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Abstract

Bayesian belief nets (BNs) are often used for classification tasks, typi-
cally to return the most likely class label for a specified instance. Many
BN-learners, however, attempt to find the BN that maximizes a differ-
ent objective function — viz., likelihood, rather than classification accu-
racy — typically by first using some model selection criterion to identify
an appropriate graphical structure, then finding good parameters for that
structure. This paper considers a number of possible criteria for select-
ing the best structure, both generative (i.e., based on likelihood; BIC,
BDe) and discriminative: Conditional BIC (CBIC), resubstitution Clas-
sification Error (CE) and Bias�+Variance (BV). We empirically compare
these criteria against a variety of different “correct BN structures”, both
real-world and synthetic, over a range of complexities. We also compare
(1) using the entire training sample first to learn the best parameters and
then to evaluate the models, versus (2) using only a partition for parame-
ter estimation and another partition for evaluation (cross-validation). Our
results show that the discriminative BV is one of the best measures for
identifying the optimal structure, but the discriminative CBIC performs
poorly; and that it is typically better to cross-validation here.

1 Introduction

While belief networks (BNs, a.k.a. Bayesian networks, graphical models) are generative
models, capable of modeling a joint probability distribution over a set of variables, they are
typically used discriminatively for some classification task — e.g., to predict the probability
of some disease, given some evidence about the patient. This has motivated the growing
body of work on learning an effective BN-classifier from a datasample.

In general, learning an effective BN-classifier requires first finding a good BN structure
(a.k.a. model, which represents the direct dependencies among the variables) then deter-
mining appropriate parameters for this model. The first step requires searching through a
space of models, seeking the element that optimizes some model selection criterion. This
paper investigates a number of criteria, towards determining which works best in practice
— i.e., which will minimize classifier error on unseen data.

This is not a trivial challenge. While one can typically improve classification performance
on the training data by increasing the complexity of the model, this usually increases the



number of parameters that must be estimated. This typically increases parameter variance,
which leads to inferior generalization performance — i.e., worse performance on unseen
data. A model selection criterion attempts to operationalize this balance between com-
plexity and goodness of fit to training data, by providing a single number for each network
structure. A good model selection criterion is especially important when have limited train-
ing data, which is the standard case.

Earlier work [VG00] evaluated several standard generative criteria, where the goal is a
structure that produces the best fit to the underlying distribution (using likelihood, Eqn 3).
Our current paper considers two: BIC [Sch78] and BDe [CH92].

As noted above, our overall goal is different, as we are seeking a structure that leads to good
discriminative performance, i.e., which has the best classification performance on unseen
testing data. We therefore consider several alternative discriminative critera: Conditional
BIC (CBIC), resubstitution Classification Error (CE), and Bias�+Variance (BV).

When deciding on an appropriate structure, we need to consider how we will instantiate its
parameters (CPtables). In particular, each learner uses a corpus of training data, both to find
the best parameters for each structure, and also to evaluate the quality of this instantiated
model. Should it use the same data for both tasks, or should it instead partition the training
sample into two subsamples, and use the first for parameter instantiation, and the second
for model selection, perhaps in a cross-validation fashion?

The rest of this section discusses related work. Section 2 provides the framework for this
paper, describing belief networks, model selection criteria and parameter learning. Sec-
tion 3 presents our experimental setup and results: As our preliminary experimental results,
on data from a real-world distribution, suggest the performance of each criterion may be
related to complexity of the Markov blanket around the query variable, we therefore sys-
tematically explore the effectiveness of various model selection criteria across generative
models with a wide range of Markov blanket complexities. The webpage [Guo04] con-
tains additional information about the experiments reported here, as well as other related
results.�

1.1 Related Work

There is a considerable literature on structure learning of belief nets, but most focus on
generative learning; see [Hec98] for a detailed overview on this subject. MDL is used
frequently to evaluate candidate structures [LB94, Suz78, FGG97]. [FY96] examined the
sample complexity of the MDL-based belief net learning. [VG00] provides a comprehen-
sive comparison when learning belief network structures generatively. While we borrow
some of the techniques from these projects, recall our goal is learning the structure that is
best for a discriminative classification task.

As noted earlier, belief nets are often used for this classification task. This dates back (at
least) to Naı̈veBayes classifiers [DH73], and has continued with various approaches that
include feature selection [LS94], and alternative structures [FGG97, CG99]. [KMST99]
compared several model selection criteria (unsupervised/supervised marginal likelihood,
supervised prequential likelihood, cross validation) on a subset of Bayesian networks re-
garded as “pruned Naive Bayes”. [GD04] presented an algorithm for discriminative learn-

�(1) There are many reasons to select some specific criteria, some of which relate more to prior
assumptions and constraints, than to performance. In this paper, however, we are only concerned with
eventual classification performance, as measured by Eqn 1.
(2) While most of these criteria are known to be asymptotically correct, our interest is with the
practical use of these criteria. We therefore focus on small sample sizes.
(3) Our goal is to better understand model selection criteria, divorced with the search issues associated
with learning itself. We therefore follow the standard framework for evaluating criteria [VG00]:
consider only a small set of models, small enought that each can be evaluated.



ing belief networks that used the conditional likelihood of the class variable given the evi-
dence (Eqn 2) as the model selection criterion. Our work differs by proposing several new
discriminative model selection criteria (including a variant of a generative criteria (CBIC),
and another (BV) motivated by the classification task in general [Rip96]), and by provid-
ing a comprehensive comparison between classical generative model selection criteria and
discriminative criteria on the task of learning good structures for a BN-classifier.

2 Framework

2.1 Belief Network Classifiers

We assume there is a stationary underlying distribution � � � � over � (discrete) random
variables � � ���� � � � � ���, which we encode as a “(Bayesian) belief net” (BN) — a
directed acyclic graph � � �� � �� ��, whose nodes � represent variables, and whose
arcs � represent dependencies. Each node � � � � also includes a conditional-probability-
table (CPtable) �� � � that specifies how ��’s values depend (stochastically) on the values
of its immediate parents. In particular, given a node� � � with immediate parents� � � ,
the parameter ���� represents the network’s term for � ���	 ��� � � [Pea88].

The user interacts with the belief net by asking queries, each of the form “What is
� �
�� ���� �?” — e.g.,

“What is � �Cancer = true �Gender=female, Smoke=true � ?”
— where 
 � � is a single “query variable”, � � � is the subset of “evidence variables”,
and � (resp., �) is a legal assignment to 
 (resp., �).

Given any unlabeled instance � � �, the belief net B will produce a distribution over
the values of the query variable; perhaps �� Cancer = true �� � � � � ��� and
�� Cancer = false �� � � � � ���. In general, the associated �� classifier system
will then return the value ����� � ��	
������
� ������� with the largest posterior
probability — here return ���� � � � � false as �� Cancer = false �� � � � �
�� Cancer = true �� � � �.

A good belief net classifier is one that produces the appropriate answers to these unlabeled
queries. We will use “classification error” (aka “0/1” loss) to evaluate the resulting�-based
classifier ��

err�� � �
�

��������������

� � � � � � (1)

Our goal is a belief net �� that minimizes this score, with respect to the true distribution
� � � �. While we do not know this distribution a priori, we can use a sample drawn from
this distribution to help determine which belief net is optimal. We will use a training set 
of � � �� complete instances, where the �th instance is represented as �� �� ���� � � � � �

�
��.

This paper focuses on the task of learning the BN-structure� � �� � �� that allows optimal
classification performance on unseen examples.

Conditional Likelihood: Given a sample , the empirical “log conditional likelihood” of
a belief net � is

LCL����� � �
�

��

�
�������

�	��� � � � � � (2)

where �� � � � � represents the conditional probability produced by the belief network �.
[MN89, FGG97] note that maximizing this score will typically produce a classifier that
comes close to minimizing the classification error (Eqn 1).

While this LCL����� � formula closely resembles the (empirical) “log likelihood” function

LL����� � � �
���

�
������� �	��� �� � � � (3)

used as part of many generative BN-learning algorithms, it is significantly differ-
ent [FGG97].



We will measure the complexity of the BN � as the number of free parameters in the
network

���� �
��
���

����� 	 ��
�

��Pa�	� �
�� � (4)

where � is the number of variables, �� � is the number of values of any variable � , and
Pa�� � is the set of immediate parents of the node � .

For a belief network structure, given a completely instantiated tuple, a variable 
 is only
dependent on the variables in its Markov Blanket [Pea88], which is defined as the union
of 
’s direct parents, 
’s direct children and all direct parents of 
’s direct children. We
define �
�� � as the number of parameters in 
’s Markov blanket, within �, using an
obvious analogue to Eqn 4.

2.2 Generative Model Selection Criteria

Most of the generative criteria begin with the average empirical log likelihood of the data,
Eqn 3, as LL������ � on unseen data  � is useful as an unbiased estimate of the average
generative quality of the distribution �. To avoid overfitting, BIC adds a “regularizing”
term that penalizes complex structures, as an embodiment of the trade-off between model
simplicity and goodness of fit to the training data.

BIC����� � � 	LL����� � �
���� �	�

��

Another generative model selection criterion is the marginal likelihood — averaged over
all possible CPtable values (in the Bayesian framework):

BDe����� � �

��
���

���
���

������

����� � ����

����
���

������ � �����

�������
�

where �� �
�

� �Pa�� � �� � is the number of states of the parents of variable � �, ���� are

the Dirichlet prior parameters (here set to 1), � �� �
����

��� ���� , and ���� are the empirical
counts — i.e., the number of instances in the datasample  where the �th variable � � takes
its �th value and its parents have their �th value.

2.3 Discriminative Model Selection Criteria

The CBIC (conditional BIC) criterion is a discriminative analogue of the generative BIC
criterion, which differs by using log conditional likelihood to measure “training error” and
by using �
�� � rather than ���� as the number of parameters.

CBIC����� � � 	LCL����� � �
�
�� � �	�

��

As we use classification error on testing data to measure a BN-classifier’s performance, we
decided to include its classification error (CE) on training data as a discriminative model
selection criterion.

CE����� � �
����� �� �  � ����� 
� ���

��

[Rip96] proves that the expected �� error of a classifer corresponds to “Bias�+Variance”

BV����� � �
�

��

�
�������

� �� � � � � 	 �� � � � ��� � ������ � � � ��

where the “true” response �� � � � � corresponds to the empirical frequency within the train-
ing data:

�� � � � � �
���
�������

�������



where ���� � �� is the number of instances in training set  that match this (partial)
assignment, and we use the (Bayesian) variance estimate provided in [VGH01]:

������ � � � �� �
�

������

�

����

�
�
�
���

�

����
��� 	� � � � � � �	�� � � � ��� 	� � � � ���

	 ��� � � � � � � 	 �� � � � ��� � � � � �
�

�
�

which requires summing over the CPtable rows �������� , and uses ������ � � � ��� �
����� � � as the “effective sample size” of the conditioning event for this row.

2.4 How to Instantiate the Parameters

As mentioned above, a BN includes both a structure and a set of parameters for that struc-
ture. Given complete training data, the standard parameter learning algorithm sets the value
of each parameter to its empirical frequency in the datasample, with a Laplacian correction:

�������� �
�����	��� �� � �

����� �� � ���

[CH92] prove these generative values corresponds to the mean posterior of a distribution
whose prior was a uniform Dirichlet; moreover, they optimize the likelihood of the data,
Eqn 3, for the given structure.

The learner has access to a training sample , to use as it wishes when producing the
optimal structure. A simple model selection process will use the “undivided sample” ap-
proach: use all of  when finding the appropriate instantiation of the parameters. It will
then compute a score for this instantiated structure, based again on . Note this “1Sample”
approach was the motivation for many of the scoring criteria! We will compare this to the
obvious “cross-validation” approach (5CV): first partition the data into 5 subsets, and for
each subset �, use the other 4 subsets to fit parameters then compute the score of the result
on �.

3 Empirical Studies

This section reports on our empirical studies that compare the 5 model selection criteria
mentioned above, to help determine when (if ever) to use each, and also whether to partition
the training data or not. We therefore asked each of the criteria to identify the appropriate
structure, across a range of situations. Section 3.1 first explains how we will run each
experiment, and how we will evaluate the results. Section 3.2 presents our first study, on a
real-world distribution. This data suggests that the complexity of the generative model may
determine which criteria works best. The remaining subsections explore this. Section 3.3
(resp., 3.4) considers the performance of the selection criteria on a set of synthetic models
with a range of complexity, using 1Sample (resp., 5CV sample).

3.1 Experimental Setup

In each experiment, we have a specific “true” distribution � ��� — i.e., correct BN-structure
and parameters — which we either download, or produce. We generate a number of com-
plete datasamples from this � ���, of various sizes. We also produce a set of possible models
by modifying the true structure; see below. For each training sample we then run each of
the selection criteria (in the appropriate context: 1Sample vs 5CV). Each criteria produces
a single number for each candidate structure. Figure 1(a) shows this, in the context of the
ALARM [BSCC89] network (Section 3.2).� Each criteria then identifies the structure it
considers best, which is the one with the lowest score. Here, for example, CBIC would se-
lect the structure labeled “	7”, BIC would pick “	9”, BV would select “0” and BDe, “1”.

�Each measure is normalized to fit between 0 (best) and 1.
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Figure 1: (a) Criteria Score, as function of Structure; (b) Relative Score of Various Criteria, over 3
queries in ALARM Network.

(These numbers correspond to the number of edges added, or deleted, to the initial struc-
ture. Hence, the original structure is the one labeled “0”.) For each criteria �, let � � be this
selected structure, instantiated appropriately. We then compute the error of each � �, based
on a hold-out sample  � of size � �� � ����, generated from � ��� — i.e., err��

����� �.

We also determine which of the structures �� � ��	
����err��
���� �� really was the

best — i.e., had the smallest error. (See the “Test Error” line in Figure 1(a); notice this
picks “-2”. That is, the structure that is best for a particular sample need not be the orig-
inal structure!) The score for criterion � is the ratio err ��

����� ��err��
����� �. For each

sample size, we compute the average over 20 repeated trials, each time using a different
training set. This ratio will be 1 for a perfect criteria; in general, it will be higher.

Proper model selection is most challenging, and hence more relevant, when given limited
training data; this paper therefore focuses on a very small training sample, of 20 instances.
(The data for other sizes was similar; see [Guo04].)

Generating Sequence of Structures: Given a true BN-structure ��, we generate a se-
quence of BN-structure candidates with increasing complexity, as follows:

1. Starting from the original structure, sequentially remove one randomly-selected edge
from the Markov blanket (MB) of the class variable, to generate a series of structures
whose class variable has decreasing MB size.

2. Starting from the original structure, sequentially add one randomly-selected edge to the
Markov blanket of the class variable, to generate a series of structures whose class variable
has increasing MB size.

3.2 Experiment I: Real-World Distr’n, 1Sample

Our preliminary investigations examined several real-world belief nets; here we focus on
ALARM [BSCC89]; see [Guo04] for the others. We considered three different variables
to serve as the class variable, which produced three different query forms, whose Markov
blankets had a wide range in size: 15, 28, 188; see Figure 1(b).

As outlined above, we computed the relative score for each
criteria, err��

����� ��err��
����� �. Figure 1(b) is the result when we used a sample of

size � � ��. We found that BV perform well throughout, with BDe being very close; but
the other measures were generally inferior. ([Guo04] shows similar performances on other
sample sizes, and for other networks.)

3.3 Experiment II: Synthetic Distribution, 1Sample

We observed different behavior of the various selection criteria as we varied the complexity
of the Markov blanket around the query variable. To further explore this, we generated
a set of synthetic networks, whose query variables could have arbitrary Markov blanket
complexity. We will use the networks here and below.

We first randomly generated six groups of belief network structures with varying Markov
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Figure 2: Experiments on 7-Variable BN, � � ��: (a) Experiment II: 1Sample; (b) Ex-
periment III: 5CV; (c) Average Raw Performance (BV)

blanket complexity, where each group includes 30 structures. Each of these became the
gold standard, used to generate datasamples.

We used the experimental apparatus described in the previous section to test the behavior
of each criterion, across a spectrum of complexities and a range of sample sizes. The graph
in Figure 2(a) show the results for belief networks with seven variables, over a sample of
size � � ��, using 1Sample. The complexity (on the X axis, from 1 to 6) represents the
six group of structures, with increasing generative complexity.

This plot shows that the BV, CE and BDe criteria perform comparably across the generative
complexity, and each is typically (far) superior to BIC and CBIC. ([Guo04] shows this holds
for many training sizes as well.)

The BIC and CBIC criteria perform well only when the generative complexity is very small,
otherwise, they perform very poorly. Our experiments reveal why: These criteria have too
strong a preference for simple structures, as they almost always pick the simplest structure
in the sequence, irrespective of the data. (Notice this data was sufficient to tell the other
measures to prefer other larger structure.) This is consistent with the [VG00] observation
that this criterion seriously underfits — indeed, for small samples, it almost invariably
produced no edges. This suggests the complexity penalty term for BIC/CBIC may be too
big, and not appropriate for belief network on most cases.

3.4 Experiment III: Synthetic Distribution, 5CV

Figure 2(b) shows the results of the 5CV variant. In general, we can see that BV is often
the best, closely followed by CE, then often BDe. Once again, we see that BIC and CBIC
perform significantly worse; even with 5CV, they continue to select the simplest structure
in almost all cases.

Here, the CE score here corresponds to the standard 5-fold CV. Note that it does not always
produce the best response; (5fold) BV is better!

Figure 2(c) compares the 1Sample vs 5CV approaches — showing the average absolute 0/1
classification error (Eqn 1) obtained when using the BV criterion. We see that 5CV does
better than the 1Sample variant when the generative model has low complexity, but the
situation reverses as the model becomes more complex. ([Guo04] shows similar behavior
for the other criteria.)

We performed similar experiments with othersample sizes (e.g., � � ��, � � ��), and
also on a set of larger belief networks (e.g., with 15 variables) and obtained similar results.
We also considered AIC and its analogue CAIC, and found they behaved essentially the
same as BIC (CBIC). We also considered learning when using the parameters that opti-
mize conditional likelihood, rather than simple likelihood [GZ02], and again found similar
results. All of these results appear in [Guo04].

4 Conclusions

Belief nets are often used as classifiers. When learning the structure for such a BN-
classifier, it is useful to have a criteria for evaluating the different candidate structures.
This paper investigates various criteria to determine which is appropriate.



We proposed a number of novel discriminative model selective criteria, one (CBIC) an ana-
logue of a standard generative criterion (commonly used when learning generative models),
and another (BV) motivated by the familiar discriminative approach of decomposing error
into bias and variance components. We then evaluated these methods, along with the gen-
erative ones, across a number of different situations: over queries of different complexities
and different ways to use the training sample (and in [Guo04], over different sample sizes
and different ways to instantiate the parameters — generatively vs discriminatively).

As our underlying task is discriminative, we had anticipated that perhaps all of the dis-
criminative methods would work well. This was only partly true: while one discriminate
method BV is amoungst the best criteria, another CBIC performed very poorly. We also
expected 5CV to be uniformly superior to the 1Sample approach; our empirical evidence
show that this, too, was not always true. (However, even when 5CV was inferior, it was
never much worse.)

Our main contributions are defining the BV criteria, and providing empirical evidence that it
does perform effectively, even for small samples. (While the CBIC criterion is also discrim-
inative, our empirical evidence argues strongly against using this measure.) Our data also
supports our recommendation for using the standard 5CV approach in this discriminative
context.
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