHdc & Htrans 1-309
68. 10x2 microns. 2 degrees between Hdc & Htrans 31- end
69. 10x2 microns. 30 degrees between Hdc & Htrans. 361-end
70. 15x6 micron reversal. 26-56
71. 15x6 micron reversal. 297-326
72. 15x6 micron reversal 206-234.
73. 15x6 micron reversal. 235-264
74. 15x6 micron reversal. 146-176
75. 15x6 micron reversal. 86-116
76. 15x6 micron reversal. 57-85
77. 15x6 micron reversal 265-296
78. 15x6 micron reversal 327-356
79. 15x6 micron reversal 117-145
80. 15x6 micron reversal 177-205
81. 15x6 micron reversal 0-25
82. 10x2 microns. 2 degrees between Hdc & Htrans 1-360
83. 10x2 microns. 2 degrees bewteen Hdc & Htrans 361-end
84. 10x2 micron with 5 degrees between Hdc & Htrans. 1-360
85. 10x2 micron with 10 degrees between Hdc & Htrans. 361-end
86. 10x2 micron with 10 degree between Hdc & Htrans. 1-360
87. 10x2 micron with 5 degrees between Hdc & Htrans. 361-end
88. lx.2 micron reversal. 0-36
89. lx.2 micron reversal. 360-end
90. 10x2 reversal. Sample is reversed
91. 10x2 reversal. Sample is reversed
92. lOx 3.5 micron with hole in middle. 161-250
93. lOx 3.5 micron. Edge BCs. Gradient does not match experiment. 81-160
94. 1 Ox 3.5 micron. Gradient matches experiment, switching back
95. lOx 3.5 micron. Gradient matches experiment. Sample is reversed 
96: 10x2 micron with two holes. 31-end
97. 10x2 micron reversal. No gradient. 370-end
98. 10x2 micron reversal. No gradient. 1-370
99. 10x2 micron reversal. With gradient. 360-end
100. 10x2 micron with 1 pixel hole in middle. FFT fixed. 341- end 
101.10x2 with anisotropy files for Roger Hunt movie
102. 10x2 control run no hole. 341- end
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103. 10x2 control run no hole. 1-80
104. 10x3.5 run for Roger Hunt movie. Gradient does not match experiment
105. 10x2 reversal. 100 Oe. Reversed region
106. 1 Ox 3.5 micron reversal. 100 Oe. 1-80
107. 10x2 control run 161-250
108. 10x2 micron with 1 pixel hole in middle. 341-end 
109 10x2 micron with 1 pixel hole in middle. 341-end
110. 10x2 micron with 1 pixel hole in center. 1-341
111. 10x2 micron with 1 p ixel hole in center. 1-80
112. 10x2 micron with 1x3 cell hole in center. 1-341
113. 10x2 micron with two holes. 341-end
114. 10x2 micron with two holes 1-341
115. 10x2 micron with two holes 1-341
116. 10x2 micron with two holes 341-end
117. 10x3.5 micron reversal. Switching back
118. 10x3.5 micron reversal. Edge cell BCs. Switching back
119. 10x3.5 micron reversal. Gradient does not match experiment. Edge cell BCs. Switching back
120. 10x3.5 micron reversal. Gradient does not match experiment. Edge cell BCs. Sample is reversed
121. 10x2 micron reversal. Sample is reversed.
122. 10x3.5 micron with hole in center 1-28 time steps
123. data for iris explorer movie with 10x2 control and hole side by side
124. lOx 3.5 micron. Edge BCs. 1-80
125. 1 Ox 3.5 micron. Edge BCs. Gradient does not match experiment. Rising edge of pulse
126. lOx 3.5 micron. Edge BCs. Sample is switching back
127. lOx 2 micron with 3x1 cell hole in middle. 341-end
128. lOx 2 micron with 3 x 3  cell hole in middle. 1-341
129. 10x2 micron with 3x 3 cell hole in middle 341-end 
130: 4 x 4  micron circle 512x512 cells FMR 226-293 
131: 4x4 micron circle. 256 x 256 cells FMR
132. 4x4 micron circle 512x512 cells FMR 294-end
133: 8 micron circle. 128x 128 cell FMR
134: 10x2 micron ellipse attempt FMR. Defect at one focus
135: data used for FMR comparison 1-64
136: data used for FMR comparison 65-80
137: 8 micron circle. FMR 0-69
138: 8 micron circle FMR 7-end
139: 8 micron circle FMR 1-69
140: 8 micron circle FMR 7-end
141: 8 micron circle with Biot Savart field 7-end
142: 8 micron circle with Biot Savart field 1-69
143: 8 micron circle FMR with Mz remnant in pulse direction 1-69
144: 8 micron circle FMR with Mz remnant in pulse direction 7-end
145: 8 micron circle FMR 7-end
146: 8 micron circle FMR 1-69
147: 8 micron circle FMR 7-end
148: 8 micron circle with Biot Savart 1-69
149: 8 micron circle FMR 1-69
150. i05 movie. Data run with BC Choi.
151. lots of movies. FMR and reversal plus quicktime installer
152. 20 degrees between Hdc & Htrans movies
153. movies. FMR, 10x3.5 micron reversal.
154. 10x2 micron movies from Sept 10/99
155. finr and control movies and data
156. movies. FMR no exchange, hole, and 10 degree between Hdc and Htrans 
157.10x2 micron. 2 degrees between Hdc & Htrans. 1-360
158. 10x2 microns 30 degrees between Hdc & Htrans 1-360
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160. FMR 8 micron circle. Biot Savart. Edge BCs. 1-69
161. FMR 8 micron circle Biot Savart Nearest Neighbor BCs 1-69
162. FMR 8 micron circle. Biot Savart Nearest Neighbor BCs 7-end
163. FMR 8 micron circle. Biot Savart Edge BCs 7-end
164. FMR 8 micron circle, initial state has Mz remnant along pulse direction 69-end
165. FMR 8 micron circle, initial state has Mz remnant along pulse direction 1-69
166. FMR 8 micron circle 1024 x 1024 cells. 72-88
167. FMR 8 micron circle 1024x1024 cells 55-71
168. FMR 8 micron circle 1024 x  1024 cells. 4-55
169. FMR 8 micron circle 1024 x 1024 cells 23-39
170. Thermal runs 1 x 0.2 microns
171. Thermal runs
172. Thermal runs
173. Arrhenius Neel test
174. Arrhenius Neel test
175. Thermal noise. Averages and standard deviations of thermal runs
176. Thermal runs
177. Arrhenius Neel test
178. Attempted 10x2 micron thermal runs
180. lOx 2 micron reversal with gradient. 1-370
181. FMR 8 micron circle 1024 x 1024 cells 0-22
182. FMR 8 micron circle 1024 x 1024 cells 89-99
183. FMR 8 micron circle 1024 x 1024 cells 56-71
184. FMR 8 micron circle 1024 x 1024 cells 23-39
185. FMR 8 micron circle 1024 x 1024 cells 0-22
186. FMR 8 micron circle 1024 x 1024 cells 89-end
187. FMR 8 micron circle 1024 x 1024 cells 72-88
188. FMR 8 micron circle 1024 x 1024 cells 89-end 
189 FMR 8 micron circle 1024 x 1024 cells 71-88
190. Standard Problems runs 2 & 3
191. Standard Problems run 1
192. FMR 8 micron circle 1024 x 1024 cells 4-55
193. FMR 8 micron circle 1024 x 1024 cells 29-39
194. FMR 8 micron circle 1024 x 1024 cells 1-22
195. FMR 8 micron circle 1024 x 1024 cells 56-71 
200: Data D:\data and D:\userfiles July 2/1999 
201: Hobie backup 98/10/15
202: Experimental data July 16, 1999
203: Ismack 2001 presentation
204: Programs written by Kathryn Oseen-Senda
205: Hobie backup 98/10/15
206: Journal of Magnetism and Magnetic Material special issue June 2000 
207: Programs written by Kathryn Oseen-Senda 
208: Simulations as of when Andrzej left
209: SEM images from George Braybrook, matlab data and images
220: 10x2 micron reversal. 1024x256 cells. 35-414
221: 10x2 micron reversal. 1024x256 cells. 1-162
222: 10x2 micron reversal. 1024x256 cells 414-96
223: 10x2 micron reversal. 1024x256 cells. 162-22
224: 10x2 micron reversal. 1024x256 cells. 285-35
225: 10x2 micron reversal. 1024x256 cells. 96-end.
226: 10x2 micron reversal. 1024x256 cells. 4-55 
227: 10x2 micron reversal. 1024x256 cells. 22-286
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