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Abstract

The mechanical responses of the lipid membranes and their mechanisms are of

importance in the understanding of essential cellular functions such as budding,

fission and vesicle formations. Inside the lipid bilayers, viscous flows play vital

roles since they can influence the transportations of elements, the shapes of the

lipid membranes and various cellular processes. Within the description of the

continuum setting, lipid membranes can be idealized as continuous bilayer sand-

wich structures. Based on nonlinear elastic thin-film theory, this thesis presents

the continuum-based models of lipid membranes subjected to intra-membrane vis-

cous flows as well as interactions with the elliptical-cross-section substrates. The

corresponding boundary conditions and shape equations of the membranes are

formulated based on the principles of energy equilibrium law and virtual work

statement. A careful derivation of the model is presented and utilized to obtain

the exact analytical solutions. The solutions of the obtained shape equations in

the form of Partial Differential Equations (PDEs) are obtained by using eigen-

function expansion and Mathieu function in the elliptical domain. This thesis

also investigates the morphologies of lipid membranes impacted by the uniform,

non-uniform and mixed types of viscous flows by modifying the obtained equilib-

rium equations. Finally, the thickness distension of membranes is considered, and

the corresponding analytical solutions are obtained.
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Preface

This main body of the thesis is composed of two peer-reviewed papers and

one project.

Chapter 2 is mainly from the published paper Kim, C. I., & Zhe, L. Mechan-

ics of Lipid Membranes under the Influence of intra-membrane Viscosity. Math.

Probl. Eng. (2019).

Chapter 3 is mainly from the published paper Zhe, L. & Kim, C. I. Defor-

mation analysis of lipid membranes subjected to general forms of intra-membrane

viscous flow and interactions with an elliptical-cross-section substrate. Sci. Rep.

10(1), 1-19 (2020).

Chapter 4 is mainly from the ongoing project related to the thickness disten-

sion of lipid membrane.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Lipid membranes are vital cellular tissues, which protect cell organelles, regulate

the materials entering/exiting the cell, and facilitate the signalling among cells.

The researches on the mechanical responses of the lipid membranes subjected to

forces and flows are of much importance in the understanding of the mechanisms

of such cellular activities. Since lipid membranes are very thin and fragile, ex-

perimental studies are very limited. Thus, mathematical models describing the

mechanical responses of lipid bilayers can be effective alternatives. Due to the

complex nature of lipid membranes, various interdisciplinary concepts and meth-

ods such as differential geometry, continuum mechanics, nonlinear surface theory,

virtual work statement and energy minimizing principles are adopted in the math-

ematical modelling of lipid membranes.

1.1 Introduction

1.1.1 Lipid membrane

Lipid membranes (or lipid bilayers) are thin polar membranes composed of two

layers of lipid molecules [1]. They form continuous barriers (typically between
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5 and 10 nanometers) and separate the interior of the cells from the outside

environments. The lipid bilayers can mediate cellular processes by regulating

substances entering and leaving cells. They can also carry markers that allow

cells to recognize each other and pass signals to other cells through receptors [2].

Furthermore, the lipid bilayer compositions of biomembranes are important for

the distributions, organizations, and functions of membrane proteins and thus for

various cellular functions [3].

Figure 1.1: The schematic picture of a fluid membrane model of the phospholipid

bilayer. (Picture taken from: c© 2013 OpenStax College)

As Figure 1.1 shows, the structure of the lipid membranes consists of the

double layers of phospholipids with embedded, integral and peripheral proteins.

The phospholipids are amphiphilic and have hydrophilic phosphate heads and hy-

drophobic tails consisting of two fatty acid chains. The packing of lipids within

the membranes also influence their mechanical properties, including their resis-
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tances to stretching and bending [4]. Various proteins and lipid structures are

embedded peripheral or inside the membrane, such as glycoprotein, glycolipid,

integral membrane proteins and cholesterols [5].

1.1.2 Intracellular fluid

The intracellular fluids, also known as cytosols, are the fluids contained inside

the cells [6]. They are complex liquids comprising varying amounts of proteins,

macromolecules, and electrolytes [7]. The intracellular fluids impact the morpholo-

gies of the lipid membranes in the processes of osmoses because of the osmotic

pressures and viscosity forces.

1.1.3 Membrane Transport

Membrane transports refer to the processes that solutes (e.g., ions, small parti-

cles) are conveyed across biological membranes through the regulations of a series

of membrane mechanisms such as active and passive transports [8]. A charac-

teristic of lipid membrane - selective membrane permeability plays a vital role in

the regulation of membrane transport because it enables membranes to separate

substances of different chemical properties [8].

There are two main types of membrane transports: passive transport and

active transport. Passive transport is the process that the elements (icons, mole-

cules, proteins) pass through the lipid membrane without energy input. It is the

3



Figure 1.2: The schematic picture of a fluid membrane model of the phospholipid

bilayer. (Picture taken from: c© 2013 OpenStax College)

spontaneous phenomenon which decreases the free energy and increases the en-

tropy of the cellular system. The organizations and properties of the membrane

lipids and proteins affect the permeability of the cell membranes and furtherly

the rate of passive transport. Diffusion, facilitated diffusion, osmosis and filtra-

tion are the four most common types of passive transport [9]. In contrast, the

processes that the particles move across or through membranes from the lower

concentration regions to the higher concentration regions are referred to as active

transports. Cellular energy is required to achieve active transport [10]. There are

two types of active transport, which are primary active transport and secondary

active transport. The primary active transport utilizes a source of chemical energy

(e.g., Adenosine Triphosphate (ATP)) as the power source, while the secondary

active transport utilizes an electrochemical gradient [10].Endocytosis is also a form
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of membrane active transport. It refers to the substances transporting process in

which cell membranes engulf the transported particles. The target particle to be

internalized is surrounded by a part of the cell lipid membrane. Then, a vesicle en-

closing the ingested particle is formed through the budding of the cell. As Figure

1.2 illustrates, endocytosis includes pinocytosis (cell drinking) and phagocytosis

(cell eating) [11].

1.2 Background and motivation

From the discussions in the previous sections, it is apparent that the lipid

membranes are critically important tissues in various cellular activities. The

mechanical properties of the lipid membranes are affected by internal/external

conditions, including the intra-membrane viscous flows, proteins or molecules in-

teractions and various forces generated from the processes of different cellular

activities. To understand the mysteries of the related cellular processes, it is nec-

essary and vital to research on the mechanical properties and morphologies of the

lipid membranes.

To understand the mechanisms of various essential cellular processes such as

budding, fission and fusion [12]-[16], the mechanics of the lipid membranes has

consistently been the popular research area. Since lipid membranes are negligibly

thin (typically 5-10nm) and fragile, the study of various aspects of lipid bilayers

is often achieved by employing mathematical models in order to overcome the
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formidable diffi culties of experimental studies. Because lipid membranes are very

densely distributed, they can be idealized as thin elastic films. Within this context,

the development of theoretical models describing the behavior of lipid bilayers has

greatly benefited from the differential geometry of a surface and the theory of an

elastic surface such that the deformation energy of a thin membrane can be ex-

pressed by the mean and Gaussian curvatures of a surface [17]-[18]. In particular,

Helfrich proposed a well-known Helfrich energy potential [12] which addresses the

symmetry of lipid bilayers and further ensures the resulting equilibrium state to

be energy minimizing [19]. This, together with the use of variational principle,

and the virtual-work statement, furnish the Euler-Lagrange equations also known

as "membrane shape equations", which have been successfully adopted in a wide

range of problems (see, for example, [20]-[22]). The variations of the classical Hel-

frich model have been continuously investigated in order to provide more effi cient

descriptions of lipid membranes’morphology induce by various cellular activities,

such as distensions [21], tilts [23], buddings [24]-[25], spontaneous curvatures [20]

and substrate interactions [26]-[28].

To investigate the impacts of the intra-membrane viscous flows on the essen-

tial cellular functions, including budding, fission and vesicle formations [29]-[32],

the study of the mechanical responses of lipid membranes subjected to intra-

membrane viscous flows is necessary. The authors in [33] have established the

theoretical framework of the lipid membranes incorporating the effects of intra-
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membrane viscosity. In there, authors reveal that the dynamics of the membrane

system is notably influenced by the presence of intra-membrane viscous flow. The

authors in [34] developed the integrated non-linear model of membranes incorpo-

rating the effects of intra-membrane viscosity from the theory of elastic surfaces

[35]-[36]. Besides, a compatible linear model within the setting of superposed

incremental deformations is presented by [37]. However, to obtain a mathemati-

cally tractable system, the analysis in [37] is limited to certain types of problems

where viscous flow is characterized as either constant or simple linear functions,

and the interaction occurs through a circular contact region. In contrast, the re-

alistic lipid membrane system involves more complex environments [15]-[16], such

as the non-circular contaction domain, multi-source viscous flow and membrane

thickness distension. Therefore, the development of a more comprehensive model

considering these processes may be necessary to promote researches in the related

subjects. In this respect, the authors in [38] derived the membrane model, consid-

ering the distension phenomenon induced by possible external forces. The authors

in [39] developed the nonlinear model of lipid membrane employing the thickness

distension. However, considering the complexity of the realistic membrane system,

the models that incorporate both viscosity and thickness distension are necessary

to provide more general and precise descriptions of lipid membranes.
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1.3 Aims and Scope

This thesis aims to develop the theoretical models to predict the morphologies

of lipid membranes subjected to intra-membrane viscous flows and interactions

with elliptical-cross-section substrates. In addition, the thickness distensions of

the bilayers’surfaces will be considered and analyzed. Throughout careful deriva-

tions, the theoretical model of the inviscid fluid membrane will be developed.

Then the model of the lipid membranes subjected to intra-membrane viscous

flows and interactions with elliptical-cross-section substrates will be developed by

incorporating the viscous stress and other interdisciplinary methods. The shape

equations and corresponding boundary conditions of the membranes will be for-

mulated and then solved analytically and numerically. After obtaining the exact

solutions, we will input different types of viscous flows to the obtained solutions to

investigate the detailed influences of the viscous flows on the morphologies of lipid

membranes. The solutions and the associated morphologies of lipid membranes

will be presented both in circular and elliptical domains and compared to the

existed results. Lastly, the thickness distensions of membranes will be considered,

and the corresponding analytical solutions will be obtained.

1.4 Structure of the thesis

This thesis consists of five main chapters. It is composed as follows. Chap-

ter one is the introduction to introduce the research topic, background, aim and

8



scope of this thesis. Chapter two is the chapter to develop the nonlinear model

for the mechanical responses of the inviscid fluid membranes. Chapter three dis-

cusses the model which predicts the responses of lipid membranes subjected to

intermembrane viscous flows and interactions with the elliptical-cross-section sub-

strates. The theoretical solutions for this model are obtained, plotted and ana-

lyzed. Chapter four is the chapter to study the thickness distension phenomena

of the lipid membranes. The conclusions of this research and future works are

presented in Chapter five.

Throughout all chapters, we make use of several well-established symbols and

conventions. Therefore, unless otherwise stated, Greek indices take the values in

{1, 2} and, when repeated, are summed over their ranges. Finally, (∗),α expresses

the derivative of ‘∗’concerning a coordinate θα and WK stands for the derivatives

of a scalar-valued function W (K) concerning the parameter K.
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CHAPTER 2

INVISCID FLUID MEMBRANES

In this chapter, we present the prerequisite knowledge of differential geometry and

develop the underlying theoretical model of inviscid fluid membrane for further

researches on the intra-membrane viscosity. By combining the theory of elastic

surfaces, the membrane equilibrium equations and the corresponding projections

on normal and tangential directions are formulated via rigorous derivations. The

deformation energy of the membrane is accounted for by means of the Mean and

Gaussian curvatures of the surface which are the functions of the first and second

fundamental forms.

2.1 Introduction

In 1920s, E. Gorter and F. Grendel [40] found that the cell membranes are

composed of lipid molecules (phospholipids) which are generally divided into two

important groups: the hydrophilic head parts and hydrophobic tail groups. Later,

in 1959, David Robertson [41] identified that the bilayer structure is characteristic

of all biological membranes (biomembranes). The microstructures (lipid mole-

cules) of lipid membranes are unique in that they are aligned to the normal direc-
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tion of the membrane prior to the deformations. Within this prescription, lipid

membranes can be regarded as a simple fluid membrane where its free energy is

expressed as a function of Mean and Gaussian curvatures via the first (aαβ) and

second (bαβ) fundamental forms. The concept has been widely and successfully

adopted in the relevant subject of problems [42]-[45] where the microstructures of

materials dominate the general mechanical responses.

In this chapter, we develop the underlying theoretical model of inviscid fluid

membrane for further researches on the intra-membrane viscosity. In section 2.2,

we present the basic formulations related to surface geometry (e.g., surface metric,

coordinate configurations, definitions of curvatures) as the prerequisite knowledge

of this modelling. Then the detailed derivations of this model are presented in

section 2.3. Starting from the stress equilibrium equation, we obtain the mem-

brane shape equations and their projections on normal and tangential directions

via rigorous derivations. The deformation energy of the membrane is accounted

for by means of the Mean and Gaussian curvatures of the surface which are the

functions of the first and second fundamental forms.

2.2 Basic formulations related to surface geometry

The present modelling incorporates the configuration of differential geometry

[46] regards to the morphology analysis of fluid membrane. In this framework,

the two-dimensional surface we studied is defined by ω (see Figure 2.1). Then

11



it is parameterized by the embedded surface coordinate (θ1, θ2). Therefore the

parametric position vector r ∈ R3 of a point on the surface can be defined by

the projection r = r(θα). The coordination of the elastic surface is then given by

n(θα) = (1/2)εαβaα×aβ, where n is the unit normal vector to the deformed elastic

surface ω, and aα and aβ are the associated tangent vectors defined as r,α(θα, t) =

∂r/∂θα = aα; εαβ = eαβ/
√
a represents the two-dimensional permutation tensor

with a = det(aαβ). eαβ can be evaluated as e11 = e22 = 0, e12 = −e21 = 1. Besides,

aαβ is the induced surface metric with the relation aαβ = aα · aβ,where the dot

represents the Euclidean inner product. The matrix aαβ of the surface metric

is a non-negative definite in general, with relation aαβ = (aαβ)−1, where aαβ is

the matrix of dual metric components. The symmetric coeffi cients of the second

fundamental form on ω is defined as bαβ = n · aα,β, from which we can obtain the

dual metric of bαβ as bαβ = aαλaβµbλµ.

The formulations of Mean and Gaussian curvatures of surfaces are given as

H = 1
2
aαβbαβ and K = 1

2
εαβελµbαλbβµ, where b̃αβ is the cofactor of the curva-

ture with the relation: b̃αβ = 2Haαβ − bαβ.

2.3 Modelling process

The surface covariant differentiation defined by [46] is

aα;β = aα,β − Γλαβaλ, (2.1)
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Figure 2.1: The schematic of the membrane surface. (Picture taken from: Belay,

T. 2016 )

where Γλαβ = aα,β · aλ are the Christoffel symbols induced by the local surface

coordinate on ω and aλ is the dual basis, defined as

aα = aαβaβ. (2.2)

Equations (2.1) and (2.2) furnish well know Gauss-Weigard equation:

aα,β = (aα,β · aλ)aγ+(aα,β · n)n =Γλαβaγ + bαβn;bαβ = aα,β · n(Gauss), and (2.3)

n,α = (n,α · aβ)aβ+(n,α · n)n = −bαβaβ; bαβ = −n,α · aβ(Weingarten), (2.4)

where bαβ are the coeffi cient of the second fundamental form (curvature) and their

symmetric properties can be seen as

bαβ = −n,α · aβ = aβ,α · n =bβα. (2.5)

13



Also, the contravariant cofactor of the curvature tensor is given by [46]

b̃αβ = εαλεβγbλγ (2.6)

which is again symmetric (i.e., b̃αβ = b̃βα) from the result of (2.5). We note here

that (2.5) is valid for the suffi cient smoothness of r up to the second-order (i.e.,

r ∈ C). Also, substituting (2.3) into (2.1) yields

aα;β = bαβn. (2.7)

Within this prescription, the equilibrium state of a purely elastic surface, subjected

to normal pressure p, is given by [35]

Tα
;α + pn = 0, (2.8)

where Tα
;α and n are the stress vectors and the local surface unit normal, re-

spectively. Further, the associated deformation energy of the surfaces can be

expressed by the two primary parameters: the coeffi cient of the first fundamental

form aαβ (the surface metric) and the second fundamental form bαβ (the curva-

ture). In the case of fluid films whose energy density per unit mass of the surface

is F = F (aαβ, bαβ), Tα takes the following compact form [35]:

Tα = (σβα + bβµM
µα)aβ −Mαβ

;β n, (2.9)

and

σβα = ρ(
∂F

∂aαβ
+

∂F

∂aβα
)

Mβα =
ρ

2
(
∂F

∂bαβ
+

∂F

∂bβα
). (2.10)
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In a typical environment, where fluid films are subjected to morphological transi-

tions, the reference velocity of the system is low and therefore the corresponding

Reynolds numbers are suffi ciently small [15], [16]. Further, it is widely accepted

that lipid membranes are relatively stiff against areal dilation in comparison with

bending or shear motions [13], [14]. This implies that deformations preserve sur-

face area. In other words, fluid films are subjected to the two-dimensional incom-

pressibility J = 1 which can be incorporated by replacing F as [35]

F = F − γ

ρ
, (2.11)

where F , ρ, and γ are, respectively, a constitutive function, mass density, and the

Lagrange-multiplier field associated with surface pressure;

γ = ρ2Fρ. (2.12)

The energy density per unit area of the surface ω is then defined by [34]

W (H,K, ρ; aαβ, bαβ) = ρF , (2.13)

where the expressions of Mean and Gaussian curvatures of surfaces (i.e., H and

K) are given explicitly as [46]

H = 1
2
aαβbαβ and K = 1

2
εαβελµbαλbβµ. (2.14)

In particular, K satisfies

bαµ b̃
µβ = Kaαβ, (2.15)
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which can be easily seen from (2.6). Therefore, we find F = 1/ρ(W − γ) and

subsequently obtain from (2.10) that

σβα = ρ(
∂(1/ρ)(W − γ)

∂aαβ
+
∂(1/ρ)(W − γ)

∂aβα
)

and Mβα =
ρ

2
(
∂(1/ρ)(W − γ)

∂bαβ
+
∂(1/ρ)(W − γ)

∂bβα
). (2.16)

Using chain rules, we evaluate

ρ(
∂(1/ρ)(W − γ)

∂aαβ
) = ρ[−ρ−2 ∂ρ

∂aαβ
W +

1

ρ
(Wρ

∂ρ

∂aαβ
+WH

∂H

∂aαβ

+WK
∂K

∂aαβ
) + ρ−2

∂ρ

∂aαβ
γ − 1

ρ

∂γ

∂ρ

∂ρ

∂aαβ
], (2.17)

where WH = ∂W/∂H and similarly for other terms. The derivatives of ρ, H and

K with respect to aαβ can be evaluated as [35]

∂ρ

∂aαβ
= −ρ

2
aαβ,

∂H

∂aαβ
= −1

2
bαβ (2.18)

and
∂K

∂aαβ
= −Kaαβ,

Accordingly, (2.17) reduces to (e.g., −ρ−2(∂ρ/∂aαβ)W = −ρ−2(−(ρ/2)aαβ)W ,

etc.)

ρ(
∂(1/ρ)(W − γ)

∂aαβ
) = ρ[

1

2ρ
aαβW − 1

2
aαβWρ −

1

2ρ
bαβWH

−1

ρ
WKKa

αβ − 1

2ρ
aαβγ +

1

2
γρa

αβ]. (2.19)

Also from (2.12) and (2.13), Fρ can be computed as Fρ = (W/ρ − γ/ρ),ρ =

Wρ/ρ−W/ρ2 − γρ/ρ+ γ/ρ2, and thus it yields

Wρ = ρFρ +
W

ρ
+ γρ −

γ

ρ
(2.20)
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Substituting (2.20) into (2.19) furnishes

ρ(
∂(1/ρ)(W − γ)

∂aαβ
) = [−1

2
bαβWH −WKKa

αβ − 1

2
aαβρ2Fρ]

= −1

2
γaαβ − (WHH +WKK)aαβ +

1

2
WH b̃

αβ, (2.21)

In the above we make use of the identity bαβ = 2Haαβ − b̃αβ from the Cayley-

Hamilton theorem and ρ2Fρ = γ (see (2.12)). Therefore, from (2.21) and the

symmetry of aαβ and b̃αβ, (2.10)1 becomes

σβα = (λ+W )aαβ − (2WHH + 2WKK)aαβ +WH b̃
αβ, (2.22)

where

λ = −(γ +W ). (2.23)

Now, we evaluate ρ(∂(1/ρ)(W − γ)/∂bαβ) as

ρ(
∂(1/ρ)(W − γ)

∂bαβ
) = ρ[−ρ−2 ∂ρ

∂bαβ
W +

1

ρ
(Wp

∂ρ

∂bαβ
+WH

∂H

∂bαβ

+WK
∂K

∂bαβ
) + ρ−2

∂ρ

∂bαβ
γ − 1

ρ

∂γ

∂ρ

∂ρ

∂bαβ
]. (2.24)

Since,

∂ρ

∂bαβ
= 0,

∂H

∂bαβ
=

1

2
aαβ (2.25)

and
∂K

∂bαβ
= b̃αβ,

Equation (2.24) becomes (e.g., WH(∂H/∂bαβ) = WH(1/2)aαβ)

∂(1/ρ)(W − γ)

∂bαβ
=

1

2
WHa

αβ +WK b̃
αβ. (2.26)
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Invoking (2.26) and (2.10)2 furnishes

Mβα =
1

2
WHa

αβ +WK b̃
αβ, (2.27)

where bαβ = bβα from (2.5).

Further, by combining (2.8) and (2.9), we find

0 = (σβα + bβµM
µα);αaβ + (σβα + bβµM

µα)aβ;α

−(Mαβ
;β );αn−Mαβ

;β n,α + pn. (2.28)

Finally, we project (2.28) into normal direction by applying dot product of unit

normal n and subsequently obtain

0 = (σβα + bβµM
µα);αaβ · n + (σβα + bβµM

µα)aβ;α · n

−(Mαβ
;β );αn · n−Mαβ

;β n,α · n + pn · n. (2.29)

But, since aβ · n = 0, (n · n),α = 0, and aα;β = bαβn (see (2.7)), the above reduces

to

(σβα + bβµM
µα)bαβ − (Mαβ

;β );α + p = 0. (2.30)

Similarly, for tangential projection (e.g., aβ · aα = δαβ , aβ;α · aα = bαβn · aα = 0,

etc.), we have

(σβα + bβµM
µα);α −Mαµ

;µ b
β
α + p = 0. (2.31)

where n,α · aβ = −bαγaγ · aβ = −bαγaγ · aβ = −bαγaγβ = −bβα from Weingarten

equation.
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CHAPTER 3

MODELLING OF LIPID MEMBRANES AFFECTED

BY GENERAL FORMS OF INTRA-MEMBRANE

VISCOUS FLOWS AND INTERACTIONS WITH

ELLIPTICAL-CROSS-SECTION SUBSTRATES

In this chapter, we study the morphologies of lipid membranes subjected to intra-

membrane viscous flows and interactions with elliptical cylinder substrates. Based

on the non-linear elastic surface theory, the linearized shape equations and admis-

sible boundary conditions are formulated in the elliptical domain via the Monge

representation of a surface. In particular, the intra-membrane viscosity terms are

linearized and mapped into the elliptic coordinates in order to accommodate more

general forms of viscous flows. The assimilated viscous flows are characterized by

the potential functions which satisfy the continuity condition. A complete solution

regarding Mathieu function is then obtained within the prescription of incremen-

tal deformations superposed on large. The results describe smooth morphological

transitions over the domain of interest and, more importantly, predict wrinkle for-

mations in the presence of intra-membrane viscous flows in the surface. Lastly,
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the obtained solution accommodates the results from the circular cases in the limit

of vanishing eccentricity and intra-membrane viscous flow.

3.1 Introduction

In this chapter, we study the deformations of lipid bilayers subjected to the

intra-membrane viscous flows and the interactions of elliptical cylinder substrates.

Utilizing the Monge parameterization of a surface and general curvilinear coor-

dinates, the expressions of linearized shape equations and associated boundary

conditions are obtained from the non-linear theory [34]. The intra-membrane vis-

cosity terms are formulated by means of ’admissible linearization’and successively

transformed into elliptical coordinates to assimilate more general types of viscous

flow. More importantly, we obtained a complete analytic solution by employing

adapted iterative reduction and the method of eigenfunction expansion [47]-[49],

which describes the deformations of lipid membranes when interacting with intra-

membrane viscous flows and elliptical-cross-section substrates. It is found that

intra-membrane viscosity induces wrinkle formations of the lipid membranes, and

the corresponding number of wrinkles exhibits sensitivity to both the radius of the

ellipse and the intensity of viscous flows. Comparisons with phenomenologically

compatible cases such as a circular substrate-membrane interaction and capillary

wrinkle of polymer films, are made where the proposed model successfully repro-

duces the results from [37], [50] in the limit of vanishing eccentricity of an ellipse.
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Further, we obtain solutions corresponding to the case of a lipid membrane sub-

jected to non-uniform viscous flows and dual source flows. This is facilitated by

the relaxed form of the prescribed tangential and normal force, and the condition

of continuity along and within the elliptical boundaries, unlike those arising in cir-

cular boundaries where the admissible set of viscous flows are strictly uniform in

one of the coordinate directions [37]. The resulting deformation fields show clear

signs of dual source interference in that both the radial and circumferential wave

forms are simultaneously predicted. Case studies vis a vis morphologically similar

results of shape memory films [51] are presented to investigate the potential ap-

plicabilities of the proposed model in the analysis of different types of membranes.

In particular, it is found that the principles of superposition from linear elasticity

remains valid, even in the presence of general forms of dual source viscous poten-

tials. That is, the solution of a dual source problem can be directly obtained by

adding solutions of two single source problems. The solutions presented here are

of more practical interest in that, essentially, they lead to solutions of problems

in which the viscosity effects are characterized by a wide class of potential func-

tions and so can accommodate a correspondingly large set of physically relevant

problems. For example, potential applications may be expected in the study of

wrinkle-caused disease (e.g., a macular epiretinal membrane [52]) and the influ-

ences of membrane viscosity on various cellular functions such as fusion, fission

and budding [53]. Further, the presented solution reproduces the existing results
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[26] when viscosity effects are removed, and does incorporate the solution of the

classical membrane-substrate interaction problem [20] in the limit of vanishing

eccentricity. In fact, the classical solution obtained directly from the proposed

model produces more accurate predictions by identifying the additional Bessel

functions, which is reduced from the Mathieu potentials.

This chapter is composed as follows. In section 3.2, we develop the normal

and tangential equations of motion of viscous lipid membranes and derive the

incompressible condition of viscous fluids. In section 3.3, by employing Monge

representation of a surface and admissible linearization, we linearize the membrane

shape equations and the corresponding boundary conditions and transform them

into the elliptical domain. Then, in section 3.4, a complete solution regarding

Mathieu function is obtained by employing adapted iterative reduction and the

method of eigenfunction expansion. Various types of viscous flows (uniform, non-

uniform and dual source types) are studied and discussed in section 3.4.1, 3.4.2

and 3.4.3. Lastly, we reduce the obtained solutions to the circular domain in

section 3.4.4.

3.2 Viscous lipid membranes

The viscous stress induced by the straining effects of the fluid is given by [54]

σαβ = (λ+W )aαβ + νaαλaβµȧλµ, (3.1)

22



where ν is the intra-membrane shear viscosity and

ȧλµ = (aλ · aµ)̇ = ȧλ · aµ + aλ · ȧµ (3.2)

is the time derivative of the evolving surface metric. Thus, in order to compute

viscous stress, it is required to compute ȧµ, which can be obtained via the material

time derivative of a position vector r [35]:

u = ṙ =
∂r

∂t
+

∂r

∂θα
∂θα

∂t
= rt + aαv

α. (3.3)

Accordingly, it is found that

ȧλ = u,λ = (vαaα + wn),λ = vα,λaα+vαaα,λ + w,λn + wn,λ

= (vα;λ − wbαλ)aα + (vαbαλ + w,λ)n. ∵ vα;β = vα,β − vβΓλαβ, (3.4)

and

ȧλµ
(Eqs. 3.2&3.4)

= vµ;λ + vλ;µ − 2wbλµ, (3.5)

where vα = ∂θα/∂t, and rt = |rt|n = wn are respectively the tangential and

normal velocities of a material point on the initial surface ([35], [54] and [55]).

It is now straightforward to show from Eqs. (2.22),(3.1) and (3.5) that,

σβα = (λ+W )aβα − 2(WHH +WKK)aβα +WH b̃
βα

+ν[aβλaαµ(vµ;λ + vλ;µ)− 4wHaβα + 2wb̃βα], (3.6)

which is the expression of the viscous stress.
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Thus, by means of Eqs. (2.27), (2.15) and (3.6), and applying the conventional

Euclidean dot product in normal n direction, Eq. (2.8) becomes [34]

p = WH(2H2 −K) + 2H(WKK −W )− 2λH + ∆(
1

2
WH)

+(WK);αβ b̃
αβ − 2ν[

1

2
bαβ(vα;β + vβ;α)− 2w(2H2 −K)], (3.7)

which serves as the equation of motion (normal direction) of the lipid membrane

in the presence of intra-membrane viscosity effects. Further, ∆ is the Laplace-

Beltrami operator (i.e. ∆φ = φ;αβa
αβ) on the surface Ω. Consequently, by pro-

jecting Eq. (2.8) onto the basis coordinate plane of aα, the following tangential

equations of motion can be obtained:

λ,α − 4vwH,α + 2ν[
1

2
aλµ(vµ;α + vα;µ);λ − w,λbλα] = 0. (3.8)

Much of literature on the mechanics of lipid membranes has revealed that a bilayer

membrane can be regarded as a continuous two-dimensional elastic surface where

the response functions are governed by the well-known Helfrich energy poten-

tial [12]. The model has been widely adopted in various subjects within bilayer

membrane mechanics (see, for example, [20], [21] and [24], and the references

therein). Following the study of [34], in this paper, we consider the symmetric

membrane of the Helfrich type (i.e. W (H, K) = W (−H, K)), subjected to the

membrane-substrate interactions and the effects of intra-membrane viscosity. The

corresponding free-energy density function is defined by [12]

W = kH2 + k̄K, (3.9)
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where k and k̄ are empirical bending constants, which pertain to lipid membranes

with uniform properties. Thus, from Eq.(3.9), Eq. (3.7) becomes

p = k[∆H + 2H(H2 −K)]− 2λH − 2ν[
1

2
bαβ(vα;β + vβ;α)

−2w(2H2 −K)], (3.10)

while the tangential equations (Eq. (3.8)) remain intact.

Lastly, by invoking Eq. (3.5), the condition of an incompressible fluid J̇/J =

1
2
aαβȧαβ = 0 can be obtained as [56]

vα;α − 2wH = 0, (3.11)

where H = 1
2
aαβbαβ.

3.3 Incremental deformations of lipid membranes

The use of Monge parameterization and admissible linearization is a widely

adopted methodology for lipid membrane analysis, and the associated procedures

are well documented in the literature (see, for example, [20], [24] and [27]). Here,

we reformulate the results for the sake of completeness. Under the Monge para-

meterization, material points on the membrane surface Ω is defined by

r(θα, t) = θ + z(θ, t)k, (3.12)

where θ(θα) is position on a plane p with unit normal k. The problem of deter-

mining the membranes’deformed configuration is then reduced to solving a single
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function z(θ, t). In the cases of Cartesian coordinates, we have

θ = θαeα, (3.13)

where {eα} is an orthonormal basis for the plane and, the subscripts of the surface

coordinates are dropped and replaced by 1 = x, 2 = y, unless otherwise specified.

Accordingly, we compute

r,t = z,tk, aα = eα + z,αk, a = det(aαβ) = [1 + (z,1 )2 + (z,2 )2],

aαβ = δαβ + z,αz,β, H =

(
1 + z2,2

)
z,11 +

(
1 + z2,1

)
z,22 − 2z,1z,2z,12

2a3/2
,

K =

(
z,11z,22 − z2,12

)
a2

,n =
(k−∇z)√

a
, (3.14)

b = bαβ(aα ⊗ aβ) =
z,αβ√
a

(aα ⊗ aβ).

Here, ∇z = z,αeα is surface gradient, δαβ is Kronecker delta and b is the curvature

tensor. Further, the expressions of the dual basis and the Christoffel symbols are

obtained as

Γλαβ = z,λz,αβ/
√
a,

a1 =
1

a

[(
1 + z2,2

)
(e1 + z,1k)− z,1z,2 (e2 + z,2k)

]
, and

a2 =
1

a

[(
1 + z2,1

)
(e2 + z,2k)− z,1z,2 (e1 + z,1k)

]
. (3.15)

In the incremental deformation analysis, it is assumed that the gradient of z(θα, t)

of all orders are ‘small’so that their products can be neglected. The procedure

is commonly referred to as admissible linearization through which the geomet-

rical and kinematical quantities associated with the surface (Eq. (3.8)) can be
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approximated as

a ' 1, w ' zt, n = k−∇pz, a
α ' aα = eα + z,αk, Γλαβ ' 0,

n · r ' z − z,αθα,b ' ∇2
pz, H '

1

2
∆pz and K ' 0, (3.16)

where the subscript (∗)p refers to the projected counterparts of (∗) on the coordi-

nate plane ωp, ∇2
pz = z,αβ eα ⊗ eβ is the second gradient, and ∆pz = tr(∇2

pz) is

the corresponding Laplacian, respectively.

3.3.1 Linearization of the intra-membrane viscosity terms

In the forthcoming derivations, we present the linearization procedures for the

terms associated with the intra-surface viscous flow, which arise in the formulation

of membrane equilibrium equations. To proceed, we express the surface gradient

of the viscous flow fields and the curvature tensor as

∇v = ∇(vαa
α) = (vα,βa

α + vαa
α
,β)⊗ aβ

(Eqs.2.1−2.3)
= vα;βa

α ⊗ aβ, and

b = bαβ(aα ⊗ aβ). (3.17)

We then compute their traces to obtain

tr(b(∇v)T ) + tr(b(∇v)) = bαβ(vα;β + vβ;α), (3.18)
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where aα· aβ = δβα. Also, from the results in Eq. (3.16), Eq. (3.17) can be

approximated, up to the leading order, to

vα;β(aα ⊗ aβ) = (vα,β − vλΓλαβ)[(eα + z,αk)⊗ (eβ + z,βk)]

' (vα,β)(eα ⊗ eβ), and

b = bλγa
λαaγβ(aα ⊗ aβ) (3.19)

= bλγ(δλα + z,λz,α)(δγβ + z,γz,αβ)(aα ⊗ aβ)

' z,αβeα ⊗ eβ.

Now, combining Eqs. (3.18) and (3.19), we find that,

tr(b(∇v)T ) = [vα,β(eα ⊗ eβ)z,λγ(eγ ⊗ eλ)] ' vα,βz,αβ

tr(b(∇v)) ' vβ,αz,αβ. (3.20)

Thus, Eq. (3.18) simplifies to

bαβ(vα;β + vβ;α) ' z,αβ(vα,β + vβ,α). (3.21)

However, since z,αβ = z,βα, the above can be re-written as

z,αβ(vα,β + vβ,α) = 2z,αβvα,β. (3.22)

To obtain the simplified expression of incompressibility condition (3.11), we eval-

uate the surface divergence of the viscous flow field as

div v = tr(∇(vαa
α))

(Eqs.3.17)
= tr[vα;βa

α ⊗ aβ] = vα;βa
αβ = vα;α, (3.23)
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where aα · aβ = aλa
λα · aγaλα = aλγa

λαaλα = aαβ. Substituting the above into Eq.

(3.11), and further invoking Eq. (3.3), we arrive at

vα;α − 2wH = div v − 2(
z,t√
a

)H. (3.24)

Thus, from Eq. (3.16), the leading order approximation of the above can be found

as

vα;α − 2wH = (div v)P=vα,a, (3.25)

where (div v)P is the divergence of the projected coordinate plane Ωp.

Consequently, substitution of these linearized expressions, (Eqs. (3.16),(3.22)

and (3.25)), into Eqs. (3.8) and (3.10-3.11) delivers the following normal and

tangential equations, and incompressibility conditions:

1

2
k∆p(∆pz)− λ∆pz − 2νz,αβvα,β ' p, (λ+ P ),α + v∆pvα ' 0

and vα,α ' 0 (3.26)

Here, P = P (θα, t) is understood as a sequence of prescribed surface pressure (see,

[34]) from the admissible set of boundary forces which satisfy

fτ = ν(vα,β + vβ,α)(τβγα)p ' 0 and

fγ = −P ' λ+ ν(vα,β + vβ,α)(vβγα)p, (3.27)

where γ × τ = n. In particular, the compatible linear forms for the moments and

normal interaction forces are given by [20]

fn ' k∇p[τ p · (∇2
pz)γp] · τ p − kγp · ∇pH = σ, (3.28)
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where τ ′(S) = dτ
dS

= dτ
dθ
· dθ
dS

= ∇pτ · τ p and σ are the arc length derivative

on the projected curve, and the empirical constant accounting for the wetting

of the interacting boundary, respectively. Hence, the solution of Eq. (3.26) can

be determined by imposing the admissible boundary conditions, Eqs. (3.27) and

(3.28).

3.3.2 Formulations in the elliptical coordinates

We consider the cases when lipid membranes interact through the elliptical

contact domain of a transmembrane substrate, and are subjected a general class of

intra-membrane viscous flow (see, Fig. 3.1.).The deformations of lipid membranes

Figure 3.1: Schematic of an elliptical cylinder substrate-membrane system.

defined on an elliptical domain can be examined by using the mapping,

x+ iy = c cosh(ξ + iη), (3.29)

such that

x = c cosh(ξ) cos(η) and y = c sinh(ξ) sin(η), (3.30)
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through which the rectangular Cartesian coordinates (x, y) are mapped to the el-

liptical coordinates (ξ, η). The semi focal length c is defined by c =
√
a2 − b2 and

ξ ∈ [0,∞), and η ∈ [0, 2π] are respectively the radial and angular coordinates.

Accordingly, Eqs. (3.29-3.30) furnish the gradient and Laplacian in elliptical co-

ordinates as

∇ =
1√

c2(cosh2 ξ − cos2 η)
(
∂

∂ξ
eξ,

∂

∂η
eη), (3.31)

∆ =
1

c2(cosh2 ξ − cos2 η)
(
∂2

∂ξ2
+

∂2

∂η2
). (3.32)

The condition of incompressibility (i.e. vα,α = 0) then yields

1√
c2(cosh2 ξ − cos2 η)

(vξ,ξ + vη,η) = 0, (3.33)

from which the admissible set of viscous flow field is found to be

vξ =

∫
w(ξ, η)dξ + C1η

vη =

∫
−w(ξ, η)dη + C2ξ, (3.34)

so that Eq. (3.33) is satisfied (i.e. vξ,ξ + vη,η = w(ξ, η) − w(ξ, η) = 0). In the

analysis, we assume C1 = C2 = 0 for the sake of simplicity. The cases of non-zero

coeffi cients can be easily accommodated via the principles of superposition which

will be discussed in the later section.

The membrane-substrate interaction occurs through the wall of the elliptical

substrate where the corresponding domain of interest, Ω, and interacting bound-
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ary, ∂Ω, are defined respectively as

Ω = ξi 6 ξ 6 ξo (elliptical annulus), and

∂Ω = ξ = ξi (interacting boundary). (3.35)

Using the mapping functions in Eqs. (3.29-3.30), the associated boundary condi-

tions can be obtained from Eqs. (3.27) such that

0 ' ν√
c2(cosh2 ξ − cos2 η)

(vα,β + vβ,α)(τβγα)p, and

−λ− P ' ν√
c2(cosh2 ξ − cos2 η)

(vα,β + vβ,α)(γβγα)p. (3.36)

Here, the repeated indices, α and β, when summed over their ranges {1, 2}, refer

to ξ and η in elliptic coordinates. On the boundaries (i.e. ξ = ξo and ξ = ξi), we

find

τ = eη = and γ = −eξ, (3.37)

and thereby reduce Eq. (3.36) to

0 ' ν√
c2(cosh2 ξ − cos2 η)

(vξ,η + vη,ξ), and

−λ− P ' ν√
c2(cosh2 ξ − cos2 η)

(2vξ,ξ). (3.38)

In particular, since the membrane-substrate interaction condition (i.e. n−∇z = k,

see, [20] and [22]) requires ∇z = 0 at the inner boundary (ξ = ξi), the normal

force (Eq. (3.28)) becomes

fn ' −kγp · ∇pH = σ. (3.39)
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We continue by rewriting ∇pH using Eq. (3.31) and subsequently reduce Eq.

(3.39) to

1

h(ξ, η)

∂H

∂ξ
=
σ

k
, on ∂w (i.e. at ξ = ξi), (3.40)

where,

h(ξ, η) =

√
c2(cosh2 ξ − cos2 η). (3.41)

Further, applying the similar schemes as in the above, it is not diffi cult to show

z,αβνα,β =
1

h3(ξ, η)
[z,ξξvξ,ξ + z,ξηvη,ξ + z,ξηvξ,η + z,ηηvη,η]. (3.42)

Consequently, by combining the above results, we reformulate Eq. (3.26) and the

associated boundary conditions as

1

2
k∆(∆z)− λ∆z − 2v

h3(ξ, η)
(z,ξξvξ,ξ + z,ξηvη,ξ + z,ξηvξ,η + z,ηηvη,η) = 0, (3.43)

subjected to

z(ξi, η) = 0, ∇z(ξi, η) = 0 and
1

h

∂

∂ξ
H(ξi, η) =

σ

k
. (3.44)

Remark. 1.

It should be noted that the restrictions on the continuity conditions (div(v) =

0) and the prescribed tangential (fτ = 0) force can be relaxed along and within

the elliptical boundaries unlike those arising in circular cases where the admissible

set of viscous flows are required to be strictly uniform in one of the coordinate

directions (i.e. either vr = const or vθ = const ) to satisfy the constraints [37].

This is mainly due to the confined descriptions of the circular interaction boundary
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where the rate of change in the unit normal and tangent on the circular boundary

remains constant so that the associated normal velocity fields vr always points

to the center of a circular substrate. Thus, vr is required to be vanished by

its gradient vr,r or gradient of tangential velocity vθ,θ to satisfy the continuity

condition; i.e.,

div(v) = vr,r +
vθ,θ
r

+
vr
r

= 0. (3.45)

Such restriction can be relaxed in the case of the elliptic interaction boundary,

since the rate of change in local coordinate is not necessarily constant, yet they

vary with respect to the coordinates ξ and η (see, Eqs. (3.31)-(3.32)). This further

suggests that the normal velocity field vξ does not necessarily points to the center

of an elliptical substrate (see, Fig. 3.1.) and therefore no restrictions are necessary

for vξ. In results, the associated flow fields (vξ and vη) can accommodate more

general forms such as non-uniform viscous flows and periodic wave form of vis-

cous flows (no need to be strictly constant) without violating the aforementioned

constitutive restrictions. Examples regarding these cases will be discussed in the

following section.

Lastly, Eqs. (3.43-3.44) serve as the linearized shape equation system which

describes the morphology of lipid membranes under the influences of membrane-

substrate interactions and general forms of viscous flows. In the analysis, we also

impose z(ξi, η) = 0 for the purpose of comparison with the existing literature.
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3.4 Solutions to the linearized systems

It can be seen from Eqs. (3.31), (3.32), and (3.43) that the gradient, Laplacian

and the resulting PDEs in elliptical curvilinear coordinate continuously vary with

respect to the material points (ξ = ξo, η = ηo) on the membrane surface, where

ξo and ηo denote a particular configuration of the surface. In other words, the

associated tangential and normal velocities are simultaneously updated as material

points move over the membrane surface. Therefore, the solution of the Eq. (3.43),

which is coupled with the viscous velocity fields, cannot be accommodated by

the conventional separation variable method of modified Helmholtz equation. In

this section, we combine the method of adoptive iteration and the principle of

eigenfunction expansions [47]-[49], and obtained the complete expression of the

membrane’s shape function z(ξ, η).

To proceed, we solve the homogenous sections of the Eq. (3.43) (1
2
k∆(∆z)−

λ∆z = 0), which is a special type of Laplace equation. The solution is obtained

as

z(ξ, η) =
2

µ2
H(ξ, η) +Bm + ϕ(ξ, η). (3.46)

Here, ϕ(ξ, η) is the plane harmonic function, which is chosen as

ϕ(ξ, η) = Cm log(eξ/eξ0) +Dm

∞∑
m=0

e−ξcem(η, q) (3.47)

to accommodate the desired behavior (i.e. |∇z| → 0) as approaching the bound-
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ary. In particular, the unknown potential H(ξ, η, q) can be expressed as [57]

H(ξ, η) ≡
∞∑
m=0

∞∑
n=0

AmKem(ξ, q)cen(η, q)Tmn(ξ, η), (3.48)

where cen(η, q) and Kem(ξ, q) are the modified Mathieu functions of the first and

second kind, respectively, and q (q > 0) is the associated parameter (see, for

example [58]).

Now, by substituting Eqs. (3.34) and (3.48) into Eq. (3.43), and invoking the

orthogonal properties of the Mathieu function,∫ 2π

0

cem(η, q)cen(η, q)dη =

∫ 2π

0

Kem(ξ, q)Ken(ξ, q)dξ = πδmn, and (3.49)∫ 2π

0

∫ 2π

0

Kem(ξ, q)cen(η, q)Kek(ξ, q)cel(η, q)dξdη = πδmk, (3.50)

we obtain the following expressions for Tmn:

Tmn(ξ, η) =

∫ 2π

0

∫ 2π

0

∞∑
m=0

∞∑
n=0

− ν

λπ2h3(ξ, η)
∗

[−e−ξce′m(η, q)Kem(ξ, q)cen(η, q)(
∂
∫
w(ξ, η)dξ

∂η
(3.51)

+
∂
∫
−w(ξ, η)dη

∂ξ
) + {e−ξπKem(ξ, q) + e−ξce′′m(η, q) ∗

Kem(ξ, q)cen(η, q)}w(ξ, η)]dξdη.

The detailed procedures which can be found in [47]-[49] are omitted here for the

sake of brevity.

Consequently, the general solution in Eq. (3.46) can be found in the form

z(ξ, η) =
2

µ2

∞∑
m=0

[AmKem(ξ, q)cem(η, q)Tmn(ξ, η) (3.52)

+Bm + Cm log(eξ/eξ0) +Dme
−ξcem(η, q)],
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where µ =
√

2λ/k is the natural length scale which is commonly adopted in the

membrane studies (see, for example, [20], [23] and [34]). Details regarding the

dimensionless variables adopted in the present work will be discussed in later sec-

tion. The unknown constants Am, Bm, Cm and Dm can be completely determined

by imposing the admissible boundary conditions. For instance, the substrate-

membrane interaction conditions (3.44) require

∂

∂ξ
z(ξi, η) = 0,

∂

∂η
z(ξi, η) = 0, z(ξi, η) = 0 and

1

h(ξi, η)

∂

∂ξ
H(ξi, η) =

σ

k
, (3.53)

on the boundary from which we find that,

Am =
∞∑
m=0

σh(ξi, η)

k(Kem(ξi, q)cem(η, q)T ′ξ(ξi,η) + cem(η, q)Ke′m(ξi, q)Tmn(ξi, η))

Bm =
∞∑
m=0

[
2h(ξi, η)σ

ce′m(η, q)kµ2
∗

Kem(ξi, q)cem(η, q)T ′η(ξi, η) +Kem(ξi, q)ce
′
m(η, q)Tmn(ξi, n)

Kem(ξi, q)T
′
ξ(`, η) +Ke′m(ξi, q)Tmn(ξi, η)

− 2σKem(ξi, q)h(ξi, η)Tmn(ξi, η)

kµ2(Kem(ξi, q)T
′
ξ(ξi, η) +Ke′m(ξi, q)Tmn(ξi, η))

],

Cm =

∞∑
m=0

[− 2σh(ξ0, η)

kµ2
− 2σh(ξi, η)

ce′m(η, q)kµ2

Kem(ξi, q)cem(η, q)T ′ξ(ξi, η) +Kem(ξi, q)ce
′
m(η, q)Tmn(ξi, η)

Kem(ξi, q)T
′
ξ(ξi, η) +Ke′m(ξi, q)Tmn(ξ0, η)

],

and

Dm =
∞∑
m=0

− 2σh(ξi, η)eξi

ce′m(η, q)kµ2
∗

Kem(ξi, q)cem(η, q)T ′η(ξi, η) +Kem(ξi, q)ce
′
m(η, q)Tmn(ξi, η)

Kem(ξi, q)cem(η, q)T ′η(ξi, η) + cem(η, q)Ke′m(ξi, q)Tmn(ξi, η)
(3.54)
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where

Ke′m(ξ, q) =
∂Kem(ξ, q)

∂ξ
, ce′m(η, q) =

∂cem(η, q)

∂η
,

T ′ξ(ξ, η) =
∂Tmn(ξ, η)

∂ξ
, T ′η(ξ, η) =

∂Tmn(ξ, η)

∂η
, (3.55)

T ′ξ(ξi, η) =

[
∂Tmn(ξ, η)

∂ξ

]
ξ=ξi, T

′
η(ξi, η) =

∂Tmn(ξi, η)

∂η
.

As Fig 3.2 illustrates, the viscous flows on the membranes’surfaces can impact

the morphologies of lipid membranes due to the viscous impact forces, frictional

forces and the gravity of flows. The viscous impact forces are aligned with the

flows’directions because of the inertia of fluid. The frictional forces are tangential

to the membranes’ surfaces and point to the opposite directions of the speed

vectors of the viscous flows. Further, gravity points vertically downwards because

of the law of attraction. When the viscous flows start to flow on the membranes’

surfaces, the wrinkles appear due to the small stiffness of membranes, the frictional

forces, and the gravity of flows. Then the viscous impact forces help the spreading

of the wrinkles on the membranes’surfaces.

3.4.1 Constant viscous flow potential: w(ξ, η) = A

The membrane systems may be exposed to the constant viscous flow within

a cell such as the selective transport of molecules inside the lipid bilayers where

the molecules travel with the constant flow from one side of the membrane to the

objective protein [59]. To assimilate such constant viscous flow, we consider the
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Figure 3.2: Schematic of the forces on the membrane’s surface when viscous flows

go through

case when w(ξ, η) = A, and thereby reduce Eq. (3.51) to

Tmn(ξ, η) =

∫ 2π

0

∫ 2π

0

∞∑
m=0

∞∑
n=0

− 1

λπ2

νAe−ξKem(ξ, q)

h3(ξ, η)
[π

+
∂2cem(η, q)

∂η2
cen(η, q)]dξdη. (3.56)

Eqs. (3.52), (3.54) and (3.56) then deliver

z(ξ, η) =
∞∑
m=0

[
2σh(ξ, η)cem(η, q)

σ1

{Kem(ξ, q)Tmn(ξ, η)−Kem(ξ0, q)Tmn(ξ0, η)}

−(
2hσ

kµ2
+

2σce2m(η, q)h(ξ, η)Kem(ξ0, q)

σ1

∗

T ′η(ξ0, η) + Tmn(ξ0, η)

ce′m(η, q)
) log(

eξ

eξi
)], (3.57)
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where

σ1 = kµ2[Kem(ξi, q)cem(η, q)dTξ(ξi, η, q)

+cem(η, q)dKem(ξi, q)Tmn(ξi, η, q)]. (3.58)

The resulting function z(ξ, η) in Eq. (3.57) describes the morphology of a lipid

membrane when subjected to membrane-substrate interactions and the effects of

uniform intra-membrane viscous flow. The associated results are presented in

Figs. 3.1, 3.3 and 3.4. In the assimilation, we adopt the value of intra-membrane

surface viscosity ν = 10−4pN ·s/nm and the flexural modulus of the membrane k =

82pN ·nm from the work of [60] and [61]. The Lagrange multiplier λ is dependent

on membrane systems in consideration and usually do not have definite range of

values. The values of λ commonly used in the literatures is about λ ∝ 10−4pN/nm.

In the present study, we assimilate data under the normalized setting using the

aforementioned values. The dimensionless parameters used in the simulations are

adopted from the works [20], [23] and [34] as;

µ =
√

2λ/k: natural length scale (e.g., µa: radius of a circular membrane),

σ/λ: force scale (e.g., fn = σ/λ: interaction force). (3.59)

We have found that the viscous flow gives rise to wrinkle phenomena, when

the normalized magnitude of viscous flow is greater than the critical number (i.e.

Aν
λ
≥ 10−15). Especially, the number of radial wrinkles with respect to the intra-

membrane viscous flows (A) and the radius of the inner ellipse (µc) are illustrated
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in Fig. 3.3. The top two figures indicate that, with the same inner ellipse, the

number of wrinkles reduce as the magnitude of viscous flow decreases from 10−5

to 10−7. Further, the right and/or left two figures shows that the number of

wrinkles increase as the inner radius of an ellipse increase from 0.3 to 0.6 while

the magnitude of the viscous flow remains the same (i.e. A = 10−5 (left) and

A = 10−7(right)). Phenomenologically compatible results can be found in the

relevant works such as circular substrate-membrane interactions [37], capillary

wrinkles on thin polymer films [50] and theoretical study on an elastic surface

[62], where the number of radial wrinkles depends upon the size of the inner

radius and membrane thickness. The proposed model successfully reproduces

the reported results under physically similar/compatible settings (see Fig. 3.3

and 3.4). The solutions presented in [37] are the special case of the presented

solution (see, Fig. 3.4-3.5.) in the limit of vanishing eccentricity of elliptical

domains (i.e. h(ξi, η) = a(1 − e2 cos2 η)1/2 = a for e → 0.). Lastly, we note

here that the predicted wrinkle cases are unique and steady, since the proposed

model satisfies strict quasi-convexity through the minimization of membranes’

strain-energy potentials (see, for example, [62]-[63]).
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Figure 3.3: Number of wrinkles with respect to A and µc (inner radius: major

axis).

3.4.2 Non-uniform viscous flow potential: w(ξ, η) = A sin ξ cos η

(waveform)

In this section, we consider membrane systems with non-uniform viscous flow.

The non-uniform cases can be observed in various cellular activities such as the

transportation of the intracellular membrane and the transmembrane proteins

induced by the viscous flow with tension gradient [64]. In this case, the viscous

flow field becomes non-uniform due to the interactions with tension gradient field.

Membranes subjected to the waveform of non-uniform viscous flows can be

examined by introducing the following potential function,

w(ξ, η) = A sin(Eξ) cos(Fη), (3.60)
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Figure 3.4: Comparisons:Number of wrinkles on thin polymer films. (Picture

taken from: Huang, J., et al. 2007 )

where the intensity of wavy flow can be controlled by the parameters E and F . In

the assimilation, we set E = F = 1 for simplicity. Accordingly, from Eq. (3.51),

we obtain the following expression of Tmn(ξ, η), addressing the viscous effects,

Tmn(ξ, η) =

∫ 2π

0

∫ 2π

0

∞∑
m=0

∞∑
n=0

− 1

π2λ

νA sin ξ cos ηe−ξKem(ξ, q)

h3(ξ, η)
∗

[π +
∂2cem(η, q)

∂η2
cen(η, q)]dξdη. (3.61)

Combining (3.52), (3.54) and (3.61), the complete solution describing the mem-
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Figure 3.5: Comparison with circular case (47 wrinkles in total). (Picture taken

from: Zeidi, M., et al. 2018 )

branes’morphology can then be found as

z(ξ, η) =
∞∑
m=0

[
2hσcem(η, q)

σ1

{Kem(ξ, q)Tmn(ξ, η)−Kem(ξi, q)Tmn(ξi, η)}

−(
2hσ

kµ2
+

2σcem(η, q)h(ξ, η)Kem(ξi, q)

σ1

(3.62)

cem(η, q)T ′η(ξi, η) + ce′m(η, q)Tmn(ξi, η)

ce′m(η, q)
) log(

eξ

eξi
)]

where σ1 is defined in Eq. (3.58). Similar to the constant viscous cases, the

resulting deformation fields (radial wave deformations) are sensitive to both the

dimension of an inner ellipse and the intensity of viscous flow; i.e., the number of

waves reduces as A decreases from 10−5 to 10−7 (See. Fig. 3.6.). But, more impor-
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tantly, the transverse wave deformations of the membrane and the corresponding

vertical deflections die out as they approach the remote boundary. As a result, the

corresponding boundary remains intact and stable (See. Fig. 3.7.). In the case

of vanishing A, the wave deformations are completely removed from the entire

domain of interest so that the vertical deformation profile reduces to the results

in [26], where the authors present the analysis of elliptical substrate-membrane in-

teraction problems without the considerations of viscosity effects (See. Fig. 3.7).

Also, Fig. 3.8. shows that the obtained solution accommodates the results of

circular substrate-membrane interaction problems in [37] when the eccentricity

converges to zero (i.e. e→ 0.). In fact, the solutions in Figs. 3.7 and 3.8 become

essentially identical for suffi ciently small value of A; i.e., A ≤ 10−16 for case in Fig.

3.7 and A ≤ 10−8 and A ≤ 10−10 for the cases in Fig. 3.8. In the assimilations, the

classical solutions obtained from the proposed model are intentionally reproduced

at A = 10−15, A = 10−7 and A = 10−9 for the purpose of visual demonstration.

Figure 3.6: Wave deformations of lipid membrane with respect to A.
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Figure 3.7: Transverse deflections of lipid membrane with respect to intra-

membrane viscous flows.

3.4.3 Dual source problems: w(ξ, η) = A+ A sin ξ cos η

The proposed model is suffi ciently general in that the viscous effects from

both radial and circumferential directions can be simultaneously considered. To

demonstrate this, we introduce the following dual source potential

w(ξ, η) = A+ A sin ξ cos η, (3.63)

and subsequently obtain from Eq. (3.51) that

Tmn(ξ, η) =

∫ 2π

0

∫ 2π

0

∞∑
m=0

∞∑
n=0

− 1

λπ2

νA(1 + sin ξ cos η)e−ξKem(ξ, q)

h3(ξ, η)

∗[π + e−ξ
∂2cem(η, q)

∂η2
cen(η, q)]dξdη. (3.64)

Thus, from Eqs. (3.52) and (3.54), the deformation mapping function z(ξ, η) can

be obtained in the same manner as in the single source cases.

Figure 3.9 illustrates the deformation configuration of the membranes under

the influence of dual source viscous flow. It is shown that both the radial and

circumferential wave patterns are simultaneously observed. Morphologically sim-

ilar cases are reported in the work of [51] where the authors examined the wrinkle
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Figure 3.8: Comparison with circular case. (Picture taken from: Zeidi, M., et al.

2018 )

phenomena of a thin gold layer (10nm in thickness) when subjected to thermal

stresses from the adjoined polymer substrate. In cases of thin membranes, ther-

mal stresses may be understood as a particular type of the surface stress [65], [66].

Therefore, the results may bear close resemblance with the present case where the

membrane’s deformations are induced by the surface interaction forces which are

transmitted from the acting viscous flows. The obtained solution assimilates the

experimental results in [51] when compatible conditions are applied (see, Figs.

3.10 and 3.11). This further suggests that the proposed model may be of practical

interest in the morphological study of thin film structures. Such investigations

are, however, limited in the present study due to the lack of available data.

Remark. 2.

47



The results in Fig. 3.9 further indicates that the principle of superposition

remains valid in the present cases. The principle is widely adopted in various

engineering problems with simple initial and/or boundary value problems of both

first (Dirichlet) and second (Neumann) types [67]-[69]. However, such practices

are largely absent in the membrane studies due the complexity of mixed bound-

ary conditions (i.e. both the Dirichlet and Neumann boundary conditions are

prescribed on the boundaries), and the limited access for the solutions of mem-

brane systems subjected to coupled-physics environment. In the present case, the

solutions of single source problems (i.e. w = A and w = A sin ξ cos η) can be

obtained from Eqs. (3.56), (3.57), (3.61) and (3.62) that

Tmn(ξ, η) =

∫ 2π

0

∫ 2π

0

∞∑
m=0

∞∑
n=0

− 1

λπ2

νAe−ξKem(ξ, q)

h3(ξ, η)

[π +
∂2cem(η, q)

∂η2
cen(η, q)]dξdη, (3.65)

z(ξ, η) =
∞∑
m=0

[
2σh(ξ, η)cem(η, q)

σ1

{Kem(ξ, q)Tmn(ξ, η)−Kem(ξ0, q)Tmn(ξ0, η)}

−(
2hσ

kµ2
+

2σcem(η, q)h(ξ, η)Kem(ξ0, q)cem(η, q)

σ1

∗ (3.66)

T ′η(ξ0, η) + Tmn(ξ0, η)

ce′m(η, q)
) log(

eξ

eξi
)],

for uniform flow w = A and

Tmn(ξ, η) =

∫ 2π

0

∫ 2π

0

∞∑
m=0

∞∑
n=0

− 1

π2λ

νA sin ξ cos ηe−ξKem(ξ, q)

h3(ξ, η)

∗ [π +
∂2cem(η, q)

∂η2
cen(η, q)]dξdη, (3.67)
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z(ξ, η) =

∞∑
m=0

[
2hσcem(η, q)

σ1

{Kem(ξ, q)Tmn(ξ, η)−Kem(ξi, q)Tmn(ξi, η)}

−(
2hσ

kµ2
+

2σcem(η, q)h(ξ, η)Kem(ξi, q)

σ1

∗ (3.68)

cem(η, q)T ′η(ξi, η) + ce′m(η, q)Tmn(ξi, η)

ce′m(η, q)
) log(

eξ

eξi
)],

for non-uniform flow w = A sin ξ cos η. It is clear from Eqs. (3.66)-(3.68) that the

structure of the solution z(ξ, η) remains intact. In fact, only Tmn(ξ, η) part of the

solutions (i.e. Eqs. (3.65) and (3.67)) are affected with respect to the varying

viscous flows. In particular, by adding Eqs. (3.65) and (3.67), we find

Tmn(ξ, η) =

∫ 2π

0

∫ 2π

0

∞∑
m=0

∞∑
n=0

− 1

λπ2

νA(1 + sin ξ cos η)e−ξKem(ξ, q)

h3(ξ, η)

∗[π + e−ξ
∂2cem(η, q)

∂η2
cen(η, q)]dξdη. (3.69)

The above is the same as the solution obtained from the dual source problem (Eq.

(3.64) and Fig. 3.9). This, in turn, suggests that the solutions of dual source

problems can be obtained directly from the solutions of single source problems

(see, also, Figs. 3.9 and 3.12) via simple summations. In other words, the prin-

ciple of superposition remains valid even with the presence of intra-membrane

viscous flows and interaction forces. The result may further promote the study of

various different influences of viscous flows onto membrane-substrate systems by

minimizing computational complexities and resources.
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Figure 3.9: Membrane shape evolutions with dual source viscous effects: w(ξ, η) =

A+ A sin ξ cos η

3.4.4 Reduction to the circular lipid membrane problems

The solution of a classical membrane-substrate problem [20] can also be ob-

tained directly from the present model. To demonstrate this, we evaluate (when

e = 0)

h(ξi, η) = a(1− e2 cos2 η)
1
2 = a, cem(η, q) =

1√
2
(for m = 0),

cem(η, q) = cosmθ (for m 6= 0) (3.70)

Kem(η, q) = GmKm(µr) and Ke′m(η, q) = µGmK
′
m(µr),

where a, m, and Km(µρ) are the radius of the inner circle, the separation constant

and the modified Bessel function of second kind of order m, respectively. Also,

r = ceξ/2 and Gm are arbitrary constants with respect to the order m.
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Figure 3.10: Decomposed solutions of the shape evolution: w = A (Left); w =

A sin ξ cos η (Right)

Now, substituting the above into Eq. (3.51) yields

Tmn(ξ, η) = Tm(µa) = Gm
ν

π2λ

1

a3
[−π 1

a
Km(µr) +

1

a
Km(µr)] ≡ 1

a
AGm, (3.71)

where we define A = ν
π2λ

1
a3
Km(µr)[1− π]. Thus, from Eqs. (3.57) and (3.71) we

find

z(ξ, η) = z(r) =
2σaGm

kµ3GmK ′m(µa)
[Km(µr)−Km(µa)]

−(
2σ

kµ2
+

2σKm(µa)Gm

kµ3 1
ρ0
GmK ′m(µa)

) log(
r

a
). (3.72)

But, since Gm/Gm = 1, Eq. (3.71) further reduces to

z(r) =
2σ

kµ2
[(
Km(µr)−Km(µa)

µK ′m(µa)
)a− (1 +

Km(µa)a

µK ′m(µa)
) log(

r

a
)]. (3.73)
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Figure 3.11: Case study (Single source problem): experimental results compari-

sions. (Picture taken from: Zhao, Y., et al. 2011 )

Finally, we substitute µ2 = 2λ/k in the above and thereby obtain

z(r) =
2σa

kµ3K ′0(µa)
[K0(µr)−K0(µa)]− σa

λ
(1 +

K0(µa)

µK ′0(µa)
) log(

r

a
). (3.74)

The obtained solution in Eq. (3.74) is the same as in [20](Eq. 135), except the

Bessel terms associated with the logarithmic function (i.e. K0(µa)
µK′0(µa)

log( r
a
)).

Remark. 3.

The method proposed in the present study is unique in that it utilizes both

the iterative reduction scheme and the method of eigenfunction expansions while

invoking the orthogonal properties of the Mathieu function. This further allows

one to identify more wide class of potential functions of Mathieu type that the
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Figure 3.12: Case study (Dual source problem): experimental results comparisons.

(Picture taken from: Zhao, Y., et al. 2011 )

traditional method is limited in prediction. Further, since the Mathieu potential

reduces to the Bessel function at the particular configuration of e = 0; i.e.,

Kem(η, q) = GmKm(µr) and Ke′m(η, q) = µGmK
′
m(µr) for e = 0, (3.75)

the solutions of circular substrate interaction problems [20] and [27] can be ac-

commodated by the proposed model as a special case (i.e. e = 0, see, Fig. 3.8

and 3.13.). In fact, Eq. (3.74) yields better predictions (slightly more resemble to

the non-linear solution) when compared with the existing results (see, Fig. 3.13).

This is due the presence of additionally predicted Bessel terms which cannot be

obtained by the classical Helmholtz equations defined in the circular system. This

further allows one to consider more general, and perhaps more realistic classes

53



of viscous flows especially those arising in circular boundaries. For example, in

circular problems, the generalization of the viscous potential Eq. (3.35) and the

implementation of dual source flow Eq. (3.63) is no longer possible due to the

confined descriptions of the associated circular boundary (see. Remark. 1.). Such

diffi culties can be overcome by creating desired forms of viscous flows in an elliptic

coordinate where the corresponding continuity equation is the same form as in the

Cartesian coordinate (i.e. vξ,ξ + vη,η = 0, see, Eq. (3.34)), and reducing the ob-

tained solutions to the circular cases where the transition is always possible since

the conformal mapping of an ellipse to a circle exists [70].The results obtained in

Figure 3.13: Comparison with existing models: membrane-circular substrate in-

teraction problem. (Picture taken from: Agrawal, A., et al. 2009 )
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the present study are of more practical interest in that, when used in conjunction

with the principle of superposition (see. Remark. 2.), they essentially lead to the

solution of a class of problems in which the viscous effects are characterized by

a much wider and more realistic class of functions. Potential applications may

be extended to retina clinical study of wrinkle-caused vision impairment [52] and

the effects of viscous flows on essential cellular functions such as fusion, fission

and vesicle formation [53], [71] and [72]. For example, the idiopathic epiretinal

membranes (iERMs) is a common pathology which have been observed in more

than 20% of eyes from elderly person [52] and [73]. When iERMs are thicker

with contractile properties, they cause surface wrinkling of the retina resulting

impaired vision (a macular epiretinal membrane) [52] and [74]. Such wrinkle for-

mations are most often induced by the interactions between the posterior vitreous

cortex and the retina [75]. Since nearly all the emmetropic retinas are oblate in

shape in both transverse axial and sagittal sections [76], the wrinkle formations on

the retina may share close similarity to the elliptical membrane-substrate systems

examined by the proposed model. In addition, wrinkle involved deformations and

the directional elongation of the vesicle are often caused by the viscous shear flows

and/or directional viscous flows [71]-[72]. Therefore, the proposed model may be

employed to study the morphological transitions of cell membranes associated

with those cellular activities.
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CHAPTER 4

MODELLING OF LIPID MEMBRANES AFFECTED

BY GENERAL FORMS OF INTRA-MEMBRANE

VISCOUS FLOWS, INTERACTIONS WITH

ELLIPTICAL-CROSS-SECTION SUBSTRATES AND

THICKNESS DISTENSIONS

In this chapter, we develop a theoretical model of lipid membranes subjected to

intra-membrane viscous flows, interactions of elliptical-cross-section substrates

and thickness distensions. Starting from the purely elastic surface theory, we intro-

duce the distension terms and new energy density functions and implement them in

the following derivations. Rigorous derivations are made to obtain the membrane

shape equations and the corresponding boundary conditions. Then, we employ the

admissible linearization techniques for the systems of membrane shape equations

and boundary conditions and transform them into the elliptical domain. Lastly, by

employing adapted iterative reduction and the method of eigenfunction expansion,

we solve the systems of equations (membrane shape equations and boundary con-
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ditions) and obtain the corresponding analytical solutions in the forms of Mathieu

functions.

4.1 Introduction

In this chapter, we develop a theoretical model of lipid membranes subjected

to intra-membrane viscous flows, interactions of elliptical-cross-section substrates

and thickness distensions. In section 4.2, we introduce the distension terms and

new energy density functions and utilize them in the following derivations. Then

we incorporate the viscous effects and obtain the membrane shape equations and

corresponding boundary conditions in section 4.3. In section 4.4.1, we linearize the

nonlinear systems of equations obtained (membrane shape equations and bound-

ary conditions) via Monge parameterization and admissible linearization. They

are successively transformed into the elliptical domain in section 4.4.2. Lastly,

by employing the adaptive iteration reduction and the principle of eigenfunction

expansion, we obtain an analytical solution in the forms of Mathieu functions in

section 4.4.3.

4.2 Inviscid lipid membranes with thickness distensions

To accommodate distension effects, we introduce

∇φ(θα) = φ,αa
α and G2 = ∇φ · ∇φ = aαβφ,αφ,β, (4.1)
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where φ is the lipid distension in the current membrane surface ω, G = |∇φ| and

∇φ is the gradient of φ and

λ = −qφ(θα), (4.2)

where λ is a constitutively indeterminate Lagrange-multiplier field related to the

lipid membrane surface area constraint [77], q is the Lagrange multiplier field

related to the incompressiblity constraint.

Then, we propose the energy density function as

W = W (H, K, φ, G; aαβ, bαβ). (4.3)

Since φ(θα) is depends specifically on the surface coordinates θα (i.e. Wφ
∂φ
∂aαβ

= 0),

we evaluate

ρ
∂ 1
ρ
(W − γ)

∂aαβ
= ρ[−ρ−2 ∂ρ

∂aαβ
W +

1

ρ
(Wρ

∂ρ

∂aαβ
+WH

∂H

∂aαβ

+WK
∂K

∂aαβ
+WG

∂G

∂aαβ
) + ρ−2

∂ρ

∂aαβ
γ − 1

ρ

∂γ

∂ρ

∂ρ

∂aαβ
]. (4.4)

The derivatives of ρ, H, K and G with respect to aαβ can be evaluated as [35]

∂ρ

∂aαβ
= −ρ

2
aαβ,

∂H

∂aαβ
= −1

2
bαβ and

∂K

∂aαβ
= −Kaαβ, (4.5)

In particular, we find

∂G2

∂aαβ
=
∂aλµφ,λφ,µ
∂aαβ

, (4.6)

using Chain rule, the above becomes

∂G2

∂aαβ
= 2

∂G2

∂G

∂G

∂aαβ
= φ,λφ,µ

∂aλµ

∂aαβ
= φ,λφ,µ(ελαεµβ − aλµaαβ). (4.7)

58



Thus we obtain

∂G

∂aαβ
= −1

2
G−1φ,λφ,µ(ελαεµβ − aλµaαβ). (4.8)

Accordingly, Eq. (4.4) reduces to

ρ
∂ 1
ρ
(W − γ)

∂aαβ
= ρ[

1

2ρ
aαβW − 1

2
aαβWρ −

1

2ρ
bαβWH

−1

ρ
WKKa

αβ − 1

2ρ
WGG

−1φ,λφ,µ(ελαεµβ − aλµaαβ) (4.9)

− 1

2ρ
aαβγ + γρ

1

2
aαβ].

Now using Fρ = (W/ρ− γ/ρ),ρ (i.e. Wρ = ρFρ + W
ρ

+ γρ − γ
ρ
), we obtain

ρ
∂ 1
ρ
(W − γ)

∂aαβ
= [−1

2
bαβWH −WKKa

αβ (4.10)

−1

2
WGG

−1φ,λφ,µ(ελαεµβ − aλµaαβ)− 1

2
aαβρ2Fρ]

= −1

2
γaαβ − (WHH +WKK)aαβ

−1

2
WGG

−1φ,λφ,µ(ελαεµβ − aλµaαβ) +
1

2
WH b̃

αβ,

where Fρ is defined via the relation ρ2Fρ = γ [35] and bαβ = 2Haαβ − b̃αβ. Thus,

σβα = (λ+W )aαβ − (2WHH + 2WKK)aαβ

+WGG
−1φ,λφ,µ(ελαεµβ − aλµaαβ) +WH b̃

αβ, (4.11)

and

λ = −(γ +W ). (4.12)

Similarly, by using

∂ρ

∂bαβ
= 0,

∂H

∂bαβ
=

1

2
aαβ,

∂K

∂bαβ
= b̃αβ, (4.13)
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and

∂G2

∂bαβ
=
∂aλµφ,λφ,µ
∂bαβ

= 0 ( ∵ ∂aλµ

∂bαβ
= 0 and

∂φ,µ
∂bαβ

= 0) Thus
∂G

∂bαβ
= 0. (4.14)

We evaluate

∂ 1
ρ
(W − γ)

∂bαβ
= WH

∂H

∂bαβ
+WK

∂K

∂bαβ
+WG

∂G

∂bαβ
=

1

2
WHa

αβ +WK b̃
αβ, (4.15)

and subsequently obtain from Eq. (2.26) and (2.10)2 that

Mβα =
1

2
WHa

αβ +WK b̃
αβ. (4.16)

4.3 Viscous lipid membranes with thickness distensions

Combining Eqs. (4.11-4.12), (3.1) and (3.5), we find

σβα = (λ+W )aβα − (2WHH + 2WKK)aβα

+WGG
−1φ,λφ,µ(ελαεµβ − aλµaαβ)

+WH b̃
βα + ν[aβλaαµ(vµ;λ + vλ;µ)− 4wHaβα + 2wb̃βα]. (4.17)

In terms of the distension term WGG
−1φ,λφ,µ(ελαεµβ − aλµaαβ), we evaluate

[WGG
−1φ,λφ,µ(ελαεµβ − aλµaαβ)]bβα = WGG

−1φ,λφ,µ(ελαεµβ − aλµaαβ)bβα, (4.18)

Since ελαεµβbβα = b̃λµ and aλµaαβbβα = bλµ, the above equation can be derived as

WGG
−1φ,λφ,µ(ελαεµβ − aλµaαβ)bβα = WGG

−1φ,λφ,µ(b̃λµ − bλµ)

= WGG
−1φ,αφ,β(b̃αβ − bαβ). (4.19)
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Substituting Eqs. (4.16), (4.17) and (4.19) into Eq. (2.30), we obtain the normal

equation of motion as

p = −(λ+W )aβαbβα + (WHH +WKK)aβαbβα

+G−1WGφ,αφ,β(b̃αβ − bαβ)

−1

2
WH b̃

βαbβα + [
1

2
(WH);βa

βα + (WK);β b̃
βα];α (4.20)

−ν[aβλaαµ(vµ;λ + vλ;µ)− 4wHaβα + 2wb̃βα]bβα.

Utilizing the identities H = 1
2
aαβbαβ, bβα = bµαaµβ, a

αλaλβ = δαβ and aβαK = bβµb̃
µα

and combining the fact that covariant derivatives of the dual metric and the

covariant cofactor identically vanish (i.e. aαβ;β = 0, b̃αβ;β = 0), the above equation

further reduces to

p = WH(2H2 −K) + 2H(WKK −W ) +G−1WGφ,αφ,β(bαβ − b̃αβ)

−2λH + ∆(
1

2
WH) + (WK);αβ b̃

αβ (4.21)

−2ν[
1

2
bαβ(vα;β + vβ;α)− 2w(2H2 −K)],

where ∆ is the Laplace-Beltrami operator (i.e. ∆φ = φ;αβa
αβ) defined on the

surface.

In order to obtain the tangential equation of motion, we compute

(σβα);α = [(λ+W )aβα − (2WHH + 2WKK)aβα

+WH b̃
βα];α − [WGG

−1φ,λφ,µ(ελαεµβ − aλµaαβ)];β, (4.22)

Since

ελα;β = 0 and aλµ;β = 0, (4.23)
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We find

(σβα);α = (λ,α +W,α)aβα − [2(WH);αH + 2WHH,α + 2(WK);αK

+2WKK,α]aβα + (WH);αb̃
βα

−[(WGG
−1);βφ,λφ,µ(ελαεµβ − aλµaαβ)

+WGG
−1(φ,λ);βφ,µ(ελαεµβ − aλµaαβ)

+WGG
−1φ,λ(φ,µ);β(ελαεµβ − aλµaαβ)], (4.24)

By substituting Eqs. (4.16) and (4.24) into Eq. (2.31), we obtain

0 = −(γ,α +WKK,α +WHH,α)aβα − (WGG
−1);βφ,λφ,µ(ελαεµβ − aλµaαβ)

−2WGG
−1(φ,λ);βφ,µ(ελαεµβ − aλµaαβ)− 4νwH,αa

βα (4.25)

+2ν[
1

2
aβλaαµ(vµ;λ + vλ;µ);α − w,αbβα],

where (vµ;λ+vλ;µ);α = (vµ;λ+vλ;µ),α− (vβ;λ+vλ;β)Γβµα− (vβ;µ+vµ;β)Γβλα. Invoking

bβα = bαλa
λβ and γ,α = −λ,α −WKK,α −WHH,α, Eq. (4.25) further reduces to

0 = aβα[−(WGG
−1);βφ,λφ,µ(ελαεµβaβα − aλµ)

−2WGG
−1(φ,λ);βφ,µ(ελαεµβaβα − aλµ)]

aβα[λ,α − 4vwH,α + 2ν{1

2
aλµ(vµ;α + vα;µ);λ − w,λbλα}]. (4.26)

In the above derivation, we also used aβαaβα = (aβα)−1aβα = 1. Since aβα 6= 0, the
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above equation becomes

0 = λ,α − 4vwH,α − (WGG
−1);βφ,λφ,µ(ελαεµβaβα − aλµ)

−2WGG
−1(φ,λ);βφ,µ(ελαεµβaβα − aλµ) (4.27)

+2ν[
1

2
aλµ(vµ;α + vα;µ);λ − w,λbλα],

which serves as the tangential equation of motion.

The energy density W of uniform membranes of the Helfrich type is given by

[39] as

W = kH2 + k̄K + F (φ) + σG2, (4.28)

where k and k̄ are empirical constants (the bending moduli). Subsequently, in-

voking Eq. (4.28), Eq. (4.21) yields

p = k[∆H + 2H(H2 −K)]− 2λH (4.29)

−2υ[
1

2
bαβ(vα;β + vβ;α)− 2w(2H2 −K)]

−2σHG2 + 2σφ,αφ,β(bαβ − b̃αβ),

while Eq. (4.27) remains intact. Substituting Eq.(4.2) into Eq.(4.29) furnishes

p = k[∆H + 2H(H2 −K)] + 2qφH − 2υ[
1

2
bαβ(vα;β + vβ;α) (4.30)

−2w(2H2 −K)]− 2σHG2 + 2σφ,αφ,β(bαβ − b̃αβ).

In addition, the incompressibility condition of viscous flow is given from the Chap-

ter 3 (see Eq. (3.11)) as

vα;α − 2wH = 0. (4.31)
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The Euler equation related to distension is given by [39] as

Wϕ − q = (G−1WGa
αβφ,β);α. (4.32)

4.4 Linear Analysis

4.4.1 Linearization of the terms related to thickness distension

We plug Eq. (3.16) and Eq. (4.1)2 into the distension terms (−2σHG2 +

2σφ,αφ,β(bαβ − b̃αβ)) of Eq. (4.30) and obtain

− 2σHG2 + 2σφ,αφ,β(bαβ − b̃αβ) = −σφ,αφ,βaαβ∆z (4.33)

+2σφ,αφ,β(bαβ − b̃αβ),

Then, by substituting the linearized expressions (Eqs. (3.16),(3.22),(3.25) and

(3.58)) into Eqs. (4.32), (4.30), (4.31) and (4.27), we obtain:

1

2
k∆p(∆pz) + qϕ∆pz − 2υz,αβ να,β − σφ,αφ,βaαβ∆z + 2σbαβφ,αφ,β ' p,

(λ+ P ),α + v∆pvα ' 0, vα,α ' 0 and 2σaβαφ,βα ' 0. (4.34)
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4.4.2 Formulations in the elliptical coordinates

Invoking Eqs. (3.31), (3.32) and (3.42), Eq. (4.34) can be transformed into

the elliptical domain as

0 =
1

2
k∆(∆z) + qφ∆z +

σ

h2(ξ, η)
(φ,ξφ,ξ + φ,ηφ,η)∆z +

2σ

h4(ξ, η)
(φ,ξφ,ξz,ξξ + 2φ,ξφ,ηz,ξη + φ,ηφ,ηz,ηη)

− 2υ

h3(ξ, η)
(z,ξξ νξ,ξ + 2z,ξη νξ,η + z,ηη νη,η),

0 =
2σ

h2(ξ, η)
[φ,ξξ + φ,ηη], (4.35)

subjected to (the associated boundary conditions remain the same as the boundary

conditions in Chapter 3)

z(ξ0, η) = 0, ∇z(ξ0, η) = 0 and
1

h

∂

∂ξ
H(ξ0, η) =

σ

k
. (4.36)

Here, Eqs. (4.35-4.36) serve as the linearized shape equation system which de-

scribes the morphologies of lipid membranes subjected to general forms of intra-

membrane viscous flows, membrane-substrate interactions and thickness disten-

sions.

4.4.3 Solutions to the linearized systems

Similar to the methods utilized in section 3.3.4 (Chapter 3), the form of the

solution z(ξ, η) is obtained as

z(ξ, η) =
2

µ2
H(ξ, η) +Bm + ϕ(ξ, η), (4.37)
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and ϕ(ξ, η) is chosen as

ϕ(ξ, η) = Cm log(eξ/eξ0) +Dm

∞∑
m=0

e−ξcem(η, q), (4.38)

to meet the boundary conditions from Eq. (4.36). The unknown potential H(ξ, η)

can be expressed as [57]

H(ξ, η) ≡
∞∑
m=0

∞∑
n=0

AmKem(ξ, q)cen(η, q)Tmn(ξ, η), (4.39)

where cen(η, q) and Kem(ξ, q) are the even modified Mathieu functions of the first

and second kind, respectively, and the associated parameter q [58] is of the form

q =
c2[qφ+ σ

h2
(φ,ξφ,ξ + φ,ηφ,η)]

4k
, (4.40)

Now, we substitute Eqs. (3.34) and (4.39) into Eq. (4.35)1 and simplify it based

on the orthogonality properties of the Mathieu function; i.e.∫ 2π

0

cem(η, q)cen(η, q)dη =

∫ 2π

0

Kem(ξ, q)Ken(ξ, q)dξ = πδmn, and∫ 2π

0

∫ 2π

0

Kem(ξ, q)cen(η, q)Kek(ξ, q)cel(η, q)dξdη = πδmk, (4.41)

the expression of Tmn can be derived as

Tmn(ξ, η) =

∫ 2π

0

∫ 2π

0

∞∑
m=0

∞∑
n=0

− 2σ

πh4(ξ, η)[2qφ+ 2σ
h2

(φ,ξφ,ξ + φ,ηφ,η)]
(φ,ξφ,ξz,ξξ

+2φ,ξφ,ηz,ξη + φ,ηφ,ηz,ηη)Kem(ξ, q)cen(η, q)

+
4υ

πh3(ξ, η)[2qφ+ 2σ
h2

(φ,ξφ,ξ + φ,ηφ,η)]
∗

[(−e−ξ
∂cem(η, q)

∂η
Kem(ξ, q)cen(η, q))(

∂
∫
w(ξ, η)dξ

∂η

+
∂
∫
−w(ξ, η)dη

∂ξ
) + {e−ξπKem(ξ, q) (4.42)

+e−ξ
∂2cem(η, q)

∂η2
Kem(ξ, q)cen(η, q)}w(ξ, η)]dξdη.
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Consequently, by combining the Eqs. (4.37),(4.38)-(4.39) and (4.42), the general

solution is obtained as

z(ξ, η) =
2

µ2

∞∑
m=0

[AmKem(ξ, q)cem(η, q)Tmn(ξ, η) +Bm (4.43)

+Cm log(eξ/eξ0) +Dme
−ξcem(η, q)],

where Am, Bm, Cm and Dm are

Am =
4(−1)

m−1
2 σ cos(mπ

20
ξ)h(ξ0, η)

mπk(Kem(ξ0, q)cem(η, q)T ′ξ(ξ0,η) + cem(η, q)Ke′m(ξ0, q)Tmn(ξ0, η))
,

Bm =
∞∑
m=0

8σ(−1)
m−1

2 cos(mπ
20
ξ)cem(η, q)h(ξ0, η)Kem(ξ0, q)T

′
η(ξ0, η)

mπkce′m(η, q)µ2(Kem(ξ0, q)T
′
ξ(ξ0,η) +Ke′m(ξ0, q)Tmn(ξ0, η))

,

Cm =
∞∑
m=0

8σ(−1)
m−1

2 cos(
mπ

20
ξ)Kem(ξ0, q)h(ξ0, η){cem(η, q)T ′η(ξ0, η)

+ce′m(η, q)Tmn(ξ0, η)} ∗

{−µ2 + 2Kem(ξ0, q)e
ξ0T ′ξ(ξ0,η) + 2Ke′m(ξ0, q)e

ξ0Tmn(ξ0, η)}

/[mπkce′m(η, q)µ4{Kem(ξ0, q)T
′
ξ(ξ0,η) +Ke′m(ξ0, q)Tmn(ξ0, η)}],

and

Dm = −
8σ(−1)

m−1
2 cos(mπ

20
ξ)Kem(ξ0, q)h(ξ0, η)eξ0

mπkce′m(η, q)µ2
(4.44)

cem(η, q)T ′η(ξ0, η) + ce′m(η, q)Tmn(ξ0, η)

Kem(ξ0, q)cem(η, q)T ′ξ(ξ0,η) + cem(η, q)Ke′m(ξ0, q)Tmn(ξ0, η)
,

where

Ke′m(ξ, q) =
∂Kem(ξ, q)

∂ξ
, ce′m(η, q) =

∂cem(η, q)

∂η

T ′ξ(ξ, η) =
∂Tmn(ξ, η)

∂ξ
, T ′η(ξ, η) =

∂Tmn(ξ, η)

∂η

T ′ξ(ξ0, η) =

[
∂Tmn(ξ, η)

∂ξ

]
ξ=ξ0 and T ′η(ξ0, η) =

∂Tmn(ξ0, η)

∂η
.
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The general solution is obtained as

z =
∞∑
m=0

4

mπ
(−1)

m−1
2 cos(

mπ

20
ξ){2σh(ξ0, η)

µ2kσ2

(Kem(ξ, q)Tmn(ξ, η)

−Kem(ξ0, q)Tmn(ξ0, η))− (
2h(ξ0, η)σ

µ2k

+
2σh(ξ0, η)(Kem(ξ0, q)cem(η, q)T ′η(ξ0, η) +Kem(ξ0, q)ce

′
m(η, q)Tmn(ξ0, η))

µ2kce′m(η, q)σ2

)

log(eξ/eξ0)}, (4.45)

where

σ2 = [Ke′m(ξ0, q)Tmn(ξ0, η) +Kem(ξ0, q)T
′
ξ(ξ, η)].
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusion

In this thesis, we develop a continuum-based theoretical model to analyze the

mechanical responses of lipid membranes subjected to specific practical factors

(intra-membrane viscous flows, membrane-substrate interactions, thickness dis-

tensions). Starting from the modelling of the inviscid fluid membrane, we add the

considerations of intra-membrane viscous flows and thickness distensions. Inter-

disciplinary concepts and methods (e.g., eigenfunction expansion, the theory of

elastic surface) are adopted to obtain the constitutive equations of the membranes

and their solutions within the framework of the present study. In particular, this

research illustrates the appearance of the wrinkling phenomena under the impacts

of uniform, non-uniform and dual source types of viscous flows. We find that uni-

form, non-uniform types of viscous flows give rise to wrinkles phenomena in radial

and transverse directions on the membranes’surfaces, respectively. When we in-

put dual source types of viscous flows into the proposed solutions, both radial and

transverse wrinkles are observed, which illustrates that the principle of superpo-

sition remains valid. We find that the intensity of viscous flows and the radius of
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the inner ellipse of membranes are the key factors to impact the vertical length

of the induced wrinkles. More importantly, the proposed solutions are able to

accommodate various types of viscous flows, which means the class of membrane-

substrate interaction problems subjected to viscous flows can be solved utilizing

the proposed solutions. This thesis initializes from a practical physical problem

(membrane-substrate interaction) and then ends up as a series of complex math-

ematical problems (e.g., differential geometry, PDEs), which indicates the great

power of mathematics and human wisdom. The highest diffi culties in this thesis

are the solving of the membrane shape equations and the plotting of the obtained

solutions because they all contain the computations among a number of long func-

tions and complicated terms. To overcome these diffi culties, we develop our own

solving strategies and utilize a series of accessible computing resources.

In chapter two, we present the prerequisite knowledge of differential geome-

try and develop the underlying theoretical model of inviscid fluid membrane for

further researches on the intra-membrane viscosity. By combining the theory of

elastic surfaces, the membrane equilibrium equations and the corresponding pro-

jections on normal and tangential directions are formulated via rigorous deriva-

tions. The deformation energy of the membrane is accounted for by means of the

Mean and Gaussian curvatures of the surface which are the functions of the first

and second fundamental forms.

In chapter three, we study the deformations of lipid bilayers subjected to the
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intra-membrane viscous flows and the interactions of elliptical cylinder substrates.

Utilizing the Monge parameterization of a surface and general curvilinear coor-

dinates, the expressions of linearized shape equations and associated boundary

conditions are obtained from the non-linear theory. The intra-membrane viscosity

terms are formulated by means of ’admissible linearization’and successively trans-

formed into elliptical coordinates to assimilate more general types of viscous flow.

More importantly, we obtained a complete analytic solution by employing adapted

iterative reduction and the method of eigenfunction expansion, which describes

the deformations of lipid membranes when interacting with intra-membrane vis-

cous flows and elliptical-cross-section substrates. It is found that intra-membrane

viscosity induces wrinkle formations of the lipid membranes, and the correspond-

ing number of wrinkles exhibits sensitivity to both the radius of the ellipse and

the intensity of viscous flows. Comparisons with phenomenologically compatible

cases such as a circular substrate-membrane interaction and capillary wrinkle of

polymer films, are made where the proposed model successfully reproduces the

existed results in the limit of vanishing eccentricity of an ellipse. Further, we

obtain solutions corresponding to the case of a lipid membrane subjected to non-

uniform viscous flows and dual source flows. This is facilitated by the relaxed

form of the prescribed tangential and normal force, and the condition of conti-

nuity along and within the elliptical boundaries, unlike those arising in circular

boundaries where the admissible set of viscous flows are strictly uniform in one
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of the coordinate directions. The resulting deformation fields show clear signs of

dual source interference in that both the radial and circumferential wave forms are

simultaneously predicted. Case studies vis a vis morphologically similar results

of shape memory films are presented to investigate the potential applicabilities of

the proposed model in the analysis of different types of membranes. In particular,

it is found that the principles of superposition from linear elasticity remains valid,

even in the presence of general forms of dual source viscous potentials. That is,

the solution of a dual source problem can be directly obtained by adding solu-

tions of two single source problems. The solutions presented here are of more

practical interest in that, essentially, they lead to solutions of problems in which

the viscosity effects are characterized by a wide class of potential functions and so

can accommodate a correspondingly large set of physically relevant problems. For

example, potential applications may be expected in the study of wrinkle-caused

disease (e.g., a macular epiretinal membrane) and the influences of membrane vis-

cosity on various cellular functions such as fusion, fission and budding. Further,

the presented solution reproduces the existing results when viscosity effects are

removed, and does incorporate the solution of the classical membrane-substrate

interaction problem in the limit of vanishing eccentricity. In fact, the classical

solution obtained directly from the proposed model produces more accurate pre-

dictions by identifying the additional Bessel functions, which is reduced from the

Mathieu potentials.
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In chapter four, we develop a theoretical model of lipid membranes subjected

to intra-membrane viscous flows, interactions of elliptical-cross-section substrates

and thickness distensions. Starting from the purely elastic surface theory, we

introduce the distension terms and new energy density functions and implement

them in the following derivations. Rigorous derivations are made to obtain the

membrane shape equations and the corresponding boundary conditions. Then, we

employ the admissible linearization techniques for the systems of membrane shape

equations and boundary conditions and transform them into the elliptical domain.

Lastly, by employing adapted iterative reduction and the method of eigenfunction

expansion, we solve the systems of equations (membrane shape equations and

boundary conditions) and obtain the corresponding analytical solutions in the

forms of Mathieu functions.

We discover that the viscous flow gives rise to the wrinkle phenomena of

the lipid membranes. The membrane systems may be exposed to the constant

viscous flow (viscous flow potential w(ξ, η) = A) within a cell such as the selective

transport of molecules inside the lipid bilayers where the molecules travel with the

constant flow from one side of the membrane to the objective protein. In this case,

we find that the wrinkling phenomenon in the radial direction of the membrane

starts to appear when the normalized magnitude of viscous flow is greater than

the critical number (i.e. Aν
λ
≥ 10−15). The number of radial wrinkles is sensitive

to the magnitude of intra-membrane viscous flow (A) and the radius of the inner

73



ellipse (µc). In detail, the number of radial wrinkles is positively correlated with

the intra-membrane viscous flows (A) and the radius of the inner ellipse (µc).

With the identical radius of the inner ellipse (µc), the number of wrinkles reduces

as the magnitude of viscous flow (A) decreases. The number of wrinkles increases

as the inner radius of the inner ellipse (µc) increases when the magnitude of the

viscous flow (A) remains the same. Phenomenologically compatible results can be

found in the related researches such as circular substrate-membrane interactions,

capillary wrinkles on thin polymer films and theoretical study on an elastic surface,

where the number of radial wrinkles depends upon the size of the inner radius and

membrane thickness. The proposed model successfully reproduces the reported

results under the physically similar/compatible settings (see Figs. 3.4 and 3.5).

The cases of non-uniform viscous flows (when the viscous flow potential w(ξ, η) =

Asin ξ cos η) can be observed in various cellular activities such as the transporta-

tions of the intracellular membranes and the transmembrane proteins induced by

the viscous flows with tension gradient. In this case, the viscous flow field becomes

non-uniform due to the interactions with the tension gradient field. Similar to the

constant viscous cases, the resulting deformation fields (radial wave deformations)

are sensitive to both the dimension of an inner ellipse (µc) and the intensity of

viscous flow (A); i.e., the amount of waves decreases as A drops from 10−5 to

10−7 (See. Fig. 3.6). But, more importantly, the transverse wave deformations

of the membrane and the corresponding vertical deflections die out as they ap-
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proach the remote boundary, which ensures the intactness and stabilization of the

corresponding boundary conditions (see. Fig. 3.7). In the event of vanishing A,

the wave deformations are completely removed from the entire domain of interest

so that the vertical deformation profile reduces to the reported results (see. Fig.

3.7). Also, Fig. 3.8. shows that the obtained solution accommodates the reported

results of circular substrate-membrane interaction problems when the eccentricity

converges to zero (i.e. e→ 0).

When the viscous flow potential w(ξ, η) = A + Asin ξ cos η, we find that

both the radial and circumferential wave patterns are simultaneously observed

(see. Fig. 3.9). Morphologically similar cases are reported in the existed works

where the authors examined the wrinkle phenomena of a thin gold layer (10nm

in thickness) when subjected to thermal stresses from the adjoined polymer sub-

strate. The results in Fig. 3.9 further indicates that the principle of superposition

remains valid in the present cases. The principle is widely adopted in various en-

gineering problems with simple initial and/or boundary value problems of either

first (Dirichlet) or second (Neumann) type.

The results obtained in this thesis are of more practical interest in that, when

used in conjunction with the principle of superposition (see. Remark. 2.), they

essentially lead to the solution of a class of problems in which the viscous effects

are characterized by a much wider and more realistic class of functions. Potential

applications may be extended to retina clinical study of wrinkle-caused vision

75



impairment and the effects of viscous flows on essential cellular functions such

as fusion, fission and vesicle formation. For example, the idiopathic epiretinal

membranes (iERMs) is a common pathology which have been observed in more

than 20% of eyes from elderly person. When iERMs are thicker with contractile

properties, they cause surface wrinkling of the retina resulting impaired vision (a

macular epiretinal membrane). Such wrinkle formations are most often induced

by the interactions between the posterior vitreous cortex and the retina. Since

nearly all the emmetropic retinas are oblate in shape in both transverse axial and

sagittal sections, the wrinkle formations on the retina may share close similarity

to the elliptical membrane-substrate systems examined by the proposed model.

In addition, wrinkle involved deformations and the directional elongation of the

vesicle are often caused by the viscous shear flows and/or directional viscous

flows. Therefore, the proposed model may be employed to study the morphological

transitions of cell membranes associated with those cellular activities.

5.2 Future Work

The proposed model can accommodate more terms regarding different cellular

activities to provide more general and precise descriptions of lipid membranes.

For example, we can consider analyzing the deformations of the lipid membranes

concurrently affected by cell buddings, intra-membrane non-uniform viscous flows,

large-scale interactions and thickness distensions. Ideally, we can extend this

76



model to simultaneously accommodate all the main cellular activities such that

the predictions for the morphologies of the lipid membranes will be very realistic

and accurate. Further, various nonlinear analysis techniques (e.g., finite element

method, numerical method) can be employed to generate more accurate results

within the framework of the proposed model. Lastly, we can add more general

structures of cell membranes (e.g., the embedded proteins, glycolipid, cholesterol)

into the analysis of the proposed model.
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Appendix A. Copyright Demonstration

Figure 1.1 and Figure 1.2 are taken from OpenStax College. Anatomy and phys-

iology. Rice University, 2013., which obeys the Creative Commons Attribution

License 4.0. The usages of these figures in this thesis are permitted. The sources

of Figure 1.1 and Figure 1.2 are respectively Figure 3.4 and Figure 3.10 from

https://openstax.org/books/anatomy-and-physiology/pages/3-1-the-cell-membrane.
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