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Abstract—Inefficient mobile software Kkills battery life. Yet,
developers lack the tools necessary to detect and solve energy
bugs in software. In addition, developers are usually tasked with
the creation of software features and triaging existing bugs. This
means that most developers do not have the time or resources to
research, build, or employ energy debugging tools.

We present a new method for predicting software energy
consumption to help debug software energy issues. OQur approach
enables developers to align traces of software behavior with traces
of software energy consumption. This allows developers to match
run-time energy hot spots to the corresponding execution. We
accomplish this by applying recent neural network models to
predict time series of energy consumption given a software’s be-
havior. We compare our time series models to prior state-of-the-
art models that only predict total software energy consumption.
We found that machine learning based time series based models,
and LSTM based time series based models, can often be more
accurate at predicting instantaneous power use and total energy
consumption.

I. INTRODUCTION

Developers are relatively unaware of techniques and tools
used to address software energy issues [L]. Energy bugs
deplete mobile batteries and cost developers time to debug.
Battery life is an important resource for end-users because
it dictates how long their applications can be used. To meet
the end-users’ demand for energy efficient applications, de-
velopers are more energy aware than ever, and ask more
questions about their software’s energy efficiency [1]. While
answers to their energy related questions help developers to
some extent, in order to build energy efficient applications,
developers need actual feedback on their applications’ energy
consumption. Researchers have built tools for developers to
model the energy consumption of mobile software and hard-
ware components [2]], [3]. However, these tools are not as easy
to use as widely available performance metrics like: CPU load,
network interface usage, or disk usage. We are interested in
building tools that help developers to understand when and
where their applications consume the most energy. Such tools
would enable the software development processes to better
track and maintain energy goals by finding hotspots and energy
bugs [4], [

Previous energy estimation tools [3l], [6], [7] offer a sum-
mary of the total energy consumption for a given run of the
application. Although this gives an idea about an app’s energy
consumption, it does not give much about the location of the

energy bugs and hotspots [4], [S]—which segment of source
code is responsible for the most energy drain. Developers
provided with tools to align time series of software energy
consumption to program behaviour can more easily debug
energy bugs.

Researchers have worked towards online energy estimation
tools [8]], [9]. However, current instantaneous energy pre-
diction tools assume that developers have access to battery
API information or that developers have hardware access
to power measurement tools. Whereas, our work makes no
hardware assumptions and provides developers with hardware-
free energy usage predictions as if the developers had access
to energy meters.

In this paper we propose a series of simple to measure and
construct models that use software performance measurements
to predict instantaneous energy consumption. We can align
performance measurements with our energy measurements to
train neural networks and other machine learning models to
predict the instantaneous energy consumption of a software
application.

We have to assess the quality of our proposed energy
consumption prediction method compared to existing solu-
tions [[10]. Our method uses instantaneous time measurements
throughout a software test run whereas existing state-of-the-
art models measure a summary of software features at the
beginning and end of a software test run. We call the existing
models time-summarized, or Istep for short, as the software
run is measured or aggregated in a single time step instead of
many instantaneous time steps or windows.

To assess our models we raise the following questions:
(RQ1) How well do time series models perform when predict-
ing total energy consumption?; (RQ2) Do time series models
with built-in state or memory perform better than time series
models without state when predicting energy consumption?;
(RQ3) Energy prediction models can be trained with different
feature sets; how does performance change when using them
individually versus together? What features affect the energy
consumption models predictive power?; and (RQ4) Do shallow
multi-layer-perceptrons perform similarly to existing stateless
models such as those based on linear regression?



II. PRIOR WORK

Energy-aware software engineering poses many challenges
in the development of energy-efficient software [[L1], [12]], [7].

The research approaches to profiling energy on given mobile
devices can be partitioned into three categories: software,
hardware, or hybrid models [3]]. Software based energy pro-
filers use recordable features like API calls, system calls,
and resource utilization to model the energy consumption
of a mobile device [3], [13], [14], [6]. Whereas, hardware
based energy profilers can measure the energy consumption
of specific components [3]], [15]. Hybrid approaches use both
software and hardware based features [3]]. Furthermore, a
software based profiler might rely on an API to the battery
to measure energy consumption on the device during model
construction [3[], [13]. The measurement of the energy con-
sumption through an API is distinct from a hardware based
profiler, which can sample the current used by the phone
with an external measurement tool [3]]. Here are two examples
of energy profilers: se-same [13]] is a smart-battery interface
based application energy consumption predictor; therefore, it is
a software based profiler [3[]; and Netw-trace [15] which uses
an external device to measure the energy used by the phone,
and software to record the network traffic on the device’s
WiFi and radio devices [3l]. Netw-trace is a hybrid profiler,
because it uses software and hardware reading to predict
energy consumption. Work by Banerjee et al. [4] and the
GreenMiner [16] are examples of hardware and software based
energy measurement tools used to study software execution
and energy consumption.

Researchers have also investigated energy draining hardware
and software components that software applications use. For
instance, researchers have developed energy-efficiency tar-
geted operating systems like ErdOS [17] and CondOS [18],
[2]. ErdOS [17]] predicts how a user interacts with hardware
components to schedule more sleep behavior. Whereas, Con-
dOS provides more energy efficient APIs for sensing resources
like GPS so that developers do not need to develop their own
energy efficient heuristics. More energy efficient networking
protocols for battery limited mobile devices have also been
studied since WiFi and radio components can consume large
amounts of device energy [2], [19] Furthermore, researchers
have also investigated the process of sharing mobile compu-
tation with the cloud [2], [[17]. This enables a phone to place
energy-expensive computation on another computer to prevent
the battery from being drained by a costly operation.

Work has been accomplished on identifying software sys-
tem calls as a method to profile the energy consumption of
software [20]. Tools that predict the total energy consumption
of software applications exist which are based on system
calls and additional software and hardware features [L10]],
[21]. However, these tools often do not provide details of
the software behavior that influences energy consumption.
GreenOracle is a regression tool which can predict the total
energy consumption of a software application test [10]]. It
uses system call and resource utilization metrics to predict the

energy consumption of given software applications under test.
In this paper we employ GreenOracle features and models to
produce time series predicting energy models.

Prior work has also worked towards creating online energy
profiles of software applications similar to our goal [8], [9].
However, prior work has used hardware APIs like on the
Android battery to perform online energy prediction [9]. Other
prior work has also assumed there is access to an energy
measurement platform when predicting how much energy
is consumed by software [8]. However, our work does not
assume that the developers using our models have access to a
battery API or that developers have access to energy measure-
ment hardware. Therefore, developers can use our prediction
models to generate the energy consumption information of
their applications under test as if they had access to an energy
meter of their own.

III. BACKGROUND
A. System Calls and The Process File System

System calls are generated by Linux applications when
requesting system resources [22]. For example, the write
system call count explains how many times the processes have
written to a file descriptor. Prior work has shown that energy
models can be constructed from using system calls as input
features [23[], [10], [20], [13].

The process file system (procfs) provided by the Linux
kernel provides process-specific run-time information [24]. For
example, the process utime feature records how long a process
has been scheduled in user land in clock ticks. The procfs
provides additional resource-usage features associated with a
running application that we can use to predict the energy
consumption of a given application. It was also shown in
prior work that using both system calls and process utilization
features can create accurate models [13]], [[10].

B. Energy and Energy measurement

Energy (E) is the capacity to do work measured in joules.
It is represented by power (P), which is the rate work is done,
multiplied by time (T): £ = P - T. Power is measured in
watts. In our case, energy is consumed by the smart phones
to execute software applications.

We make use of the GreenMiner testbed: a set of 4 instru-
mented Android devices that replay software test runs while
recording device energy usage [16]. We apply the GreenMiner
to mine information from multiple Android applications ver-
sions to build a model-training corpus. To pick an application
for energy profile mining on the GreenMiner a researcher
needs to check if the application and each of its versions
run on the devices. As well, the researcher needs to write
software tests which simulate how an end-user would interact
with the application. This means a software test needs to cover
important functionality from the application under test. It is
possible to see how the energy consumption of tested functions
change over time because the software tests are repeated across
multiple revisions of the same software application.
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Fig. 1. Feed forward and recurrent neural networks

C. Neural networks

Neural networks are currently quite successful models in
machine learning capable of modelling linear and non-linear
relationships. Successes have been demonstrated in fields such
as speech recognition [25]], [26]], time series prediction [27],
and even software engineering [28]], [29], [30].

Deep neural networks are neural networks with multiple
layers in contrast to shallow networks which have few layers.
Deep learning is the process of training a model structure to
represent a hierarchy of abstract relationships from a given
data set [31]. It avoids the need for manual feature selection
because the training algorithms for deep networks perform
feature selection. Deep learning is also capable of exploiting
non-linear relationships in the input data.

Common types of neural networks like feed forward neural
networks (FNN) and recurrent neural networks (RNN) have
nodes with specific edge configurations. FNNs are less com-
plicated than RNNs because FNN nodes and edges do not
contain loops. Both FNN and RNN networks have 1 or more
layers, each with 1 or more nodes. In an FNN, the edge is
restricted such that their node outputs can only go to lower
layers. Whereas, RNNs allow edges from node outputs to be
connected backwards or forwards. Figure[Ta]shows an example
of a multi-layer perceptron (MLP) which is a type of FNN.
The direction of the edges in the MLP is forward from left
to right in contrast to the RNN in Figure [Ib] which has edges
going in both directions.

RNNS are capable of learning more relationships from input
data than FNNs due to their back-edges. Back-edges refer
to the looping edges of the network as shown in Figure [Tb]
because they go back from a layers output to somewhere
higher in the network. Yet, RNNs have poor performance when
used with time series of length 200 or more time steps [32].
This is due to the network nodes becoming saturated which
leads to very large or very small parameters (edge weights
and biases). However, this can be managed by adding memory
cells to the RNN nodes. Popular networks that use memory
cells are the long-short term memory layers (LSTM). LSTMs
avoid the part of the saturation problem faced by RNNs. This
makes LSTMs better at modelling the relationships that exist
in sequential input data than RNNs and FNNs. Both RNN
and LSTM networks have achieved strong results on tasks

that require modelling sequences of inputs which motivates
our exploratory usage of the models in this work [31], [33].

Neural networks use activation functions in each neuron
to transform the output of the network and to update the
weights at each neuron. In our work we apply linear, sigmoid,
hard sigmoid, and tanh activation functions. We use the linear
activation function to model Gaussian distributions, and we
apply the tanh and hard sigmoid activation functions in our
LSTMs to model the sequence-based relationships of our input
measurements [34]. We use the cross-entropy cost function
with our networks as it has been found to yield good results
in the training process due to training becoming a convex
optimization problem [32]].

D. Glossary

Here we introduce several terms that we use throughout
the paper: a time series refers to a sequence of measurements
or predictions grouped into time steps by time of measure-
ment/prediction. We refer to models that have been constructed
to consume time series and output time series predictions
as time series models. If a model is unable to handle the
multiple measurements across time, then we remove time
by aggregating via summation every measurement together.
We refer to the time-summarized data as a single time step
or Istep. Because, the time series only contains information
aggregated into a single time step which covers from the
beginning of a software test run to the end of its duration.
We refer to software tests, where we observe and collect our
data, as test runs.

IV. METHODOLOGY

The steps of the methodology used to evaluate the energy
models are:

1) Find applications with multiple versions for Android.

2) Write test cases to simulate user interaction with the
applications.

3) Run application tests on the GreenMiner and collect
data.

4) Create cross folds: 5 applications train; 1 application
test.

5) Train models, or perform parameter selection, per fold.

6) Evaluate models on test folds.

We want to make energy models that can predict the
energy consumption of software as it runs. Such models would
enable developers to associate their software behavior with
corresponding changes in energy consumption. To train energy
prediction models, however, we need examples of running
software and their resource and energy usage.

We used the GreenMiner testbed, described in Section [[V-A]
to collect time series information from Android applications
concerning system calls from strace and process resource
utilizations from procfs. To use the GreenMiner we identified
Android applications with multiple versions; we write test
cases to simulate user interaction with the applications; and
we record information from the tests while they run on the
GreenMiner.



TABLE I
MINED APPLICATIONS
Application Description
Calculator An Android calculator application
Blockinger A Tetris like Android game
Dalvik Explorer | A phone properties viewer for Android
2048 A number puzzle game
Pinball An Android pinball game
Memopad A freehand drawing application

The collected system calls provide information about soft-
ware resource requests over time. However, system calls
do not provide any information on CPU usage and other
relevant information like number of interrupts, number of
context switches etc. This led us to periodically access and
collect those measurements from the Linux procfs throughout a
software test. We also used hardware instrumentation to collect
the energy consumption of mobile devices as they run software
tests. In Section we discuss the various models that we
evaluate in our work and the reasons why they were chosen.
In Section we discuss how the models are compared
with one another to answer our research questions.

A. Data Collection

Section discusses how behavior and energy consump-
tion profiles are extracted from software applications. Section
explains how we collect behavior and energy measure-
ments during the mining process of Section Section
shows preprocessing steps taken prior to training.

1) Mining Applications: In order to train our models, we
needed example applications so that we can run them with
a test case, collect their resource usage (as model input)
and energy consumption (as model output) periodically. We
selected 6 Android applications from the GreenOracle dataset,
as listed in Table [I] (step 1). Each application had multiple
software revisions available and the applications are open
source software. Each application had at least 30 unique
software revisions, except Dalvik Explorer which only
had 13 software revisions. 30 was chosen arbitrarily to provide
enough statistical power for many of the distribution compar-
ison tests and to keep measurement time reasonable. Having
multiple versions of each application was good for models’
accuracy. We needed to write only one test case for a particular
application, but could enlarge our training data by running
the same test case for the multiple versions (step 2). We only
chose a subset of the GreenOracle dataset because it was time
consuming to collect time series of the system call and procfs
features (step 3). We tried to pick applications that used the
phone differently than one another to provide a representation
of different hardware usage per application. In addition, with
a larger number of applications, the training time of our deep
networks is significantly longer.

To measure energy consumption we wrote test runs which
simulate common use cases of the applications (step 2).
The common use case of an application was assessed by
the authors to determine how the application is intended to

be used. For example, test runs were written to do small
calculations, like finding the GST of purchased goods for
the Calculator application, because this is what we would
expect an average user to do with a pocket calculator. Dalvik
explorer displayed phone meta-data. Blockinger’s test dropped
and rotated tetris pieces randomly. 2048’s test made random
moves. Pinball’s test randomly throws and paddles the pinball.
Memopad’s test draws a hexagon monster with legs. To reduce
the generalization error of our measurements we repeat the test
runs multiple times per revision to create multiple data sets for
the same revision. In our study we repeated test runs 20 times
each matching the methodology of other works [10].

2) Mining Features and Labels: The software features we
are interested in include: system calls, and device resource
utilization (step 3). Similar to the GreenOracle [10], we used
the strace program to collect all the system calls and retrieved
measurements from /proc/stat, /proc/pid/stat, and
/proc/pid/statm file systems to collect process related
information. However, in contrast to GreenOracle, all of our
features were collected periodically throughout the duration of
a software test run.

To measure resource usage for a given application over time,
we define a time step to be a period of 0.02 seconds. The
period of 0.02 is chosen because this is similar to the sampling
rate of the GreenMiner. Figure [2a shows an example of what
our model features look like in a given time step. In our energy
models, after we have recorded an applications resource usage
and system calls we partition the information into time steps.
For each period of 0.02 seconds, we count the number of each
system call that occurs in the time step, then we approximate
additional applications resource utilization from procfs such
as CPU load.

We also collect a power sample, which is a single watt
measurement for the period, that is paired with the software-
behavior measurements. We convert the watt measurement to
energy usage using the the duration between two watt samples
which will be used as the dependent variable in our models.

We collect the measurements and energy usage periodically
throughout a software applications usage. We then synchronize
the data measurements with energy usage to create partitions,
or time steps, of the data for training as in Figure
This provides one time step for every 0.02 seconds, and the
corresponding energy measurements as shown in Figure
We preprocess these timeseries for training our energy models.

3) Preprocessing: We time align and bin our measurements
for training. The software and energy measurement tools in
our experiment are not aligned with respect to time (step 4).
Therefore, for the procfs and energy measurements that we
collect we apply linear interpolation to approximate measure-
ments at fixed times. Fixed times allow us to partition our
time series measurements into time steps which can be used
by the model as inputs. The system call measurements which
we collect are counted for each of the fixed time periods to
create time steps. We collect every feature reported by strace
and the selected procfs files.

We also take the difference of consecutive samples of
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Fig. 2. Figure (a) and (b): feature set measurements. Figure (c), and (d) show
measured energy over time compared with LSTM and SVR model predictions
that are described later.

procfs counters. Because, a single sample will only explain the
current values of given resources used by a process. Whereas,
the difference explains the rate of change in the resource that
was caused by the running process. The procfs features that do
not change throughout the duration of a test run are discarded.

With system calls, it is possible to have 2 semantically
similar system calls occur in separate applications. We provide
a list of the system call groups that we apply to our data set in
Table [l Duplicate names create complications when tuning
the weights in machine learning models; because, the training
algorithm tries to attribute weight to multiple features causing
the same effect in the models. We use a subset of the system

SYSTEM CALL FEATURE GROUPINGS

TABLE Il

Group System calls
Iseek Iseek, _llseek
write write, pwrite
read read, pread
stat fstat64, Istat64, stat64
fsync fdatasync, fsync

call groupings as in the GreenOracle for comparison of our
time series models against Istep models [10]. An example
of semantically similar system calls with different names are:
fstat64 and stat64 which both get file status information.

To improve the training times of our models, and to try and
avoid gradient problems in the neural networks models we
train, input normalization is used in our preprocessing step. We
chose to use min-max scaling for each approximated procfs
measurement, system call count, and approximated energy
usage values. For each software feature ¢ in our data set, we
calculate the scaled values X404, from the given software
feature X; using the following formula:

X; — min(X;)
max(X;) — min(X;)

Feature normalization scales each features to the range of
[0, 1]. Normalization is used to prevent the weights in models
like neural networks from growing to infinity or shrinking
to 0 known as the exploding or vanishing gradient problem.
We also apply normalization to our energy measurements for
model training. When training our models, input normalization
tended to improve prediction performance.

Xscaled,; =

B. Models

Section [[V-BT| provides the list of models we consider in our
experiments. It also discusses the difference between models
that consider a time series and models that are Istep (step
5). The statefulness of LSTM models and whether or not
that improves performance is also discussed. Section [[V-B2]
explains how it is possible for us to compare the time series
models with the /step models (step 5).

1) Model Selection: Tools for predicting the time series
energy consumption of software are not widely available at the
time of writing, although models do exist [23] or some models
could be converted to do so [13]], yet implementations are not
available. Therefore, we do not have time series models that
we can compare our work against. However, there are models
that predict the total energy usage of software components or
hardware devices such as linear regression models of energy
consumption [10]. We use the same performance metric as
the prior work to make our models comparable to the existing
state-of-the-art.

Because it is unknown which machine learning models
could perform well, predicting the time series energy con-
sumption, we select several. We evaluate ridge and lasso
regression, and multiple support vector machine regressors
based on the results of the prior work [10]. However, none



of the models from the prior work are designed for taking
advantage of the sequence in which data in a time series
occur. Therefore, we also evaluate two different LSTM RNNs
because we think that they will perform better on the time
series energy prediction task. We also evaluate several MLPs
because we think that they will perform similarly to the ridge
and lasso regression models due to the number of weights in
a single layer MLP being similar to the number of weights in
a linear regression model.

We evaluate all of the models with 4 different feature sets
to get an understanding of how the models perform. We use a
full feature set which consists of all the features we collected
from system calls and procfs, a GreenOracle feature set which
consists of the best linear features as selected in the prior
work [10], a system call feature set which only consists of
system call features, and a procfs feature set which only
consists of the process related features.

For the MLP and LSTM RNNs, we rely on stochastic
gradient descent to perform model tuning. We select specific
structures, in the case of the MLPs we look at: a sigmoid
hidden layer with a linear output, two sigmoid hidden layers
with a linear output, and three hidden sigmoid layers with a
linear output. On the deep neural networks, we consider the
use of one and two hidden LSTM layers with either a linear
output layer or a sigmoidal output layer. Our neural network
input and hidden layers contain one node per feature being
evaluated by the model. For example, a 2 layer MLP evaluated
on the GreenOracle feature set would have 14 input nodes, 14
nodes on the hidden layer, and 1 node on the output layer.

Furthermore, the selection of appropriate MLP and RNN
LSTM structures is further complicated by neural network
hyper parameters like number of nodes, number of layers, and
activation functions. Capacity of a model is associated with
how much information the model can learn and store from
the training data. Capacity is associated with the number of
edges, neurons, and whether or not the model neurons contain
memory cells. It is not clear if more or less capacity would
help with the learning task on the MLP and our deep learning
LSTM models. It has been found that linear outputs can model
Gaussian distributions and our physical measurements of the
mobile devices often have Gaussian distributions [32]. So, we
evaluate several types of neural network structures to get a
better understanding of the problem which we are approaching.
A list of the models is provided in Table

2) Model Comparison: We investigate how models perform
when trained with each time step, and when we ignore time
in the data set by aggregating our time series into a single
time step (step 6). This means, we have a set of models
which predict every instantaneous time step of a time series.
The models use program resource usage to predict energy
consumption. We train models to predict, from a whole time
series, the total energy consumption of the application. Prior
works evaluated performance using data sets similar to the
single time step models [10]. We also use the mean relative
error as the loss function. This is calculated by checking if
the predicted total energy usage for an application is similar

TABLE III
TIME SERIES AND TIME-SUMMED /step MODEL NAMES AND THEIR
DESCRIPTIONS

Time Series Model Description

MLP_1_layer 1 layer MLP

MLP_2_layer 2 layer MLP

MLP_3_layer 3 layer MLP

Istm3sigm 2 layer LSTM and sigmoid output
Istm2sigm 1 layer LSTM and sigmoid output
Istm3line 2 layer LSTM and linear output
Istm2line 1 layer LSTM and linear output

linear_regressor
ridge_regressor

lasso regression model
ridge regression model

svr_poly polynomial SVR

svr_rbf radial-basis-function SVR
svr_plain linear SVR

1step Model Description
Istep_MLP_1_layer 1 layer MLP
Istep_MLP_2_layer 2 layer MLP
Istep_MLP_3_layer 3 layer MLP

Istep_linear_regressor
Istep_ridge_regressor
Istep_svr_poly
Istep_svr_rbf
Istep_svr_plain

linear regression model
ridge regression model
polynomial SVR
radial-basis-function SVR
linear SVR

to the observed total energy usage for the application.

Since, we use the same loss function in the instantaneous
time step and single time step formats of the data set, we are
able to compare models trained on the separate contexts with
one another because they are evaluating the total predicted
joules. It would not be possible to compare the error of
the per-time-window energy predictions of the time series
models to the total energy predictions of the Istep models.
The loss function is given below, where Y denotes the energy
observations per-time-window of the time series in joules and
Y denotes the energy predictions in joules for each time step
in a series.

- Xy — Xy
)= ‘ Xy ‘

The models which predict each time step of a given series will
produce a normalized energy prediction, we denormalize the
prediction and denote it ¢, for each step of the series. Whereas,
in the case of the Istep models which take the whole time
series and predict the total energy consumption, in normalized
joules for an application test run, there is only one predicted
9 value which we denormalize for evaluation. Furthermore,
we test several different feature sets for comparison of our
model performance. We test a full feature set (80 features),
which consists of all system calls and process related features
collected from the applications; a replica of the GreenOracle
feature set (14 features), which consists of a subset of the full
feature set; a feature set based only on the system calls (61
features); and a feature set based only on the process related
features (19 features). The GreenOracle model used linear
methods to perform feature selection, whereas our stateful
models perform their own version of feature selection between
features. So, if the full-feature set performs remarkably better
than the GreenOracle feature set, we would expect a non-



TABLE IV
SVR PARAMETERS

Parameter | Coefficients

Penalty 25 273 2=1 9T 93 95 97 29 oIT 913

Gamma 2—15 2=13 9=1IT 9=9 9=7 9=5 9=3 =1 9T 33
Degree 2

linear relationship to have been identified. We investigate the
system call and process feature sets to determine if combining
the two feature sets improves the models accuracy.

We use 6-fold leave-one-out analysis on our 6 applications
to train multiple instances of our models (step 5). The data
collected from each application is used to build a holdout
fold. The models are evaluated on the respective holdouts
(step 6). We calculate the effect-size of a representative sample
from the training set and use it to train each SVM model.
This evaluation format was chosen because it will explain if
a particular model performs well for a given feature set.We
compare model performance by combining all of the folds for
comparison of each model.

For the SVR models [35] which we train, we perform
parameter selection using 5-fold cross validation on each fold.
Table shows the list of hyper parameters which we use
for parameter selection. The Gamma coefficients are used for
radial basis and linear kernels, and the degree coefficient is
used for a polynomial kernel. SVRs are applied to the full and
GreenOracle feature sets only, as these are combined feature
sets of the system-call-only and processor-only feature sets.

V. EVALUATION

We provide our models with the time series of recorded
software behavior for given software test runs. The time
series for the /step models are summarized because the Istep
models ignore the time dimension of the series. Each of the
multistep models will predict a series of energy predictions for
each of the input time steps. The models predict the energy
consumption of each step of the time series or cumulatively
the energy consumption for the whole series.

Before it is possible to compare all of the models, we have
to perform hyper parameter selection for our SVR models.
The SVR training parameter selections are shown in Table [V]
The Full feature set was chosen because it might contain non-
linear relationships which the RBF or polynomial kernel SVR
could identify, and the GreenOracle feature set was chosen
due to the previous success with this feature set [10].

We want to know how our models compare against one
another on the task of predicting normalized joules from
software behavior. We evaluate our models by denormalizing
the joule predictions such that we can compare energy usage
across the 1step and time series models. With joules, we can
compare our prediction accuracy to the prior works [[10].

We had numerous models and thus we wanted to see if mod-
els were significantly different in their performance. To check
whether or not our models produced normal distributions for
the data being predicted, we used the Anderson-Darling test.

TABLE V
SELECTED SVR PARAMETERS AND FEATURE SETS
Model Feature set Penalty | Gamma | Degree
linear Full 0.125 0.0125 -
rbf Full 2 8 -
polynomial Full 2048 - 2
linear GreenOracle | 0.03125 | 0.0714 -
rbf GreenOracle | 0.5 8 -
polynomial GreenOracle | 8 - 2
Istep_linear Full 0.125 0.0125 -
Istep_rbf Full 2 8 -
Istep_polynomial | Full 2048 - 2
Istep_linear GreenOracle | 0.125 0.0714 -
Istep_rbf GreenOracle | 0.5 8 -
Istep_polynomial | GreenOracle | 32 - 2

However, we found p-values below 2e—16 which confirmed
that none of the distributions under consideration are normal.
Thus, non-parametric tools are used to assess the relationships
between the models. A Kruskal-Wallis test on each feature set
shows a p-value < 2e—16 which implies that the model type
has a significant influence on the output. Thus the models
are mostly different from each other and we can show this
with the pairwise Wilcoxon test with Holm p-value correction
for multiple comparisons. The Wilcoxon and Cliff’s Delta
methods do not make assumptions about the data distributions
being evaluated and the two tools can inform us whether or not
two models perform significantly different from one another.

In the Figures [3a] [3b] [3c| Bd] fal 4B and [Ad] the text
Istep denotes a model which takes the total counts of different
syscalls and other resource usage as the input and predicts the
total energy consumption for the test run. Models that do not
include the Istep prefix predict energy at each time step for
the given time series of a given test.

Figure Figure Figure and Figure [3d| show the
evaluation of pairwise Wilcoxon tests on each group of models
as well as the evaluation of Cliff’s Delta. The color of a
square shows the Wilcoxon result where: white means the two
models were not tested against one another for their Wilcoxon
p-values, black (ggg) means a p-value above or equal to 0.05,
and grey (w»n) means a p-value less than 0.05. A p-value
less than 0.05 means that two given models are significantly
different from one another as shown by the grey squares.
Most models were different from each other, as there were
few black squares. The number on the square identifies the
Cliff’s Delta estimate of how different the two models under
comparison are. A number close to 0 means that the models
are very similar, whereas —1 or 1 mean that the models predict
different intervals of joules from one another. Models which
predict different intervals from each other can be compared to
see if one creates stronger results than the other. We compare
the models performance against each other using their total
energy prediction accuracy [10].

Now that we’ve demonstrated that the models can predict
software energy use and are mostly different from each other
we want to evaluate the performance of each model. We show
box plots, ordered by the mean total joule prediction error
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denotes a significant difference and ggg denotes no-significant

difference using Wilcoxon t-test with Holm correction. Note these are the lower triangle of comparisons.

for each model, to illustrate the difference in performance
between models. Figure @a] Figure Figure [4d, and Figure
[d] show box plots of model predictions using different feature
sets. To generate the values for each box plot, the model is
evaluated on how well it predicts the total energy consumption
for each test run. We omit per-step boxplots of timeseries
models as the aggregate statistics of per-step relative errors
are identical to the cumulative mean average relative error.
We show the combined results, in terms of relative error, of
each model trained on a given fold predicting the respective
holdout set. Note in some of figures that the models boxplots
are missing, such as lasso regression or 3 layer MLP, because
the models have huge cumulative error and would not fit within
the domain of the plot.

VI. RESEARCH QUESTIONS AND DISCUSSION

RQ1 How well do time series models perform when predicting
total energy consumption? Time series models often perform
just as well or better than time-summarized/1step models. We
evaluated whether or not any of the models perform similarly
by checking their relative prediction error of total energy
consumption for given software test runs. Our Wilcoxon and
Kruskal-Wallis results suggest that each of our models perform
differently. We plotted the relative errors of evaluation for
each model predicting energy consumption sorted by mean
performance in Figure fa] Figure [4b] Figure and Figure
These figures show that the time series and /step models
perform similarly to each other. For example, as shown in
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Fig. 4. Model relative prediction error box plots under various feature sets

Figure 4] there is no well defined partition which divides the
models into time series or /step models. Furthermore, Figure
shows that the time series and time-summarized models are
competitive with one another. As, the Istep ridge regressor
model can outperform several time series models, but it is
outperformed by the time series Istm2sigm model. The Istep
ridge regressor model is our baseline for comparison because
it represents the state-of-the-art software energy prediction
model GreenOracle [10]. It is surprising that 4 of the time-
summarized models outperform both the Istep ridge regressor
and the Istm2sigm models as outlined in Figure @bl The

Wilcoxon rank sum test shows that there is a significant
difference (p < 2.2e — 16), one shot models have slightly
more mean relative error than timeseries models (95% CI
[0.0342,0.0400]), but Cliff’s delta (0.119) suggests this 3%
to 4% difference is negligible. Model performance depends
on the feature set but timeseries models do slightly better.

RQ2 Do time series models with built-in state perform better
than time series models without state when predicting energy
consumption? The answer is Yes. Figure fa] and Figure [4D|
show that the median error of the LSTM models is very low
for most of the models. In the Figure [da] 4 of the top 5 models



are LSTMs. In Figure @ with GreenOracle feature set, 1 of
the top 5 models is an LSTM. The best LSTM-based model in
Figure |4b| has a median performance of 12% error. Prior work
showed that a median performance of roughly 14% was ex-
pected for 6 mobile applications [10]. Therefore, we conclude
that the LSTM models are competitive with the state-of-the-
art. The stateful models are outperformed by Istep models, or
by lasso and ridge regression when considering fewer features
since the LSTMs are unable to do their own feature selection.
On the full feature set, the Wilcoxon rank sum test shows
that there is a significant difference (p < 2.2e — 16), stateless
models have more mean relative error than stateful LSTM
models (95% CI [0.101,0.108]), and a medium effect size
(Cliff’s delta 0.376).

We also select two random examples to show how our
models perform in predicting the actual energy time series. Do
they maintain similar shape and scale as the ground truths?
Shown in Figure is a stateless time series SVR model
predicting the denormalized energy consumption of a given
test run. This model’s predictions do not fit the observed data
well. On the other hand Figure [2c|shows a stateful-time series
LSTM model predicting the energy consumption of a given
test run. The LSTM is capable of achieving a better fit to
the shape of the observed data with its denormalized energy
predictions. The SVR model does well in the aggregate rather
than shape. Whereas, the LSTM model is capable of predicting
the fit in some runs, but can miss-predict when the energy
consumption of an application is going to change significantly.
Figure [2c| demonstrates that a developer using the Istm2sigm
model could predict their energy consumption for the given
test run and attribute the energy consumption to a part of that
test run.

RQ3 Energy prediction models can be trained with different
feature sets. How does performance change when using them
individually versus together? Models with multiple kinds of
features tend to perform better. Two sources of software
behaviour are collected from strace and process summary
information from procfs throughout the software tests. Figure
shows the performance of models trained only using
the collected system call features and Figure fid| shows the
performance of models only trained on the procfs features. In
these figures it is clear that most of the models have a median
error near 20%. Whereas, in Figure and Figure most
of the models have median errors below 20%. The Wilcoxon
rank sum test shows that there is a significant difference
(p < 2.2e—16), models trained on smaller feature sets tend to
have more mean relative error than the full feature set models
(95% CI [0.00712,0.0103]) with negligible effect size (Cliff’s
delta 0.0289). When we compare procfs features to a full
feature set the model behave significantly differently (95%
CI [0.0438,0.0489]) with nearly a 4.5% difference, although
the effect size is negligible (Cliff’s Delta 0.131). This suggests

there is a difference but across all models it is a 1% difference
or less. The full set of features perform better than any subset.
CPU/procfs features alone are not enough.

RQ4 Do shallow multi-layer-perceptrons perform similarly
to existing stateless models such as those based on linear

regression? In most cases the MLP models performed very
poorly on the learning task. Lasso and ridge regression models
performed well on the system-call only and process-only
feature sets. The Wilcoxon rank sum test shows that there is a
significant difference (p < 2.2e —16), MLP models have more
mean relative error than linear models (95% CI [0.377,0.397])
with a medium effect size (Cliff’s § 0.387).

A. Threats to Validity

Construct validity is threatened by energy and software be-
haviour measurements. Internal validity is threatened by time-
series alignment, synchronization, and interpolation. External
validity is threatened by the small number of applications used
to produce the models (5 apps per fold), this is balanced by
using multiple versions of each application.

VII. CONCLUSION

In summary we explored software energy consumption
prediction using time series regression models. Our work
evaluated and compared several existing state of the art ma-
chine learning based energy prediction methods. Deep learning
based models based on LSTMs did well but often simpler
linear regression models performed just as well. LSTM based
models had best median relative error on the full feature set.

Time series based models were accurate per step and
cumulatively across the whole test run. We found that machine
learning based time series models and /step models perform
similarly when predicting the total energy consumption of a
software test run. We found evidence that stateful time series
models like LSTMs who maintained state/memory about the
past, predicted energy consumption better than stateless mod-
els, like SVR. We also found that shallow MLPs performed
poorly in comparison to the lasso and ridge regression models
when predicting energy consumption for a given test run.

Thus if a trained model is distributed to developerg'} tools
need only to record output strace and procfs output in order
to estimate the energy consumption of their application as it
runs without the need for external hardware measurement.

Future work will focus on shape matching time-series, as
well as closer correlating source code to energy consumption
time-series.
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