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Abstract 

Let A be a uniformly discrete point set in Rd with multiple colours. Then its 

weighted two-point correlation measure and its diffraction measure are determined 

by its structure. The inverse problem for A is to determine the structure of the 

point set A by using its weighted two-point correlation measure. However, the fact 

is that knowing only the two-point correlation measure usually is not enough to do 

this. One principal purpose of this thesis is to understand what underlies this fact. 

We will show that if the frequency of every local patterns of Pf™ (the space of all 

r-uniformly discrete m-coloured point sets) exists at A, then A uniquely determines 

a stationary probability measure // on V™ . This measure /J, contains the basic 

information of the structure of A. 

Moreover, /j, uniquely determines a stationary point process (X, Md,/i), where 

X := supp(/u). In the case that /i is ergodic, we will prove that the n + 1-point 

correlation measure of the point process is equal to the n-th moment of the Palm 

measure for n = 2,3, This result generalizes Gouere's argument for the case 

that n — 2. Meanwhile, basing on Steven Dworkin's argument that the diffraction 

of typical point sets comprising X is related to the dynamical spectrum of X, we will 

prove that there exists an Kd-equivariant, isometric embedding that takes the L2-

space of Rd under the diffraction measure into L2(X, //) and the algebra generated in 

L2(X, fj,) by the image of this embedding is dense in L2(X, y). It will follow that the 

full information about fi is available from the weights and the set of all correlations 

(that is the two-point, three-point,..., correlations). This thesis will end with a 

discussion about two particular point processes. 
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Introduction 

Discrete closed point sets are natural idealized abstractions of atomic structures of 
physical materials. We consider the space of discrete closed point sets satisfying the 
hard core condition that there is a positive lower bound to the separation distance 
between the individual points. In practice, such a set would be in 2 or 3 dimensional 
space, but for our purposes we shall simply assume that it lies in some Euclidean 
space Rd. The main objective of this thesis work is to study the space of r-uniformly 
discrete point sets with long range order. 

The existence of long range order aperiodic structure in the physical world was 
first established by D. Shechtman and his coworkers in 1982, by presenting a point­
like diffraction picture (similar to Figure 1) with an unusual fivefold symmetry (im­
possible for crystals) produced by samples from an Al-Mn alloy which had been 
rapidly cooled after melting. Such materials are now called quasicrystals. 

In mathematics the phenomenon of the long range order was investigated much 
earlier than the discovery of the quasicrystals. However, these investigations mainly 
focused on almost periodic functions in harmonic analysis and on aperiodic tilings. 
The study of the point sets with long range order was inspired by the discovery 
of quasicrystals and has been supported by harmonic analysis and the theory of 
aperiodic tilings since its birth. 

One ultimate goal of this study is to determine the structure of a point set with 
long range order based on the information from its diffraction picture. This is the 
so-called inverse problem for quasicrystals. However, this problem is not well 
formulated since in many cases the information from the diffraction picture of a 
unknown point set is not enough to determine the structure of the point set. One 
main task of this thesis is to address this problem by reformulating the inverse 
problem in terms of stochastic processes and seek an answer for it. 

We start this with a mathematical model for diffraction. From the point view 
of physics, the diffraction of a point set is a result of the interference of waves 
originating, by scattering, from points in this point set. Formally, we think of each 
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Figure 1: A diffraction picture of Aluminium 70-Cobalt 11-Nickel 19 (Al-70, Co-11 
Ni-19), C. Beeli 

contributing wave function as the Fourier transform of a Dirac measure supported at 
some point of the point set. In the case of a lattice, the intensity of the interference 
of these waves can be modeled as multiplied by the density of the lattice with the 
sum of all Dirac measures corresponding to the points in the dual lattice. However, 
many mathematical problems arise when we move from crystals to quasicrystals. 
Specifically, the sum of the Dirac measures supported on a aperiodic point set might 
not be Fourier transformable. Even if it is Fourier transformable, it is hard to assign 
any physical meaning to it. 

The current generally accepted mathematical formulation of the diffraction was 
proposed by A. Hof [23, 24]. In his papers, the notion of an averaged two-point 
correlation measure of a point set was introduced to avoid these problems. If a 
two-point correlation exists, then it is a positive and positive definite measure. By 
Bochner's theorem [46], such a measure is Fourier transformable and the Fourier 
transformation is a positive measure called the diffraction measure. By [6], a 
diffraction measure is always translation bounded. Moreover, it can be decomposed 
into three parts with respect to the Lebesgue measure: a pure point measure, an 
absolutely continuous measure, and a singular continuous measure. 

We call a point set admitting a diffraction measure a diffractive point set. In 
particular, if the diffraction measure is discrete (or equivalently pure point1), then 
we say that the point set is pure point diffractive. 

It is quite general that two distinct point sets may have the same diffraction 
measure. A known example is the Rudin-Shapiro sequence and a point set from the 

1It implies that a point-like diffraction picture can be expected to be observed in a lab. 
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Bernoulli system (with p = | ) , see [1]. They are very different2. But their diffraction 
measures are both composed of a discrete part and a fraction of Lebesgue measure 
and are exactly the same. This happens also even among pure point diffractive 
point sets, see [3]. In each of these cases, the diffraction measure does not uniquely 
determine a point set. 

Thus, we turn to consider another measure produced by a point set with long 
range order which mainly characterizes the point set. But before this, let us lay down 
the general setting for this thesis first. We start this by introducing the notion of 
r-uniform discreteness. Let r > 0 and let Cr denote the cube 

Cr = {x = (xi,..., xa) € Rd : \xi\ < - for all i}. 

A C Rd is /--uniformly discrete if for all x e M.d, card((x + Cr) f) A) < 1. Let Vr 

denote the set of all r-uniformly discrete subsets of M.d. Often r-uniform discreteness 
is stated in terms of balls instead of cubes, but this makes no intrinsic change to the 
concept and cubes are generally more convenient for us in this thesis. 

We also wish to consider point sets in which the points can be of various types 
or colours. We define this precisely later in Section 1.4, but the idea is intuitively 
obvious. When we speak of r-uniform discreteness for coloured sets, we mean r-
uniform discreteness when the colour is ignored. 

From now on, we consider those point sets constituted from a finite number of 
different types, or colours, of points, each of which has its own scattering strength. 
Such a point set is called an m-multi-colour set, or simply, a m-multiset. The 
set of all r-uniformly discrete m-multisets is denoted by Vr • Then the set Vr can 
be thought of as the set of all r-uniformly discrete single-colour point sets. 

It is known that Vr is a compact topological space when equipped with the 
natural topology (local topology), which is used for the construction of dynamical 
systems in the theory of tilings and Delone point sets. Moreover, the translation 
action of M.d is continuous on the space Vr and Vr is an invariant of it. Thus, the 
couple (Vr ,Rd) forms a topological dynamical system, which serves as a general 
background for all measure-theoretic dynamical systems of point sets from V\ • 

Now we come back to a point set with long range order in Vr . The measure 
that we need characterizes the structure of the point set by signifying the collection 
of all local clusters occurring in the point set and their frequencies. It will also 
appear as an invariant probability measure for a dynamical system of point sets 
inside Vr . To determine this measure, we consider the dynamical system as a 

2The Rudin-Shapiro sequence is deterministic and the Bernoulli system is random. 
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point process, in which we think in terms of a random variable whose outcomes are 
the various (single colour or m-multicolour) point sets. 

It is standard in the theory of point processes to model the point sets involved 
as point measures A = X^e/ i^i s o ^na^ ^ *s ^n e support of the measures that 
correspond to the actual point sets. This turns out to be very convenient for sev­
eral reasons. The most natural topology for measures, the vague topology, exactly 
matches the local topology (Prop. 2.3.1). Ultimately, to discuss diffraction, one ends 
up in measures and the vague topology anyway, so having them from the outset is 
useful. It is easy to build in the notion of colouring and weightings into measures. 
Most of all, according to the theory of point processes, the probability measure (the 
law) of a point process is determined by a family of finite dimensional distributions. 
We will use this fact to define an Rd—invariant probability measure directly from 
a specific point set A € Vr . The main procedure and the basic idea are outlined 
as follows (the details are left to Chapter 2). For simplicity, here we assume A is a 
single colour uniformly discrete point set, i.e., A € Vr. 

Let {p(Ai,... ,An;ki,... ,kn)} be a family of values for each finite sequence 
(Ai,... ,An) of pairwise disjoint n semi-open rectangles in Rd and each sequence 
(fci,...,fc„) of n nonnegative integers, n € N. According to [37], there are six 
conditions on the family of values {p(A\,..., An; k\,..., kn)} that are necessary and 
sufficient for it to uniquely determine a family of finite dimensional distributions 
(these are given in Proposition 2.4.1). We will prove that for a point set A € Vr, 
the limit values 

p(Ai, ...,An;ki,..., kn) := lim 7 7 7 ^ ( 0 e CR '• A(* + Ai) = kvJ = *> •••>"}) -

(0.0.1) 
satisfy these six conditions, if they exist. Thus, these values define a probability 
measure on Vr, being determined by the point set A. We denote this measure 
PA- Just as we expected, /J,A is an invariant of the translation action group M.d and 
hence it determines a measure-theoretic dynamical system on T>r. In particular, 
when A is a uniformly recurrent point set with respect to (X>r,R

d), the resulting 
measure-theoretic dynamical system is minimal. 

In the case that A is of finite local complexity (FLC) (see Section 1.1.1 for the 
definition), the knowledge of HA is effectively the same as the knowledge of the 
frequencies of the local clusters of A. This shows that in this case the frequencies of 
local clusters do essentially characterize the structure of the point set A. 

Now let JA denote the diffraction measure of A. The inverse problem for A is 
essentially the question how to determine the measure \IA by knowing 7^. Since 
the diffraction measure JA is determined by the two-point correlation measure, we 
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equivalently look at the relationship between the two-point correlation measure 7^ 
and the measure HA-

This relationship is indirectly illustrated by Steven Dworkin's argument, see 
[16] and corollary 4.1.4. The main idea of this argument is the following. Let 
X = supp(/iyi). X is a compact subset of Vr. The triple (X, Rd, HA) forms a topo­
logical and measure theoretical dynamical system. We assume that the dynamical 
system (X, Rd, ^A) is ergodic, i.e., it is measure-theoretically irreducible. Steven 
Dworkin's argument relates the diffraction of the typical point sets comprising X to 
the dynamical spectrum of X, which is determined by the measure \x and the group 
action of Rd. 

Gouere [21] proved that for a realization A (point set) in an ergodic point process 
(X, R6*,^), the two-point correlation measure 7^ exists ^-almost surely, and if it 
exists, then it is equal to the first moment measure of the Palm measure of (J,A, 
which can be regarded as the conditional probability measure of HA on the subset 
{A' € X : 0 G A'}. We denote by (i\ the first moment measure of the Palm measure 
of HA and think of the measure ji\ as the two-point correlation measure of the point 
process itself instead of individual point sets in the point process. By this, we can 
avoid to use the word "almost surely" so often. Moreover, this provides a better 
setting for us to reconsider the question about the relationship of the two measures. 

We shall show that what underlies Steven Dworkin's argument is a certain iso­
metric embedding 6 of the Hilbert space L2(M.d,(ii) into L2(X,/J,A)- Both of these 
Hilbert spaces afford natural representations of Rd, call them Ut and Tt respectively 
(t £ Rd). Representation T arises from the translation action on Rd and U is a 
multiplication action which we define in (4.1.2). The embedding 6 intertwines the 
representations. However, 6 is not in general surjective, and in fact it can fail to 
be surjective quite badly. However, one fundamental result of this thesis is that 
the algebra generated by the image of L2(Rrf,/ti) under the embedding mapping is 
dense in L2(X,fi). Applying this theorem, we will easily give another proof to the 
main theorem of the paper [34] that if (i\ is P u r e point, then the linear span of the 
eigenfunctions of T is dense in L2(X, fx). 

Obviously, the measure /ii is determined by the law /̂ . But to determine ji, we 
need other information besides (i\ in most cases. This comes in the form of the 
so-called higher correlation measures of the point process. 

To help the reader get a basic idea about these correlation measures, we introduce 
a higher correlation measure of a point set first and it will lead to the definition of the 
correlation measure of the point process, just as the two-point correlation measure 
does. For simplicity, we consider a point set A € VT having finite local complexity. 
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For n > 1, if a (n + l)-point correlation measure of A exists, it has the form that 

(xi,...,Xn)€Sn 

where S™ := {(xx,... ,xn) : Bzo E A,xt + xo E A,i = 1,... ,n} and n(xx,... ,xn) is 
equal to the frequency of the occurrence in A of local cluster {0, x\,..., xn} under 
translation. When n > 2, we call such a measure a higher correlation measure. 
Similar to 74 = fit, //-almost surely for A E X, we have 7^+1 = fin, where fin 

is the nth moment measure of the Palm measure. Thus, we call fin the (n + 1)-
point correlation measure of the point process. By the Palm measure theory, the 
(n + l)-point correlation measure (xn is the (n + l)th reduced moment measure of the 
measure fj,. The first moment measure of the law is just the intensity of the point 
process times Lebesgue measure and is derivable from the higher moment measures. 

Finally, we will prove that for a known (or given) ergodic point process, its 
law is uniquely determined by all its correlation measures. This result not only 
demonstrates the relationship between correlation measures of a point process and 
the law, but also indicates a direction to the inverse problem for uniformly discrete 
point sets with long range order; that is, to determine the structure of such a point 
set, we may need only to consider the higher correlation measures. 

Generally, for a collection of correlation measures of some point set, there is 
an issue about the existence and uniqueness of an ergodic point process admitting 
the same correlation measures. We call it the determination problem for the 
correlations. In this thesis, we will focus on the uniqueness of an ergodic point 
process for a collection of correlation measures and call it the unique determina­
tion problem for the correlations. In particular, we will consider the uniqueness 
of an ergodic point process for a finite set of correlation measures and call it the 
unique finite determination problem for the correlations. 

The best situation is that a point process can be uniquely determined by the two-
point correlation measure of the point process (i.e., a two-point correlation measure). 
However, as we have pointed out, this is not true in general. For pure point diffractive 
point sets, physicist D. Mermin [38] argued that its structure ought to be determined 
by its two-point and three-point correlation measures. This statement has been 
confirmed by the recent work of D. Lenz and R.V. Moody based on the results of 
this thesis with one more assumption on the diffraction, namely that there is no 
extinction of the Bragg peaks. In this thesis work, in Section 6, we show that the 
first k + 1 correlation measures of a point process uniquely determine an fc-step 
Markov process. We will also prove that a point process generated by a model set 
is uniquely determined by its 2-point and 3-point correlation measures. 
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This thesis is organized as follows. In Chapter 1, we will give a basic intro­
duction to diffraction theory by emphasizing several important types of point sets. 
In Chapter 2, we will build up a dynamical system of point sets after we define 
an invariant probability measure of the translation group Md on Vr determined 
by a specific point set. In Chapter 3, we will discuss the relationship between the 
diffraction measure and the law of the point processes. In Chapter 4, Dworkin's ar­
gument, which was briefly stated in Section 2.6, will be revisited. In Chapter 5, the 
square-mean Bomberi-Taylor conjecture and a strange inequality will be presented. 
This thesis will finish up with some discussion about the unique finite determination 
for correlation measures known to be produced by a special point process: a k-step 
Markov process. 

The content of Chapter 3, Chapter 4 and Chapter 5 come from my joint work 
[14] with my supervisor Dr. Moody. The content of Chapter 6 comes from my paper 
[13]. These constitute the original research contributions of the thesis. 
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Chapter 1 

Discrete closed point sets and the 
diffraction theory 

Introduction 

Start with Rd endowed with its usual inner (dot) product, and metric given by the 
Euclidean distance \x — y\ between points x, y E Rd. For x € Rd, we let BR(X), CR(X) 

denote the open ball of radius R and the open cube of edge length R and centered at 
x in Kd. For simplicity, we often write BR,CR for BR(0), Cij(O). Lebesgue measure 
will be indicated by £. Closures of sets in Rd is denoted by overline symbols. The 
overline also represents complex conjugation in this thesis, but there is little risk of 
confusion. 

The main purpose of this chapter is to give a basic introduction to the theory of 
the diffraction on discrete closed point sets. This includes the r-uniformly discrete 
point sets. In general, a discrete closed point set of long range order is mainly 
characterized by its density, clusters and frequencies of the occurrence of its clusters, 
and so on. Local isomorphism is an equivalence relation defined on the space of 
discrete closed point sets. 

Although in many articles, the notions of cluster and pattern are treated as the 
same, they have distinct meanings in this thesis. A cluster P is a finite set of points 
P := {0,pi , . . . ,pn} C M.d and a typical pattern is a pair (P, V), where P is a cluster 
and V is a neighbourhood of the origin. More details on patterns will be discussed 
in Chapter 2. 

Several important types of point sets with long range order including model sets 
and substitution point sets will be discussed in this chapter to help a reader who is 
new to this field. We will also discuss the diffraction theory of two random systems: 
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the Bernoulli system on Z and a random system on a model set. This will help us to 
move from a deterministic point setting to a random point setting. The Fibonaaci 
set will appear in several sections in this chapter and basically it will serve as a 
typical example both of a model set and a substitution point set. 

1.1 Discrete closed point sets 

For s E Rd and A, B C Rd, define s + A := {s + x : x € A} and A + B := {z G Rd : 
z = x + y,x e A,y £ B}. Denote by card(j4) the cardinality of the set A. 

Let A be an infinite point set on Rd. If for all R > 0, a G Rd, card((Cf l+a) n/1) < 
oo, then we call A a discrete closed point set1. We define the density of A by 

, , , .. card(CHnyl) 
dens(yl) := hm V f \ 

R^oo 1{CR) 

if the limit exists. 
A is uniformly discrete if and only if there is a r' > 0 so that A is r'-uniformly 

discrete, i.e., for all a e Rd, card((Cr/ + a) D A) < 1. /I is relatively dense if and 
only if there is a compact set K C Ed so that K + /l = Rd, or equivalently, there is 
a R > 0 such that for a G R6*, card((Ci? + a) C\ A) > 1. II A is uniformly discrete 
and relatively dense, then we call A a Delone set. 

1.1.1 Clusters and their frequencies 

Let A be a discrete closed point set. 

Definition 1.1.1. For a relatively compact set K C Rd containing the origin and 
t 6 K n A, the finite set P := (—t + A) DK is called a cluster of A. 

It is clear that P is a finite subset of (A — A) and 0 € P. For such a cluster P, if 
there is a point s G A such that (—s + A) DK = P, then s is called a translation 
vector of P . 

If for all R > 0, card{P' : P' = {-t + A) n(JR~,t e A} < oo, (there are a 
finite number of clusters appearing in the cube CR relative to the positions of A), 
or equivalently, card((yl — A) n CR) < oo, then we say that A has finite local 
complexity (FLC). 

If for each cluster P of A (or equivalently, for each cluster P of the form A n 
CR,R > 0), the set of all translation vectors of P is relatively dense, then we say 
t h a t A is r e p e t i t i v e . 

1This inequality is called the local finiteness condition. 
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Let A be a discrete closed point set with FLC and let P be a cluster of A. 

Definition 1.1.2. If the limit 

,. card{£€ BRnA:PC (-t + A)} 
1™ b , ,„ , — 

R^oo I (BR) 

exists, then we call it the frequency of P and denote it by freq(F, A). 

In particular, if the limit 

cardft 6 (o + BR) n A : P C (-t + A)} 
R-* oo 1(BR) 

exists uniformly for all o € Kd, then we say that P has a uniform frequency in 
A. If all clusters of A have uniform cluster frequency, then we say that the point set 
A has uniform cluster frequencies (UCF). 

1.1.2 Local indistinguishability 

Let A be a discrete closed point set in Rd. We define a set YA := {A' C Rd : 
for all compact sets K C Rd, there exists £ € Rd, such that yl' n K = (-t + A) n 

i f} . Two point sets AX,A2 is locally indistinguishable2 (LI) if and only if Ax S 
V/ia and /I2 € V^. This defines an equivalence relation on all discrete closed point 
sets. The equivalence class of A with respect to the locally indistinguishability is 
called the LI class of A and is denoted by [yl]. 

For example, we consider the point set A := Z+U(2Z~), where Z + denotes the set 
of nonnegative integers and Z~~ denotes the set of negative integers. By observation, 
Yz c YA, but Yz £ YA. So, A is not LI to Z. 

1.1.3 Example: the Fibonacci chain 

The Fibonacci symbol sequence a = {OI„}N can be given as a limit3 of a sequence 
of words {Pn}n of two symbols {a, b} satisfying the following induction rules: 

2. fin :=/3„_i+/3„_2, f o r n > 2 , 

2 Or locally isomorphic 
3With respect to the partial order given by that x < y if y contains x as its beginning. 
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a b a a b 
• » • • • -

Figure 1.1: The one sided Fibonacci chain 

where "+" is the operator catenating two words. The first few terms of the sequence 
{(3n}N are: 

a, ab, aba, abaab, abaababa,... 

Note that {zn : zn = card(/3„)} is the famous Fibonacci number sequence and 
we have that 

l i m - ^ - = T, (1.1.1) 

where r = ^ ^ and £ is the golden ratio. 
The Fibonacci symbol sequence is a recursive sequence. Let t be a finite subword 

of it. There exists a positive integer N such that i c f r If we rewrite the sequence 
a as follows, 

<* = @N+1 + PN + PN+1 + PN+1 + PN + • • • , 

then it is easy to observe that there is at least one (3^ in each subword with length 
ZJV+2- As a consequence, t appears in every subword with length ZJV+2- We have 
that the Fibonacci symbol sequence is repetitive. 

Definition 1.1.3. The one sided Fibonacci chain {£„}o° on the real line is 
defined on [0, oo) by that: to = 0, and for n G N 

*»:=*«-!+{:• lf;n=a
h (i.i.2) 

^ 1, ifan = b. 

It is demonstrated by Figure 1.1, where a — r, 6 = 1. 
Because r and 1 are integrally independent, i.e., the equation xr + y = 0 has 

only the trivial solution on Z2, there is a one-to-one correspondence between the 
clusters of A and the finite subsequences of the Fibonacci symbol sequence {a„}N. 
It is convenient to represent a cluster of the Fibonacci chain by a subword from 
the symbolic sequence. By observation, these subwords of the Fibonacci symbolic 
sequence form a tree demonstrated by Figure 1.2. 

Definition 1.1.4. A two sided Fibonacci chain is a bi-infinite sequence from 
{a, b} which is LI to the 1-sided Fibonacci chain. 
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a b 

Figure 1.2: The local clusters tree 

Lemma 1.1.5. A two sided Fibonacci chain is a repetitive Delone set with FLC. 

PROOF: Let A be a two sided Fibonacci chain. Obviously, A is a Delone set. It 
has FLC since the distance between any two points is of the form mr + n, m,n E Z + , 
and hence A — A is a uniformly discrete set. Finally, A is repetitive because the 
Fibonacci symbol sequence is repetitive. • 

It is known that a two sided Fibonacci chain has UCF. The frequency of the 
occurrence of each cluster in two sided Fibonacci chain is equal to the frequency of 
the occurrence of this cluster in the one sided Fibonacci chain. We will see this later 
from the aspect of model sets. 

Let A be a two sided Fibonacci chain. Now we compute the density of it and the 
frequencies of two clusters: {0,r} and {0,1} represented by a and b respectively. 
Note that card(/3n) = zn, card{a € (3n} = z„_i, card{6 € /?„} = zn_2 and zn = 
zn_i + 2„_2- By (1.1.1), we have 

dens(yl) = lim 
n—oo Z „ _ 2 + Z„-i • T 

_ T 

2 r - l " 
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Similarly, we have 

freq(a) = lim -
" - 0 0 Zn-2 + Zn-1 ' T 

and 

r + 2' 

freq(6) = lim 

(1.1.3) 

n^oo zn-2 + Z„-l • T 

Note that we have chosen a special sequence {zn} in above limits. However, 
these limits also exist with respect to the sequence Z. At the end of this chapter, we 
will prove that the one sided Fibonacci chain is actually the right side of a model 
set and we have a much easier way to compute the frequencies of its clusters, which 
leads to the same result. 

1.2 The introduction of diffraction theory 

1.2.1 The diffraction of crystals 

In general, a lattice in Rd is a discrete subgroup that spans Rd. Thus it has the 
form {^j=i ° w K € Z}, where {v\, • • • ,1^} is a basis of Wd. Let £ be a lattice in 
Rd. The dual group of £ or the reciprocal lattice of C, denoted by £°, is defined by 

C° := {k 6 Rd\k • s e Z, for all s G £} . (1.2.1) 

From the point view of physics, the diffraction phenomenon is a result of inter­
ference of waves with a given wavelength along all unobstructed paths. A simple 
wave function propagating along the direction represented by a unit vector k with 
the initial phase zero is of the form 

V?(r, t) = A exp {i(2nk • r - ut)}, r 6 Rd, 

where A is the amplitude of the wave, u is frequency of the wave, and t denotes the 
time. The interference of two waves originating from two lattice points is determined 
by their phase difference, which is caused by the relative positions of the two points. 
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As a consequence, the intensity of the interference of all waves, i.e., the space 

average of | J2r€C f(r' 0)l2> a l°ng the direction x € ~Rd is 

I(x) : = lim , . ^ .A > exp {2mx • r] 
R^oo UCR) *-" , v HJ r6(£-£) 

= Adens (£ )^exp{2?r ix - r} . (1.2.2) 

We point out that the right hand side of equation (1.2.2) is just a formal expres­
sion. It should be treated as a measure and the limit is taken in the vague topology. 
The justification will be given after the Poisson summation formula (1.2.4). 

For a general discrete closed point set A, we define 5A as the countable sum 
YlxzA^x' where 5X is the delta measure supported at {x}. 5A is called the Dirac 
comb of A. Similarly, let 5c '•= Ylxec° ^ - By the Poisson summation formula 
for lattices [2], 

5c = dens{C)5Co, (1.2.3) 

where 5c denotes the Fourier transform of the measure 5c- Meanwhile the Fourier 
transform term-by-term of 5c is equal to 

to = X>xp{27m/-a;}. (1.2.4) 
yzc 

To understand the right side of the above equation, we need to treat the measure 
5c as a tempered distribution, i.e., 5c is a linear functional of the Schwartz space 
§(Kd) of rapidly decreasing C°° functions4. The Fourier transform of a tempered 
distribution v is denned by 0(f) := i/(f) for all Schwartz functions / . An important 
property of the Fourier transform on tempered distributions is that if {un} —> UQ 
in vague topology5, then {i/^} —> UQ in the vague topology. Since for all Schwartz 
functions / , 

<U/) : = /(so) = / e-2"™f(y)dy 
JVLd IRd 

= e-27ra°-(,)(/). 

Hence, 5Xo(x) is equal to e~
27rx°'x as a measure. Now we take vn \— J2xecR n£^> 

where Rn —> oo and VQ := Ylxec^- Then {un} —> v0 vaguely. Then we get the 

4S(Kd) D Cc(Rd) is densely embedded in the space of continuous functions of compact support, 
Cc(Rd). 

5It means that {vn}{}) -» u0{f), for all functions / € S(Rd). 
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formula (1.2.4) and as we pointed out before, the right side of (1.2.4) makes sense 
as being a limit of measures under the vague topology. 

Combining equation (1.2.3) and equation (1.2.4), we obtain that 

I = A(dens(C))25c°- (1.2.5) 

It says that there are sharp peaks (Bragg peaks) at every point of the dual lattice, 
C°, and all of them have the same weight ^4(dens(£))2. We define the diffraction 
measure of £ as the measure (dens(£))2<!J£o. The big difficulty for us to extend this 
definition to an aperiodic point set is that there is no Poisson summation formula 
for a general aperiodic point set. 

1.2.2 The diffraction of a discrete closed point set 

Let A be an infinite discrete closed point set. We define the operator " ~ " acting 
on all functions on Kd as f(x) := f(—x) and acting on all measures on M.d as 

Hf)-=W)-
Definition 1.2.1. (See [24].) If the limit 

y R> \x,yeAncR J 

exists6 in vague topology, then we call this limit the 2-point correlation measure 
(or the autocorrelation measure) of A relative to {CR} and denote it by j \ . 

Although we won't need them in this thesis, it is possible to average over more 
general sequences than cubes. One commonly used class of type of averaging se­
quences are the van Hove sequences (of which the cubes are an example). Denote 
A0 the interior of A and Ac the complement set of A in M.d. 

Definition 1.2.2. If A and K are compact subsets, then the K-boundary of A is 
defined by 

dKA:={K + A)\A°U{{-K + A~c)r\A). (1.2.7) 

6Usually, a two-point correlation measure depends on the averaging sequence it chosen. Two 
different averaging sequences may yield two different two-point correlation measures. But we will 
not worry about such an issue in this thesis. Simply we will just use one fixed averaging sequence 
in this thesis and if the limit exists with respect to that averaging sequence, then we call it the 
two-point correlation measure of the point set. 
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Remark 1.2.3. Both (K + A) and —K + Ac are compact because a compact set 
"plus" a closed set is a compact set. As a consequence, dKA is compact. We point 
out that it is not always true that the sum of two "closed" sets is a closed set. For 
example, let A := Z\/2 and K := Z. Both A and K are closed, but A+K = Z+Z\/2 
is not closed. 

Definition 1.2.4. A sequence of compact subsets {Vn C Rd} is called a van Hove 
sequence if it satisfies that 

1- VncV°+1forn = l,2,---; 

2. l(Vn) > 0, l{Vn) -> oo as n -> oo; 

3. For all compact sets K, lim„_>oo ' ^ ( v ^ = 0-

Now we are ready to define a more general 2-point correlation measure of A as 
follows. 

Definition 1.2.5. Suppose {Vn} is a van Hove sequence in Rd. If the limit 

•>*••= £s,im{ E *•**) <128) 

y n> \x,yeAnvn J 
exist in vague topology, then we call this limit the 2-point correlation measure 
(or the autocorrelation measure) of A relative to {Vn}. 

For a fixed A, not all van Hove sequences necessarily give a limit and it is possible 
that we may obtain two distinct limits according to two distinct van Hove sequences. 
But throughout this thesis work, we always consider the 2-point correlation measure 
relative to the sequence {CR} and we simply call it the 2-point correlation measure 
of A 

A function / , defined on Rd, is said to be positive definite if the inequality 

N 

m,n=l 

holds for every choice of x j , . . . , xjy in Ed and for every choice of complex numbers 
CI, . . . ,CJV. See [46]. There are two important properties of the positive definite 
function / : 

. for all t G Rd, \f(t)\ < /(0), 
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\f(t + s)- f(t)\ < 2/(0)Re[/(0) - f(s)}. (1.2.9) 

For a regular measure v on Rd, v is positive if and only if for an arbitrary positive 
function / , u(f) > 0. On the other hand, v is a positive definite measure if and 
only if for any continuous function / with compact support, i.e., / E Cc(R

d), v*f*f 
is a positive definitive function. Obviously, the 2-point correlation measure 74 
is positive. Furthermore, we know that the function of the form g * g,g E L1(Md) 
is positive definitive. Taking gn = [(YjXeAncR <U * / ] / \A(C#) ' w e n a v e that 1A is 
positive definitive by the observation, 

^ R> x,y£AnCR 

and the fact that the limit of a sequence of positive definitive functions is also 
positive definitive. 

By the Bochner theorem (see [46]), 74 is Fourier transformable and its Fourier 
transform is also a positive and positive definite measure. This new measure is called 
the diffraction measure of the point set and is denoted by 7A- Since a diffraction 
pattern is mostly distinguished by its pure point part, it is interesting to know that 
under what conditions, 7A is pure point. The following theorem is an important 
result of the diffraction theory. 

Theorem 1.2.6. If 7 A is almost periodic, then 7A is pure point. 

P R O O F : We only give a sketch of the proof here. For the details, we refer to 

[32]. 
First, for a function g on Rd and e > 0, we define a set ^ e as 

ST^ := {x E Rd : sup \g{y) -g{x + y)\< e}. 
ye«.d 

We call £Fg the set of e-almost periods of g. A function g is called e-almost 
periodic if ^ is relatively dense in Rd. If for every choice of e > 0, g is e-almost 
periodic, then we call g an almost periodic function. 

Next, for a measure u, v is an almost periodic measure if and only if for an 
arbitrary continuous function / with compact support, the convolution v * f is an 
almost periodic function. 

The main theorem in the theory of almost-periodic functions states that every 
almost-periodic function is the uniform limit of trigonometric polynomials. Since 
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the Fourier transform of a trigonometric polynomial is a finite sum of Dirac mea­
sures, intuitively the Fourier transform of an almost-periodic function is a finite or 
a countable sum of Dirac measures. 

Suppose that a measure v is Fourier transformable. Recall that the Fourier 
transform of the measure v can be given by 

Hf) = "(f), 

for / e S(Rd). Moreover, we have that 

zTT/ = v • J. (1.2.10) 

By the assumption, 7,1 is almost periodic, i.e., 7/1*/ is an almost periodic function 
for / G S(Ed). For a compact set K C Rd, there is a Fourier transformable function 
/ € S(Rd) such that f(x) ^ 0, for x € K. Thus, the restriction of the measure v 
on K is equal to (7/1 * / | K ) / ( / | K ) - Since 74 * J\K is pure point, AJA\K is also pure 
point for any K. Therefore, 7^ is pure point. • 

In general, it is not easy to verify a 2-point correlation measure is almost periodic. 
However, in the case of a FLC point set, there is a condition on the 2-point corre­
lation measure coefficient which is sufficient and necessary for a 2-point correlation 
measure being almost periodic. 

Let A be an FLC point set. Since (A — A) n CR is a finite set and 6x*8y — 5x-y, 
the definition of the 2-point correlation of A can be rewritten as 

V HJ x,yeAnCR 

A consequence of the van Hove property of cubes is 

lA •= ^ Z TJz5z = Yl Vz^z, (1.2.11) 
ZE(A-A) ze(Rd) 

where the coefficient r\z is the frequency of the occurrence of the cluster P :~ {0, z) 
in A if z € {A —A) and t]z — 0 otherwise. Then 7^ = f]-Ylze(A-A) $z- By observation, 
for all Fourier transformable functions / € Cc(K

d), JA * / are almost periodic if and 
only if the function rj is almost periodic. Since r\ is positive definite and hence it 
satisfies the inequality (1.2.9), we can equivalently define a e-almost period of r\ by 
that {z : |?7o — J7z| < e}- As a consequence, r\ is almost periodic if and only if for all 
e > 0, the set {z : \r]o — r]z\ < e} is relatively dense. 

Putting all this together, we have the following theorem. 
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Theorem 1.2.7. [23] Suppose that A has FLC and ^A exists. Then 7^ is almost 
periodic if and only if -q is almost periodic, i.e., the set {z : J770 — f]z\ < e} is 
relatively dense for e > 0. In particular, if rj is almost periodic, then 7,1 is a pure 
point measure. 

1.2.3 The Wiener diagram 

It is interesting to see that the new definition of diffraction measures for general 
discrete closed point sets is consistent with the old definition for crystals. For that, 
we draw the following diagram 

u 

FT 

I-
U 
Wiener Diagram 

where u> := 5A and FT is the abbreviation for Fourier transform. This diagram is 
often called the Wiener diagram. One can verify that the two-point correlation of 
the lattice A is equal to dens(A)<5A- By the Poisson summation formula for lattices, 
its Fourier transform is equal to dens(A)2<!>Ac, just as the old definition. So crystals 
make the Wiener diagram commute. 

1.3 Regular model sets and their diffraction mea­
sures 

In this subsection we offer a famous construction of pure point diffraction Delone 
sets by way of an example. 

A locally compact Abelian group is an abelian group G equipped with a 
topology such that G is a Hausdorff space, each point has a compact neighbourhood, 
and the mapping G xG —> G defined by (x, y) y-> x — y is continuous. A lattice C in 
G is a discrete subgroup which is cocompact, i.e., GjC is compact. This definition 
is equivalent to our previous definition for lattices in Rd. 

Definition 1.3.1. A cut and project scheme consists of a direct product M.d x H 
of a real space and a locally compact abelian group H, and a lattice C inM.d x H 
such that with respect to the natural projections p\ : Rd x H —> Rd,p2 : Rd x H —> H. 

* 7w 

FT 

+ 1^ 
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1. p\ restricted to C is 1-1. 

2. P2(£) is dense in H. 

Let M := pi(C). Denoting by (•)* the mapping p2 • (pile)'1, we have (•)* : M —> 
H. The mapping (•)* is a group homomorphism, but in most situations that we 
deal with it is not continuous (anywhere). According [39], we have the following 
definition. 

Definition 1.3.2. Let (M.d x H, C) be a cut and project scheme and let Q be a 
relatively compact set of H with nonempty interior. Suppose A is the point set 
defined by 

A := A(Q) = {pi(z)\z G £,p2(z) G fl}. 

f2 is called the window of A. We usually write this in the slightly simpler form 

A = {x\x* €tt}. 

For every choice oft G U.d, the point set —t + A is called a model set or a cut and 
project set. 

In particular, if A is a model set defined by a window fi whose boundary has 
measure 0 with respect to the Haar measure on H, then we call A a regular model 
set.7 

Lemma 1.3.3. ([41], Lemma 2.5) Let (Rd x H, C) be a cut and project scheme. Let 
U C H be a nonempty open set. Then there is a compact set K in Rd so that 

RdxH = C + (K xU). (1.3.1) 

Proposition 1.3.4. ([41], Proposition 2.6) Model sets are Delone sets. 

PROOF: It suffices to prove that for a model set of the form A = A(Q), where fi 
is some relatively compact set with nonempty interior. By the lemma 1.3.3, there is 
a compact set K in Rd so that Rd x H = C + (K x U), where U := fi°, the interior 
set of a For x e Md, 

(x,0) = (d,d*) + (k,-w), 

for some d G M, k G K, w € ft. Then d* = w G tt gives d G A, and x = d+k G A+K. 
Thus, Rd = A + K and hence A is relatively dense. 

7Although the construction and result below are valid for arbitrary locally compact Abelian 
groups H, the case H = R™ for some n provides numerous useful examples. In these cases Haar 
measure is Lebesgue measure. 

20 



Meanwhile, because Q, is a relatively compact set and £ is a lattice (hence is 
discrete), there is a s > 0 such that for all 0 < t < s, Kt := Bt x (Q — £1) satisfies 
Kt n C = {0}. Thus (A- A)r\Bs = {0}, i.e., A is uniformly discrete. • 

Let A := A(Q) be a regular model set. Since the mapping (•)* is Z-linear, 
A — A C A(fl — fi). So /l — A is uniformly discrete and hence A is a FLC point set. 
As we pointed out before, this implies that the 2-point correlation measure of A, 7A 
has the form 

7A (z) = ^2 VxSx = Yl Vx&x, 
xe(A-A) xeRd 

where the function 77 is defined in (1.2.11). Denote the Haar measure of the locally 
compact abelian group H by ##. The 2-point correlation coefficient r]x can be 
calculated to be 

^ = faq(f) = M O n ^ + n ) ) | ( 1 3 2 ) 

for P = {0,x}, see [40]. Obviously, 170 = 1. 
Therefore, the 2-point correlation measure 7A exists as a limit. Moreover, for 

an arbitrary ball B€, the model set A(Be) is relatively dense. By equation (1.3.2), 
for e > 0, the set z : |?7o — r\z\ < e is relatively dense. According to Theorem 1.2.7, 
we have that the diffraction measure of A is pure point. Since translation does not 
affect correlation, all regular model sets are pure point diffractive. 

In particular, when H = Rfe, k is a positive integer, the diffraction measure is 
given by 

7 * = £ l ° ( * ) l 2 < W ) . (1-3-3) 
kec° 

where C° is the dual group of the lattice C and a(k) is the so-called Fourier-Bohr 
coefficient (or amplitude) 

a(k) = $ ^ # / e-M<"W-v)dy. (1.3.4) 
0 H ( " ) J a 

Note that o(0).= dens(yl). 
It says that the Bragg peaks lie in the projection of the lattice C° into the physical 

space. With appropriate definition of dual lattices, this result applies as well for an 
arbitrary locally compact abelian group. This is due to A. Hof [23], M. Schlottmann 
[47], and [7] in the present proof. 

Theorem 1.3.5. Let A be a regular model set defined by the cut and project scheme 
of Definition 1.3.1 and with window fl. Then A is pure point diffractive with the 

square root of the intensities of the Bragg peaks given by (1.3.4)-
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1.4 Multisets and their diffraction 

1.4.1 General multisets 

In this section we add the notion of "colour" to our point sets. The resulting 
objects are called multisets8. To specify a multiset, we introduce m := { 1 , . . . , m}, 
m = 1,2,3, . . . , which one may intuitively think of as labels for different colours, 
with the discrete topology and take as our basic space the set E := Rd x m with the 
product topology. Thus, any point (x, i) € E refers to the point x of Rd with colour 
i. When m = l w e simply identify E and Rd. Closures of sets in E are denoted by 
overline symbols. Denote the image of a discrete closed point set At C Rd x {i} under 
the canonical projection from Rd x {i} —> Rd by A\, for i = 1 , . . . ,m. A discrete 
closed point set A in E is called a m-multiset if it is of the form: A := U^yl , , 
where Ax c Rd x {i} is a discrete closed set such that the flattening of A defined by 
^ : = \J(Xi)eA{x} C Md is a disjoint union of ylj, i.e., yl̂  :=ii7^=1A\. For convenience, 
we often write A\ as Ai too. But one can tell which one we mean from the context. 

There is the natural translation action of Rd on E given by 

Tt : {t,(x,i))^t+(x,i) := (t + x,i). 

Given A C E, and B C Rd, we define 

B + A :={JbeBTbA c E 

BnA :={(x,i)€A: x€B,iem} C E. (1.4.1) 

Let O := {(0,1), . . . , (0,m)} C E. Then C^ := CR + O is a 'rainbow' cube 

that consists of the union of the cubes (CR,I), i = 1 , . . . ,m. Its closure is C^ . 

Let r > 0. An m-multiset A c E is said to be r-uniformly discrete if for all 
ae Rd, 

card((a + CV)n/l) < 1. (1.4.2) 

In particular this implies that points of distinct colours cannot coincide. The family 
of all the r-uniformly discrete subsets of E will be denoted by Df™ . In the case that 
m = 1, we simply write Vr as Vr. 

At the beginning of this section, we will give a general formula to compute 
the 2-point correlation measure of a multiset if the 2-point correlation measures of 
each component and the so-called 2-point inter-correlation measures of every pair 
of components are given. Treated as a typical example of multisets, the general 

8This is not an entirely standard use of the word multiset 
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substitution Delone sets will be considered. We finish the section by an application 
of the general formula for the 2-point correlation measure of multisets of two random 
systems. 

1.4.2 Diffraction measure of a general multiset 

Let A be an m-multiset and A = U^j/lj, where Ai C ~Rd x {i}. Let w := (101,..., wm) 
be the vector of m real numbers denoting the scattering weights of (A\,... ,Am) 
respectively. Correspondingly, the weighted Dirac comb of A is given as 6™ := 

Analogous to the definition of the 2-point correlation measure of a single colour 
point set, we define the 2-point weighted correlation measure of two point sets with 
distinct colours as follows. 

Definition 1.4.1. For given i,j € m, if the limit 

lim — — (5AincR*5AjncR) (1-4.3) 

exists in vague topology, then it is called the 2-point correlation measure of Ai 

and Ay For convenience, we denote it by jAi,Ay 

When i = j , this definition turns out to be the 2-point correlation measure 
of a single colour point set. 

To compute the 2-point weighted correlation measure of the m-multiset A, we 
assume that for each pair of components (Ai,Aj),i,j € m, the 2-point correlation 
measure of Ai and Aj exists and define the 2-point weighted correlation measure 
of A as 

m 

1.4.3 Substitution Delone multisets and their diffraction 

A natural way in which multisets arise is on substitution point sets. We say that a 
linear map Q : Rd —> Rd is expansive if there is a c > 1 with 

\Qx-Qy\>c-\x-y\, 

for all x,y e Md, see [31]. This is equivalent to saying that all eigenvalues of Q lie 
outside of the closed unit disk of C. 
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Definition 1.4.2. A = \Ji=1Ai is called a substitution Delone multiset (SDM) if A 
is a Delone multiset and there exist an expansive map Q : Rd —• Rd and finite sets 
Dij for i,j <m such that 

m 

A\ = (J(Q/l j + Dtj),i = 1 , . . . ,m, (1.4.5) 

The unions on the right-hand side are to be disjoint. 

An m x m matrix function system (MFS) on a non-empty set Y in Kd is an 
m x m matrix $ = ($„•), where each $ is a finite set (the empty set is allowed) of 
mappings from Y to Y, see [35]. Take $y := {/ : x i-> Qx + a,a E Aj}- We define 
$(/l) := HZiA'i, where A\ C Rd x {i} and yl'/ := (J^=1 * y y l j . With this terminology, 
yl of Definition 1.4.2 can be defined as a fixed point of the MFS $, i.e., A = $(/l). 

Define a square matrix B := (6y)mxm by 6^ := card(Dy). If for each i = 
1, . . . ,m, X^jli A? is the same integer, then we say that A is a constant length 
substitution point set. B is called the substitution matrix of A. If there exists a 
positive integer k such that all entries of the fcth power of the matrix B are positive, 
then we say that B is primitive. 

We assume that the substitution matrix B is primitive. By the Perron-Frobenius 
theorem [22], B has the following properties: 

1. one of its eigenvalues is positive and greater than (in absolute value) all other 
eigenvalues; 

2. there is a positive left eigenvector and also a positive right eigenvector corre­
sponding to that eigenvalue; 

3. that eigenvalue is a simple root of the characteristic equation of B. 

Such an eigenvalue is called the dominant (or Perron-Frobenius) eigenvalue 
of the matrix M. The following lemma (Theorem 2.3 of [31]) shows a geometrical 
meaning of the dominant eigenvalue. 

Proposition 1.4.3. If A is a primitive SDM with expansive map Q, then the dom­
inant eigenvalue of its substitution matrix B is equal to \det(Q)\. 

Generally, it is a challenge to compute the diffraction measure of a SDM. We 
do know that for a representable SDM, i.e., one that can be represented by a tiling 
on Rd, it is pure point diffractive only if the dominant eigenvalue of its substitution 
matrix is a Pisot number, see [20]. 
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In the remainder of this section, we will introduce substitution tilings and discuss 
under what conditions, a SDM is representable. Since it is not important for what 
follows, the reader can safely skip this part and move to the next section directly. 

A tiling on Kd is a set of tiles covering the whole space Rrf but overlapping only 
on the edges. There are many ways to define a tiling for a given Delone point set. 
Since we are considering a multiset, we focus on those tilings M.d consisting of a finite 
number of types of tiles. Let T be such a tiling. A tile r of T is often specified by a 
pair (O, i) where O = supp(r) is a compact set in Rd and i denotes the tile type. A 
finite set P of tiles is called a patch if the tiles of P have mutually disjoint interiors. 

Analogous to substitution of a Delone multiset, we define a tile-substitution as 
follows: 

Definition 1.4.4. Let A = { r i , . . . , r m } be a finite set of tiles, n = (Oi,i). We 
denote by VA the set of all patches composed of translated copies of the n 's. We say 
that <J> : A —• VA is a tile-substitution with expansive mapping Q if there exist finite 
sets Dij C ~Rd for 1 < i, j < m, such that 

®(Tj) — {u + Ti :ueDij,i = l,...,m} 

with 
m 

Q(Oj) = \J(Dij + Oi) for 1 < j < m. 
l 

A substitution tiling on W* is an invariant of a tile-substitution. 

Definition 1.4.5. A Delone multiset A — \J™ Ai is called representable (by tiles) if 
there exists r, = (Oj, i), 1 < i < m, so that {x + Tj : x G /lj, i = 1 , . . . , m} is a tiling 
ofRd. 

In general, an SDM is not representable. The following proposition provides a 
sufficient condition to make A representable. 

Proposition 1.4.6. ([35], Theorem 3.7) Let A be a primitive SDM such that each 
cluster of it is a translate of a subcluster of $>k{xj) for some Xj G Aj,j = 1 , . . . , m, 
and some positive integer k (such clusters are called legal). Then A is representable. 

1.4.4 T h e Bernoull i s y s t e m 

The Bernoulli system is a random system on Z which can be specified by a fam­
ily of independently and identically distributed random variables {U}z that can 
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take any of the m distinct real numbers {wi,... ,wm}, with attached probabilities 
{pi, • • • ,Pm},Pi > 0 such that Y2TPi = 1- It can also be regarded as a system of 
m-multiset with the vector of weights w = {w\,... ,wm}. Let A be a typical out­
come of this random system. Then it has the form that A — OAi,Ai C Z x {i} 
where the flattening of each component A\ is the set of index numbers of those 
random variables which take the real number Wi, and the flattening of A is equal to 
Z. Moreover, for every k € Z, we have that 

F{keAl}=Pi. 

Obviously, every A\ has FLC. So the 2-point weighted correlation measure of At 

is of the form 

neZ 

with 2-point correlation coefficients 

I |2 

x€[-/c,fc] 

H 2 P ( { n G Ai}), ifn = 0, 
\wi\2F({neAi})2, i f n ^ O . 

Pi\wi\2, ifn = 0, 
p2i\wi\2, if n ^ 0 . 

The limit exists because of the law of the large numbers. As a consequence, 7^ exists 
with probabilistic certainty. Similarly, we can prove that for i ^ j , the weighted 
correlation measure 7/ii,A/ exists with probabilistic certainty and has the form 

with 2-point correlation coefficients 

0, if n = 0, 
Vi,j(-n) = > 1 11 1 -r 1 n 

1 piPjlWiWwj], if n yfc 0. 

By (1.4.4), 

= ((\w\)2^n)+((\w\2)-(\W\)2)5Q. 
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Note that 5Q = I and 5% = 81 by the Poisson summation formula for lattices. Putting 
all this together, we have the following proposition: 

Proposition 1.4.7. ([4]) The 2-point correlation 7,1 exists with probabilistic cer­
tainty and has the form 7^ = X^nezr?(n)(^™ w^ 2-point correlation coefficients 

(\w\2), ifn = 0, 
(\w\)2, ifn^O, v(n) = { . '' : , : : : a-^) 

where (\w\2) = Y11L\ Pi\wi\2 and (\w\)2 =
 ( X ^ I P J I ^ I ) 2 - Consequently, the diffrac­

tion measure is, with probability one, Z-periodic and given by 

IA = (<H>2 J2 M + «M2> - <H>2) i- (i-4.7) 

• 

Thus the diffraction of the Bernoulli system is a mix of a pure point part with 
Bragg peaks of intensities {\w\)2 at the points of Z and an absolutely continuous 
part of weight ((|if |2} - (M) 2 ) ' 

Remark 1.4.8. We will see in the future that for all the m-multisets which are re­
alizations of the Bernoulli system, the 2-point correlation measures exist with prob­
abilistic certainty. In fact, the Bernoulli system is an ergodic point process and we 
will prove in Chapter 3 that for point sets which are outcomes of a given ergodic 
point process with a probability distribution [x, the 2-point correlation measure exists 
(i-almost surely. 

1.4.5 A random system on a model set 

We are going to define a random system on a model multiset analogous to the 
Bernoulli system. First, let AQ = \J™=lAi be an m-multiset such that the flattening 
of every component A\ is a regular model set resulting from one cut and project 
scheme (Rd x H, C) with a distinct window set9. Then let p be a vector of m 
positive numbers, p = (pi , . . . ,pm) such that 0 < Pi < 1, Y^=\Pi = !• Finally, we 
define a random system of point sets {A = U™/1, : Ai C Ai} by insisting that every 
m-multiset A is an outcome of a random process for which 

P({x e i f}) = Pi, if I G A, (1.4.8) 

9The overline symbols here are just denotations to distinguish different related sets. 
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for i = 1 , . . . , m. We call this system a random system on the model set A0. 
Let A be a typical point set of the random process on A with the probability 

distribution vector p and A = U ^ / l j , where Ai C Ai. Evidently, (A^ — A1) C 
(A^ — A1), so A*- and all the flattenings of its components A\ have FLC. Thus, 
the 2-point correlation measures of A and its components exist with probabilistic 
certainty. For simplicity, here we choose the vector of the weights to be ( 1 , . . . , 1) 
(unweighted). 

As usual, let JA( be the 2-point correlation measure of the model set A4 and 
let 7,5. be the 2-point correlation measure of the model set Ai for i = 1 , . . . ,m. 
The 2-point correlation measures of 7 ^ can be expressed by the 2-point correlation 
measure of 7^. as follows. 

lA^PhAi + iPi-PiWo. (1-4.9) 

Therefore, 

7 * = P ? 7 * + ( P i - P i K (1-4-10) 

This says that the diffraction measure of each colour component contains a pure 
point part plus a multiple of Lebesgue measure. 

To compute the 2-point correlation of A, we need to consider the 2-point corre­
lation measures ^AUAV for i,j € { 1 , . . . ,m},i ^ j . 

m m 

74 = J2 lAiA =J2^i+ Y 2 ^>V (1.4.11) 

By the law of the large numbers, we have that 

7/ii Ai = VxVilAuAi a-s- (1.4.12) 

Since 

7(^,0^) = 1A, + 7A, + ^lAuAi> (1.4.13) 

so 1 

iMAi = 5 {iJUM, ~ (7A; + 7^)) • (1.4.14) 

Plugging (1.4.14) into the formula (1.4.11), 

m 

1A = Y (^A + (P< - P2M + Y Pipi (7^u^. - lAi ~ 1A3) (1-4.15) 

m m 

= Y^Pi ~ YP^paAi + Y PiP^AiuAi + Y^Pi ~ P^6°- (L416) 
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Since the sets AiOAj,i ^ j , are also regular model sets, all components in the above 
equation are positive definite. Therefore, the Fourier transformation JA exists and 
it is equal to 

m m 

7/1 = J](Pi - ^V^PilAi + Yl P&ilJUOAj + J2& ~Pi)1' (1-4.17) 
t= l j^i l<i<j<m i=l 

Note that the first two items on the right side of the above equation are pure 
point by Theorem 1.3.5. We conclude that the diffraction measure of A exists with 
probabilistic certainty and it consists of a pure point part plus a multiple of Lebesgue 
measure. 

Proposit ion 1.4.9. The 2-point correlation 74 exists with probabilistic certainty 
and has the form (1.4-15). Consequently, the Fourier transformation 7^ exists with 
probabilistic certainty. It consists of a pure point part plus a multiple of Lebesgue 
measures and it is given by (1.4-17). 

1.4.6 Example: Revisiting the Fibonacci chain 

We return to the Fibonacci symbolic sequence. Note that it can also be generated 
by a substitution ip on sequences of the two symbols {a, 6} defined by 

i/j(a) = ab, ip(b) — a. 

In fact, the fixed point ^>°°(a) can be approximated by a sequence of words {^(a)}™ 
which satisfies an induction rule that for n £ N, 

i/jn(a) = 4>n-\ab) = ^n-\a)^n-\b) = ipn~\a)i)n-2{a). 

This is consistent with the induction rules (3n = f3n-\ + fln-2 introduced in Section 
1.1.3. 

It is known that ip is related to a tile (interval)-substitution and correspondingly 
the symbolic Fibonacci sequence is related to a substitution tiling (of intervals) on 
the real line by replacing a,b by two intervals with appropriate lengths. Suppose 
that the two intervals we desire are [0,Xi), [0,x2),x1,x2 > 0. We are going to find 
out the appropriate values for x\ and x%. 

Let B be the substitution matrix of ijj 
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B is primitive because 

--an-
is a positive matrix. By Perron-Frobenius theorem, B has one dominant eigenvalue. 
By simple computation, we have that the dominant eigenvalue is r and the positive 
left eigenvector corresponding to r is (r, 1). 

On the real line, every linear expansive map Q of a tile-substitution is of the form 
Qx — CQX,CQ > 1, where CQ is called the expansive constant. Suppose the expansive 
constant of the tile-substitution is c. Then we have 

c[0, xi) — [0, xi) U ([0, x2) + xi) = [0, xi + x2) and c[0, x2) = [0, x{). 

Equivalently, 
CX\ = X\ + X2, CX2 = X i . 

This can be rewritten as 

{x\,x2) f 1 0 ) =c(xi,x2). 

So c is the dominant eigenvalue of the matrix B and the pair (x\,x2) is the left 
eigenvector of B. From above, we have c = r and {x\,x2) — (r, 1) is the unique 
solution up to scaling. If we start the tile-substitution with the interval [0,r), then 
the entire set of left end points of the intervals in the resulting tiling on M+ gives 
exactly the one sided Fibonacci chain. 

For convenience, we denote the one sided Fibonacci chain by ylo here. We set 
out to show that ylo is the right side of a model set on the real line. 

First, we let Ti denote the set of the left end points of the tiles marked by a and 
let T2 denote the left end points of the tiles marked by b. Evidently, AQ = Ti U T2. 

We define a Z-linear mapping <p on the module Z[r] by <fi(m+nT) = m — ^, where 
m,nGZ,Z[ r ] := Z + Zr. Since (m + nr,<j>(m + nr)) = m(l,0(1)) + n(r,4>{T)), the 
set £ := {(x,(j)(x)) : x G Z[r]} = {(m + nT,m—^) : m,n G Z} is a lattice in M2 with 
a basis {(1,1), (r, —7)}. See the lattice in Figure 1.3. The reason for choosing 0 as 
we have done is that — - is the algebraic conjugate of r (it also satisfies the equation 
x2 = x + 1 and so 0: Z[r] —> Z[r] is actually a ring homomorphism). Let 7TI,7T2 

be the two canonical projections of the lattice C and let the mapping (•)* be the 
mapping <fi. Then we get a cut and project scheme, which is shown in the following 
diagram. 
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Figure 1.3: The lattice C spanned by (1,1) and (T,T*) 

u 
Z[r] *%-
u 
A 

. x J 

u 
c 

U 
Z[r] 
u 

(1.4.18) 

We are going to show that the image of the one sided Fibonacci chain under the 
mapping (•)* is dense in a relatively compact set in the internal space R and hence 
it can be embedded into a model set. 

Next, observe that ( r i , ^ ) satisfying the following equation. 

T1 = (T-T1)U(r-T2), r 2 = r - r 1 + r. 

Since (•)* is a ring homomorphism, (r^rJj) (the images of the two sets (ITi,^) 
under the (•)* mapping) satisfying 

r; = (— - r i ) u ( — -r*2), r2 = — -r1 + —. 
T T T T 

Plugging Tg into the first equality, we obtain 

n = (^-n)u(l-n + ^). 

(1.4.19) 

(1.4.20) 
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The right side of the equation defines a contractive mapping of a set. By Hutchin­
son's contractive mapping theorem [25] there exists a unique compact set, which is 
fixed under the contractive mapping. One can verify that the set Wy = [—7V, 7] is 
a solution of the equation (1.4.20). It implies that f i = Wy. Putting f y = Wy back 
to the second equality in (1.4.19), we get that f2 = [—1, — 7?]. 

Note that T2 U T2 = [—1,7]. We point out that the lattice £ intersects with the 
two lines y = — 1 and y = 7, which means that adding or deleting one of the two 
boundary points {—1, 7} will change the corresponding model set by one point. 

Here we consider a model set Ay with a window [— 1, -) first. It is a Delone set 
on R by theorem 1.3.4 and 0 E Ay. Define Af := {x G Ay : x > 0}. The following 
proposition says that Af is the same as AQ. 

Proposition 1.4.10. A0 = Af 

PROOF: { 0 , T } generates AQ under the substitution rule. But 0, r e Ay and Af 
is closed under the substitution. Thus, A0 C Af. 

Obviously, the minimum separation distance between points of AQ are 1 respec­
tively. If one inserts any other point into AQ, then the minimum separation distance 
of the resulting point set is less than 1. As a consequence, if we prove that the 
minimum separation distance among points of yli is 1, then Af should be a subset 
of ylo and the proof is completed. 

Suppose py — (xy + VXT),P2 = (x2 + y2T), Xy,x2,yy,y2 € Z, are two points in Ay 
such that 

IP1-P2I < I- (1-4.21) 

By the assumption py,P2 G Ay, 

- ( l + - ) < ( p i - P 2 ) * < l + - . (1-4.22) 
r T 

Let m — xy — X2 and n = yy — y2. Without lost of generality, we can assume that 
py > p2. Then the two inequalities, (1.4.21) and (1.4.22) can be rewritten as 

0 <m + riT < 1, 
/-, 1\ n /., 1\ 

- ( 1 + - ) <m-~ < ( 1 + - ) . 
T T T 

These are equivalent to 

—nr < m < 1 — nr, 
/ , IN n n /-, Is -(1 + -) + - <m < - + (l + - ) . 

T T T T 
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We aim to show that the two inequalities have no integer solution, or equivalently, 
the intersection of two intervals J„ := ( -nr , 1 - nr) n (-(1 + ^) + ^, (1 + 7) + 7) 
contains no integers for all n € Z. Clearly the intersection Jn may be nonempty 
only in the following two situations. 

• In the case that 
1 7? 

-nr < _ ( l + - ) + - < 1 - n r , (1.4.23) 
T T 

the inequality (1.4.23) gives 1 < n < r . Since ( l , r ) contains no integers, there 
is no Jn. 

• In the case that 

_(1 + I ) + -<-nr < ( l + i ) + - . (1.4.24) 
T T T T 

The inequality (1.4.24) follows that -£±I < n < ^±|. Thus, n = 0. Plugging 
n = 0 into (1.4.23), we have Jo = (0,1), which contains no integers. 

Therefore, we conclude that the inequalities (1.4.23) has no integer solution. • 

Remark 1.4.11. One can also prove this in a geometric way. First, if we replace 
the two symbols {a,b} by two vectors a = (T,T*) and b = (1,1) , then we get a 
substitution tp with ^({a}) — {ab},4>(b) = a. As a consequence, the Fibonacci 
symbolic sequence corresponds to a fixed point of the new substitution ^°°{a}. For 
convenience, we denote it by {a^}f. This sequence has a geometric meaning that 
the sequence {q := X^iaj}i° specifies a path on the lattice C, which starts from 
the zero and goes rightwards. One can verify that the first coordinates {PI(CJ)}I° of 
this sequence are the same as the one sided Fibonacci chain, i.e., AQ = {-Pi(ci)}i°-
Therefore, {^(ci)}?0 = AQ C [— 1,-). This says that this path winds through the 
strip bounded by y = — 1 and y = £, see Figure 1-4- Moreover, from the picture, one 
can see that the sequence { c j f defines a rhomb chain {Oj}f such that each rhomb 
Oi is specified by the three vector (CJ_I,CJ,CJ+I). 

Meanwhile, this rhomb chain can also be generated as follows. We start from the 
first rhomb 0\. We denote it by 0[. It can be specified by three vector (co,Ci,C2). 
There are two rhombs on its right side. However, there is only one rhomb that has its 
edge entirely in the strip next to the point c-i. We denote this rhomb by 0'2 • Repeating 
this infinitely, we obtain one and only one rhomb chain {O^f. Since we showed 
that {Oi}f is such a rhomb chain, so we have that Oi — 0\, for i = 1,2,3, . . . . We 
denote the sequence of vertexes specifying the rhomb chain {O^f3 by {vi}™. Then, 
Vi = (H, for i = 1, 2, 3, The set, {0} U {Pi{vi)}f provides all points of Af. So 
AQ = A*. This is shown in Figure 1.5. 
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Figure 1.4: The new substitution and the path defined by {ci}j° 
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Figure 1.5: The rhomb chain {Oi}f 
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Now we are going to show that the model set /li, which is 2-sided, is LI to Ao. 
For that, we need the following lemma. 

Lemma 1.4.12. Ai is repetitive. 

PROOF: Let P be an arbitrary cluster of A\ and P := {0,pi , . . . ,pn}- Recall that 
W := [-1, i ) . Consider WP := W n (n?(-pj + W)). Then WP is also a half open 
and half closed interval. Thus, if Wp is nonempty, then it has nonempty interior 
(note that 0 6 Wp), which implies that the model set Ap with the window Wp is 
a Delone set. Note that every point in Ap is a translation vector of the cluster P. 
Since Ap is Delone set, the set of translation vectors of the cluster P is relatively 
dense. It follows that A\ is repetitive. • 

Proposition 1.4.13. [ylx] = [AQ]. 

PROOF: Recall that A0 C Ai. Hence, A0 C [Ai]. It suffices to show that 

Ai 6 [Ao]. 
By the lemma 1.4.12, for each cluster of A\, the translation number of this cluster 

in A\ is relatively dense. This implies that this cluster appears in Af (equivalently 
in AQ) infinitely times, which implies that A\ G \A§\. • 

Remark 1.4.14. Similarly we can prove that the model set Ai with the window 
(—1,7] which is LI to A0 too. Since the two windows (—1,7] and (—!,-] are different 
only at the boundary points, the two model sets A\ and A2 are the same everywhere 
except two points —1, —r. Obviously, - I G ^ I but not in Ai, and —T G AI but not 
in A\. 

Consider the model set with windows [—1,-] (respectively (—1,^)). We point 
out that it is not LI to A+. In fact, it is not repetitive since the interval [0,r — 1) 
([0,1 + r)) appear only once at x = —r (x = — 1 — r ) . 

By a suitable generalization of Theorem 1.3.2, the frequency of the occurrence 
of a cluster P := {0,P\, • • • ,pn} in A\ is equal to 

q[ ' l(W) 

where pi G A\,i — 1 , . . . ,n. 
For instance, let P be the cluster corresponding to the word "bb". Then P = 

{0,1,2} and W D ( -1 + W) D (-2 + W) = 0 because the total length of the window 
W is 1 + \ < 2. Therefore, freq(P) = 0. When this happens, we say that the word 
"bb" is forbidden in the Fibonacci symbolic sequence. Similarly, one can verify that 
another word, forbidden also. In fact, there are an infinite number of 

forbidden words in the Fibonacci symbolic sequence. 
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Chapter 2 

Point set dynamical systems 

Introduction 
Let A E Vr be a given point set. In Chapter 1, we introduced the 2-point corre­
lation measure and the diffraction measure of a given point set on M.d. The main 
purpose of this chapter is to define a probability measure on Vr

m' determined by A, 
which can serve as an invariant probability measure for a dynamical system of point 
sets in V\- . 

For this, we will introduce a topological space Mr of measures on Rd and 
show that it is homeomorphic to V]• . Then we will think of a dynamical system 
as a point process, which can actually be defined by the one-to-one correspondence 
between Vr and Mr . The law of a point process, which corresponds to the 
dynamical system measure on Vr , has a nice property that it can be determined 
by a collection of values defined on a semi-ring of the a-algebra of Mr . 

Such a collection of values may be given by the point set A. So the point set A 
may determine a probability measure on Vr • Denote by HA the law determined by 
A and let X be the support of \IA- Then the triple (X ,M.d, HA) defines a dynamical 
system on Vr . 

In particular, we prove that if the point set A is uniformly recurrent in Vr , 
then the resulting point set dynamical system (X, Rd, JXA) is minimal. 

Finally, we will introduce the Dworkin argument aiming at the relationship be­
tween the 2-point correlation measure of A and the measure \IA-
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2.1 Preliminaries 

Let G be an abelian group. A dynamical system (X, G) consists of a set X and a 
group action of G on X. A subset B c X is invariant if and only if B — g~l(B) 
for all g E G. 

If X is a compact topological space and G is a topological group acting continu­
ously on X, then (X, G) is called a topological dynamical system. On the other 
hand, if X is a measure space and X is equipped with an G-invariant probability 
measure n, i.e., for all measurable sets B C X and all g E G, y,(B) = n(g~l(B)), 
then the triple (X, G, JJL) is called a measure theoretical dynamical system. In 
this thesis, we usually have both happening at the same time. 

A topological dynamical system (X, G) is minimal if and only if for all £ E X, 
the orbit of £ under the G-action is dense in X. Equivalently, the only closed in­
variant subsets of X are 0 and X. The measure /i and the measure theoretical 
dynamical system (X, G, fi) are called ergodic if and only if every measurable in­
variant set B c X satisfies n(B) = 0, or 1. A dynamical system (X, G) may admit 
many ergodic measures. If it admits only one ergodic measure, then (X, G, n) is 
called a uniquely ergodic dynamical system. 

In particular, when G is an abelian topological group (like Md), for a point set 
x E X, the closed set Gx is called the orbit closure of x. Evidently, Gx is a G-
invariant set. Thus, the couple (Gx, G) gives a sub-dynamical system of (X, G). We 
will show that for special kinds of points x € X, these sub-dynamical systems are 
minimal. 

In these definitions, we have used multiplication notation, which is standard for 
the general theory of dynamical systems. But in this thesis, G is always (Rd, +), so 
in the sequel these concepts occur in their additive notation. 

Definition 2.1.1. A subset S of an abelian topological group G is relatively dense 
if there exists a compact set K C G such that S + K — G. 

Definition 2.1.2. A point x E X is called uniformly recurrent if for any neigh­
bourhood x € V, the set {g E G : g + x E V} is relatively dense. 

Theorem 2.1.3. ([19], Theorem 1.17) If x is a uniformly recurrent point of a 
dynamical system (X,G), then the orbit closure Gx is a minimal G-invariant closed 
subset of X and hence (Gx, G) is a minimal dynamical system. 
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2.2 The topological measure space Mr 

Let E = Rd x m be as in Section 1.4.1. A very convenient way to deal with 
countable point subsets A of E and families of them is to put them into the context 
of measures by replacing them by pure point measures, where the atoms correspond 
to the points of the set(s) in question. To this end we introduce the following objects 
on any locally compact space 5 : 

• <S, the set of all Borel subsets of S; 

• B(S), the set of all relatively compact Borel subsets of S; 

• BMC(S), the space of all bounded measurable C-valued functions of compact 
support on 5; 

• CC(S), the continuous C-valued functions with compact support on S. If S is 
known to be compact, we can write C(S) instead. 

Following Karr [26] we let J( denote the set of all positive Radon measures 
on E, that is all positive regular Borel measures A on E for which X(A) < oo for 
all A 6 5(E). Equivalently, we may view these measures as linear functionals on 
the space CC(E). We give M the vague topology. This is the topology for which 
a sequence {A„} € ^ converges to A € M if and only if {A„(/)} —> A(/) for all 
/ G CC(E). This topology has a number of useful characterizations, some of which 
we give below. 

Within M we have the subset Mv of point measures A, those for which A (A) € 
N for all A G B. (Here N is the set of natural numbers, {0,1,2, . . . }.) These measures 
are always pure point measures in the sense that they are countable (possibly finite) 
sums of delta measures: 

X = 'Y^ax5x, i e E , f l t e N . 

Within Jiv we also have the set Ms of simple point measures A, those satis­
fying A({x}) E {0,1}, which are thus of the form 

A = XX' 
xe/i 

where the support A is a countable subset of E. Evidently for these measures, for 
xeE, 

\({x}) > 0 ^ A({x}) = 1 o x E A. 
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The Radon condition prevents the support of a point measure from having ac­
cumulation points in E. Thus, the correspondence A <—• A provides a bijection 
between the closed discrete point sets of E, i.e. the discrete point sets with no accu­
mulation points, and ~d(a. This is the connection between point sets and measures 
that we wish to use.1 We note that the translation action of Rd on E produces an 
action of Rd on functions by Ttf(x) = /(T_ fx), and on the spaces J£, Mv, J6S of 
measures by (Tt{X)){A) = X(-t + A), {TtX)(f) = A(T_t(/)) for all A 6 /3(E), and 
for all measurable functions / on E. 

Here are some useful characterizations of the vague topology and some of its 
properties. These are cited in [26], Appendix A and appear with proofs in [11], 
Appendix A2. 

Proposition 2.2.1. (The vague topology) 

(i) For {Xn}, A G ̂  the following are equivalent: 

(a) {A„(/)} —> A(/) for all f G CC(E) (definition of vague convergence). 

(b) {A„(/)} —> A(/) for all f G BMC(&) for which the set of points of dis­
continuity of f has X-measure 0. 

(c) {An(^4)} —> X(A) for all A € /3(E) for which X vanishes on the boundary 
of A, i.e. X{dA) = 0. 

(ii) In the vague topology, ^ is a complete separable metric space and J^V is a 
closed subspace. 

(Hi) A subspace L of JZ is relatively compact in the vague topology if and only if 
for all A G 5(E), {A(A) : A G L} is bounded, which again happens if and only 
if for all f G CC(E), {A(/) : A G L} is bounded. 

Note that Jts is not a closed subspace of J^V: a sequence of measures in ^ts can 
converge to point measure with multiplicities. 

Proposition 2.2.2. (The Borel sets of J() The following a-algebras are equal: 

(i) The a-algebra 8§{^) of Borel sets of jtf under the vague topology. 

xNote that the point sets that we are considering here are simple in the sense that the multiplicity 
of each point in the set is just 1. However, it is not precluded that the same point in Rd may 
occur more than once in such a point set, though necessarily it would have to occur with different 
colours. Very soon, however, we shall also preclude this. 
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(ii) The a-algebra generated by requiring that all the mappings A i—> A(/), / 6 
Cc (K) are measurable. 

(Hi) The a-algebra generated by requiring that all the mappings A i—• X(A), A € 
B(E) are measurable. 

(iv) The a-algebra generated by requiring that all the mappings A i-> A(/), / E 
BMC(E) are measurable. 

A measure A 6 M is translation bounded if for all bounded sets K £ <B(E), 
{A(a + K) : a 6 Rd} is bounded. In fact, a measure is translation bounded if this 
condition holds for a single set of the form K — Ko x m where KQ C Rd has a 
non-empty interior. For such a K and for any positive constant n, we define the 
space Mp(K,n) of translation bounded measures A 6 Mp for which 

X(a + K) <n 

for all a G Rd. Evidently Mp(K,n) is closed if K is open, and by Prop. 2.2.1 it 
is relatively compact, hence compact. See also [6], where this is proved in a more 
general setting. 

If r > 0 then MP{C\• ,1) is the set of point measures A whose support A is 
1-uniformly discrete. In particular, the set Ms(Cr , 1) := MP{C)- , 1) D Ms is 
closed in Mp(Cr, 1) and hence it is compact. For convenience, we simply rewrite 
Ms(Cr , 1) as Mr and in particular, we rewrite Ms(Cr , 1) as Mr- By the above 
paragraph, Mr and MT are compact. 

Remark 2.2.3. By Proposition 2.2.2 (Hi), the a-algebra 38(Mr) of Borel sets of 
Mr can also be generated by a family of subsets of the form 

{XeMr: X(Ai) = kui = l,...,n}, (2.2.1) 

where Ai is a Borel set in Rd and fcj is a nonnegative integers, for n £ N. Since 
the a-algebra of Borel sets of Rd can be generated by the semi-open rectangles in 
Rd, the Borel sets {A}™ in the equation (2.2.1) can be restricted to these semi-open 
rectangles. 

Similarly, the a-algebra 38(Mr• ) of Borel sets of Mr can be generated by a 
family of subsets of the form 

m 

{A € M^ : A = ^ A „ A , ( 4 ) = k),i,j = l , . . . , n } , (2.2.2) 

where A, is a uniform discrete measure on the space M.d x {i}, Alj is a semi-open 
rectangle in Rd x {i} and ty is a nonnegative integer, for n € N. 
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If A € Jts is a translation bounded measure on R we shall often write expressions 
like J2X<SB ̂ ({x}) where B is some uncountable set (like Md itself). Such sums only 
have a countable number of terms and so sum to a non-negative integer if B is 
bounded, or possibly to +00 otherwise. 

2.3 The local topology on uf1' 

Note that there is a one-to-one correspondence A <-> A between measures in j^r 
and the point sets in VT

m\ Thus, the point sets space Vr can be assigned a 
topology transferred by the correspondence. However, the most commonly used 
topology in the study of point set dynamical systems on T>r is the so-called local 
topology since it implies a notion of closeness that depends on the local configuration 
of points (as opposed to other topologies that depend only on the long-range average 
structure of the point set). 

The local topology is most easily described as the uniform topology on Vr
m' 

generated by the entourages 

U(CR, e) := {(A', A") e V™ :CRnA'ciC€ + A", CR n A" CCt + A'} , (2.3.1) 

where R, e run over the positive real numbers. 
Note that in (2.3.1), A and A' are subsets of E. Intuitively two sets are close if on 

large cubes their points can be paired, taking colour into account, so that they are 
all within e-cubes of each other. It is easy to see that Vr is closed in this topology. 

Given any A' G Vr we define the open set 

U{CR,t)[A') := {A" G P W : (A', A") € U(CR,e)}. 

Proposition 2.3.1. (See also [6]) Under the correspondence A <-> A between mea­
sures in ^# r and the point sets in Vr , the vague and local topologies are the 
same. As a consequence, Vr is compact. 

Proof: Let {An} be a sequence of elements of X for which the corresponding 
sequence {An} C T>r converges in the local topology to some point set A 6 Vr . 
Choose any positive function / 6 CC(E) and suppose that its support is in CR, and 
choose any e > 0. Let iVo := 1 + sup„eN A„(CR) and find 77 > 0 so that n < r and 
for all x,y G CR, 

\x - . i / | < V = • \f(x) - f(y)\ < e/N0 . 
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Let {xi,..., xN} = CRC\A C E. Then for all large n, CRHAU C {CV+XI, ... Cv+xN} 
with exactly one point in each of these cubes. Then 

|A„ ( / ) -A( / ) | < AWJVo £ f(v)- E /(*) 

Thus {A„(/)} —> A(/), and since / 6 CC(E) was arbitrary, {A„} —+ A in X. 
Now, going the other way, suppose that {A„} —• A in X. Let /? > 0 and let 

CRC\ A = {xi,..., x^v}. Choose any 0 < e < r, small enough that for all i < N, 
Ce + SiCCJT0 , andlet 

iV 

/e : = / _ _ , ^-Ct+Xi • 

t=l 

Then {An(/£)} - A(/«) = W = A(CH) - {\n(CR)}, so for all n » 0, A„(/£) = N = 
An(Cfl) (see Prop. 2.2.1). Since each cube Ce+£j can contain at most one point of any 
element of £V(m), then for all n > > 0, and for all i < N, there is a y^ G (Ce+Xi)f]An. 
This accounts for all the points of CR D An. Thus An G U(CR,C)[A]. This proves 
that {/1„} - • A • 

2.4 A probability measure on Vr 

For simplicity, we consider the case m — 1 first. Let A be a given point set in Vr 

and A be the Dirac comb of A, i.e., A = 5 A- Denote by 71 the set of all semi-open 
d-dimensional rectangles, i.e., the sets of the form Ix x • • • x Id c Rd, where I\,... ,Id 
are of the form [a, b), or (a, b] C R. 

By Remark 2.2.3, the cr-algebra 38{^r) of Borel sets of ^r can be generated by 
a family of subsets of the form 

{A' G XV : X'(Ai) = k, i = 1 , . . . , n, where A' is the Dirac comb of A'}, (2.4.1) 

where Ai € 71, ki G Z+ , for i = 1 , . . . , n and n G N. For convenience, we rewrite the 
subset given by (2.4.1) as X(Au...,An;ku-M a n d c a U (^i> • • •, A » ; &1. • • •, &n) a pattern 
of Vr

2. 

Definition 2.4.1. For a pattern {A\,..., An; k\,..., kn) of Vr, its frequency on 
the point set A is defined by 

pA(A1,...,An;k1,...,kn) := lim 7777-?'({* G ^ : X(t + Ai) = kv3 = 1, ••- ,«}) , 

(2.4.2) 

2The patterns of A defined in Section 3.4 are special types of patterns of Vr 
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if the limit exists3. 

Evidently, this is equivalent to 

pA(Ai,...,An;ki,...,kn) := Jim — — / ({t e CR : t + A € X{Au...An-M fen)}), 

(2.4.3) 
Applying the standard Ue — R" argument, we can prove the following proposition. 

Proposition 2.4.2. Let A\,A2 G Vr be two arbitrary point sets such that the set 
(A1&A2) has density 0, where A is the symmetric difference. Suppose that for a pat­
tern (Ai,..., An\ k\,..., kn) ofVr, PAI(AI, . . . , An; k\,..., kn) exists. Then we have 
that PA2(AI, • • • ,An; k\,..., kn) exists also and it is equal to pAi{Ai,..., An; k\,..., kn). 

Example 2.4.3. Let A be the point set Z and let A' be the point set A \ {0}. By 
Proposition 2.4-2, for all patterns (A\,..., An; k\,..., kn) ofVT, 

PA(AI, ...,An;ku...,kn) = PA<{AI, . . . , An; ku . . . , kn)- (2.4.4) 

Especially, 

PA-I + (-\, | ) , (-\, \ i 1 + (-\, \y, 1,0,1) = o, 

contrasting to 

PA-I + {~\, \\ (-i \), 1 + (-i, \); l, l, i) = 1. 

We assume that the point set A 6 Vr satisfies the following assumption: 
FI: The frequency of each pattern (A\,..., An; k\,..., kn) exists on A. 
Let p(Ai,..., An; k\,..., kn) be a value for a pattern {A\,..., An; k\,..., kn) of 

Vr. There is a fundamental question: are there some conditions on p can guarantee 
that it uniquely determines a probability measure p on {J%r,£${^(r)) satisfying 

li{XAu...,An.M,...,kn) = P(Au ...,An;ki,..., kn)l (2.4.5) 

This question is answered by the following proposition. 

Proposition 2.4.4. ([37]) p uniquely determines a probability measure p on {JZr, S8(^Kr)) 
satisfying (2.4-5) if and only if the following six conditions are fulfilled: 

3Note that the special averaging sequence {CR : R > 0} is used again and the convergence or 
the limiting value of the two averages may not be the same if it is replaced by a different averaging 
sequence. 
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1. p(Au...,An-;ki,...,kn) > 0; 

2. p(yli,...,^„;A;i,...,A;„) = p(Ah,..., Ain; kh,..., kin), for every permutation 
(ii,..., in) of numbers 1, • • • , n; 

3- YZUdA,k) = \; 

4- E^=oP( j 4 i . - - - . j 4 n;fc i , - - - ,M =p{A2,...,An;k2,...,k„), forneN,n> 1; 

5. p{Ai,..., An, D\ fci,..., kn, s) 

= ] P p(Ai,...,An,Bi,...,Bj;ki,...,kn,si,...,sj), (2.4.6) 

where A\,..., An, B\, • • • , Bj 6 1Z are pairwise disjoint and B = U|=1Sj € 11, 
J,sEZ+; 

6. p(A[J\ ..., A^y 0 , . . . , 0) -> 1, as j -> oo for every finite sequence (A^,..., A^), 

A\j) e 71, with A® = U S 4G) \ 0-

Theorem 2.4.5. T/ie function PA in equation (2.4.2) uniquely determines a proba­
bility measure* p,\. 

PROOF: We show that the value PA satisfies the six conditions in the Proposition 
2.4.4. 

Obviously, the function PA satisfies the first two conditions. The third condition 
is satisfied by PA because 

oo oo .. 

5>(4*) = EtLl(Cn)l{{t&CR:X{t + A) = 

fc=0 fc=0 V U> 

k}) 

= lim -±-l (U?=Q{t 6 CR : X(t + A) = k}) 
fl-»oo t ( 0 f l j 

= lim - L - Z ({t e CR}) 
R-^oo 1{GR) 

= 1. 

Note that we switch the order of the limit and the infinite sum in the second equation. 
This can be justified by the fact that 0 < j ^ l ({t € CR : X(t + A) = k}) < 1, 0 < 

Er=0 at)1 «*e CR •X^+A^ = & » = Tih1 ^ ^ e CR • x{±+A) = * » ^ x> 
a n d t h e m o n o t o n e convergence theorem. 

4We use this notation to make it clear that the probability measure depends on A. 
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Similarly, we can prove that conditions (4) and (5) are fulfilled by p/\. Especially, 
equation (2.4.6) follows from the combinatorial identity 

{teCR:X(t + B) = s}= ( J {teCR:\(t + Bj) = sj,j = l,...,m}, 

where the union is disjoint. 
Now we prove that PA satisfies condition (6). First of all, the assumption A^ \ 0 

means that: (i) A( j+1) C A{i\j = 1,2,...; (ii) Pif=lA^ = 0. It is a simple property 
of measures that l(A^) -> l(f)™=iAU)) = Z(0) = 0. Without lost generality, we 
assume that A^ is bounded and hence it has a finite partition that A^ = \Jk=1 C'k 

C'k is a translated copy of some semi-open cube Cs, where s <r (and s depends on 
k). 

Next, we point out that f]^{t € CR : X(t + A\j)) = 0} = {t E CR : X(t + 
A{j)) = 0}. As a consequence, PA{A{1\..., A^yQ,..., 0) = PA{AJ; 0). Hence, it is 
equivalent to show that PA{A^;0) —> 1. 

For that, we consider a refined partition of A^ such as A^ = |Ji=i Ufc=i ^ 4 > 
where A\3 = Af n C'k. Because every Afk is embedded in a translated copy of Cr, 
we have 

CR\{teCR: X(t + A^) = 0} = {t € CR : X(t + A®) = 1}. 

Because A n (a + C'r) < 1 for a <E Rd, 

l{{t e Cfl : X(t + A\j)) = 1}) < card(i eCRnA)- l(A\j)) 

< C-HCR)-^), (2.4.7) 

where c = (£ + l)d . As a consequence, 

Cfl \ {t € CR : A(t + A&) = 0} = Cfl \ f | {t G C* : X(t + A^) = 0} 
i = l 

"0) 
= (JCf l\{ieCf l:A(t + AO)) = 0} 

t=i 

= UOeC^Afe + ̂ H l } . 
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Thus, 

KCR\{teCR:\(t + A®) = 0}) < ^ ( ( { t e C f l i A t t + ^ V l } ) 
i= l 

«0') 

< C ^ ( C H ) / ( A « ) . 

Finally, putting all this together, we have 

> lim 

fl-oo l(CR) 

l(CR)-c-l(CR)l(A^) 
R-*oo l(CR) 

l~c-l(A{j)). 

So pA(AU);0) - • 1 as i(4k'>) -» 0. D 

Proposition 2.4.6. p\ is invariant with respect to the M.d-action. 

PROOF: For an arbitrary n semi-open rectangles A\,... ,An, n nonnegative in­
tegers ki,...,kn and 5 € Rd, 

Hx(s + Ai,...,s + An;ku---,kn) 

= lim 777TTK{* €CR:X(s + t + Ai) = ki,i = l,...,n}) 

R->oo 1{LR) 

= lim J77r^K{t' e (s + Cfl) : A(i' + 4 ) = A*,* = 1 , . . . ,n}) 

(*' = * + S) 
= lim y - ^ d * ' G (CR) : Kt' + Ai) = ki,i = l,...,n}) 
— H>\\A\i..., An; k\,..., kn). 

We use the fact that limji_0o '((a+
<

<j?ffC/t) = 0 in the third step, where A is the 
symmetric difference. So we conclude that PA is an invariant of Reaction. Since p\ 
is generated by pA from equation (2.4.5), p\ is also an invariant of Reaction. • 

Through the one-to-one correspondence A <-> A, the measure JJ,\ induces a prob­
ability measure on Vr. We denote this induced measure by PA- Evidently, the 
measure PA is an invariant of Reaction 
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L e m m a 2 .4 .7 . For all s 6 Rd, /J,S+A exists and it is equal to HA-

This follows from the invariance of [i\. I t says t h a t the probability measure is 
fixed on the orbit of A . 

The physical meaning of the probability measure / ^ is easy to unders tand in the 
case tha t A has FLC. See the following proposition. 

P r o p o s i t i o n 2 .4 .8 . Suppose the point set A has FLC. When the measure \IA exists, 
the frequencies of all local patterns of A exist and they can be expressed by p,A • 

P R O O F : Let P := { 0 , p i , . . . ,pn} be a (n + l)-point patch of the point set A , i.e., 
Pj E A — A for i = 1 , . . . , n. Because A has FLC and hence A — A is locally finite, 
there is a minimum separation distance r ' > 0 among points in (A — A) n C ^ , where 
R' = m a x { | p i | , . . . , \pn\}- Let V be a neighbourhood of the origin, V C CT< . Define 

XPy := {A' eVr:PcA' + V}. (2.4.8) 

It is quite straightforward to see tha t 

„ (X ) - lim H{teCR:Pc(-t + A) + V}) 

card {{t E CR n A : P C (-t + A)}) • l(V) 
R->oo 1{CR) 

By Definition 1.1.2, freq(P, V) exists and it is equal to uyf • • 
The following proposition is a simple consequence of Proposition 2.4.2. 

Proposition 2.4.9. Let A\,A% be two point sets in Vr. Suppose dens(AiAA2) = 0 
and the measure [XAX exists. Then HA2 exists also and it is equal to fj,Ar • 

Now we modify this to treat the multicolour case. Let A be a given a point set 
in Vr . We are going to define a probability measure on Vr determined by A. 
Recall that A has the form U ^ / l j x {i}. So the Dirac comb of A, denoted by A as 
usual, is in Jtr and it can be expressed by a n-tuple ( t ^ , . . . , <5/im), which satisfies 
that YlT=i $Ai(~t + Cr) < 1 for t S M.d. As before, A1 denotes the restriction of the 
Dirac comb A to the space Kd x {i}, for i = 1 , . . . , m. Define A := {A1 , . . . , Am}. We 
call a subset A C E a semi-open rectangle in E if it has the form that \J™=1 Ai x {i}, 
where A\,..., Am are semi-open rectangles in Rd. We denote the set of all semi-open 
rectangles in E by It. 

Analogous to the case that m = 1, for n arbitrary semi-open rectangles, A i , . . . , An , 
in E and n arbitrary vectors K l 5 . . . , Kn € (Z+)m , we call the sequence 

( A i , . . . , A n ; K i , . . . ,K n ) 
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a pattern of Vr and denote by -X'(A1,...,An;K1,...,Kri) the subset of J%r defined by 
{A' e MT : X'(t + Aj) = Kj,j = 1 , . . . , n}. Similarly, the family of subsets of this 
form generates the cr-algebra of Jtr • 

Definition 2.4.10. Let (Ai , . . . , An; K i , . . . , K„) be a pattern of Vr • If the limit 

p / i ( A i , . . . , A „ ; K 1 , . . . , K „ ) 

: = tLnhn)1 {{t G CR : *(* + A J ) = K,-,j = l , - . . , n } ) , (2.4.9) 

exists, then we say that the frequency of the pattern (A i , . . . , A„;Ki , . . . ,K„) on the 
point set A exists and it is equal to p&{A\,..., A„; K 1 ; . . . , K„). 

Similarly, the limit defined by (2.4.2) is equivalent to 

p / i ( (Ai , . . . ,A T , ;Ki , . . . ,K n ) ) 

:= lim - l _ i ({t € CR : t + A G X (AI , . . . ,AB;K1 , . . . ,K„)}) , (2-4.10) 
R->oo 1(UR) 

Now we assume that the point set A 6 VT satisfies the following assumption: 
FI ' : The frequency of each pattern of Vr exists on A. 
We wish to show that the values of p\ uniquely determine a probability measure 

H on (^r, 3§(J%r) fulfilling the condition 

/z({A' € Ji^ : A'(A,) = Kd,j = 1 , . . . , n}) 

= p 4 ( A 1 , . . . , A „ ; K 1 , . . . , K „ ) . (2.4.11) 

for n arbitrary semi-open rectangles A i , . . . , An and n arbitrary vectors K i , . . . , K„ 6 
(Z+)m. 

For that, we need a generalization of Proposition 2.4.4 as follows. Using the same 
technique to prove Proposition 2.4.4 [37], we can also show the following Proposition. 
When come to condition 6, we need the fact that YllLi <W—^ + Cr) < !• 

Proposition 2.4.11. Let p(A\,..., A„; K i , . . . , Kn) be a value for n arbitrary dis­
joint semi-open rectangles and n arbitrary vectors K i , . . . , K „ G (Z+)m . Then p 
uniquely determines a probability measure p. on {Ml• , 3§{J%r)) satisfying (2.It.11) 
if and only if the following six conditions are fulfilled: 

1. p (A i , . . . , A„; K l 5 . . . , K„) > 0; 

2. p ( A i , . . . , A n ; K i , . . . , K n ) = p{Ah,..., A^jK^, . . . ,K i n ) , for every permu­
tation (i\,..., in) of numbers 1, • • • ,n; 
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3. £~ fcm=oKA,K) = l, where K = (h,...,km); 

4- EfcL.,fcm=oP(Ai>--->A»;Ki>''->Kn) = P ( A 2 , - - . , A „ ; K 2 , . . . , K „ ) , whereKx = 
(ki,...,km), forn € N,n > 1; 

5. p / t ( A i , . . . , A n , B ; K i , . . . , K n , S ) 

= Yl pA(A1,...,An,B1,...,Bj;K1,...,Kn,S1,...,Sj), (2.4.12) 
Si+-+Sj=S 

w/iere A i , . . . , An , Bi, • • • , Bj € 7? are pair-wise disjoint and B = U]=1Bj e It, 
S, S,- 6 (Z+)m; 

6. P(A{3\ . . . , A^.}; 0 , . . . , 0) -> 1, as j -> oo, for every finite sequence ( A ^ , . . . , A ^ } ) , 

A\j) E H, with A® = \J7~x A,0) \ 0. 

• 
Analogously to Theorem 2.4.5 and Proposition 2.4.6, we have the following result. 

Theorem 2.4.12. The function PA in equation (2.4-10) uniquely determines a prob­
ability measure HA, which is invariant with respect to M.d-action. 

Also we have the following proposition as a generalization of Proposition 2.4.13. 

Proposition 2.4.13. Let Ax, A2 be two point sets in Vr . Suppose dens(AxAAi) = 
0 and the measure \iAx exists. Then HA2 exists also and it is equal to /J,A1 • 

2.5 The point set dynamical systems on Vr 

Let A be a point set in Vr satisfying the assumption FI'. By Theorem 2.4.12, the 
probability measure \IA exists and it is an invariant of Reaction. Let X := supp(^yi). 
Then X has the following properties: 

• X is a compact subspace of Vr ; 

• X is an invariant set with respect to the Reaction. 

As a consequence, the triple (X, Rd, HA) defines a topological dynamical system and 
a measure theoretic dynamical system at the same time. In particular, (X, Rd) is 
a sub-dynamical system of (Dr , Krf) and in most cases of interest, the topological 
space X is considerably smaller than Vr • 
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2.5.1 Minimality 

To define a uniformly recurrent point set, we need to consider the topological dy­
namical system (T>im),Rd). According to Definition 2.1.2, a point set A' E T>im) 

is uniformly recurrent if and only if for every neighbourhood O of A', the set 
{t G Rd : t + A' G 9 } is relatively dense. 

Proposition 2.5.1. If A' has FLC, then A' is uniformly recurrent if and only if A' 
is repetitive. 

PROOF: Without loss of generality, we consider neighbourhoods 9 of A' of the 
form U(CR,e)[A'}, where R > 0,e > 0 and e is expected to be very small. By the 
assumption that A' has FLC, A' — A' is locally finite. Thus, there is a positive 
number 6 > 0 such that {qt + Ci,} are pair wisely disjoint, where qt G (A' — A') DCR. 
We choose e to satisfy that e < min {|, r} and ((A' - A') n CR) n (dCR + Ce) = 0 (no 
points in ((A' — A') n CR) are in the (^-neighbourhood of the boundary of CR). We 
claim that for each t E Rd, t + A' € U(CR, e)[A'\, there exists a vector s E Ct such 
that (s + t + A') n CR = (A' D C#). Recall that s + t is called a translation vector 
of the cluster (A' n Cfl). This follows that the set {t G Rd : t + A' E U(CR, e)[A'}} 
is relatively dense if and only if the translation vectors of the cluster (A' D CR) are 
relatively dense, which implies that A' is uniformly recurrent if and only if A' is 
repetitive. 

So it suffices to show that the claim is true. Recall that t + A' E U(CR,C)[A') 

if and only if (t + A') n CR C A' + C, and AT\CRc(t + A') + Ce. It means that 
the set (t + A') D CR is in the Ce-neighbourhood of the set A' D CR. Suppose the set 
{pi , . . . ,//„,} = (t + A') n CR and the set {pi , . . . ,pn} = A' n C/j. Evidently, n = n'. 
Without lost of generality, we assume that for each i E { 1 , . . . , n} , |p'j — Pi\ < e. 
Then for i ^ j,i,j G { l , . . . , n } , |(p- - pj) - (p, - pj)\ < 2e < b. Note that 
(K — Pj)> (P» — Pj) e (-A — 1̂) n Cfl. By the definition of b, this follows that for i ^ 
j,i,j E { l , . . . , n } , {p'i-p'j) = (Pi~Pj)- Thus, fori G { 1 , . . . ,n} , p^-pj is a constant. 
Take s = pi - p\. Then s satisfies that s E Ce and (s + t +A')nCR = A'n CR. • 

By Theorem 2.1.3, we know that if A is uniformly recurrent, then the orbit 
closure of A denoted by XA is minimal. We wish to use this result to prove that the 
dynamical system (X,Md,/Xyi) is minimal by showing that X — XA. 

However, it is still unstated that for a point set A' G Vr , what is the meaning 
that A' E XI Recall that for a regular positive measure v on some topological 
space, a point z is in the support of v if and only if for all open neighbourhoods Nz 

of z, v(Nz) > 0. Further, if there exists a neighbourhood base {iVz }f° of the point 
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z, then it is equivalent to say that z G supp(^) if and only if for n = 1,2,3, . . . , 
v{Nin)) > 0. 

Now we turn back to the point set A' and the space T>r . Let {(Rn,^n)}')0 be 
a sequence such that Rn / oo,en \ 0 as n —> oo. Then the set {C/(Cij„,en)[yl']} 
is a neighbourhood base of the point set A'. Therefore, A' G X if and only if 
HA(U{CRn,tn)[A']) > 0, for n = 1,2,3, . . . . 

We wish to use the definition of HA to compute ^/i({7(Cfln,en)[yl']) for n = 
1,2,3, — For this, we need an alternative description of U[Cnn, e„][A'] in terms of 
measures. This is provided by the following lemma. 

Lemma 2.5.2. Suppose Rn,en are chosen so that no point of CR^ D A' is in the 
V7n-boundary of C^, i.e., (CRn n A') n (dC^ + C£) = 0. T/ien 

M ^ ( C k ^ ) M ) = Jim jT^Kit £CR:(t + A)z UiC^e^A'})}). (2.5.1) 

PROOF: Denote by {pi,... ,Pk(n)} the finite set C/^ n A'. For all point p G /l', 
let Cp be the index number of the colour of p, i.e., Cp = j if and only if p is a 
point in the j-th component of A'. Recall that A" G t/(Cfln,en)[/l'] if and only if 
(A', A") G tf(CR„,en), i.e., y l ' nC^ C yl" + C£„ and ^"nC f l n C A'+Ctn. This implies 
that there exists one point of A" in each small cube pi + Ctn for i = 1 , . . . , k(n) and 
no points from A" appear in the remainder of CR„, see the Figure 2.1. In terms 
of vector measures, we have that \"{pi + C€n) = lcp., for i = l , . . . ,fe(n), and 
^"(CRn \ Ui=i (̂ » + Ce„)) = 0, where 1^ is the unit vector which has 1 at index 
CPi. 

By condition (5) in Proposition 2.4.11, equation (2.4.11) holds also for patterns 
defined by rectangles. Since the set CRn \ (Ji=i (Pi + Cen) can be decomposed into a 
disjoint union of rectangles of Rd, we can think of 

fc(n) 

Pl+Cin,... ,Pk(n) + Ct„,CRn \ ( J (Pi + Ce„); lC(pi). • • • . lc(pi), ° 
t = l 

as a finite disjoint union of patterns defined by rectangles and rewrite the set 
£/[Cfin,e„][/l']as 

(pi+Cen.- .Pfc(n)+C e„,CH n \U*' i :"
) (Pi+Ce r l ) ; lc(p 1 ) , - . , lc(p 1 )>0)' 

Moreover, by (2.4.11) and (2.4.10), we have equation (2.5.1). • 
Now we set out to prove that X = XA in the case that A is uniformly recurrent. 

The following lemma is useful to estimate the measure value HA(U(CRn,en)[A]'). 
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Figure 2.1: The black solid dots represent points from the set A' D CR whereas the 
blank dots represent A" n CR, where A" is an arbitrary point set in U(CRn,en){A']. 
The whole picture shows a pattern defined by U(CRn,en)[A']. 

Lemma 2.5.3. Suppose for each Rn > 0, en is chosen to satisfy that there is no 
point of CRn HAin the C7n-boundary of C^, i.e., [CR, l"l A) D (dCfln + C~) = 0. 
For a point set A' G U(CRn, \en)[A], U ^ , \en)[A') c U(CRn,en)[A}. 

PROOF: By the assumption, A' n CR„ C A + Citn,A n C ^ C /l ' + Ci£n, and 
A" nCRn C A' + Cien,A' n Cfln C /I" + Cien. Note that the boundary effect is 
eliminated by how Rn,en is chosen. Therefore, A" n C/j„ C (/l' n CRH) + C\tn C 
yl+C£n,ylnCfln c (y l 'nCO+Ci e n c vl"+Cen,i.e. [/(CRn,±en)[yl'] c UtC^^A]. 
This is shown in Fig. 2.2. D 

Lemma 2.5.4. X C XA 

PROOF: It suffices to show that for a point set A' G X, there is a neighbourhood 
basis U(CRn,en)[Ar\ of A' and tn € Rd such that in + A G U{CRn,en)[A']. Since 
A' £ X, ,u^((7(Cfln,en)[yl']) > 0. Using the limit defined by equation (2.5.1), we 
have that l({t £ CR, : t + A G t/(CRn, en)[yl']}) > 0 and hence the set {t G Cfln : 
t + A E U(CRn, en)[A']} is nonempty. Taking tn as a point of this set, we have that 
(tn + A) E U(CRn,en)[A']. Therefore, A' G XA. Sjnce vl' is an arbitrary point set in 
X, we have X C XA. • 

Finally, we are ready to show the following proposition. 

Proposition 2.5.5. Suppose A is uniformly recurrent, then X = XA. 

PROOF: We have proved that X C XA in Lemma 2.5.4. So it suffices to show 
that XA C X. 
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Figure 2.2: The black solid dots represent points from the set A D CR whereas the 
blank dots represent A' D CR, where A' is an arbitrary point set in U(CRU, |en)[/l]. 
This shows U(CRn,frn)[A'} C U(CRn,en)[A}. 

In this proof, for each n, we choose i?„, e„ in the same way as we did the previous 
lemma. As usual, let {pi,... ,Pk(n)} = An CRk. 

First, we prove A E X. It suffices to show that p,/\(U(CRn,en)[A\) > 0, for 
n — 1,2,3, By Lemma 2.5.2, it suffices to show that 

lim 
R—*oo 

{teRd:t + AeU(CRn,en{A])} 
i(cR) >o, 

for n = 1,2,3, . . . . 
Since A is assumed to be uniformly recurrent, the set {t € Rrf : t + A E 

U(CRH, |en)[/l]} is relatively dense, i.e., there exists a positive number Yn > 0 such 
that for all a E Md, card((a+Cy„)nC/(Cfln, |e„)[/l]} > 1. Suppose s E (a+CyB)n{f E 
Rd : t + /l € U{CR^, \en){A]} and s' € s + Ci£n. Then s + A E f/(Cfl„, iCn)[/l] and 
s' + /l G t/(Cf ln, |en)[s + /l]. By Lemma 2.5.3, we have s' + A E U(CRn, en)[A] and 
hence s + Ci£n C ((a + C y J D {t e Kd : i + /l G ^ ( C ^ . e , , ) ^ ] } . 

Thus, ignoring the boundary effect which vanishes as n —> oo, we have ^ ( [ / ( C ^ , e„)[/l]) > 
l^ucff • Therefore, when the limit exists, we have that /j.A(U(CRn, en)[A}) > 

2^J) > 0. By Lemma 2.5.2, A EX. 

Since X is closed and Ed-invariant, XA C X. • 
Combining Theorem 2.1.3 and Proposition 2.5.5, we obtain the following result. 

Theorem 2.5.6. Suppose that a point set A E Vr is uniformly recurrent. If the 
probability measure /J,A exists, then the point set dynamical system (X,M.d,fXA.) is 
minimal. • 
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Corollary 2.5.7. ([47]) Suppose A € T>im) has FLC and it is repetitive. If the 
probability measure /J,A exists, then the point set dynamical system (X, R.d, /J,A) is 
minimal. D 

We point out that in spite of the fact that the measure JJ,A originates from 
the point set A, A may not be in the support of the measure JJLA- For instance, 
we consider the point set Z \ {0}. By Proposition 2.4.13,/iz\{o} exists and it is 
equal to fiz. Note that for 0 < e < \ and R = 2 ,3 ,4 , . . . , U(CR,e)[Z \ {0}] = 
Ue(z\{o})n(i-ii,R-i)(i+(_e'e)) and by the definition of/M, nz(U{CR,e)[Z\{0}]) = 0. 
Therefore, ( Z \ {0}) £ supp(^(z\{0}))-

2.5.2 Ergodicity 

Theorem 2.5.8. (Theorem 2.6, [34]) Let (X, Rd) be the dynamical system in The­
orem 2.5.6. It is uniquely ergodic if and only if for all functions f € C(X), 

/ /'(—1 + £)dt —> constant, asR—*oo, (2.5.2) 
1{CR) JCR 

uniformly in £ € X, with the constant depending on f. • 

The main purpose of this section is to show that under an appropriate condition, 
the dynamical system (X, Rd) is uniquely ergodic and hence the invariant measure 
/j,A is uniquely ergodic. 

It has been proved in (Theorem 2.7, [34]) that in the case that A is a Delone 
multiset with FLC, the dynamical system (XA,Rd) is uniquely ergodic if and only 
if A has UCF. We wish to get the same result in a more general setting P , . For 
this, we need to generalize the notion UCF to a point set A 6 Pf™ . This is given 
as follows. 

Definition 2.5.9. For a pattern F := (A i , . . . , A„; k i , . . . , k„) ofVr, if the limit 

I(lXF,a + A):= lim -±- [ lXp(-t + a + A)dt, (2.5.3) 

fl-oo 1(CR) JCR 

exists uniformly for a G Rd, then we say that this pattern has uniform frequencif' 
at A. Further, if all patterns of Vr have uniform frequencies at A, then we say 
that A has uniform pattern frequencies (UPF). 

5The limit I(lxF, A) is equal to the frequency PA(F) 
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In general, we define that for a function / defined on X and a point set £ € X, 

W,0-=j7^ [ f(-t + ®dt. (2.5.4) 

HWJJ JcR 

and 

/ ( / , £ ) : = lim /*( / ,£) , (2.5.5) 
K—>oo 

if the limit exists. 
Lemma 2.5.10. T7ie function IR(lxF,A') is continuous with respect to A'. 

PROOF: We are going to show that for a e > 0, there is exists a 5 > 0, such that 
for all 4" € U{CR,6)[A'}, 

\IR(1XF,A') - IR(1XF,A")\ < €. (2.5.6) 

Suppose for i = 1, . . . ,n, Aj := Ui M x H) a n d ^ = Ui 4 x 0'}- W e d e f i n e 

0F« = (dCfl U I X i t r L i ^ ' ) + C5, Z(A') := {t E CR : -t + A' e XF} and 
YW(A') := {i £ CR : (-* + J1') n (di7*) = 0}. Moreover, we define Z^(A') := 
Z{A')nY^(A'). 

From the proof of Theorem 2.4.5 (see inequality (2.4.7) ), 

l{t G CR : card((-i + A') n (0F*) > 0) < c • l(CR)l(dFs), 

where c = (1 + £)d. It is clear that l{dF$) —> 0, as <5 —• 0. So there is a <$i > 0 such 
that for 6 < ft, i(Cfl \ Y^(A')) < e • /(C^). 

Note that for a yl" € U(CR,6), Z^(A') C Z(/l"). Furthermore, 

Z^(A') = Z(A') \ (Z(A') n (CR \ Y^(A'))), 

it follows that 

l(Z^\A')) = l(Z(A'))-l((Z(A')n(CR\Y^\A'))))>l(Z(A'))-l((CR\Y^(A'))). 

Therefore, 

l{Z{A"))-l{Z(A')) > -l{Z^\A'))-l{Z{A')) 

> -l(CR\Y^(A'))>-e-l(CR). 

Similarly, we can show that there exists <52 > 0 such that for 6 < 82, and a A" € 
U(CR,5)[A>], 

l(Z(A'))-l(Z(A"))>-e-l(CR). 

Taking 5 = Tam{6i,62}, then for a A" £ U(CR, 6), the inequality (2.5.6) follows from 
the above two inequalities. D 
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Lemma 2.5.11. Let f be a continuous function on X, i.e., f G C(X). Then f can 
be uniformly approximated by simple functions of the form 

/ , C (Ai , - ,Anik 1 , . . . ,k„) lx ( A l , . . . , A n ; k l k n ) • 

PROOF: Recall that X is compact. Hence, / is a uniformly continuous function. 
So for a e > 0, there is an entourage U{CR>,5) such that for any two point sets, £ 
and 77, (£,77) G U(CR>,5), |/(£) — f(r))\ < e. Now we take a finite set of disjoint 
semi-open rectangles {A\,..., An} such that each of them can be embedded into a 
small cube a + Cs, where a € Kd, s < min{r, | } and Cn> C (J™=i ^-i- For i = 1, • • •, w> 
we define A, := U^-Aj x {j}. Then for {At,..., A„}, the space X has a partition 

x = ( J ^(Ai A„:kj k„), (2.5.7) 
ki,...,k„e{0,ei,...,em} 

where e i , . . . , em are unit vectors of Rm. 
Note that the pattern (A i , . . . , Ara; k i , . . . , k„) can be simply specified by (k i , . . . , k„). 

Evidently, for such a pattern (k i , . . . , k„), if £, rj G X^ k„), then (£, rj) G U(CR>,5), 

So for a ^(ki,...,k„) G -X(ki,...,kn), 

11/ - /(C(ki,...,kB))lx(kli...,kn)||oo < e> 

where / is restricted to X^,...,^). 
It is clear that card{(k1 ; . . . , k„) e {0, e l 5 . . . , em}"} = (m + 1)". Therefore, / 

can be approximated by a simple function as follows, 

H / - Yl f(&i k„))lx(kl,...,kn)||oo<e. 
k l,...,kne{0,ei,...,em} 

D 

Theorem 2.5.12. Let A be a point set in T>r having UPF. Then the measure HA 
exists and it is uniquely ergodic. 

PROOF: First of all, \i\ exists because A has UPF. 
Next, by Lemma 2.5.11, it suffices to prove it for the functions / of the form 

• ^ ( A j A n i k j k „ ) " 

By the definition of HA, for a pattern F := (A i , . . . , A „ ; k j , . . . ,k„), I(lxF,A) 
exists and it is equal to HA(XF)- Since A has UPF, the limit I(lxF,a + A) exists 
uniformly for a € W. Moreover, as a consequence of van Hove sequence property, 
we have that I(lxF,a + A) = I(1XF,A), for a G Rd. We aim to show that I(1XF,A') 
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exists uniformly and I(lxF,A') = (IA(XF), for A' 6 X. Recall that X C X^ (see 
Lemma 2.5.4). So it suffices to show it for A' € X^. 

Let A' be a limit point set of the orbit of A, i.e., there is a sequence {sm : sm € 
Rd}i° such that sm + A —> A' in the local topology. 

By Lemma 2.5.10, the function IR(1XF,A') is continuous with respect to A'. 
Thus, IR(1XF,A') = limm^oo J f i(lxF , sm+yl). Further, for all sm, IR{1XF, sm+A) -> 
J(lxF,Sm + ^) uniformly as R -> oo and limfl_0o/R(lxF,Sm + vl) = i"(lxF,/l) = 
AM POO- Thus, for a e > 0, there exists R' > 0, such that for R > R', and m e N, 

| / R ( 1 X F , sm + yl) - / M ( * F ) | < | . 

Meanwhile, for the same e, there exists iV e N such that for m > N, 

XFI 3m 

As a consequence, for R > R', 

\IR{lxF,A')-(iA(XF)\ <e. 

Therefore, I(1XF,A') = l i m ^ 7 ^ ( 1 ^ , A') = (iA(XF). U 

2.6 Spectral measures and the diffraction mea­
sure 

Consider the Hilbert space L2 (X, (i). Along with the action of T on X there is an 
unitary action (also denoted by T) on the space of square integrable functions on 
X. For any function / 6 L2(X, (i), Ttf(A) := f(~t + A) for all t € Rd. It is easy to 
verify that T is well defined. 

2.6.1 Spectral measures 

That the spectral theory of such a unitary representation is useful in understanding 
the geometry of the structures which are encoded in the dynamical system goes 
back to O. Koopman [29] in the 1930's, and is well-known in mathematical physics. 
Since usually it is hard to compute the spectrum of T directly, one looks at spectral 
measures of all the functions in L2(X,(i). For any function / e L2(X,(i), (f,Ttf) 
can be verified to be a positive definite function on M.d. By Bochner's theorem [46], 
there exists a positive measure (if such that 

(f,Ttf) = je^ddf. 
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fif is called the spectral measure of the function / . 
Then what is the relationship between these spectral measures and the spectrum 

of the operator? The measure /«/ may be pure point, singular continuous, or ab­
solutely continuous, or any mixture of these. The basic spectral decomposition of 
L2(X,n) is created by splitting it according to those functions / for which /// is of 
these various types: 

L2(X, /z) = L2(X, M)p p 0 L2(X, /i)oc 0 L2(X, M) s c . 

In hand with this we consider the Hilbert space L2(Md,7) defined by the diffrac­
tion of A 6 X (7 = 7A is almost everywhere the same for all A G X). We also have 
a unitary representation U of Rd on L2(Rd, 7) defined by 

Utf(x) = e-2«it-*f(x) = X-t(x)f(x), 

where the characters Xk '• ^d —* C are defined by Xfc(x) = e2mh'x. 
Compared with the spectrum of T in L2(X,/J,), the basic structure of the spec­

trum of U on L2(Rd,j) is much simpler. It can be read directly off that of the 
measure 7. Specifically, let 7 = [f))pp + (7)sc + ('j)ac be the decomposition of 7 into 
its pure point, singular continuous, and absolutely continuous parts. Then 

L2(Rd ,7) = L2(Rd,%p)($L2(Rd,%c)@L2(Rd,%c). 

With • standing for pp, sc, or ac, the associated spectral measure of / € 

L2(Rd ,7D)is | / |2(7)n. 

2 . 6 . 2 D w o r k i n ' s a r g u m e n t 

We now come to one of the main questions of our work: is there a connection 
between the diffraction measure and the dynamic system measure determined by 
the same point set A. An affirmative answer was given to this in a short, but often 
cited paper of S. Dworkin [16]: 

Theorem 2.6.1. Let f £ Cc(R
d). Then for fi-almost all A € X, T/^A is the spectral 

measure fi^f on L2(X,/j,). 

Here T/TA. is the diffraction measure of the point set A that has been modified so 
that the profile of / is attached to each x 6 A, and N simply maps each continuous 
function / with compact support to the function Nf on X such that Nf(A) = 

EseA/te)-
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This theorem has proven to be very useful inferring information about the diffrac­
tion from information coming from the dynamics. Arguments using the theorem are 
usually said to follow by Dworkin's argument, hence the name. However, as it 
stands, Theorem 2.6.1 leaves the actual connection between the diffraction and the 
dynamics very unclear. The rest of this thesis is devoted to uncovering what is really 
happening. 
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Chapter 3 

The relationship between two 
measures 

Introduction 

By definition, a point process on E is a measurable mapping 

£ : (to, A, P) —> (Jtp, m(Jtp)) 

from some probability space into Mv with its cr-algebra of Borel sets 38(^p). That 
is, it is a random point measure. Sometimes, when m > 1, it is called a multivariate 
point process. The law of the point process is the probability measure which is the 
image fx := £(P) of P. The point process is stationary if ix is invariant under the 
translation action of M.d on ^p. 

Thus from the stationary point process £ we arrive at a measure-theoretical 
dynamical system (J%p,M.d,Li). Conversely, any such system may be interpreted as 
a stationary point process (by choosing (to,A,P) to be (^#p,M

d, /x)). 
In most cases of interest, the support of the law it of the process is considerably 

smaller than all of J£v. In the sequel we shall assume that we have a point process 
£ : (to, A, P) —> (JKp, 38(j£p)) that satisfies the following conditions: 

(PPI) the support of the measure fj, = £(P) is a closed subset X of Mp(Cr , 1) for 
some r > 0. 

(PPII) ix is stationary and has positive intensity (see below for definition). 

(PPIII) (x is ergodic. 
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These are examples of what are called translation bounded measure dynamical 
systems in [6], although it should be noted that there the space of measures is not 
restricted to point measures, or even positive measures. 

Obviously under (PPI) and (PPII), X is compact, and (X,Rd,n) is both a 
measure-theoretic and a topological dynamical system. 

Condition (PPI) implies that the point process is simple and so we may identify 
the measures of the point process as the actual (uniformly discrete) point sets in E 
that are their supports. Write X for the subset of Vr given by the supports of the 
measures of X. We call a point process satisfying (PPI) and (PPII) a uniformly 
discrete stationary point process and call a point process satisfying (PPI), 
(PPII) and (PPIII) a uniformly discrete ergodic point process. We will make 
considerable use of these two ways of looking at a point process - either as being 
formed of point measures or of uniformly discrete point sets. 

The ergodic hypothesis eventually becomes indispensable, but for our initial 
results it is not required. Usually we simplify the terminology and speak of a point 
process £ and assume implicitly the accompanying notation (X,M.d,fi) and so on. 
We denote the family of all Borel subsets of X by X. 

Recall that for a uniformly recurrent point set A E Vr , if the frequency of each 
pattern exist on A, then A uniquely determines a probability measure {i on VT , 
which satisfies (PPI), (PPII) and (PPIII). Hence, we obtain a uniformly discrete 
ergodic point process by assigning /x to be the law of it. This shows a way to 
construct an example of a uniformly discrete ergodic point process. For instance, a 
regular model set on Rd, which is uniformly recurrent because it is repetitive and 
has FLC, uniquely determines a uniformly discrete ergodic point process according 
to Corollary 2.5.6. 

It is known that the measure /x admits a bounded conditional measure on the 
space that {A' 6 X : 0 € A'}, which is called the Palm measure of /x. Gouere 
[21] first proved that for all point sets in (X, M.d,fi), the two-point autocorrelation 
measure exists /x-almost surely and is equal to the first moment of the Palm measure 
/x-almost surely. We will give a new proof to this theorem by introducing a so-called 
average linear functional on X. As we mentioned in the general introduction, we will 
treat the first moment of the Palm measure as the two-point correlation measure of 
the point process and shift our attention from the question about the relationship 
of the two-point correlation measure and the invariant probability measure on Vr 

determined by an individual point set to the question about the relationship the 
two-point correlation measure and the law, belonging to the entire ergodic point 
process. 
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3.1 The moments and counting functions 

In this section we work in the one colour case m = 1. Thus E = Rd. We let 
£ : (Q, A, P) —• {X, X) be a uniformly discrete stationary point process on E with 
law zz. We assume that X C ^p(Cr, 1) C Ms. 

According to Prop. 2.2.2, for each A e B(Rd) and for each / € BMc{Rd), the 
mappings 

NA:^p(Cr,l) -

Nf : ^p{Cr, 1) -

- > Z , 

- > C , 

iV^(A) = A(A) 

iV/(A) = A(/) 

(3.1.1) 

(3.1.2) 

are measurable functions on ^p(Cr, 1), and by restriction, measurable functions on 
X. The first of these simply counts the number of points of the support of A that 
lie in the set A, and Nf is its natural extension from sets to functions. Whence the 
name counting functions. They may also be considered as functions on Mp. They 
may also be viewed as functions on the space X viewed as the space of corresponding 
point sets. 

Thus, for example, in this notation we have for all / G BMC 

f A(/)dM(A) = / Nf(\)dv(\) = [ J2 A({x})/(x)d^(A) (3.1.3) 
Jx Jx Jx xmd 

Nf(A)dv(A)= f J^fWMA). 

This is the first moment of the measure /J,, henceforth denoted /zi. More generally, 
the nth moments, n = 1,2,... of a finite positive measure u on X are the unique 
measures on (Ed)" defined by 

un{Ai x • • • x An) = / \{AX)... X(An)dw(X) 
Jx 

= [ NAl...NAnckj, 
Jx 

where Ax,...An run through all B{M.d). Alternatively, for all / i , . . . , / „ G BMc{Rd), 

w„((/i,. . . ,/„))= f Nh...Nfndw. 
Jx 

Since w is a finite measure and the values of A(/) = Nf(X) are uniformly bounded 
for any / € BMc(WLd) as A runs over X, these expressions define translation bounded 
measures on 
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If the measure u is stationary (invariant under the translation action of Kd) then 
the nth moment of u> is invariant under the action of simultaneous translation of all 
n variables. Thus, if the point process £ is also stationary then the first moment of 
the law of £ is invariant, hence a multiple of Lebesgue measure: 

fi^A) = [ \(A)dii{\) = I£(A). (3.1.4) 
Jx 

This non-negative constant / , which is finite because of our assumption of uniform 
discreteness, is the expectation for the number of points per unit volume of A in A 
and is called.the intensity of the point process. We shall always assume (see PPII) 
that the intensity is positive, i.e. not zero. 

The meaning of Nf can be extended well beyond BMc(R
d). To make this exten­

sion we introduce the usual I^-spaces Lp(Rd,£), LP(X,n) together with their norms 
which we shall indicate by || • ||p in either case. In fact, we need these only for 
p = 1,2. We shall also make use of the sup-norms || • ||oo. 

Proposit ion 3.1.1. The mapping (3.1.1) uniquely defines a continuous mapping 
(also called N) 

N:L\Rd,£) —> L\X,fx) 

/ - JV, 

satisfying {{Nf^ < y/2I \\f\\v Moreover, for all f € L ^ R ^ ) , 

Nfity — Hf) for M a-linost surely all A e X . 

PROOF: Let A C Rd be a bounded and measurable set, let 1^ be the characteris­
tic function of A on Rd, and define Nu on X by N1A(X) = X(1A) = X(A) = NA{\), 
see (3.1.1). From (3.1.4), \\Nu\\i = JxNA(X)dn(X) = 11(A) = I\\lA\\i. This shows 
that the result holds for N defined on these basic functions. 

For simple functions of the form / = X)fc=i ck^Ah, where the sets Ak C i3(Rd) 
are mutually disjoint and the C& > 0, define 

n n 

Then 
n n 

Mi = Ec* IK* I = Ec*7^*)= 7 
k=i - -

and Nf(X) = X(f) for all A G X. 

l ' 
fc=i " " fc=i 
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The extension, first to arbitrary positive measurable functions and then to arbi­
trary real valued functions / goes in the usual measure theoretical way, and need 
not be reproduced here. 

Finally we use linearity to go to complex-valued integrable / . If / = fr + \/—T/j 
is the splitting of / into real and imaginary parts, then Nf — NjT + y/^lN^, so 

IMl</(ll/r|ll + ll/iHl) = / / (\fr\ + \fi\)dt 
JM.d 

Using the inequality (|/ r | + |/i |)2 < 2( | / r |
2 + [ / / ) , we have 

IIW/lli < V2J / ^\fr\
2 + \fi\

2d£ = V2i\\f\\1. 

It is clear that if / and g differ on sets of measure 0 then likewise so do Nf and 
Ng, so this establishes the existence of the mapping. • 

Proposition 3.1.2. Let fn, n = 1,2,3,. . . and f be measurable C-valued func­
tions on Rd with supports all contained within a fixed compact set K. Suppose that 
||/n||oo. H/lloo < M for some M > 0 and {/„} —> / in the Ll-norm on Rd. Then 
{Nfn} —»• Nf in the L2-norm on X. 

PROOF: Because of the uniform discreteness, X(K) is uniformly bounded on X 
by a constant C(K) > 0. Then for g = f or g = fn for some n, |iVa(A)| < MC(K). 

\\Nf-NfJ\l = [ \Nf(\)-Nfn(\)\
2dv(\) 

Jx 

< f (\Nf(X)\ + \Nfn(\)\) \Nf(X) - Nfn(\)\ d/x(A) 
Jx 

< 2MC(K) f \Nf(\)-Nfn(X)\d^X), 
Jx 

which, by Prop. 3.1.1, tends to 0 as n —> oo. D 

3.2 Averages, the Palm measure, and autocorre­

lation: 1-colour case 

In this section we work in the one colour case m = 1. Thus E = Rd. We let 
£ : ($7, A., P) • (X, X) be a uniformly discrete stationary point process on E with 

law [i. 
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3.2.1 The Palm measure 

The Campbell measure is the measure d on Rd x X, denned by 

d{B x D) = f \{B)d(i{\) = [ VA({x})lD(A)d/x(A) (3.2.1) 

xeB 

for all B x D e S x X. 
We note that d is invariant with respect to simultaneous translation of its two 

variables. By introducing the measurable mapping 

<t>: Rd x X — > R d x X : (x,A) i-> {x,T_x\) 

we obtain a twisted version c of c', also defined on Rd x X : 

c(BxD) = f ^\({x})lD{T-x\)diM(\) 

= / E ( lD)(-x + yl)dM(yl), 

and this is invariant under translation of the first variable: 

c((t + B)xD) = j E A({x})lD(r_xA)dM(A) 
x€(t+B) 

= [ Y^T-tWvynDttT-yT-MdfjLiT-tX) 
x yes 

= c(5 x JD), 

using the translation invariance of \x. 
Hence for a fixed D C X, c is a multiple fi{D)£{B) of Lebesgue measure and 

D i—> A(-D) := c(B x D)/£{B) is a non-negative measure on X that is independent 
of the choice of B € B{Rd) (assuming that B has positive measure). This measure 
is called the Palm measure of the point process. See [11] for more details. 

KD) =j^Jx Exes H{x})lD(T-x\) dM(A) (3.2.2) 

We note that fi{X) = Jx \(B)dfi(X)/£(B) = I, which is the intensity of the 
point process. Some authors normalize the Palm measure by the intensity in order 
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to render it a probability measure, and then call this probability measure the Palm 
measure. We shall not do this. However, we note that the normalized Palm measure 
is often viewed as being the conditional probability 

~KD) = ^{\ED\X({O}) = I}), 

that is, the probability conditioned by the assumption that 0 is in the support of the 
point measures that we are considering. In fact the conditional probability defined 
in this way is meaningless in general since the probability that A({0}) ^ 0 is usually 
0. But the intuition of what is desired is contained in the definition. Taking B as 
an arbitrarily small neighbourhood of 0 in (3.2.2), we see that in effect we are only 
looking at points of A very close to 0 and then translating A so that 0 is in the 
support. The result is averaged over the volume of B. 

If the point process falls into the subspace X of M. then the support of the Palm 
measure is also in X. However, the Palm measure is not stationary in general, since 
the translation invariance of pi has, in effect, been taken out. 

The first moment of the Palm measure, sometimes called the intensity of the 
Palm measure, is 

(x\ : (i\{A) — / X(A)dfi(X) or equivalently (3.2.3) 
Jx 

Ai(/) = f A(/)d£(A) = [ Nf(X)dfi(\). 
Jx Jx 

The first moment of the Palm measure, and also the higher moments to be 
defined later, play a crucial role in the development of the paper, since they are, in 
an almost sure sense, the 2-point and higher point correlations of the elements of 
X. 

As with n, we will, consider the Palm measure interchangeably as a measure on 
X (as we have already done implicitly in Eq. (3.2.2)). 

The importance of the Palm measure is its relation to the average value of a 
function over a typical point set A E X, and from there to pattern frequencies in A 
and its direct involvement in the autocorrelation of A. To explain this we need to 
develop the Palm theory a little further. 

Lemma 3.2.1. (Campbell formula) For any measurable function F : Rd xX —> R, 

f F(x,\)d(t(\)dx = [ ^ H{x})F(x,T_x\)d/j.(\) . / 
Jud 
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P R O O F : This can be proven easily by checking it on simple functions. Let 

F = 1B x 1D- Then 

/ f lB(x) x lD(X)dfi(X)dx = e{B)fi{D) = c(B x D) 

= / E A({x})lB(x)l / 3(r_xA)^(A) 

xGRd 

D 
Let vR be the function on X defined by 

1 
MX) = JT^-TNCR{X) , 

for all /? > 0. We treat VR as the Radon-Nikodym density of an absolutely continuous 
measure on X (with respect to n). 

Proposit ion 3.2.2. In vague convergence, 

{VR} —>• A a s -R —>• 0. 

PROOF: Use the definition of the Palm measure in (3.2.2) with B replaced by 
CR. Then for any continuous function G o n I , 

If we require that R < r then 

E A(M)G(r_vA) = iVCfl(A)G(7LxA), 
yeC R 

where £ is the unique point in A D C# when it is not empty, and then 

KG) = J±-)JXNCR(\)G(T„X\W(X). 

On the other hand 

MG) = j ^ J NCR(X)G(X)dn{X). 
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Thus 

\fi(G)-uR(G)\ 

~ f NCR(\){G(T-x + \)-G(\)}dv(\) 
^R) JX £(CR) 

(3.2.4) 

" t(C, 
I- f NCR(X) |{G(T_SA) - G(A)}| dM(A). 
-'R) Jx 

The rest follows from the uniform continuity of G (X is compact). From the 
inequality (3.2.4), 

|£(G) - VR{G)\ < -£-r [ NCR(AW(A) = eRI, 
f-K^R) Jx 

for some ê , —> 0 as R —> 0, where / is the intensity of the point process. 
Therefore, we have that uR—*fi vaguely. • 

3.2.2 Averages 

Let £ be a uniformly discrete ergodic stationary point process, with corresponding 
dynamical system (X,Rd,ii). Let F € C(X). The average of F at A e X is 

Av(F)(A) = lim j ^ - £ A({x})F(r_xA), 

R^e(cR)x^H 

if it exists. Thus Av(F) is a function defined at certain points of X. Alternatively, 
we may think of F as a function on point sets and write this as 

v K> XZAHCR 

We will prove the almost-sure existence of averages. 

Proposition 3.2.3. Let F £ C(X). The average value of Av(F)(X) of F exists y,-
almost surely for A G X and it is almost surely equal to (i(F). In particular Av(F) 
exists as a measurable function on X. If /i is uniquely ergodic then the average value 
always exists everywhere and is equal to JJ,(F). 

Proof: It is clear that the average value is constant along the orbit of any point 
A for which it exists. 

Let e > 0. Since F is uniformly continuous, there is a compact set K and 
an s > 0 so that \F(X') - F(A")| < e whenever (A', A") € U(K,s). In particular 
\F(—x + A) — F(—u + A)| < e whenever \x — u\ < s. We can assume that s < r. 
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Let va := j^)NCs :X —> C, as above. For x € Rd and A G X, A ^ T ^ A ) = 1 
if and only if x € it + Ca for some u £ A. Thus 

—5— / F(T-x\)va(T-x\)dx (3.2.5) 

~ 7 7 7 M £ A ( ^ » 7 7 7 M / F(T-xX)dx, (3.2.6) 

where the ~ comes from boundary effects only and becomes equality in the limit. 
There is a constant a > 0 so that card(X(CR)) / £(CR) < a, independent of R or 

which A G X is taken. Using this and our choice of s, we obtain 

| lim -r^-r [ F(T-x\)v.(T-x\)dx (3.2.7) 

-fc^£A({,,>)F(r-„A)|<a£. 
v ; uec R 

The right hand term is just the average value of F at A, if the limit exists. 
However, by the Birkhoff ergodic theorem the left integral exists almost surely and 
is equal to Jx Fvsd/j, = vs{F), us being treated as a measure. 

Now making e —> 0, so s —> 0 also, and using Prop. 3.2.2 we have 

A(F) = l h W F ) = lim jr^- £ X({u})F(T.uX) = Av(F)(A). 

Thus the average value of F on A exists almost surely. 
In the uniquely ergodic case, the conclusion of Birkhoff's theorem is true every­

where in X. • 

3.2.3 The autocorrelation and the Palm measure 

Again, let £ : (f2, A, P) —> (X, X) be a uniformly discrete stationary ergodic point 
process on Rd with law //. For each A G X we define A to be the point measure on 
Krf defined by \{{x]) = A({—x)) (though at this point we are only dealing with real 
measures). Recall that the autocorrelation of A is defined as 

7A : = i i m 777M (AIC« * Alc«) = i i m 777M Yl 5y~x' 

where the limit, which may or may not exist, is taken in the vague topology. 
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A simple consequence of the van Hove property of cubes is that: 

^ = ^Wn) £ *"- (3'2-8) 

Namely, for any / E Cc(R
d), say with support K, and any x E CR, f(y — x) = 0 

unless y E CR + K, and thus for large R the only relevant y which are not in CR are 
in the /^-boundary of CR, which is vanishingly small in relative volume as R —* oo. 

Theorem 3.2.4. The first moment (x\ of the Palm measure is a positive, positive 
definite, translation bounded measure. Furthermore, /^-almost surely, A E X admits 
an autocorrelation 7A and it is equal to (x\. If X is uniquely ergodic then (ii = 7A 
for all A € X. 

Proof: We begin with the statement about the autocorrelation measures 7A. 
Let / € Cc(Rd). The autocorrelation of A at / , if it exists, is 

•^^'Ss.m E M{x)m»-x) (3'2-9) 

= R
lim

 777M £ H{x})N,(T-,\) 

= (i(Nf) = h(f) 

for A 6 X, /u-almost surely, where we have used Prop. 3.2.3 and (3.2.3). 
This is basically what we want, but we must show that it holds for all f E 

Cc(R
d,R) for almost all A E X. This is accomplished by using a countable dense 

(in the sup norm) set of elements of Cc(Rd,R). We can get (3.2.9) simultaneously 
for this countable set, and this is enough to get it for all / E Cc(M

d,K). Then 7A 
exists and is equal to ji\ for almost all A € X. For more details see [21]. 

Finally, it is clear that 7A is a positive and positive definite measure whenever it 
exists, and hence also /ii is positive and positive definite. All positive and positive 
definite measures are translation bounded, [8] Prop. 4.4., or [23]. • 

3.3 Adding Colour 

We now look at the changes required to Section 3.2 in order to include colour, i.e. to 
have m > 1. The colour enters in two ways. First of all, the dynamics, that is to say 
the dynamical hull X and the measure /i, depend on colour since closeness in the 
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local topology depends on simultaneous closeness of points of like-colours. Secondly 
the autocorrelation, and then the diffraction, depends on colour. 

Diffraction depends on how scattering waves from different points (atoms) su­
perimpose upon each other. However, physically, different types of atoms will have 
different scattering strengths, and so we wish to incorporate this into the formalism. 
This is accomplished by specifying a vector w of weights to be associated with the 
different colours and introducing for each point measure A of our hull X a weighted 
version of it, Xw. This will be a measure on Md. It will be important that the weight­
ing is kept totally separate from the topology and geometry of X. The geometry of 
the configuration and the weighting of points, which enters into the diffraction, are 
different things. The measures describing our point sets are measures on E, but the 
diffraction always takes place on the flattened point sets. 

On the geometrical side we have treated the full colour situation from the start. 
In this section we introduce it into the autocorrelation/diffraction side. This affects 
almost every result in Section 3.2. However, we shall see that every proof then 
generalizes quite easily, and we simply outline the new situation and the generalized 
results, leaving the reader to do the easy modifications to the proofs. 

3.3.1 Weighting systems 

Let £ : (fi, A, P) —> (X, X) be a uniformly discrete stationary multi-variate point 
process, where X C Jtv, X = M D X, and (X, Kd, y) is the resulting dynamical 
system. As in Section 1.4.1, we let E = Rd x m, with E* = Rd x {i} and E = \\t<m E*. 
For each i we have the restriction 

res* : A i-> X1 

of measures on E to measures on E \ We will simply treat these restricted measures 
as being measures on R0*. If A <-> A then we also think of res' as the mapping 
A t-* A1 := {x 6 Rd : (x,i) e A}. x 

The same argument that led to (3.1.4) gives 

f Xi(A)dfi(X) = I{i)X(A) 
Jx 

for some /W > o, for each i. We shall always assume: 

xIt is also possible to define associated dynamical systems X1 and with them Palm measures. 
However, it is important here that everything will always refer back to the full colour situation 
encoded in the geometry of X. 
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(PPIIw) /W > 0 for all i < m. 

A system of weights is a vector w — (wi,... wm) of real numbers.2 We define 
a mapping 

X - • Ms(R
d) A^A™ := ]TWiX1. 

We also have the flattening map: 

X -» Ms(R
d) A •-> A; := J ^ A*. 

First introduce the measure c™ on E^ x I : 

cw(B x D) = f J^ Aw({x})Talz,(A)d/i(A). 

Since (TXA)™ = ^(A™) this measure is invariant under translation of the first variable 
and we have 

cw{B xD) = £(B)fiw{D). 

This determines the w-weighted Palm measure fiw on X. This is not a Palm 
measure in the normal sense of the word. However, it plays the same role as the Palm 
measure in much of what follows. For example, there is a corresponding Campbell 
formula: 

[ f F(x,X)dfiw(X)dx = I VA<"({x})F(x,T_xA)dM(A) 
J^ Jx Jx xmd 

for all measurable F : Rd x X —• C. 
We note the formula for the weighted intensity: 

Iwl{A) = I Xwd»(X) = f ^A-({x})dM(A) 
J x J x x€A 

= cw{AxX) = l{A)jj,w(X), 

whence 
Iw = {iw(X). (3.3.1) 

For all i < m, for all A E B(Rd), and for all / G BMc(R
d) define 

NJ . X — N N%(\) = XW(A) = Y,xeA A-({x}) (3.3.2) 

Nf :X-+N Nf(X) = Xw(f) = £ x e R r f A»({x})/(x). 

2 One could have complex numbers here, but it makes things easier, and more natural for higher 
correlations, if the weights are real. 
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Thus, for example, 

NAW = J V A ' ( A ) = J^u /A^res^A)) = ^ T i ^ o res^A). (3.3.3) 

Define 
v%:X-^R, ^ (A) = T T T T T ^ C A ) 2 

or equivalently, ^(./l) = WT)NcR(A). In vague convergence, 

{"*}->£"' ^ i J - > 0 . 

These auxiliary measures are used, as before, to prove the existence of averages. 
Let F € C(X). The ^-average value of F on X is 

Av«(F)(A) = lim ^ ^ A-({x})TxF(A) 

Av-(F)(A) = lim - i - ^ Xw({x})F(-x + A), 

if it exists. 
Prop. 3.2.3 becomes: 

Proposition 3.3.1. The w-average value of F e C(X) is defined at A £ X, pi-
almost surely and is almost surely equal to (iw(F). If fj, is uniquely ergodic then the 
average value always exists and is equal to (iw{F). 

We now come to the w-weighted autocorrelation. This is the measure on Rd 

defined by 

7r(/) = jimo^yA-|c«*A^|CH(/) 

= Km-±- J2 A"({z})A^M)/(j,-z) (3.3.4) 
R-,00 £(CR) xe(^ymd 

= i i m Jlk) E A"({x})JVJ?(T_,A) 

= Avw(N?) = (iw(N?)=:(iy(f) 

for all / € Cc(R
d) and for /^-almost all A e X. 

We call (JL™ the weighted first moment of the weighted Palm measure. 
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Theorem 3.3.2. The weighted first moment /if of the weighted Palm measure is 
a positive definite measure. It is Fourier transformable and its Fourier transform 
/if is a positive translation bounded measure on M.d. Furthermore, fj,-almost surely, 
A G X admits a w -weighted autocorrelation 7™ and it is equal to /if. If X is uniquely 
ergodic then /if = 7™ for all A 6 X. • 

Remark 3.3.3. Regarding the statements about the transformability and translation 
boundedness of the Fourier transform, this is a consequence of the positive definite-
ness of the Palm measure, see [8] Thm. 4-7, Prop. 4-9. 

3.4 Patterns and pattern frequencies 

This section is not used in the sequel. However, it serves to illustrate the importance 
of the Palm measure. 

Let (X, M.d, fi) be a multi-colour uniformly discrete stationary ergodic point pro­
cess. It is of interest to define the frequency of finite colour patterns in X. This is 
made difficult because from the built-in vagueness of the topology of X we know 
that we should not be looking for exact matches of some given colour pattern F 
of Vr , but rather close approximations to it. In addition there is the problem of 
how to anchor F, in order to specify it exactly as we move it around. This leads us 
to always assume that F contains 0, and then to define a pattern in X as a pair 
(F,V) where F = Df=1{Fui) is a finite subset of vim) with 0 6 F l := UFt and V 
is a bounded measurable neighbourhood of 0 in Rd. For a pattern (F, V) we then 
define the collection of elements of X that contain it as 

XFy = X{Fy) := {A G X : F C V + A} , 

and write Ipy for lxFV- See (2.4.7) in Proposition 2.4.9 where we were assuming 
FLC. 

Throughout one should keep in mind that F and A are multi-colour sets, our 
conventions are that translations are by elements of R^ and are always on the left, 
and the inclusions take colour into account. 

For any bounded region B define 

LFy(A, B) := card{x G A[ : Fc-x + V + A,x-V + FcB}. 

An initial idea for the frequency of the pattern (F, V) in a set A G X might be: 

freq(yl, F, V) = Jim -±-LFy(A, CR). (3.4.1) 
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This definition is very sensitive to the boundary of V, as one can see from the 
simple example below. In general we do not know how to prove that this limit exists, 
even almost everywhere in X. However, we can prove that for V open or V closed, 
if the limit does exist then it is, almost surely, given by the Palm measure of XFy, 
and this we do know exists almost surely. Thus we are led to define: 

The frequency of the pattern (F, V) in X is (x{XFy). 
The connection with Palm measures comes because (as is easy to see from the 

van Hove property of expanding cubes) 

The latter is the average over A (where the weighting system is all Is) of 1F,V, if it 
exists. 

Proposition 3.4.1. Let (F,V) be a pattern with V an open set. Then 

teq(A,F,V) = ii{XF,v) 

fi-almost surely for A G X, where freq means that the liminf is taken in (3.4.1). 
Similarly, if (F, V) is a pattern with V a closed set, then 

b^(A,F,V)=fl(XFy) 

ix-almost surely for A G X, where freq means that the limsup is taken in (3.4.1). 

Lemma 3.4.2. XFy is open ifV is bounded and open and closed ifV is bounded 
and closed. 

Proof: Let V be open and let A G XFy. Then F C V + A. Since V is open and 
F is finite, there is an e > 0 so that for each / € F, with / = v + x, where v € V, 
x e A (there may be choices, but fix one choice x for each / ) , / + Ct C V + x. 
Choose R > 0 so that -V + F C CR. Let A' e U{C^, Ce)[A] and let / = v + x G F, 
as above. Since UR fl A C Ce + A' and x €~C^.nA, x = c + x' where x' e A', c e Ct. 
Then c + / G V + x, so / G V + x'. 

Since / G F was arbitrary, F C V + A' and A' G XFy. Thus the open neigh­
bourhood U(CR, Ct)[A] of A lies in XFy. 

The argument for V closed is similar. • 

Proof of Prop . 3.4.1 (sketch): Consider the case when V is open. Then XFy 

is open and the value of any regular measure at XFy can be approximated as closely 
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as desired by a compact set K C XFy. For any such K we can find a continuous 
function / with IK < f < lxFV- Using Prop. 3.3.1, where all weights are assumed 
equal to 1, we obtain that (i(f) is almost surely the average of / on A and, from the 
definition of / , that for any e > 0 and for large enough R, 

KK)<Kf)<im(A,F,V)<-^— £ lF,v(-x + A) + e. 

Integrating over X and using the Campbell formula we have, independent of R, 

(i{K) < f freq(/l, F, V)&n < fi(XFy). 
Jx 

Now since we can make fi(K) as close as we wish to p,(XFy) , we obtain both 

ii{XFy) < freq(/l, F, V) and / freq(/l, F, V)d[i = (i(XF,v) 
Jx 

From this (i(XFy) = freq(yl, F, V), /u-almost everywhere. 
The result for V closed is similar, this time approximating by open sets from 

above. • 
Example: Consider the usual dynamical system based on Z: X(Z) ~ R/Z. Let 

F := {0,1/4} and V := (-1/4,1/4). For any A = t + Z, we have 

i - Y, lF,v(~u + t + Z) = 0 
u€(t+Z)n[-n,n] 

while 

2^ E lFy(-u + t + Z)Kl. 
u6(t+Z)n[-n,n] 

In this case we have XFy = 0, XFy — X and 

0 - freq(/l, F, V) = fi(XFy) < K*Fy) = fre<l(A F,V) = 1. 
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Chapter 4 

Dworkin's argument revisited 

Introduction 
Dworkin's argument (Section 2.4) shows an important connection between the spec­
trum and the diffraction of the dynamical system (X, Rrf, /i). In this chapter, we will 
see that what underlies Dworkin's argument is a certain isometric embedding 9 of 
the Hilbert space L2(Rd, fix) into L2(X, //). Both these Hilbert spaces afford natural 
unitary representations of Rd, call them Ut and Tt respectively (t 6 Rd). Represen­
tation T arises from the translation action of Rd on X and U is a multiplication 
action which we define in (4.1.2). The embedding 9 intertwines the representations. 
However, 9 is not in general surjective, and in fact it can fail to be surjective quite 
badly. 

The fact is that the diffraction, or equivalently the autocorrelation measure of a 
typical point set A £ X, does not usually contain enough information to determine 
the measure //, even qualitatively; see for example an explicit discussion of this in 
[49]. We will give a number of other examples which show that outside the situation 
of pure point diffraction, one must assume that this is the normal state of affairs. 
In fact, even in the pure point case, 9 can fail to be surjective. However, we shall 
show in Theorem 4.4.3 that, pure point or not, the knowledge of all the correlations 
of A (2-point, 3-point, etc.) is enough to determine [i. 

Section 4.3 provides a number of examples that fit into the setting discussed 
here and that illustrate a variety of things that can happen. The reader may find it 
useful to consult this section in advance, as the chapter proceeds. 

77 



4.1 Diffraction and the embedding theorem 

4.1.1 The embedding theorem in the unweighted case 

We recall that the Fourier transform of such a measure u on Rd can be defined by 
the formula: 

£ ( / ) = " ( / ) (4.1.1) 

for all / in the space S of rapidly decreasing functions of Rd. In fact, it will suffice 
to have this formula on the space Sc of compactly supported functions in S, since 
they are dense in § in the standard topology on § ([48]). The key point is that 
if {fn} € Sc converges to / € S, then {/„} converges to / and one can use the 
translation boundedness of u to see then that {w(/n)} converges to {u>(/)}, i.e. 
cD(/) is known from the values of {£>(/„)}. 

The measure TA is the diffraction of A, when it exists. Our results show that 
the first moment of the Palm measure, ji\ must also be a positive, positive defi­
nite transformable translation bounded measure and that almost surely (i\ is the 
diffraction of A 6 X. 

The next result appears, in a slightly different form in [21]. For complex-valued 
functions h on E define h by h(x) = h(—x). We denote the standard inner product 
defined by || • ||2 on L2(X,n) by (•,•). 

Proposition 4.1.1. Let g,h G BMc(Rd) and suppose that g * h * /ij is a continuous 
function on Rd. Then for all t eRd, 

g*h*in(-t) = (TtNg,Nh). 

PROOF; It suffices to prove the result when g, h are real-valued functions. By 
Prop.2.2.2, Ng, Nh are measurable functions on X, and they are clearly Z^-functions 
(Prop. 3.1.1). 

g *h* jjii(—t) = I (g *h)(—t — u)dfii(u) = / (g * h)(t + u)dfii(u) 

'= / fTg * /i(u)d£i(u) = [ [Y, A({x})(iTff * h)(x)) d£(A) 
J*d J x \I€R- / 

= / /y;A(W)(^)(«)M^+«)dMA)d« 

= f f (Ttg)(U)T_uNh(X)dfi(X)du 
JM.d JX 
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where we have used (3.1.3) and the dominated convergence theorem to rearrange 
the sum and the integral. Now using the Campbell formula we may continue: 

^* g *f t ( - i ) = I Y, X({u})(Ttg)(u)Nh(X)dn(X) 
^x ueud 

= I NTtg(X)Nh(X)dfji = (TtNg,Nh). 
Jx 

• 
We are now at the point where we can prove the embedding theorem. This 

involves the two Hilbert spaces L2(Rd, (x\) and L2(X, fi). Since the translation action 
of Rd on X is measure preserving, it gives rise to a unitary representation T of Rd 

on L2(X,/j.) by the usual translation action of Rd on measures. 
We also have a unitary representation U of Rd on L2(Rd,/ii) defined by 

Utfix) = e-^-'f(x) = x-t(x)f(x), (4.1.2) 

where the characters \k a r e defined by Xk(%) = e2vrife-1. We denote the inner product 
of L2(Rd, /ii) by (•, •) and note that with respect to it U is a unitary representation 
ofRd. 

Proposition 4.1.2. If g,heS are rapidly decreasing functions then 

g*h*fn{-t) = (Ut(g);h). 

In particular, 
(Ut(g),h) = (TtNg,Nh). 

Thus there is an isometric embedding intertwining U and T, 

6:L2{m.dSi)-*L2{X,Li), 

under which 

f^Nf 
for all / € S. 

PROOF: AS we have pointed out, it will suffice to show the first result for g,h G Sc 

since it is dense in § under the standard topology of S. We note that the hypotheses 
of Prop. 4.1.1 are satisfied, so, starting as in its proof and denoting the inverse 
Fourier transform by / t—> / , we have 

g*h*fi1(-t)= Ttg * hiujdfiiiu) = (Ttg)vhvdfii. 
7E ^E 
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The first result follows from h = h = h and (Ttg)y = Ttg — X-t9-
The second part of the proposition follows from Prop. 4.1.1 and the observation 

that §c is dense in Cc(R
d) in the sup norm ([48], Thm. 1), hence certainly in the 

|| • ||2-norm, and Cc(R
d) is dense in L2(Rd,/ii) in the || • ||2-norm (see [46], Appendix 

Thus we have the existence of the embedding on a dense subset of L2(Rd,/ij) 
and it extends uniquely to the closure. • 

4.1.2 The embedding theorem in the weighted case 

Prop. 4.1.1 has the weighted form: Let g,h € BMc(R
d) and suppose that g*h* fif 

is a continuous function on Rd. Then for all t € Rd, 

g*h*fl(-t) = (TtN?,N%). (4.1.3) 

By Theorem 3.3.2, (i™ is Fourier transformable and its Fourier transform is a 
positive measure, which is denoted by /if. 

Our interest now shifts to L2(Rd, {if), its inner product (-,-)w, and the unitary 
representation Uw of Rd on it which is given by the same formula as (4.1.2). 

From equation (4.1.3) we obtain our embedding theorem, which is the full colour 
version of Prop. 4.1.2. 

Theorem 4.1.3. For each system of weights w — (w\,..., wm), the mapping 

f»Nf, (AAA) 

defined for all / € S, extends uniquely to an isometric embedding 

9W : L2(Rd,A?) —-+L2(X,v) 

which intertwines the representations U and T. 

We note here that the space on the left-hand side depends on w while the space on 
the right-hand side does not. The question of the image of 9W is then an interesting 
one. We come to this later. 

We also note that the formula for 9w(f) in (4.1.4), though true for / € S, and 
no doubt many other functions too, is not true in general, and in particularly not 
true for some functions that we will need to consider in the discussion of spectral 
properties, e.g. see Cor. 4.1.6. 

Theorem 4.1.3 gives an isometric embedding of L2(Ra,/i.]") into L2(X, y) and 
along with it a correspondence of the spectral components of L2(Rd,/iY0 and its 
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image in L2(X, //). Now the point is that the spectral information of L2(Rd, (if) can 
be read directly off that of the measure (if. Specifically, let (if = (fif)pp + (AiOsc + 
(AiOac be the decomposition of (if into its pure point, singular continuous, and 
absolutely continuous parts. For / € L2(Rd,(if), the associated spectral measure 
aj on Rd is given by 

(f,Utf)
w = Je^dajix). 

However, 

(f,Utf)
w = je2™-tf(x)J(xjdtf(x), 

so we have 

* / = l/|2M7 = \f\\K)pP + \f\*(ft)sc + \f\2mac , (4.1.5) 

which is the spectral decomposition of the measure o~j. With • standing for pp, sc, 
or ac, we have 

L 2 ( R d , ^ ) n := {f e L2(Rd,J^) : aj is of type • } 

= {/ € L2(Rd,Af) : supp(/) C supp((A?)n)} . 

This explains how information about the spectrum of the diffraction can be in­
ferred from the nature of the dynamical spectrum and vice-versa. Since the mapping 
9 depends on w and is not always surjective, the correspondence between the two 
has to be treated with care. Some examples of what can happen are given in § 4.3. 

Combining (4.1.5) with Theorem 4.1.3, we have S. Dworkin's theorem: 

Corollary 4.1.4. Let f 6 Cc(R
d). Then for n- almost all A 6 X, jJtX is the spectral 

measure a^y on L2(X,/J,). 

Proof: 7;*A = / * / * 7?, so ^TA = | / |27? = \f\2tf = aj almost surely. Now, 

(f,Utf)
w = (N?,TtNJ)LHx^ 

so the spectral measure cr~ computed for L2(Rd,(if) is the same as the spectral 

measure a^j computed for L2(X,fx). • 

Corollary 4.1.5. For all f,g £ L2(Rd,(if), the spectral measures {(Utf,g)w)y and 
(Tt9

w(/), 6W(g))v on Rd are equal, and in particular of the same spectral type: ab­
solutely continuous, singular continuous, pure point, or mix of these. 
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Corollary 4.1.6. For k G M4, Xk is in the point spectrum1 of Ut if and only if 
Mi'(fc) 7̂  0- The corresponding eigenfunction is l{-k}- When this holds, Xk is in 
the point spectrum of Tt, the eigenfunction corresponding to it is 8w(l{-k}), and 
\\9»(l{-k])\\=P>(k)W. 

P R O O F : The first statement is clear from (4.1.2) and our remarks above. For the 
second, suppose that k E Rd and (i™(k) ^ 0. Let / € L 1 ^ , (x™) be an eigenfunction 
for k. Then 

exp(2irik.t)f(x) = Utf(x) = exp(—2mt.x)f(x) 

for all x e Rd. For x with f(x) ± 0, exp(27rifc.i) = exp(-27rix.t) for all t 6 Rd, so 
x = -k. Thus / = /(-fc)l{_fc}. By Thm. 4.1.3, 6w{f) G L2(X,^) with Tt(9

w(f)) = 
Xk(t)9w(f) for all t € Md. D 

Remark 4.1.7. : One should note that the eigenvalues always occur in pairs ±fc 
since /ii is positive-definite and {i™(—k) = (if(k) . How does one work out #™(l{_fc}) ? 
This is the content of the L2-mean form Bombieri-Taylor conjecture that we shall 
establish in Sec. 5.1. 

4.2 The algebra generated by the image of 6 

4.2.1 The density of GW(S) 

Theorem 4.2.1. Let (X,fi) be an m-coloured stationary uniformly discrete ergodic 
point process and w a system of weights. Suppose that the weights Wi, i — 1 , . . . , m 
are all different from one another and also none of them is equal to 0. Then the 
algebra Qw generated by 6W(S) and the identity function lx is dense in L2(X,fj,). 

Remark 4.2.2. //A?(0) + 0 then 6W{S>) already contains lx by Cor. 4.1.6. 

The remainder of this subsection is devoted to the proof of this theorem. 
We begin with the construction of certain basic types of finite partitions of 

X. Here we will find it easier to deal with coloured point sets than with their 
corresponding measures. 

Let r > 0 be fixed so that X C J(p{cim\ 1). For each pair of measurable sets 
K,V C Kd, with K bounded and V a neighbourhood of 0, we define 

xOne often simply says that k is in the point spectrum, with the understanding that it means 
Xk-
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U(K,V) :={(A,A') EVr : K n AcV + A' and KDA'cV + A}, (4.2.1) 

which is just a variation on (2.3.1), and serves to define another fundamental system 
of entourages for the same uniformity, and then the same topology, on X as we have 
been using all along. For any <E> e Vr we define 

U(K, V)[$] :={A€X: (A, $) G U{K, V)} . 

We begin by choosing a finite grid in Rd and partitioning X according to the 
colour patterns it makes in this grid. Here are the details. Let K C M.d be a half 
open cube of the form [a,i, a\ + R) x • • • x [a<j, 0,4 + R), R > 0, and V be an half-open 
cube of diameter less than r, centred on 0, which is so sized that its translates can 
tile K without overlaps. The set of translation vectors used to make up this tiling is 
denoted by \l/, so in fact this set is the set of centres of the tiles of the tiling. Each 
centre locates a tile and in each of these tiles we can have at most one coloured 
point of A, that is, at most one pair (x,i) with x e Rd and i <m. Let 

<P := {$ = ( $ 1 } . . . , $m) : ($0 , $! , . . . ,$„ , ) (4.2.2) 

is an ordered partition of \I/} ; 

that is, we take all possible ordered partitions of ^ into m + 1 pieces, which we 
interpret as all the various coloured patterns of cells of our tiling. <&i designates the 
cells containing the points of colour i (second component i), i = 1,. . .m , and $0 
designates all the cells which contain no points of the pattern. 

The inclusion relation C on ?p by <3> = ( $ 1 , . . . , <S>m) C $ ' = ( $ i , . . . , $'m) if and 
only if $i C $J, for all 1 < i < m, provides a natural partial ordering on ^3. Using 
the notation established in (1.4.1), for each <J> € ^3 define 

P[$] ~{AeX : K (1A C V + $, K n A £ V + & for a n y $ ' £ $ } . 

Because of the choice of V, an element of X can have at most one point in any one 
of the cubes making up the tiling of K. Each F[$] is the set of elements of X which 
make the coloured pattern $ inside the cube K. 

Lemma 4.2.3. 

X = 1J PW 

is a partition of X. Furthermore, for all $ e ^P, 

U(K,r)[$]nlc P[$] c u(K, V)[$] n x . 
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PROOF: By construction the P[$] form a partition of X. Let <3> G ^3 and let 
A G P[$]. Then if n A C V + <&. Also, for each s lying in some component <&j of 
$ there is x 6 K n /lj with x € V + s, whence s G — V + 1 C F + 1. This shows 
Kn$c7 + A,soAe U{K,V)[$]. 

On the other hand, if A G (/(if, V°)[$] then i ( n A c r + $ c V + $, which 
is the first condition for A C P[$]. Since also $ = if D $ C V0 + /l, for each s in 
some component <E>i there is x G Ai with x = — v + s € V° + s C V + s. By the 
construction of the tiling of if, no other set V° +1, t € \P, can contain x. Thus /l 
meets every tile centred on a point of <3> and A G -P[$]- • 

We know that 6W(S) contains all the functions Nf, / € S, in particular all the 
Nf, f G Sc, and so its L2-closure contains Nf, f G Cc(R

d) (use Prop. 3.1.2). Again, 
using Prop. 3.1.2 we can conclude that ^"(S) contains all the functions N%, where 
A is an bounded open or closed subset of Rd. We start with these functions and 
work to produce more complicated ones. 

Lemma 4.2.4. Let s e t and let i < m. Then the functions Nv+S o res'(yl) and 
Ny+S o resz(/l) are in Qw. 

PROOF: N$a+S G &". From (3.3.3) and diam(V) < r, 

m 

Ny,+8(A) = ^w i iV v . + 8 ore s i ( / l ) (4.2.3) 

m 

= ] T WiNv+siA1) = 0 or u>j (4.2.4) 
i=i 

according as (V° + s) D /l is empty or contains a (necessarily unique) point x of 
some colour j . Write JF for Ny0+S and F for Ayo+s. The first is a function on 
X, the second a function on r-uniformly discrete subsets of ~Rd (see (3.1.1)). Then2 

Fj(A) = YZi ™iF(Ai) since always i^(/l;) = F(AA and F(/li)F(/lfc) = 0 whenever 
% + k. 

Let W be the m x m matrix defined by Wjk = w3
k. By the hypotheses on the 

weights it has an inverse Y. Then 

m m m 

£ ^^(/i) = Y, Yn E "i^w = *w • 
i= i j= i fe=i 

This proves that the functions A •-> iVV°+s(A) — Afy°+S ° resj(/l) are all in Qw. 
T h e s a m e a r g u m e n t applies in t h e case of V. • 

2Here the superscripts really mean powers! 
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Lemma 4.2.5. For all $ 6 <£, 1F[$] € Gw. 

PROOF: Let $ e *p and assume $ ^ 0. Let 

/ i : = l^l
=lY[s^iNVo+s o resi 

/ 2 : = n,™in,6*4iV7+soreSi, 

are all in Qw. These functions take the value 1 only on sets A which hit all the cells 
V° + s (respectively V + s) centred on the points and with the colours specified by 
$. However, such A may hit other cells also, hence 

/i < 2 J lpI*'l - ^2 -

However, for any fixed i, 

J\Nv+s(Ai) - Nvo+Mi^d^A) = I \Nv+s(Ai) - NVo+s(Ai)\M^) 

\N{V^)+s(Ai)\dn(A) = P£((V\V° + 8)) = 0 
/ ' 

showing that Ny+S and ./Vy°+S are equal as I? functions, whence also f\ and f2 are 
equal. This shows that 

In the case that $ is empty, 

Now by Mobius inversion on the partially ordered on the subsets of ?P , lp[$] € 
9™ for all $ € «p. D 

Lemma 4.2.6. Let F : X —> R be a continuous function and let e > 0. Then there 
exist half-open cubes K, V as above so that for the corresponding partition of X, 

\\F - ^ m ^ l p ^ j H o o < e, 

where ro$ := ini{F(A) : A C P[$]}. 
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P R O O F : Since X is compact, F is uniformly continuous. Then given e > 0 
there exist a compact set K C Md and a neighbourhood V of 0 € Rd so that 
\F(A) - F(A')\ < e for all (A, A') € C/(i^, V '̂) n (X x X). We can increase if to 
some half-open cube of the type above without spoiling this and then choose some 
half-open cube V, centred on 0 and of diameter less than r, which tiles K and also 
satisfies 2V C V. We let ty be the corresponding set of partitions. 

Let $ e <£. If A, A' e U(K,V)[$] l"l X then K n /l C V + $ and $ C V + yl'. 
Thus for any i e i f ( l y l , x = v + s = i/ + u + a;' where s E $, x' € A' (both with 
the same colour as x), and v, v' 6 V, from which we conclude K C\A <Z2V + A'. In 
the same way K n A' c 2V + A, so (A, A') € U{K, V) and |F(/1) - F(A')\ < e. In 
particular this holds for all A, A' 6 P[$], since it is contained in {/(K, V)[$], and so 
F varies by less than e on P[<E>] . The result follows at once from this. • 

The proof of Thm. 4.2.1 is an immediate consequence of this. 6^(8) contains the 
functionslp[$] and so also all their limit points, and hence all continuous functions 
on X. Finally the continuous functions are dense in L2(X,/J,). • 

For the case m = 1, recall that the nth moment of n is the measure /in on (Rd)™ 
is defined by /x n ( / i , . . . , /„) = n(Nfx ... Nfn). Since Thm. 4.2.1 says that the linear 
span of all the product functions N^ ... Nfn is dense in L2 (X, /^), we see that /J, is 
entirely determined by its moment measures. 

In the general case we may define the nth weighted moments by: 

l^{f1,...,fn) = li(Nyi...Nl). (4.2.5) 

Then the same argument leads to: 

Proposition 4.2.7. Let (X, /i) be an m-coloured stationary uniformly discrete er-
godic point process and w a system of weights in which Wi, i = 1 , . . . ,m are all 
different from one another and also none of them is equal .to 0. Then the measure 
[i is determined entirely by its set of nth weighted moments, n = 1,2,... . 

• 
We will relate this to higher correlations in the next section. 

Corollary 4.2.8. Let (X, /J,) and w be as in Prop. 4.2.7. Then the measure (if 
(which is the almost sure diffraction for the members of X when the weighting is w) 
is pure point if and only if the dynamical system (X, /J,) is pure point, i.e., the linear 
span of the eigenfunctions is dense in L2(X,/J,). 

Remark 4.2.9. This is the principal result of [34]. See also [21]. 
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P R O O F : The 'if direction is a consequence of Corollary 4.1.5 of Theorem 4.1.3. 
The idea behind the 'only if direction is simple enough. The assumption is 

that the linear space of the eigenfuctions L2(Rd,fiY) is dense in L2(Rd,jj,f), and 
eigenfuctions of L2(Rd,/u1) map to eigenfuctions of L2(X,/J) under 9W. However, 
products of eigenfunctions of (X, /u) are again eigenfunctions. We know that the 
algebra generated by the image of S(Rd) in L2(X,/i) is dense. So the linear space 
that we get by taking the algebra generated by the eigenfuctions ought also to 
be both dense and linearly generated by eigenfunctions. The trouble is that the 
eigenfuctions of L2(Rd,fi^) are not in 8(Rd) and the space L2(X,n) is not closed 
under multiplication, so we need to be careful. 

The set BL2(X,fx) of measurable square integrable functions on X that are 
bounded on a subset of full measure form an algebra (i.e. the product of such func­
tions are also bounded), and ^ ( S ) is contained in it. In fact any bounded function of 
L2(Rd,fiY) is mapped by 9W into BL2(X,/J,), as we can see from Theorem 4.1.3 and 
equation (3.3.2) and taking approximations by elements of S. For F C BL2(X,/j,), 
let L(F) denote its linear span and (F)aig the subalgebra of BL2(X,II) generated 
by F. _ 

By Corollary 3, Xk is in the point spectrum of Ut if and only if fifik) ^ 0, 
and the eigenfunction corresponding to Xfe is 0™(l{-fc})- Denote by E the set of 
{l{_fe} : Ji^(k) + 0} and by L(E) its linear span. By Theorem 4.1.3, 6W(E) is a 
set of eigenfunctions of Tt, and by what we just saw 8W(L(E)) C BL2(X,n). By 
assumption, L(E) is dense in L2(Rd,fiY). 

Then 
L{6W{E)) D 9W(L(E)) D 6W{§) 

and 
BL2(X,fx)D(9w(L(E)))ale. 

Thus, 

(0w(E)Ug = (e->(L(E))Ue D r (S ) ) a i g = L2(X, fj) , 

which shows that the denseness of the linear span of the eigenfunctions of L2(X, (J,). 

• 
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4.3 The continuous dynamics of sequences on the 
real line 

4.3.1 Symbolic shifts and sequences on the real line 

A good source for examples is to start with symbolic shifts. We start with a finite 
alphabet m = { 1 , . . . m} and then define m z to be the set of all bi-infmite sequences 
C = {^ij^oo' which we supply with the product topology. Along with the usual shift 
action (T(C))» = 0+i f°r all i, m z becomes a dynamical system over the group Z. 
We are interested in compact Z-invariant subspaces X% of (mz , Z). We will assume 
that (Xz, Z) is equipped with an invariant and ergodic probability measure /xz- Such 
measures always exist. We call such a system an ergodic symbolic dynamical 
system. We define for all i = (iQ,... ,ik) C mfc+1, k = 0 , 1 . . . , and p G Z, 

Xz[i;p] = {C G Xz : zj+p = ij,j = 0 , . . . k} . 

These cylinder sets form a set of entourages for the standard uniform topology on 
X% which defines the product topology. When p = 0, we usually leave it out and 
also leave off the parentheses; so, for example, Xz[ij] means Xz{(ij);0]. 

We need to move from the discrete dynamics (action by Z) of {X%, Z) to continu­
ous dynamics with an R-action. There is a standard way of doing this by creating the 
suspension flow of {Xz, Z), and this new dynamical system has a natural invariant 
and ergodic measure and so satisfies our conditions PPI, PPII, PPIII. Basically each 
bi-infinite sequence ( of (Xz,Z) is converted into a bi-infmite sequence of coloured 
points on the real line with ZQ being located at 0. The most obvious thing is to space 
out the other points of the sequence on the integers, so that zn ends up at position 
n. The result can be viewed as a tiling of the line with coloured tiles of length 1, 
the colour of a tile being the colour of the left end point that defines it. However, 
there are good reasons to allow different colours to have different tile lengths. 3 

For this purpose we take any set C = {L\,..., Lm} of positive numbers as the 
tile lengths, with an overall scaling so that 

m 

Y,Lm(Xz[j}) = l. 

Let r = min{Li, . . . , Lm}/2. 
3 Readers interested only in the examples germane to this paper may ignore the introduction of 

different tile lengths that we introduce here. 
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Given ( = Un}^ e X%, define the sequence S = S(() = {Sn}°?oo hY so = 0, 
Sn = E S LZj, if n > 0, 5„ = - E7 i„ ^ if n < 0: 

Define 

/ : R x I z —• £><m>(R) (4.3.1) 

(t,() -> .{(* + Sn, **)}*«,, 

which "locates" the symbols of £ along the line (including colour information) so 
that the nth symbol occurs at t + Sn. This simultaneously provides us with a tiling 
of the line by line segments of lengths {LZn}. We let X£ := nc(Xz) c vim)(R). 
Both Rx X% and T>r(R) have natural K-actions on them, and the mapping -nL is 
R-invariant. It is easy to see that 7r£ is continuous. 

Let R be the equivalence relation on R x Xz defined by transitive, symmetric, 
and reflexive extension of (t, () =R (t + LZ0,TQ. Evidently pairs are /^-equivalent 
if and only if they have the same image under nc. In fact, (t, Q is /^-equivalent to 
a unique element of 

m 

Fc:=\J(-Li,0}xXz[i\ 
i= l 

and the mapping TTC is injective on this set. Since Fc = \J[—Li, 0] x Xz[i] is compact 
and TTC maps this set onto X£, we see that X^ is compact and hence (Xg,R) is a 
topological dynamical system. 

4.3.2 Measures on the suspension 

We define a positive measure pf on X£ by 

^(B) := (£®m)((nc)-1(B)DF£), (4.3.2) 

for all Borel subsets B of X^. We observe that [iL is a probability measure since 

VC(Xi) = (1®^)(FC) = T,Lm(X\i]) = 1. 
This is an R-invariant measure on X£. It suffices to show the shift invariance 

for sets of the form J x C where J is an interval in (—Li, 0] and C is a measurable 
subset of some Xz[i], since these sets generate the a-algebra of all Borel subsets 
of Fc. We show that shifting of J by s < 0 leaves the measure invariant. It is 
sufficient to do this for \s\ < min{Li,. . . ,Lm}, since we can repeat the process if 
necessary to account for larger s. If s + J C (—Li, 0], then the invariance of I gives 
what we need immediately. If s + J £ (—Li, 0] then we may break J into two parts; 
the part which remains in the interval and the part which moves out of it to the 

89 



left. We can restrict our attention to the part that moves out and then assume 
that (s + J) n {-Li,0} = 0. Then we bring (s + J) x C back into FC by writing 
C = U7=i C n Xz[ij] so that 

m 

(s + J) x C =R \J{Lt + s + J) x T(C n Xz[ij]). 
j = i 

The measure of this is £™=1 £(J>z(r(C7nXz[ij])) = l(J)m{C) = (£®Hz)(J x C), 
which is what we wished to show. 

If the original measure \i% on Xz is ergodic, then so is the measure /j,c. One way 
to see this is to start with the case when £ = {1 , . . . ,1} . In this case we shall denote 
the objects that we have constructed above with a superscript 1 rather than £. It 
is easy to see that /i1 is an ergodic measure on X^ since the latter can be thought 
of as Xz x U(l), where U(l) is the unit circle in C, with the action of R being such 
that going clockwise around the circle once returns one to the same sequence in Xz 
except shifted once. 

We can define a flow equivalence <j> : X^ —• X^ in the following way. For each 
( £ l z define / c : R —> R by 

f(t) = S \S-(k-i)\ + Lz^(t-\S-(k-i)\) ift>0,k-l<t<k 
J<{) \ -Sk^ + LZk(t~Sk-i) i f t < 0 , f c - l < | t | < f c . 

This is a strictly monotonic piece-wise linear continuous function which fixes 0. Its 
intent is clear: if (t, C) is understood to represent the sequence ( placed down in 
equal step lengths of one unit starting with ZQ at t, then (/c(£),C) represents the 
same sequence, now scaled to the new colour lengths LZj where 0 is the fixed point. 

Thus define a mapping R x Xz —• M x X% by (t, () (-• (fc(t), (). This mapping 
factors through the equivalence relations that define X% and X£ to give the mapping 
(f) which is the flow equivalence that we have in mind. For / x Xz[«], where / C 
(-£,*, 0], 

^{{1 X XZ\U\)~) = (jr- X XZ[u]\ , 

where the equivalence relations are taken for £ and for 1 respectively. Furthermore, 
/ / ( ( / x XzM)~) = l(I)vz(Xz\u}) and ix\(I/LUa x Xz\&)~) = 1(1 / LUo) ^z(Xz\u}). 

Now, if B is an R-invariant subset of X^ then (j)~l(B) is an R-invariant subset 
of Xfc, and so, assuming that JJLZ is ergodic, 4>~l(B) has measure 1 or 0. If the 
former, then for all i <m, 4>~X(B) (~l((—1,0] x Xz[i]) has ^-measure i^z(Xz[i]) from 
which B n ((—Li, 0] x Xz[i]) has measure LiHZ(Xz{i\), which shows that B is of full 
measure in X£. A similar argument works for the measure 0 case. This shows that 
\jj~ is ergodic. 
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4.3.3 Spectral features of the suspension 

We assume that (X^,M.,/J,C) is a continuous ergodic dynamical system. Hence­
forth we shall assume that the set of lengths £ = {Li , . . . ,Lm} is fixed, and drop 
it from the notation. We may weight the system by choosing any real vector 
w = (wi,.. .wm) of weights and assigning weight Wi to the colour a,. According 
to Prop. 3.3.2 , the weighted first moment (i™ of the weighted Palm measure is al­
most everywhere the weighted autocorrelation of the point sets of XR, and this is 
everywhere true if the system is uniquely ergodic. We will use the symbol w to also 
denote the mapping m —• {w\,... wm}, w(i) = u>i. • 

We now come to the autocorrelation. For the purposes of the examples, it is 
convenient to have all tile lengths equal to 1: Lj = 1 for all j , and we shall assume 
this for the remainder of this section. 

Now let ( = {zi}^ S Xz- Its autocorrelation, assuming that it exists, is 

fcez 

defined on Z, where 

N 1 N 

^ M : = & 2 J U 1 £ w(zi)w(zi+k). 
i=-N 

Its autocorrelation 7™'R when thought of as an element of XR is defined on R and 
is given by 

7?"=xyw*?, 
fcez 

with the same rf{k). 
The difference is in the delta measures, which are defined on Z and R respectively. 

Thus 7^'z is a measure on T := R/Z while 7™'R is a measure on R. The relationship 
between these two measures is simple: for x G R and i := x mod Z, 

Thus, for all k £ Z, 8™'R is just the natural periodic extension of 5^'z and 7™'R is 

the periodization of 7™' : 

The latter, hence also the former, exists almost surely. 
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The pure point, singular continuous, and absolutely continuous parts are also 
periodized in this process and retain the same types. Thus if the pure point part of 

7 p Z i s Hkesak6t t h e n t h e P u r e P ° i n t P a r t of 7^* i s EfcgR.tes0**5*' w h e r e k=-k 
mod Z. 

When it comes to L2(Az,/^z) and L 2(XR,/U) we make the following observation. 
If fj, is an eigenfunction for the action of T on L?{X%,\x%) corresponding to the 
eigenvalue k - that is, Tnfk = exp(2irik.n)fk for some (or any) fceZ with k — k 
mod Z, we can define a function //. on -XR by 

fk(t + () = exv(-2mk.t)fk(0. 

It is easy to see that this is well-defined and is an eigenfunction for the R-action on 
XR with eigenvalue — k on R. (The change in sign results from the fact that T means 
shift left by 1, whereas Tt means shift right by t.) This way we see that we have 
eigenfunctions for X-R which are all the possible continuous lifts of the eigenfunctions 
on R/Z to eigenfunctions on R. 

Unfortunately there does not seem to be any simple connection between the 
other spectral components of (Xx,/J-z) and ( X R , ^ ) . Thus, for these components, we 
will be reduced to the consequences that come by the embedding of the diffraction 
into the dynamics. 

4.3.4 T h e hull of a sequence 

We start with an infinite sequence £ = (x1; x%,...) of elements of our finite alphabet 
m and define X%(t;) to be the set of all bi-infinite sequences £ = {zi}^ G m z 

with the property that every finite subsequence {zn, zn+i,..., zn+k) {word) of C is 
also a word {xp,xp+i,... ,xp+k} of £. Then set Xz(Q is a closed, hence compact 
subset of m z , and (Xz(£),Z) is a dynamical system, called the dynamical hull of 
£. (Xz(t;),Z) is mininal (every orbit is dense) if and only if £ is repetitive (every 
word reoccurs with bounded gaps). 

Given a word s = {xp, xp+i,..., xp+k} of (, we can ask about the frequency of its 
appearance (up to translation) in £. Let L(s, [M, N]) be the number of occurrences 
of s in the interval [M, N]. The frequency of s (relative to t € Z) is limjv_»cx) L(s, t + 
[—N, N])/2N, if it exists. It is known that the system Xz(£) is both minimal and 
uniquely ergodic (that is, strictly ergodic) if and only if for for every ( € Xz($.) 
and every word s of £ the frequency of s exists, the limit is approached uniformly 
for all in t € Z, and the frequency is positive. All of this is standard from the theory 

of sequences and symbolic dynamics [44], Cor. IV. 12 . 
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We can transform Xz(£) into a flow over R by the technique discussed in the 
previous subsection and thus obtain X R ( £ ) , which will be minimal (respectively 
ergodic, uniquely ergodic) according as Xz(£) is. 

In the next two subsections we consider situations which are derived from two 
famous sequences, the Thue-Morse and Rudin-Shapiro sequences. 

4.3.5 The Thue-Morse sequence 

The Thue-Morse sequence can be defined by iteration of the two letter substitution 
(we use {a, b} instead of {1,2}) 

a —> ab; b —> ba : £ = abbabaabbaababba.... 

based on the alphabet A = {a,b} (we use {a,b} instead of {1,2}). 
Since the substitution is primitive, it is known that the corresponding dynamical 

system X% = Xz(£), and hence also XR = X R ( £ ) , is minimal and uniquely ergodic. 
For an arbitrary weighting system w = (wa,wb) we have the diffraction w1^aa + 

WaWbjai, + WbWajba + w2jbb where 7y is the correlation between points of types 
i,j 6 A. The natural symmetry a *-> b of X% gives j a a = 7b6, ̂ ab = -yba. 

Kakutani [27, 28] has determined the diffraction for the weighting system w = 
(1,0) and it is 

1 , 
-50 + sc, 

where sc is a non-trivial singular continuous measure on Z. On the other hand, with 
the weighting w = (1,1) the elements of X% are all just the sequence Z as far as the 
autocorrelation is concerned, and the diffraction is 6z- From these it follows that 
the diffraction for a general weighting system is 

,Wa + Wb 2 ,Wa-Wb.2 

( g 'S° + ( 2 ^ ' 

In view of our remarks in §6.1, the diffraction for XM is 

,Wa + Wb 2 ,Wa-Wb 2 

(— -—Yh + (—-2—) scp 

where scp is the periodization of R of the measure sc on T. 
The dynamical system is also mixed, pure point plus singular continuous [30]. 

There is an obvious continuous involution ~ on X% that interchanges the a and b 
symbols. L2(XZ, /J,Z) splits into the ±l-eigenspaces for ~: L2(X%, (Xz) = L2

+{X%) 0 I?_{X%). 
L2

+(Xz) is the pure point part of L2(Xz,n) and its eigenvalues are all the numbers 
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of the form k/2n, n = 0 , 1 , . . . ; 0 < k < 2n (literally exp (2mk/2n)). On the other 
hand L2_{Xz) is singular continuous. 

When we move to the suspension of Xz we obtain L 2 ( X R , fi) which we know cer­

tainly retains the eigenvalues of L2(Xx, /zz) a n d, due to the embedding of L2(R, jj\ ) , 

also retains a singular continuous component. 
The dynamical spectrum is, of course, independent of any particular assignments 

of weights to a and b. We can draw the following conclusions from this: 
(i) wa = l,wb = 0. 

• U . o ) 1 ^ i 
Mi = j02 + scp. 

The eigenfunctions of L^R./if'0*) are l{ky,k G Z. It follows that 9w(l{-.k}) is 
an eigenfunction for eigenvalue k (Thm. 4.1.3, Cor. 4.1.5). Thus 9W covers only the 
eigenvalues k G Z of L 2 ( X R ) and none of the fractional ones k/2n,n > 0. This 
shows that 9W is not surjective. Also 9W embeds the singular continuous part of 

L2(M,/ij ' ') into Z/L(R), although we do not know the image. 
(ii) wa — wb = 1. In this case the diffraction is 5% (the Thue-Morse sequence with 

equal weights looks like Z). Although L2(M, fi[ ) is pure point, its image does not 
cover the pure point part of L2(XM.,/J.), nor does it even generate it as an algebra. 
This shows that the requirement of unequal weights in Theorem 4.2.1 is necessary. 

(iii) wa = l,wb = — 1. This time the diffraction is singular continuous and 9W 

does not even cover anything of the the pure point part of L2(X^,fi). 
Cases (ii) and (iii) show that the non-existence of a particular component in 

the diffraction spectrum implies nothing about its existence or non-existence in the 
dynamical spectrum. 

4.3.6 The Rudin-Shapiro sequence 

We define the Rudin-Shapiro sequence using the notation of [43]. Consider the 
substitution rule s defined on the alphabet A' := {1,1,2,2} as follows: s(l) = 
12, s(2) = 12, s(l) = 12, s(2) = 12. Let £ be the s-invariant sequence that starts 
with the symbol 1. We can reduce this to a 2-symbol sequence £' with alphabet 
{a, 6} by replacing the symbols with no over-bar by the letter a and the others by 
the letter b. This 2-symbol sequence is usually called the Rudin-Shapiro sequence 
[44], though Priebe-Frank uses this appellation for the original 4-symbol sequence. 

Let us start with the 2-symbol sequence, which results in the 2-coloured minimal 
and ergodic dynamical hull (Xz(£'),Z), as developed above. There is a natural 
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involution on the dynamical system that interchanges a and b. Once again we 
introduce a system of weights w = (wajWt,). 

Under the system of weights (1, —1) it is well known that the diffraction measure 
of the elements of Xz(C) is the normalized Haar measure on R/Z [44], Cor. VIII.5. 

Thus L2(K,^1 '~1)) = L2(R,£), where £ is Lebesgue measure on IK. 
On the other hand, the weighting system (1,1) reduces the elements of X%{^') 

to copies of the sequence Z. So, just as in the case of the Thue-Morse sequence, we 
can deduce the general formula for the diffraction: 

(—2—)fc + (—J—)£. 

The spectral decomposition of L2{X%{^')) is of the form 

L\Xz(0)^H®Z(f) 

where H is the pure point part with one simple eigenvalue exp(27rig) for each dyadic 
rational number q = a/2™, where a € Z, n = 0,1,2, . . . [12, 36]; and Z(f) is a cyclic 
subspace which is equivalent to L2(R,£). In other words, the dynamical spectrum 
is mixed with a pure point and an absolutely continuous part 4. In any case, we 
see that L 2 (XK(£ ' ) , /Z) contains a pure point part whose eigenvalues include all the 
dyadic rationals, and also an absolutely continuous part into which the absolutely 
continuous part of L2(M.,(i™) must map by 9W. 

The analysis now proceeds exactly as in the case of the Thue-Morse sequence, 
with the same three types of possibilities except now the singular continuous parts 
are replaced by absolutely continuous parts. 

4.3.7 Regular model sets 

In this example we see that even when everything is pure point and there is only 
one colour, still 9 need not be surjective. 

Let (Rd, M.d, L) be a cut and project scheme with projection mappings 7Tj, i = 1,2. 
Thus L is a lattice in Rd x Md, the projection TTI to the first factor is one-one on 
L, and the projection 7r2(L) of L has dense image in the second factor. Let W be 
a non-empty compact subset which is the closure of its own interior and a subset 

4Explicitly / is the function on X%(£') which is defined by / ( ( ) = lo r — 1 according as £(0) 
is a or b. This can be deduced from the main theorem of [43], where the equivalent result for 
dynamical system arising from the 4 symbol sequence gives two copies of L2(R,£)), and then by 
dropping to the factor. 
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of the second factor. We assume that the boundary of W has Lebesgue measure 0. 
The corresponding model set is 

A(W) = {ir1(t) : teL,TT2{t)eW}. 

It is a subset of Vr for some r > 0 and it is pure point diffractive [23, 47, 7]. The 
orbit closure X = M.d + A(W) is uniquely ergodic. Its autocorrelation 7, and hence 
its diffraction 7, is the same for all r € X. Furthermore, the diffraction is explicitly 
known: 

Ai = 7 = X a^i{k) 
keL° 

where LP is the Z-dual lattice of L with respect to the standard inner product on 
R d x l d ~ R2d and 

ak - iw(-7T2(fc)) 

For more on this see [23]. The main point is that /ii(7ri(fc)) = 0 if and only if ak = 0. 
Likewise L2(X, fx) is known and it is isometric in a totally natural way by an Rd-

map to L2(M.2d/Z2d,is), where v is Haar measure on the torus. Thus the spectrum 
of X is pure point and the eigenvalues are precisely all the points of LP. Thus the 
mapping 9 embedding the diffraction into the dynamics will be surjective if and only 
if for all k E L°, ak ^ 0. 

Now it is easy to see that we can find model sets for our given cut and project 
scheme for which fail to be surjective at any k £ L° that we wish, as long as k ^ 0. 
To do this take W = [—1,1] and for each scaling factor s > 0 let A^ := A(sW). 
The intensities of the Bragg peaks become 

(«) 2 
.2 

iw(-sn2(k)) 

Since l\y is continuous and takes positive and negative values on every ray 
through 0 in Rd, but altogether takes the value 0 only on a meagre set, we see that 
by choosing s suitably we can arrange either that ak vanishes at any preassigned 
non-zero k G L° (and 6 is not surjective) or that alternatively a]!' vanishes nowhere 
on LP (and 9 is a bijection). 

4.3.8 The necessity of non-zero weights in T h m . 4.2.1. 

Let A — (Aa,Ab) where 

Aa = {z € Z : z = 0 or 2 mod 4}, Ab = {z € Z : z = 3 mod 4} . 
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Then A is periodic with period 4 and its hull - that is, the closure of its R translation 
orbit - is X ~ K/4Z (a conjugacy of dynamical systems with the standard action 
of R on R/4Z). Thus L2(X,fj), where /x is Haar measure on R/4Z, has pure point 
spectrum with eigenvalues | Z . 

Let (wa, wb) be a weighting system for A. The autocorrelation is everywhere the 
same and is easily seen to be 

1 1 1 1 

The Fourier transform, that is the diffraction, is then given by 

Mi - -^wl6iz + —WaWbexp{-2m(.))6iz 

+ r^wawb exp(27ri(.))5iZ + -^wb5\z 

1 1 1 1 1 

1 1 

Now it is clear that the image of 9 can only generate eigenfunctions for the 
eigenvalues ± | + Z if u>b ^ 0 (and then in fact it does so, independent of the value 
ofwa). 

4.4 Higher correlations and higher moments 

Let £ : (0,, A, P) —>• (X, X) be a uniformly discrete stationary multi-variate point 
process with accompanying dynamical system (X, Rd, /J,). 

The n + 1-point correlation (n = 1,2,...) of A € X is the measure on (Rd)" 
defined by 

7i"
+1)(/) = tLlHT) £ \w({x})iy=1\

w({yi})Txf(y1,...,yn) 
~^°° ^ R) vu-,vn,xecR 

= tLllkl £ Xw({x}m=1X
w({yi})Txf(yi,...,yn), 

for all / e Cc((Rd)n). In particular for / = (/i, . . . , / „ ) € (Cc(Rd))n, where each 
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it+l)U) = tLlHT) S ^^mU^{{yi})Txh{yi)...Txfn{yn) 
°° ^ R> xSCR 

Vl,-Vn€&d 

= Avw(N?i...NZ)(\). 

We know that /z-almost surely this exists, it is independent of A, and 

Avw(NZ ... NfJ(X) = iiw{Nl... NfJ =: AC((/I, ...,/„))• 

The measure defined on the right-hand side of this equation is the nth weighted 
moment of the weighted Palm measure at ( / 1 , . . . , /„), so we arrive at the useful 
fact which generalizes what we already know for the 2-point correlation: 

Proposition 4.4.1. The n + l-point correlation measure exists almost everywhere 
on X and is given by (i™. 

Of course, in the one colour case where there are no weights (or if the weighting 
is trivial: w = ( 1 , . . . , 1)), then these are ordinary moments. 

Lemma 4.4.2. Assume that the weights are all different and none of them is zero. 

Then the weighted intensity (and hence the first moment of ]i) is determined by the 

/ C n = l , 2 , . . . . 

PROOF: By (3.3.1), we need to know ftw{X). Now fi is supported on the Xo of 
elements X E X which have an atom at {0} and we have 

p,w(x) = [ Nim(\i)d(r(x) 
P m 

= / E^W^^A) 
•'x i = i 

m 

= ££w ( t f i {o } •«»'). 
»=i 

From jj% we have 

~ ro 

^ ( 0 ) = / N^o}(X)d^(X)^J2w^W(NMoy°^si)- (4A1) 
JXo i = i 
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Similarly, 

« m 

#({(0,0)}) = / (iVr{0})2(A)^(A) = £ w f r W { o > o res,). (4.4.2) 

Continue this until we get to 

~ m 

/ C ( { ( 0 , . . . , 0 ) » = / Ww)m(A)dA1B(A) = X;w™Aw(^i{0}ore8*). (4-4.3) 

Using the same argument in Lemma 3, we can solve this system of equations for 
{>-w(Ni{0) o res1) for j = 1 , . . . , m and hence determine the intensity fiw(X). 

Theorem 4.4.3. Let (X, /j,) be an m-coloured stationary uniformly discrete ergodic 
point process and w a system of weights in which Wi, i = 1 , . . . ,m, are all different 
from one another and also none of them is equal to 0. Then the measure // is fj,-
almost surely determined entirely by the weighted n + 1-point correlations of A G X, 
n = l , 2 , . . . . 

The key to this is the known fact (in the non-weighted case) that the nth moment 
of the Palm measure, n — 1,2,..., is the same as the reduced (n + l)st moment 
of the measure JJL itself. Thus knowledge of the correlations gives us the moments 
fxn of the Palm measure, which in turn is the same as knowledge of the reduced 
moments of /j,. These in turn determine the moments (xn, n — 2 , 3 , . . . of fi. As for 
jiti, we already know that it is just the intensity of the point process times Lebesgue 
measure, and from Lemma 4.4.2, this is derivable from the moments. 

First of all we give a short derivation of these facts in the unweighted m = 1 
case, and then show how to augment these to the weighted case. 

Let g,hu...hne Cc{Rd) be chosen freely. Let G : Rd x X —> C be denned by 

G(x,X) = g(x)NTxhl(X)...NTxhn(X). 

We use the Campbell formula 

/ T\({x})G(x,\W(\)= I I G(x,TxX)dK\) • 
JxxeRd JwJx 
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The left-hand side reads5 

j *£H{x})9(x)NTxhl(\)... NTmhn(X)dfi(X) (4.4.4) 
x
 xm

d 

f X{g)X(Txhl)...X(Txhn)dfi(X) 
Jx 

= Vn+i(g{Txhi)... (Txhn)) = / g(x)dx ffiliihi ...hn), 
Jud 

while the right-hand side reads 

/ / 9(x)NTxhl(TxX)... NTxhn(TxX)dfi(X)dx = / g(x)dx fin(hi ...hn), 
Jud Jx Jmd 

since NTxh(TxX) — Nh{X). For the reduced moments see [11], Sec. 10.4, especially 
Lemma 10.4.Ill and Prop. 10.4.V. The point is that /Jn+i is invariant under si­
multaneous translation of its n + 1 variables. This invariance can be factored out 
leading to the rewriting of /xn+i as a product of Lebesgue measure and another mea­
sure, which is, by definition, the reduced measure. This rewriting is exactly the last 
part of equation (4.4.4). Thus, fj,1^ — (in and, using Prop. 4.2.7 and Prop. 4.4.1, 
Theorem 4.4.3 is proved in the 1-coloured case. 

To obtain the weighted version, we use now the functions 

. Gw(x,X) = g(x)Nlhl(X)...Nlhn(X) 

and the weighted form of the Campbell formula. Then the same argument leads to 
(Mn+i)red — An a n d the proof of Theorem 4.4.3 follows as before. • 

Corollary 4.4.4. For a X e X, the •probability measure /U\ determined by X (see 
Chapter 2) exists fi-almost surely and it is equal to \i ^-almost surely. 

PROOF: We define a sequence of properties for point sets in X that for n G Z+ , 
P (n ) : the n + 1-point correlation measure exists /x-almost surely and it is equal 

to (i™ /ix-almost surely. 
For n G Z + , define 

An := {A € X : X fulfills P(n)}, 

and A := fl^Li K- Then by Proposition 4.4.1, \x{An) = 1, for n G Z+ . Thus, 
n(A) = 1. Further, for a A G X, by Theorem 4.4.3, the probability measure /i\ 
determined by A exists and it is equal to /i. • 

5g(Txhi)...(Txhn) stands for the function whose value on {x, (j/i,.. .yn)) G Kd x (Rd)n is 
g(x){Txh1){y1)...{Txhn){yn). 
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Chapter 5 

Other results 

5.1 The square-mean Bombieri-Taylor Conjecture 

Theorem 5.1.1. (The square mean Bombieri-Taylor conjecture [23]) Let (X, Md,/z) 
be a uniformly discrete, multi-coloured stationary ergodic point process, and assume 
that w is a system of weights. Then the following are equivalent1 : 

(i) 
- i - J2 A - ( { x } ) e 2 ^ ^ 0 a s i ? - > o o ; 

(ii)tf({k})^0; 

(Hi) k is an eigenvalue ofU. 

In the case that k is an eigenvalue, then 

e{CR> xeCR 

For notational simplicity we shall prove the two technical lemmas that precede 

the main proof in the 1-dimensional case. However, it is easy to generalize the proof 

to any dimension d. Throughout, R is assumed to be a positive integer variable. 

Lemma 5.1.2. For all e > 0, 

l i m ^ ( l H , £ ] ) = AT({0}), 

i.e. {l[_e,£]}£N,o —> l{o} in L 2 (R, /^) . 

l i m i t s here are taken in the L2-norm on (X, Rd , / i) . Recently D. Lenz [33] has given a point-
wise version of the result. 
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PROOF: Assume e -> 0+ . Let Ft := 1[_£)£] - 1{0}. Then for all x e R, 0 < 
Fe(x) < 1 and Fe(x) \ 0 pointwise. Since /i™ is a translation bounded positive 
measure, /J.f{Ft) \ 0. Now, 

I |lh£,£] - l{0}|2d/^ = I F?dffl < J Fedtf — 0. 

D 

Lemma 5.1.3. As functions ofy E 

2 ^ / _ f i e
2 ^ x d x ^ l { 0 } ( y ) 

in L2(R,/^) as i? -» oo. 

PROOF: Let 

9n(y) ••= ^ fRe27riyxdx = 
sin(2nyR) 

2-nyR 

We need to show that J ^ |yfl(y) - l{0}(y)|2d/if (y) —• 0. Since |gR(y) - l{0}(y)| < 
Fe(y) for - e < y < e, we have /^£ |yfl(y) - l{0}(y)|2d/i^(y) —> 0 as e -> 0, and the 
convergence is uniform without reference to R. 

For the remaining parts of the integral, we have (the part from —oo to —e is the 
same) 

P . / x , , , - , , p sin2(27ryi?) ,-— , 
J \gR(y) - l{0](y)\2d(iy(y) = J^ ^yRf ^x{v) 

Since J a d/i]"(y) is uniformly bounded by some constant C(l) (due to the trans­
lation boundedness of fif) we see that f™ |<7n(j/) — l{o}(y)|2dAiJ(j/) —* 0 as l°ng a s 

i?e —> oo as .R —> oo. Putting e = R'1^2 gives the necessary convergence of both 
parts. D 

P R O O F THEOREM 5.1.1: (ii) & (iii): k is an eigenvalue if and only if —k is an 
eigenvalue, fif({k}) = fif({—k}) for all k, and k is an eigenvalue if and only if 
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(iii) <̂> (i): Let fR := ^Xfcl[-fi,ft]- Then 

/fl(y) = - ^ J e-™*-*Xk{x)l{-m{x)dx 

JL fR 

MJ-R 
e2m(k-y).xdx 

> l{0}(fc-y) = l{fc}(l/)» 

the convergence being as functions of y in L2(R, /z™) as .R —> oo. 
Let 0_fc = ew(l{k}). Thus / £ -> l{fc} implies that BW(PR) -> 0-fc in L 2 ( X , M ) , so 

Jx 
.k(A)\2dv(A)->0, 

which from (3.1.1) gives 

L 2R 
27rife.x - 4>-M) dn(A) -+ 0. 

Thus 7^ Si£/in[-iifi] e27rifex converges in square mean to >̂_fc. Furthermore by Cor. 4.1.6, 

0_fe is a X-fc-eigenfunction for Tt if /ii'(fc) 7̂  0 and is 0 otherwise. 
If 0_fc = 0 then ^ £*e/inh*,fl] e2"fe-* = 0 M-a.e. If 0_fe ^ 0 then {A : 0_fc(/l) = 

0} is a measurable T-invariant subset of //, since </>_& is an eigenfuction, so by the 
ergodicity it is of measure 0 or 1. It must be the former. Now using the Fischer-
Riesz theorem [15], there is a subsequence of {7^ Ylx<an[-R,R] ^"'{{x})e2mh-x}R which 
converges pointwise /x-a.e. to <?5>_fc. Since </>_& is almost everywhere not zero, 

Jl-Kik.x 0. 
xe[-R,R] 

D 

5.2 A strange inequality 

Let (X,Rd,/i) be a uniformly discrete stationary ergodic point process (no colour). 
Assume that the point sets of X have finite local complexity, [i- a.s. This implies 
that the autocorrelation measure \i\ is supported on a closed discrete subset of A — A 
for any A whose autocorrelation is \i\. Thus for A e X we have, ju-almost surely, 

1 
fi\(t) = lim 

K - ° ° £(CR) 
card((-i + / l ) n / l n C f l ) . 
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Proposition 5.2.1. For all k,t E M.d, 

|e2 'r i f c- t-l |Ai1 / 2(fc)<2(Ai(0)-/ii(t))-

Proof: Let k G Rd. Then 

*• ST* „-2mk-x . _ 

v " ' x€ADCR 

in the norm of L2(X,fi), where gfe is an eigenfunction of T for the eigenvalue k if 
/ii(fe) 7̂  0 and 0 otherwise (Thm. 5.1.1). 

Suppose /Ti(/c) ^ 0. Let t G Rd. Since 

(Tt9k)(A) = gk(-t + A)= lim - J— £ e 
iESo £(CR) 

i € ( - t + / i ) n c H 

for almost all A € X, 

«r,-i)»)M) - JjmjflU £ e-2'""- E « 27rifc-x 
- ^ ^ /-• — > r 

R-oo £(CR) xe(-t+A)nCR xeAncR 

= lim /ifi(yl). 
R—*oo 

where 

"-(^•-jikrA E «•***- E « 
—2-nik-x 

c J r — j r . 

t(CR) xe(-t+A)\AnCR xeA\{-t+A)ncR 

Thus hR —> (e2,Tifc't - l)pfc in the L2-norm on X. 
Furthermore, 

hR{A)\ < 

< 

i(CR) 

1 
i(CR) 

1 

E K2,ufe1 + E 
^x€(-t+A)\AnCR i 6 / l \ ( - t + / l ) n C n 

E 1+ E : 
vxe(-t+/l)\ylnCB x6/l\(-t+A)nCR 

^ M E i = 2(Ai(o)-Ai(*))-

—2nik-x\ 

Note that /^(O) > /ii(i). 
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With these preliminaries out of the way, the rest of the proof is straightforward. 
Since /U is a finite measure, HR —> (e2mkd — \)gk in the L1 norm also. Then there 
is a subsequence {h^} of {HR} which converges to (e2mht — \)gk point-wise almost 
everywhere ([10], Sec. 3.1). 

Using the dominated convergence theorem (|/ift(/l)| < 2/ii(0)), we have 

/ \e2^-\\2\9k{A)\2dy.{A) 
Jx 

= lim /" \hRi(A)\2dfi(A) < f | 2 (A i (0 ) -Ai (0 ) | 2 ^ (^ ) 

= 4|(A1(0)-A1(i)) |2 . 

Meanwhile, from Thm. 4.1.3 

f \e2^ - 1|2 \gk(A)\2 dp(A) = | e 2 ^ - i f / l 2 ^ 

So 

i|Ai(fc)-

le2"*'* - lj Aif (fc) < 2 |(Ai(0) - Ai(<))| = 2(^(0) - (n{t)). 

D 

Remark 5.2.2. This result numerically links three interesting quantities. If A e X 
has autocorrelation ji\ then for the set P(e) of e-statistical almost periods of A, i.e. t 
for which /ii(0) — fii(t) < e, the Bragg peaks 1(a) of intensity greater than a > 0, i.e. 
k for which (i\(k) > a, can occur only at points k which are 2e/' yja-dual to P(e), i.e. 
k for which |e2mfc'' — l | < 2e/%Ja for all t € P(e). If this latter quantity is less than 
or equal to 1/2 and either of P(e) or 1(a) is relatively dense, then the other one is 
a Meyer set [39] Thm. 9.1. Furthermore, Bragg peaks can occur only on the X-dual 
of the statistical periods (t for which (i\(t) = fi\(0)), a fact that is of course very 
familiar in the case of crystals.2 We note that the inequality seems to be optimal. 

The maximum values of\e2mk4 — l | and jx\2 (k) are 2 and /ii(0) respectively, whereas 
the minimum value of fi\(t) is 0. 

2We are grateful to Nicolae Strungaru for this last observation. 
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Chapter 6 

How finite correlation measures 
determine the point process 

Introduction 

We have proved that for an m-coloured stationary uniformly discrete ergodic point 
process, the law is uniquely determined by the set of all weighted correlation mea­
sures of the point process. In this chapter, we will prove that for a k-step uniformly 
discrete ergodic simple Markov process, the law /_* can be uniquely determined by 
the first k correlation measures of the point process. We will also prove that a point 
process generated by a model set is uniquely determined by its 2-point and 3-point 
correlation measures. 

6.1 The correlation measures of a continuous dy­
namics of intervals 

In this section, we only consider uniformly discrete point processes on the real line. 
From Section 2.4, we can regard a uniformly discrete point process on the real line as 
a continuous dynamics of intervals and vice versa. We start with an ergodic symbolic 
dynamical system (XQ,1I, HZ) on the space Az equipped with product topology, 
where A := {ai,..., am} is an alphabet set. This concept was introduced in Section 
4.3.1. Here A replaces m. 

Let £ be a set of m nonnegative numbers, £ = {Li}™- Now we think of a{ 

as representing a line segment with length Lj, for i = 1 , . . . ,7n. £ is said to be 
integrally independent if and only if the equation XX=i xiL% = 0, has only the 
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trivial solution (that is Xi = 0,i = 1, • • • ,m on Z). We assume that: 
(AI): C is integrally independent. 
Evidently, all elements in C are distinct. Thus, there is an one-to-one correspon­

dence between "words" in A and "words" in C and hence we can represents A by 
C. 

By Section 4.3.1 and 4.3.2, to obtain a a uniformly discrete point processes on 
the real line (X£,fxc) from the symbolic dynamics (Xo,Z,^z), we assume that: 

m 

(All): J l # z M ) = l, (6.1.1) 

where X%[Lj] is a cylinder set defined by Xz[aj] := {{zi} £ Xo : zo — Lj}, j = 
1, . . . ,m. Moreover, since [i,% is ergodic, the law \iL is also ergodic. We will show 
that the correlation measures of ^ are determined by the probability distribution \i% 
on these cylinder sets. 

Define 5+ :== {Y™=icjL3 • cj € Z+, j = 1, . . . ,m} \ {0}. Note that a typical 
cluster of a point set in X^; is of the form P := {to = 0,t\,..., £„}, to < t\ < • • • < tn 

and tj — tj-i € S + , where n € Z+ . We can also represent the cluster P by a finite 
sequence of intervals [D\,..., Dn], where Dj = tj — i,_i for j = 1 , . . . , n. We define 
Xp := {A E X : P (Z X}. The characteristic function of XP can be expressed as a 
product of finite counting functions (3.1.1) as follows. 

lxo = N{0} x N{h} x • • • x N{tn) (6.1.2) 

Since iV{o}|x<> = 1> we have 

(ic(XP) = / iV{ t i} . . . N{tn)dix = A f ( i { t i } x . . . x l{ t n }) , (6.1.3) 

by the definition of fin the n-th moment measure of fic. Recall that the n + 1-
point correlation measure exists and is equal to fiCn /i-almost surely. Concerning 
1 F = 1{U} x ••• x l{ t n } , we can denote A£(l{tl} x ••• x l{ tn}) equivalently by 
A^([A,...,P„]). 

Continuing with the pattern P = [Di, • • • , Dn], we consider the decomposition 
of Di into the sum of L\, • • • ,Lm. Suppose that there is some Di such that A = 
Lir-\ \-Lis (uniquely) where ii,- • • ,is e {1,2, • • • ,m} and s > 2. If £ € X£, then 
the points £j_i = DiH hA-i> *i = -DiH HA are in £ and the points of £ between 
£j_i and i$, including i,, must be D\ + • • • + A - i + ^ji + ' ' • + Ljk, k = 1,2, • • • , s 
for some arrangement of L i l ( • • • , L,s. By observation, Xp is a disjoint union of XP, 
where P' runs over the distinct expansions of P due to the different arrangements 
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of Lix, • • • , Lis that arise in this way. Furthermore, looking at the definition of 

frequency, we see that freq(P, £) = 2frecl(-P'>C)- This gives us 

n 

An^l.-" ,Dn] = Y^ J2 An+.Pl,--- ,A-l,ii, ,--- ,Li„A+l,--- ,A»]-

From this, we get 

Proposition 6.1.1. For any pattern P = {to,ti,--- ,tn} = [Di,--- ,Dn], induc­
tively, fi^[Di,--' ,Dn] can be rewritten as a sum of terms /i£+p[/i, • • • ,IP] where 

When for j — 1 , . . . , n, Dj 6 £, the sequence [D\,..., Dn) actually defines a 

cylinder set X%[D\,..., Dn}. In this case, we have 

Proposition 6.1.2. tf[Di,--- ,Dn} = /zz(Xz [Du . . . ,£>„]). 

PROOF: We already know that /i£(Xp) = A£[-A> • • • , Ai]- By definition of the 
Palm measure, 

(ic(X°P) = ~ / £ ^ ( " ^ + ^ M V ) , 

where V is an arbitrary Borel set of K of finite positive measure. Here we choose that 
V is a neighbourhood of the origin such that V C (—r, r) and r := min{Li, . . . , Lm}. 
Then the sum YLxevnA' ̂ x° {~x + ^') c a n omY contain one term. We show that it 
is equal to the characteristic function lxPV- First, we recall that Xpy is a pattern 
defined by XPy := {A' £ X : 3x € V n A',P c V + A'}. Next, since H+ is 
uniformly discrete, every point set in X®.c has FLC, A' £ Xpy if and only if there is 
a x € VnA' such that P C -x + A'. It follows that lXPiV = X)xevrw 1x°P (-x + A1). 
Therefore, using equation (4.3.2) from Section 4.3.1, we have 

fic(XP) ' = - ^ J lXpy{A!)dnc{A') = jL-^Xpy) 

= j^(i®nz)((«c)-1(Xp,v)nF) 

= jjyz(l®m){VxXz[Du...,Dn}) 

= MXz[Du...,Dn}). 

• 
Putting all together, then we see that every correlation measure can be expressed 

as a finite sum of the probability distribution /iZ on those cylinder sets. 

108 



6.2 Markov processes 

In this section, we are interested in a typical kind of uniformly discrete ergodic point 
process on the real line. To introduce this kind of point process, we start with a 
stationary symbolic dynamical system (£ z , Z, /zz), where £ is a set of m nonnegative 
numbers as before. Note that (£ z , Z, \x%) can also be thought of as a sequence of 
random variables {zn}z such that these random variables take value in £ and the 
combined probability distribution P of these random variables is defined by 

m{zn}z • zs+i = Du • • • , zs+n = Dn}) = Hz([Du • • • , £)„]), 

for s E Z. Thus, the conditional distribution Fc of IP is given as 

Fc({zn+S = Dn\za+l = £>!,•••,z t + n-! = £>„_!» := ^ f j f u " ' ' ° n \ , (6.2.1) 

for s € Z and Dj G £, j = 1, • • • , n, when n = fc + 1, fc + 2, • • •. 

Definition 6.2.1. A k-step time homogeneous Markov chain (simply a Markov 
chain) is a stationary symbolic dynamical system with an alphabet C such that the 
conditional distribution Fc defined by (6.2.1) satisfies 

Pc({>n = Ail21 = Du--- ,z n - i = £>n_x} 

= ^c({zn = Dn\zn-k = D„_fc, • • • , Z„-i = Dn-i}, 

for s E Z and Dj E C, j = 1, • • • , n, when n = fc + 1, fc + 2, • • •. In particular, if C 
satisfies condition (AI) and condition (All), then we say that the Markov chain is 
simple. 

For a Markov chain, we define a fc x fc matrix Q by Q := (a^ ik-,ji,...jk) such 
that 

Fc({zk+i = Ljk \z1 = Lil,--- ,zk = Lik}) 

if h =k,---,jk-i =k; (6.2.2) 
0, otherwise. 

We call the matrix Q the transition matrix of the Markov chain. Q is primitive 
if and only if there is a positive integer n such that every entries of the power matrix 
Cn is positive. It is known that if Q is primitive, then (£Z ,Z, fij,) is an ergodic 
symbolic dynamical system. 

Definition 6.2.2. The uniformly discrete simple point process (X^,M.d,^) pro­
duced by a Markov chain (£ z , Z, /itz) is called an k-step Markov process. 
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Now we get to the main theorem of this chapter. 

Theorem 6.2.3. Consider the k-step Markov process produced by a simple ergodic 
Markov chain (CZ,Z,/J,Z). Suppose that fa is the (i+l)-point correlation measure of 
the k-step Markov process fori — 1 , . . . , k + 1. Then the law /j, is uniquely determined 

by{fa}ki+1. 

i J-yn\i P R O O F : For n G N, n > (k+1), we take an arbitrary configuration of [D\,..., D. 
Di 6 C, i = 1,... ,n. 

(in[Di,--- ,£>„] = nz(Xz[Di,...,Dn]) 

= M(Xz[Dl,...,Dni})F0(Dn\Du... ,Dn^} 

= An-i[£i,--- ,£>„-i]P(A,|I>i.-" ,Dn-i) 

= (J-n-l[D\, • • • , Dn-i]¥(Dn\Dn-k, ' ' ' . Ai- l ) 

Therefore, 

An[A,--- ,Dn] 
(i*n-i[D\, • • • , Dn-i}fa+i[Dn_k, • • • , Dn] 

Vk[Dn-k, • • • ,D. n - l 

from the definition of a fc-step Markov process. 
Continuing by induction, we prove that fin[Di, • • • , Dn] is expressible in terms 

of fa, • • • , (ik+i evaluated on sequences of C 
Next, by Proposition 6.1.1, we know that this claim is also true for an arbitrary 

configuration of [D\,... ,Dn), Di G E+ , for i = l , . . . , n . So, we conclude that 
fa,..., fa+i determine all other correlation measures. Finally, by Theorem 4.4.3, JJL 
is uniquely determined by fa,..., fa+\. D 

Remark 6.2.4. The Theorem 6.2.3 remains true even if C is not integrally inde­
pendent. To see this, we just need to reconsider the Proposition 6.1.1. It is still true 
that every pattern is a disjoint union of some simple patterns due to the different 
arrangement of those interval lengths {L\, • • • ,Lm} no matter that the decomposi­
tion is more complicated. In this case, for a given line segment Di € H+, there may 
exist many distinct combinations of those interval lengths {Li,--- ,Lm} such that 
their sum is equal to Di. Therefore, 

Co[D\, • • • , Dn] = \^J \^J Co[Di, • • • , -Dj_i, Lix, • • • ,Lie, Di+i, • • • ,Dn\. 
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6.3 Point processes of Model sets 

In this section, we consider an ergodic point process generated by a model set (see 
Corollary 2.5.6), whose window set is restricted to be a relatively compact subset of 
M.m. The main purpose of this section is to attack the problem of the uniqueness of 
such an ergodic point process for given a finite set of correlation measures (2-point 
and 3-point correlation measures here). 

Let A be a regular model set such that A* C M.m. Denote by Q the closure of 
the window set A*, i.e., Q = A*. Evidently, Q has nonempty interior and hence 
1(0) > 0. 

In general, for i £ N, the (i + l)-point correlation measure 7^ exists and it 
has the form 

7f1] = E €,,.,*/(-->' (6-3.1) 
xi , . . . ,Xi€(R d) 

where 

(i) _ J freq({0,xi,...,Xi}), i fxi , . . . ,x{ € (A - A), (ar>0\ 
%i,...*i) - \ 0, otherwise. l b ' ^ j 

It has been proved in [40] that 

^ n n ; = 1 H j + n)) 
freq({0,x1)...,x i}) = -i J~^Q)

 J - . (6.3.3) 

It is clear that ??(o,...,o) = 1-
Let / := l n , E := {k € Rd : f(k) = 0}, and D := Rd \ E. Since / is compactly 

supported and measurable, its Fourier transform exists and the Fourier transform / 
is continuous. Thus, the set E is closed. It follows that D is a open set. Moreover, 
since /(0) = Z(fi) > 0, we have 0 E D. We will show that the set E has no interior. 

Note that 

f(k) = j e-2™hxdx = f cos(27rfc • x)dx - i sin(27rA; • x)dx. 
Jo. Jn 

Let g be the real part of the function / , i.e., g(k) := JQcos(2irk • x)dx, k G Rd. 

Lemma 6.3.1. The function g is a real analytic function. 

PROOF: Note that the function e"2mk'x (with the variable x) has a Taylor ex­
pansion at the origin as follows, 

-2mk-x _ p—^i^i kjXj 

00 

E 
m=l 

E n kil kid 

.»!,..,,id,iiH Hd=m 
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where 

a0 

Hl,...,ld;m i\\...id\ 

Since e 2mk'x = cos(2iTk • x) — i sin(27rfc • x), cos(2-nk • x) has a Taylor expansion 
at the origin as follows, 

cos(27r£; • X) = ao + 
oo 

E 7 y
 a u j d ; 2 m ^ 0 • • •" '<* 

m = l L»i.-".»di»iH Md=2m 

(6.3.4) 

(6.3.5) 

Since fi is compact, there is a positive number C > 0 such that for i = 1 , . . . , d 
and all x - (xu...,xd) € fi, |xi| < C. Hence, |oili...iid;2m| < ^ r ^ r • L e t 

b0 := Z(fi) and for m € N, 

-'u «<j;2m - = 

J n ( - i r ( 2 7 r ) 2 ^ . . . x ^ x 
ii\...id\ 

(6.3.6) 

It is clear that 

\biu...,id;m\ < K id;m|^) = — ~H(Q)-
l l ! . . . Z d ! 

Thus, the function series 

v+£ 7 ,, ^u , . . . , j d i ;2m« ; l 1 • • • K d 

m = l Lii , . . . , i j , i i4 K d = 2 m 

(6.3.7) 

converges everywhere. 
Furthermore, by the Lebesgue dominated convergence theorem, we have 

g(k) = / cos(27rfc • x)dx = 6o + 
7x£f2 

oo 

E 

(6.3.8) 

m = l 
E 

.H,...,Jd,iiH h id=2m 

"n,...,id;2m^l • • • >^d 

Therefore, the function g has a Taylor expansion on Rd. This follows that the 
function g is an analytic real function. • 

It is known that the zero set of a nonzero real analytic function on W1 has no 
interior. Since f(k) = 0 only if g(k) = 0, we conclude that the set E has no interior. 
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Since D is open and 0 G D, there is a ro > 0 such that Bro C D0. 
We define a sequence of functions { I " } ^ by 

j^(x1,...,xn)~i{nnf](xj + n)), 

or equivalently, 
« it 

l^(xu...,xn) = T\~f{Xj-t)f{t)dt, (6.3.9) 

where / = l n , f(x) = f{-x). 

Lemma 6.3.2. For n G N, 1^ is uniquely determined by 7^n+ \ 

PROOF: It is clear that 1^ is a continuous function supported on (Q, — Q,)j. 
Recall that A is dense in Q. It follows that (A — A)* is dense in (Cl — CI). Moreover, 
for xi,...,xnE (A- A)y 

l^(Xl,..., xn) = /(fi)7i"+1)(-xl,.... - < ) • 

It implies that 1^"^ is uniquely determined by xjf+ \ for n e N. D 
Now we are going to show that the function / is uniquely determined by 7^ 

and 7)1' on D0 by using this lemma. 

At first, we define 4>o on D by 4>o{k) := 7771̂ - Then <fo(fc) is a continuous function 
\t 1*01 

on D and |</>0(fc)| = 1. Since /(0) = Z(fi) > 0, 0„(O) = 1. 
In general, by simple computation, we have 

n n 

When n = 1 

JW(A;):= / f(k-t)f(t)dt. (6.3.11) 

This is the convolution product of the function / and / . Thus, 

ZW(fc) = / » / > ) = | / » | 2 . (6.3.12) 

When n = 2, 

2T(2)(^i- *to) = f(ki)f(k2)f(ki + fca). (6.3.13) 
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Denote by D^ the set {(fci,fc2) : kuk2,ki + k2 G £>}. Note that B a + B a C 

Bro C £>0- Thus, fexBiC D(2). Then on £>(2\ we define 

^){klM) : = _ . £ f e l ^ . (6.3.14) 
l/(fci)ll/(*a)||/(fci + fe)| 

By (6.3.13), for (ki,k2)eD^\ 

Uh + h) = Mki)Mk2)^2)(ki,k2). (6.3.15) 

This implies that the function </>o is a particular solution of the following equation: 

<t>(h + k2) = < K W ( W ( 2 ) ( ^ 2 ) , (6.3.16) 

where <f> is defined on D and (ki,k2) € D ' 2 \ We point out here that this equation 
is entirely determined by the function 1^,1^ since the function ip^ is given by 
them. 

Equation (6.3.16) is related to the following homogenous equation. 

<p{h + k2) = ¥>(fciMfc2), ¥>(0) = 1, (6.3.17) 

where <p is defined on D and {ku k2) € D (2). 
Let <f> be an arbitrary solution of equation (6.3.16). Then #• is a solution of 

equation (6.3.17). We are going to show that every solution of equation (6.3.17) is 
a character function Xa on Rm restricted to D. Hence <j> is of the form 4> — 4>oXa-

Let if be a locally compact Abelian group. Suppose that Z is a closed subset of H 
with no interior, and 0 £ Z. Let S := i f \Z and S ^ := {(fci, k2) : h,k2, kx+k2 G S}. 

Lemma 6.3.3. S^ is dense in H x H. 

PROOF: Suppose S^ is not dense in H x H, i.e., there is a open set U x V C 
H x H \ S^, where U,V C H are open. Since Z is a closed subset of H with no 
interior, 5 D U, S D V are nonempty open sets. For all u G S1 H J7, f G 5 D V, we have 
(u,u) G HxH\S{2\ i.e., u + « e 2 . Thus, S r W C -v + Z. This is impossible since 
on the one hand S D £/ is an open set, on the another hand Z has no interior. • 

Proposition 6.3.4. Let 
<p:S-^U(l) 

be a continuous mapping satisfying 

(p(s + t) = (p(s)(p(t) 

whenever s,t,s + t G S. Then there is a unique character x G H with x\S = <~p-
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Proof: Let U be the uniformity on H defined by its structure as a topological 
group: the basic entourages are the sets 

U(V):={{x,y):HxHtx-yeV} 

where V runs through open neighbourhoods of 0 € H. Since S is open and 0 £ S, 
we can restrict these entourages to those in which V C S. This uniformity also 
induces a uniformity on S (which is that of the induced topology on 5). 

We claim that ip : S —> U(l) is uniformly continuous. We show that given any 
e > 0 there is an entourage U(V(e)) n (S x S) for which (s,t) <E U(V(e)) n ( S x S ) 
implies that \<p(s) — </?(£) | < e. 

In fact V(e) := {s € S : \<p(s) — 1| < e} works. This is an open subset of S 
containing 0 and furthermore, (s, t) € t/(V(e)) n (S x 5) implies s - i e V(e) and 
then s — i 6 5 and |y>(s — t) — 1| < e. Using the basic relation satisfied by ip, 
\<p(s) — (p(t)\ = \(p(s — t)<p(t) — <p(t)\ =• \ip(s — t) — 1| < e, which what we wished to 
show. 

Since H is locally compact, it is complete (see Corollary 1 in Chapter 3.3, [9]). 
Since Z has no interior, H is the closure of S. Since <p is uniformly continuous on S 
it extends to a uniformly continuous function x '• H —> U(l). Then the mapping 
H x H —> U{\) defined by (x,y) »-> xix + y)xix)~1x(y)~1 *s continuous and is 
equal to 1 on all of the set S1®. By Lemma 6.3.3, S^ is dense in H x H and so by 
the continuity, it is identically equal to 1. Thus x is a character. • 

In our particular case, H = Rm, Z — E and S = D. The character function x 
is of the form Xa '•= e~2ma'('\ for some a € M.d. Moreover, each solution of (6.3.16) 
has the form 

4>(k) := Mk)Xa(k), (6.3.18) 

Finally, we get the main result of this section. 

Theorem 6.3.5. Let A = A(Q) be a regular model set. Then the point process 
generated by A is uniquely determined by the 2-point and 3-point correlation measure 
of A. 

PROOF: It is clear that all correlation measures of the point process are uniquely 
determined by the set fi through the formula (6.3.1) and (6.3.3). This implies that 
the point process itself is uniquely determined by the set Q by Theorem 4.3.3. We 
are going to show that any window set generating the same 2-point and 3-point 
correlation measure is actually a translated copy of the window set fi. 
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Recall that equation (6.3.16) is determined by T^1) and J(2) and a solution of 
this equation is of the form 

4>{k) : = <f>0(k)Xa{k), (6.3.19) 

where a E Rd. 
Let / ' be the characteristic function of another windowjset generating the same 

2-point and 3-point correlation measure. Hence, | / ' | = (ZWJs = | / | . Moreover, the 
function X- is a solution of equation (6.3.16) and hence it is equal to (f)a(k)xa(k)• 
Putting all this together, we have 

f'(k) := f(k)Xa(k). (6.3.20) 

Taking the inverse Fourier transform on both sides of equation (6.3.21), we have 

/ ' := l-«H-n (6.3.21) 

Therefore, 2W and 1^2\ or equivalently, 7^ ' and 7^ , uniquely determines the 
window set Q, up to translation. 

A fixed window set uniquely determines a point process through giving all its 
correlation measures by equation (6.3.3). Furthermore, this equation implies that 
the correlation measures of this point process and hence the point process will not 
change if we replace the window set by a translated copy of it. Therefore, 7 ^ and 
7^' uniquely determine the point process generated by the model set A. D 
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