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ABSTRACT 

After the invention of first motor vehicle, Carl Benz took the vehicle for a public 

demonstration and collided with a wall. For more than a century, scientists and innovators are 

working around the least reliable part of vehicle, the human driver, by adding seatbelts, 

airbags, safety features and smarter cars. Introduction of Connected-Automated Vehicle 

(CAV) technology provided new opportunity to fix the bug in this system. Automated vehicles 

(AuV) would take the driving responsibility from human and drive the vehicles by analyzing 

and perceiving its’ surrounding through a range of sensors. Connectivity feature of these 

vehicles would facilitate to sense the roadway and traffic conditions beyond the range of 

sensors and make informed and safer decision. While the vehicles equipped with these 

technologies becoming more common by the day, large scale market penetration will take a 

long time. Hence, our existing transportation infrastructure will pass through a transitional 

phase where both Human-driven vehicles (HuV) and AuVs share the roadway. Additionally, 

the prosperity and acceptance of these technologies depends on clear understanding of the 

implications on overcoming the limitations of traditional transportation system. In this regard, 

my research focused on developing a comprehensive modeling framework to establish 

numerical simulation of both types of vehicles (i.e., human driven, automated) while 

recognizing the variations of driving behaviors of human drivers. Modeling both vehicle types 

provided the opportunity to explore diverse mixed traffic scenarios to attain extensive insights 

of such traffic conditions.  

Prior to developing the modeling framework, the variations of human driving pattern were 

identified through extensive analysis of real-world human driving data. Bi-directional (i.e., 

longitudinal, lateral) control features were analyzed to comprehend human instincts during 

driving which can be integrated in the human driver modeling. Further analysis was performed 

to classify driving behaviors based on these features for short and long-term. The upsides of 

studying human driving behavior rests not only on better understanding for modeling human 

driver but also on designing automated vehicles capable of addressing the variations of human 

driver behavior. Behavioral classification approach in this part of research used three 

vehicular features known as jerk, leading headway, and yaw rate to classify human drivers 

into two groups (Safe Driving and Hostile Driving) on short-term classification, and drivers’ 
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habits are categorized into three classes (Calm Driver, Rational Driver, and Aggressive 

Driver). Through the proposed method, behavior classification has been successfully 

identified in 86.31 ± 9.84% of speeding and 87.92 ± 10.04% of acute acceleration instances. 

In the next phase of this research, foundation of mixed traffic modelling was developed 

through car-following strategy formulation. This part of research proposes a naïve 

microscopic car-following strategy for a mixed traffic stream in CAV settings and measured 

shifts in traffic mobility and safety as a result. Additionally, this part of research explores the 

influences of platoon properties (i.e. Intra-platoon Headway, Inter-platoon Headway, 

Maximum Platoon Length) on traffic stream characteristics. Different combinations of HuVs 

and AuVs are simulated in order to understand the variations of improvements induced by 

AuVs in a traffic stream. Simulation results reveal that grouping AuVs at the front of traffic 

stream to apply Cooperative Adaptive Cruise Control (CACC) based car-following model will 

generate maximum mobility benefits for the traffic. Higher mobility improvements can be 

attained by forming long, closely spaced AuVs at the cost of reduced safety. To achieve 

balanced mobility and safety advantages from mixed traffic movements, dynamically 

optimized platoon configurations should be determined at varying traffic conditions and AuVs 

market penetrations. 

Finally, grounded on prior research on human driving behavior and preliminary modeling 

framework of mixed traffic, this research objectively experimented with bi-directional (i.e. 

longitudinal, lateral) motion dynamics in a microscopic modeling framework to measure the 

mobility and safety implications for mixed traffic movement in a freeway weaving section. 

This part of research begins by establishing a multilane microscopic model for studied vehicle 

types (i.e. AuV, HuV) from model predictive control with the provision to form a CACC 

platoon of AuV vehicles. The proposed modeling framework was tested first with HuV only 

on a two-lane weaving section and validated using standardized macroscopic parameters from 

the Highway Capacity Manual. This model was then applied to incrementally expand the AuV 

share for varying inflow rates of traffic. Simulation results showed that maximum flow rate 

through the weaving section was attained at a 65% AuV share while steadiness in average 

speed of traffic was experienced with increasing AuV share. The results also revealed that a 

95% AuV share could reduce potential conflicts by 94.28%. Finally, the results of simulated 
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scenarios were consolidated and scaled to report expected mobility and safety outcomes from 

the prevailing traffic state as well as the optimal AuV share for current inflow rate in weaving 

sections 
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CHAPTER 1 : INTRODUCTION 

1.1 Background 

The advances in automotive and infrastructure technology have shifted the focus from 

expanding the transportation system to efficient utilization of existing frameworks. Traffic 

collision and congestion problems continue to exist in our roadway and demand innovative 

approaches to diminish the adverse effects of these problems on road users. Furthermore, the 

high number of fatalities resulting from traffic collisions is a growing concern for road 

transportation authorities across the globe. According to the World Health Organization 

statistics, approximately 1.35 million people pass away every year due to traffic collisions 

(Road Traffic Injuries: The Facts, 2018). In Canada, the average collision-related fatality and 

serious injury rates are 2040 and 11130 per year, respectively, for the last 10 years (Canada, 

2020) [Figure 1.1.(a)]. To put things into perspective, the number of people killed each year 

in traffic collisions are equivalent to four fully occupied Boeing 747 airplanes crashing every 

year without any survivors. While these statistics show the most devastating aspect of the 

existing transportation system, there are other adverse impacts too. According to the INRIX 

mobility research, each resident of six major cities in Canada (i.e. Toronto, Montreal, 

Vancouver, Winnipeg, Calgary and Edmonton) lost about 70 working hours in congestion in 

2019 which is about 0.5% more than 2018 (INRIX 2019 Global Traffic Scorecard, 2020) 

[Figure 1.1(b)].  All these detrimental features of the existing transportation system have 

motivated the progress of innovative transportation technologies.  

One of the pioneering transportation technologies in recent years involves connectivity 

and automation of vehicles and transportation infrastructure.  The subsequent research on 

‘Connected vehicle technology’, ‘Automated Vehicle Technology’, and ‘Driver Behavior’, 

amongst other related transportation topics, have variously contributed to some significant 

breakthroughs regarding traffic mobility and safety. Different features of connected– 

automated vehicle (CAV) technologies, including connected adaptive cruise control (CACC), 

assisted driving systems, connected intersections, among others, are capable of changing 

vehicle operation in transportation systems as well as influencing individuals’ driving 

behavior and use of their vehicles. While much of the focus to date has been on the impact of 
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these technologies in increasing traffic network efficiency, or enhancing safety, or both, 

identifying the secondary impact of these technologies due to presence of heterogeneous 

vehicle operations are equally important.  

Diminishing trip delay, reduced emission and enhanced safety of road traffic are 

claimed to be achieved due to the presence of diverse levels of integrated connectivity and 

automated control systems for vehicles and transportation infrastructure. Although large-scale 

deployment of such technology could take decades to become a reality, simulating gradual 

increase of connected-automated driving system-based vehicles in traffic streams would 

enable us to presume the extent of potential positive contributions from these technologies. 

Numerous academic efforts have been made to understand the combinatorial effect of these 

advanced technologies in the shared presence of traditional human-oriented transportation 

systems. However, perceptual differences of mixed traffic stream and collaborative motion 

dynamics have impeded the progress of these technologies in expected nature. Furthermore, 

the ideal compositions of automaton-driven vehicles (AuV) in mixed traffic scenarios remain 

unfamiliar to most.  

 

FIGURE 1.1 Road Traffic (a) Fatality facts of Canada from 2008-2017, (b) operational 

hindrance in major Canadian cities 

(a) 

(b) 
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  Variations in traffic mobility and safety are regarded to be influenced by the 

heterogeneity of driving behavior of human drivers. Traffic streams including both AuV and 

Human-driven vehicle (HuV) are also susceptible to such diversified human driving behavior. 

Therefore, identifying the behavioral variations of human drivers is eminent in determining 

the degree of influence HuVs in mixed traffic mobility and safety.  

1.2 Research Motivation 

The comprehensive motivation of selecting this specific topic for research can be divided into 

four segments: preamble of CAV technology, inclusion of new technology with traditional 

transportation, key resulting features of traffic movement and intricate element of roadway 

network. The purpose of this research is selecting a delicate roadway component to determine 

the influences as fundamental resultants of traffic operation when both human and CAV 

equipped vehicles coexist. 

The detrimental aspects of the existing transportation system have compelled a 

significant number of transportation agencies to shift their strategy towards adopting 

innovative technologies for the past few decades. CAV technology is one of such effort that 

showed propitious potential to reduce these inauspicious consequences without major 

restoration of existing framework. However, implementation complexity, legislative 

adjustments, high-speed wireless communication requirements could take decades to attain 

completely connected-automated traffic structure which opened up the possibility of an 

ecosystem including both HuV and AuV in shared roadways. The introduction and 

amalgamation of AuVs in existing transportation system would require careful considerations 

so that progress of CAV is not hindered by ineffective contributions.  

 One of the major complexities of the existing transportation system involves 

dissimilarity of human driving behavior. A single scenario could generate a wide range of 

human responses which make it difficult to predict an optimal automated strategy for such 

scenarios. For instance: a rear-end collision in the middle of the road would require the 

following vehicles to suddenly execute brakes to avoid colliding with the leading vehicle. 

However, reaction to such event and the extent of braking would vary between drivers 

depending on factors including perception-reaction time, age, sex, road surface conditions, 

weather etc. Now, introducing AuVs in this specific scenario could either be advantageous if 
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they correctly apprehend the situation and diminish the instability caused by sudden braking. 

However, higher numbers of HuVs combined with behavioral variations among HuVs could 

diminish the positive impact brought by AuVs. Therefore, it is essential to comprehensively 

examine the heterogeneous effects of both HuV and AuV prior to launching.  

Two major aspects of the transportation system include mobility and safety. Vehicles 

capable of transferring passengers and goods efficiently and safely bear the mark of an 

effective transportation system. The efficiency of the roadway networks is often measured by 

the highest number of vehicles that can traverse through the network with minimal delay or 

stoppings. On the other hand, the roadways with minimum number of collisions are regarded 

to be safe. Furthermore, mobility improvements often hinder the perception of safety for road 

users.  Since both mobility and safety play vital roles in measuring the effectiveness of a 

transportation system, the mixed traffic scenarios generated from HuVs and AuVs should also 

be measured and compared with respect to changes in mobility and safety to identify the 

influence of introducing AuVs.  

Finally, the motivation to choose the weaving section for this research rests on the fact that 

this component of freeway network plays critical roles on overall performance of the network. 

Weaving sections, where a merge and diverge in close proximity require vehicles either 

entering or exiting the freeway to execute one or more lane changes, are subjected to frequent 

lane-changing maneuvers due to inherent characteristics of traffic flow in this segment which 

leads to additional mobility and safety interests in comparison to other freeway segments. 

Despite the substantial importance of the weaving section in freeway operations, an 

insignificant amount of studies have been commenced to examine the potential consequences 

of AuVs on overall performance in varying mixed traffic scenarios. The lack of knowledge 

base in this direction has challenged and motivated the researcher to perform comprehensive 

research focusing the operation of weaving sections in mixed traffic conditions.  

While new technologies can come with a lot of promise and potential, only perceptive 

integration of these technologies can ensure sustainable growth. Failure to apprehend the 

potential of CAV technologies can lead to unforeseen implications when introduced along 

with traditional HuVs and premature breakdown of this promising technology. In light of these 

key factors and their contributions in securing a superior transportation system, it is only 
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natural to research on mixed traffic scenarios containing AuVs with traditional HuVs and 

quantify the degree of mobility as well as safety impact of CAV technology will have once 

introduced.   

1.3 Definitions 

The three key concepts pulled together for this research are Connected Vehicle technology, 

Automated Vehicle technology and Driving behavior. Outlined below are definitions of each 

that form the basis of understanding for the subsequent studies presented: 

Connected Vehicle (CV) technology has been founded on concepts of connectivity 

and communication amongst vehicles, traffic infrastructures, and central traffic management 

center with the aim of safe, risk-free road travel characterized by high mobility rates and low 

rates of environmental impact (Transportation, 2015). With the advances in wireless 

communication technology, vehicles equipped with communication devices can connect and 

correspond with other vehicles (Vehicle to vehicle communication, V2V) and with road 

infrastructure (Vehicle to infrastructure communication, V2I) through dedicated short-range 

communication (DSRC) systems. Three major components of CV technology are Connection, 

Communication, and Cooperation (Figure 1.2). Connection ensures that vehicles, road-users, 

and infrastructure can communicate easily and steadily. Connectivity then facilitates the 

necessary and fundamental communication that ensures multilateral information from all 

sources (e.g. vehicle, road-users, infrastructure). In addition to the first two components of 

CV, cooperation ensures that all sources function together has harmoniously as possible. 

 

Figure 1.2 Three major components of Connected Vehicles 
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An Automated Vehicle (AV) incorporates technology that allows it to detect and 

evaluate its surroundings using a variety of technologies, including LiDAR, GPS, cameras, 

and computer vision (Ticoll, 2015). When defining Automated Vehicles (AV), they are 

divided based on a scale of automation – from partially to highly to fully automated. The 

Society of Automobile Engineers suggested ‘Levels of Automation’ are a worldwide standard 

used to indicate a vehicle’s level of driving automation (Smith, 2014). There are a total of six 

levels of vehicle automation starting from Level 0: No Automation to Level 5: Full 

Automation. The higher the level, the more the vehicle is capable of monitoring and 

navigating the driving environment without human intervention (Figure 1.2). A vehicle with 

fully automated technology is an ‘autonomous vehicle’ that can detect its surrounding 

environment through numerous attached sensors and is capable of navigating traffic without 

human intervention. However, in this study I considered vehicles with high automation that 

still enables the vehicles to detect and evaluate nearby traffic status to make precise control 

decisions but differs from autonomous vehicles in the range of detection and influence in 

decision-making.  

Both connected and automated vehicles have immense potential to transform 

traditional transportation systems through the creation of safe, interoperable communication 

among contributing parts of the system. Numerous studies have established notion that 

introducing these technologies will bring significant mobility and safety benefits (Paikari, 

Tahmasseby and Far, 2014; Minelli, Izadpanah and Razavi, 2015; Genders and Razavi, 2016; 

Olia et al., 2016; Cronin, 2018; Rahman, 2019). Therefore, this study is built upon the 

perception that CV and AV technologies are capable of bringing positive changes in mobility 

and safety in comparison to traditional human driven transportation systems.  

While the technological concept of the AV is a rapidly growing interest among 

researchers and practitioners, the vision of a fully automated vehicle-based traffic fleet will 

take decades to be realized. In the meantime, the notion of ‘mixed traffic’ should be accepted 

as a necessity and developed accordingly. Mixed traffic entails a vehicle fleet comprised of 

different vehicle types with varying automation levels. In the second study presented here, a 

mix of ‘Level 0’ automation with ‘Level 3’ automation is considered. Throughout this study, 

Level 0 of automation indicates driving by humans only and is therefore termed ‘Human 
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Driving’, and Level 3 of automation indicates minimal involvement from human drivers and 

is therefore termed ‘Automated Driving’. 

 

Figure 1.3 Different Levels of Automation (according to SAE) 

The third concept, Driving Behavior, entails instantaneous control decisions by human 

drivers by detecting and evaluating the surrounding environment while driving.  It is 

significant when considering Human Driving since the control of the vehicle depends on the 

individual driver. From a traffic safety perspective, almost 93% of all traffic collisions involve 

driver error to some extent, making driving behavior and behavioral heterogeneity highly 

significant. Additionally, a major component of CV technology is the ‘Advanced Driver 

Assistance System’ (ADAS), with potential applications in automated driving systems. 

Crucially, driving behavior recognition is the foundation of driver assistance systems, where 

driving behavior is categorized by driving maneuver types and other performance measures.  

As such, these systems can potentially act as an effective measure to enhance traffic safety, 

by identifying aggressive driving behavior and providing drivers with feedback to adjust their 

driving. With better grasp of these concepts, I will now focus on the research question of this 

study and determined objectives of this study to answer this research question. 

Weaving sections can be referred to as freeway segments where two traffic streams 

weave as shown in Figure 1.4. In a freeway network, a weaving section is formed when a 

diverging area is positioned in close proximity to a merging area and both on, off-ramps are 
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connected by auxiliary lanes.  The length of weaving sections is usually measured from the 

point where the entrance gore is 2ft wide to where exit gore is 12 ft wide (Figure 1.4). Weaving 

sections experience intense lane changing maneuvers as drivers must access the suitable lanes 

for reaching their destination route. Hence, traffic in weaving sections can experience 

additional restrictions in maneuvering compared to other freeway sections. Weaving sections 

include main lanes, on-ramps, auxiliary lanes and off-ramps. Based on their configuration, a 

weaving section can be classified as Type A, Type B and Type C (Manual, 2000). In this 

research I will focus only on the Type A weaving section. In Type A weaving segments, all 

the weaving vehicles must make one lane-changing maneuver to reach their target lane.  

 

Figure 1.4 Anatomy of a Type-A weaving section 

1.4 Research question and objectives 

In the journey toward a completely automated transportation system, researchers and 

transportation planners need to address issues that will facilitate the integration of this new 

technology. A key research question in response to this need, then, is:  

What are the mobility and safety implications of shared road-use by AuVs and HuVs, 

particularly considering the behavioral heterogeneity of human drivers in a freeway weaving 

section? 

Specifically, the behavioral variations of human drivers need interpretation for AuVs 

so that they might be taught to respond accordingly. It is unrealistic to expect AuVs to resolve 

issues that may arise on shared roadways without this insight into human driver behavior. 

Furthermore, an assessment of potential benefits from AuVs presence in a traffic stream 

requires accurate measurement in order to address this research question. A quantitative 
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Auxiliary lane 
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analysis of potential benefits can lend weight to the argument for investment and development 

of CAV technology. 

To attain the objective of answering the established research question, three key 

tasks have been determined, as listed below  

1. Task 1: To identify and classify human driving behavior from naturalistic 

driving data 

2. Task 2: To measure the impact of AuVs’ car-following activity in mixed traffic 

with respect to mobility and safety  

3. Task 3: To measure the impact of complete motions (i.e. car-following, lane-

changing, gap acceptance) in mixed traffic with respect to mobility and safety 

when integrating recognized human driving behavior 

Task 1 will provide the research foundations given that human drivers demonstrate 

heterogeneity in driving behavior and these diversifications bring more uncertainty in 

quantifying mobility and safety aspects of specific traffic states. The goal is to identify the 

pattern of the behavioral heterogeneity of human drivers by analyzing realistic driving data 

for different road types. This part of research focused on road class specific behavioral 

variation identification since the key research focus is specific roadway segment (i.e., freeway 

weaving section). As an extension to this process, driving behaviors are classified with regards 

to different timelines. Identifying the variations of key behavioral parameters are essential to 

estimate the scope of benefits from mixed traffic.  

In order to estimate overall mobility and safety influences of AuVs on traffic streams 

we need to consider the fundamentals of traffic motion dynamics. Traffic streams are 

developed from aggregation of individual vehicles moving together in the same direction. 

Therefore, apprehending individual vehicle’s movement maneuvers is imperative for 

exhaustive analysis. Vehicle’s primarily have two-directional maneuvers: longitudinal 

maneuver which is essentially car-following and lateral maneuver that includes both lane 

changing and gap acceptance. Since car-following is the primary component and predominant 

driving maneuver of traffic motion dynamics, achieving task 2 will provide the substructure 

to measure the impact on mobility and safety. In this stage of the research, the assumption will 

be homogenous and standard human driving behavior in a mix with AuVs without any 
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variations with regards to aggressive and defensive driving. Moreover, this stage will discard 

additional complexity from other components of motion dynamics such as lane changing 

decision, allowable gap acceptance etc. This stage of research will provide a simpler base to 

build on the rest of the study. 

Finally, task 3 would include the full set of motions by mixed traffic to attain the range 

measurements of potential mobility and safety gains. While the motion dynamics will take all 

components (i.e., car-following, lane-changing, gap acceptance) into consideration, 

behavioral heterogeneity will also be integrated for human drivers in this phase of the research. 

To reduce complexity of interpreting the impact on mobility and safety, specific behavioral 

distribution of human diving behavior will be chosen based on results from Objective 1. 

Additionally, a specific roadway section (i.e., weaving section) with influential contribution 

to traffic network stability will be chosen for analysis instead of generalizing the results for 

all components of roadway network (e.g., merging section, diverging section, weaving 

section, mid-section etc.). Including bi-directional movement strategies for two types of 

vehicles along with behavioral heterogeneity of HuVs will bring a great deal of complexity 

and ambiguity in measured mobility and safety results. The study will therefore be limited to 

specific segment types of freeways with particular characteristics which will confine the 

outcomes to a considerably explainable level of detail. 

1.5 Research scopes 

Defining research scope provides more structured navigation through the research process. As 

stated in the research objective section, the research aims to explore the human driving 

characteristics and car-following implications of mixed traffic in the first two objectives. Both 

of these objectives cover relatively wider research scope which would be incomprehensible 

as a single research topic. Hence, the third objective streamlined the research scope to a 

manageable domain with specific roadway configurations, vehicle motion dynamics. With 

this in mind, it is of utmost importance to define the scope of the research in order to 

accomplish the defined objectives. The scopes of this research are listed below: 

1. The research scopes for estimating mobility and safety implications are restricted to 

uninterrupted traffic flow sections of roadway network which are commonly 
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observable in freeways. Freeways and arterials with yield, stop or signal controls are 

beyond the scope of this research 

2. Freeway network consists of four fundamental segments: basic segments, merging 

segments, diverging segments, and weaving segments. Among these four segments 

one specific segment is chosen for extensive analysis to deliver subjective evaluation 

on mobility and safety implications. Weaving section often produces recurrent 

congestion in freeway networks due to its’ competing traffic movement patterns and, 

therefore, plays critical role in over traffic operation through freeways. 

3. While the traffic movements through freeway segments are considered for implication 

estimations, driving behavioral classification considers different road types of traffic 

network to obtain a more comprehensive overview of behavioral variations depending 

on road types. Analysis of driving behavior in different road types also reinforce the 

assumption that the driving behavioral pattern of traffic in freeways are substantially 

different from other road types.  

4. Some specific features are examined for behavioral classification of human drivers. 

The chosen features are capable of illustrating the bi-directional motion dynamics of 

vehicles resulting from drivers’ control decisions. Number of features is limited to 

such a small number to extricate additional complexity in the classification process. 

Although additional features could result in more accurate classification, improvident 

addition of features could lead to interdependence among the features which could 

increase the complexity of the method and/or diminish classification accuracy. 

5. In behavioral classification from naturalistic driving data, a fraction of available trip 

data is analyzed in this research. Firstly, the purpose was to select enough samples 

from a large dataset (of 13,792 trips) that is capable of portraying diverse real-world 

circumstances experienced by the drivers (e.g., driving through freeways, arterials and 

ramps within a same trip) while keeping the sample size within a manageable limit for 

analysis. Secondly, each selected trip should contain a fairly large number of data 

points to represent significant variations. The assumption behind this consideration 

was that a trip with 10000 data points (trip duration = 1000 sec or 16 min 40 sec) 

would be more capable of demonstrating drivers’ behavioral variation than a trip with 

1000 data points (100 sec or 3 min 10 sec). Excluding the remaining trips of the dataset 
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from analysis does not necessarily mean that the remaining trip data were wrong. It 

just assumes that adding data points from more trips would not add significant value 

to the considered sample trips. 

6. Analyzing the broad spectrum of traffic flow scenarios from real-world traffic are 

inefficient and complicated. Consequently, the estimation of mobility and safety 

implications are contained within numeric simulation-based analysis of freeway 

traffic. Furthermore, it would be impossible to encounter diverse ranges of market 

share by automated vehicles due to unavailability of their large-scale presence in real-

world traffic. 

1.6 Organization of thesis 

The remainder of this thesis is divided into five chapters including conclusion. The contents 

of three basic sections of this thesis are described below: 

i. Comprehensive Literature review (Chapter 2) This chapter combines all relevant 

research efforts related to three key directions of this research: behavioral variations 

of human drivers and classification approach, car-following strategies and 

consequences for mixed traffic operation and complete motion of mixed traffic in 

freeway segments. A detailed literature review on these topics identified the state of 

the art in this topic as well as existing research gaps which can be addressed through 

this research.     

ii. Analyzing Naturalistic Driving Data (Chapter 3): This chapter concentrates on 

analyzing real-world driving data of human drivers to recognize the variations in 

driving pattern. The primary output expected from the analysis are microscopic traffic 

dynamics modeling parameters for human-driven vehicles in freeway. The patterns of 

modeling parameters are studied to confirm the existence of variability in human 

driving behavior as well as substantial difference in driving pattern among distinct 

road types. Furthermore, the research makes headway towards developing a driving 

behavior classification method from analyzed driving features. The classification 

method aims at classifying individual trip behavior as well as long-term driving habits 

of individuals by accounting for bi-directional control decisions. Effects of 

exogeneous factors like geometric design of roadway, neighboring traffic, 
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environmental factors are disregarded from this classification process due to 

unavailability of accurate information and influence of these factors. 

iii. Mobility and Safety Implications from Partial Motion Dynamics of Mixed Traffic 

(Chapter 4): This chapter of thesis developed a mixed traffic car-following strategy 

with platoon formation policy among AuVs. Vehicle motion dynamics of mixed traffic 

containing both HuV and AuV are initiated from this chapter with acquired knowledge 

about human driving behavior from the previous chapter. Although the behavioral 

variations are excluded from this part of research to maintain the interpretability of the 

results, the key parameters of car-following models for HuVs are shaped by obtained 

information from Chapter 2. Furthermore, a wide range of platoon configuration for 

AuVs are examined here to identify the influence of platoon structure as well as AuVs 

position in traffic stream on overall mobility and safety of traffic. Since mobility and 

safety of traffic can be explained through various criteria, a set of parameters are 

chosen, considering the studied scenario (i.e., partial motion dynamic), to illustrate the 

resulting mobility and safety implications due to the presence of AuVs in the traffic 

stream. This chapter provides an overall direction to move forward with this research 

direction and to include additional complexity (e. g. complete motion dynamics, 

behavioral variations of HuVs) in subsequent research. 

iv. Implications of Complete Motion Dynamics of Mixed Traffic in Weaving Section 

(Chapter 5): In light of obtained results from Chapter 3, this chapter expands to cover 

bi-directional motion dynamics of mixed traffic. Grounded on the foundation laid on 

previous chapters, variations of human driving behavior are also incorporated in 

HuVs’ modeling. Since complete motion dynamics were enabled in identified 

behavioral variations, including such variation in partial motion dynamics (Chapter 3) 

would be impractical. Hence, obtained wisdom regarding behavioral variations of 

human drivers are incorporated at this stage of the research. Additionally, specific 

freeway segment is chosen to implement the vehicle motion modeling and implication 

measurements to produce more definite and precise estimations. Due to opposing flow 

patterns experienced in the weaving section, this element of freeway network is often 

subject to severe mobility and safety concern which makes this segment an ideal 
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candidate to examine the extent of potential implications resulting from AuVs 

presence. 

v. Conclusion (Chapter 6) combines the research objectives with obtained findings from 

entire research and their significance in advancing automated vehicle technology in 

the future. Key limitations of the research are also outlined in this chapter along with 

future research directions. This research aims to contribute to the existing body of 

knowledge regarding automated vehicle technology by delivering definite outcomes 

about resulting mobility and safety consequences. Since advancement of automated 

vehicle technology depends on successful adoption as well as appropriate 

interpretation of leading consequences of this technology, I think this research can 

assist in moving the needle towards the right direction.    

It is critical for the coherence of the research that different components/tasks of research are 

associated with other components. In this regard, figure 1.5 illustrates the interconnectedness 

of three tasks of this research. In addition to the core research related outputs from task 1 and 

2, supplementary outputs are also obtained from these components which have both scholarly 

and practical contributions.  

 

Figure 1.5 Interconnectedness of different tasks of the research 
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1.7 Conclusion 

This chapter initiates the research operation by outlining the research objectives, scopes, and 

fundamental concepts to assist in traversing through this thesis. The foundation laid in this 

section of the thesis promotes informed decision making in subsequent parts of the research. 

The research idea conceived in this section follows the chronological order of research 

described in the ‘organization of thesis’ section and examines real-world human driving 

behavior to variations in driving patterns in the human counterpart of mixed traffic 

environments. 
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CHAPTER 2 : LITERATURE REVIEW 

2.1 Background 

Literature review is an essential part of any research to provide a background of existing 

knowledge base. A comprehensive literature review on the research topic records the relevant 

research efforts in the similar direction to determine the scopes of contribution through new 

research. In compliance with the research objective, this literature review can be classified 

into three major categories.   Since first objective deals with human driving behavior, the 

literature review starts with assessing relevant research articles in this topic to identify the 

state of the art in this direction while recognizing potential gaps in existing research. Similar 

to second objective, section 2.3 addresses the research efforts in mixed traffic movements 

without considering the implications of human components. Followed by section 2.4 which 

focuses on published literature in mixed traffic motions connecting freeway traffic 

movements.  Finally, section 2.5 lists the identified gaps in these three directions from 

extensive literature review. 

2.2 Behavioral Variations and Classifications of Human Driver 

To recognize the behavioral variations of human drivers, identification of driving 

behavior and habit has long been of interest to researchers. Gibson and Crooks (Gibson and 

Crooks, 1938) conducted one of the earliest studies on driving psychology and concluded that 

driving pre-dominantly depends on drivers’ perceptions of their surrounding environments.  

Safe driving, therefore, depends on his/her psychological safe spatial zone. In order to capture 

drivers’ perception during driving, different physical  measures have been identified and 

studied by a number of research teams (Wiesenthal, Hennessy and Gibson, 2000; Dula and 

Ballard, 2003; Dahlen and Ragan, 2004; Taubman-Ben-Ari, Mikulincer and Gillath, 2004; 

Sümer, Özkan and Lajunen, 2006; Richer and Bergeron, 2009; Joubert, Beer and Koker, 2016; 

Eboli, Mazzulla and Pungillo, 2017; Shinar, 2017; Eftekhari and Ghatee, 2018). Some specific 

driving measures studied include: speeding and/or hard braking (Johnson and Trivedi, 2011; 

Aljaafreh, Alshabatat and Najim Al-Din, 2012; Eren et al., 2012; Paefgen et al., 2012; Ellison, 

Greaves and Bliemer, 2015; Abuali and Abou-zeid, 2016; Lee and Jang, 2017), Jerky driving 

(Desai and Haque, 2006; Murphey, Milton and Kiliaris, 2009; Bagdadi and Várhelyi, 2011; 
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Huysduynen, Terken and Eggen, 2018), Tailgating (Xiong et al., 2012; Underwood, 2013), 

Lane choice (Zhao et al., 2012; Reimer et al., 2013), Steering Angle (Ungoren and Peng, 

2005; Zhao et al., 2012; Underwood, 2013; Lee and Jang, 2017), Lateral Acceleration 

(Aljaafreh, Alshabatat and Najim Al-Din, 2012), passing  gap during overtaking (Farah et al., 

2009) and included both longitudinal and lateral features as part of their categorization.  While 

speed, accelerations are frequently used measures of driving behavior, jerk profile has been 

found to be more sensitive to safety-critical driving behavior (Murphey, Milton and Kiliaris, 

2009). With regards to longitudinal control decision time and/or space headways  are found 

to be more specific than speed, acceleration or jerk profiles in reflecting hostile driving 

(Underwood, 2013). Since consistent headways during driving is the socially accepted norm 

of safe driver, a driver’s use of short and erratic headways could be partly explained by 

aggressive intentions. On the other hand, lateral control behavior is often associated with 

steering angle, lateral acceleration and lane choice. Increased variations in these features can 

differentiate between what is considered as safe and unsafe driving. While both longitudinal 

and lateral driving features take part in defining driving behavior, the collective impact both 

aspects remain uncharted.  

A major motivation in driving behavior identification lies on developing techniques to 

modify that behavior (Inagaki, 2008; Staubach, 2009; Wang, 2010; Dong et al., 2011; Li et 

al., 2012; Son, Park and Park, 2015; Guo et al., 2016). In recent times, personalized 

communication through connected vehicle-based ADAS system has become essential for the 

integration and development of driving behavior modification (Syed et al., 2010; Diakaki et 

al., 2015; Jiang et al., 2017; Ryder et al., 2017). In order to fit a driver’s requirements, 

acceptability, and preferences, ADAS design should include a driver identification profile that 

considers both driving behavior and driving habit (Fugiglando et al., 2017). However, 

techniques to label driving behavior from collected driving features varies widely in literature, 

some of which include rule-based (Taubman-Ben-Ari, Mikulincer and Gillath, 2004; 

Murphey, Milton and Kiliaris, 2009; Manzoni et al., 2010; Lee and Son, 2011; Corti et al., 

2013), fuzzy logic based (Syed, Filev and Ying, 2007; Filev et al., 2009; Kim, Sim and Oh, 

2012; Dörr, Grabengiesser and Gauterin, 2014), and machine learning methods-based 

(Taubman-Ben-Ari, Mikulincer and Gillath, 2004; Ishibashi et al., 2007; Constantinescu et 

al., 2010; Johnson and Trivedi, 2011; Wang and Lukic, 2011; Karginova, Byttner and 



 

19 
 

Svensson, 2012). Due to its computational simplicity, robustness, and clear explanation, rule-

based techniques of driving behavior identification are favored by numerous studies. 

However, larger set variables can create complex classification process in rule-based method 

but can be more readily resolved by fuzzy logic-based methods. Further, machine learning 

methods have become prevalent among practitioners in recent years due the availability of 

large, multivariate datasets. Yet, while machine learning methods can identify driving patterns 

from big data with larger sets of variables, these labelling techniques often contain complex 

and delicate structures and can result in inexplicable solutions. To avoid these pitfalls, we 

have used a small number of variables with relatively large datasets, and we have explored 

both rule-based and machine learning-based labelling techniques in order to choose an ideal 

technique for labelling unlabeled training data.  Although the dataset chosen for this study 

may initially appear small, we feel that they are large enough to represent the behavioral 

variations of drivers as well as to demonstrate the proposed method of classification. 

Furthermore, the chosen dataset included the trips with higher number of records than 

remaining trips of the dataset which potentially accounts for most possible variations. 

2.3 Car-following models for mixed traffic with impact evaluation 

Aligned with the second objective of this research, the focus of this part of the 

literature review is on car-following strategies for mixed traffic environment. As such the 

literature explored here relate to car-following models for both forms of driving system. 

Numerous microscopic car following models have been proposed to imitate driving pattern of 

manual driving system (Chandler, Herman and Montroll, 1958; Helly, 1959; Evans and 

Rothery, 1973; Gipps, 1981; Bando et al., 1995; Treiber, Hennecke and Helbing, 2000). 

Among the proposed stimulus-response-based car-following models, the intelligent driver 

model (IDM) is widely used in literature to depict manual driving dynamics. The ability of 

this model to define numerous microscopic (e.g., desired velocity, acceleration/deceleration 

limits etc.) and macroscopic (e.g., capacity, capacity drop, fundamental diagram etc.) 

phenomena made it the prevalent model. On the other hand, due to rapid growth of CAV 

technology, the longitudinal control models for automated vehicles were also examined by 

researchers (Li and Shrivastava, 2002; Orosz and Moehlis, 2011; Xiao and Gao, 2011; Davis, 

2013; Hu et al., 2017; Wang, Wu and Barth, 2017). These studies provide me with structures 
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to work on car-following strategy in mixed traffic environment and identify the extents of 

potential paradigm shifts.  

A clear distinction of the driving system is dictated by the operational authority. While 

the Human-driven Vehicle (HuV) represents driving-systems controlled by humans, the 

motion dynamics of vehicles with the Automaton-driven Vehicle (AuV)s are mandated by 

distinct levels of automation. AuVs’ longitudinal movements are commonly portrayed with 

Adaptive Cruise Control (ACC) and Cooperative Adaptive Cruise Control (CACC). Many 

studies have analyzed the contributions of longitudinal control system of AUD vehicles on 

traffic mobility (Van Arem, Van Driel and Visser, 2006; Yi and Horowitz, 2006; Bifulco et 

al., 2013; Delis, Nikolos and Papageorgiou, 2015; Ntousakis, Nikolos and Papageorgiou, 

2015; Fountoulakis et al., 2017; Sun, Zheng and Sun, 2018; Xin et al., 2018; Ye and 

Yamamoto, 2018b; Zhu and Zhang, 2018). While mobility was the main focus of these 

studies, the impact of traffic movement from safety and environmental perspective were often 

ignored. Yeo et al. (Yeo et al., 2008) proposed an integrated car-following and lane changing 

model to perform micro-simulation of oversaturated freeway traffic. The proposed algorithm 

considered complex dynamic interactions at a microscopic level to replicate vehicle 

movements. However, the aptitude of this model to capture possible consequences was not 

tested. Wang et al. (Chen et al., 2018) proposed a car-following control for autonomous 

vehicle and identified the impact, focusing mainly on traffic flow characteristics. Liberis et al.  

(Bekiaris-liberis, Roncoli and Papageorgiou, 2016) took a macroscopic approach to identify 

traffic mobility parameters in a heterogeneous traffic environment. The authors used the 

market penetration rate of connected vehicles to estimate traffic states. Moreover, other 

researchers studied the impact of introducing AuV based vehicles with conventional vehicles 

(Chang and Lai, 1997; Vander Werf et al., 2002; Ni et al., 2010; Tientrakool, Y. C. Ho and 

Maxemchuk, 2011; van den Berg and Verhoef, 2016) on flow and mobility. Reviews of these 

studies provide me with the opportunity to constructively examine the contributions of earlier 

studies, identify the necessities to improve current knowledge and uncover the latent insights 

to progress promptly with CA technology.  

While the mobility attributes of traffic flow were widely discussed in many studies, 

the safety aspects, which are equally if not more important, were relatively unexplored by a 

majority of the studies. The impact of automated vehicles on both safety and mobility were 
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discussed by Fernandes and Nunes(Fernandes and Nunes, 2012). They studied platooning of 

AuVs with different communication schemes at various flow rates to improve roadway 

capacity. Several studies assessed the safety aspects of CAV based traffic. According to the 

National Highway Traffic Safety Administration (NHTSA), a complete adaptation of CAV 

based traffic movements would annually prevent 439,000–615,000 crashes (Administration, 

2016). Li et al. (Li et al., 2017) evaluated the impact of CACC control on reducing rear-end 

collisions on freeways. The study shows a reduction in safety improvements with increasing 

market share of AuVs. Rahman and Abdel-Aty (Rahman and Abdel-Aty, 2017) compared 

potential improvement in longitudinal safety due to varying market penetration of connected 

vehicles. According to the analysis presented, the managed-lane CAC control outperformed 

multi-lane control with regards to traffic safety. The report of Zabat et al. (Zabat et al., 1995) 

stated that the presence of boundary layer along closely spaced vehicles would reduce 

aerodynamic drag, resulting in reduced fuel consumption and less emission.  Platoon-wide 

environment-friendly CACC system was studied by Wang et al. (Wang et al., 2017) and their 

objective assessment attained 2% fuel saving with 17% emission reductions. Mamouei et al 

(Mamouei, Kaparias and Halikias, 2018) argued that fuel-economy based ACC control model 

would not lead to highly conservative driving dynamics of traffic.   

2.4 Complete motion dynamics of mixed traffic in freeway  

Despite real-world pilots of AuVs and the significant advancement in knowledge on 

this technology, large-scale deployment of AuVs in contemporary traffic streams is not easily 

achievable, making the majority of existing literature studying the effects of mixed traffic 

reliant on traffic simulation. A number of simulation-based studies conducted mobility 

analysis for mixed traffic through capacity shifts (Shladover et al., 2001; Vander Werf et al., 

2002; Van Arem, Van Driel and Visser, 2006; Kesting et al., 2008; Kesting, Treiber and 

Helbing, 2010; Tientrakool, Y.-C. Ho and Maxemchuk, 2011; Shladover, Su and Lu, 2012; 

Lee, Bared and Park, 2014; Chen et al., 2017; Ghiasi et al., 2017; Liu et al., 2018). These 

studies provided valuable insights about roadway capacity changes of mainstream traffic 

resulting from mixed traffic flow at varying market shares, although few explicitly explore 

the influence of integrating AuVs into freeway weaving sections. Furthermore, the few studies 

that included car-following (Seraj, Li and Qiu, 2018; Zhu and Zhang, 2018; Fu et al., 2019) 

lack inclusion of weaving sections and their influence on lane-changing vehicles. In addition 
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to capacity, the impact of AuVs on mobility has been evaluated through traffic speed 

(Khondaker and Kattan, 2015; Han, Chen and Ahn, 2017; Hong et al., 2018). However, the 

aggregated impact on both of these parameters was underexplored by these studies. 

Malikopoulos et al. (Malikopoulos et al., 2019) examined environmental implications, travel 

time, and traffic throughput in mixed traffic scenarios. Rios-Torres and Malikopoulos (Rios-

Torres and Malikopoulos, 2018) examined both environmental and mobility aspects of mixed 

traffic flow for merging segments in a simulated environment. Despite the fact that weaving 

sections are critical components of freeway system, scarcely any study examined the 

possibility of mobility and safety paradigm shift in these sections due to introducing AuVs in 

traffic stream. Fazio, Holden and Rouphail (Fazio, Holden and Rouphail, 1993) used 

simulated conflict rates count to identify hazardous locations and compared with obtained 

crash rates. Uno et al. (Uno et al., 2003) identified the potential conflicts in weaving sections 

by analyzing vehicle movements from recorded videos. Tilg, Yang and Menendez (Tilg, Yang 

and Menendez, 2018) proposed a mixed traffic model which was calibrated to replicate the 

traffic dynamics on a weaving section. Although findings from this study revealed the 

potential of AuVs to improve the capacity of the weaving section, other aspects of mobility 

and safety remain uncharted. Ye and Yamamoto (Ye and Yamamoto, 2018b, 2018a) 

conducted studies on heterogenous traffic flow and concluded that resulting the capacity 

improvements depends largely on AuV market penetration and car-following parameters. 

Both studies discussed the changes in macroscopic fundamental diagram to determine the 

changes in traffic flow parameters.  

Several studies have been published in recent years that measure the safety impact of 

AuVs when mixed with HuVs. The study conducted by Hayes(Hayes, 2002) reported that 

fatality rates could eventually be reduced to 1% of current rates once a 100% market share of 

AVs was reached. Alternatively, Fagnant and Kockelman (Fagnant and Kockelman, 2015) 

predicted that the influence of AuVs could reduce the crash rate by 90% by the elimination of 

human error possibility. Multiple research papers explored the simulation approach to 

estimate the safety of traffic (Fan et al., 2013; Huang et al., 2013; Essa and Sayed, 2015; 

Shahdah, Saccomanno and Persaud, 2015). Fan et al. (Fan et al., 2013) proposed a two-stage 

process to use the VISSIM simulation model outputs to calibrate for the surrogate safety 

assessment model at merging locations. A similar objective was followed by Huang et al. 
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(Huang et al., 2013) for signalized intersections. Essa and Sayed (Essa and Sayed, 2015), on 

the other hand, studied the transferability of the calibrated parameters to different sites for 

simulation. From the perspective of the safety impact evaluation of mixed traffic, Ye and 

Yamamoto (Ye and Yamamoto, 2019) simulated mixed traffic to study traffic safety under 

various market shares of connected-automated vehicles (CAV) and argued that the cautious 

and accurate car-following strategy from CAVs would greatly contribute to traffic safety. 

Papadoulis et al. (Papadoulis, Quddus and Imprialou, 2019) developed a bi-directional 

decision-making control algorithm for AuVs to evaluate resulting safety implications at 

different market penetration rates. The results revealed that traffic conflicts could be reduced 

by up to 90-94% with a full AuD traffic stream. The safety implications of exclusive AuV 

lanes were identified by Zhang et al. (Zhang et al., 2020) with different market shares and for 

multiple traffic demand scenarios.  Results of this study indicated that a higher number of 

lanes would be required at high demand scenarios to attain significant safety improvements. 

In brief, the research efforts in measuring safety implications of AuVs in mixed traffic environment is 

summarized in Table 2.1 

Table 2.1 Research summary of safety in mixed traffic environments 

(Authors, Year) Safety Parameters Findings 

(Moon, Moon and 

Yi, 2009) 

(i) Time-to-collision (TTC); 

(ii) non-dimensional warning 

index 

ACC strategy can prevent vehicle gaps from 

reducing to an unsafe level in different 

driving scenario 

(Li et al., 2017) (i) Time Exposed Time-to-

collision (TET); (ii) Time 

Integrated Time-to-collision 

(TIT) 

90% reduction of rear-end collision risks due 

to CACC system 

(Virdi et al., 2019) (i) TTC; (ii) Post 

Encroachment Time (PET) 

Low CAV penetration showed increase in 

potential conflicts at lower headway and 

signalized intersections, higher CAV market 

share showed a global decrease 

(Tu et al., 2019) (i) TET; (ii) TIT Degradation from CACC to ACC had 

significant negative impact on longitudinal 

safety  
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(Papadoulis, 

Quddus and 

Imprialou, 2019) 

(i) TTC; (ii) PET Estimated conflict rates reduced with gradual 

increase in market share of CAV and finally 

reduced by 90-94% at 100% CAV 

penetration rate 

(Shi et al., 2020) (i) TTC; (ii) TET; (iii) TIT Mixed traffic flow can induce higher 

longitudinal collision risk at low market 

penetration of ACC driven vehicle due to 

individual heterogeneity  

(Arvin et al., 

2020) 

(i) Number of conflicts; (ii) 

Longitudinal volatility 

Substantial safety improvement was 

observed at market penetration higher than 

40%  

Overall review of relevant literature solidified the common assumption that 

introducing AuVs in traditional transportation system would generate favorable mobility and 

safety implications. However, uncertainties regarding the magnitude of improvements as well 

as potential negative consequences remain equivocal. Furthermore, majority of the studies 

considered collective implications from dissimilar configurations of roadway segments which 

diluted the influence of natural impediment and variability resulting from individual segment 

structure. Hence, this research consciously identified a prevalent bottleneck segment of 

freeway and explored both mobility and safety implications from system level prospect. 

2.5 Opportunities for scholarly contributions 

When reviewing the literature related to driving behavior identification, recognition, 

and classification, three major research domains which can be addressed through this research 

are evident. They are: (i) the combination of both longitudinal and lateral driving features to 

detect adverse driving patterns, (ii) the implementation of techniques to determine both 

driving behavior (short time driving behavior) and driving habit (long-term driving behavior) 

of individual drivers, and (iii) the proposition of a simple yet informative ADAS interface to 

communicate detected behavioral information to drivers. While the as the part of broad 

research scope identification of behavioral heterogeneity in freeways would be sufficient, the 

research effort is further extended to make scholarly contributions in identified directions. The 

integration of bidirectional control decisions in classification improves the odds of precise 

categorization, since the combination of both features can capture a greater diversity of 
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behavior that is potentially overlooked by one-dimensional feature-based classifications. A 

further contribution of this study will be to demonstrate the gradual development and changes 

in driving habits from driving behavior in both short-term and long-term driving behavior 

classifications. As a final contribution, this study proposes a user-friendly, real-time warning 

system for a driving behavior interface that includes the capability to provide long-term 

driving habit information. This final element also offers a future extension of the current study. 

Although the reviewed studies in the second phase had remarkable contributions that 

helped to clarify the roles and influences of AuVs in traffic, the inadequacy of multi-objective 

decision-making approach to address AuVs’ potential has influenced this research to further 

investigate the complex interdependencies of mixed traffic. This study segment seeks to 

contribute on three research gaps identified from the literature. These gaps are: 

▪ The significance of AuVs’ position and distributions along traffic stream,  

▪ The variations of traffic flow attributes (i.e., mobility and safety) resulting from 

structural changes of CACC platoons,  

▪ Adjusting platoon configurations dynamically to obtain balanced benefits from 

considered traffic attributes. 

This part of the research can aim to employ the obtained insights about car-following 

of human drivers from previous phase of research in developing the microscopic modeling 

framework of mixed traffic. The key parameter values for car-following model of human 

driver can be chosen based on real-world human driving behavioral analysis. Utilizing these 

knowledges obtained from extensive analysis of human driving pattern will promote realistic 

representation of human car-following approach in microscopic model and generate rational 

simulation outputs. As a result, the measurements of mobility and safety implications resulting 

from car-following of mixed traffic will be more authentic and balanced.  

Finally, the fundamental objective of this research is to measure and explain mobility 

and safety consequences of the gradual adoption of AuVs to freeway weaving sections by 

developing a microscopic multilane modeling framework. This part of research can 

decompose the mixed traffic environment into individual vehicle maneuvers to obtain the 

most precise estimations of AuVs’ influence, regarded by the authors as a substantially 

original contribution. Many have estimated the implications of AuV by exploring mixed 
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traffic from macroscopic and microscopic perspectives. Nevertheless, these studies were 

unable to capture the detailed dynamics (e.g., spatial and temporal perception of human driver, 

realistic lane-changing etc.) needed to properly measure and explain the resulting outcomes. 

The novelty is the integration of longitudinal and lateral motion dynamics into a single 

microscopic modeling framework. Furthermore, this study re-contextualizes the existing 

concepts of traditional traffic and control theory to establish a realistic multilane mixed traffic 

flow model that accounts for the anticipative nature of human drivers, incorporating this 

characteristic in AuVs through model predictive control. The holistic approach of this study, 

subjectively examining the causal effects of the presence of AuVs on mobility and safety in 

weaving sections sets itself apart from previous research attempts. Furthermore, the most 

significant feature of this research is to utilize the quantitative outcomes to provide qualitative 

explanations regarding AuV share and its corresponding impact. Key outcomes of this 

research include the relative scoring of the mobility and safety impact of different traffic 

scenarios as well as recommendations for the optimal AuV share for maximal expected 

benefits from traffic in weaving section. With the findings from this study, traffic management 

authorities can apply the recommended approach to improve the performance of a critical 

component of their freeway networks. At the same time, researchers can use these results to 

further illuminate the significant features of this technology, such as vehicle shares, inflow 

rate, and crash risk, and its influence in traffic operational processes. 

2.6 Conclusion 

This chapter performed a comprehensive literature review to establish a strong foundation and 

clear perception about existing knowledge base in this research topic. Founded on this base, 

following chapters of this research aims to make significant scholarly contributions to 

determine the potential consequences of mixed traffic motion on traffic mobility and safety 

on a freeway weaving segment.   
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CHAPTER 3 : ANALYZING NATURALISTIC DRIVING DATA 

3.1  Introduction 

In the larger context of the research, this part of the dissertation plays a vital role. Since the 

objective of this research includes incorporating human drivers’ behavior into the modeling 

framework of mixed traffic, it is imperative to recognize the behavioral variations in the first 

place. In this regard, this part of the dissertation analyzed real-world driving data from HuVs 

and distinguished among different driving patterns. The human drivers’ behavioral findings 

from this chapter will be integrated in the final modeling framework in Chapter 5. Since the 

research is concentrated on the freeway weaving segment, the analyzing parameters will be 

categorized into road types which can also demonstrate the discrepancies in driver behavior 

depending on traversing the  road. Final takeaway from this chapter will be parameter values 

of specific parameters to represent human driving behavior in freeways.  

The recognition of individual driving behavior has played a vital role in identifying 

hazardous driving patterns, vehicle fuel consumption optimization, individualized vehicle 

control system design, and power management system design. Gradual expansion and 

integration of connected and autonomous vehicle (CAV)-based transportation systems have 

amplified the need to understand drivers’ individual behaviors as well as the implications of 

behavioral variations of drivers on overall traffic. Recognition of driving behavior is now seen 

as intrinsic to the proper design and assessment of an Advanced Driver Assistance System 

(ADAS) as well as the enhancement of traffic safety through CAVs (Filev et al., 2009; 

Murphey, Milton and Kiliaris, 2009; Doshi and Trivedi, 2010; Karginova, Byttner and 

Svensson, 2012; Bolovinou et al., 2014; Wang, Xi and Chen, 2014). However, observations 

of real-world driving indicate that driving behavior is the result of instantaneous decisions 

made in response to the exogenous environment, including elements such as road type, 

surrounding traffic, and the physical and mental state of the driver. Assuming that these 

instantaneous driving decisions result from a complex fusion of different factors, this part of 

the research aims to recognize the behavioral variations of driving parameters of human 

drivers in different road types as well as dynamically identify distinct types of driving 

behavior by analyzing bidirectional control decisions.  
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3.2  Research Contributions 

Driving behavior is a complex concept, and the common association of ‘Driving 

behavior’ with ‘Driving Habit/Style’ complicates its definition and identification further. The 

correlation between the terms, as understood within the related literature, offers clarification 

on the distinct levels of classification. Driving behavior, according to the literature, focuses 

exclusively on drivers’ instantaneous decisions and correlates with the driving conditions 

experienced by drivers. Therefore, a precise understanding of the environment can provide 

better insight into driving behavior (Ericsson, 2001; Manzoni et al., 2010; Wang and Lukic, 

2011). Furthermore, we can expect variations in decisions by the same driver at different times 

for the same driving conditions because of transformed habitual influence. On the other hand, 

research suggests that individual drivers’ preferential driving behavior accumulates over time 

and develops into driving habit or driving style (Lajunen and Summala, 1995; Ishibashi et al., 

2007; Murphey, Milton and Kiliaris, 2009; Kleisen, 2011; De Groot, Centeno Ricote and De 

Winter, 2012). While driving behavior varies in response, often erratically to external factors, 

driving habits change steadily in the longer term. The differentiated concepts of driving 

behavior and driving habit are necessary to distinguish between observed driving behavior on 

any given trip and developed driving habit from an accumulated driving history.   

With this definition in mind, this chapter of the dissertation presents a simplified 

approach to dynamically identifying driving behavior by analyzing drivers’ jerk, yaw rate, 

and leading headway profiles on different roadways. Jerk, yaw rate, and leading headway 

profiles are regarded as indicators of individual drivers’ longitudinal and lateral control 

decisions. This research uses these indicators as a mean to decisively recognize the behavior 

of any given driver and thereby contributes to driving behavior research in two ways: 1), the 

results can generate more accurate representations that better identify hazardous driving 

behavior by analyzing bidirectional driving features for classification, and 2) this study can 

establish and distinguish between the two different behavioral classes for individual trip 

behavior and accumulated driving history.  Additionally, this chapter presents the model for 

a convenient and cohesive ADAS interface that warns drivers in real time of unsafe driving 

behavior. This interface would also facilitate both drivers and regulatory organizations to 

review driving habits based on an accumulation of previous driving behavior.  
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The greater demand for understanding mixed traffic environments with AuVs and HuVs 

justifies the need for comprehensive research on human driving behavior observed from real-

world driving experience in different road types. Traffic management authorities that apply 

the recommended approach derived from the results of this study could provide an efficient 

ADAS application of this promising technology to improve traffic mobility and safety. As 

such, the key contributions of this part of the research are listed below: 

i. The first contribution of this research would be capturing the variations in human 

driving behavior in different road types through in-depth analysis of multiple 

parameters which can be adopted to human driver modeling. 

ii. Another contribution of this research is capturing the behavioral evolution of a driver’s 

instantaneous responses (i.e., short-term behavior) to driving habit (i.e., long-term 

behavior) by accounting for both longitudinal and lateral driving features. 

In order to best present the findings, this chapter is organized as follows: Section 3.3 

provides a detailed description of analyzed dataset; Section 3.4 presents the preliminary data 

analysis of selected dataset which reports the behavioral variations of human drivers through 

multiple parameters  which will be used in later part of this research for modeling human 

drivers in mixed traffic; Section 3.5 describes the proposed classification method in detail; 

Section 3.6 evaluates the proposed method’s performance when identifying behavioral 

pattern, followed by a description of the plans to extend the current research; Finally, a 

synopsis of the study findings concludes this chapter. 

3.3  Data Description 

As mentioned earlier, the scope of this part study includes analyzing naturalistic data for 

recognizing behavioral difference among drivers. In this regard, the data used is from Safety 

Pilot Model Deployment (SPMD) project led by the University of Michigan Transportation 

Research Institute (UMTRI). Figure 3.1 shows the collected data locations that contained 

different road types. In this project, different dimensions of driving data were collected from 

vehicle and vehicle users while they were driving along the real-world roads including 

freeways, arterials and ramps. More than 13,000 trip data were collected in this project which 

includes passenger cars, trucks and buses. The vehicles were equipped with few devices to 

enable Vehicle-to-vehicle communication, Vehicle-to-Infrastructure communication and 
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recording precise GPS location to track vehicle motions. On the infrastructure side, there were 

25 roadside unit (RSU) installed at different roads and intersections to obtain information from 

vehicles and roadway.  In this project real-world driving data were collected from roadways 

of Ann Arbor, Michigan through integrated safety devices and the radar-based data acquisition 

system that were developed by the Virginia Tech Transportation Institute (VRI). These data 

were obtained via the Research Data Exchange website. There were four types of vehicle 

equipment configurations used, referred as Integrated Safety Device (ISD), Aftermarket 

Safety Device (ASD), Retrofit Safety Device (RSD) and Vehicle Awareness Device (VAD) 

based on their purpose and ability to collect, record, transmit and receive different sets of 

information to and from vehicles.  

 

FIGURE 3.1 Safety Pilot Model Deployment Data Collection Location, Ann Arbor, 

Michigan, USA 

Sensors attached to these CVs continuously collected information, including vehicle 

ID, trip ID, GPS longitude, GPS latitude, GPS UTC time, in-vehicle brake status, in-vehicle 

headlight status, in-vehicle speed, in-vehicle acceleration, in-vehicle steering position, in-

vehicle throttle position, and in-vehicle yaw rate, amongst other types of information. From 

this large dataset, the top 550 trips (~4%), containing 7.94 million records in total (10.12%), 

were selected for this research by sorting the trips in descending order of available data records 

of each trip. Since bi-directional control decisions were taken to recognize the driving 

behaviors, the parameter representing both longitudinal and lateral driving features were 
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analyzed here, which includes leading headway, longitudinal acceleration of leading subject 

vehicle and leading vehicle, lane position of the subject vehicle and leading vehicle, time-to-

collision of subject vehicles, vehicle speed during lane-changing, yaw rate during lane 

changing, the duration of lane changing etc. Before going with recognizing driving behavior 

and classifying them for short-term and long-term, a preliminary analysis of obtained dataset 

was performed to apprehend the diversity as well as the significance of the data. This 

preliminary analysis not only helped to choose the predominant features for classification 

purpose but also assisted in later part of the research for setting simulation parameter values.  

3.4  Preliminary data analysis 

The preliminary analysis of sample dataset distributed the traffic dynamics into five major 

components which are: (i) Average speed, (ii) Extreme Acceleration-Deceleration, (iii) Lane-

changing yaw rates, (iv) Average time headway and (v) Lane changing duration. The 

following sub sections provide more details of each analysis components.  

3.4.1 Average speed 

The selected trips were divided into three categories based traversed road type through map 

matching using high frequency GPS location data. These three categories of road types were: 

freeway, arterial and ramps. Average speed of these trip segments was measured to identify 

the speed characteristics of drivers at different road type and their response to different speed 

limits. Figure 3.2(a) showed the density distribution of average speed of vehicles at three 

different road types. The distribution showed significant difference in speed characteristics of 

drivers for each road type. While freeway average speed distribution found to be more 

concentrated towards higher speed values, arterial histogram was more distributed over the 

range. Ramp speed distribution showed much more similarity with arterial distribution than 

freeway distribution. 
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FIGURE 3.2 (a) Average speed distribution of studied road types, (b) Boxplots for 

different speed limit in studied road types 

As evident from these figures, the speed distribution of each road type was significantly 

different. However, the difference came from varying speed limit in these roads. Also, the 

range of speed were found to be widely different from posted speed limit in same road type. 

In freeway, with lower posted speed limit (25m/s) experienced higher average free-flow speed 

than higher posted speed limit (28.89 m/s, 31.31 m/s) roadway segments (Figure 3.2(b)). 

According to the Highway Capacity Manual (HCM), the base free flow speed is estimated to 

be 2.2 m/s higher than posted speed limit. However, as observed from the obtained data, HCM 

suggested estimation did not held true for low-speed limit freeways. Findings from this 

analysis uncovered that, in mixed traffic scenarios, if the automated vehicles programmed to 

follow the speed limit, they will drive much slower than human driven vehicles, especially on 

freeways with slower speed limits. By driving slower than their counterpart, the automated 

vehicle may bring instability in traffic flow which can lead to mobility and safety issues. 

Analysis on arterial and ramp average speed showed relatively lower deflection from posted 

speed limits and followed HCM suggested estimation in most cases.  

3.4.2 Extreme Acceleration-Deceleration 

Decisiveness of a vehicle driver can be characterized by longitudinal acceleration and 

deceleration decisions. Longitudinal acceleration and deceleration profile also change for the 

same driver with the change of road type. In this analysis, the extreme acceleration and 

(a) 

(b) 
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deceleration values were measured and compared for different road types. For each driver, the 

extreme deceleration was defined as the deceleration stronger than 5 percentile and 

acceleration stronger than 95 percentile was defined as extreme acceleration. The distribution 

of extreme acceleration and deceleration of all drivers are shown in Figure 3.3 for each road 

type. The distributions are fitted with Generalized Extreme Value (GEV) distribution model. 

The parameter of the GEV distribution model include shape parameter k, scale parameter σ 

and location parameter μ. The probability function is shown below 

𝑓(𝑥|𝑘, 𝜎, 𝜇) = {

1
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FIGURE 3.3 (a) Extreme acceleration and (b) extreme declaration distribution in 

studied road types 

As portrayed in Figure 3.3(a), extreme acceleration distribution experienced more 

dissimilarity on different road types than extreme deceleration distribution. Additionally, 

human drivers have higher acceleration tendency in arterial (average = 1.17m/s2) than 

freeways (average = 0.76 m/s2). On the contrary, the extreme deceleration distribution was 

quite similar for all road types (average freeway = -2.83 m/s2, ramp = -2.71 m/s2, arterial = -

2.66 m/s2). Although, the range of extreme acceleration and deceleration on freeways were 

wider than other two road types. These information of human drivers’ extreme acceleration 

and deceleration characteristics as well as variations depending on road types will assist in 

decision making process of automated vehicle with better insights about anticipative response 

(a) (b) 
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in mixed traffic scenarios. The GEV distribution parameters for each road type are 

summarized at Table 3.1.  

Table 3.1 GEV distribution parameters for extreme acceleration and deceleration at 

studied road types 

Scenarios κ σ μ 

Freeway 
Acceleration 0.3813 0.1608 0.5174 

Deceleration 0.1573 0.4412 2.4741 

Arterial 
Acceleration 0.1466 0.1878 1.1457 

Deceleration 0.1569 0.3309 2.5065 

Ramp 
Acceleration 0.2641 0.173 0.7541 

Deceleration 0.1658 0.3968 2.4102 

 

3.4.3 Lane-changing yaw rate 

To assist in lane-changing decision making of automated vehicles as well as perceive the 

human lane-changing characteristics, it is essential to learn human lane-changing maximum 

yaw rate at different road types. The sampled SPMD dataset was filtered for lane-changing 

events (total 1793 lane-changing events) and maximum lane-changing yaw rate was measured 

for those events during lane changing. Figure 3.4 illustrates the maximum lane-changing yaw 

rate distribution for freeway and arterial roads. Since the identified lane-changing maneuvers 

in ramps were negligible (total 19 lane-changing maneuver), the yaw rate distribution for this 

road type was not developed. Distribution of maximum lane-changing yaw rate provided 

insights about dissimilarities of human driving aggressiveness at different road types during 

lane changing and how these discrepancies should be addressed and adjusted for automated 

driving design.  
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FIGURE 3.4 Maximum lane changing yaw rates distribution fore freeway and arterial 

roads 

As observed from the figure, the yaw rate distribution for freeways were much more 

concentrated toward lower yaw rate values. Additionally, the spread of distribution was 

comparatively narrower than arterial roads which indicates more homogeneity in lane-

changing behavior among drivers in freeways. On the other hand, the arterial road users were 

found to be more diverse with regards to lane changing. The distribution of maximum lane-

changing yaw rate was covered a wider range than freeway. Furthermore, the peak of the 

distribution was reached at a higher yaw-rate (1.25 deg/sec) than freeway (0.58 deg/sec).  The 

average maximum yaw rate of arterial lane-change (1.64 deg/sec) was much higher than the 

freeway lane change (0.61 deg/sec) which indicated that the drivers in arterial were more 

competitive than freeway for lane changing which could be explained by the fact that arterial 

roads usually have lower speed limits than freeways and enable drivers to execute fast lane 

changing without causing much safety concern.   
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3.4.4 Average time headway 

The VAD installed in test vehicles recorded the relative distance of leading vehicle from 

subject vehicle at all time steps. These leading space headways was converted into time 

headway of the subject vehicle by dividing with the speed of subject vehicle. Since constant 

time headway is frequently used in adaptive cruise control design, this parameter can provide 

some significant insights about human driving characteristics. Previous studies disclosed that 

the lognormal distribution offers the best fit for time headway distribution of human drivers 

(Yang and Peng, 2010). To model the time headway of distribution of the sample dataset, the 

average time headway for each road type was calculated and plotted in Figure 3.5. The 

distribution is fitted using lognormal distribution function. The average time headway for 

freeway driving was 1.4 sec with 0.29 sec standard deviations. This result conforms with 

previous studies (Branston, 1976; Dey and Chandra, 2009) which concluded that average time 

headway for vehicles in highway during car-following ranges between 1.3 sec to 1.6 sec. In 

this segment of analysis different posted speed limits on highway was unrecognized as an 

influencing factor. 

 
FIGURE 3.5 Average time headway distribution of studied road types 
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Similar distribution was plotted for arterial roads and ramps. The average time headway for 

arterial driving was 2.18 sec and standard deviation was 0.42 sec. Similarly, the average time 

headway for ramp was 1.87 sec with standard deviation of 0.54 sec. Since the analysis showed 

that human drivers’ time headway changes with traversing road type, the automated vehicle 

design needs to account for this characteristic too. In arterial road, human drivers maintain 

higher time headway due to expected stop and go situation at intersections. Since freeways 

provide uninterrupted flow of traffic, the drivers were more confident in maintaining lower 

time headway. The ramps acted as transitional segments where drivers adjusted their time 

headway to prepare themselves for downstream roadway type. These insights of average time 

headway will be valuable for precise representation of human driver and their behavioral 

variations in forthcoming microscopic simulation model.  

3.4.5 Lane changing duration 

Similar to previous analysis, the lane changing duration was also measured from sampled 

dataset. This analysis will be helpful in developing multilane modeling framework of traffic 

as it will require prevailing duration as input in the model to execute lane changing maneuvers. 

While lane changing durations may depend on numerous factors, like vehicle type, 

surrounding traffic state, relative position, velocity of subject vehicle, lane changing direction 

(i.e. to left or to right) etc., the influences of these factors were disregarded in this analysis to 

reduce complexity in measurements for this analysis and modeling complexity in later part of 

the research. For a specific trip, the duration of a single lane change was measured by 

calculating the time span between which the yaw rate was higher than average lane changing 

yaw rate of traversing road type. Identified lane changing events were also filtered with other 

data sources (i.e. lane track, turn signal) to establish effective lane changing events. Total 1793 

lane changing event was identified from sample dataset. Majority of the lane-changing 

maneuver was performed in arterial roads (1086-times, 60.57%) with only 19-times identified 

lane changing in ramps. Due to negligible number of lane-changing, the distribution for lane 

changing duration on ramps was not plotted. Figure 3.6 portrayed the lane changing duration 

distribution for both freeway and arterial roads from sample dataset.   
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FIGURE 3.6 Lane changing duration distribution of studied roads 

As observed in Figure 3.6, the lane changing duration of vehicles in arterial road was 

significantly lower from freeway. The average lane changing duration in arterial and freeway 

roads were 2.77 sec and 4.15 sec, respectively. The results from this analysis demonstrated 

that the human driver in arterial chose to execute change lane quickly and lower speed limits 

in arterial assist in some way to accomplish that goal. However, the speed limit in freeways 

were relatively higher which make the quick lane changing process a lot riskier than arterial. 

Additionally, as obtained from average time headway analysis, the vehicles at freeway are 

comfortable at driving a lower time headway then arterial which also restrict the opportunity 

to perform a quick lane change in between narrowly spaced vehicles. Finally, awareness 

obtained from this analysis will assist in developing microscopic modeling framework for 

lane changing vehicles.  

3.5  Behavioral Classification Methodology 

Grounded upon the preliminary analysis, the aim of this part of the research here is to 

categorize both short-term and long-term driving behavior. In this regard, I have chosen three 

recorded and derived driving features to represent bi-directional movement of vehicles and 

drivers’ control decision. These features will also be used to categorize human driving 

behavior in two temporal scale, short-term and long-term. While short-term classification 

represents a driver’s individual trip behavior, the long-term classification stands for an 
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individual driver’s driving habit, formulated from previous driving experiences. The 

classification of human driving behavior from sample dataset will be indirectly interpreted in 

microscopic modeling of human drivers in later part of the research.  

The link between behavioral classification of human drivers in two-time scales are 

established by utilizing same features are for both classifications. Furthermore, both 

classifications of driving behavior are based on a fixed duration (5 sec) moving window along 

the classification period. Short-term driving behavior is classified into two distinct classes, 

Safe Driving and Hostile Driving, as defined below:  

▪ Safe Driving: driving instances within a trip when the driver anticipates the 

surrounding roadway environment and subsequently executes composed control 

decisions.  

▪ Hostile Driving: driving instances within a trip when the driver fails to assess the 

surrounding roadway environment and subsequently compensates by performing 

impulsive and hazardous control decisions. 

The continuous accumulation of short-term classifications, gathered from trips in the 

driving history, facilitates long-term driver behavior classification. In this classification 

process, individual drivers are grouped into three categories, Calm Driver, Rational Driver, 

and Aggressive Driver, as defined below: 

▪ Calm Driver: their share of cumulative hostile driving instances over the analysis 

period is below the specified lower threshold value 

▪ Rational Driver: their share of cumulative hostile driving instances over the analysis 

period is within the lower and upper threshold value 

▪ Aggressive Driver: their share of cumulative hostile driving instances over the analysis 

period is above the upper threshold value 

3.5.1 Data preparation 

As mentioned earlier, the data of this part of the research are borrowed from SPMD project. 

However instead of large disordered, incomplete trip records, a sample of 550 trips with 

organized and complete record was filter from dataset. The top 550 trips (~4%) were selected 

for this research by sorting the number of available data records of each trip in descending 

order, which contained 7.94 million data records (10.12%). Exploration of the subset of large 

SPMD dataset not only reduce computational complexity but also facilitate interpreting the 
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obtained results. These sample trips traverse through all three types of road that has been 

considered in this study. Therefore, by all means this subset of large dataset represents the 

complete illustration of variation of driving behavior.  

Among different operational data collected though data acquisition systems of equipped 

vehicles, three features (i.e., Jerk, Yaw Rate, Leading Headway) were chosen for driving 

behavior classification. These three features were expected to represent longitudinal and 

lateral control decisions undertaken by individual drivers. As the first derivative of 

acceleration/deceleration and second derivation of velocity, jerk is a more effective feature 

than velocity and acceleration in driving behavior classification. Also, longitudinal and lateral 

decisions of individual driver are incorporated within this single feature. Yaw rate measures 

a vehicle’s lateral movement rate and characterizes driver’s lateral behavior. Measurements 

of leading headway stand for driver’s longitudinal control decision since the gap between 

vehicles is often dictated by car-following behavior. Therefore, the combination of these three 

mutually inclusive features can capture instantaneous variations of drivers’ longitudinal and 

lateral control decisions and, hence, assist in classifying drivers’ behavior in real-time. 

3.5.2 Driving Behavior Classification Algorithm 

The selected three features outlined above for classification were extracted from the 

chosen 550 trips. In addition to those three features, vehicle ID, trip ID, latitude, longitude, 

and time stamps were also included in the dataset, which were used to geographically locate 

the trip route and split the route based on road type. Figure 3.7(a) presents the segmentation 

of a sample trip from the dataset. Data points were placed on the map based on the longitude 

and latitude information of this trip. The same information was used to classify the sample 

trip in different segments based on the road types (i.e., arterial, ramp, freeway) traversed 

during the trip. Figure 3.7(a) utilizes three shades of blue to represent the three different 

classes of road considered in this study, as well as details of the different segments. Two pie 

charts within the figure illustrate the proportions of trip duration and trip length for each class 

of road gathered from the whole trip. The assumption that one can observe substantial 

diversity in the driving environment between freeway and arterial roads motivated this road 

type-based splitting of trips. Based on the understanding that driving behavior is directly 

influenced and impacted by the surrounding environment, classifying all driving behavior 
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using the same standards, even when the trip traverse’s different road types, would lead to 

erroneous categorization since it would ignore key factors that can change driving behavior. 

 Additionally, visual observations of classifying features showed significant disparity 

in behavior depending on road class. Figure 3.7(b) highlights the distinctions between the 

different road type features for the sample trip that was plotted on Figure 3.7(a). Plotted feature 

profiles on arterial roads showed greater fluctuations of feature values in comparison to 

feature profiles on the freeway. All three features showed higher ranges of variability when 

the trip was along arterials as compared to freeways. To emphasize the driving behavioral 

contrasts, each trip in the larger study was divided based on GPS location (i.e. longitude, 

latitude) into three road types: Freeway, Arterial, and Ramp. Features of the same road types 

were grouped together to classify short-term and long-term driving behavior. Altogether, 

66.20% (5.26 million data points), 31.76% (2.52 million data points) and 2.04% (0.16 million 

data points) data were labeled as freeway, arterial, and ramp, respectively from training dataset 

(550 trips).   

Once the features (i.e., jerk, yaw rate, leading headway) were sorted based on road 

types using the geolocation of each time stamp, the distribution of the features were plotted 

(Figure 3.8). The dataset of each road type was compared with the others by using an unpaired 

two sample t-test to justify the assumption of substantial disparity of features between road 

types. Comparison results of each pair (i.e., Freeway vs Arterial, Arterial vs Ramp, Freeway 

vs Ramp) presented significant difference (i.e., p-value < 0.0001) in the mean of each feature 

at 99% confidence level while assuming unequal variance of tested samples.  
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FIGURE 3.7 (a) Road type classification of a sample trip, (b) Contrast of driving 

features on different road type 

 

FIGURE 3.8 Distribution of chosen features for studied road types 

(a) 

(b) 
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Upon confirmation of attributional difference among road types, the absolute mean of 

each feature for the three road types was calculated and stored in a database. Next, the standard 

deviations of each feature for all trips with a moving window of  𝑡𝑐 = 5 sec (50 data points) 

were calculated. The coefficient of variation (CoV) was then calculated by dividing the 

measured standard deviations with the absolute mean of current road type within the time 

window (Equation 3.2). Since the CoV is the measure of relative variability, this statistical 

attribute of each driving feature was exerted when identifying hostile driving behavior for 

classification. As noticed from the distribution of jerk and yaw rate was similar to normal 

distribution. Hence, using standard equation for calculating CoV for these two features would 

be acceptable. On the other hand, since the distribution of leading headway did not follow 

normal distribution, using the same equation to calculate CoV for this feature would be 

flawed. It is perceivable from observation of the skewness that, the leading headway 

distribution could be fitted with log-normal distribution. Hence, instead of standard CoV 

calculation, geometric CoV was measured for leading headway feature. Although geometric 

CoV has no theoretical background as an estimate of standard CoV, the term was used in 

literature to be analogous to CoV.  

Finally, the CoV datasets of each feature were scaled within [0 1] range for each of 

the road types (Equation 3.3). Since the absolute values of studied features were significantly 

different, the classification was conducted using scaled (i.e. standardized) coefficient of 

variations instead. 

 𝐶𝑜𝑉𝑓(𝑡) =  {

𝑆𝐷𝑓(𝑡−𝑡𝑐,   𝑡)

�̅�𝑅
                 𝑓 = 𝑗𝑒𝑟𝑘, 𝑦𝑎𝑤 𝑟𝑎𝑡𝑒

√𝑒𝑆𝐷𝑓
2(𝑡−𝑡𝑐,   𝑡) − 1          𝑓 = 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 ℎ𝑒𝑎𝑑𝑤𝑎𝑦

                                            (3.2) 

𝐶𝑜𝑉𝑓
′(𝑡) =  

𝐶𝑜𝑉𝑓(𝑡) − 𝐶𝑜𝑉𝑓,𝑅
𝑚𝑖𝑛

𝐶𝑜𝑉𝑓,𝑅
𝑚𝑎𝑥 − 𝐶𝑜𝑉𝑓,𝑅

𝑚𝑖𝑛
                                                                                                    (3.3) 

Here, 𝐶𝑜𝑉𝑓(𝑡) = coefficent of variation of feature f (i.e. jerk, yaw rate) at time t; 

𝑆𝐷𝑓(𝑡 − 𝑡𝑐 ,   𝑡) = standard deviation of feature f within time 𝑡 − 𝑡𝑐 and t (𝑡𝑐 = 5𝑠𝑒𝑐); 𝑓�̅�= 

mean of absolute values of feature f at roadtype R; 𝐶𝑜𝑉𝑓
′(𝑡)= scaled coefficient of variation of 
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feature f at time t; 𝐶𝑜𝑉𝑓,𝑅
𝑚𝑖𝑛 = minimum coefficient of variation for feature f on current roadtype 

R; 𝐶𝑜𝑉𝑓,𝑅
𝑚𝑎𝑥 = maximum coefficient of variation for  feature f at current roadtype R. 

Once scaled, and the unlabeled CoVs of features were available, labeling methods of 

short-term driving behavior were explored using K-nearest neighbor (KNN), hierarchical 

clustering, and neural networks-self organizing maps as viable, partitioned clustering options 

for classifying behavioral features under the unsupervised machine learning method. Among 

other researchers, KNN was used to classify driving behavior (Johnson and Trivedi, 2011; 

Karginova, Byttner and Svensson, 2012). The efficiency of KNN in dealing with large datasets 

makes this method a perfect candidate for labeling unlabeled feature data. However, the output 

of KNN clustering failed to provide reasonable classification [Figure 3.9(a)]. The clusters that 

resulted from KNN were unable to represent explicit differences between two clusters. 

Increasing cluster size led to increased complexity in classification without proper explanation 

of individual cluster characteristics. Additionally, the clusters, specifically for freeway and 

arterials, were incapable of addressing the impacts of all three features in classification 

process. As a result of the irrational division of traffic features resulting from KNN, a much 

simpler rule-based classification approach was then examined. 

 

FIGURE 3.9 Labeling distinct features using (a) unsupervised learning and (b) rule-

based classification methods 
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Using the rule-based classification process, a threshold value of scaled CoV was 

chosen to label driving decisions. If the scaled CoV value of any of these three features was 

higher than the threshold value, the driving behavior for that time window was labeled as 

‘Hostile Driving’. In the process of labelling traffic behavior, different threshold values of 

CoV were explored to identify the sensitivity of the threshold value. The results indicated that 

reducing threshold value of scaled CoV would lead to a higher share of ‘Hostile Driving’. 

Therefore, staying within a conservative spectrum of behavior identification, a small threshold 

value of scaled CoV (0.3) was chosen [Figure 3.9(b)]. Followed by the labeling process, 

several supervised classification learner methods (i.e. logistic regression, discriminant 

analysis, support vector machine, decision tree) were employed with respect to the labeled 

training data to identify the best classifying model. Among the explored models with 10-fold 

cross validation, the decision tree model provided the highest accuracy (~100%) in correctly 

classifying training data for all road types. Hence, the trained decision tree model was used as 

the short-term classifier.  

The following summarizes the steps involved in labelling the training dataset to enable 

subsequent classification.  While the selected threshold for classifying behavior was the same 

for all types of roads (i.e. freeway, arterial, ramp), the threshold value was applied on scaled 

CoV values of studied features, derived by balancing different ranges of feature values into a 

common unit. As illustrated earlier in Figure 3.9, the ranges of these features were 

significantly different with respect to different road classes. Hence, the same threshold value 

on scaled parameters resulted in different CoV values for different road classes. In the end, 

the behavior-classifying limit remained the same for a specific feature on a specific road class 

and demonstrated a dynamic quality with changing road types as well as features. 
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Algorithm 3.1: Algorithm for Short-term Classification Learner 

1. Identified road type and CoV for corresponding road type within the 

time window [(t − tc),   t]  

2. An unlabeled training set, Su 
t = {(CoVf={jerk,ld.  headw.,yaw rate}

′ (t)}t=1
T  

Here, T = number of training instances.  

3. If CoVjerk
′ (t) | CoVld.  headw.

′ (t) | CoVyaw rate
′ (t) > threshold   then 

Driving Behaviorshort−term[(t − tc), t] = Hostile Driving 

Else CoVjerk
′ (t) | CoVld.  headw.

′ (t) | CoVyaw rate
′ (t) ≤ threshold   then  

Driving Behaviorshort−term[(t − tc), t] = Safe Driving 

Following from this, measured values of road type specific shares of ‘Hostile Driving’ 

on total driving instances were used to categorize long-term driving behavior. For instance, 

9.40% samples out of total training data demonstrated ‘Hostile Driving’ behavior while 

driving through arterial roads. To recognize long-term driving behavior on arterials for a 

specific driver, accumulated classified (i.e. safe, hostile) driving history was considered, and 

the share of cumulative hostile driving along arterial roads are compared with training ‘Hostile 

Driving’ shares. This analysis considered 0.5 as lower threshold and 1.0 as upper threshold to 

classify long-term driving behavior into Calm, Rational, and Aggressive driving behavior. As 

a result, if the cumulative ‘Hostile Driving’ share of a driver, along arterials, is less than 4.7% 

(=0.5×9.4%), then that driver would be classified as a ‘Calm Driver’ on that road type. On the 

other hand, if the same share increased above 9.4% on the same road type, then that driver 

would shift to an ‘Aggressive Driver’ on arterials. A similar process was followed to classify 

long-term behavior of drivers on other road types and total travel history.  

To provide further clarification of the long-term behavior classification process, a 

hypothetical scenario is presented here as an illustration, in the context of the algorithm that 

describes the process of long-term behavioral classification based on road types and overall 

driving history. Suppose a specific driver had made 30 trips, and the three feature values (i.e. 

jerk, yaw rate, leading headway) were collected, scaled, and stored according to the short-

term behavior classification process. Then, the average hostile driving proportion of these 30 

trips was measured for long-term behavior classification, using the three specified road types 
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(i.e. freeway, arterial, ramp) as well as overall trips. By analyzing this road user’s driving 

history of 30 trips, let us imagine that they showed average hostile driving behavior on 

freeway, arterial, and ramps for 5.17%, 4.27% and 11.84% of the total driving time, 

respectively. I would find that the average hostile driving share for total trips to be 2.95% 

when the total number of trips was evaluated for driving behavior. Once these values were 

obtained from the driver’s history, it would be compared with the stored road-specific and 

overall-average hostile driving shares of the training dataset. The average hostile driving 

shares of the training dataset would be 3.60%, 9.40%, 16.96%, and 5.79% for freeway, 

arterial, ramp, and total trip, respectively. Once calculated, these values would form the basis 

of road-type specific classification by comparing the driver’s hostile share with the training 

datasets hostile share. In this example, this driver’s hostile share on freeway (5.14%) was 

found to more than "1.0 ×hostile share of training data on freeway (3.60%)" , therefore, the 

driver’s long-term behavior, based on their driving history of 30 trips, had classified them as 

an ‘Aggressive Driver’ on freeways. Similarly, road-type specific, long-term classification 

would label this driver’s behavior on arterial, ramp, and total trips as a ‘Calm driver’ [ 4.27% 

< 0.5×9.40%], ‘Rational driver’[0.5×16.96%<11.84%<1.0×16.96] and ‘Rational driver’ 

[0.5×5.79%<2.95%<1.0×5.79%], respectively. Figure 3.10 presents the implemented 

classification algorithm in a flow chart to capture the progression of behavioral classification 

process. 

Algorithm 3.2: Algorithm for Long-term Classification 

1. Hostile driving shares from training dataset for each road type 

2. Accumulated road type specific hostility driving percentages and overall hostility 

driving percentages 

3. (a) Road-type Specific Classification 

If  %Hostile DrivingR < thresholdlower × %Hostile drivingR

training
 

then Driving Behaviorlong−term(R) = Clam Driver on road type ′R′ 

Else if thresholdlower × %Hostile drivingR

training
≤ %Hostile DrivingR ≤

thresholdupper × %Hostile drivingR

training
 

then Driving Behaviorlong−term(R) = Rational Driver on road type ′R′ 

Else if  %Hostile drivingR

training
> thresholdupper × %Hostile drivingR

training
 

then Driving Behaviorlong−term(R) = Aggressive Driver on road type ′R′ 
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Here, R = road type (i.e. freeway, arterial, ramp). 

3. (b) Overall Classification 

If ∑ %DrivingR ×R={freeway,arterial,ramp} %Hostile DrivingR) < thresholdlower ×

 ∑ %DrivingR

training
×R={freeway,arterial,ramp} %Hostile drivingR

training
  

then Driving Behaviorlong−term = Clam Driver  

Else if thresholdlower ×

 ∑ %DrivingR

training
×R={freeway,arterial,ramp} %Hostile drivingR

training
≤

∑ %DrivingR ×R={freeway,arterial,ramp} %Hostile DrivingR) ≤ thresholdupper ×

 ∑ %DrivingR

training
×R={freeway,arterial,ramp} %Hostile drivingR

training
  

then Driving Behaviorlong−term = Rational Driver 

Else if ∑ %DrivingR ×R={freeway,arterial,ramp} %Hostile DrivingR) >

thresholdupper × ∑ %DrivingR

training
×R={freeway,arterial,ramp} %Hostile drivingR

training
  

then Driving Behaviorlong−term = Aggressive Driver 

 

FIGURE 3.10 Flow chart of the driving behavior classification algorithm 

3.6  Model Variability 

Variability is an operative dimension of behavior which are often controlled by reinforcers 

like surrounding responses, environment, topography, frequency etc. One of the key 

constraints of the developed model is disregarding the inputs of reinforcers in behavioral 
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variability of human drivers. As a result, the developed model might generate dissimilar 

identification and classification of driving behavior once these inputs from exogenous factors 

are considered. These exogenous factors could vary widely in nature and so would the 

behavior classify model’s outputs. Since the objective of this part of the research was 

developing a simple model for classifying driving behavior considering bi-directional 

features, the complexity induced from exogenous factor variability were disregarded at this 

stage of development. However, the proposed model can be extended in the future by 

incorporating these reinforcers as inputs in the models to attain more reliable behavioral 

classification. 

Another critical assumption made in the development of this behavioral classification model 

was regarding driving feature outputs (i.e., jerk, leading headways, yaw rates) as direct 

representation of drivers’ behavior. While these outputs were generated from control decisions 

taken by drivers, they were translated and adjusted through multitudes of mechanical 

transformation prior to yield these driving features. Hence, these features were not necessarily 

a direct portrayal of individuals diving behavior rather adjusted responses from observed 

driving environment and to achieve idiosyncratic aspiration.  

3.7  Performance Evaluation 

The generated classification models from the training data were executed on ‘test trips’ to 

classify driving behavior. To qualify as a ‘test trip’, those with the highest number of 

datapoints (20% of training trips) were selected among the remaining 110 trips on the database 

(except trips used for training purposes), which suggested that they were long and thus 

expected to contain the most diverse behavioral variations. The same time window of 5 sec 

(50 data points) was maintained to reshape classification features data. The proposed 

classifying model categorized the selected test trips for both short- and long-term. The 

obtained hostility instances for the total number of test trips varied between 1.45% to 18.53% 

with a mean of 5.67%. The short-term classification of all the trip segments for a sample test 

trip is shown in Figure 3.11 which displays driving road types, the classification features’ CoV 

profiles, and hostile driving instances during a 28min 23.7 sec long trip (341-time stamps). 

All 110 trips were categorized, with the short-term driving behavior classifier following the 

same process for specific road types and total trips.  
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FIGURE 3.11 Short-term driving behavior classification of a test trip. 

Although the classifying model identified hostile driving behavior through 

longitudinal and lateral feature recognition, the precision of identified behavior had yet to be 

tested. To do so, the velocity and acceleration profiles of each trip as were taken explicit 

identifiers of hostile behavior.  Then, mean velocities within a predetermined time window 

were measured and compared with the corresponding road type’s speed limit. Subsequently, 

the time stamps with mean velocities higher than 10 miles above speed limits were labeled as 

‘Hostile Driving’ instances. As a result, this classification method only used the speeding 

behavior of the driver. A second process measured the acceleration range of each time window 

determined from the classification by acute acceleration change. Time stamps with an 

acceleration range higher than 2.5 m/s2 were labeled as ‘Hostile Driving’ behavior. Both 

explicit classification measures (i.e. classification by speeding, classification by acute 

acceleration change) were compared with the model classification output (i.e. short-term 

driving behavior classification) to evaluate the behavioral disparity identification capability 

of the proposed method. Figure 3.12 presents a sample trip behavior classification using the 

aforementioned methods. 

For the sample trip, comparison of short-term behavior classifications from the 

generated classifying model using speeding-based classification provided 87% accuracy. 

Similar comparisons with acute acceleration-based classifications presented 84% precise 
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behavioral identification. Another analysis of speeding instances identification revealed that 

the proposed short-term classifying model accurately identified 19 out of 23 speeding 

instances as hostile driving behavior for the sample trip. Similarly, 17 out 25 instances are 

identified though short-term classification while comparing with acute acceleration change-

based classification. The identification accuracy for all 110-test trips in comparison to the 

speeding-based classification was, on average, 86.31%, with a standard deviation of 9.84%. 

Likewise, the comparison with the acute acceleration change-based classification presented 

an 87.92% average accuracy with 10.04% standard deviation. 

 
FIGURE 3.12 Evaluation of (a) proposed classification method in comparison to (b) 

speeding-based classification, (c) acute acceleration change-based classification. 

The short-term classification based on multiple driving features was further compared 

with the classification process proposed by Murphey et al. (Murphey, Milton and Kiliaris, 

(a) 

(b) 

(c) 
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2009) to demonstrate the aptitude of  the proposed methods in identifying behavioral 

extremity. Murphey et al. (Murphey, Milton and Kiliaris, 2009) proposed a single feature-

based (i.e. jerk) classification of driving behavior into three groups (i.e. calm, normal, 

aggressive). The division of the groups were founded on threshold values of jerk profiles CoV 

(e.g. CoV of a time window < 0.5 then driving behavior = calm, 0.5< CoV of a time window< 

1.0 then driving behavior = normal, 1.0 < CoV of a time window then driving behavior = 

aggressive).  

 

FIGURE 3.13 Behavioral classification of a sample trip by (a) analyzing jerk feature 

and (b) analyzing multiple driving features 

(a) 

(b) 
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To measure the CoV, the average jerk value was measured on different road types and 

at different levels of service from 11 standard drive cycles. Figure 3.13(a) shows the 

classification of the sample trip by method in (Murphey, Milton and Kiliaris, 2009), and 

Figure 3.13(b) shows the classification of the same trip by method proposed in this paper. 

The average jerk for level of service C on a freeway, CD on arterial and ramps values were 

chosen to follow the jerk-based classification as these levels of services are usually expected 

in these road classes. Classification of the sample trip by the proposed method identified 

13.09% of driving as hostile driving instances during the trips by analyzing three features, 

whereas classification by the method of Murphey et al. (Murphey, Milton and Kiliaris, 2009), 

identified 6.92% of driving as aggressive driving instances. Therefore, the additional features 

were capable of increasing the identification of hostile driving instances by just under 47%. 

Notably, the average jerk value used for calculating CoV was different for both methods, 

resulting in different jerk profile scales. Additionally, in contrast to the method in (Murphey, 

Milton and Kiliaris, 2009), the proposed method had a different threshold for different road 

types, generated by analyzing the training dataset.  

To illustrate the long-term, behavior classification functionality of the proposed 

classifying process, the previously classified 110 test trips were presumed to be driven by the 

same driver at separate times. This assumption was necessary since the demographic 

information about the drivers making the trips in this dataset was inaccessible. As such, it was 

impossible to link the data with a specific driver. Taking this assumption into consideration, 

hostility shares on both specific road types and total trips were measured on the short-term 

classification. The hostility proportions of each trip were also compared with the training 

data’s hostility proportions and classified into Calm, Rational, and Aggressive driving 

behavior by scaling training hostility shares with the lower threshold (0.5) and upper threshold 

(1.0). Long-term categorization was performed by measuring the moving averages of hostility 

shares (including all previous trips) and by matching that measurement with the hostility limits 

(< 0.5: Calm, 0.5 −  1.0: Rational, > 1.0: Aggressive) of three groups (i.e. calm, rational, 

aggressive). Figure 3.14 illustrates both types of test trip classification for specific road types 

as well as for the total trip. Each blue dot on the plots of Figure 3.14 represent the hostility 

proportion of each trip that could be utilized to perform short-term classification. The red 

curve on the plots portrays the progression of driver behavior by taking all previous trips into 
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account (moving averages of blue dots). Different color patches (i.e. yellow, green, red) on 

the plots illustrate the boundary regions of specific behavioral classes (i.e. calm driver, rational 

driver, aggressive driver). While individual trip hostility fluctuated frequently, the behavioral 

progression in long-term was relatively stable and only changed gradually over time. 

 

 
FIGURE 3.14 Illustration of long-term classification for individual trips and resulting 

accumulated trips. 

The proposed method of long-term classification was capable of identifying the 

changing patterns of driving habits for the number of total trips and road type specific habits. 

In Figure 3.14, the total trip hostilities of the accumulated trips were highly weighted towards 

to freeway hostility, which suggests that the largest portion was traversed though freeways. 

Moreover, the comparison between freeway and arterial hostility shares demonstrated higher 

long-term behavioral variability on arterial roads (standard deviation = 1.48%) than on 

freeways (standard deviation = 0.84%). The paired sample t-test on long-term freeway and 

arterial hostility showed significantly lower hostility on freeways at a 95% confidence interval 

(t-score = 29.557, p-value < 0.001). The obtained comparison result did not necessarily mean 

that the driver was more aggressive on arterials than freeways, since the classifying threshold 

for freeways was different. As a result, the long-term behavior on arterials graduated from 

‘aggressive’ to ‘rational’, even with higher hostility than on freeways. Since ramp road-types 
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had a relatively low share (2.5% in average) on total test trips, the influence of long-term ramp 

hostility on total trip hostility was discarded for comparison. 

The identified hostility categorization of the 110 test trips was further analyzed to 

reveal short-term behavioral distribution on different road types. As shown in Figure 3.15, the 

hostility behavior was different from one road type to another. For instance, freeway hostility 

was skewed towards the origin, with the highest proportion lying between 2.5-5.0%. This 

skewness towards lower hostility could be explained by the fact that drivers, in general, tend 

to operate with less variations in control while driving on freeways. Whereas, the probability 

distribution of arterial hostility was relatively balanced over a larger range of hostility (0-

27.5%). The driver had to experience more frequent disruptions, due to geometry, traffic 

control measures etc., while driving through arterials that could result in such diverse hostility 

patterns on arterials. Similarly, ramp hostility showed a central tendency towards the median. 

Since ramps are connecting links between freeways and arterials, the hostility pattern in this 

transitional phase is expected to be influenced by both road types’ distribution. A paired, two-

sample t-test between the measured hostility ranges was carried out in order to identify 

significant dissimilarity in behavior on distinct road types. The results of the t-test showed 

that the hostility behavior on a specific road type was significantly different from other road-

types with a 99% confidence level. 

 

FIGURE 3.15 Hostility distribution for test trips on different road types 

3.8  Correlation between behavioral classification and parameters of motion dynamics 

Following the evaluation of proposed classification method, I attempted to correlate the 

identified short-term driver behavior with aforementioned parameters of motion dynamics. In 
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this regard, random sampling from 550-trips were made to generate 10 subsets with 110 trips 

in each subset. For each subset, the average hostility percent was measured after all the trips 

were classified through short-term classification. Additionally, average speed, extreme 

acceleration, extreme deceleration, lane changing yaw rates, average time headway and lane 

changing duration was calculated and mean value measured for both freeway and arterial road 

types. The purpose of this analysis was to demonstrate that these parameters could be 

connected with average hostility of traffic. Obtained parameter values and % hostility values 

are presented in Table 3.2 for freeway and Table 3.3 for Arterial.  

Table 3.2 Average Hostility and traffic flow parameters of freeways for analyzed 

sample subsets 

Subset 
% 

Hostility 

Average 

speed 

(m/s) 

Extreme 

acceleration 

(m/s2) 

Extreme 

deceleration 

(m/s2) 

Lane 

changing 

yaw rates 

(°/s) 

Average 

time 

headway 

(s) 

Lane 

changing 

duration 

(s) 

1 4.53 30.53 0.341 -3.576 0.473 1.44 4.29 

2 4.88 28.59 0.470 -2.345 0.402 1.54 4.29 

3 5.34 30.92 0.383 -2.511 0.413 1.34 4.22 

4 5.67 29.65 0.396 -3.072 0.416 1.47 4.27 

5 5.94 32.23 0.542 -2.594 0.332 1.42 4.30 

6 6.47 31.06 0.509 -2.078 0.348 1.32 4.29 

7 7.81 30.62 0.424 -2.589 0.352 1.33 4.22 

8 8.18 28.90 0.269 -3.134 0.356 1.29 4.16 

9 8.26 28.07 0.408 -2.535 0.284 1.28 4.17 

10 8.52 27.62 0.246 -2.831 0.294 1.35 4.22 

 

Table 3.3 Average Hostility and traffic flow parameters of arterials for analyzed 

sample subsets 

Subset 
% 

Hostility 

Average 

speed 

(m/s) 

Extreme 

acceleration 

(m/s2) 

Extreme 

deceleration 

(m/s2) 

Lane 

changing 

yaw rates 

(°/s) 

Average 

time 

headway 

(s) 

Lane 

changing 

duration 

(s) 

1 5.34 14.01 1.301 -2.476 1.592 2.18 2.87 

2 5.89 14.24 1.220 -2.442 1.741 2.12 2.76 

3 6.17 14.93 1.258 -2.384 1.517 2.27 2.82 

4 6.54 16.35 1.174 -2.510 1.498 2.21 2.74 

5 6.73 15.21 1.085 -2.397 1.636 2.03 2.63 

6 7.19 16.44 1.209 -2.296 1.291 2.10 2.65 

7 7.25 15.94 1.131 -2.549 1.441 2.09 2.68 

8 7.80 15.43 1.138 -2.330 1.302 1.97 2.69 

9 8.29 16.55 1.117 -2.500 1.426 2.048 2.647 

10 9.13 14.04 1.255 -2.628 1.450 2.301 2.704 
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Different machine learning models were passed through these parameters as input and % 

hostility as response to develop a regression model which can be used to estimate expected % 

hostility from measured parameter values. For freeway, quadratic support vector machine was 

found to be best fit of the data (RMSE= 0.672, R2= 0.83, MSE= 0.451). Cubic support vector 

machine provided the best fit for arterial data (RMSE = 0.053, R2 = 0.63, MSE = 0.003). With 

these models, we could measure the traffic flow parameter values (i.e. average speed, extreme 

acceleration, extreme deceleration, lane changing yaw rates, average time headway and lane 

changing duration) for specific road types to estimate the hostility of traffic. However, 

prediction traffic hostility was not the goal of this analysis. The whole idea was to not develop 

a prediction model for estimating traffic hostility from traffic flow parameters but to confirm 

the presumption that traffic flow parameter could be influenced by the driving behavior. Low 

RMSE and MSE value with high R2 values of the developed models for both road types proved 

that postulation with high level certainty.   

3.9  Future Extensions 

Since the major motivation of behavioral classification lies in pursuing drivers to maintain 

safe driving patterns, providing real-time feedback on driving style is imperative to harness 

the benefits from driving behavior classification. With the assistance of connected vehicle 

technology and smartphones, identified instantaneous hostile driving behavior information 

can be conveyed to drivers through a user friendly ADAS interface, designed to easily 

communicate both short-term and long-term behavioral classification information (Figure 

3.16).  Detected hostile behavior through short-term classification can be announced by a 

verbal and visual warning. Figure 3.16(a) provides an interface design for this purpose. The 

yellow circle in the middle would start blinking once hostile driving behavior is detected, 

thereby providing the driver with a visual warning. Additionally, a verbal warning can be 

issued (alarm sign on the picture). Other information can also be provided through same 

interface. This real-time warning system is assumed to induce cautiousness in drivers and, 

hence, promote safe driving behavior. In addition to the real-time response, the driving habits 

of individual drivers can be tracked through long-term classification. At the end of each trip, 

classified trip characteristics could be stored in a database to facilitate long-term behavioral 
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classification. Previous classified trip history can be analyzed through the long-term classifier 

and conveniently displayed on the interface to identify both road type-specific and overall 

driving habits (Figure 3.16(b)). The left most dial in Figure 3.16(b), shows the overall long-

term behavioral classification from the trips within the time range where the Yellow region 

indicates ‘Calm’, Green region indicates ‘Rational’, and the Red region represents 

‘Aggressive’ driving behavior. The indicator arm of the dial gauge in this diagram lies within 

yellow and green regions suggesting that this driver’s behavior falls within ‘Calm’ and 

‘Rational’ driving behavior. Other three gauges in Figure 3.16(b) shows road type-specific 

long-term driving behavior and trip shares on each road type [value at the bottom right corner 

of each gauge].     

 
FIGURE 3.16 Abstract ADAS interface for communicating (a) real-time warning, (b) 

long-term behavioral information to drivers. 

Detected long-term driving behavior can assist road traffic operation and safety 

authorities, insurance companies, and other associated organizations to offer incentives for 

‘Rational driving’ as well as to penalize ‘Aggressive Driving’ as an approach to promote safe 

driving on roadways. An extension of this research is to develop a smartphone application to 

detect and broadcast driving behavioral information to drivers in real time. Furthermore, the 

application could store both short-term and long-term driving history and analyze the effects 

(a) 

(b) 
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of ADAS on driver’s behavior and habit.  The goal of the analysis would be to determine the 

ADAS’ effectiveness in stimulating shifts in driving behavior.    

3.10  Concluding remarks  

This study presents a simple, efficient, and adaptable driving behavior classification technique 

developed by analyzing both longitudinal and lateral driving features collected though 

connected-vehicle technology from real-world trips. The thresholds of the proposed 

classification method can be modified to accommodate driver type classification for 

authorities’ purposes and requirements. With the consideration of both longitudinal and lateral 

features of driving, the proposed method has greater capacity to sense unsafe driving behavior 

as compared to singular feature-based classification methods. This study took a unique 

approach by distinguishing between driving behavior and driving habit as well as classifying 

drivers’ behavior from both behavioral and habitual contexts. As such, this study worked 

around the concept of instantaneous behavioral classification and used that information to 

categorize drivers’ driving habits. Authorities considering behavioral classification are not 

only interested in immediate contextual driver responses but also in a driver’s driving style 

that may reveal safety hazards that they may cause, and the extent of safety risk taken by 

allowing them to continue driving. This study covers both aspects of required classification to 

facilitate authorities’ decision-making processes regarding the reward or penalty to drivers for 

their driving behavior.  

Although this research brought a different perspective in driving behavior 

classification research, the research attempt was constrained by some imperative limitations. 

To begin with, the demographic information was unavailable in the dataset which restricted 

to connect driving features with individual driver. A principal assumption of this study was 

considering selected driving features to represent driving behavior which might not always be 

true, but practical to perform such comprehensive studies. The mechanical components of 

vehicle refined the behavioral action (i.e., braking, accelerating, following) by driver when 

those were translated into driving features (i.e., jerk, leading headway, yaw rate).  

Furthermore, the influence of exogenous factors other than different road types were 

disregarded in the classification model development. Hence, some hostile driving events could 

account for exogenous factors like weather conditions, surrounding traffic, roadway geometry 

etc. and not represent driving behavior of an individual. Testing the applicability of developed 
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model on a sample dataset (e.g., from SPMD data, from field-test data etc.) with clearly 

defined hostile events and contributing factors could further refine the model. Lack of testing 

data restricts the applicability and transferability of developed model.  

While this research was limited to three distinct features in the form of continuous 

variables to illustrate longitudinal and lateral decisions, other features could also be studied to 

identify more significant markers of characterization.  Furthermore, partial datasets of the 

large SPMD database were analyzed in this study to demonstrate the classification technique. 

Since the primary aim of the study was to propose and present a simplified classification 

technique, potential bias of analyzed datasets has been ignored. In brief, this study is an 

attempt to gain insight into driving behavior and habit though a simple categorization process 

that considers both longitudinal and lateral control decisions. Furthermore, this study is 

extension-ready with respect to ADAS design and its impact on driving behavior and habit 

modification. 

This segment of research acknowledged and identified the behavioral diversity of 

human drivers based upon naturalistic driving data. Comprehending behavioral heterogeneity 

provided the foundation upon which to build this research and to address the established 

research question. The following research on mixed traffic dynamics then drew upon the 

required parameter values of human driving gained from this study to establish realistic 

scenarios for simulation. Since attaining such diversified experimental cases of mixed traffic 

would be unfeasible from real-world traffic, the insights obtained from this study would be 

instrumental in developing simulated platform to recreate naturalistic traffic conditions. 
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CHAPTER 4 : PARTIAL MOTION DYNAMICS OF MIXED TRAFFIC AND 

RESULTING MOBILITY AND SAFETY IMPLICATIONS 

4.1 Introduction 

After the analysis of driving behavioral variations in previous chapter, this chapter of 

dissertation shifts the focus of the research in developing the foundation for mixed traffic 

modeling. This chapter engages in measuring the resulting mobility and safety influences 

through interpretable parameters while establishing the car-following component of vehicle 

motions for both vehicle types in a modeling structure. Although both HuVs and AuVs car-

following models are utilized in the modeling framework, the parameters for both vehicle 

types are kept constants for all simulated scenarios to eliminate interpretational complexity 

from mobility and safety characteristics.  

The integration of connectivity and automated control systems into vehicles is at the 

technological forefront when addressing key transportation concerns such as diminished trip 

delay, fuel efficiency, reduced emission, and enhanced safety of road traffic. Although a fully 

automated vehicle-based traffic stream could take decades to become a reality, a gradual 

increase of automated driving system-based vehicles, in both market share and traffic stream 

composition, would facilitate gradual and nuanced insight into the potential gains from these 

technologies. Thus far, however, varied perceptions of mixed traffic streams and their 

collaborative motion dynamics have hindered both researchers and practitioners from 

progressing with these technologies. Furthermore, the ideal composition of automated 

vehicles and conventional traffic remains elusive. In response to these problems, this study 

proposes a simple yet effective car-following strategy for mixed traffic stream and measures 

its impact on mobility and safety. Additionally, the car-following strategy involves platoon 

development in a Connected-Automated Vehicle (CAV) environment, and the study explores 

various platoon configurations to determine platoon parameters at different traffic states to 

obtain maximal benefits.  

Numerous and important studies have been conducted to interpret the complex 

dynamics of combined traffic movements (Bekiaris-Liberis et al., 2017; Chen et al., 2017; 

Fakharian, 2016; Ghiasi et al., 2017; Liu et al., 2017; Talebpour & Mahmassani, 2016). While 
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these studies have addressed the degree of impact made by automated driving technologies 

through simplified to complex macroscopic and mesoscopic modeling, the present study 

addresses the need for the modeling of microscopic car-following behavior in heterogeneous 

traffic, necessary for the study macroscopic consequences on mobility and safety.  With that 

intention, the objective of this part of the research is to provide insights into distinct forms of 

impact whilst simulating automated-control-enabled vehicles in homogenous roadway 

segment and distributions along traffic stream.  These insights into mixed traffic movements 

and platoon characteristics should facilitate future considerations of otherwise under-studied 

aspects of mixed traffic dynamics (e.g., lane-changing, gap acceptance, merging etc.) in order 

to properly assess the benefits of automated-vehicle integration. Furthermore, traffic 

operational authorities can take the findings presented here into account to impose different 

control strategies (e.g., dynamic aggregated controls for manually driven vehicles, dynamic 

personalized controls on connected vehicles etc.) on traffic to attain maximum improvements 

with regards to reduced travel time, collision rates, greenhouse gas emissions etc. The 

rationale behind exploring the car-following strategy of mixed traffic separately supported by 

the fact that car-following is the principal state of driving irrespective of vehicle types, driver 

and traffic state. Majority of the travel time is spent on following other vehicles on the road 

while driving. Due to their absolute domination in comparison to other vehicle maneuvers (i.e. 

lane-changing, gap acceptance), car-following models are often expanded to develop 

macroscopic traffic flow model which are supposed to precisely resonate the traffic states of 

roadways. Although in later part of this research I will address this contentious assumption 

about car-following, for now, this study will particularly emphasis on microscopic car-

following approach in mixed traffic scenarios and interpreting the resultant mobility as well 

as safety repercussions in macroscopic range.  

This chapter of research is organized as follows: a car-following strategy for mixed 

traffic is proposed and described in the following section. The description of simulation 

procedures, as well as the discussion on obtained results, are covered respectively in the two 

subsequent sections. The analysis of simulation results include recognizing the impact of 

AuVs location and distribution on traffic operation as well as impact on selected mobility and 

safety parameters. Following on, the subsequent section proposes an approach to obtain 
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dynamic optimal platoon configuration for specific traffic state. The final section provides the 

synopsis of findings of the study as well as recommendations for future research.  

4.2 Partial Motion Dynamics Model for Individual Vehicle 

Interactions and behaviors of vehicles at microscopic levels have macroscopic 

implications. Parameters like maximum accelerations, comfortable decelerations, desired 

headways etc. are directly linked to traffic mobility and safety aspects because they factored 

in large scale estimation and can have both positive and/or negative effect. Car-following 

models provide individual vehicles’ acceleration from dynamic interactions with adjacent 

vehicles, control constraints to generate velocity and position to determine vehicle trajectory. 

The car-following models of vehicles in mixed traffic was schemed here to simulate real-

traffic movements. As mentioned earlier, the existence of two types of vehicles driving system 

was considered for combined traffic. The proposed driving strategy identified all potential 

combinations of leading vehicle and subject vehicle based on driving systems to determine 

suitable car-following models.  

The proposed car-following mechanism presumed that HuVs would maintain 

conventional car-following behavior irrespective of the leading vehicle’s driving system 

[Figure 4.1]. In this regard, intelligent driver model (IDM) (Treiber et al., 2000) was chosen 

to represent human drivers’ car-following behavior. Extensive applications of this model 

across different studies developed this model as a perfect example to simulate HuVs’ car-

following behavior. An enhanced version of traditional IDM was used to determine a realistic 

longitudinal control decision of HuVs (Equation 4.1). Discretized kinematic equations were 

used for all vehicles irrespective of the driving system to determine vehicle’s velocity and 

position (Equation 4.2 & 4.3).  

�̇�(𝑡 + ∆𝑡) = 𝑎

[
 
 
 
 

1 − (
𝑣(𝑡)

𝑣0
)
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− (

𝑠0 +max [0, 𝑣(𝑡) × 𝑇 + 
𝑣(𝑡) × ∆𝑣(𝑡)

2√𝑎𝑏
]

𝑠
 )

2

]
 
 
 
 

             (4.1) 

𝑣(𝑡 + ∆𝑡) = 𝑣(𝑡) + 𝑎(𝑡) × ∆𝑡                                                                                                       (4.2) 

𝑝(𝑡 + ∆𝑡) = 𝑝(𝑡) + 𝑣(𝑡) × ∆𝑡 +
1

2
𝑎(𝑡) × ∆𝑡2                                                                          (4.3) 
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Where,  �̇� = acceleration of vehicle (m/s2) , v=velocity (m/s), 𝑝= vehicle position (m), 

𝑎= maximum acceleration , 𝑣0=desired velocity, 𝑠0=leading gap at jam density (5m), 

𝑏=desirable deceleration, ∆𝑣=velocity difference with leading vehicle, 𝑇=desired headway. 

Chapter 2 provided a detailed prospects of human driving behavior which assisted in 

determining the parameter values of car-following model. For instance, the desired velocity 

was taken as a random normal variable which ranges between speed limit and 5 m/s above 

speed limit for a specific driver. Desirable deceleration was taken as -3m/s2 which was similar 

to the average extreme deceleration value for freeways (-2.83 m/s2). To maintain the common 

practice, same value of maximum acceleration value was adopted (3 m/s2). Finally, the desired 

headway was taken as a log normally distributed variable with average of 1.4 sec and standard 

deviation of 0.3 sec which was similar to acquired intelligence from Chapter 2.  

To demonstrate the car-following mechanism of AuVs, both ACC and CACC based 

car-following were implemented. A human-driven leading vehicle would prompt the AuV to 

follow ACC with relatively high desired headway. Provided that the leading vehicle was an 

AuV, the subject vehicle would choose CACC based car-following with relatively lower 

headway between vehicles which would lead to form a platoon of AuVs. Whether the subject 

vehicle would join the CACC platoon depends on the leading vehicle’s platoon ID. Platoon 

ID is an identification number assigned to an AuV that represents its order of position in the 

platoon. If an AuV is a part of a platoon, it will have a fixed platoon ID, otherwise it’s platoon 

ID will contain a platoon ID = 0 (zero). While travelling through roads, the built-in 

communication technology of AuVs would enable them to identify the leading vehicles 

driving system as well as platoon ID.  If the platoon ID of the leading vehicle was equal to the 

Maximum Platoon Length, then the subject vehicle would form a new platoon by maintaining 

Inter-platoon Headway and as a leader of the new platoon. In addition, if the leading vehicle’s 

platoon ID was lower than Maximum Platoon Length, the subject vehicle would join the 

platoon by maintaining Intra-platoon Headway. I adopted the ACC and CACC car-following 

models developed in (Hu et al., 2017). The accelerations of the subject vehicle were 

determined with respect to relative position and velocity. The following equation was used to 

determine the acceleration of the subject vehicle: 

�̇�(𝑡 + ∆𝑡) = 𝑘1(∆𝑝(𝑡) − 𝑣(𝑡) × 𝑇 − 𝑠0) + 𝑘2∆𝑣(𝑡)                                                               (4.4) 
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Where, 𝑘1, 𝑘2 = control constants for relative distance and speed respectively (𝑘1, 𝑘2 >

0),  ∆𝑝(𝑡)= position difference with leading vehicle. The stability of the proposed ACC 

system was proved in (Hu et al., 2017). Suitable 𝑘1, 𝑘2 values were chosen according to (Hu 

et al., 2017) to implement realistic simulation accounting for the sensitivity of these factors. 

Similar approach of dual consensus was taken by Wang et al. (Wang et al., 2017) where both 

position and velocity consensus were considered to determine acceleration/deceleration 

decision. While both ACC and CACC car-following model used Equation (4.4) to determine 

acceleration values for AuVs, higher desired headways (𝑇=1.25 sec) distinguish ACC mode 

with CACC mode (𝑇≤ 1.0 sec).  

 
FIGURE 4.1 Proposed car-following strategy for mixed traffic 

4.3 Simulation Process 

A microscopic simulation structure was built on MATLAB to replicate vehicles’ motion on a 

two-lane directional highway. Simulating only car-following strategy without involving lane-

changing and/or gap acceptance maneuver allowed me to establish a single lane traffic stream 

without interruptions of any form. The simulation environment was grounded on numerical 

analysis-based car-following behavior. All previously mentioned motion dynamic equations 

were coded to follow proposed car-following strategy. A stream of 20 vehicles following a 

controlled leading vehicle was simulated for numerous scenarios. The time headways between 

Leading Vehicle  
& Subject Vehicle 

AuV & AuV 

AuV & HuV 

HuV & AuV 

HuV & HuV 

IDM 

CACC 

ACC 

IDM 



 

80 
 

the vehicles in traffic stream were manipulated to simulate distinct traffic flow rates. In the 

simulation environment, the acceleration of the first vehicle was controlled consciously to 

generate multiple shockwaves and to observe the reaction of the vehicles behind it. Each 

simulation ran for 1000-timesteps and 20 times for each scenario. The desired headway (T) 

for HuVs was considered as a log normally distributed random variable with mean value of 

1.4 sec and standard deviation of 0.30 sec. The value of this distribution of desired headway 

was similar to obtained mean time headway and standard deviation for freeway driving by 

human drivers from previous chapter.  Multiple runs for each scenario were executed to ensure 

that the obtained outcome was free from anomaly. The average value of 20 runs were listed 

for analysis.  

In the beginning of the simulation, the first vehicle was travelling at 25 m/s for 210-time 

steps, then accelerated at 1.67 m/s3 rate for 60-time steps followed by steady state 

(acceleration/deceleration rate = 0 m/s3, velocity = 35 m/s) for 120-time steps. Finally, the 

controlled vehicle at front decelerated again at 1.67m/s3 rate for 60-time step to regain 25m/s 

velocity and moved with constant velocity for the remaining time steps. Since the simulation 

setup did not allow any vehicle to perform lane-changing maneuver, all the vehicles in traffic 

stream had to follow the first vehicle and its trajectory based on characteristics of their own. 

The combinations generated from the following variables sets were simulated to represent 

various traffic states encountered in roadways as well as to identify the variations on 

improvements obtained by introducing the AuVs in the connected automated vehicle (CAV) 

environment: 

A. Initial Flow rate (veh/hr):    (i) 1400, (ii) 1800, (iii) 2400 

B. AuV Market Share (%):    (i) 25, (ii) 50, (iii) 75 

C. Maximum Platoon Length (vehicle):  (i) 3, (ii) 4, (iii)5, (iv) 6 

D. Inter-platoon Headway (sec):    (i) 2, (ii) 4, (iii) 6, (iv) 8 

E. Intra-platoon Headway (sec):    (i) 0.5, (ii) 0.75, (iii) 1.0, (iv) 1.25 

The variables set were restricted by the above values to limit the analysis complexity and 

discussions within manageable ranges while covering a wide range of variations in traffic 

conditions. Platoon parameters (i.e. Maximum Platoon Length, Inter-platoon Headway, Intra-

platoon Headway) were varied within reasonable ranges to identify observable trends. Two 
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distinct driving systems were simulated by assigning specific values of driving system [0 for 

HuV, 1 for AuV]. The driving system values assigned for vehicles were used to implement 

the proposed car-following strategy on the CAV environment. Assigned driving system values 

were also useful to adopt proper sets of motion dynamic equations. 

4.4 Analysis, Results and Findings 

4.4.1 Impact of AuV location and distribution 

Before analyzing the mobility and safety aspects of AuVs on traffic, the influences of AuVs 

location and distribution in traffic stream was explored. It was hypothesized that the positions 

of AuVs in traffic stream dictated their impacts on remaining vehicles. To prove this 

hypothesis, the proposed car-following strategy was simulated by allotting AuVs at diverse 

combinations of positions with gradually increasing the initial flow rate and AuV market 

share. To clearly comprehend the significance of vehicle position more clearly and to reduce 

the intricacy of comprehension, only two features were analyzed: acceleration fluctuation of 

HuV in the vehicle group and variations of maximum traffic flow at varying traffic state. Since 

numerous combinations of AuVs’ distribution are viable at different penetration rates of 

AuVs, only a handful of combinations were selected to cover most possible variations. 

Initially, these distributions were generated by placing AuVs as far apart as possible 

(--% Comb-1) in the vehicle stream while maintaining target AuV market share. Gradually, 

AuVs were grouped together in different combinations. The purpose of placing AuVs in such 

an order was to visualize and measure the impact of AuVs location and distribution along the 

vehicle stream. The combinations are listed in Table 4.1. The first column of the table showed 

percentages of AuVs in the traffic stream. The numbers on second column of the Table 4.1 

identify the position ID of AuVs in the traffic stream. Other vehicles, except the positions 

mentioned in table, were HuVs. The last column of the table provides distinct combination 

name of each distribution of AuVs. These combinations were simulated on developed 

simulation environment by virtually placing AuVs in the mentioned position IDs of the 

vehicle stream and by following proposed car-following strategy for mixed traffic. The listed 

combinations on Table 4.1 were assumed to represent varying ranges of AuVs distribution on 

vehicle group. Analyzing these sets of vehicle location and distribution provided the 

opportunity to shed light on resulting impacts due to AuVs’ position on traffic stream.  
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TABLE 4.4 List of AuV combinations simulated for different market penetrations 

AuV Market Share  Distribution of AuVs (position) Combination Name 

25% 

4, 8, 12, 16, 20 25% Comb-1 

4, 5, 10,11, 16 25% Comb-2 

5, 6, 7, 13, 14 25% Comb-3 

9, 10, 11,12 17 25% Comb-4 

2, 3, 4, 5, 6 25% Comb-5 

16, 17, 18, 19, 20 25% Comb-6 

50% 

2, 4, 6, 8, 10, 12, 14, 16, 18, 20 50% Comb -1 

2, 3, 6, 7, 10, 11, 14, 15, 18, 19 50% Comb -2 

2, 3, 4, 8, 9, 10, 14, 15, 16, 20 50% Comb -3 

2, 3, 4, 5, 10, 11, 12, 13, 18, 19 50% Comb -4 

2, 3, 4, 5, 6, 7, 8, 9, 10 ,11 50% Comb -5 

75% 

2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 

20 

75% Comb-1 

2, 3, 4, 5, 6, 9,10, 11, 12, 13, 16, 17, 18, 19, 

20 

75% Comb-2 

2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 16, 17, 18, 19, 

20 

75% Comb-3 

From the analysis, the simulation outcomes of the initial flow rate of 1800 veh/hr with 

different AuV market proportion is provided in Figure 4.2 to demonstrate the influences of 

AuVs position and distribution along the stream from both microscopic and macroscopic 

perspective. Figure 4.2(a) represents the variations of maximum flow rates resulting from the 

proposed car-following strategy at listed combinations. Figure 4.2(b) shows the average 

coefficient of variations (CoV) of acceleration of HuVs in the simulated vehicle stream.  

Boxplots for a specific combination were plotted from the maximum flow rate and average 

CoV of acceleration data of simulated scenarios with varying platoon parameters, as listed 

before. Macroscopic analysis on maximum flow rates at different AuV shares (Figure 4.2(a)) 

identified the pattern of gradual increment with increasing AuV shares in the traffic. However, 

the increase in maximum flow rate was relatively low at lower AuV market share (25%) than 
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higher market share (75%) which was expected due to higher CACC platoon forming 

opportunity among AuV vehicles at higher market penetration rate.  Observations of different 

combinations revealed that combinations with scattered AuVs lead to lower maximum flow 

rates in comparison to combinations with grouped AuVs which was perceptive due to higher 

possibility of forming platoons at combinations with grouped AuVs in vehicle fleet. 

Additionally, grouping AuVs at the front of the vehicle stream (i.e. 25% Comb-6, 50% Comb-

5, 75% Comb-3) resulted in 6.7- 11.5% higher maximum flow rates in comparison to the 

scattered distribution of AuVs (i.e. 25% Comb-1, 50% Comb-1, 75% Comb-1).  

Analysis on microscopic characteristics of HuVs were undertaken by measuring the 

average CoV of acceleration at different market shares and combinations of AuVs. The 

resulting analysis showed a gradual decreasing CoV of acceleration with increasing shares of 

AuVs. Similar to macroscopic analysis, the maximum amount of decrease in CoV (1.69 – 

6.63%) was observed from combinations with AuVs at the front of the traffic stream grouped 

together. Specific analysis on Maximum Platoon Length’s influence on acceleration 

fluctuations of HuVs revealed that increasing Maximum Platoon Length reduced the average 

coefficient of variation of acceleration for AuVs. Similar analysis on the other two platoon 

parameters (i.e. Inter-platoon Headway, Intra-platoon Headway) demonstrated a reciprocal 

relation with acceleration fluctuations (increasing Inter and Intra-platoon Headway increased 

the average CoV of acceleration).   
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FIGURE 4.2 Influences of AuVs’ position on (a) Maximum Flow Rate, 

(b) Average Coefficient of Variation of Accelerations. 

The analysis of the remaining initial flow rates and AuV market share revealed that 

creating platoons of AuVs by positioning them at the front of traffic stream would be 

beneficial to the rest of vehicles in the traffic stream. The AuV vehicles positioned at the 

stream front would be able to ingest a significant extent of abrupt change due to sudden 

acceleration/deceleration and transmit diminished impact to following vehicles in the fleet. 

Furthermore, increasing market shares of AuVs could gradually reduce the acceleration 

fluctuation of HuVs. Finally, increasing the flow rates could inversely influence traffic flow 

improvements with a specific AuV location and distribution combination. The notion of traffic 

flow improvements guided the authors in this study to explore mobility improvement 

potentials of the proposed car-following strategy by placing AuVs at ideal positions along the 

traffic stream.   

4.4.2 Impact on Mobility 

Since creating platoons of AuVs was found to be the most effective way of acquiring 

associated benefits, influences of AuVs on traffic mobility were examined with respect to 

three key variables of platooning: Intra-platoon Headway, Inter-platoon Headway and 

Maximum Platoon Length. Combinations of these three variables within listed sets were 
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utilized to generate various platoon scenarios for simulation and analysis. The impact of these 

platoon structures on mobility was measured and compared with the help of two parameters: 

Average Travel Time (ATT) [Equation 4.5] and Average Travel Distance (ATD) [Equation 

4.6]. Later, case scores were computed by providing equal weights to ATT, ATD [Equation 

4.7]. Different cases of platoon configurations were simulated and evaluated through case 

scores. Higher dispersion from base-case (0% AuV share) scores indicated higher mobility 

improvements. The objective of this analysis was to identify the optimal platoon configuration 

to improve mobility by increasing ATD and reducing ATT. The following equations were 

used to identify the mobility gains.  

𝐴𝑇𝑇 =
∑ 𝐴𝑇𝑇𝑗
𝐽
𝑗=1

𝐽
=  ∑

(𝑝𝑖,𝑗 − 𝑝𝑖,𝑗−1)

𝑣𝑖,𝑗

𝐼

𝑖=1

                                                                                     (4.5) 

 𝐴𝑇𝐷 =
∑ 𝐴𝑇𝐷𝑗
𝐽
𝐽=1

𝐽
,   𝐴𝑇𝐷𝑗 =

(𝑝𝐼,𝑗 − 𝑝1,𝑗)

𝐼
                                                                                (4.6) 

𝑆𝑐𝑜𝑟𝑒𝐶𝑎𝑠𝑒 𝑘 =
∑ 𝑣1,𝑗(𝐴𝑇𝐷𝑗,𝐶𝑎𝑠𝑒 𝑘)
𝐽
𝐽=1

𝐽
− (𝐴𝑇𝑇𝐶𝑎𝑠𝑒 𝑘)                                                               (4.7) 

Here, i =vehicle index (I=21); j = time index (J=1000); 𝑣𝑖,𝑗 = velocity of vehicle i at 

time step j; 𝑝𝑖,𝑗 = position of vehicle i at time step j, 𝑆𝑐𝑜𝑟𝑒𝑆𝐶𝑎𝑠𝑒 𝑘= score of case k. 

Aforementioned [Section 4.4] platoon variables (i.e. Maximum Platoon Length, Inter-platoon 

Headway and Intra-platoon Headway) were explored to generate distinct platoon scenarios. 

The combinations of these parameter set produced 64 distinct platoon configurations that were 

simulated for chosen traffic flows and AuV market shares to detect the capability of mobility 

improvements. Moreover, the limits of mobility improvements due to variation of platoon 

configurations were also reveled in this analysis. Figure 4.3 (a, b) portrayed the changes in 

ATT and ATD for studied cases in comparison to base case (0% AuV). Obtained mobility 

score improvements from base-cases at different traffic states are presented in Figure 4.3(c). 

The three-quarter circles showed comparative mobility progresses at different flow rates and 

AuV market shares simulated for the analysis. The color bar on Figure 4.3(c) indicated the 

extent of generated mobility score improvements. Figure 4.3(d) revealed detail analysis for a 

specific flow rate and AuV share.  
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Figure 4.3 (a) depicted the variations of ATT at varying inflow rate and AuV marker 

shares for simulated 64 platoon structures. The boxplots showed the distribution of these ATT 

changes for specific traffic state (i.e., flow rates, AuV share). As evident from the boxplots, 

at any AuV share, increasing flow rates eventually increased the mobility benefits by reducing 

ATT from base case. On the other hand, increasing AuV shares for specific flow rate reduced 

the ATT of the simulated traffic stream. Furthermore, the implications of diverse platoon 

structures resulted into broader ATT variations in lower market share (25% AuV) than higher 

market share (75% AuV). Additionally, these ATT variations due to platoon structures were 

acute at lower flow rate (1400vph) than higher flow rate (2400 vph). Figure 4.3 (b) compared 

the changes in ATD resulting from simulated traffic flow rates and AuV shares. Analysis 

results indicated that with increasing flow rates the ATD benefits increased. However, the 

influence of simulated platoon structures was increased at higher flow rates. Furthermore, the 

increase in ATD value were consistent with increasing AuV share in traffic stream.  

For clear understanding of the impact of platoon configurations at a specific traffic 

state, mobility improvements at initial flow rate of 1800 veh/hr and 75% AuV share is 

provided in figure 4.3(d) as an example. As observed in Figure 4.3(d), sixty-four (64) separate 

platoon configurations were generated from listed parameter set [Section 4.4]. Parameters for 

each case were listed in the table on Figure 4.3(d). The mobility improvement column was 

calculated by comparing the base-case (flow rate=1800 veh/hr, AuV share =0%) with the 

corresponding cases and transforming the value into a percentage. Negative percentages 

indicate impaired mobility and positive percentages denote improved mobility resulting from 

a specific platoon configuration. When inspecting Figure 4.3(d), it was found that maximum 

mobility benefits [11.91% improvement on case score] could be obtained from Case 33 

[Platoon Configuration: Intra-platoon Headway = 0.50 sec, Inter-platoon Headway = 2 sec 

and Max. Platoon Length = 5] and Case 49 [Platoon Configuration: Intra-platoon Headway = 

0.50 sec, Inter-platoon Headway = 2 sec and Max. Platoon Length = 6] for that specific traffic 

state.  A declining trend of mobility gains were captured with increasing Inter and Intra-

platoon Headway. Additionally, increasing Maximum Platoon Length parameter showed 

expansion with regards to mobility which came to a halt at Maximum Platoon Length =5.  
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FIGURE 4.3 Variations on (a) ATT, (b) ATD , (c) mobility scores due to varying 

platoon configurations at different flow rates and AuV Shares (d) specific flow rate 

(1800 veh/hr) and AuV share (75%). 

Further exploration of Figure 4.3(c) revealed that increasing AuV market could bring 

broader mobility enhancement at higher flow rates [yellow to green bands on 2400 veh/hr 

flow rate]. Increased AuV share at low flow rates had a diminishing effect on mobility [light 

red to deep red bands on 1400 veh/hr flow rate]. Another finding of this analysis was that the 

closely spaced AuVs with long platoons would generate more mobility improvements. Hence, 

the maximum mobility benefit was experienced on Case 33 and Case 49. Although the 

analysis concluded that closely spaced, long AuV platoons could attain higher mobility 

benefits, close proximity of AuV platoons and long chain of AuVs in these platoon 

configurations would severely restrict merging vehicles from neighboring lanes, on-ramps, 

side roads etc.  

Case

Intra-

platoon 

headway

Inter-

platoon 

headway

Max. 

platoon 

length

Mobility 

improvement      

%

Case

Intra-

platoon 

headway

Inter-

platoon 

headway

Max. 

platoon 

length

Mobility 

improvement        

%

1 0.50 2 3 11.86% 33 0.50 2 5 11.91%

2 0.75 2 3 11.82% 34 0.75 2 5 11.86%

3 1.00 2 3 11.78% 35 1.00 2 5 11.81%

4 1.25 2 3 11.74% 36 1.25 2 5 11.77%

5 0.50 4 3 11.72% 37 0.50 4 5 11.84%

6 0.75 4 3 11.68% 38 0.75 4 5 11.79%

7 1.00 4 3 11.65% 39 1.00 4 5 11.75%

8 1.25 4 3 11.61% 40 1.25 4 5 11.70%

9 0.50 6 3 11.59% 41 0.50 6 5 11.77%

10 0.75 6 3 11.55% 42 0.75 6 5 11.73%

11 1.00 6 3 11.51% 43 1.00 6 5 11.68%

12 1.25 6 3 11.47% 44 1.25 6 5 11.63%

13 0.50 8 3 11.45% 45 0.50 8 5 11.70%

14 0.75 8 3 11.42% 46 0.75 8 5 11.66%

15 1.00 8 3 11.38% 47 1.00 8 5 11.61%

16 1.25 8 3 11.34% 48 1.25 8 5 11.57%

17 0.50 2 4 11.88% 49 0.50 2 6 11.91%

18 0.75 2 4 11.84% 50 0.75 2 6 11.86%

19 1.00 2 4 11.80% 51 1.00 2 6 11.81%

20 1.25 2 4 11.76% 52 1.25 2 6 11.77%

21 0.50 4 4 11.78% 53 0.50 4 6 11.84%

22 0.75 4 4 11.74% 54 0.75 4 6 11.79%

23 1.00 4 4 11.70% 55 1.00 4 6 11.75%

24 1.25 4 4 11.65% 56 1.25 4 6 11.70%

25 0.50 6 4 11.68% 57 0.50 6 6 11.77%

26 0.75 6 4 11.64% 58 0.75 6 6 11.73%

27 1.00 6 4 11.60% 59 1.00 6 6 11.68%

28 1.25 6 4 11.55% 60 1.25 6 6 11.63%

29 0.50 8 4 11.58% 61 0.50 8 6 11.71%

30 0.75 8 4 11.54% 62 0.75 8 6 11.66%

31 1.00 8 4 11.50% 63 1.00 8 6 11.61%

32 1.25 8 4 11.45% 64 1.25 8 6 11.57%
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Analysis on platoon parameters at different traffic state revealed that, with other 

parameters being constant, increasing platoon length resulted into improved mobility gains. 

Similar investigation on inter-platoon headway presented that increase in inter-platoon 

headway would reduce traffic mobility if other two parameter remain constant at a specific 

traffic state. Analysis of intra-platoon headways coincides with the insights of inter-platoon 

headway analysis. Therefore, compactness of AuVs would bring more mobility benefits in 

roadway sections with minimal conflict points (e.g. spans between on/off-ramps on freeways, 

sections between intersections in arterial etc.). The notion of conflict points led to the next 

section of this study, examining the impact of AuVs on traffic safety.  

4.4.3 Impact on Safety 

Although Case 33 and 49 were found to be an obvious choice among 64 tested platoon 

configuration cases with respect to mobility enhancements, all aforementioned cases were 

examined again to identify the potential impact on traffic safety. Findings from AuVs location 

and distribution influenced the simulation of safety improvements by placing a series of AuVs 

at the front of traffic stream to obtain optimal benefits. Since no merging traffic was 

considered, the safety enhancements were examined as a measure of potentials to reduce rear-

end collision risks. Three safety surrogate measures were considered in this regard: Time-to-

collision (TTC), Time Exposed Time -to-collision (TET) and Time Integrated Time-to-

collision (TIT). 

TTC, TET and TIT, introduced by Hayward, Minderhoud and Bovy (Hayward, 1971; 

Minderhoud & Bovy, 2001), were widely used by traffic safety researchers to evaluate 

perceived safety at a traffic state. The time required for two successive vehicles in the same 

lane to hit if they maintain their current velocity is represented by TTC. Higher TTC would 

indicate safer traffic condition and vice versa. TTC can be used to evaluate safety of a traffic 

environment, since lower TTC is indicative to potential dangerous situation (Vogel, 2003). 

Both TET and TIT are derived from TTC to measure safety improvements from macroscopic 

standpoint. Since TET is the summation of instances when TTC are lower than threshold 

value, the lower TET value is expected at safer traffic conditions. TET value was measured 

by Equation (4.9) where TTC values for each vehicle at each time stamp (𝑇𝑇𝐶𝑖,𝑗) were 

compared with the threshold TTC ( 𝑇𝑇𝐶∗)value to calculate TET value for each scenario.  TIT 
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measures the value of TTC lower than the threshold TTC. Similar to TET, a higher TIT value 

indicates higher safety concerns. The values of these parameters were measured using the 

following equations: 

𝑇𝑇𝐶𝑖,𝑗 = {

𝑝𝑖−1,𝑗−𝑝𝑖,𝑗−𝐿

𝑣𝑖,𝑗−𝑣𝑖−1,𝑗
                 𝑖𝑓 𝑣𝑖,𝑗 > 𝑣𝑖−1,𝑗 

𝐼𝑛𝑓                               𝑖𝑓 𝑣𝑖,𝑗 ≤ 𝑣𝑖−1,𝑗
                                                                        (4.8)  

𝑇𝐸𝑇 = ∑𝑇𝐸𝑇𝑗 ,

𝐽

𝑗=1

      𝑇𝐸𝑇𝑗 =∑𝛿𝑗∆𝑗

𝐼

𝑖=1

,    𝛿𝑗 = {
1            ∀ 0 < 𝑇𝑇𝐶𝑖,𝑗 < 𝑇𝑇𝐶∗

0                           𝑒𝑙𝑠𝑒                 
                (4.9) 

𝑇𝐼𝑇 =  ∑𝑇𝐼𝑇𝑗 ,     𝑇𝐼𝑇𝑗 =∑[
1

𝑇𝑇𝐶𝑖,𝑗
−

1

𝑇𝑇𝐶∗
]

𝐼

𝑖=1

. ∆𝑗         ∀ 0 < 𝑇𝑇𝐶𝑖,𝑗 < 𝑇𝑇𝐶∗   

𝐽

𝑗=1

           (4.10) 

The threshold TTC values to measure TET and TIT was set as 1.5 sec, similar to 

standard threshold TTC value suggested in Surrogate Safety Assessment Model (Gettman et 

al., 2008). Resulting changes with regards to safety are displayed on Figure 4.4.  Figure 4.4(a) 

presented total TET and average TIT values over the simulation period on base-cases which 

were utilized to measure safety improvements gained with the introduction of AuVs. Figure 

4.4(b) displays the range of changes on total TET values at different traffic states with varying 

platoon structures. Increasing AuV shares showed a gradual decline of total TET values. The 

extent of declination was much higher in higher flow rates. However, an exception was 

observed at high flow rates and lower AuV shares (Flow rate =2400 veh/hr, AuV share =25%) 

where total TET value increased from base traffic states. Therefore, it can be stated that higher 

AuV share is required to bring noticeable safety improvements with increasing flow rates. 

Figure 4.4(c, d) shows analysis results of average TIT changes. As showed in earlier figure 

[Figure 4.3(a)], both factional circles revealed resulting improvements on average TIT 

parameters. Figure 4.4(c) showed resulting safety improvements of the vehicle stream for 

different platoon configurations, AuV shares and flow rates by comparing with base average 

TIT-values. This analysis considered average TIT values of HuVs only in the traffic stream. 

Average TIT values of HuVs in the CAV environment were compared with corresponding 

vehicles on base case for this analysis. The average TIT reduction of HuVs was found to be 

within the range of [-20.76% 8.55%]. Additionally, higher safety gains were achieved with 

shorter platoons including AuVs sparsely spaced.  
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On the other hand, Figure 4.4(d) shows the analysis by comparing average TIT values 

of all vehicles with base case. For this analysis, it was assumed that there was no collision risk 

for AuVs [average TIT values = 0 for AuVs], irrespective of platoon configurations. 

Comparison between Figure 4.4(c) and Figure 4.4(d) shows significantly higher 

improvements on average TIT values for all vehicles over HuVs. The range of average 

reduction is much higher on Figure 4.4(d). Detailed analysis of safety enhancement for a 

specific traffic state provided further insights on the impact of platoon configurations. For 

instance, simulation results of 1800 veh/hr flow rate with 75% AuV share traffic state revealed 

that increasing AuVs’ stretch over the traffic stream resulted in greater safety benefits for 

remaining vehicles. Hence, the maximum safety gain was attained from Case 16 ( -10.23% 

reduction on average TIT of HuVs) for this specific traffic state. Although a similar pattern 

was observed for other traffic states, unexpectedly high safety concerns were experienced for 

some cases [dark red strip on Figure 4.4(c) for 2400 veh/hr with 25% AuV share]. Moreover, 

maximum safety gains on HuVs were obtained on 50% AuV share at 1800 veh/hr flow.  The 

findings from safety impact analysis has led me to conclude that increasing AuVs with 

increasing flow rates would improve safety of all vehicles if AuVs form short, sparse platoon 

in start of traffic stream. Although, rear-end collision risk for HuVs would proportionately 

reduce with increasing AuV share at comparatively high and low flow rate, this correlation 

between safety gain and AuV share did not hold true for flow rates near capacity level. 
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FIGURE 4.4 (a) Base-case safety parameter values at varying flow rates. (b) Changes 

in total TET, (c) Variations of Average TIT values considering HuVs only, (d) 

Variations of Average TIT values considering all vehicles, due to varying platoon 

configurations at different flow rates and AuV shares. 

Exploring the evolution pattern of platoon parameters provided important insights on 

safety feature. While other parameters (i.e. inter-platoon headway, Max. platoon length) 

remain same, continuous increment of intra-platoon headway showed reduction on rear-end 

collision expectation. Inter-platoon headway followed similar pattern as intra-platoon 

headway. However, range of safety improvement in both parameters depend on maximum 

platoon length. Magnitude of safety gains were much higher at small platoons (i.e. Max. 

Platoon length =3) than big platoons (i.e. Max. Platoon Length).  

4.5 Identification of Optimal Platoon Parameter Set 

An analysis of proposed car-following strategy delivered insights regarding mobility 

and safety improvement potentials due to presence of AuVs at mixed traffic conditions. One 

key finding of the analysis was that the expectation to obtain multi-objective improvements 

(i.e. mobility and safety) from single platoon configuration was impractical. Since mobility 
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gains maintained a reciprocal relationship with safety enhancements, a sub-optimal platoon 

configuration could be determined to procure maximum gains from these two features. 

Another compelling outcome of prior analysis involved recognizing the fact that both traffic 

flow rates and AuV market shares had influence on obtained benefits. Hence, achieving 

maximum mobility and safety advantages from fixed sub-optimal platoon configuration at 

different flow rates was unrealistic. To this end, it was necessary to present an approach that 

identified dynamic sub-optimal platoon configurations for multi-objective decision-making 

purposes. 

Influenced by Khondaker and Kattan (Khondaker & Kattan, 2015), an analysis was 

performed to identify the sub-optimal platoon configurations to maximize mobility, and safety 

enhancements generated by AuVs. Collective influences from these two features were 

measured by placing different weights on them to get resulting variations on improvements 

[Figure 4.5(b)]. Three sets of multi-objectives functions were investigated to obtain suitable 

platoon structure. Sets for platoon variables were chosen from earlier analyses to identify sub-

optimal configurations. This analysis is termed as meta-modeling in the literature to determine 

the sub-optimal configuration from studied parameter by considering the impact of both 

contributing factors in decision making. In this case, the platoon structure parameters were 

switched to measure the resulting mobility and safety implications at different traffic states 

(i.e., flow rates, AuV shares) with the aim to maximize the benefits from both mobility and 

safety perspective by assigning different weights on these factors.  
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FIGURE 4.5 Observed variations of (a) individual features due to diverse platoon 

variables listed and (b) listed multi-objective function sets resulting from changing 

platoon variables 

The optimization of platoon variables for different multi-objective function identified 

each feature’s (i.e., mobility, safety) individual and collective inclinations. To obtain clear and 

precise insights of these trends, the vehicle fleet with 1800 veh/hr flow rate and 75% AuV 

market share is demonstrated in Figure 4.5. The improvements obtained due to AuVs were 

scaled within range [0 1] using extreme values from prior analysis of all the features [Figure 

4.5(a)]. For mobility improvements, the scenario scores were scaled within the above-

mentioned range. Extreme average TIT values measured in safety impact analysis were 

applied to measure safety scores of different platoon configurations. This action was 

performed due to variations of units in measures of effectiveness and to bring them in the 

same scale for optimization. Reviews of individual features identified a gradual reduction of 
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mobility improvements with an increase of Intra and Inter-platoon Headway. However, safety 

improvements showed opposite pattern. Figure 4.5(b) showed the results of a set of objective 

function with predefined weight put on mobility and aspects. The goal of this analysis to 

obtain sub-optimal platoon configurations for predefined objective sets. Also, to identify the 

objective function with maximum benefits from the assorted weight sets. Analysis of 

combined impacts identified that maximum benefits for Objective function 1 (Mobility 

improvement weight = 0.25 and Safety improvement weight = 0.75) were achieved with the 

platoon configuration of: Intra-platoon headway = 1.0 sec, Inter-platoon Headway = 8 sec, 

Maximum Platoon Length = 3 vehicles. The objective of this analysis was to present an 

approach to identify sub-optimal platoon configurations suitable for specific flow rates and 

AuV market share with specific motivation to assist in multi-objective decision making.  

4.6 Conclusion and Future Extensions 

The objective of this segment of research was to obtain rationalized insight on mixed 

traffic movements and evaluate the impact that AuVs will supposedly have on traffic. Whilst 

the potential of connectivity and automated controls are astounding, the extent of harnessing 

the benefits depends on discerning their influences on traffic. In this regard, I have proposed 

a naïve car-following mechanism for mixed traffic and analyzed their motion dynamics to 

determine the possible improvements. Initially, the location and distributions of AuVs along 

the traffic stream were discovered to be moving forward with established framework to obtain 

the highest rewards. The mobility and safety gains obtained from CAV traffic stream were 

examined for varying traffic flow, AuV market penetration and platoon configurations with 

the intention of determining the limits of these potential improvements. The final stage of this 

study was the analysis to obtain optimal platoon configurations to achieve maximum 

collective improvements.   

The findings of the research show that to obtain maximum mobility benefits, close and 

compact platoons are favorable in roadway sections without side frictions. However, segments 

with on-ramps, off-ramps, side roads etc. need to be researched in future to account for side 

frictions and their consequences on collective mobility, safety and environmental gains. 

Identifying sub-optimal platoon configurations for varying flow rates and market shares of 

AuVs will assist traffic operation authorities to propose traffic state responsive dynamic 

platoon structures. Utilizing these platoon configurations will make the best use of AuVs on 
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prevailing traffic conditions to obtain maximum gains. Future research based on this study 

will account for vehicles with conflicting movements (i.e. lane changing, merging traffic from 

on-ramps, diverging traffic towards off-ramp etc.) and propose potential improvements.   

This specific segment of research directly explores partial traffic motion dynamics 

influenced by the insights obtained from driving behavioral study. However, this study was 

neutral to including any behavioral variations of HuVs to obtain a standardized benchmark 

of expected mobility and safety benefits. Additionally, partial motion dynamics were 

featured in this part due to potential dilution of mobility and safety benefits that could be 

resulting from inherent complexity of complete motion dynamics. Altogether, exploring 

partial motion dynamics of mixed traffic to measure mobility and safety gains driven the 

research one step closer to answer the established research question. 
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CHAPTER 5 : MOBILITY AND SAFETY IMPLICATIONS OF MIXED 

TRAFFIC IN WEAVING SECTION 

5.1 Introduction 

The rise of automated vehicle (AV) technology, as an essential component of a new 

generation of traffic infrastructure, has been researched by both academics and industry who 

recognize its advantages over the existing transportation framework with regards to improved 

mobility, enhanced safety, and reduced environmental impact. However, large-scale 

transitions to AV technology-based transportation system cannot happen overnight. Research 

on the fusion of such technology with the current, human-oriented transportation system that 

also considers the restraints of current roadways is clearly warranted. Certainly, freeway 

weaving sections are considered restraints since they act as recurrent bottleneck locations due 

to inherent vehicle trajectory patterns formed by vehicles changing lanes from auxiliary lanes 

to mainlines and vice versa. As such, substantial research has established that both mobility 

and safety of the weaving sections are compromised (Fazio, Holden and Rouphail, 1993; Uno 

et al., 2003; Golob, Recker and Alvarez, 2004; ho Lee, 2008; Pulugurtha and Bhatt, 2010; 

Marczak, Daamen and Buisson, 2014; He and Menendez, 2016, 2017). 

Although numerous studies have established the eminence of mixed traffic over 

traditional traffic system from mobility, safety, and environmental perspectives, the 

exploration of coexistence is primarily limited to partial motion dynamics, most often car-

following strategy, of studied vehicle groups (Ghiasi et al., 2017; Seraj, Li and Qiu, 2018; 

Zhu and Zhang, 2018; Ye and Yamamoto, 2019). This limitation is significant since both 

traffic operational and regulatory authorities must base their strategic investment as well as 

informed policy and legislative decision-making on sound, objective facts regarding the 

numerous levels of AV integration with conventional traffic system. Underpinned by this gap 

in knowledge, this part my research in the frame of full study addresses the following question: 

How can the mobility and safety of varying traffic states in a multilane weaving section be 

influenced by the shared presence of Automaton driven (AuV) and Human driven vehicle 

(HuV)s? In this premise, the two-fold objective of this descriptive research includes: (i) 

contriving a comprehensive and realistic modeling framework of mixed traffic with bi-
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directional motion dynamic, (ii) quantifying and clarifying the causal connection between 

presence of AuVs in traffic with potential shift in mobility and safety benchmarks for a weaving 

section. 

The findings of this study aim to contribute to the existing body of knowledge, which 

currently lacks substantial evidence to support the effect of AV integration to improve the 

mobility and safety of weaving freeway sections. Furthermore, the study outcomes can benefit 

research communities and industries that are actively committed to intelligent transportation 

systems and who presume that AVs will play a significant role in overcoming flow efficiency 

limitations and crash likelihood. The demand for understanding the implications of AV 

substantiates the need for more comprehensive research from the mobility and safety 

perspective. Both of these perspectives play critical role to measure transportation system 

performance and effects of mixed traffic on planning decisions. From planning and 

operational standpoint, traffic mobility can be defined as the ability and level of ease of 

moving goods and services (Götz, 2014). For instance: freeways providing designated high 

occupancy vehicle lanes to increase overall efficiency of moving people while maintaining 

the overall number of vehicles. Since elaborate evaluation of mobility shift would require 

considerable exertion of resources, a few mobility parameters are selected in this study to 

provide a general overview of potential amendments in traffic mobility. of Traffic safety, on 

the other hand, can be measured directly from number of collisions, injuries, and fatalities. 

Since AV are not yet widespread present in traffic, direct measures of potential changes cannot 

be obtained in most cases. Hence, surrogate safety indicators are adopted to measure positive 

or negative shifts in overall traffic safety.    

5.2 Microscopic Modeling Framework of Multilane Traffic 

Last chapter of this thesis provided the framework of microscopic car-following 

strategy of mixed traffic on a single lane. Founded on that background, this chapter will 

expand the framework from unidirectional motion to bi-directional motion of traffic which 

will enable us to develop realistic multilane traffic movements and acquire more reliable 

estimation of mobility and safety impact. This framework incorporates longitudinal and lateral 

motion dynamics of both vehicle type for unimpeded movement along the roadway. In 
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addition to mandatory lane-changing, platoon formation among AuVs is also configured 

within this framework. More definitive conclusions can be drawn from such a comprehensive 

modeling architecture directly examining the mobility and safety implications of AuVs. 

Agent-based modeling was adapted from the MATLAB library to develop the core 

model structure of this study. Agents of two different types were defined to represent the two 

vehicle types (i.e., HuV and AuV). These two agents enter and exit a predefined roadway 

segment with average headway input to maintain average inflow rate and AuV share for each 

simulated scenario. The roadway segments were defined by giving number of lanes and length 

of section values as inputs. The driving strategy and vehicle model were similar for both 

agents apart from acceleration/deceleration conditions, and platoon formation provisions. 

Irrespective of leading vehicle type, HuVs had an average desired headway of 1.4 sec with 

standard deviation of 0.3 sec to account for the variability of human driving behavior. The 

value of desired headway was taken as a log normally distributed variable based on the 

findings from analyzing real-world driving behavior of SPMD dataset in Chapter 3. While 

desired headway of an individual vehicle would be fixed (with some exception for forced 

mandatory lane-changing) throughout the simulation period, the parameter would follow a log 

normal distribution for overall HuV proportion of traffic. Instead of constant desired headway, 

the provision of varying desired headway distribution of HuVs within the modeling 

framework presented the opportunity to incorporate behavioral variation of human drivers. 

Since the distribution of desired headway was inherited from evaluating real-world driving 

decisions, the resulting performance from such entry would be more realistic and reliable.   

On the other hand, AuVs inherited desired headway from platoon configuration (i.e., 

inter-platoon headway, intra platoon headway) depending on their position within a platoon. 

As mentioned in (Seraj, Li and Qiu, 2018), the AuVs are programmed to form platoons 

amongst themselves. If there is an HuV in front of AuV, the subject AuV would pursue ACC 

with a smaller desired headway (i.e., 1.25 sec) in the car-following state. However, if the 

leading vehicle is an AuV, the subject AuV will reduce the desired headway (i.e., 1.0 sec) to 

form a CACC platoon. The maximum platoon formation length was 3 AuVs in the simulation. 
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Also, intra-platoon distance is taken as 4 sec to accommodate lane-changing vehicles in 

between platoons. Hence, if the leading AuV is the 3rd AuV in the platoon, then the subject 

AuV would maintain 8 sec headways. The platoon structure was selected from 64 platoon 

configuration tested in Chapter 4 for mixed traffic car-following strategy. As the findings of 

Chapter 4 suggested that this platoon structure would generate sub-optimal benefits from 

mobility and safety perspective. 

The default driving strategy and vehicle model of the agent-based modeling was 

customized to develop more realistic vehicle dynamics. Various modeling approaches in the 

literature established the spatial-temporal anticipation ability of human drivers (Lenz, Wagner 

and Sollacher, 1999; Knospe et al., 2001; Eissfeldt and Wagner, 2003; Watamaniuk and 

Heinen, 2003; Lee et al., 2004; Treiber, Kesting and Helbing, 2006; Lindorfer, 

Mecklenbrauker and Ostermayer, 2018). The anticipative nature of human drivers 

compensated for higher reaction time than the ACC/CACC system that can generate quicker 

reaction to an event (Makridis et al., 2018). Hence, for an advanced vehicle control system, 

incorporating such anticipative intelligence naturally improves driving efficiency and 

opportunities to avoid a collision. In response, the Model Predictive Control (MPC)-based 

motion algorithm is chosen for modeling both vehicle types. MPC utilizes present information 

to predict the future state by controlling the process through the minimization of objective 

function under constraints. This study aimed at developing a control framework that combined 

connectivity and automation of AuVs to navigate effortlessly in mixed traffic scenarios. In 

this modeling framework, I used the MPC framework integrated into MATLAB stateflow 

model to decide between the different states of the driving strategy. 

Each vehicle is assigned a vehicle ID to specify their presence on the road and vehicle 

type to decide on control provisions. The subject vehicle’s longitudinal and lateral control is 

implemented by computing the current traffic state from input data and predicting its future 

pattern. A P-step prediction horizon and C-step control horizon are considered for optimizing 

the control inputs of the subject vehicle. The prediction and control horizon of the MPC is 

taken as 30 and 3 timesteps respectively. Since, lane changing maneuver takes multiple 

seconds to complete, the following constraint is included 
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0 ≤ 𝛿𝑟 𝑜𝑟 𝛿𝑙 ≤ 1                                                                                                                              (5.1)  

which implies that the subject vehicle is allowed to move only once either to the right or to 

the left lane within the prediction horizon. Some additional constraints are defined to ensure 

safety and comfort in driving. The speed of the subject vehicle at any time step is bounded by 

the following upper and lower limit 

0 ≤ 𝑣𝑠(𝑘) ≤ 𝑣𝑚𝑎𝑥 = 1.1 × 𝑣𝑆𝐿                                                                                                     (5.2) 

Here, 𝑣𝑚𝑎𝑥 is the maximum achievable speed which is 10% higher than the speed 

limit, 𝑣𝑆𝐿=25m/s. Acceleration is bounded by the following boundary constraints 

−3 𝑚 𝑠⁄
2
= 𝑎𝑚𝑖𝑛 ≤ 𝑎𝑠(𝑘)  ≤ 𝑎𝑚𝑎𝑥 = 2 𝑚 𝑠2⁄                                                                       (5.3) 

The limits for maximum acceleration and deceleration limits were inspired from 

extreme acceleration and deceleration pattern analysis on freeway in Chapter 3. Additionally, 

previous studies on modeling HuV and AuV also aided in choosing the limits to account for 

driving comfort (Hoberock, 1976; Deng, 2016). To ensure safe driving in traffic by avoiding 

any collision with other vehicles, the minimum gap constraint is imposed  

𝑥𝑠−1(𝑘) − 𝑥𝑠(𝑘) − 𝐿 = 𝑔𝑠(𝑘) ≥ 𝑔𝑠,𝑚𝑖𝑛(𝑘) = 𝑔0 + ℎ0,𝑠𝑣𝑠(𝑘)                                             (5.4) 

Here, ∆𝑔𝑠 is the gap between subject vehicle and leading vehicle,  ∆𝑔𝑠,𝑚𝑖𝑛 is the 

minimum allowable gap for the subject vehicle, 𝑔0 is minimum gap between a vehicle at 

standstill condition (2.5m), ℎ0,𝑠 is the desired headway of subject vehicle. The following 

nonlinear constraint is introduced to avoid collision risk during lane changing 

𝑔𝑡,𝑙𝑒𝑎𝑑 ≥ 𝜃𝑡(𝑘) × ∆𝑔𝑠,𝑚𝑖𝑛(𝑘)                                                                                                        (5.5) 

𝑔𝑡,𝑙𝑎𝑔 ≥ 𝜃𝑡(𝑘) × ∆𝑔𝑠,𝑚𝑖𝑛(𝑘)                                                                                                         (5.6) 

𝑔𝑡,𝑙𝑒𝑎𝑑(𝑘) =  𝑥𝑡−1(𝑘) − 𝑥𝑠(𝑘) − 𝐿                                                                                               (5.7) 

𝑔𝑡,𝑙𝑎𝑔(𝑘) =  𝑥𝑠(𝑘) − 𝑥𝑡(𝑘) − 𝐿                                                                                                     (5.8) 

Here, 𝑥𝑡−1 and 𝑥𝑡 are the position of lead and lag vehicles, respectively, in the target 

lane, 𝐿 is the average length of vehicle (5m),  𝜃𝑡 denotes current lanes of target lane vehicle 

and subject vehicle.  If the target lane vehicle and the subject vehicle are in the same lane then 
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𝜃𝑡 = 1, otherwise 𝜃𝑡 = 0. This time varying gap constraint defines the permissible gap for 

lane changing. ∆𝑔𝑠,𝑚𝑖𝑛 for HuVs were measured by taking safety headway value same as 

desired headway of the particular vehicle. For the cases of lane changing by any AuV, ∆𝑔𝑠,𝑚𝑖𝑛 

is measured with 1.25 sec as safety headway. Finally, the state of all vehicles in the simulation 

is updated by the following equations 

𝑎𝑠−1/𝑡/𝑡−1(𝑘) = 𝑓{∆𝑔𝑠−1/𝑡/𝑡−1(𝑘), 𝑣𝑠−1/𝑡/𝑡−1(𝑘), ∆𝑣𝑠−1/𝑡/𝑡−1(𝑘)}                                     (5.9) 

𝛿𝑟/𝑙,𝑠−1(𝑘)𝑜𝑟 𝛿𝑟/𝑙,𝑡−1(𝑘) 𝑜𝑟 𝛿𝑟/𝑙,𝑡(𝑘)  = 0                                                                               (5.10) 

Here, first equation is used to estimate the acceleration of surrounding vehicle and 

second equation implies that subject vehicle assumes no other surrounding vehicle is changing 

lane at any time step 𝑘.  Similar to Chapter 3, the acceleration of HuVs are updated by from 

an enhanced Intelligent Driver Model (IDM) (Treiber, Hennecke and Helbing, 2000) and 

model proposed by Hu et al. (Hu et al., 2017) is employed to determine acceleration of AuVs. 

𝑎𝑠(𝑘)

=

{
 
 

 
 

𝑎𝑚𝑎𝑥

[
 
 
 
 

1 − (
𝑣𝑠(𝑘)

𝑣𝑆𝐿
)
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− (
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𝑠
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𝑘1(𝑔𝑠(𝑘) − 𝑣𝑠(𝑘) × ℎ0 − 𝑔0) + 𝑘2∆𝑣𝑠(𝑘)   

 (5.11) 

Through equation 5.10, it is assumed that the vehicles surrounding the subject 

vehicle (i.e. leading vehicle in current lane 𝑠−1, leading vehicle in target lane 𝑡−1and 

following vehicle in target lane 𝑡) are not changing lane at any time step 𝑘. The predicted 

states of all vehicles for ensuring the safety in the prediction horizon needs to be estimated 

using 

𝑆(𝑘) = {𝑆𝑁(𝑘)}∀𝑁≠0                                                                                                                      (5.12) 

which denotes 𝑆 as the state of traffic considering 𝑆𝑁 as the estimated state of 

individual vehicle where 𝑆𝑁(𝑘) =  {�̂�𝑁(𝑘),… , �̂�𝑁(𝑘 + 𝑃)}. Since the state vector of individual 

vehicle includes time varying continuous variables (e.g., position, velocity, current and 

destination lane of the vehicle) and an integer discrete variable, the optimization of both 
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longitudinal and lateral control decision become computationally demanding and uncertain in 

obtaining optimal solution within a finite horizon. Therefore, based on the control requirement 

(i.e., longitudinal, or lateral) at a timestep respective control optimization is considered to 

estimate the state of the vehicles, 

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙: 𝐽𝑙𝑜𝑛𝑔 = ∑[𝑣𝑠(𝑖) − 𝑣𝑑𝑒𝑠]
2 + ∑ 𝑎𝑠

2(𝑖)

𝑘+𝑃

𝑖=𝑘

𝑘+𝑃

𝑖=𝑘

                                     (5.13) 

𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙: 𝐽𝑙𝑎𝑡

= ∑[𝑣𝑠(𝑖) − 𝑣𝑑𝑒𝑠]
2 + ∑ 𝑎𝑠

2(𝑖)

𝑘+𝑃

𝑖=𝑘

𝑘+𝑃

𝑖=𝑘

+∑𝜃𝑡(𝑖)𝑒
−𝛼𝑡(𝑖)(

𝑔𝑡,𝑙𝑒𝑎𝑑
2 (𝑖)+𝑔𝑡,𝑙𝑎𝑔

2 (𝑖)

2
)

𝑘+𝑃

𝑖=𝑘

(5.14) 

Here, 𝑣𝑑𝑒𝑠 is the desired velocity that is equal to speed limit (i.e., 25m/s). The two 

terms in longitudinal control ensures the vehicles are driving close to desired velocity with 

little or no acceleration. The third term in lateral control cost function penalizes for unsafe 

lane changes in the form of Gaussian function. The value of coefficient  𝛼𝑡 is measured 

according to (Kamal, Taguchi and Yoshimura, 2016) which defines the shape of the Gaussian 

function. Furthermore, planning for a lane change near the end of a horizon limit is not 

preferred. Since it is more likely that the predicted states of the other vehicles vary in the 

course, this may force the vehicle to give up on a lane change process before completion. 

Specifically, minimum steps to initiate a lane change can be imposed by suitably choosing 𝛿 

and once the vehicle is on course to lane change, the receding horizon approach is applied for 

successively relaxing 𝛿 and finally executing a lane change in a predefined reference 

trajectory. 

In each time step, the subject vehicle is provided with two sets of data: (i) vehicle’s 

status memory and (i) environment inputs. The vehicle’s status memory includes acceleration, 

velocity, position, yaw rate, lane position, destination lane information of subject vehicle for 

last 50-timesteps. Environment inputs include velocity, position, lane position vehicles 
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surrounding the subject vehicle in the weaving section. With those inputs, the subject vehicle 

decides between longitudinal and lateral control to update the vehicle status. In regard to 

driver’s control decisions, both longitudinal and lateral control decisions contained two states. 

When only the longitudinal control decision is active, the subject vehicles can be either in the 

free-flow or car-following state. The prerequisites of these states are listed below: 

▪ Free-flow state is triggered when the upstream area of vehicle is empty, or more than 

enough safety gap is available for vehicle to drive at 10% higher than speed limit 

▪ Car-following state is activated when there is spatial constraint due to the presence of 

a leading vehicles and that restricts the vehicle to drive under the speed limit 

For HuVs, a discretionary lane change is initiated when the vehicle drives at 10% 

lower than the speed limit for 5 sec. AuVs seek lane-changing opportunities due to the 

possibility of forming platoons with the leading vehicle in target lane. The lateral control state 

is active when the subject vehicle attempts to change lane. Discretionary lane changing is 

omitted for weaving section in this part of the research. Due to the inherent characteristics of 

weaving section traffic flow pattern, it was assumed that the likelihood of vehicles performing 

discretionary lane changing in this roadway section would be insignificant. Therefore, only 

mandatory lane changing occurs based on the destination lane assigned for the vehicle, and 

the vehicle looking for lane changing opportunities as soon as it enters the weaving section. 

In the lateral control state, there are two possible scenarios: 

▪ Initiate is active when enough gap is available in the target lane to change lane safely 

▪ Terminate becomes active when the available gap in the target lane is not enough to 

safely execute lane changing. In this case, the vehicle is forced to remain in its lane. 

Figure 5.1 illustrates the individual vehicle control process at every time step. The 

subject vehicle is programmed to search for a lane changing opportunity to Initiate mandatory 

lane changing before it Terminates the search due to lack of available lead and lag gap in the 

target lane. The subject vehicle can accept up to minimum gap between vehicles in standstill 

condition (𝒈𝟎) to execute mandatory lane changing as it approaches the end of the weaving 

section. Lane-changing duration and reference trajectory for modeling was calibrated by 
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analyzing 631 events of successful lane-changing in freeway from naturalistic driving data 

obtained from the Safety Pilot Model Deployment (SPMD) project (Bezzina and Sayer, 2015) 

database. The identified mean lane-changing duration, irrespective of lane-changing type, was 

2.3-sec. The duration was measured from the time when the center of gravity of the vehicle 

had moved from the center of the current lane to the center of the target lane. A reference 

trajectory was developed for all vehicles to follow during lane-changing maneuver. When the 

vehicle decided to initiate lane changing through MPC based lateral control considering 

relative gap in target lane, it followed the reference trajectory over the lane changing duration 

(2.3 sec).  Both HuVs and AuVs would follow this trajectory for lane-changing purposes. 

Behavioral implications of HuVs on lane-changing maneuver had not taken into account in 

this research. Although the literature has suggested higher lane-changing duration for 

freeways (Tijerina et al., 2005; Lee, 2006; Toledo and Zohar, 2007; Thiemann, Treiber and 

Kesting, 2008), the majority of these measurements include waiting time before lane changes 

to finding suitable gaps. Since this model considered the 5-sec time window for evaluating 

lane-changing warrants, the smaller active lane-changing duration is justified. 
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Figure 5.6 Control decision process of individual vehicle at each time step 

5.3 Model Validation 

According to the Highway Capacity Manual (HCM), the weaving section length varies 

between 150 m and 750 m. The studied roadway segment is designed as a 600-m long two-

lane Type A weaving section of a freeway. The speed limit of the roadway is taken to be 25 

m/s (90 kph). The lane-changing vehicle ratio (VR) was assigned to be 10% of flow rate and 

the destination lane of individual vehicles were assigned randomly during the entry of the 

simulated roadway segment. The agent-based modeling approach is taken for simulating 

different inflow rates and AuD shares which provides the opportunity to investigate complex 

interactions between two distinct groups of vehicles. HCM suggests that the weaving flow 

rate should not exceed 2800 vphpl for a Type A weaving section as higher inflow rate would 

be prone to more frequent operational failure. Although this restriction on inflow rate was 

imposed specifically for roadways containing only HuVs, the maximum inflow rate of 
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simulation model was kept at 2800 vphpl since no specific instruction was provided for mixed 

traffic inflow rates in HCM. Since it was not established prior to the analysis that AuVs could 

effectively increase the vehicle movement capability of the roadway segment, increasing 

inflow rates over the suggested level could induce operational failure due to high inflow rates. 

Hence, the simulated flow rates were restricted from 1200 vphpl to 2800 vphpl with 100vphpl 

increment. The varying inflow rate is simulated by adjusting the average headways of vehicle 

entrance for both types of vehicles. AuD market share is maintained by regulating the number 

of AuD vehicles present at a time during the simulation. However, each inflow rate and AuD 

share scenario is simulated 20 times to offset the randomness of vehicle entrance pattern and 

human driving behavior in the simulation. 

To validate the proposed traffic model, the traffic data generated by the model were 

compared to the standard used in HCM. Numerous simulations were run having only HuV 

scenarios for varying inflow rate and macroscopic parameters (i.e., flow, density, space mean 

speed) were recorded. All these recorded data points were then plotted to develop the 

fundamental diagram (i.e., flow-density diagram) and determine the segment capacity of the 

simulated weaving section. As illustrated in Figure 5.2 (a), the fundamental diagram of the 

model weaving section was generated from numerous passes of developed model. Figure 5.2 

(b) was generated from HCM that illustrates the confirmed capacity of the three-lane Type A 

weaving section with a 100 kph free flow speed. The capacity term was defined in HCM to 

be the maximum number of vehicles that can pass a given point under prevailing roadway, 

traffic and control conditions. Following the definition, the capacity of the simulated section 

was identified as 2288vph from the flow density diagram. Comparing the obtained capacity 

of simulated weaving section with Figure 5.2 (b) demonstrated that the capacity value falls 

near the capacity curve for VR=0.10 of the three-lane weaving section with 600 m length. 

Hence, the developed model was deemed to be consistent with real-world roadway and traffic 

scenario. 

 To further consolidate the model validity, the Level of Service (LOS) criteria 

established for the freeway weaving segment in HCM was matched with obtained model 

output. As stated in HCM, the capacity of a weaving segment is the result of flows that causes 
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the density to reach Level of Service (LOS) E/F for freeways. Table 5.1 outlines the different 

lane density ranges that are reported in HCM for the distinct LOS of weaving sections in 

freeways. The model-generated fundamental diagram exhibited the capacity at 23.81 vpkpl 

density level. According to Table 5.1, this density value falls under LOS E for freeway 

weaving sections and therefore complies with the requirement stated in HCM. Since the 

results from both analyses were found to be consistent with the expected outcome, the 

developed microscopic model was regarded to be an effective representation of real-world 

traffic and could therefore be applied for future analysis. 

Table 5.1 Different Level of services depending on freeway weaving section lane 

density 

LOS 

Lane Density (vpk) 

Freeway weaving section 
Multilane and Collector-

Distributor Weaving section 

A ≤ 6.0 ≤ 8.0 

B > 6.0 -12.0 > 8.0 – 15.0  

C > 12.0 – 17.0 > 15.0 – 20.0 

D > 17.0 – 22.0 > 20.0 – 23.0 

E > 22.0 – 27.0  > 23.0 – 25.0  

F > 27.0 > 25.0 
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Figure 5.7 (a) Flow-density diagram from simulation runs with HuVs only, (b) Lane 

capacity at varying length and VR of weaving section 

 

5.4 Mobility Implications 

Chapter 4 of this thesis presented the mobility implications from mixed traffic car-following 

strategy through average travel time and average travel distance of all the vehicles in traffic. 

While both parameters were exceptionally competent in envisioning the mobility impact due 

to AuVs, sometimes comprehending the effective shift in mobility become complicated due 

(a) 

(b) 
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to contrasting nature of these parameters. As a result, two alternative macroscopic parameters 

were chosen in this part of the study to quantify mobility shifts resulting from mixed traffic in 

weaving section. The mobility consequences resulting from mixed traffic movement was 

measured considering two key parameters: (i) Maximum throughput, (ii) Average speed of 

traffic. The inflow rate varied from 1200-2800 vphpl with 100 vphpl increment in each step. 

Similarly, the AuD share was increased from 5% to 95% with a 5% increment in each step. 

As a result, 323 unique scenarios of mixed traffic movement were generated. To account for 

the fluctuations resulting from driving behavioral variations of human driver as well as AuVs’ 

location and distribution (as established in Chapter 4) on measured parameters, each 

simulation scenario (i.e., Inflow rate, AuV share) were repeated 20 times. The analyzed 

outcome from these scenarios were compared with base case (0% AuD share) to compute the 

consequences of mixed traffic movements. To compute the chosen mobility parameters of 

each scenario, the simulation period (18000-timesteps =30 minutes) was divided into six 5-

min intervals and maximum/average parameter value was measured for each interval. Finally, 

the maximum parameter value was chosen by taking maximum of the interval values for 

maximum throughput and average of the interval values for the average speed of traffic.  

5.4.4 Maximum Throughput 

While much effort have been made (Chang and Lai, 1997; Vander Werf et al., 2002; Ni et al., 

2010; Tientrakool, Ho and Maxemchuk, 2011; Fernandes and Nunes, 2012; Shladover, Su 

and Lu, 2012; van den Berg and Verhoef, 2016; Chen et al., 2017; Ghiasi et al., 2017; Liu et 

al., 2018; Tilg, Yang and Menendez, 2018) to specify the impact of AuD vehicles on the 

maximum throughput of freeways, the variability in results kept is as an open and debated 

issue. Hence, this study has attempted to confront the issue with a precise scope of estimation 

for Type-A weaving section with 90 km/h speed limit and restricted inflow rates.  The 

simulated scenarios varied the AuD vehicle shares from 5% to 95% to maintain mixed traffic 

environment and compared the performance with a base case to appraise potential changes. 

As portrayed in Figure 5.3(a), the variation in maximum throughput was non-linear and much 

greater due to variations in AuD vehicle share than inflow rate changes. Maximum detriment 

in throughput was experienced at 10% AuD share (-3.88%, 1981 vphpl@ 1400 vphpl inflow 
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rate) and maximum gain was attained at 65% AuD share (80.49%, 3720 vphpl @ 2200 vphpl 

inflow rate) in comparison to base case (2061vphpl). We compared our attained results with 

Tilg et al (Tilg, Yang and Menendez, 2018) where they evaluated the effects of automated 

vehicles in the capacity of freeway weaving sections. Their study found that the maximum 

throughput of the simulated weaving section increased from 1700 vphpl @0% AuD to 3300 

vphpl @100% AuD (94.12%). Although a comparable level of increase was observed in this 

study, the maximum increase in throughput was observed at a lower AuD share (65%). 

Recently, Rezaei and Caulfield (Rezaei and Caulfield, 2021) drawn similar conclusion from 

their study where optimal mobility was achieved for both off-peak and peak traffic scenarios 

at 60% AuV shares. Attained maximum throughput for increasing AuD shares were further 

compared with the analysis of Liu et al. (Liu et al., 2018), which estimated theoretical capacity 

of homogenous freeway sections resulting from mixed traffic. The following equation was 

applied to calculate the theoretical capacity at varying AuD shares: 

𝑄𝑚𝑎𝑥 =
3600

𝑃𝐴𝑢𝐷(𝑙) × 𝐻𝑊𝐴𝑢𝐷(𝑙) + 𝑃𝐴𝑢𝐷(𝑓) ×𝐻𝑊𝐴𝑢𝐷(𝑓) + 𝑃𝐻𝑢𝐷 × 𝐻𝑊𝐻𝑢𝐷
 

𝑃𝐴𝑢𝐷(𝑓) = 𝛿 × 𝛿 

𝑃𝐴𝑢𝐷(𝑙) = 𝛿(1 − 𝛿) 

𝑃𝐻𝑢𝐷 = 1 − 𝑃𝐴𝑢𝐷(𝑓) − 𝑃𝐴𝑢𝐷(𝑙) 

Here, 𝑃𝐴𝑢𝐷(𝑙), 𝑃𝐴𝑢𝐷(𝑓), 𝑃𝐻𝑢𝐷 are the probability of any vehicle being AuD vehicle platoon 

leader, follower, and HuV, respectively; 𝐻𝑊𝐴𝑢𝐷(𝑓), 𝐻𝑊𝐴𝑢𝐷(𝑙), 𝐻𝑊𝐻𝑢𝐷 are average safety 

headways of AuD vehicle platoon leader (i.e. 1.25 sec), follower (i.e. 1.0 sec), and HuV (i.e. 

1.5 sec) respectively; 𝛿 is AuD vehicle share. Comparison between the theoretical capacity 

with the highest maximum throughput value for specific AuD share displayed a similar pattern 

up to 65% AuD share (Figure 5.3(b)). While theoretical capacity showed an increase, the 

simulation results demonstrated a steady decline. This phenomenon can be explained by the 

fact that our inflow rate was bounded at 2800 vphpl based on the HCM guideline that could 

restrict potential gains. Additionally, in the simulation, both vehicle types were designed to 

lane-change in same trajectory with similar acceptable gap and safety headway conditions that 
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could play a critical role in restricting maximum throughput after a threshold AuD share. At 

higher AuD shares, platoons formed by AuD vehicles reduced lane-changing scopes for the 

remaining HuVs and forced them to form larger gaps between platoons to execute mandatory 

lane changes in weaving sections.  

 

 

Figure 5.8 (a) Maximum flow rate through weaving section at various traffic state, (b) 

Comparison between theoretical and simulated maximum flow rate for mixed traffic 

Analysis of maximum throughput fluctuations due to varying inflow rates at a specific AuV 

share identified the highest variations at 45% AuV share, which gradually receded with 

gradual increase of AuV shares. In addition to behavioral variations of human drivers, which 

represented by desired headway parameter of HuVs, the competing lane-changing opportunity 

searches by both vehicle types reached maximum level once the traffic reaches at equitable 

(a) 

(b) 
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shares of AuVs and HuVs. This explains the highest variation at 45% AuD share and lower 

variations at higher as well as lower AuD shares. 

5.4.5 Average Speed of Traffic 

One of the key indicators of mobility is the average speed of traffic since an increase in 

average speed of traffic can be interpreted as a reduction in travel time for the traffic and vice 

versa. Furthermore, an experimental study conducted by Jiang et al. (Jiang et al., 2018) 

specifically with AuVs forming a 51-vehicle platoon indicated that traffic (in)stability could 

be better  reported through average traffic speed than traffic density or spacing. In this regard, 

the average space mean speed of the weaving section was measured for each simulated 

scenario. Figure 5.4 illustrates the obtained average speed outcomes for different simulated 

scenarios. As observed in Figure 5.4 (a), the average speed of traffic resulting from various 

inflow rates were highly dispersed at the lower AuD shares (5-20%). Each black dot for a 

specific AuV share represents the average speed at a specific inflow rate. The average speed 

value of a certain scenario (i.e. inflow rate, AuV share) was obtained by taking average speed 

of all the repeated simulation run for that scenario. On the other hand, with increasing AuD 

shares, the resultant average speed became increasingly concentrated, shifting towards the 

speed limit. The dispersion of average speed at lower AuV share indicated instability in traffic 

flow resulting from sparsely spaced AuVs in traffic. The instability of traffic at lower AuV 

shared were also translated into lower maximum throughput at similar AuV share, as 

presented in last sub-section. However, with gradual increase of AuVs brought more stability 

which was perceivable from more compact average speed distribution of traffic. Figure 5.4 

(b) provides a clearer demonstration of interaction between inflow rate and AuD shares with 

average speed of traffic. Although, the changes in average speed of traffic at the lower inflow 

rate was negligible, reductions in the average speed at lower AuD shares was prominent at 

high inflow rates.  The comparison of mixed traffic scenarios with base case average speed 

(82.75 kph) obtained a maximum reduction of 11.53 kph at 20% AuD share and 2700 vphpl 

inflow rate and a maximum increase of 7.22 kph at 95% AuD share and 2400 vphpl inflow 

rate. It should be noted that both types of vehicles were simulated to attain the desired speed, 
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which was the speed limit (90 kph). Therefore, the maximum possible increase in average 

speed was 7.25 kph within the design framework.   

 

 

Figure 5.9 (a) Average speed of weaving section for simulated mixed traffic scenarios, 

(b) Average speed heatmap for varying inflow rates and AuD shares 

Liu et al. (Liu et al., 2018) noted an insignificant improvement at lower market share 

compared to drastic improvement at higher market share. However, the study considered 

market share at 20% increments, which limits the understanding for AuD shares with more 

nuanced increments. In contrast to Liu et al, the findings from this study experienced slower 

(a) 

(b) 
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traffic movements at lower AuD shares in high traffic demand. These events could have been 

triggered by dispersed positioning of AuD vehicles in traffic that were unable to form closely 

spaced CACC platoons with other AuD vehicles. As a result, these isolated AuD vehicles had 

to maintain ACC driving principles while accommodating lane changing vehicles at high 

inflow rate. Tilg et al.(Tilg, Yang and Menendez, 2018) mentioned that these gap-searching 

vehicle, specifically HuVs, related to speed attenuation until they engaged in successful lane 

changing maneuvers. The gradual increase of the AuD share improved platoon forming 

probability that lead to more stable traffic movement and is analogous to the findings by 

Talebpour and Mahmassani (Talebpour and Mahmassani, 2016). Those authors demonstrated 

the instability in traffic flow resulting from lower connected and automated vehicle shares. 

On the other hand, Spiliopoulou et al. (Spiliopoulou et al., 2018) concluded that almost all 

congestion of the studied corridor could be eliminated at 60% market penetration. Our study 

also demonstrated a similar pattern since the average speed over the simulation duration of 

most scenarios beyond 60% market share was close to the speed limit.  

5.5 Safety Implications 

Traffic safety assessment is vital when analyzing unfamiliar transportation system 

performance. The developed microscopic simulation framework provides the opportunity to 

perform elaborate safety implications analysis on simulated mixed traffic scenarios without 

physically implementing the AuD vehicles in transportation system. However, two major 

limitations of simulation models are the discounting of collision events among simulated 

vehicles and the inability to simulate human drivers’ distraction and misjudgment errors. 

Hence, the safety analysis of simulated models is dependent on interpreting and comparing 

surrogate measures of safety. In this research, we have used Time-to-collision (TTC) as the 

primary measure of effectiveness for safety as its use in the capacity has significant 

precedence in the literature. Safety critical TTC events were detected from simulated 

scenarios with maximum throughput and then translated into relatable safety parameters such 

as potential conflict events and rear-end crash potential. 
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There are four types of vehicle interaction scenarios in a mixed traffic environment: HuV with 

HuV (potential) leader (HuV-HuV), HuV with AuV (potential) leader (HuV-AuV), AuV with 

HuV (potential) leader (AuV-HuV) and AuV with HuV (potential) leader (AuV-AuV). 

However, any commonly accepted threshold of surrogate measure of safety is yet to 

established for AuV in the literature. Hence, in this study, author only examined the 

interactions of HuV with other HuV and AuV leader for potential conflict identification. Since 

the market share of AuVs changes with different scenarios, the crash risk rate for HuVs, along 

with conflict frequencies are used to identify safety implications of AuV in mixed traffic 

environment. 

5.5.1 Potential Conflict Events 

TTC, defined as the expected time for two vehicles to collide if they remain on the same path 

at the same speed, is a widely used surrogate safety measure. The Surrogate Safety 

Assessment Model (Gettman et al., 2008) suggests 1.5 sec TTC as the threshold value for 

identifying potential safety concerns from a simulation environment; this which was adopted 

in our research to extract the number potential conflict events from simulated scenarios. The 

identified potential conflict events were classified into two collision groups: (i) rear-end and 

(ii) lane changing. To classify the potential conflict type, the driving state of the subject 

vehicle was checked. If the TTC value fell below the threshold during free-flow or car-

following longitudinal control state, then it was classified as rear-end conflict event. On the 

other hand, if the TTC value fell below the threshold during initiate lateral control state, then 

it was classified as lane-changing conflict event. The following equations were used to 

measure and identify a potential conflict event: 

𝐶𝐸𝑠(𝑘) = {
1       𝑖𝑓 𝑇𝑇𝐶𝑠(𝑘) ≤ 1.5 
0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

𝑇𝑇𝐶𝑠(𝑘) =
𝑥𝑠−1(𝑘) − 𝑥𝑠(𝑘) − 𝐿

𝑣𝑠(𝑘) − 𝑣𝑠−1(𝑘)
=  

𝑔𝑠(𝑘)

𝑣𝑠(𝑘) − 𝑣𝑠−1(𝑘)
 

Here, 𝐶𝐸𝑠(𝑘) is the conflict event count of the subject vehicle, s at time step k. 𝑥𝑖 , 𝑣𝑖 , 𝑔𝑖 

represents i vehicle’s position, velocity and lead gap (current lane) respectively. Since the 

simulation was repeated several times for specific traffic flow scenario (i.e. inflow rate, AuV 

share), the average conflict events from all the repetition was reported for the specific scenario 
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to reduce the stochastic effects resulting from behavioral variation of HuVs as well as 

placement changes of AuVs. Since the threshold TTC value for identifying the conflict events 

were lower than the desired headway of AuVs (i.e., ACC = 1.25 sec, CACC platoon = 1.0 

sec), the conflict events emerged from AuVs were disregarded from total conflict events 

computation. Hence, the identified conflicts were generated exclusively from HuVs 

interacting with other HuVs and AuVs in vicinity. 

Figure 5.5 showed the pattern of traced potential conflict events at varying traffic 

states. It is evident that as the AuD share increased, there was a clear and significant decrease 

in conflict event counts. The summation of potential conflict events, irrespective of inflow 

rates, was found to be 94.28% lower at 95% AuD share (186 conflict events; 42 rear-end, 144 

lane-changing) in comparison to the base case (3249 conflict events; 1238 rear-end, 2011 lane-

changing). The gradual decline of conflict events experienced an exponential pattern with 

AuD share expansion [Figure 5.5(a-f)]. While larger shares of the conflicts were found to be 

lane-changing (base case: 38.1% rear-end, 61.9% lane-changing), presence of AuD vehicles 

were relatively more proficient in mitigating rear-end type conflicts (95% AuD share: 22.6% 

rear-end, 77.4% lane-changing) by HuVs. 
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Figure 5.10 Counts of detected conflict events at (a) base case (0%), (b) 5%, (c) 25%, 

(d) 50%, (e)75%, (f) 95% AuV share, (g) Pattern of total detected conflict events at 

increasing AuD share 

The potential conflict events were further explored by the proposed methods of Oh and Kim 

(Oh and Kim, 2010) to estimate the crash risk index (CRI) from the TTC values in the 

analyzed roadway segment. While obtaining deterministic control state of each individual 

vehicle was possible under the current modeling framework, the probabilistic estimation of 

lane-changing decisions was retained to maintain the novelty of the proposed method. The 

following equations were used to determine the crash risk index of a certain traffic scenario: 

P(Crs)(k) = P(NLCs|Xs)(k) × P(NLCs−1|Xs−1)(k) × P(Cs|TTCs)(k) 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 
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P(NLCs = 1|Xs)(k) =
exp[f(Xs, β)]

1 + exp[f(Xs, β)]

=
1

1 + exp(11.476 − 0.045vs(k) − 0.083vt(k) − 0.046gs(k) + 0.023gt(k))
  

P(Cs|TTCs)(k) = exp(−
1

c
(

gs(k)

vs(k) − vs−1(k)
)) 

P(Crs)(k) = [
exp[f(Xs, β)]

1 + exp[f(Xs, β)]
] × [

exp[f(Xs−1, β)]

1 + exp[f(Xs−1, β)]
] × exp [−

1

c
(

gs−1(k)

vs(k) − vs−1(k)
)] 

𝐶𝑅𝐼𝑖 = 
∑ ∑ 𝑃(𝐶𝑟𝑠)(𝑘)

𝑇
𝑡=1

𝑆
𝑠=1

𝐾 × 𝑆
 

Here, 

▪ 𝑥𝑖 , 𝑣𝑖 , 𝑔𝑖 represents i vehicle’s position, velocity, and lead gap (current lane) respectively 

▪ 𝑃(𝐶𝑟𝑠) is the probability that the subject vehicle would be involved in a rear-end crash  

▪ 𝑃(𝑁𝐿𝐶𝑠 = 1|𝑋𝑠) is the probability that the subject vehicle will not change lanes (NLC) 

under adjacent (i.e., s-1, t, t-1 vehicles) vehicle conditions [Figure 5.6(a)] 

▪ 𝑃(𝐶𝑠|𝑇𝑇𝐶𝑠) is the probability that the subject vehicle would collide with the front vehicle 

given the current TTC  

▪ 𝐶𝑅𝐼𝑖 is the crash risk index of scenario i 

▪ 𝐾 is the total time steps of analysis  

▪ 𝑆 is the number of vehicles passing through the weaving section 

Further details and parameter values are available in (Oh and Kim, 2010). Applying this 

method, the CRI values for each of the mixed traffic simulation scenarios (i.e., Inflow rate, 

AuD share) was measured from identified potential conflict events. TTC values more than the 

threshold TTC (i.e., 1.5 sec) were discarded from the CRI calculation. For each traffic state 

(i.e., inflow rate, AuV share), the simulation instances with maximum numbers of potential 

conflict events were chosen to measure CRIs and plotting them, illustrated in Figure 5.6. As 

is evident in Figure 5.6(b), the overall CRI showed non-linear downward trend with increasing 

AuD shares. The maximum CRI was experienced at 5% AuD share (average =0.0207 standard 
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deviation = 0.0143), which reduced significantly at 95% AuD share (average= 0.0019, 

standard deviation = 0.0014). At 5% AuD share, the average reduction in the CRI from the 

base case (Average CRI = 0.0218, standard deviation = 0.0149) was 4.82% that gradually 

increased to a 91.35% reduction at 95% AuD share. For specific AuD shares, the CRIs 

experienced an upward trend with increasing inflow rates. Findings from this analysis were 

conform to the findings of Papadoulis, Quddus, and Imprialou (Papadoulis, Quddus and 

Imprialou, 2019),Ye and Yamamoto (Ye and Yamamoto, 2019), and Rahman and Abdel-Aty 

(Rahman and Abdel-Aty, 2017) who all concluded, based on different sets of parameter 

analysis, that increasing AuD vehicle share could greatly improve traffic safety conditions. 

 

 

 

Figure 5.11 (a) Subject vehicle's perspective of decision parameters, CRI values for 

simulated traffic states considering (b) all vehicles 

(a) 

(b) 
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While both analyses so far showed significant improvements in overall traffic safety with 

gradual increase of AuV shares, the findings were incomprehensible when it comes to 

determine the implications of AuVs on HuVs’ perceived safety. Since the movements of AuVs 

were regarded as safe, irrespective of TTC values, due to their instantaneous response 

capability, overall reduction of potential conflict event and crash risk of entire traffic with 

increasing AuV shares were anticipated. Hence, an adjusted CRI values were measured by 

considering only the number of HuVs passing through the weaving section to obtain more 

profound insights. The analysis results are presented in figure 5.7. As portrayed in this figure, 

the CRI from human drivers’ perspective did not present as straight forward improvements as 

the pervious analysis.  While the pattern of higher CRI with increasing inflow rate persisted 

for a specific AuV share, the reduction of CRI with increasing AuV share was renounced. 

Minimum average CRI for HuVs’ were experienced at 70% AuV share (0.0083) with minor 

changes until this point. However, the HuVs encountered substantially higher safety issues at 

high inflow rate from 75% AuV share and upwards. (at 5% AuV share), The maximum CRI 

at 95% AUV share was 0.0966 that occurred at 2800 vphpl inflow rate which was more than 

two-times higher than maximum CRI (0.0401) at 5% AuV rate. While the overall reduction 

in CRI until 75% AuV share was rather moderate, the increment in CRI for HuVs were more 

drastic at high inflow rate with higher AuV shares.  

  

Figure 5.7 CRI values for simulated traffic states considering HuVs only 
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5.5.2 Rear-end Crash Potential 

As presented in Chapter 4, Time Exposed Time-to-collision (TET) and Time 

Integrated Time-to-collision (TIT) are derived from TTC to perform as surrogate measures of 

safety for vehicles at risk for rear-end crash. TET and TIT was introduced by Hayward, 

Minderhoud and Bovy (Hayward, 1971; Minderhoud and Bovy, 2001) and being widely used 

in traffic safety literature to evaluated rear-end crash potential at a traffic scenario.  TET is the 

summation of instances where TTC are lower than threshold value. In previous sub-section, 

the conflict events were identified in similar manner. However, the difference between the 

identified rear-end conflict events and TET measurement for rear-end crash potential stems 

from the fact that multiple consecutive TTC values of subject vehicle lower than threshold 

TTC was counted as single potential in conflict event identification process. On the other 

hand, individual time step is considered TET calculation. Therefore, higher TET value could 

be observed with lower rear-end conflict events which would indicate higher safety concerns. 

TIT measures the value of TTC lower than threshold TTC. Similar to TET, lower TIT value 

is expected at safer traffic conditions. The values of these parameters were measured using 

the following equations: 

𝑇𝐸𝑇𝑖 = ∑𝑇𝐸𝑇𝑠,

𝑆

𝑠=1

      𝑇𝐸𝑇𝑠 =∑𝛿𝑘∆𝑘

𝐾

𝑘=1

,    𝛿𝑘 = {
1            ∀ 0 < 𝑇𝑇𝐶𝑠(𝑘) < 𝑇𝑇𝐶

∗

0                           𝑒𝑙𝑠𝑒                 
       (3.9) 

𝑇𝐼𝑇𝑖 = ∑𝑇𝐼𝑇𝑠,     𝑇𝐼𝑇𝑠 =∑[
1

𝑇𝑇𝐶𝑠(𝑘)
−

1

𝑇𝑇𝐶∗
]

𝐾

𝑘=1

. ∆𝑘      ∀ 0 < 𝑇𝑇𝐶𝑠(𝑘) < 𝑇𝑇𝐶
∗

𝑆

𝑠=1

     (3.10) 

Here, 𝑇𝐸𝑇𝑖 and 𝑇𝐼𝑇𝑖 are the TET and TIT values for traffic scenario (i.e. inflow rate, 

AuV share) i, 𝑇𝐸𝑇𝑠 and 𝑇𝐼𝑇𝑠 are the TIT and TIT values for subject vehicle s, 𝑇𝑇𝐶∗ is 

threshold TTC (1.5 sec according to (Gettman et al., 2008)) , 𝑇𝑇𝐶𝑠(𝑘) is TTC of subject 

vehicle s at time step k. Aligned with previous safety analysis, this analysis measured the TET 

and TIT values of simulated traffic for all 323 studied scenarios. For each scenario, the 

simulation instance with maximum throughput was considered for analysis. Both TET and 

TIT were not only counted for mixed traffic volume over the duration but also adjusted for 

changing HuV proportions of traffic to make equitable comparison. As observed in figure 5.8 

(a, c), both TET and TIT of mixed traffic gradually decreased with increasing share of AuVs. 

Generally, on a specific AuV share, TET and TIT for mixed traffic increased experience 
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increasing pattern with increasing inflow rates. This pattern for a specific AuV share persisted 

through adjusted TET and TIT (Figure 5.8 b, d) which were made to account for gradually 

diminishing shares of HuVs in traffic. Nevertheless, the changes in adjusted TET and TIT due 

to increasing AuV shares were dissimilar to what was noted for mixed traffic scenario. 

Although the TET and TIT was reduced considerably from the perspective of mixed traffic 

volume, these parameter values rather increased once considered from the perspective of only 

HuVs, particularly at high AuV shares.   

 

(a) 

(b) 
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Figure 5.8 TET and TIT values in different traffic states for (a, c) total traffic, (b, d) 

HuVs only 

This analysis demonstrated the dichotomy of crash potential due to change in 

perspective. In plain sight, both TET and TIT showed significant reduction (from average 

TET =100 and TIT = 0.1318 at 5% AuV share to average TET= 3.3 and TIT = 0.0124 at 95% 

AuV share) for the mixed traffic passing through the weaving section. However, in-depth 

observations to these parameters from HuVs’ perspective revealed stark dissimilarity at higher 

AuV shares (from average adjusted TET = 105 and TIT = 0.1388 at 5% AuV share to average 

adjusted TET = 65.88 and TIT = 0.2472 at 95% AuV share). It is also important to note that 

rear-end crash potential was nonexistent for majority (1200 – 2100 vphpl) of the simulated 

inflow rate. Hence, the increasing trend in rear-end crash risk by HuVs were pushed by 

extensive AuV presence at high inflow rates. Moreover, the analysis disclosed the 

ineffectiveness of AuVs to influence perceived safety of HuVs at high inflow rates in weaving 

section, even with leading market share.  

5.6 Maximizing Combined Mobility and Safety Implications 

Due to complex correlation of simulated traffic scenarios (i.e., inflow rates, AuV 

shares) with mobility and safety implications, developing a closed form of objective function 

(c) 

(d) 
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to attain combined optimal benefits is considerably convoluted and time consuming. Hence 

an alternative approach of iterative search with meta-modeling is taken in this study. Meta-

modeling is a macro-modeling method of used in literature (Vlahogianni, Karlaftis and Golias, 

2005; Forrester, Sobester and Keane, 2008; Boschian et al., 2011; Vlahogianni, 2015) that 

aims to build simple and computationally inexpensive models that replicates the correlations 

that are observed when samples of a complex, high-fidelity model or simulation are drawn. 

Meta-models are often referred as approximation, surrogate, response surface models. 

Different meta-modeling techniques include generating analytically inexpensive 

approximation of computationally intensive true response through different machine learning 

methods such as: polynomial interpolation, support vector regression, kriging, neural network 

etc. (Hussain, Barton and Joshi, 2002; Queipo et al., 2005; Jakobsson et al., 2010; Gosavi, 

2015). This approach has been commonly used for solving simulation-based optimization and 

analytical dynamic equilibrium problems in transportation applications. The goal of including 

this modeling in this research is to produce faster and simpler approximation of a simulation 

generated results to make multi-objective optimization, design space exploration etc. feasible. 

Mobility and safety scores were calculated for the range of simulated traffic scenarios 

from the attained parameter values of chosen mobility and safety parameters. To attain a 

balanced mobility benefit, both the average travel time and average travel distance were 

leveraged to calculate mobility scores. Safety scores were achieved by measuring the 

reduction of CRI from the base case. The following equations were used to measure the 

mobility and safety scores of each inflow rate and AuD share scenario: 

𝑀𝑆(𝑖,𝑗) =∑[𝜌(𝑖,𝑗)(𝑡)[𝑣𝑆𝐿 − 𝑣𝑖,𝑗(𝑡)] − 𝜌(𝑖,0)(𝑡)[𝑣𝑆𝐿 − 𝑣(𝑖,0)(𝑡)]] 

𝑇

𝑡=1

 

𝑆𝑆(𝑖,𝑗) = 𝐶𝑅𝐼(𝑖,0) − 𝐶𝑅𝐼(𝑖,𝑗)  

Here, 𝑀𝑆(𝑖,𝑗), 𝑆𝑆(𝑖,𝑗) are mobility and safety scores for inflow rate I and AuD share j; 

𝜌(𝑖,𝑗)(𝑡), 𝑣𝑖,𝑗(𝑡) are the traffic density and average traffic speed at the weaving section at 

timestep t  for inflow rate I and AuD share j; 𝜌(𝑖,0), 𝑣(𝑖,0) are the traffic density and average 

traffic speed at the base case (0% AuD share);  𝑣𝑆𝐿 is the speed limit of weaving section. For 
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a better performance by the machine learning algorithm, both scores were scaled within 0 to 

1 range as they would be supplied as training and testing samples of a neural network. The 

neural network was developed in MATLAB with Inflow rates and AuD shares as input and 

corresponding mobility and safety scores as output. 70% samples were used for training and 

remaining samples were used for testing purpose. A Bayesian regularization algorithm was 

chosen with 20 hidden layers. The performance of each iteration was measured by mean 

squared error. Final model comparison between predicted vs expected values showed 𝑅2 =

 0.9884 for training samples and 𝑅2 =  0.9786 for testing samples. The purpose of 

developing such meta-models were to regress the response surface that characterizes the 

correlation between decision variable inputs (i.e., inflow rates, AuV shares) and simulation 

outputs (i.e., mobility, safety score).  

  

Figure 5.9 (a) Mobility scores, (b) Safety scores for varying inflow rates and mixed 

traffic scenarios 

The finalized training model was then applied to obtain scaled mobility and safety 

scores for specific inflow rates and AuD shares in the weaving section. Furthermore, the 

model imparted optimal AuD share information to achieve maximum combined mobility and 

safety benefits for the specified inflow rate. Suppose the upstream average flow rate of the 

weaving section 1760 vphpl and AuD share of the traffic is 46%. The model provided the 

expected mobility and safety scores, which were 𝑀𝑆(1760,0.46) = 0.5651 and 𝑆𝑆(1760,0.46) =

0.8810. For the same upstream average flow rate, the combined mobility and safety impact 

would be maximized by AuD share of 64.5% (𝑀𝑆(1760,0.645) = 0.7849, 𝑆𝑆(1760,0.645) =

(a) (b) 
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0.9385). This information would be critical for traffic operation and management authorities 

to impose controls enabling inflow rates and AuD share to attain more efficient flow and safer 

traffic movements through weaving sections that could act as potential bottlenecks of the 

freeway network. 

5.7 Conclusion 

This chapter proposed a microscopic modeling framework of mixed traffic that was 

applied to a freeway weaving section. Multifaceted traffic scenarios of mixed traffic were 

simulated for the weaving section, a combination rarely explored in the literature so 

extensively. The modeling framework built on MPC-based decision-making principles that 

accounted for the anticipative aspects of human drivers. This modeling capability can be 

attributed to lateral control decisions and control model transitions of both vehicle types. 

Specifically, the anticipatory lane-changing decision while perceiving the future status of 

neighboring vehicles and reference lane changing trajectory built upon empirical observations 

were the cornerstone of reproducing realistic traffic states for a multilane roadway. In this 

study, the simulation results contributed to understanding the effects of AuD vehicles on 

traffic mobility and safety as well as validating the findings from previous relevant studies, 

such as Tilg et al. (Tilg, Yang and Menendez, 2018), Liu et al. (Liu et al., 2018), Spiliopoulou 

et al. (Spiliopoulou et al., 2018), Papadoulis, Quddus, and Imprialou (Papadoulis, Quddus and 

Imprialou, 2019), Ye and Yamamoto (Ye and Yamamoto, 2019), and Rahman and Abdel-Aty 

(Rahman and Abdel-Aty, 2017).  While the findings were consistent with these research 

efforts, this research contributes to the body of knowledge by several issues including 

dichotomic interaction between mobility and safety in mixed traffic, pseudo safety perception 

with higher AuV shares and meta modeling to attain equitable mobility and safety advantage 

from AuV presence in weaving section.   

Analysis results revealed that low AuD vehicle share at high inflow rates could have 

an adverse impact on mobility of the weaving section. This finding was critical for the 

weaving section due to the distinct and preemptive lane-changing activity experienced in this 

freeway segment. Safety features of traffic in weaving sections were found to be exponentially 
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associated with AuD vehicle shares. While increasing traffic demand could raise safety 

concerns at any level of AuD vehicle presence, the range of potential conflict levels was found 

be substantially reduced with higher AuD vehicle shares. Finally, the simulation results were 

assembled together to develop an assistive application for traffic operation and management 

authorities that can aide traffic state evaluation from both a mobility and safety perspective; 

the application can also seek optimal levels of AuD vehicle presence to maximize the impact. 

Altogether, the analysis results were reported with the goal to provide some clear insights into 

the implication of AuD vehicles on weaving section traffic mobility and safety as well as 

clarify the transformation of mixed traffic flow dynamics with the gradual adoption of AuD 

vehicles under the current traffic system. 

Future research includes further expansion of human driving behavior and the 

identification of resulting variations. Furthermore, we will continue the research by 

considering different platoon strategies as well as distinguishing the impact of different 

platoon structures and varying human behavior. While this study examined the mobility and 

safety implications for traffic containing two types of vehicles, the mixed traffic scenario will 

be enhanced to address HuVs with an advanced driver assistance system that aims to improve 

driving efficiency without absolute reliance on automaton. 
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CHAPTER 6 : CONCLUSION 

6.1 Research Summary 

According to SAE level of automation, full automation can only be achieved at level 4 and 5 

of automation where the vehicle will be in full control. In other levels of automation human 

driver has the capability to intervene or the responsibility to take driving decision. Therefore, 

driving behavior identification is extremely essential to reach level 4 and 5 of automation. 

Furthermore, in mixed traffic stream (i.e., traffic stream that contain both autonomous and 

human driven vehicle), human driving behavior identification is important for automated 

vehicles to anticipate potential hazardous situation as well as to adapt with human driving 

pattern while sharing the road. In this premise, the entire research is divided into three distinct 

phases. The first phase of this thesis examines naturalistic driving behavior of human drivers 

to obtains insights about variations and complexity involving human counterpart of mixed 

traffic. Additionally, novel driving behavior classification method was proposed for two 

distinct duration perspective by combining longitudinal and lateral control decisions of human 

drivers. The analysis was performed using different sensory data, so the results don’t take into 

account the quality of the signals, but more likely the quantity of available data. Author 

assumed that available dataset that was collected for analysis from USDOT website was 

checked and rectified for any deficiencies. The threshold-based labeling was performed in 

scaled driving feature (i.e., jerk, yaw rate, leading headway) data. The ranges of these features 

vary with different road class and exogenous factors. The choice of the threshold value was 

made through observations and informed assessment from literature review of similar 

approaches of behavioral classification (Langari and Won, 2005; Won and Langari, 2005; 

Murphey, Milton and Kiliaris, 2009; Vaitkus, Lengvenis and Zylius, 2014; Shi et al., 2015; 

Wang et al., 2017).  Finally, the author proposed a human-machine interface to transmit the 

classification information with the aim to positively influence the control decision making of 

the driver. The backhaul communication architecture was not considered within the scope of 

this research. 

In the second phase of the research, the foundation of microscopic simulation 

framework was laid to evaluate mobility and safety implications of mixed traffic movements. 

This part of research was focused on dominant maneuver in vehicle motion dynamic (i.e., car-
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following) and proposed a strategy to execute mixed traffic movement in a single stream of 

traffic. The authors attempted to identify the impact of AuVs location and distribution on 

remaining HuVs acceleration characteristics. Furthermore, different platoon structures were 

examined to evaluate the influence of varying platoon configurations on expected mobility 

and safety benefits. Maximum Platoon Length was restricted by several factors such as: DSRC 

communication range, platoon stability, V2V communication structure, lane changing 

maneuverability etc. While Maximum Platoon Lengths can be up to 10 or 20 vehicles by 

minimizing communication delay and optimal design of vehicle control system, the 

requirement to provide enough lane changing gaps in later part of the research restricted the 

parameter value (i.e. maximum platoon length) (Shladover et al., 2015). To evaluate mobility 

implications due to AuVs, two key parameters were used in this phase, average travel time 

and average travel distance. Due to conflicting characteristics of these two parameters, a 

mobility score was established to assess the combined impact through a single parameter. 

Results from mobility analysis indicated positive correlation between platoon structure (i.e. 

intra-platoon headway, inter-platoon headway and maximum platoon length) with mobility 

improvement. Hence, roadway segments with predominant car-following maneuver could be 

benefitted operationally from closely spaced platoons formed by AuVs. On the other hand, 

the safety implications were measured by time-to-collision, time exposed time-to-collision, 

time integrated time-to-collision parameters which represents rear-end collision expectations 

due to car-following. Afterwards, a single parameter, named as safety score, was established 

to capture the overall safety impact of AuVs on simulated traffic. Analysis results suggested 

that smaller platoon lengths with widely spaced AuVs would induce greater safety benefits 

from mixed traffic. Finally, a method to identify sub-optimal platoon structure from candidate 

structures was applied to attain balanced mobility and safety benefits from mixed traffic 

movement.  

Final phase of the research incorporated complete motion dynamics of both vehicle 

types to estimate expected mobility and safety implications. Additionally, the focus of the 

research was concentrated to a specific configuration of weaving section, in order to deliver 

fairly accurate evaluation as well as contribute to the body of knowledge by examining a 

congestion prone yet rarely studied roadway segment. This part of thesis included lateral 

motion dynamic with already established longitudinal strategy of mixed traffic. Insights 
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obtained regarding behavioral variations of human drivers were integrated in motion 

dynamics of HuVs to reproduce comparable real-world inconsistency in simulated 

environment. Afterwards, developed model was validated through highway capacity manual 

suggested macroscopic parameters for similar roadway configurations. The developed model 

was simulated for several combinations of HuVs and AuVs to get an enhanced understanding 

about mobility and safety implications on studied roadway section. To reduce the complexity 

of interpreting the results, the traffic volume ration between mainline and ramps were kept 

invariable throughout the simulation scenarios. Changing this ratio could generate dissimilar 

outcome from the same simulation model. The mobility implications of the simulated 

scenarios were measured through maximum throughput and average speed of traffic. Results 

of maximum throughput analysis indicated that maximum benefits from AuVs presence could 

be obtained at 65% AuV share in traffic. While theoretical computation of maximum 

throughput (Liu et al., 2018) showed gradual increase with increasing AuV shares, the 

restricted inflow rate, due to suggested guidelines by Highway Capacity Manual, could induce 

limiting maximum throughput at lower AuV share. In addition to maximum throughput 

analysis, average traffic speed analysis provided impartial assessment of AuVs’ mobility 

implications. Results of the analysis indicated speed harmonization of traffic at higher AuV 

market shares (> 60%) with some level of disturbance at lower market shares (5-20%). Since 

the inherent characteristics of weaving section demands higher than normal lane-changing 

maneuvers among the vehicles, some level of disturbance due to the presence of AuVs were 

expected due to unfamiliar attributes of both vehicle types.  On the other hand, safety 

implications were measured through two parameters: potential conflict events and rear-end 

crash potential. Potential conflict events were identified for each simulation scenarios (i.e. 

Inflow rate, AuV shares) to identify the pattern and extent of prospective implications. Results 

from these analyses illustrated progressively reduced conflict events with gradual increase of 

AuV market shares. Finally, a machine learning-based method was put forward to identify the 

AuV share corresponding to maximum combined mobility and safety benefits for prevailing 

inflow rate in the studied weaving section. The method was developed from recorded mobility 

and safety implication results obtained simulated traffic flow scenarios which finally provided 

estimates of expected mobility and safety benefits from existing AuV share in current traffic 

flow rate. 



 

138 
 

6.2 Fundamental Contributions 

The value of the research depends on significant contribution made by the findings 

from research to the body of knowledge as well as for practical application. Each phase of 

this thesis aimed at making meaningful contribution to the existing literature and practice as 

well as paving the road of advancing AuVs integration with traditional roadway and 

transportation system. The following two sub-sections have listed the key scientific and 

practical contributions made through this research. 

6.2.1 Scientific Contributions 

In the first phase of this research (Chapter 3), the analyses were initially focused on 

determining the behavioral heterogeneity of human drivers with the intention to rationalize 

the significance of anticipating such inconsistencies while estimating expected benefits from 

AuVs in mixed traffic scenarios. Neglecting such key aspect of HuVs could lead to erroneous 

assessment of AuVs impact on traffic and eventually results in improper policy decision 

making as well as resource allocation. While several previous studies identified and classified 

behavioral variations of human drivers, handful of studies analyzed for naturalistic driving 

data of such extent with different road classes as well as accounted for bi-directional control 

behavior of human drivers.  Selecting features to represent car-following and lane-changing 

behavioral pattern of human driver and leveraging these feature profiles to classify driving 

behavior on different classes of roads allowed this research to make novel contribution to 

existing literature. Behavioral classification of human drivers was extended further with this 

research effort by considering two different time scales to apprehend the process of 

instantaneous driving behavior becoming driving habit with passing time. Previous research 

efforts were limited to identifying individual trip behavior of human drivers and often 

overlooked the gradual progression of trip behavior towards driving habit. Reviewing this 

progression of driving behavior is important from mixed traffic perspective, since AuVs might 

persuade the driving behavior of human counterpart to bring positive changes for short and 

long-term driving behavior.  

Second phase of this research (Chapter 4) dealt with achievable mobility and safety 

implications derived from shared presence of AuVs and HuVs. In this part of the research car-

following maneuver of vehicle motion dynamics was the sole consideration. Although car-
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following alone is unable to completely explain the complexity of driving conditions in mixed 

traffic scenarios, this maneuver formulates the majority share of driving task in naturalistic 

driving conditions. As a result, a car-following strategy was proposed in this phase for mixed 

traffic to evaluate the impact on overall mobility and safety. While the car-following strategy 

was adapted from a previous study, the application of this strategy to quantify mobility and 

safety impact was a novel contribution. The foundation of microscopic modeling was laid by 

developing the framework for two vehicle types traversing an uninterrupted roadway section 

without passing each other. At this phase, human drivers were regarded to demonstrate 

identical car-following behavior since the behavioral influence of human behavior would 

impose a unique challenge in estimating obtainable benefits from mixed traffic. Therefore, the 

obtained variations in mobility and safety was generated exclusively from positional and 

configurational difference among the studied vehicle types in the simulation which 

highlighted the warrants to consider this component of expected implications into 

consideration. Majority of the previous studies either disregarded the impact resulting from 

vehicles’ orientation or accumulated with human behavioral component while estimating the 

AuVs effects on mixed traffic. To expand the analysis from vehicle component, this part of 

the research also explored the influences of AuVs placement in traffic stream on overall traffic 

flow efficiency. Different complex platoon structures formed by AuVs were reviewed and 

influences of these platoons were measured to identify suitable AuVs placements and platoon 

configurations to attain favorable impact on mobility and safety at different traffic flow 

scenarios (i.e. inflow rate, AuV share). This study confirmed reciprocal correlation between 

mobility and safety benefits resulting from increasing AuV presence in traffic. However, it’s 

worth pointing out that the estimated mobility and safety implications were calculated 

disregarding the expected behavioral variations of human drivers. Due to the absence of 

complex behavioral heterogeneity, the derived results from analyses were easily interpretable 

and justifiable. Excluding the human behavioral component at this stage of the research 

allowed us to appraise the importance of behavioral variation in estimating the potential 

benefits in the final phase of the research. 

The final phase of this research (Chapter 5) centered around a specific roadway 

section (i.e. weaving section) of freeway in transportation network which is usually vulnerable 

to recurrent congestion due to the natural traffic flow characteristics of this section. Despite 
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numerous efforts in the literature to identify the impacts of AuVs on freeway mobility and 

safety, insufficient documentation was available prior to this study about the implications on 

this pivotal component of freeway system. In addition to emphasizing on a critical roadway 

segment, this study also incorporated complete motion dynamic of both vehicle types to 

formulate a complete microscopic modeling framework with CACC-based platoon formation 

among AuVs. Insights obtained from first phase of the research on human driving behavior 

was also integrated at this phase. Developing such comprehensive modeling framework 

offered the opportunity to in-depth exploration of mobility and safety consequence of AuVs 

on numerous traffic flow scenarios. This research proposed an approach to demonstrate the 

variations in potential effects of AuVs on weaving section operation from both mobility and 

safety perspective while considering the variations in driving behavior by their human 

counterpart. To the best of author’s knowledge, no prior effort was made in this specific 

direction of research. Hence, this research provided a direction to move forward for the future 

research attempts as well as some benchmarks for mobility and safety parameters to compare 

the research output with complex real-world traffic operations. 

This research effort was a unique approach in integrating real-world complexity with 

numerical simulation to attain valuable insights about potential implications of AuVs on 

freeway weaving section mobility and safety performance. The findings obtained from this 

research will impact both academic and industrial progression of AuV progression in the 

future.     

6.2.2 Practical Contributions 

Besides the contributions of this thesis on scientific sector, the findings from this 

research also make valuable contributions the society and practice. The results of this research 

can be deemed beneficial for policymakers, transportation planners, roadway infrastructure 

designers, traffic operation authorities and road users.  

The integration of naturalistic driving behavior and realistic CACC-platoon structure 

within a singular microscopic modeling framework provides an effective simulation to to 

evaluate mobility and safety impact of AuVs in various traffic scenarios. This transferrable 

numerical simulation structure can be calibrated to replicated traffic characteristics of 

different freeway segments including multiple driving modes which is advantageous for 
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policymakers and traffic operators to examine the consequences of introducing various levels 

and configurations of CACC-platoons in mixed traffic before promoting this technology for 

large scale deployment.  

The estimated mobility implications at different AuV market shares are fundamental 

and of significant importance for transportation planning and management authorities. Given 

that studied mobility parameters (i.e., Maximum throughput, Average speed of traffic) 

illustrated strong reciprocity with AuV presence in traffic, roadway operator may consider 

proactive management strategies to adapt the flow characteristic. Additionally, transportation 

planners and operator can contrive strategies to artificially increase AuV shares given that 

adverse mobility impact was observed at low AuV shares. Meanwhile, roadway infrastructure 

designers may need to adjust the geometric design of roadway segments to maintain 

homogeneity in roadway capacity considering the different levels of capacity increments 

resulting from AuV presence. 

The combined implications of AuVs on mobility and safety can be communicated to 

road users for clarifying the significance of this technology in overall improvements of traffic 

operations. The speed homogeneity and increased capacity achieved at higher market shares 

of AuV can offer more reliable travel experience for road users. Furthermore, the benefits 

derived from reduction of rear-end crash probability at any level of AuV share and traffic 

demand are undeniable. Successful interpretation and communication of the insights obtained 

from this research can educate road users to be more receptive to this new technology while 

being mindful of potential shortfalls.   

6.3 Key Limitations and Future extension opportunities 

Most of the research efforts are constrained by some form of systemic limitations. This 

research was not exempted from such limitations. Although this research made some valuable 

contribution to the body of knowledge, there are a few key limitations that restricted the far-

reaching applications of the obtained knowledge. Some of the key limitations of the study is 

listed below: 

▪ First major limitation of the study sets the premise of future stuides which is the lack 

of field experiment opportunity. Large scale operation of AuVs is still unachievable. 

Furthermore, small scale experimentation with AuVs is highly restricted within 
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access-controlled testing locations. As a result, this study adopted features and 

characteristics assumed in other AuV studies to simulate the motion dynamics of AuVs 

in mixed traffic scenarios.  

▪ The dataset used for behavioral classification contained 63 different features of 

individual driver at each time step. Among these features, only three features were 

carefully chosen to represent drivers’ intentions and control decisions. Incorporating 

more features in the analysis would definitely increase the complexity of the process 

with the odds of refining the classification process. An approach of incorporating 

multiple features in driving behavior classification process was undertaken by 

Tawfeek and El-Basyouny (Tawfeek and El-Basyouny, 2020). 

▪ In the second phase of this research, a synthetic leading vehicle trajectory was 

developed to perform numerical simulation which might not be representative of the 

real-world scenario. However, the purpose of the proposed trajectory of the leading 

vehicle of the traffic stream was to explore different driving scenarios (i.e. 

acceleration, steady state, deceleration) experienced by the vehicles in a traffic stream. 

▪ The proposed microscopic modeling framework for mixed traffic disregarded few 

implications in real-world motion dynamics such as: string stability, concave-convex 

car-following pattern, cut-in vehicles, inconsistent gap-acceptance from individual 

human driver etc. By ignoring these phenomena of real-world traffic movement, the 

research focused in more wholistic and system level approach.  

▪ In the communication state between vehicles, it was assumed that the vehicle status 

could be communicated among vehicles instantaneously without any error. Therefore, 

real-world impediments like vehicle actuation delay, communication delay, lost data 

packet issues were disregarded. 

6.4 Conclusion 

This research is the outcome of recognized gap in existing literature to obstruct the 

progress of Connected-Automated vehicle technology for the future of transportation system. 

While this technology comes with promises to overcome major limitations of traditional 

transportation system and infrastructure, the actual effects depend on planned implementation 

and integration with existing transportation system. This research explored the influence of 

AuVs on mobility and safety for mixed traffic operation in a freeway weaving section which 
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was uncharted in the literature and contributed to the knowledge base. The modeling 

framework built in this research can be implemented for other roadway segments for mixed 

traffic simulation. Integration of behavioral component of human drivers in the modeling 

framework by studying naturalistic diving behavior is an added feature of the developed 

model which can generate more scattered but realistic evaluation of mixed traffic operations.  

The findings from this research enhanced the appeal of Connected-Automated vehicle 

technology from both mobility and safety perspective. The mobility improvements measured 

through the increase in capacity and average speed of traffic. Overall mobility improvements 

at high market shares of AuV is encouraging for policymakers to support this technology. This 

also pointed out some mobility detriment at lower market share since adjustments were 

required to be made by both AuVs and HuVs to accommodate each other. Hence, 

transportation authorities and policy makers can prepare for these initial obstacles while 

integrating and expanding the technology with traditional transportation system. On the other 

hand, the inclusion of AuVs in traditional transportation system advertently improved the 

safety performance of traffic. This study only analyzed potential rear-end type conflicts 

resulting from mixed traffic movements to evaluate safety performance. Analysis results 

indicate substantial reduction of potential conflicts with the increasing AuV shares in traffic. 

Findings regarding safety is favorable to introduce AuVs in existing transportation system to 

avail safer traffic movements. 

Although the generalized findings of this research deemed favorable towards AuVs, 

the outcomes of this research are subject to the developed modeling framework and 

assumptions made in the simulation scenarios. Future research efforts can extend this premise 

by challenging the model assumptions, addressing the limitations, and focusing on 

experimental data collection to examine the findings of this research. Additionally, new 

control strategies and AuV control dynamics can be tested to address the adverse mobility 

implications of mixed traffic at lower AuV shares. This study can be further extended by 

introducing assisted driving vehicles in mixed traffic scenarios where human drivers can 

utilize advanced driver assistance system to make more informed control decision while 

driving. Since, the behavioral pattern of assisted driving system is still unknown, this type of 

driving system was disregarded in this study. In summary, this study unlocked the possibilities 
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to prolong this direction of research in multiple dimensions and provide answers to the 

unknowns about this new technology. 
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